2,415 research outputs found

    A realistic testing of a shipboard wireless sensor network

    Get PDF
    International audienceWireless Sensor Networks (WSN) may be a very useful technology for monitoring systems in hostile environments. Few works have treated the use of this technology in the particular metallic shipboard environment. This paper reports on the deployment of a WSN on board a ferry in realistic conditions. The network was tested during sailings and stopovers for several days. The results of our previous papers reporting on the radio wave propagation on board ships are recalled. Network performance and its topology evolution with respect to previous results are presented. In spite of the metallic structure of ferries and the dynamic movement of crew and passengers on board, the results show a significant network reliability and connectivity. The previous conclusions have been also confirmed by the topology evolution of the network and the analysis of RSSI levels of links between sensor nodes

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    Zigbee Based Home Automation and Agricultural Monitoring System A mesh networking approach for autonomous and manual system control

    Get PDF
    Today’s generation of electronic devices are more enhanced and capable than the previous ones with exciting changes in technology has seen to control a variety of home devices with the help of a home automation system. These devices can include lights, fans, doors, surveillance systems and consumer electronics. However along with the smartness and intuitiveness we want a system which is economic as well as low power consuming. ZigBee technology collects and monitors different types of measurements that reflect energy consumption and environment parameters. This paper details the designing of a protocol to monitor various environmental conditions in a home. We are using advanced technology of Micaz motes (which have their own routing capabilities), NESC language programming and Moteworks (used as a data acquisition platform)

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Device Free Indoor Localization Of Human Target Using WIFI Fingerprinting

    Get PDF
    Indoor localization of human objects has many important applications nowadays. Proposed here is a new device free approach where all the transceiver devices are fixed in an indoor environment so that the human target doesn\u27t need to carry any transceiver device with them. This work proposes radio-frequency fingerprinting for the localization of human targets which makes this even more convenient as radio-frequency wireless signals can be easily acquired using an existing wireless network in an indoor environment. This work explores different avenues for optimal and effective placement of transmitter devices for better localization. In this work, an experimental environment is simulated using the popular software Feko. The indoor geometry under study is first divided into several zones and then the received signal-strength indicators (RSSIs) are measured by the receiving antennae which serve as input features to our designed innovative machine-learning model to identify within which zone the target is. Our proposed machine-learning model, a multi-resolution random-forest classifier is composed of a cascade architecture that integrates and distills learned results over various zoning resolutions. The proposed new multi-resolution approach greatly outperforms the existing random-forest classifier. The average Euclidean-distance error resulting from our proposed new technique is 1.25 meters

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend
    corecore