We study the topology of quasiperiodic solutions of the vortex filament
equation in a neighborhood of multiply covered circles. We construct these
solutions by means of a sequence of isoperiodic deformations, at each step of
which a real double point is "unpinched" to produce a new pair of branch points
and therefore a solution of higher genus. We prove that every step in this
process corresponds to a cabling operation on the previous curve, and we
provide a labelling scheme that matches the deformation data with the knot type
of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc