
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multilevel Modeling and Architectural Solutions for Emerging Technology Circuits / Wang, JUAN CHI. - (2016).
Original

Multilevel Modeling and Architectural Solutions for Emerging Technology Circuits

Publisher:

Published
DOI:10.6092/polito/porto/2644810

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2644810 since: 2016-07-06T22:10:47Z

Politecnico di Torino

POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Elettronica e delle Comunicazioni – XXVIII

ciclo

Tesi di Dottorato

Multilevel Modeling and
Architectural Solutions for

Emerging Technology Circuits

Juanchi Wang

Tutore Coordinatore del corso di dottorato
prof. Mariagrazia Graziano
prof. Maurizio Zamboni prof. Ivo Montrosset

March 2016

Summary

In the last decades, the main driving force behind the astonishing development of
CMOS technology, was the transistor scaling process. The reduction of transistor
sizes has granted a continuous boost in circuits performance. But now that the scal-
ing process is reaching its physical limits, researchers are forcusing on new emerging
technologies.
Research on these new technologies is usually carried on using a traditional ap-
proach. Some studies concentrate on new devices without analyzing circuits based
on them. Other studies analyze circuit architectures without considering devices
characteristics and limitations. However, given that the nature of emerging tech-
nologies can be very different from CMOS, new research methodologies should be
adopted. A clear link between device and architectural analysis is necessary to un-
derstand the true potential of the technology under study.
The objective of this PhD thesis is the analysis of emerging technologies using an
innovative methodology. Using complex and realistic circuits as benchmark, high
level models are built incorporating low level device characteristics. This method-
ology strongly links device and architectural levels.
The methodology was applied to two emerging technologies: NanoMagnet Logic
(NML) and Nanoscale Application Specific Integrated Circuits (NASIC). A brief in-
troduction of fundamental information on the two technologies is given in Chapter
1.
The application of the methodology on NML technology is divided in two parts
(Chapter 2): i) architecture-level timing and performance analysis and circuits op-
timization; (ii) area and power estimations using VHDL modeling. Starting from
an exhaustive analysis of the effects and the consequences derived by the presence
of loops in a complex NML sequential architecture, solutions have been proposed
to address the problem of signal synchronization, and optimization techniques have
been explored for performance maximization. Area and power estimations have been
performed on multiple NML architectures in order to obtain a complete evaluation
on the implementation of NanoMagnet Logic in comparison with the CMOS tech-
nology.

II

Chapter 4 is dedicated to NASIC technology with basic principles described in Chap-
ter 3. Basic computational blocks are implemented using a multilevel modeling
approach. A detailed analysis of circuits’ area and power estimations is obtained.
Techniques to optimize the area of circuits at the cost of reduced throughput were
also investigated.
The research activity presented in this thesis highlights the development of an in-
novative methodology based on high-level models that embed information obtained
from physical level simulations. By exploiting this methodology to different emerg-
ing technologies, such as NML and NASIC, it allows to efficiently analyze circuits
and therefore to bring architectural improvements.

III

Contents

Summary II

1 Introduction to NanoMagnet Logic 1

1.1 Technology Background
Quantum-dot Cellular Automata . 1

1.1.1 QCA Logic . 1

1.1.2 QCA Clock Mechanism . 3

1.1.3 QCA Implementation . 3

1.2 NanoMagnet Logic (NML) . 5

1.2.1 NML Basic Cell . 6

1.2.2 NML Logic Gates . 7

1.2.3 Clock Mechanism . 8

1.2.4 Multiphase Clock System . 8

1.2.5 Clock Zone Layout . 10

1.2.6 VHDL Modeling . 12

2 NanoMagnet Logic Architecture Analysis 16

2.1 Smith-Waterman Systolic Array Architecture Implementation 16

2.1.1 Biosequences Alignment Analysis 16

2.1.2 Smith-Waterman Systolic Array Architecture 17

2.1.3 SW NML Implementation . 21

2.2 Performance Optimization . 24

2.2.1 Data Interleaving . 24

2.2.2 Architecture Redesign for Loops Lengths Reduction 27

2.3 Signal Synchronization . 29

2.3.1 Nested Loops . 29

2.3.2 Additional Delay Loops . 30

2.4 NML Architecture Area and Power Evaluation 32

IV

3 Introduction to Nanoscale Application Specific Integrated Circuits 34
3.1 Nanowire Field Effect Transistors (NW FETs) 34
3.2 Nanoscale Application Specific Integrated Circuits (NASICs) 38

3.2.1 Nanotile . 39
3.2.2 NASIC Clock Mechanism . 41
3.2.3 2-bit Full Adder . 43
3.2.4 N3ASIC . 44
3.2.5 NASIC VHDL Modeling . 46

4 NASIC Circuit Modeling and Implementation 49
4.1 Area and Power Evaluation . 49

4.1.1 Area Evaluation . 49
4.1.2 Power Estimation . 51
4.1.3 Nanowire Capacitance (Cnanowire) Estimation 51
4.1.4 Nanowire Switching Activity Computation 52
4.1.5 Simplified Dynamic Power Estimation 55

4.2 NASIC Circuits Implementation . 56
4.2.1 Ripple Carry Adder . 56
4.2.2 Array Multiplier . 57
4.2.3 Booth Multiplier . 59
4.2.4 FIR . 61

4.3 Structural Optimization . 63

I Appendix 69

A Memristive Devices 70
A.1 Introduction to Memristive Devices 70
A.2 Memristive Devices and Switching Mechanisms 71
A.3 Memristive Devices Architecture . 77

B SW NML Implementation VHDL Modeling 78
B.1 NML Power Estimation VHDL Model 78
B.2 NML 1-bit Full Adder VHDL code with power estimator 80
B.3 NML Generic Ripple Carray Adder VHDL code with power estimator 83

C NASIC VHDL Model 87
C.1 Nanotile Power Estimation VHDL Model 87

D NASIC Structure Optimization 90
D.1 Testbench for optimized 6-bit Accumulator structure 90

V

Bibliography 94

VI

List of Tables

2.1 Power consumption and area estimation for a single processing el-
ement of the systolic array with main NML implementations and
CMOS LOP 21nm technology. J. Wang et al. “Biosequences anal-
ysis on NanoMagnet Logic”, International Conference on IC Design
and Technology (ICICDT), May 2013. 33

4.1 Ripple Carry Adder area and power estimation with NASIC circuit
modeling. 57

4.2 Array Multiplier area and power estimation with NASIC circuit mod-
eling. 58

4.3 “vp” selection truth table. 59
4.4 Booth Multiplier area and power estimation with NASIC circuit mod-

eling. 61
4.5 FIR area and power estimation with NASIC circuit modeling. 62
4.6 RCA area estimation comparison with and without pre-skew and de-

skew networks. 64
4.7 Area estimation comparison between two structures of 2-level Accu-

mulator (data = 8/16 bits, feedback latency = 6 clock cycles). 68

VII

List of Figures

1.1 Basic 4-dot QCA cells and logic states. 2

1.2 Basic QCA logic gates. A)Inverter B)Majority Voter C)Crosswire . . 2

1.3 Basic 6-dot QCA cells with 3 states. 3

1.4 QCA clock mechanism with 4-phase clock signal. 4

1.5 A) Metal QCA structure B) Semiconductor QCA structure C)
Molecular QCA structure. A) R. K. Kummamuru et al. “Oper-
ation of a Quantum-Dot Cellular Automata (QCA) Shift Register
and Analysis of Errors”, IEEE Transactions on Eletron Devices, vol.
50, n. 9, Sept. 2003. B) A. Khitun et al. “Multi-functional edge
driven nano-scale cellular automata based on semiconductor tunnel-
ing nano-structure with a self assembled quantum dot layer”, Super-
lattices and Microstructures, vol. 37, pp. 55-76, 2005. C)C.S. Lent
et al. “Clocked Molecular Quantum-Dot Cellular Automata”, IEEE
Transactions on Electron Device, vol. 50, no. 9, september 2003. . . . 5

1.6 NML basic cells with stable magnetizations rappresenting logic states 6

1.7 NML wire configurations. A) Horizontal wire. B) Vertical wire. . . . 6

1.8 NML basic logic gates. A) Inverter. B) Crosswire. C) Majority Voter.
D) OR gate. E) AND gate. 7

1.9 NML clock mechanism with magnetic field forcing nanomagnets into
an intermediate unstable state. 8

1.10 NML clock implementation. A) Magnetic field. B) STT-current. C)
Magnetoelastic. J. Wang et al. “Biosequences analysis on NanoMag-
net Logic”, International Conference on IC Design and Technology
(ICICDT), May 2013. 9

1.11 NML 3-phase clock system. 10

1.12 3-phase clock zone layout. A) Traditional layout. B) Snake-like layout. 11

1.13 Snake-like layout physical view. M. Vacca et al. “Feedbacks in QCA:
A Quantitative Approach”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015. 11

VIII

1.14 NML circuit VHDL modeling. J. Wang et al. “Biosequences analysis
on NanoMagnet Logic”, International Conference on IC Design and
Technology (ICICDT), May 2013. 12

1.15 Parameters and constants used in the NML power model. M. Vacca
et al. “NanoMagnet Logic Microprocessor: Hierarchical Power Anal-
ysis”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21, pp. 1410-1420, 2012. 15

2.1 Amino Acide alphabetical character representation. L. R. Murphy et
al. “Simplified Amino Acid Alphabets for Protein Fold Recognition
and Implication for Folding”, Protein Engineering, vol. 13, pp. 149-
152, 2000. 17

2.2 Biosequence alignment analysis principle. 17

2.3 Systolic Array Structures. A) Matrix Systolic Array. B) Linear Sys-
tolic Array. C) Special Systolic Array. G. Causapruno et al. “Protein
Alignment Systolic Array Throughput Optimization”, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 23, no.
1, pp. 68-77, 2014. 18

2.4 Smith-Waterman systolic array architecture with processing elements
.G. Urgese, “Analysis and Design of an Optimized HW Accellerator
for Protein Alignment”, Master thesis, Politecnico di Torino, Dept.
Eletr., Torino, Italy, Sept. 2012. 19

2.5 Smith-Waterman systolic array architecture with processing elements. 20

2.6 Structure of PE Calc block. G. Urgese, “Analysis and Design of an
Optimized HW Accellerator for Protein Alignment”, Politecnico di
Torino, Dept. Eletr., Torino, Italy, Sept. 2012. 20

2.7 NML Multiplexer implementation. 21

2.8 NML Ripple Carry Adder implementation. 22

2.9 NML 3-to-8 Decoder implementation. 22

2.10 NML processing element implementation. There are two loops present
in the architecture, Loop1 and Loop2. The longer loop (Loop1) occu-
pies 208x3 clock zones.M. Vacca et al. “Feedbacks in QCA: A Quanti-
tative Approach”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 10, Oct. 2015. 23

2.11 Smith-Waterman algorithm architecture simulation results. Subject ID
represents the number of the AA sequences analyzed, andOUT MAX
is the corresponding maximum alignment score. M. Vacca et al.
“Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10,
Oct. 2015. 24

IX

2.12 Example of NML architecture performance reduction due to the pres-
ence of loops inside intrinsically pipelined circuits. M. Vacca et al.
“Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10,
Oct. 2015. 25

2.13 Data Interleaving application example. Four operations are executed
in parallel to maximize the circuit throughput. M. Vacca et al. “Feed-
backs in QCA: A Quantitative Approach”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, Oct.
2015. 26

2.14 Simulation result of SW NML architecture with interleaving 3. M.
Vacca et al. “Feedbacks in QCA: A Quantitative Approach”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
23, no. 10, Oct. 2015. 27

2.15 PE Architecture redesign to reduce loops lengths. M. Vacca et al.
“Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10,
Oct. 2015. 28

2.16 Simulation results comparison between redesigned PE architecture
with folded loop and the original. M. Vacca et al. “Feedbacks in
QCA: A Quantitative Approach”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015. 29

2.17 PE signal synchronization with nested loops. A) Simplified schematic
presentation of nested loops. B) Highlight of nested loops in Smith-
Waterman processing element NML architecture. C) Simulation com-
parison with correct and wrong signal synchronizations. M. Vacca et
al. “Feedbacks in QCA: A Quantitative Approach”, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 23, no.
10, Oct. 2015. 30

2.18 PE signal synchronization with addtional delay loops. M. Vacca et al.
“Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10,
Oct. 2015. 31

X

3.1 Nanowire nano-logic gates. A) Schematics of logic OR gate con-
structed from a 2 by 1 crossed NW p-n junction. B) OR gate input
and output voltage levels. C) The experimental truth table for the
OR gate. D) Schematic of logic AND gate constructed from a 1 by
3 crossed NW junction array. E) AND gate input and output volt-
age levels. F) The experimental truth table for the AND gate. G)
Schematic of logic NOR gate constructed from a 1 by 3 crossed NW
junction array. H) NOR gate input and output voltage levels. I) The
experimental truth table for the NOR gate. Y. Huang et al. “Logic
Gates and Computation from Assembled Nanowire Building Blocks”,
Science, vol. 294, Nov. 2001. 35

3.2 Schematic of nwFETs with A) back gate, B) semicylindrical top
gate, and C) cylindrical gate-all-around configurations. W. Lu et al.
“Nanowire Transistor Performance Limits and Applications”, IEEE
Transactions on Electron Devices, vol. 55, Nov. 2008. 36

3.3 Crossed Nanowire Field Effect Transistors. A) Basic device structure
with self-aligned n+ drain, gate, source and underlap. B) NiSi gate
xnwFET. C) Omega-gated xnwFET. P. Narayanan et al. “Nanoscale
Application Specific Integrated Circuits”, IEEE/ACM International
Symposium on Nanoscale Architectures, June 2011. 36

3.4 4-input OR and AND logic implemented with xnwFETs. T. Wang et
al. “NASICs: A Nanoscale Fabric for Nanoscale Microprocessors”,
Electrical and Computer Engineering Department, University of Mas-
sachusetts Amherst, USA. 37

3.5 1-bit Full-Adder with 2-D nanoarray structure. T. Wang et al. “Op-
portunities and challenges in application-tuned circuits and architec-
tures based on nanodevices”, First ACM International Conference On
Computing Frontiers, pp. 503-511, april 2004. 38

3.6 Floorplan of the WISP-0 processor. WISP-0 is a five-stage pipelined
streaming architecture in five nanotiles: PC, ROM, DEC, RF and
ALU. T. Wang et al. “Heterogeneous Two-Level Logic and Its Den-
sity and Fault Tolerance Implications in Nanoscale Fabrics”, IEEE
Transactions on Nanotechnology, vol. 8, n. 1, Jan. 2009. 39

3.7 Nanotile structure built with silicon nanowires and nanoFETs. P.
Narayanan et al. “Nanoscale Application Specific Integrated Cir-
cuits”, IEEE/ACM International Symposium on Nanoscale Archi-
tectures, June 2011. (Inserted) M. Graziano et al. “ A Hardware
Viewpoint on Biosequence Analysis: What’s Next?”, ACM Journal
on Emerging Technologies in Computing Systems, Nov. 2013. 40

XI

3.8 Schematic representations of 1-bit Full Adder with A) mixed types of
nanoFETs, and B) single n-type nanoFETs. T. Wang et al. “NA-
SICs: A Nanoscale Fabric for Nanoscale Microprocessors”, Electrical
and Computer Engineering Department, University of Massachusetts
Amherst, USA. 40

3.9 Dynamic circuits implementing AND, NAND, OR, and NOR logic
functions on NWs. T. Wang et al. “Heterogeneous Two-Level Logic
and Its Density and Fault Tolerance Implications in Nanoscale Fab-
rics”, IEEE Transactions on Nanotechnology, vol. 8, n. 1, Jan. 2009. 41

3.10 Nanotile clock mechanism with dynamic logic. The rectangular green
boxes on nanowire cross sections are n-type nanoFETs while the white
ones are p-type nanoFETs . 42

3.11 Nanotile behavior modeling in VHDL. 43

3.12 N3ASIC Nanotile structure. A) 3D structure of Omega metal gate
NanoFET in N3ASIC. B) 1-bit Full Adder N3ASIC. P. Panchapake-
shan et al. “3-D Integration Requirements for Hybrid Nanoscale-
CMOS Fabrics”, IEEE International Conference on Nanotechnology,
Aug. 2011. 44

3.13 N3ASIC Nanotile structure. P. Panchapakeshan et al. “3-D Inte-
gration Requirements for Hybrid Nanoscale-CMOS Fabrics”, IEEE
International Conference on Nanotechnology, Aug. 2011. 45

3.14 Hybric Nano-CMOS 3D integrated fabric structure. P. Panchapake-
shan et al. “N3ASICs: Designing Nanofabrics with Fine-Grained
CMOS Integration”, IEEE/ACM International Symposium on Nanoscale
Architectures, 2011. 46

3.15 Nanotile behavior modeling in VHDL. 47

4.1 Nanotile area evaluation parameters. 50

4.2 Nanotile switching activity. 53

4.3 2-input AND gate nanotile switching activity analysis. A) Without
Karnaugh map simplification. B) With Karnaugh map simplification. 54

4.4 8-bit Ripple Carry Adder NASIC block diagram with pre-skew and
de-skew networks. 56

4.5 NASIC Array Multiplier. A) Circuit schematic of 5-bit Array Multi-
plier. B) Block diagram of 5-bit Array Multiplier. C)Example nan-
otile of 1-bit Full Adder with two AND gates at input. 58

4.6 Booth Multiplier block diagram. 60

4.7 Block diagram of NASIC implementation on partial Booth Multiplier. 60

4.8 FIR Block diagram. 62

4.9 Detailed NASIC implementation of partial FIR architecture in 4 bits. 63

4.10 3-bit Ripple Carry Adder structure in NASIC circuit layout. 64

XII

4.11 NASIC block diagram of 4-bit accumulator structure with pre-skew
and de-skew networks. Feedback latency equals 2 clock cycles and
total loop length is 5 clock cycles. 65

4.12 Block diagram of the optimized structure of 4-bit accumulator. The
pre-skew and de-skew networks are eliminated. 66

4.13 Detailed block diagram of traditional 6-bit accumulator with 2 RCAs
in cascade. 67

4.14 Detailed block diagram of optimized 6-bit accumulator with 2 RCAs
in cascade. 67

A.1 The four fundamental two-terminal circuit elements: resistor, capaci-
tor, inductor and memristor. D.B. Strukov et al. “The missing mem-
ristor found”, Nature, vol. 453, n. 1, 2008. 70

A.2 The coupled variable-resistor model for a memristor. a) Diagram
with a simplified equivalent circuit. b) c) The applied voltage (blue)
and resulting current (green) as a function of time t for a typical
memristor. The resistance ratio are in ROFF/RON = 380 b), and
ROFF/RON = 160 in c). The insets in the i-v plots in b) and c)
show that for these examples the charge is a single-valued function
of the flux, as it must be in a memristor. D.B. Strukov et al. “The
missing memristor found”, Nature, vol. 453, n. 1, 2008. 71

A.3 DC I-V measurements showing the “figure-8” hysteresis loops of three
different C20 molecular monolayer devices. D. R. Stewart et al. “Molecule-
Independent Electrical Switching in Pt/Organic Monolayer/Ti De-
vices”, Nano Letters, vol. 4, n. 1, 2004. 72

A.4 A)Schematic of the device cross section after electroforming of Pt/TiO2−x/TiO2/Pt
with example switching i-v curve. B)The data from a Pt/120nm
TiO2−x/4nm TiO2/Pt device, showing 200 consecutive switching loops
after the forming step. C) AFM image of 1x17 nanojunctions. The
cross-section profile shows 50 nm half pitch and 13 nm height nanowires.A)
M. D. Pickett et al. “Switching dynamics in titanium dioxide mem-
ristive devices”, Journal of Applied Physics, 2009. B) C) J. J. Yang
et al. “The mechanism of electroforming of metal oxide memristive
switches”, Nanotechnology, May 2009. 73

A.5 Typical i-v characteristic of a Ag/Ag-Ge-Se/Pt electrochemical met-
alization cell. Starting from OFF state D), under the external electri-
cal field rising, metallic filaments are grown gradually as A) to reach
ON state B) creating galvanic metallic contacts. With voltage drop-
ping C), the metal filaments dissolute, and resets the cell. R. Waser et
al. “Redox-Based Resistive Switching Memories - Nanoionic Mech-
anisms, Prospects, and Challenges”, Advanced Materials, vol. 21,
issue 25-26, July, 2009 . 74

XIII

A.6 Gas bubble behavior under electric field in a large 60um device for
observation purpose. a) Junction initial state. b) c) Junction negative
biased. d)-h) Junction positive biased. g) Atomic force micrograph
of eruption features remaining after the bias voltage was removed.
J. J. Yang et al. “The mechanism of electroforming of metal oxide
memristive switches”, Nanotechnology, May 2009. 75

A.7 Electron trapping-detrapping in Vo-induced modification of Schot-
tky contact resistance model. B. Long et al. “Understanding the
Charge Transport Mechanism in VRS and BRS States of Transition
Metal Oxide Nanoelectronic Memristor Devices”, IEEE Transactions
on Electron Devices, vol. 58, n. 11, Nov. 2011. 76

A.8 Basic idea of 3D Hybrid CMOS/Memristor circuits. A) Stackup of
CMOS subsystem with layers of memristor crossbar circuits. B) Mem-
ristor crossbar topology. C) micrograph of array of metal oxide mem-
ristive devices, and typical switching I-V curves. D. B. Strukov, “3D
Hybrid CMOS/Memristor Circuits: Basic Principle and Prospective
Applications”, COMMAD, Dec. 2012. 77

XIV

Chapter 1

Introduction to NanoMagnet
Logic

NanoMagnet Logic (NML) is a new technology based on the field coupled principle.
Devices are built using identical cells. Information propagates through magnetic
field coupling among neighbor nanomagnets. NML main interest lies in its magnetic
nature, that leads to circuits with low dynamic power consumption and now leakage,
circuits that can act both as logic and memory devices.

1.1 Technology Background

Quantum-dot Cellular Automata

NML Technology is one of the implementation of Quantum dot Cellular Automata
(QCA). QCA technology has received in recent years a lot of attention thanks to its
nanoscale dimensions and a new way of computation and information elaboration.

1.1.1 QCA Logic

Basic QCA cells are quantum wells which confine free electrons in a square shaped
nanostructure containing four quantum dots that can hold a single electron each
and sit at four corners [1]. Electrons are able to tunnel between the dots but are
not able to escape the cell. Only two stable electric charge states, representing logic
“0” and “1”, are possible by Coulombic repulsion as shown in Figure 1.1 A).

Due to the electrostatic interaction among neighbor cells, QCA cells will reach a
stable polarization state depending on the state of neighbor cells. This phenomenon
can be seen as a signal propagation (Figure 1.1 B)), which can be employed to
construct digital systems. To build logic circuits, a set of logic gates (Figure 1.2),
such as Inverters, Majority Voters, and Crosswire blocks must be developed. As

1

1 – Introduction to NanoMagnet Logic

"0" "0""0""0"

"0" "0""1" "1"

"0""1""1" "1"

"1" "1""1" "1"

Logic "0" Logic "1"

A)

B)

Figure 1.1. Basic 4-dot QCA cells and logic states.

shown in Figure 1.2B), a majority voter computes the output according to the
states of three input cells. It can implement AND/OR gates by forcing one input to
be “0” or “1” [2]. In a crosswire block, QCA cells rotated by 45 degrees Figure 1.2
C), allows to cross propagate two signals on the same flat plain without influencing
each other [3].

C)B)A)

B

C

"0" "1"

"0"

"1"

"1"
A

"1" "1"

"0"

"0"

"1"

Majority(A, B, C)

Figure 1.2. Basic QCA logic gates. A)Inverter B)Majority Voter C)Crosswire

2

1.1 – Technology Background Quantum-dot Cellular Automata

1.1.2 QCA Clock Mechanism

By introducing the concept of “Clock” mechanism and modifying the 4-dot QCA
structure into 6-dot (Figure 1.3), it is possible to set the cells in a metatstable state
(“NULL”) by applying an external electric field. When the electric field is removed,
the cell reach one of the two stable states according to its neighbors, propagating
therefore the information through the circuit.

"0" "1" NULL

Figure 1.3. Basic 6-dot QCA cells with 3 states.

As depicted in Figure 1.4, a long QCA wire can be divided into “clock zones”,
each of which is driven by separated clock signals. These clock signals are derived
from the same signal with 4 different phases shifting. QCA cells can be therefore in
one of four possible states (HOLD, RELEASE, RELAX, SWITCH).

When a clock zone is in HOLD phase, the potential barrier of the QCA cells
are increased by the external clock field (V = V max), making them insensible to
neighbor cells and impossible to switch to the other state. Then the clock zone
enters into RELEASE phase, with the clock signal decreasing to −V max gradually.
Cells reach “NULL” intermediate state. In the next RELAX phase, by stablizing
the field V = −V max, the previous logic states of all the cells are erased. With
the clock signal rising again up to +V max, there is the transition to the new logic
states according to the new input, which is the so-called SWITCH phase.

An example of information propagation is depicted in Figure 1.4. It can be no-
ticed that in time step1, with clock zone 1 in HOLD, clock zone 2 switches according
to the cells in clock zone 1. At the same time, clock zone 3 is totally relaxed and
can not influence the switching in clock zone 2. Therefore, after a complete clock
cycle of 4 phases, the input signal “0” is propagated to the end of the wire.

1.1.3 QCA Implementation

The theoretical principle of the QCA can be implemented in different ways. There
are four physical implementation of QCA, which are briefly discussed below.

• Metal QCA. As shown in Figure 1.5(A), the metal QCA are made with
isles of aluminum, used to represent the dots, on a substrate of silicon dioxide
(SiO2). The dots are connected to each other by tunnel-junctions which allow

3

1 – Introduction to NanoMagnet Logic

SWITCH

HOLD

RELEASE

RELAX

SWITCH

RELAX

SWITCH

HOLD

RELEASE

RELAX RELEASE

HOLD

SWITCH

RELAX

RELEASE HOLD

RELEASE

RELAX

SWITCH

HOLD

Time0

Time1

Time2

Time3

Time4

CLOCK4CLOCK3CLOCK2CLOCK1

0 1 2 3

V/Vmax

+1

−1

CLOCK4

CLOCK1

CLOCK3

CLOCK2

4 t

Figure 1.4. QCA clock mechanism with 4-phase clock signal.

the electrons to be exchanged among neighbor dots. This technology has been
the first implementation, while its main disadvantage is that it works only at
a temperature near the absolute zero [7].

• Semiconductor QCA. Complex heterostructures of Si-Ge or GaAs are used
to create quantum dots that are able to trap electrons [7] as shown in Figure
1.5(B). The main limitations of this QCA type are the necessity to work at
near absolute zero temperature and the huge impact of fabrication defects.

• Molecular QCA. It employs single molecules with complex structures as
basic cell. Each molecule contains multiple oxide-reduction centers as shown
in Figure 1.5(C). Electrons can react with every center inside the molecule,
changing the spatial distribution of the electric charge, and thus the logic
value associated to it [7]. This is one of the most promising implementation
technologies, since the molecules are very small (a few nanometers), allowing

4

1.2 – NanoMagnet Logic (NML)

Figure 1.5. A) Metal QCA structure B) Semiconductor QCA structure C)
Molecular QCA structure. A) R. K. Kummamuru et al. “Operation of a Quan-
tum-Dot Cellular Automata (QCA) Shift Register and Analysis of Errors”, IEEE
Transactions on Eletron Devices, vol. 50, n. 9, Sept. 2003. B) A. Khitun et al.
“Multi-functional edge driven nano-scale cellular automata based on semiconductor
tunneling nano-structure with a self assembled quantum dot layer”, Superlattices
and Microstructures, vol. 37, pp. 55-76, 2005. C)C.S. Lent et al. “Clocked Molec-
ular Quantum-Dot Cellular Automata”, IEEE Transactions on Electron Device,
vol. 50, no. 9, september 2003.

to reach a very high device density, and it permits an operating frequency of
some THz. Moreover, with respect to Metal QCA, it can work under room
temperature. The problem is that until now, with the up-to-date technology,
Molecular QCA fabricated is challenging because it requires the ability of
manipulating single molecule [3].

• NanoMagnet Logic. The basic cell of NML is a single domain nanomag-
net, and is one of the most promising implementation of QCA. With respect
to Molecular QCA, it has a bigger dimension, and can only reach a basic
frequency of some hundred of MHz theoretically. However, it is possible to
implement it with current technology, allowing to experiment and study the
QCA principle so that most of the achievements can be adapted in a near
future to molecular QCA, as soon as this solution becomes feasible [7].

1.2 NanoMagnet Logic (NML)

NanoMagnet Logic, also known as Magnetic QCA, is one of the promissing tech-
nology based on Quantum Cellular Automata (QCA) principle. The advantage of
this technology resides in its magnetic nature which leads to expected low power
consumption.

5

1 – Introduction to NanoMagnet Logic

1.2.1 NML Basic Cell

The basic cell of NML is a retangular shaped single domain nanomagnet. Due to
its shape, only two stable magnetization states are possible, which can be used to
rappresent logic states “0” and “1” (Figure 1.6).

MH

H

M

MLLogic 0

Logic 1

Figure 1.6. NML basic cells with stable magnetizations rappresenting logic states

By placing the nanomagnets in cascade horizontally or vertically, signals can be
propagated due to magnetic coupling among neighbor magnets as shown in Figure
1.7.

IN OUT

IN

OUT

A) B)

Figure 1.7. NML wire configurations. A) Horizontal wire. B) Vertical wire.

6

1.2 – NanoMagnet Logic (NML)

1.2.2 NML Logic Gates

Several basic logic gates can be built with NML cells, such as inverter, crosswire,
and majority voter.

• Inverter
As can be noticed, a horizontal wire is constructed by placing an odd number
of nanomagnets between input and output. Therefore, by placing an even
number of nanomagnets within the same total length, the signal at the output
is inverted as shown in Figure 1.8 A).

• Crosswire
A crosswire block is a functional block which allows to the cross two signals
on the same plane without interferences. This characteristic can be achieved
by organizing the square shaped nanomagnets according to Figure 1.8 B).

• Majority Voter
The output value of a majority voter (Figure 1.8 C)) is equal to the majority
of the inputs.

• AND/OR Gate
By fixing an input signal to “0” or “1”, a majority voter can be converted
to an AND/OR gate. Another possibility is to exploit the shape dependent
switching behavior. Cutting a nanomagnet leads to an asymmetric shape, in
order to obtain a preferential magnetization direction for the output signal
(Figure 1.8 D)).

A)

IN OUT

IN OUT

B)

A_IN

B_IN

B_OUT

A_OUT

C)

A

C

OUTB
A

B

OUT

D)

A

B

OUT

E)

Figure 1.8. NML basic logic gates. A) Inverter. B) Crosswire. C) Majority Voter.
D) OR gate. E) AND gate.

7

1 – Introduction to NanoMagnet Logic

1.2.3 Clock Mechanism

In order to lower the energy barrier during the switching between two stable states,
a magnetic field [8] can be exploited to force the nanomagnets into a transient
metastable state as shown in Figure 1.9. When the field is removed, the nanomagnets
re-enter into one of the stable states depending on the value of neighbor magnets.
This mechanism is called clock.
The magnetic field can be generated by a current flowing through a wire placed
under the magnets plane (Figure 1.10 A)).

H

tIN OUT

H

tIN OUT

Figure 1.9. NML clock mechanism with magnetic field forcing nanomagnets into
an intermediate unstable state.

As shown in [9] a current of 545 mA on a 1 um width wire is required to suc-
cessfully switch magnets in the RESET state. This is a very high value of current
that leads to a very high power consumption, wasting the advantage related to
the tiny power dissipation due to magnet switching. To reduce power consumption
other mechanisms were proposed. For example in the STT-current approach [21]
magneto-tunnel junctions (MTJ) are used as basic element. MTJ can be reset by
a current flowing through them leading to a power consumption of just 1.6fJ for
each magnet (Figure 1.10 B)). Alternatively, in [10] an innovative clock system is
proposed based on the use of an electric field instead of a magnetic field. With this
clock solution magnets are deposited on a piezoelectric layer (Figure 1.10 C)). When
an electric field is applied, the strain of the piezoelectric layer induces a mechanical
stress on the magnets forcing them in the RESET state. With this clock solutions
an energy of just 2 pJ is required to switch magnets [10] allowing to build true low
power circuits.

1.2.4 Multiphase Clock System

To reduce the influence of thermal noise during magnet switch, a NML circuit must
be divided into “clock zones”. A clock zone is a small circuit area composed by a

8

1.2 – NanoMagnet Logic (NML)

A) B) C)

H
I E

Magnet
Magnet

PZT

MAGNETOELASTIC CLOCKMAGNETIC FIELD STT−CURRENT

ElectrodesWire

MTJ

Wire

Figure 1.10. NML clock implementation. A) Magnetic field. B) STT-current. C)
Magnetoelastic. J. Wang et al. “Biosequences analysis on NanoMagnet Logic”,
International Conference on IC Design and Technology (ICICDT), May 2013.

limited number of magnets. A 3-phase overlapped clock signal is applied in order
to propagate information [11].
Taking as an example a NML wire composed by 3 clock zones (Figure 1.11), magnets
can be in three different states (“HOLD”, “RESET” and “SWITCH”).

• Time Step 1: the clock zone 1 is in “HOLD” state, all the magnets in the zone
are in a stable state. The nanomagnets in clock zone 2 switch (“SWITCH”
state) in anti-ferromagnetic order one by one, as a domino effect, propagating
the signal from left to right. In the meantime, clock zone 3 is in the “RESET”
state, so it has no influence on the switching magnets.

• Time Step 2: nanomagnets in clock zone 1 are in the “RESET” state, clock
zone 2 has finished the switching process and has entered into “HOLD” state.
By removing the clock signal in clock zone 3, the magnets start to switch.

• Time Step 3: clock zone 1 starts switching according to the new input, and
clock zone 2 is now reset. At this point, with clock zone 3 being in “HOLD”
state, the signal propagation reaches the end of the wire.

A NML wire is equivalent to a CMOS shift register, and the multiphase clock
system leads to an intrinsic pipelined behavior [12]. Each group of 3 consecutive
clock zones has exactly a delay of one clock cycle.

In order to reduce the energy necessary for the magnet to switch, the clock signal
should have a rise time of at least 8 to 10 ns for the concept of adiabatic switching.
When the number of magnets is higher than five, a long fall time is necessary to
assure that magnets switching occurs with a reduced probability of error [13]. The
maximum allowed clock frequency is around 1 GHz, while the more realistic value
turns to be between 10 and 100 MHz considering all constraints due to thermal noise
and clock zone layout [14].

9

1 – Introduction to NanoMagnet Logic

INPUT

INPUT

CLOCK
SIGNAL 1

CLOCK
SIGNAL 2

CLOCK
SIGNAL 3

CLOCK SIGNAL 1 CLOCK SIGNAL 2 CLOCK SIGNAL 3

CLOCK SIGNAL 1 CLOCK SIGNAL 2 CLOCK SIGNAL 3

CLOCK SIGNAL 1 CLOCK SIGNAL 2 CLOCK SIGNAL 3

HOLD SWITCH RESET

RESET HOLD SWITCH

HOLDRESETSWITCH

INPUT

OUTPUT

T
IM

E
 S

T
E

P
 1

T
IM

E
 S

T
E

P
 2

T
IM

E
 S

T
E

P
 3

ttt

I/Imax

Figure 1.11. NML 3-phase clock system.

1.2.5 Clock Zone Layout

With the 3-phase clock system described previously, NanoMagnet Logic can only
propagate in one direction. The delay of a signal which passes through 3 clock
zones is equal to one clock cycle. The circuits latency is equivalent to one third of
the total number of clock zones. This is the so-called “Layout = Timing” problem
(Figure 1.12 A)). Circuits delay depend on the layout of circuits. Careful layout
design is required to have a perfect signal synchronization. This traditional layout
is not feasible in design of complex NML circuit. As a consequence, a “Snake-like”
clock zone layout is proposed to allow feedback signal propagation (Figure 1.12 B)).
It helps reducing the “Layout=Timing” problem. Figure 1.13 represents a 3D view
of the snake clock wires used to generate the clock signals.

10

1.2 – NanoMagnet Logic (NML)

Delay = 1 clock cycle Delay = 1 clock cycle

1 1 3232

1321

3 2

A)

32
B)

Figure 1.12. 3-phase clock zone layout. A) Traditional layout. B) Snake-like layout.

Figure 1.13. Snake-like layout physical view. M. Vacca et al. “Feedbacks in QCA:
A Quantitative Approach”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 10, Oct. 2015.

11

1 – Introduction to NanoMagnet Logic

1.2.6 VHDL Modeling

VHDL behavioral model

Independent of the clock mechanism chosen, as described before, the intrinsic pipelined
behavior of circuits can be modeled by combinational logic gates with registers con-
trolled by clock signals as shown in Figure 1.14.

CLOCK
ZONE 1

CLOCK
ZONE 2

CLOCK
ZONE 3

A)

B)

MV

E

G

I

S

T

E

R

R

E

G

I

S

T

E

R

R

E

G

I

S

T

E

R

R

CLK1 CLK2 CLK3

I1 I2 I3

H1 H2 H3

Figure 1.14. NML circuit VHDL modeling. J. Wang et al. “Biosequences
analysis on NanoMagnet Logic”, International Conference on IC Design and
Technology (ICICDT), May 2013.

Registers simulate signals propagation delay, while ideal logic gates model the
circuits behavior. An RTL model of NML circuits can therefore be easily described
using VHDL language. In the following, the VHDL code describing the circuit of
Figure 1.14 is reported.

