305 research outputs found

    Effects of buffer insertion on the average/peak power ratio in CMOS VLSI digital circuits

    Get PDF
    The buffer insertion has been a mechanism widely used to increase the performances of advanced VLSI digital circuits and systems. The driver or repeater used to this purpose has effect on the timing characteristics on the signal on the wire, as propagation delay, signal integrity, transition time, among others. The power concerns related to buffering have also received much attention, because of the low power requirements of modern integrated systems. In the same way, the buffer insertion has strong impact on the reliability of synchronous systems, since the suited distribution of clock requires reduced or controlled clock-skew, being the buffer and wire sizing, a crucial aspect. In a different way, buffer insertion has been also used to reduce noise generation, especially in heavily loaded nets, since the inclusion of buffers help to desynchronize signal transitions. However, the inclusion of buffers of inverters to improve one or more of these characteristics have often negative effect on another parameters, as it happens in the average and peak of supply current. Mainly, the inclusion of a buffer to reduce noise (peak power), via desynchronizing transitions, could introduce more dynamic consumption, but reducing the short-circuit current because of the increment of signal slope. Thus, the average/peak current optimization can be considered a design trade-off. In this paper, the mechanism to obtain an average/peak power optimization procedure are presented. Selected examples show the feasibility of minimizing switching noise with negligible impact on average power consumption.MEC TEC2004-01509 DOCJunta de Andalucía TIC2006-635 Project

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Energy-efficient analog-to-digital conversion for ultra-wideband radio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 207-222).In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant variation, yield is traditionally achieved only through conservative design and a sacrifice of energy efficiency. In this thesis, these limitations are addressed with both a comprehensive mixed-signal design methodology and new circuits and architectures, as presented in the context of an analog-to-digital converter (ADC) for ultra-wideband (UWB) radio. UWB is an emerging technology capable of high-data-rate wireless communication and precise locationing, and it requires high-speed (>500MS/s), low-resolution ADCs. The successive approximation register (SAR) topology exhibits significantly reduced complexity compared to the traditional flash architecture. Three time-interleaved SAR ADCs have been implemented. At the mixed-signal optimum energy point, parallelism and reduced voltage supplies provide more than 3x energy savings. Custom control logic, a new capacitive DAC, and a hierarchical sampling network enable the high-speed operation. Finally, only a small amount of redundancy, with negligible power penalty, dramatically improves the yield of the highly parallel ADC in deep sub-micron CMOS.by Brian P. Ginsburg.Ph.D

    Multilevel Modeling and Architectural Solutions for Emerging Technology Circuits

    Get PDF
    In the last decades, the main driving force behind the astonishing development of CMOS technology, was the transistor scaling process. The reduction of transistor sizes has granted a continuous boost in circuits performance. But now that the scaling process is reaching its physical limits, researchers are forcusing on new emerging technologies. Research on these new technologies is usually carried on using a traditional approach. Some studies concentrate on new devices without analyzing circuits based on them. Other studies analyze circuit architectures without considering devices characteristics and limitations. However, given that the nature of emerging technologies can be very different from CMOS, new research methodologies should be adopted. A clear link between device and architectural analysis is necessary to understand the true potential of the technology under study. The objective of this PhD thesis is the analysis of emerging technologies using an innovative methodology. Using complex and realistic circuits as benchmark, high level models are built incorporating low level device characteristics. This methodology strongly links device and architectural levels. The methodology was applied to two emerging technologies: NanoMagnet Logic (NML) and Nanoscale Application Specific Integrated Circuits (NASIC). A brief introduction of fundamental information on the two technologies is given in Chapter 1. The application of the methodology on NML technology is divided in two parts (Chapter 2): i) architecture-level timing and performance analysis and circuits optimization; (ii) area and power estimations using VHDL modeling. Starting from an exhaustive analysis of the effects and the consequences derived by the presence of loops in a complex NML sequential architecture, solutions have been proposed to address the problem of signal synchronization, and optimization techniques have been explored for performance maximization. Area and power estimations have been performed on multiple NML architectures in order to obtain a complete evaluation on the implementation of NanoMagnet Logic in comparison with the CMOS technology. Chapter 4 is dedicated to NASIC technology with basic principles described in Chapter 3. Basic computational blocks are implemented using a multilevel modeling approach. A detailed analysis of circuits' area and power estimations is obtained. Techniques to optimize the area of circuits at the cost of reduced throughput were also investigated. The research activity presented in this thesis highlights the development of an innovative methodology based on high-level models that embed information obtained from physical level simulations. By exploiting this methodology to different emerging technologies, such as NML and NASIC, it allows to eciently analyze circuits and therefore to bring architectural improvements

    Source-synchronous I/O Links using Adaptive Interface Training for High Bandwidth Applications

    Get PDF
    Mobility is the key to the global business which requires people to be always connected to a central server. With the exponential increase in smart phones, tablets, laptops, mobile traffic will soon reach in the range of Exabytes per month by 2018. Applications like video streaming, on-demand-video, online gaming, social media applications will further increase the traffic load. Future application scenarios, such as Smart Cities, Industry 4.0, Machine-to-Machine (M2M) communications bring the concepts of Internet of Things (IoT) which requires high-speed low power communication infrastructures. Scientific applications, such as space exploration, oil exploration also require computing speed in the range of Exaflops/s by 2018 which means TB/s bandwidth at each memory node. To achieve such bandwidth, Input/Output (I/O) link speed between two devices needs to be increased to GB/s. The data at high speed between devices can be transferred serially using complex Clock-Data-Recovery (CDR) I/O links or parallely using simple source-synchronous I/O links. Even though CDR is more efficient than the source-synchronous method for single I/O link, but to achieve TB/s bandwidth from a single device, additional I/O links will be required and the source-synchronous method will be more advantageous in terms of area and power requirements as additional I/O links do not require extra hardware resources. At high speed, there are several non-idealities (Supply noise, crosstalk, Inter- Symbol-Interference (ISI), etc.) which create unwanted skew problem among parallel source-synchronous I/O links. To solve these problems, adaptive trainings are used in time domain to synchronize parallel source-synchronous I/O links irrespective of these non-idealities. In this thesis, two novel adaptive training architectures for source-synchronous I/O links are discussed which require significantly less silicon area and power in comparison to state-of-the-art architectures. First novel adaptive architecture is based on the unit delay concept to synchronize two parallel clocks by adjusting the phase of one clock in only one direction. Second novel adaptive architecture concept consists of Phase Interpolator (PI)-based Phase Locked Loop (PLL) which can adjust the phase in both direction and achieve faster synchronization at the expense of added complexity. With an increase in parallel I/O links, clock skew which is generated by the improper clock tree, also affects the timing margin. Incorrect duty cycle further reduces the timing margin mainly in Double Data Rate (DDR) systems which are generally used to increase the bandwidth of a high-speed communication system. To solve clock skew and duty cycle problems, a novel clock tree buffering algorithm and a novel duty cycle corrector are described which further reduce the power consumption of a source-synchronous system

