Abstract

We study the topology of quasiperiodic solutions of the vortex filament equation in a neighborhood of multiply covered circles. We construct these solutions by means of a sequence of isoperiodic deformations, at each step of which a real double point is "unpinched" to produce a new pair of branch points and therefore a solution of higher genus. We prove that every step in this process corresponds to a cabling operation on the previous curve, and we provide a labelling scheme that matches the deformation data with the knot type of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019