-- Example NML circuit with VHDL modeling

-- It occupies 3 clock zones (1 clock cycle)

library ieee;

use ieee.std_logic_1164.all;

entity ExampleNML is

12

1.2 – NanoMagnet Logic (NML)

port (

clk : in std_logic_vector (3 downto 1);

ANDIn1 : in std_logic;

ANDIn2 : in std_logic;

MVIn1 : in std_logic;

MVIn2 : in std_logic;

MVIn3 : in std_logic;

Output : out std_logic);

end ExampleNML;

architecture STRUCTURAL of ExampleNML is

signal S1 : std_logic_vector (4 downto 0);

signal S1_reg0 : std_logic_vector (4 downto 0);

signal S2 : std_logic_vector (1 downto 0);

signal S2_reg0 : std_logic_vector (1 downto 0);

signal S3 : std_logic_vector (0 downto 0);

signal S3_reg0 : std_logic_vector (0 downto 0);

component MV is

port(

A_in: in std_logic;

B_in: in std_logic;

C_in: in std_logic;

out_MV: out std_logic);

end component;

component gate_AND is

port(

A_in: in std_logic;

B_in: in std_logic;

out_AND: out std_logic);

end component;

component gate_OR is

port(

A_in: in std_logic;

B_in: in std_logic;

out_OR: out std_logic);

end component;

component register_generic is

generic (NBIT : integer);

port(

CLK: in std_logic;

D: in std_logic_vector (NBIT -1 downto 0);

Q: out std_logic_vector (NBIT -1 downto 0));

end component;

begin

-- enter into Stage1

S1(0)<= ANDIn1;

S1(1)<= ANDIn2;

S1(2)<= MVIn1;

S1(3)<= MVIn2;

S1(4)<= MVIn3;

-- passing the signals through REG1

REG1: register_generic

generic map (5)

13

1 – Introduction to NanoMagnet Logic

port map (clk(1), S1, S1_reg0);

--endREG

-- enter into Stage2

and_stage2_0: gate_AND port map (S1_reg0 (0), S1_reg0 (1), S2 (0));

mv_stage2_0: MV port map (S1_reg0 (2), S1_reg0 (3), S1_reg0 (4), S2(1));

-- passing the signals through REG2

REG2: register_generic

generic map (2)

port map (clk(2), S2, S2_reg0);

--endREG

-- enter into Stage3

or_stage3_0: gate_OR port map (S2_reg0 (0), S2_reg0 (1), S3(0));

-- passing the signals through REG3

REG3: register_generic

generic map (1)

port map (clk(3), S3, S3_reg0);

--endREG

-- assign the output

S <= S3_reg0 (0);

end STRUCTURAL;

Area and Power model

The VHDL code embeds an area estimator. For each logic block, the total number
of magnets is calculated summing the number of magnets of each logic gate. A mul-
tiplicative factor takes into account the interconnections overhead. Area is therefore
calculated from the total number of magnets. Details are reported in [15].

Regarding Power consumption, as stated in [11], there are two main power losses
in NML circuits: the power loss to force magnets in the RESET state and the loss in
the clock generation. The first component is calculated by multiplying the switching
energy of each magnet for the total number of magnets and for the frequency. The
second component is calculated estimating the clock wires length from the total
circutis area. Knowing the wire length and by defining some parameters as shown
in Figure 1.15, a series of equations are employed to calculate wires section and
resistance. 

Swire = (Width zone−Width sep) ∗Wire thick

Rwire i = Resistivity ∗ Lwire eff i
Swire

(1.1)

Knowing the wires resistance, it is possible to estimate clock power consumption
by estimating joule losses through the wires.

14

1.2 – NanoMagnet Logic (NML)

Figure 1.15. Parameters and constants used in the NML power model. M.
Vacca et al. “NanoMagnet Logic Microprocessor: Hierarchical Power Analy-
sis”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
21, pp. 1410-1420, 2012.

Mag Power =
∑

i=1,2,3

Ni ∗
Energy mag

T clock
(1.2)

P joule total =
∑

i=1,2,3

Rwire i ∗ I max2 (1.3)

Model details can be found in [15]. It is important to underline that the effective-
ness of this model relies on the chosen values of overheads such as interconnections
overhead and wire curves. Therefore, the constants were extrapolated starting from
NML theory and low level simulations, taking into account all the physical and
layout constraints actually known. This model is later on employed on the chosen
complex NML circuit, the Smith-Waterman Systolic Array architecture in Section
2.4, allowing technological comparison with CMOS technology.

15

Chapter 2

NanoMagnet Logic Architecture
Analysis

In order to link device and architectural analysis, a complex architecture is chosen as
benchmark using multilevel models that consider the information gained from phys-
ical level finite element simulator. Basic structures and gates are validated through
physical level simulator taking into account the limitations in magnets placement.
This methodology that includes both fast behavioral simulation and area and power
evaluation, allows us to gain significant information on NML performance.

2.1 Smith-Waterman Systolic Array Architecture

Implementation

2.1.1 Biosequences Alignment Analysis

The chosen architecture as NML benchmark is the Smith-Waterman (SW) Systolic
Array Architecture that is employed in biosequences alignment analysis. Biose-
quences alignment analysis is an important application iin the bioinformatics field.
Being the essential constituents of animal and plant cells, proteins are manufac-
tured by the instructions encoded in Deoxyribonucleic Acid (DNA). It contains the
genetic information (genes) to guide the development of organs, to distinguish one
species from other living beings and to pass to its descendants from generation to
generation. By identifying the similarities between two biosequences, it is possible
to reconstruct the evolutionary pathway that led to differentiation of species or to
understand the genetic cause of a disease [16].

Each protein is a long chain of Amino Acids (AAs), which are normally rep-
resented by alphabetical characters as in Figure 2.1. Therefore, the biosequence

16

2.1 – Smith-Waterman Systolic Array Architecture Implementation

analysis is commonly done by comparing one sequence of AAs (Query) to other se-
quences taken from databases (Subject) that have been already developed. There
are various sequence alignment methods found in literature. Among them there is
Smith-Waterman algorithm which is mostly used for finding small regions of local
similarity between distantly related biosequences [17].

Figure 2.1. Amino Acide alphabetical character representation. L. R. Murphy et
al. “Simplified Amino Acid Alphabets for Protein Fold Recognition and Implication
for Folding”, Protein Engineering, vol. 13, pp. 149-152, 2000.

2.1.2 Smith-Waterman Systolic Array Architecture

The Smith-Waterman algorithm evaluates the alignment between two AA sequences
using a score mechanism that identify the percentage of similarity between them.
As results, it outputs the best alignment identified by the maximum score as shown
in Figure 2.2 [3].

Figure 2.2. Biosequence alignment analysis principle.

The algorithm can be parallelized and implemented using a Systolic Array (SA)
to increase the performance and to accelerate the computation. As shown in Figure

17

2 – NanoMagnet Logic Architecture Analysis

2.4, Systolic Arrays are composed of Processing Elements (PEs) which can be orga-
nized in a matrix structure, or a linear structure or other parallel structures. The
Processing Elements are identical processors that receive data from neighbor PEs
and compute results that are passed to the next PEs.

Figure 2.3. Systolic Array Structures. A) Matrix Systolic Array. B) Linear Sys-
tolic Array. C) Special Systolic Array. G. Causapruno et al. “Protein Alignment
Systolic Array Throughput Optimization”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 1, pp. 68-77, 2014.

As depicted in Figure 2.4, a linear systolic array is employed for the Smith-
Waterman algorithm is employed. Each amino acid of the Query sequence is stored
in one PE. Therefore, the more PEs there are in the systolic array, the longer Query
sequences can be analyzed. The systolic array receives the Subject sequence AAs
one by one at the input, passes them through the entire structure and generates the
alignment score at the end. By sending multiple sequences in series, the circuit is
able to compute the maximum alignment score at the systolic array output.

The detailed CMOS implementation ([18]) of a S-W Processing Element can be
divided into two major blocks: Configuration block (PE Config) and Computation
block (PE Calc) (Figure 2.5). The configuration block is responsible of generating
control signals such as register read/write signals, while the computation block (Fig-
ure 2.6) contains the memory to store the alignment scores between the representing
Query amino acid with all 23 amino acids. Using these values, the computational
block is able to calculate the local alignment score. The datapath of the compu-
tational block is composed mostly by adders, used to design comparator blocks,

18

2.1 – Smith-Waterman Systolic Array Architecture Implementation

Figure 2.4. Smith-Waterman systolic array architecture with processing
elements .G. Urgese, “Analysis and Design of an Optimized HW Accellerator
for Protein Alignment”, Master thesis, Politecnico di Torino, Dept. Eletr.,
Torino, Italy, Sept. 2012.

multiplexers and registers. A detailed description of the Smith-Waterman architec-
ture and its hardware implementation can be found in [18].

19

2 – NanoMagnet Logic Architecture Analysis

Figure 2.5. Smith-Waterman systolic array architecture with processing elements.

Figure 2.6. Structure of PE Calc block. G. Urgese, “Analysis and Design of an
Optimized HW Accellerator for Protein Alignment”, Politecnico di Torino, Dept.
Eletr., Torino, Italy, Sept. 2012.

20

2.1 – Smith-Waterman Systolic Array Architecture Implementation

2.1.3 SW NML Implementation

To design the Smith-Waterman in NML technology, the layout of each main com-
ponent was created by hand. Figures 2.7, 2.8, and 2.9 reports for example the NML
layout of a multiplexer, a ripple carry adder and a 3-to-8 decoder. Layouts are cre-
ated considering constraints on magnets placement derived by physical fabrication
of clock wires. The circuits are modeled with VHDL and assembled creating the
whole processing element. Its schematic is depicted in Figure 2.10.

A(2)

B(2)

A(1)

B(1)

A(0)

B(0)

Ci(0)
S(0)

S(1)

S(2)

Co(2)

Figure 2.7. NML Multiplexer implementation.

21

2 – NanoMagnet Logic Architecture Analysis

A(2)

B(2)

B(1)

A(1)

B(0)

A(0)

Sel

OUT(0)

OUT(1)

OUT(2)

Figure 2.8. NML Ripple Carry Adder implementation.

A1

A0

A(2)

A(1)

A(0)

OUT(7)

OUT(0)

OUT(1)

OUT(2)

OUT(3)

OUT(4)

OUT(5)

OUT(6)

Figure 2.9. NML 3-to-8 Decoder implementation.

Looking at Figure 2.10, it can be noticed that there are two loops (Loop1 and

22

2.1 – Smith-Waterman Systolic Array Architecture Implementation

Loop2) in the structure. Given the intrinsic pipelined nature of NML technology,
the presence of loop has a relevant impact on circuits performance. The length of
Loop1 is longer than Loop2, and Loop1 includes two groups of signals, one is a 1-bit
control signal and the other one is a multiple-bit feedback signal.

PE_CONFIG

PE_CALC

M
E

M
O

R
Y

D
E

C
O

D
E

D
E

M
U

X 5
−

t
o

−
2

4

E
X

T
E

N
D

G
A

P

O
P

E
N

G
A

P

OR

3−to−1

S
U

B

AND

AND

S
U

B

MAX
ENABLE
LOGIC

AND

2
−

t
o

−
1

M
U

X

2
−

t
o

−
1

M
U

X

AND

AND

S
U

B

AND

AND
AND

OR

3−to−1

S
U

B

ENABLE
MAX

LOGIC

S
U

B

AND

AND

S
U

B

AND

AND

2
3
−

t
o

−
1
 O

R

A
D

D
E

R
A

D
D

E
R

A
D

D
E

R

MAX4

MAX3

Loop1

Loop2

Figure 2.10. NML processing element implementation. There are two loops
present in the architecture, Loop1 and Loop2. The longer loop (Loop1) occu-
pies 208x3 clock zones.M. Vacca et al. “Feedbacks in QCA: A Quantitative Ap-
proach”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 10, Oct. 2015.

To simulate and evaluate the circuit, the Smith-Waterman algorithm was imple-
mented with 8 processing elements, using a parallelism of 9 bit. Given the presence
of a loop with a delay of 208 clock cycles, a new AA is fed to the circuit every 208
clock cycles, making the circuit latency equal to 208 clock cycles (Figure 2.11). Since
every Subject sequence contains N AAs, to find the maximum alignment score for
a particular sequence, 208∗N clock cycles is the required time. This means about
1.8 ms with an average clock frequency of 100 MHz and a value of N equal to 969

23

2 – NanoMagnet Logic Architecture Analysis

[9]. In this test case, the Subject sequences used for the test were made by the same
number of AAs, but in general, every sequence can have a different length. The
longer the sequence is, the longer is the time required for the analysis to be com-
pleted. Figure 2.11 depicts the simulation waveforms. The Subject ID identifies the
biosequence number, while OUT MAX is the calculated alignment score. As can be
seen sequence 14 has the highest alignment score among the first 16 sequences.

