12,356 research outputs found

    Number and Amplitude of Limit Cycles emerging from {\it Topologically Equivalent} Perturbed Centers

    Full text link
    We consider three examples of weekly perturbed centers which do not have {\it geometrical equivalence}: a linear center, a degenerate center and a non-hamiltonian center. In each case the number and amplitude of the limit cycles emerging from the period annulus are calculated following the same strategy: we reduce of all of them to locally equivalent perturbed integrable systems of the form: dH(x,y)+ϵ(f(x,y)dyg(x,y)dx)=0dH(x,y)+\epsilon(f(x,y)dy-g(x,y)dx)=0, with H(x,y)=1/2(x2+y2)H(x,y)={1/2}(x^2+y^2). This reduction allows us to find the Melnikov function, M(h)=H=hfdygdxM(h)=\int_{H=h}fdy-gdx, associated to each particular problem. We obtain the information on the bifurcation curves of the limit cycles by solving explicitly the equation M(h)=0M(h)=0 in each case.Comment: 17 pages, 0 figure

    Non-linear eigenvalue problems arising from growth maximization of positive linear dynamical systems

    Get PDF
    We study a growth maximization problem for a continuous time positive linear system with switches. This is motivated by a problem of mathematical biology (modeling growth-fragmentation processes and the PMCA protocol). We show that the growth rate is determined by the non-linear eigenvalue of a max-plus analogue of the Ruelle-Perron-Frobenius operator, or equivalently, by the ergodic constant of a Hamilton-Jacobi (HJ) partial differential equation, the solutions or subsolutions of which yield Barabanov and extremal norms, respectively. We exploit contraction properties of order preserving flows, with respect to Hilbert's projective metric, to show that the non-linear eigenvector of the operator, or the "weak KAM" solution of the HJ equation, does exist. Low dimensional examples are presented, showing that the optimal control can lead to a limit cycle.Comment: 8 page

    Contributions à la stabilisation des systèmes à commutation affine

    Get PDF
    Cette thèse porte sur la stabilisation des systèmes à commutation dont la commande, le signal de commutation, est échantillonné de manière périodique. Les difficultés liées à cette classe de systèmes non linéaires sont d'abord dues au fait que l'action de contrôle est effectuée aux instants de calcul en sélectionnant le mode de commutation à activer et, ensuite, au problème de fournir une caractérisation précise de l'ensemble vers lequel convergent les solutions du système, c'est-à-dire l'attracteur. Dans cette thèse, les contributions ont pour fil conducteur la réduction du conservatisme fait pendant la définition d'attracteurs, ce qui a mené à garantir la stabilisation du système à un cycle limite. Après une introduction générale où sont présentés le contexte et les principaux résultats de la littérature, le premier chapitre contributif introduit une nouvelle méthode basée sur une nouvelle classe de fonctions de Lyapunov contrôlées qui fournit une caractérisation plus précise des ensembles invariants pour les systèmes en boucle fermée. La contribution présentée comme un problème d'optimisation non convexe et faisant référence à une condition de Lyapunov-Metzler apparaît comme un résultat préliminaire et une étape clé pour les chapitres à suivre. La deuxième partie traite de la stabilisation des systèmes affines commutés vers des cycles limites. Après avoir présenté quelques préliminaires sur les cycles limites hybrides et les notions dérivées telles que les cycles au Chapitre 3, les lois de commutation stabilisantes sont introduites dans le Chapitre 4. Une approche par fonctions de Lyapunov contrôlées et une stratégie de min-switching sont utilisées pour garantir que les solutions du système nominal en boucle fermée convergent vers un cycle limite. Les conditions du théorème sont exprimées en termes d'Inégalités Matricielles Linéaires (dont l'abréviation anglaise est LMI) simples, dont les conditions nécessaires sous-jacentes relâchent les conditions habituelles dans cette littérature. Cette méthode est étendue au cas des systèmes incertains dans le Chapitre 5, pour lesquels la notion de cycles limites doit être adaptée. Enfin, le cas des systèmes dynamiques hybrides est exploré au Chapitre 6 et les attracteurs ne sont plus caractérisés par des régions éventuellement disjointes mais par des trajectoires fermées et isolées en temps continu. Tout au long de la thèse, les résultats théoriques sont évalués sur des exemples académiques et démontrent le potentiel de la méthode par rapport à la littérature récente sur le sujet.This thesis deals with the stabilization of switched affine systems with a periodic sampled-data switching control. The particularities of this class of nonlinear systems are first related to the fact that the control action is performed at the computation times by selecting the switching mode to be activated and, second, to the problem of providing an accurate characterization of the set where the solutions to the system converge to, i.e. the attractors. The contributions reported in this thesis have as common thread to reduce the conservatism made in the characterization of attractors, leading to guarantee the stabilization of the system at a limit cycle. After a brief introduction presenting the context and some main results, the first contributive chapter introduced a new method based on a new class of control Lyapunov functions that provides a more accurate characterization of the invariant set for a closed-loop system. The contribution presented as a nonconvex optimization problem and referring to a Lyapunov-Metzler condition appears to be a preliminary result and the milestone of the forthcoming chapters. The second part deals with the stabilization of switched affine systems to limit cycles. After presenting some preliminaries on hybrid limit cycles and derived notions such as cycles in Chapter 3, stabilizing switching control laws are developed in Chapter 4. A control Lyapunov approach and a min-switching strategy are used to guarantee that the solutions to a nominal closed-loop system converge to a limit cycle. The conditions of the theorem are expressed in terms of simple linear matrix inequalities (LMI), whose underlying necessary conditions relax the usual one in this literature. This method is then extended to the case of uncertain systems in Chapter 5, for which the notion of limit cycle needs to be adapted. Finally, the hybrid dynamical system framework is explored in Chapter 6 and the attractors are no longer characterized by possibly disjoint regions but as continuous-time closed and isolated trajectory. All along the dissertation, the theoretical results are evaluated on academic examples and demonstrate the potential of the method over the recent literature on this subject