    Circuit techniques for low-voltage and high-speed A/D converters

    Get PDF
    The increasing digitalization in all spheres of electronics applications, from telecommunications systems to consumer electronics appliances, requires analog-to-digital converters (ADCs) with a higher sampling rate, higher resolution, and lower power consumption. The evolution of integrated circuit technologies partially helps in meeting these requirements by providing faster devices and allowing for the realization of more complex functions in a given silicon area, but simultaneously it brings new challenges, the most important of which is the decreasing supply voltage. Based on the switched capacitor (SC) technique, the pipelined architecture has most successfully exploited the features of CMOS technology in realizing high-speed high-resolution ADCs. An analysis of the effects of the supply voltage and technology scaling on SC circuits is carried out, and it shows that benefits can be expected at least for the next few technology generations. The operational amplifier is a central building block in SC circuits, and thus a comparison of the topologies and their low voltage capabilities is presented. It is well-known that the SC technique in its standard form is not suitable for very low supply voltages, mainly because of insufficient switch control voltage. Two low-voltage modifications are investigated: switch bootstrapping and the switched opamp (SO) technique. Improved circuit structures are proposed for both. Two ADC prototypes using the SO technique are presented, while bootstrapped switches are utilized in three other prototypes. An integral part of an ADC is the front-end sample-and-hold (S/H) circuit. At high signal frequencies its linearity is predominantly determined by the switches utilized. A review of S/H architectures is presented, and switch linearization by means of bootstrapping is studied and applied to two of the prototypes. Another important parameter is sampling clock jitter, which is analyzed and then minimized with carefully-designed clock generation and buffering. The throughput of ADCs can be increased by using parallelism. This is demonstrated on the circuit level with the double-sampling technique, which is applied to S/H circuits and a pipelined ADC. An analysis of nonidealities in double-sampling is presented. At the system level parallelism is utilized in a time-interleaved ADC. The mismatch of parallel signal paths produces errors, for the elimination of which a timing skew insensitive sampling circuit and a digital offset calibration are developed. A total of seven prototypes are presented: two double-sampled S/H circuits, a time-interleaved ADC, an IF-sampling self-calibrated pipelined ADC, a current steering DAC with a deglitcher, and two pipelined ADCs employing the SO technique.reviewe

    Performance-Driven Energy-Efficient VLSI.

    Full text link
    Today, there are two prevalent platforms in VLSI systems: high-performance and ultra-low power. High-speed designs, usually operating at GHz level, provide the required computation abilities to systems but also consume a large amount of power; microprocessors and signal processing units are examples of this type of designs. For ultra-low power designs, voltage scaling methods are usually used to reduce power consumption and extend battery life. However, circuit delay in ultra-low power designs increases exponentially, as voltage is scaled below Vth, and subthreshold leakage energy also increases in a near-exponential fashion. Many methods have been proposed to address key design challenges on these two platforms, energy consumption in high-performance designs, and performance/reliability in ultra-low power designs. In this thesis, charge-recovery design is explored as a solution targeting both platforms to achieve increased energy efficiency over conventional CMOS designs without compromising performance or reliability. To improve performance while still achieving high energy efficiency for ultra-low power designs, we propose Subthreshold Boost Logic (SBL), a new circuit family that relies on charge-recovery design techniques to achieve order-of-magnitude improvements in operating frequencies, and achieve high energy efficiency compared to conventional subthreshold designs. To demonstrate the performance and energy efficiency of SBL, we present a 14-tap 8-bit finite-impulse response (FIR) filter test-chip fabricated in a 0.13µm process. With a single 0.27V supply, the test-chip achieves its most energy efficient operating point at 20MHz, consuming 15.57pJ per cycle with a recovery rate of 89% and a FoM equal to 17.37 nW/Tap/MHz/InBit/CoeffBit. To reduce energy consumption at multi-GHz level frequencies, we explore the application of resonant-clocking to the design of a 5-bit non-interleaved resonant-clock ash ADC with a sampling rate of 7GS/s. The ADC has been designed in a 65nm bulk CMOS process. An integrated 0.77nH inductor is used to resonate the entire clock distribution network to achieve energy efficient operation. Operating at 5.5GHz, the ADC consumes 28mW, yielding 396fJ per conversion step. The clock network accounts for 10.7% of total power and consumes 54% less energy over CV^2. By comparison, in a typical ash ADC design, 30% of total power is clock-related.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89779/1/wsma_1.pd

    CAD methodologies for low power and reliable 3D ICs

    Get PDF
    The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin; Committee Member: Mukhopadhyay, Saiba

    ポータビリティを意識したCMOSミックスドシグナルVLSI回路設計手法に関する研究

    Get PDF
    本研究は、半導体上に集積されたアナログ・ディジタル・メモリ回路から構成されるミクストシグナルシステムを別の製造プロセスへ移行することをポーティングとして定義し、効率的なポーティングを行うための設計方式と自動回路合成アルゴリズムを提案し、いくつかの典型的な回路に対する設計事例を示し、提案手法の妥当性を立証している。北九州市立大
    corecore