Figure 2.11. Smith-Waterman algorithm architecture simulation results.
Subject ID represents the number of the AA sequences analyzed, and OUT MAX
is the corresponding maximum alignment score. M. Vacca et al. “Feedbacks in
QCA: A Quantitative Approach”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

2.2 Performance Optimization

Having implemented a complex and realistic architecture, some architectural-level
problems about circuit performance and synchronization were put in evidence. For
each problem, a solution is proposed here. Performance optimization techniques are
also evaluated.

2.2.1 Data Interleaving

As described previously, the long delay between two subsequent inputs is due to
the NML intrinsic pipelined nature which leads to long propagation delay on the
feedback path. As demonstrated in Figure 2.12, the new input needs to wait for the
previous result to propagate back, if a loop is present. As a consequence, the total
latency in terms of clock cycles is determined by the number of registers in the loop.

Throughput of SW NML circuit =
1

loop length
=

1

208 clock cycles
(2.1)

24

2.2 – Performance Optimization

+

B

?
A ?

??

Clock Cycle 02B)

A
+
B

B
+
?

+

Clock Cycle 02C)

A

?
A ?

? ?

+

A

?
? ?

??

Clock Cycle 01A)

+

?

Clock Cycle 03D)

A

? ?

A A +

A

E) Clock Cycle 04

?

? A

A A
A
 +
B

+

A
A A

A A

Clock Cycle 05F)

B

Figure 2.12. Example of NML architecture performance reduction due to the
presence of loops inside intrinsically pipelined circuits. M. Vacca et al. “Feed-
backs in QCA: A Quantitative Approach”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

To maximize performance the technique of Data Interleaving can be exploited.
This is a technique commonly adopted in standard technology, such as in micropro-
cessors. It can be employed when multiple instructions must be executed in par-
allel and there is no data dependency among instructions. Interleaving principle is
demonstrated in Figure 2.13. Four operations are executed in parallel. At each clock
cycle, a new datum of a different operation is sent to the circuit input. Using this
technique it is possible to sent a datum theoretically every clock cycle, maximiziing
therefore performance.

25

2 – NanoMagnet Logic Architecture Analysis

L + M + N

D + E + F
G + H + I

A + B + C
+

A

A)

?
? ?

??
Cycle 01

L + M + N

D + E + F
G + H + I

A + B + C
+

?

D

B)
? ?

?A

Cycle 02

L + M + N

D + E + F
G + H + I

A + B + C
+

G

C)

?

? ?

D A

Cycle 03

L + M + N

D + E + F
G + H + I

A + B + C
+

L

D)

?

? A

G D

Cycle 04

L + M + N

D + E + F
G + H + I

A + B + C
+

B

E)
D

L G

A

A

Cycle 05

L + M + N

D + E + F
G + H + I

A + B + C
+ B

E
L

F)
GD

D

Cycle 06

L + M + N

D + E + F
G + H + I

A + B + C
+

G)
LG

E B
G

Cycle 07

H

L + M + N

D + E + F
G + H + I

A + B + C
+

M

H)

L
H E

L B
Cycle 08

L + M + N

D + E + F
G + H + I

A + B + C
+

C

I)

B

B E

M H

Cycle 09

L + M + N

D + E + F
G + H + I

A + B + C
+

F

L)

E

E H

MC

Cycle 10

L + M + N

D + E + F
G + H + I

A + B + C
+

I

M)

H

H M

F C

Cycle 11

L + M + N

D + E + F
G + H + I

A + B + C
+

N

N)

M
B

M H

E

Cycle 12

Figure 2.13. Data Interleaving application example. Four operations are executed
in parallel to maximize the circuit throughput. M. Vacca et al. “Feedbacks in QCA:
A Quantitative Approach”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 10, Oct. 2015.

The improved throughput is given by the equation:

Improved Throughput =
No.operations in parallel

circuit latency
(2.2)

Executing a number of operations that equal to the loop length in parallel allows
to maximize throughput. Figure 2.14 shows a complete simulation of the Smith-
Waterman benchmark using a level of interleaving equal to 3, which analyses 3
subject sequences in parallel. The delay between two AAs of the same subject se-
quence is 208 clock cyles as before, which equals to about 1.8us (clock frequency
about 110MHz). After having sent the AA(i) of Sequence 1 as input, it has to wait
for 70 cycles to sent the AA(i) of Sequence 2, and other 70 cycles to sent the AA(i)

26

2.2 – Performance Optimization

of Sequence 3 and to switch back to Sequence 1 (AA(i + 1)) after other 68 cycles.
Figure 2.14 depicts the SW simulation with an interleaving equal to 3.

Improved Throughput =
No.operations in parallel

circuit latency
=

3

208 clock cycles
(2.3)

Figure 2.14. Simulation result of SW NML architecture with interleaving 3. M.
Vacca et al. “Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

To maximize the circuit performance, 208 sequences must be analyzed in parallel,
reaching a throughput equal to 1. 208 sequences of data should be available for 208
operations to run in parallel, which is not a problem in this application, since it is
designed to analyze a massive number of biosequences.
As it can be noticed, interleaving is a necessary optimization technique for NML
circuits in presence of loops. However, due to the extremely high level of pipelining,
a huge amount of data has to be provided to obtain the maximum throughput,
which makes not all applications good candidates for this technology [12].

2.2.2 Architecture Redesign for Loops Lengths Reduction

Given the impact of loop, a simple solution is to reduce the loops lengths, since they
are the “bottleneck” of the circuit throughput. The feedback path is as long as the
path through the computational blocks.

27

2 – NanoMagnet Logic Architecture Analysis

Figure 2.15. PE Architecture redesign to reduce loops lengths. M. Vacca et al.
“Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

The idea is to bend back the loop and changing the chain of blocks into a U-
shaped structure (Figure 2.15). The loop length is reduced to 141 clock cycles, so
the throughput is increased to 1/141 clock cycles.
The simulation result is shown in Figure 2.16 in comparison with the previous un-
modified architecture. As can be noticed, the analysis of 14 sequences takes about
16ms while it takes about 24ms without optimization.

By reducing the delay to 141 clock cycles, using at the same time the technique
of data interleaving, only 141 sequences of inputs are required to maximize the
throughput. These combined methods expand the field of applications suitable for
NML technology implementation.

28

2.3 – Signal Synchronization

It can be noticed that the whole loop length is not reduced to minimum at this
point, so additional structure optimization can be done for further performance
improvement.

Figure 2.16. Simulation results comparison between redesigned PE architecture
with folded loop and the original. M. Vacca et al. “Feedbacks in QCA: A Quan-
titative Approach”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 10, Oct. 2015.

2.3 Signal Synchronization

In a complex NML circuit, signal synchronization is an important issue, especially
when loops are present. It requires careful design of circuits layout to correctly
synchronize signals. The NML implementation of Smith-Waterman algorithm here
highlight two major problems in signal synchronization related to loops: 1) nested
loops and 2) additional loops.

2.3.1 Nested Loops

There are two signal loops that are nested in Loop1. To synchronize signlas, these
two nested loops must have the same length. The simplified representation of this
situation is shown in Figure 2.17 A), while B) demonstrates how to expand signals
path in order to get two loops of equal length. Simulation results are reported in
Figure 2.17 C). Without loop length equalization, results are wrong. With loops
length equalization, results are instead correct. They are similar to the one reported
in Figure 2.16.

29

2 – NanoMagnet Logic Architecture Analysis

Figure 2.17. PE signal synchronization with nested loops. A) Simplified
schematic presentation of nested loops. B) Highlight of nested loops in Smith-
Waterman processing element NML architecture. C) Simulation comparison with
correct and wrong signal synchronizations. M. Vacca et al. “Feedbacks in QCA:
A Quantitative Approach”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 10, Oct. 2015.

2.3.2 Additional Delay Loops

A common technique normally employed in CMOS technology is to add additional
registers to delay certain signals for synchronization purpose, for example the skew-
ing and deskewing networks. In the SW processing element, the algorithm requires
the block MAX4 to compute the local alignment score using the results obtained
from the previous PE one and two cycles before and its own result one cycle be-
fore. The circuit can be simplified as Figure 2.18 A). The “calculation cycle” (also
a clock cycle in CMOS) corresponds to the time between sending two amino acids
consecutively. In NML technology, this cycle becomes the length of the circuit loop
in terms of clock cycles as described above.
The delay registers that are present on both paths can be removed, leaving the ad-
ditional register on the upper path. The registor is mapped to a loop with a length

30

2.3 – Signal Synchronization

of 208 clock cycles, given that a new AA is fed to the inputs every 208 clock cycles.
With this technique, it is therefore possible to delay and correctly synchronize sig-
nals path.

Figure 2.18. PE signal synchronization with addtional delay loops. M. Vacca et
al. “Feedbacks in QCA: A Quantitative Approach”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

The investigation on the length of this additional loop (L1) demonstrates that
for signal synchronization purpose, it should be the same as the total length of
the feedback loop (L2). As shown in Figure 2.18 C), without the additional loop,

31

2 – NanoMagnet Logic Architecture Analysis

computational errors will occur since the signals are not synchronized.

2.4 NML Architecture Area and Power Evalua-

tion

In order to compare the performance of the NML implementation with CMOS tech-
nology, a 5 elements systolic array has been synthesized using a standard CMOS
technology [20]. It is worth underlining that in CMOS the clock frequency is around
370 MHz and the latency for on PE is 1 clock cycle. The NML implementation uses
a 100 MHz clock frequency, so also employing interleaving, it is therefore 4 times
slower than CMOS implementation. However, the lack of speed is compensated by
a much smaller power consumption.
Using the power models described in Section 1.2.6, the area and power consump-
tion estimations of a single processing element, are compared between CMOS and
the NML implementations. For NML data are accurately estimated starting from
the circuit layout and technological data. Since most of the Smith-Waterman main
blocks are accurately designed by hand, it is possible to know exactly their area
and their composition. The total circuit area and the number of magnets of the
processing element can be estimated starting from the main blocks and using mul-
tiplicative constants to keep into account interconnections overhead. Once the total
circuit area and the total number of magnets is known, it is possible to estimate
the circuit power consumption. The total estimated number of magnets for a pro-
cessing element is 470000. Therefore, as shown in Table 2.1 [16], the area of the
NML implementations (21000 um2 in Magnetic Field NML and 20000 um2 in STT-
current NML) is much bigger than CMOS case, which is around 1000 um2. The
explanation is that in NML, according to the current level of technology maturity,
circuits are built using only one layer physical, while there are multiple layers for
interconnections in CMOS technology.

32

2.4 – NML Architecture Area and Power Evaluation

Table 2.1. Power consumption and area estimation for a single processing el-
ement of the systolic array with main NML implementations and CMOS LOP
21nm technology. J. Wang et al. “Biosequences analysis on NanoMagnet Logic”,
International Conference on IC Design and Technology (ICICDT), May 2013.

Implementation Area [um2] Power [mW]
Magnetic Field NML 21000 2
STT-current NML 20000 131

Magnetoelastic NML 12000 0.01
CMOS LOP 21nm 1000 0.72

Regarding power consumption comparisons, neither magnetic field based NML
nor STT-current based NML is suited for low power application [21]. Using instead
the magnetoelastic clock solution, it is possible to obtain a considerable reduction in
power over CMOS, since the total power consumption is around 0.01 mW. Clearly
this is the best solution for NML logic which allows to obtain a remarkable reduction
of power consumption with only a relatively limited reduction of speed.

33

Chapter 3

Introduction to Nanoscale
Application Specific Integrated
Circuits

The field of semiconductor nanowire (NWs) has become one of the most active re-
search areas within the nanoscience community [22].
With a few decades of research and development activities, semiconductor nanowires
can be now fabricated in high-yield with reproducible electronic properties as re-
quired for large-scale integrated systems. Moreover, with bottom-up synthesis ap-
proach, the body thickness/diameter of nanowires can be well-controlled down to
below 10 nm. This represents a significant advantage over CMOS technology, where
it has become increasingly difficult to achieve maintaining the electrical integrity
with the aggressive scaling of gate length [23].

3.1 Nanowire Field Effect Transistors (NW FETs)

There is a large range of nanoscale devices that employ semiconductor nanowires,
such as Field-effect transistors (FETs), p-n diodes, ultraviolet (UV) detectors, single
nanowire solar cells, chemical sensors, biosensors and nanogenerators [24]. As shown
in Figure 3.1, logic AND, OR and NOR gates have been fabricated by Y. Huang et
al. in [25], among which 1 (p-Si) by 3 (n-GaN) crossed NW FETs (xnwFETs) are
used.

34

3.1 – Nanowire Field Effect Transistors (NW FETs)

Figure 3.1. Nanowire nano-logic gates. A) Schematics of logic OR gate con-
structed from a 2 by 1 crossed NW p-n junction. B) OR gate input and output
voltage levels. C) The experimental truth table for the OR gate. D) Schematic of
logic AND gate constructed from a 1 by 3 crossed NW junction array. E) AND
gate input and output voltage levels. F) The experimental truth table for the AND
gate. G) Schematic of logic NOR gate constructed from a 1 by 3 crossed NW
junction array. H) NOR gate input and output voltage levels. I) The experimental
truth table for the NOR gate. Y. Huang et al. “Logic Gates and Computation from
Assembled Nanowire Building Blocks”, Science, vol. 294, Nov. 2001.