    A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching

    Full text link
    It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in electrical networks. In fact, the USA Energy Policy Act of 2005 (Section 1223) states that the U.S. should "encourage, as appropriate, the deployment of advanced transmission technologies" including "optimized transmission line configurations". As such, many authors have studied the problem of determining an optimal set of transmission lines to switch off to minimize the cost of meeting a given power demand under the direct current (DC) model of power flow. This problem is known in the literature as the Direct-Current Optimal Transmission Switching Problem (DC-OTS). Most research on DC-OTS has focused on heuristic algorithms for generating quality solutions or on the application of DC-OTS to crucial operational and strategic problems such as contingency correction, real-time dispatch, and transmission expansion. The mathematical theory of the DC-OTS problem is less well-developed. In this work, we formally establish that DC-OTS is NP-Hard, even if the power network is a series-parallel graph with at most one load/demand pair. Inspired by Kirchoff's Voltage Law, we give a cycle-based formulation for DC-OTS, and we use the new formulation to build a cycle-induced relaxation. We characterize the convex hull of the cycle-induced relaxation, and the characterization provides strong valid inequalities that can be used in a cutting-plane approach to solve the DC-OTS. We give details of a practical implementation, and we show promising computational results on standard benchmark instances

    Center boundaries for planar piecewise-smooth differential equations with two zones

    Get PDF
    Agraïments: The first author is partially supported by Procad-Capes88881.068462/2014-01 and FAPESP2013/24541-0. The second author is partially supported by program CAPES/PDSE grant number 7038/2014-03 and CAPES/DS program number 33004153071P0. The third author is supported by program CAPES/PNPD grant number 1271113.This paper is concerned with 1-parameter families of periodic solutions of piecewise smooth planar vector fields, when they behave like a center of smooth vector fields. We are interested in finding a separation boundary for a given pair of smooth systems in such a way that the discontinuous system, formed by the pair of smooth systems, has a continuum of periodic orbits. In this case we call the separation boundary as a center boundary. We prove that given a pair of systems that share a hyperbolic focus singularity p 0 , with the same orientation and opposite stability, and a ray Σ 0 with endpoint at the singularity p 0 , we can find a smooth manifold Ω such that Σ 0 ∪ p 0 ∪ Ω is a center boundary. The maximum number of such manifolds satisfying these conditions is five. Moreover, this upper bound is reached

    Finite-gap Solutions of the Vortex Filament Equation: Isoperiodic Deformations

    Full text link
    We study the topology of quasiperiodic solutions of the vortex filament equation in a neighborhood of multiply covered circles. We construct these solutions by means of a sequence of isoperiodic deformations, at each step of which a real double point is "unpinched" to produce a new pair of branch points and therefore a solution of higher genus. We prove that every step in this process corresponds to a cabling operation on the previous curve, and we provide a labelling scheme that matches the deformation data with the knot type of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc

    Quasiclassical Geometry and Integrability of AdS/CFT Correspondence

    Get PDF
    We discuss the quasiclassical geometry and integrable systems related to the gauge/string duality. The analysis of quasiclassical solutions to the Bethe anzatz equations arising in the context of the AdS/CFT correspondence is performed, compare to stationary phase equations for the matrix integrals. We demonstrate how the underlying geometry is related to the integrable sigma-models of dual string theory, and investigate some details of this correspondence.Comment: Based on talks at the conferences "Classical and quantum integrable systems", January 2004, Dubna, and "Quarks-2004", May 2004, Pushkinskie Gory, Russia; LaTeX, 17 pp, 3 figures; references adde
    corecore