35

3 – Introduction to Nanoscale Application Specific Integrated Circuits

Different gate structures are available in literature to implement the nanowire
FETs as shown in Figure 3.3 [23], from semicylindrical top gates to gate-all-around
configurations. Several gate materials are also in progress of evaluations as presented
in Figure 3.2 [26].

Figure 3.2. Schematic of nwFETs with A) back gate, B) semicylindrical
top gate, and C) cylindrical gate-all-around configurations. W. Lu et al.
“Nanowire Transistor Performance Limits and Applications”, IEEE Trans-
actions on Electron Devices, vol. 55, Nov. 2008.

Figure 3.3. Crossed Nanowire Field Effect Transistors. A) Basic device struc-
ture with self-aligned n+ drain, gate, source and underlap. B) NiSi gate
xnwFET. C) Omega-gated xnwFET. P. Narayanan et al. “Nanoscale Appli-
cation Specific Integrated Circuits”, IEEE/ACM International Symposium on
Nanoscale Architectures, June 2011.

Using different levels of doping in the nanowires channel and gate [27], multiple
input AND and OR gates can be built with xnwFETs as in Figure 3.4. By com-
bining a plane of horizontal nanowires and a plane of vertical nanowires, it comes
a 2-D nanoarray PLA-like structure (Figure 3.5 A)). As stated in [28], this PLA-
like organization contains a primary horizontal NOR logic plane that generates the

36

3.1 – Nanowire Field Effect Transistors (NW FETs)

products of inputs, and a secondary NOR logic plane (including the vertical buffer-
ing nanoarrays) that computes the sum of the products. An optimized structure
has been proposed (Figure 3.5 B)). This type of logic block is the fundamental logic
unit (called “Nanotile”) of Nanoscale Application Specific Integrated Circuits.

Figure 3.4. 4-input OR and AND logic implemented with xnwFETs. T. Wang et
al. “NASICs: A Nanoscale Fabric for Nanoscale Microprocessors”, Electrical and
Computer Engineering Department, University of Massachusetts Amherst, USA.

37

3 – Introduction to Nanoscale Application Specific Integrated Circuits

Figure 3.5. 1-bit Full-Adder with 2-D nanoarray structure. T. Wang et al.
“Opportunities and challenges in application-tuned circuits and architectures
based on nanodevices”, First ACM International Conference On Computing
Frontiers, pp. 503-511, april 2004.

3.2 Nanoscale Application Specific Integrated Cir-

cuits (NASICs)

Nanoscale Application Specific Integrated Circuits (NASICs) is an emerging tech-
nology which uses silicon nanowire FETs (SiNW FETs) organized in a PLA-like
structure. It allows to design high density circuits coupled with high clock frequen-
cies thanks to the small size that silicon nanowires can reach.

In literature, simple circuits like logic gates (Figure 3.1) and complex architec-
tures like microprocessors (i.e. WISP-0) were designed (Figure 3.6) in many of these
works. However, technological constraints were not taken into account when eval-
uating circuits performance. Moreover, medium complexity circuits with detailed
layout analysis are not analyzed in literature. A new methodology to design and
simulate complex NASIC circuits with careful area and power estimation is necessary
to obtain a thorough evaluation of this technology.

38

3.2 – Nanoscale Application Specific Integrated Circuits (NASICs)

Figure 3.6. Floorplan of the WISP-0 processor. WISP-0 is a five-stage
pipelined streaming architecture in five nanotiles: PC, ROM, DEC, RF and
ALU. T. Wang et al. “Heterogeneous Two-Level Logic and Its Density and
Fault Tolerance Implications in Nanoscale Fabrics”, IEEE Transactions on
Nanotechnology, vol. 8, n. 1, Jan. 2009.

3.2.1 Nanotile

The basic logic block of NASICs is a 2-D nanoarray structure called “Nanotile” (Fig-
ure 3.7) fabricated with silicon nanowires, where the intersections forms nanoscale
Field Effect Transistors (nanoFETs). Controlling the doping in the gate and in the
channel, nanoFETs can be configured as p-type or n-type transistors. In a tradi-
tional nanotile combining AND-OR (Figure 3.8 A)) planes, both types of nanoFETs
are required. However, because of large differences in transport properties between
p-FET and n-FET, and the difficult in building both types of transistors with the
same material, it is much more advantageous to employ a single type of FETs in
NASIC circuits [29] [30]. This is possible using single n-type FET Nanotile with
NAND-NAND planes (Figure 3.8 B)).

39

3 – Introduction to Nanoscale Application Specific Integrated Circuits

Figure 3.7. Nanotile structure built with silicon nanowires and nanoFETs. P.
Narayanan et al. “Nanoscale Application Specific Integrated Circuits”, IEEE/ACM
International Symposium on Nanoscale Architectures, June 2011. (Inserted) M.
Graziano et al. “ A Hardware Viewpoint on Biosequence Analysis: What’s Next?”,
ACM Journal on Emerging Technologies in Computing Systems, Nov. 2013.

Figure 3.8. Schematic representations of 1-bit Full Adder with A) mixed types
of nanoFETs, and B) single n-type nanoFETs. T. Wang et al. “NASICs: A
Nanoscale Fabric for Nanoscale Microprocessors”, Electrical and Computer Engi-
neering Department, University of Massachusetts Amherst, USA.

40

3.2 – Nanoscale Application Specific Integrated Circuits (NASICs)

3.2.2 NASIC Clock Mechanism

Since it is widely used in CMOS technology designs, Dynamic Logic can be used
also for NASIC circuits (Figure 3.9).

Figure 3.9. Dynamic circuits implementing AND, NAND, OR, and NOR logic
functions on NWs. T. Wang et al. “Heterogeneous Two-Level Logic and Its Density
and Fault Tolerance Implications in Nanoscale Fabrics”, IEEE Transactions on
Nanotechnology, vol. 8, n. 1, Jan. 2009.

By introducing precharge and evaluation control signals on both horizontal and
vertical nanowires in the nanotiles (Figure 3.10), the combinational logic on the two
planes (AND-OR or NAND-NAND) can be controlled in a synchronous way, hence
a multiphase Clock mechanism. The clocked operations in a nanotile is done by
driving the horizontal and vertical precharge/evaluation control signals in a clock
cycle divided into 4 phases (Figure 3.10).

• Phase I: Precharge of horizontal wires (Hpre active). The horizontal wires are
charged to high no matter what input signals are.

• Phase II: Evaluation of horizontal wires (Heva active). The horizontal wires
switch states based on input signals. So the output signals of horizontal plane
or the input signals of vertical plane are evaluated.

• Phase III: Precharge of vertical wires (Vpre active). The vertical wires are
charged to high. This phase can occur contemporarily with Phase II.

41

3 – Introduction to Nanoscale Application Specific Integrated Circuits

Figure 3.10. Nanotile clock mechanism with dynamic logic. The rectangular
green boxes on nanowire cross sections are n-type nanoFETs while the white
ones are p-type nanoFETs .

• Phase IV: Evaluation of vertical wires (Veva active). The output signals of
the nanotile are ready.

Therefore, every nanotile, no matter what the implementing logic is, has a latency
of one clock cycle. This fact is very similar as the “Layout=Timing” characteristic
of the previously discussed NanoMagnet Logic, implying also in this case an intrinsic
pipelined behavior.

42

3.2 – Nanoscale Application Specific Integrated Circuits (NASICs)

3.2.3 2-bit Full Adder

A(0)

B(0)

A(1)

B(1)

A(2)

B(2)

Heva Hpre
Ci(0)

S(0)

Co(0)

Vpre

Veva

Vpre

Veva

S(1)

Co(1)

Buffer Logic

Figure 3.11. Nanotile behavior modeling in VHDL.

43

3 – Introduction to Nanoscale Application Specific Integrated Circuits

As proposed in [31], by putting in cascade the nanotiles, multiple bit logic blocks
can be contructed, for example, a 2-bit Full Adder as shown in Figure 3.11.

A buffer tile is required in the nanotile interconnection zone. The buffer is used
to rout signals, and to regenerate and enhance logic signals on the nanowires.

3.2.4 N3ASIC

Similarly to NML, NASIC technology leads to single layer circuits, which causes large
amounts of area overhead and circuit latency increase. In order to overcome this
drawback, a 3-D nanofabric called N3ASIC is presented in [32]. With the Omega
metal gate NanoFETs (Figure 3.12A)), a N3ASIC nanotile (Figure 3.12B)) can be
fabricated with current manufacturing process as shown in Figure 3.13. Using a
Silicon-on-Insulator (SOI) wafera as a base, uniform semiconductor nanowire arrays
are grown. Then metal gates are deposited at logic (NAND-NAND) planes to define
the cross points to define nanowire FETs. At the next step, the lower layer of metal
1 interconnects are deposited, which play the same role as vertical nanowires in
original NASIC nanotiles. Therefore, the vias on Logic plane 1 are the outputs of
the horizontal NAND plane. With the second layer of metal 2, the two planes are
connected.

Figure 3.12. N3ASIC Nanotile structure. A) 3D structure of Omega metal gate
NanoFET in N3ASIC. B) 1-bit Full Adder N3ASIC. P. Panchapakeshan et al.
“3-D Integration Requirements for Hybrid Nanoscale-CMOS Fabrics”, IEEE Inter-
national Conference on Nanotechnology, Aug. 2011.

44

3.2 – Nanoscale Application Specific Integrated Circuits (NASICs)

Figure 3.13. N3ASIC Nanotile structure. P. Panchapakeshan et al. “3-D Inte-
gration Requirements for Hybrid Nanoscale-CMOS Fabrics”, IEEE International
Conference on Nanotechnology, Aug. 2011.

N3ASIC has the advantage of providing a natural integration with CMOS as
shown in Figure 3.14, but the operating mechanism in a N3ASIC nanotile is the
same as the orignal NASIC. Therefore, the NASIC clock mechanism also applies
here. From the logic implementation point of view, it is only necessary to rotate the
vertical NAND plane of NASIC to horizontal direction for N3ASIC implementation.
Hereby, the orignal NASIC nanotile structure is kept as the basic structure for
analysis.

45

3 – Introduction to Nanoscale Application Specific Integrated Circuits

Figure 3.14. Hybric Nano-CMOS 3D integrated fabric structure. P. Panchapake-
shan et al. “N3ASICs: Designing Nanofabrics with Fine-Grained CMOS Integra-
tion”, IEEE/ACM International Symposium on Nanoscale Architectures, 2011.

3.2.5 NASIC VHDL Modeling

Similarly to NML technology, a behavioral model written in VHDL was developed.
As can be noticed in Figure 3.10, the control signals introduces a “clock” mechanism
into nanotile operations. The behavioral model of a nanotile in VHDL is shown as
Figure 3.15, where horizontal and vertical wires are modelled as multiple input
NAND gates with output registers modeling the delay. Among the VHDL codes,
the numbers of horizontal and vertical wires, even the number of transistors on each
wire can be extracted which would be useful in Section 4.1 to implement embedded
area and power estimation inside the model.

46

3.2 – Nanoscale Application Specific Integrated Circuits (NASICs)

Figure 3.15. Nanotile behavior modeling in VHDL.

1-bit Full Adder Nanotile VHDL behavioral model

In the following, the VHDL code of a single tile is give. The logic function imple-
mented is a 1-bit Full Adder.

-- 1 bit Full Adder

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

use work.NASIC_package.all;

ENTITY FA_1 IS

PORT(CLK : IN STD_LOGIC_VECTOR (4 DOWNTO 1);

A : IN STD_LOGIC;

nA : IN STD_LOGIC;

B : IN STD_LOGIC;

nB : IN STD_LOGIC;

Ci : IN STD_LOGIC;

nCi : IN STD_LOGIC;

Co : OUT STD_LOGIC;

nCo : OUT STD_LOGIC;

S : OUT STD_LOGIC;

nS : OUT STD_LOGIC

);

END FA_1;

ARCHITECTURE STR OF FA_1 IS

SIGNAL S1 : STD_LOGIC_VECTOR (5 DOWNTO 0);

SIGNAL S1_reg0 : STD_LOGIC_VECTOR (5 DOWNTO 0);

SIGNAL Hout : STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL Hout_reg0 : STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL Hout_reg1 : STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL Vout : STD_LOGIC_VECTOR (3 DOWNTO 0);

SIGNAL Vout_reg0 : STD_LOGIC_VECTOR (3 DOWNTO 0);

COMPONENT register_generic IS

GENERIC (NBIT : INTEGER);

PORT(

CLK : IN STD_LOGIC;

47

3 – Introduction to Nanoscale Application Specific Integrated Circuits

D : IN STD_LOGIC_VECTOR (NBIT -1 DOWNTO 0);

Q : OUT STD_LOGIC_VECTOR (NBIT -1 DOWNTO 0));

END COMPONENT;

BEGIN

S1(0)<= A;

S1(1)<= nA;

S1(2)<= B;

S1(3)<= nB;

S1(4)<= Ci;

S1(5)<= nCi;

--discharge the horizontal tiles

REG0_Hdis : register_generic GENERIC MAP (6) PORT MAP (CLK(1), S1, S1_reg0);

--horizontal logic computation

Hout (0)<= not(S1_reg0 (0) AND S1_reg0 (3) AND S1_reg0 (4));

Hout (1)<= not(S1_reg0 (1) AND S1_reg0 (2) AND S1_reg0 (4));

Hout (2)<= not(S1_reg0 (0) AND S1_reg0 (2) AND S1_reg0 (4));

Hout (3)<= not(S1_reg0 (0) AND S1_reg0 (2) AND S1_reg0 (5));

Hout (4)<= not(S1_reg0 (0) AND S1_reg0 (3) AND S1_reg0 (5));

Hout (5)<= not(S1_reg0 (1) AND S1_reg0 (2) AND S1_reg0 (5));

Hout (6)<= not(S1_reg0 (1) AND S1_reg0 (3) AND S1_reg0 (4));

Hout (7)<= not(S1_reg0 (1) AND S1_reg0 (3) AND S1_reg0 (5));

-- clock the horizontal output signal

REG0_Hout : register_generic GENERIC MAP (8) PORT MAP (CLK(2), Hout , Hout_reg0);

--precharge the vertical tiles

REG0_Vpre : register_generic GENERIC MAP (8) PORT MAP (CLK(3), Hout_reg0 , Hout_reg1);

-- vertical logic computation

Vout (0)<= not(Hout_reg1 (0) AND Hout_reg1 (1) AND Hout_reg1 (2) AND Hout_reg1 (3));

Vout (1)<= not(Hout_reg1 (2) AND Hout_reg1 (4) AND Hout_reg1 (5) AND Hout_reg1 (6));

Vout (2)<= not(Hout_reg1 (4) AND Hout_reg1 (5) AND Hout_reg1 (6) AND Hout_reg1 (7));

Vout (3)<= not(Hout_reg1 (0) AND Hout_reg1 (1) AND Hout_reg1 (3) AND Hout_reg1 (7));

-- clock horizontal output signal

REG0_Vout : register_generic GENERIC MAP (4) PORT MAP (CLK(4), Vout , Vout_reg0);

Co <= Vout_reg0 (0);

S <= Vout_reg0 (1);

nCo <= Vout_reg0 (2);

nS <= Vout_reg0 (3);

END STR;

48

Chapter 4

NASIC Circuit Modeling and
Implementation

To analyze and understand the effectiveness of NASIC technology, it is necessary to
design and to study medium to high complexity circuits. It is the goal of this part
of my thesis work. First of all, an area and power estimation model is added to the
VHDL code. Secondly, the enhanced model is used to design and analyze complex
circuits to understand the strength and the weakness of NASIC technology.

4.1 Area and Power Evaluation

Similarly to what have done for NML technology, physical level information is em-
bedded in the VHDL model. This kind of information, like silicon nanowire sizes,
applied voltage, are used to calculate the area and the power consumption of a tile.

4.1.1 Area Evaluation

As depicted in Figure 4.1, the parameters used to evaluate the area are:

• Dpw: Distance between two power wires;

• Dnw: Distance between two nanowires;

• Wpw: Width of power supply wires;

• Wnw: Width of nanowires.

The Nanotile has a PLA-like structure with complementary logic. Two wires are
used for each input and output signal.Without considering Karnaugh map simplifi-
cation, the number of horizontal wires depend on the number of inputs.

49

4 – NASIC Circuit Modeling and Implementation

No.Horizontal Nanowires = 2No.Inputs (4.1)

No.Vertical Nanowires = 2 ∗No.Inputs + 2 ∗No.Outputs (4.2)

For example, in the nanotile of 1-bit Full Adder,

{
No.Inputs = 3

No.Outputs = 2
−→

{
No.Horizontal Nanowires = 23 = 8

No.Vertical Nanowires = 2∗3 + 2∗2 = 10

Figure 4.1. Nanotile area evaluation parameters.

Taking into account the precharge and evaluation control wires, the area of
nanowire plane can be calculated as:

Area(Nanowire) = (2No.Inputs + 2) ∗ (2 ∗No.Inputs + 2 ∗No.Outputs+

2) ∗ (Wnw +Dnw)2
(4.3)

The length of horizontal power wires is determined by the nanowire plane length,
while the length of vertical power wires is related to the nanowire plane width. The
area of power supply wires can therefore be calculated as:

Area(PowerwiresH) = 2 ∗Length(nanowire plane) ∗ (Wpw +Dpw) ∗ 2
= 2 ∗ (2 ∗No.Inputs + 2 ∗No.Outputs + 2) ∗ (Wnw +Dnw) ∗ (Wpw +Dpw) ∗ 2

(4.4)

50

4.1 – Area and Power Evaluation

Area(PowerwiresV) = 2 ∗Width(nanowire plane) ∗ (Wpw +Dpw) ∗ 2
= 2 ∗ [(2No.Inputs + 2) ∗ (Wnw +Dnw) + 2 ∗ 2 ∗ (Wpw +Dpw)] ∗ 2 ∗ (Wpw +Dpw)

(4.5)
The total tile area is given by the sum of these three contributions:

AreaTot = Area(Nanowire) + Area(PowerwiresH) + Area(PowerwiresV)
(4.6)

4.1.2 Power Estimation

The parameters used for the power estimation of a Nanotile are:

• Roff : Off-resistance of a nanowire for static power calculation;

• Cgate: Gate capacitance of a nanoFET for dynamic power calculation;

• Cds: Channel capacitance of a nanoFET for dynamic power calculation;

• Vdd: Supply voltage on power wires;

• f : Operating frequency of control nanowires;

• SA: Switching activity of a nanowire (control nanowire or computation nanowire).

In [cite NanofaricPower-Graziano], the static power overestimated by the equa-
tion:

Pstatic = No.NWs ∗ V 2

Roff

(4.7)

The dynamic power of a nanotile is sum of the dynamic power on each nanowire
for control and computation signals [cite NanofaricPower-Graziano].

Pdynamic =
∑
NWs

1

2
∗Cnanowire ∗V 2 ∗ f ∗SA (4.8)

4.1.3 Nanowire Capacitance (Cnanowire) Estimation

In order to evaluate the capacitance on a nanowire, it is necessary to take into
account the number of transistors along the nanowire and the number of transistors’
gates that the nanowire drives.

Cnanowire = No.nanoFETch ∗Cds +No.nanoFETgate ∗Cgate (4.9)

51

4 – NASIC Circuit Modeling and Implementation

No.nanoFETch: Number of nanoFETs along the nanowire;
No.nanoFETgate: Number of nanoFETs driven by the nanowire.

In the case of 1-bit Full Adder, on each horizontal computation nanowire there
are (No.Inputs + 2 = 5) nanoFETs along the nanowire, and (No.Outputs = 2)
nanoFETs driven by it. On a vertical input nanowire there are only (2No.Inputs/2 =
4) nanoFETs driven, and on a vertical output nanowire there are at maximum
(2 + 2No.Inputs ∗ 3/4 = 8) along the wire and 2 nanoFETs driven. Therefore, the
dynamic power of a nanotile can be divided into 3 components:

Pdyn|inputs =
∑

inputNWs

1
2
∗CinputNW ∗V 2 ∗ f ∗SA

Pdyn|horiz.NWs =
∑

horiz.NWs

1
2
∗Choriz.NW ∗V 2 ∗ f ∗SA

Pdyn|vert.NWs(max) =
∑

vert.NWs

1
2
∗Cvert.NW (max) ∗V 2 ∗ f ∗SA

(4.10)

With
CinputNW = (2No.Inputs/2) ∗Cgate = constant

Choriz.NW = (No.Inputs + 2) ∗Cds +No.Outputs ∗Cgate = constant

Cvert.NW (max) = (2 + 2No.Inputs ∗ 3/4) ∗Cds + 2 ∗Cgate = constant

(4.11)

the computation of the dynamic power can be simplified as

−→


Pdyn|inputs = 1

2
∗V 2 ∗ f ∗CinputNW ∗

∑
inputNWs

SA

Pdyn|horiz.NWs = 1
2
∗V 2 ∗ f ∗Choriz.NW ∗

∑
horiz.NWs

SA

Pdyn|vert.NWs(max) = 1
2
∗V 2 ∗ f ∗Cvert.NW (max) ∗

∑
vert.NWs

SA

(4.12)

4.1.4 Nanowire Switching Activity Computation

To obtain a more precise power estimation, it is necessary to estimate the tile switch-
ing activity.

Control Nanowires SA

As can be understood by looking at the timing diagram of Figure 4.2, the control
signals (Hpre, Heva, Vpre, Veva) have a constant switching activity (SA = 2),
which is also the maximum switching activity of a computation nanowire.

52

4.1 – Area and Power Evaluation

Hpre

Heva

Input1

Input2

Vpre

Veva

Hout

Vout

Logic"0" => SA=2
Logic"1" => SA=0

Logic"0" => SA=2
Logic"1" => SA=0

SA=SA(max)=2

Figure 4.2. Nanotile switching activity.

Horizontal Nanowires SA

Instead of detailed analysis on the switching activity of each nanowire, the maxi-
mum SA (“2”) can be used to calculate the maximum dynamic power. However,
this approach greatly overestimates power consumption given that the number of
nanowires is exponential to 2.
In a more realistic case, a computation nanowire swithes twice during a clock cycle
only if the resulting logic on the wire is “0”, and does not switch if the result is “1”
because of the dynamic logic precharge.

Herein probability theory is introduced to improve the evaluation of dynamic
power in Equation 4.12. The average switching activity of a nanowire is twice
the probability that it is “0”.

SAAV G = 2 ∗Probability(NW = “0”) (4.13)

Considering a 2-input AND gate nanotile as example (Figure 4.3 A)), without
Karnaugh map simplification, only one horizontal nanowire switches, while the oth-
ers stay stable. The switching activity is therefore:

4∑
i=1

SAIi = SAI1 + SAI2 + SAI3 + SAI4 = 2

This situation can be also demonstrated with statistical probability. Since the

53

4 – NASIC Circuit Modeling and Implementation

I1=NAND(−a,−b)
I2=NAND(−a,b)
I3=NAND(a,−b)
I4=NAND(a,b)

1 1

1 0

0 1

I4I3I2I1

0 0 1 1 1

1

1

1

1

1

1 1

1

1 0

0

0

0
a b

I1

I2

I3

I4

o −o

−bb−aa

−bb−aa

I5=NAND(−a)
I6=NAND(−b)
I7=NAND(a,b)

1 1

1 0

0 1

o −o

I5

I6

I7

0 0
a b I7I6I5

1

1

1 1

1

1 0

0

0

0 0 1

A)

B)

Figure 4.3. 2-input AND gate nanotile switching activity analysis. A) Without
Karnaugh map simplification. B) With Karnaugh map simplification.

logic states of input “a” and “b” are independent events, the probabilities are:
Probability(I1 = 0) = Prob(a = 0) ∗Prob(b = 0)

Probability(I2 = 0) = Prob(a = 0) ∗Prob(b = 1)

Probability(I3 = 0) = Prob(a = 1) ∗Prob(b = 0)

Probability(I4 = 0) = Prob(a = 1) ∗Prob(b = 1)

The average switching activity is therefore:
4∑

i=1

SAAV G(Ii) = SAAV G(I1) + SAAV G(I2) + SAAV G(I3) + SAAV G(I4)

= 2∗(Probability(I1 = 0)+Probability(I2 = 0)+Probability(I3 = 0)+Probability(I4 =
0))
= 2∗(Prob(a = 0)∗Prob(b = 0)+Prob(a = 0)∗Prob(b = 1)+Prob(a = 1)∗Prob(b =
0) + Prob(a = 1)∗Prob(b = 1))= 2

Within a nanotile without Karnaugh map simplification, the sum of SA of the
horizontal nanowires is a constant value, and it is equal to 2:∑

horiz.NWs

SA = 2 (4.14)

If circuits are optimized with Karnaugh maps, it greatly increases the complexity
of SA calculation. For example, as shown in Figure 4.3 B), the combination of

54

4.1 – Area and Power Evaluation

(a = 0; b = 0) makes both horizontal wires “I5” and “I6” switch twice in a clock
cycle. Tthe statistical computation of SAAV G becomes complicated since specific
logic combination probability is required.

7∑
i=5

SAAV G(Ii) = SAAV G(I5) + SAAV G(I6) + SAAV G(I7)

= 2∗(Probability(I5 = 0) + Probability(I6 = 0) + Probability(I7 = 0))
= 2∗(Prob(a = 0) + Prob(b = 0) + Prob(a = 1)∗Prob(b = 1))> 2

Given that considering Karnaugh map optimization does not introduce a relevant
improvement to the model, and it increases the complexity of the model because
power consumption depends on the combination probability. Herein the circuits
used later are not optimized with Karnaugh map.

Input and Output Nanowires SA

The switching activities on output vertical nanowires are similar to horizontal com-
putation NWs. Since the output signals are pairs of complementary logic, when
the Ooutput NW switches twice (Output(O) = 0), its complementary output NW
remain high because of Output(−O) = 1. Therefore, SAAV G(O)+SAAV G(−O) = 2.∑

vert.NWs

SA = 2 ∗No.Outputs (4.15)

Considering in a complex NASIC circuit, each nanotile receives inputs are gener-
ated from other nanotiles, obtaining the same average switching activities as outputs.
Therefore, each pair of inputs has the total average switching activity equal to 2.∑

inputNWs

SA = 2 ∗No.Inputs (4.16)

4.1.5 Simplified Dynamic Power Estimation

Taking into considerations Equation 4.14, Equation 4.15 and Equation 4.16, Equa-
tion 4.12 is simplified as below, which gives us an accurate power estimation for
NASIC circuits.


Pdyn|inputs = No.Inputs ∗V 2 ∗ f ∗CinputNW

Pdyn|horiz.NWs = V 2 ∗ f ∗Choriz.NW

Pdyn|vert.NWs(max) = No.Outputs ∗V 2 ∗ f ∗Cvert.NW (max)

(4.17)

55

4 – NASIC Circuit Modeling and Implementation

4.2 NASIC Circuits Implementation

Merging the behavioral VHDL modeling with embedded area and power estimation
equations developed previously, a complete and detailed model of NASIC technology
is created. It allows to design any kind of NASIC circuits, to simulate and verify
the correct circuit behavior, and to obtain also information on area occupation and
power consumption. This model is used to design and analyze complex circuits.

4.2.1 Ripple Carry Adder

The first circuit designed is a generic Ripple Carry Adder (Figure ??). Given that
each Full Adder has a delay of one clock cycle, a skew and deskew network is required
for signal synchronization. These networks are makd by tiles that do not implement
any logic function but delay signals by one clock cycle. They act like buffers. The
area and power estimations of a 4-/8-/16-bit RCA circuit is shown in Table 4.1.

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

a0 b0 "0"

FA−1bit

a1 b1a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

Cout Sum7 Sum0Sum1Sum2Sum3Sum4Sum5Sum6

Figure 4.4. 8-bit Ripple Carry Adder NASIC block diagram with pre-skew
and de-skew networks.

56

4.2 – NASIC Circuits Implementation

Table 4.1. Ripple Carry Adder area and power estimation with NASIC
circuit modeling.

No.bits AREA [um2] POWER [mW]
4 4.08 0.1
8 14.76 0.36
16 55.94 1.33

4.2.2 Array Multiplier

A more complex structure is the Array Multiplier, depicted in Figure 4.5 A). A nan-
otile containing a Full Adder and two AND gates is shown in 4.5 C). The structure
of the whole multiplier is similar to the RCA. Skew and deskew networks are used
again for signal synchronization (4.5 B)).

57

4 – NASIC Circuit Modeling and Implementation

Figure 4.5. NASIC Array Multiplier. A) Circuit schematic of 5-bit Array Mul-
tiplier. B) Block diagram of 5-bit Array Multiplier. C)Example nanotile of 1-bit
Full Adder with two AND gates at input.

The area and power estimation of the NASIC implementated Array Multiplier
in 4 bits, 8 bits, and 16 bits are shown in Table 4.2.

Table 4.2. Array Multiplier area and power estimation with NASIC circuit modeling.

No.bits AREA [um2] POWER [mW]
4 23 0.59
8 175 4.31
16 1341 32.1

58

4.2 – NASIC Circuits Implementation

4.2.3 Booth Multiplier

The Booth Multiplier is a very efficient multiplier in CMOS technology. Radix-4
Booth Multiplier algorithm can be expressed with the pseudo codes shown below:

i = 0

P = 0

B[-1] =0

while (i<=M-2) loop

P <= P + vp (B[i+1], B[i], B[i-1])

A <= A*4

i <= i+2

end loop

Figure 4.6 A) depicts the block diagram of the Booth algorithm with 5-bit mul-
tiplicant. The encoder of the selection of “vp” (Table 4.3) follows the truth table
in Figure 4.6 B). The multiplier uses mainly adders and multiplexers to implement
the multiplication.

Table 4.3. “vp” selection truth table.

B[i-1] B[i] B[i+1] vp
0 0 0 0
0 0 1 +A
0 1 0 +A
0 1 1 +2A
1 0 0 -A
1 0 1 -A
1 1 0 -2A
1 1 1 0

The NASIC implementation of the Booth Multiplier, including the first two
multiplexers, the 2-level Encoder and the 2-level Adder/Substractor, is depicted in
Figure 4.7.

59

4 – NASIC Circuit Modeling and Implementation

Figure 4.6. Booth Multiplier block diagram.

Also in this case skew and deskew networks are necessary for signal synchroniza-
tion.

MUX3 MUX3 MUX3MUX3 MUX3

DelayDelayDelayDelayDelayDelay Enc3to2

MUX3 MUX3MUX3 MUX3

DelayDelayDelayDelayDelay Enc3to2

MUX3

Delay

MUX3

Delay

MUX3

Delay

MUX3

Delay

FAS1

FAS1

FAS1

FAS1

FAS1

FAS1

FAS1

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

MUX3

FAS1

1bit Full Adder/Subtractor

Figure 4.7. Block diagram of NASIC implementation on partial Booth Multiplier.

60

4.2 – NASIC Circuits Implementation

The area and power estimation of the NASIC implementated Booth Multiplier
in 4 bits, 8 bits, and 16 bits is shown below (Table 4.4).

Table 4.4. Booth Multiplier area and power estimation with NASIC circuit modeling.

No.bits AREA [um2] POWER [mW]
4 67 1.67
8 418 10.14
16 2926 69.57

Results highlight that in NASIC technology, different from CMOS, the array
multiplier has much better performance. This is mainly due to its more regular
layout. These results gives a clear indications of the best architectural choices for
NASIC technology.

4.2.4 FIR

Finit Impulse Response (FIR) filter is a more complex architecture that uses both
multipliers and adders. FIR filters follow the equation:

y[n] = b0 ∗x[n] + b1 ∗x[n− 1] + ...+ bN ∗x[n−N] =
N∑
i=0

bi ∗x[n− i] (4.18)

The block diagram of a FIR filter of order 7 with NASIC implementation is
shown in Figure 4.8. The multipliers are Array Multipliers and the adders are
Ripple Carry Adders implemented previously. Moreover, a delay block is inserted
for signal synchronization with the same latency as a RCA. Figure 4.9 presents part
of the NASIC implementation of this FIR architecture in 4 bits. Nanotiles dedicated
to signal interconnection are taken into account in the design, providing a realistic
and accurate area and power analysis .

61

4 – NASIC Circuit Modeling and Implementation

DELAY
−1

Z

DELAY
−1

Z

DELAY
−1

Z

DELAY
−1

Z

DELAY
−1

Z

DELAY
−1

Z

DELAY

X(n)

Y(n)

xb0 xb1 xb2 xb3 xb4 xb5 xb6

Delay for
signal synchronization

Figure 4.8. FIR Block diagram.

The area and power estimation of the NASIC implementated FIR (of order 8)
in 4 bits, 8 bits, and 16 bits is shown in Table 4.5.

Table 4.5. FIR area and power estimation with NASIC circuit modeling.

No.bits AREA [um2] POWER [mW]
4 441 10.9
8 2250 54.6
16 13810 329

62

4.3 – Structural Optimization

0 a0a1b0b1

a0b0

Delay1

Delay1

Delay1

Delay1

Delay1Delay1

b0b1 a1a2 a2a3b0b1

FA1_AND1 FA1_AND1

a1b3

a3b1 a3b1a3b1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

a2b3

Co

Co

b2 a0

a1b2

a2b2

FA1_AND1

a0b3

Co

S

Co

S

Co SS

SCo

SCo

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

FA1_AND1

FA1_AND1FA1_AND1

FA1_AND1

FA1_AND1

AND1

Co

FA1_AND1

P6 P7

Co

P5P4P1 P3P2P0

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1Delay1 Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

a0b0"0"

FA−1bit

a1b1 a2b2 a3b3 a4b4 a5b5 a6b6 a7b7

CoutSum7Sum0 Sum1 Sum2 Sum3 Sum4 Sum5 Sum6

0 a0a1b0b1

a0b0

Delay1

Delay1

Delay1

Delay1

Delay1Delay1

b0b1 a1a2 a2a3b0b1

FA1_AND1 FA1_AND1

a1b3

a3b1 a3b1a3b1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

a2b3

Co

Co

b2 a0

a1b2

a2b2

FA1_AND1

a0b3

Co

S

Co

S

Co SS

SCo

SCo

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

FA1_AND1

FA1_AND1FA1_AND1

FA1_AND1

FA1_AND1

AND1

Co

FA1_AND1

P6 P7

Co

P5P4P1 P3P2P0

0a0 a1 b0 b1

a0 b0

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

b0 b1a1 a2a2 a3 b0 b1

FA1_AND1FA1_AND1

a1 b3

a3 b1a3 b1 a3 b1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1

a2 b3

Co

Co

b2a0

a1 b2

a2 b2

FA1_AND1

a0 b3

Co

S

Co

S

CoS S

S Co

S Co

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2 FA1_AND1

FA1_AND1 FA1_AND1

FA1_AND1

FA1_AND1

AND1

Co

FA1_AND1

P6P7

Co

P5 P4 P1P3 P2 P0

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

a0 b0 "0"

FA−1bit

a1 b1a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

Cout Sum7 Sum0Sum1Sum2Sum3Sum4Sum5Sum6

0a0 a1 b0 b1

a0 b0

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

b0 b1a1 a2a2 a3 b0 b1

FA1_AND1FA1_AND1

a1 b3

a3 b1a3 b1 a3 b1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1

a2 b3

Co

Co

b2a0

a1 b2

a2 b2

FA1_AND1

a0 b3

Co

S

Co

S

CoS S

S Co

S Co

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2

F
A
1
_
A
N
D
2 FA1_AND1

FA1_AND1 FA1_AND1

FA1_AND1

FA1_AND1

AND1

Co

FA1_AND1

P6P7

Co

P5 P4 P1P3 P2 P0

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

Delay1

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

FA−1bit

a0 b0 "0"

FA−1bit

a1 b1a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

Cout Sum7 Sum0Sum1Sum2Sum3Sum4Sum5Sum6

RCA

RCA

INTERCONNECT

ARRAY

MULTIPLIER

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1Delay1Delay1 Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1Delay1Delay1 Delay1

Delay1Delay1

Delay1Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1 Delay1 Delay1Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Delay1 Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1 Delay1 Delay1Delay1

Delay1 Delay1

Delay1 Delay1

Delay1

Delay1

Delay1

Delay1

Figure 4.9. Detailed NASIC implementation of partial FIR architecture in 4 bits.

4.3 Structural Optimization

The analysis on NASIC circuits has highlighted the necessity of nanotiles or inter-
connection blocks with single clock delay. They are used as pre-skew and de-skew
networks for signal synchronization. However, they occupy a great percentage of
the circuit area. Taking the structure of Ripple Carry Adder (Figure 4.4) as exam-
ple, a comparison table of area occupation with and without pre-skew and de-skew
networks is shown in Table 4.6. In the 16-bit case, preskew and deskew networks
represent more than 8/9 of the total area.

63

4 – NASIC Circuit Modeling and Implementation

Veva

Vpre

B(2)

A(2)

B(1)

A(1)

B(0)

A(0)

Heva Hpre

Co(0)

Co(1)

Vpre

Veva

Veva

Vpre

S(2)

S(0)

S(1)

Co(2)

Ci(0)

1cc Delay

1cc Delay 1cc Delay

1cc Delay

1cc Delay 1cc Delay

Figure 4.10. 3-bit Ripple Carry Adder structure in NASIC circuit layout.

Table 4.6. RCA area estimation comparison with and without pre-skew
and de-skew networks.

No.bits AREA [um2] with networks AREA [um2] without networks
4 4.08 1.6
8 14.76 3.20
16 55.94 6.41

64

4.3 – Structural Optimization

With the preskew and deskew networks, a 3-bit Ripple Carry Adder becomes a
structure like Figure 4.10. Therefore, the idea of structural optimization for area
saving on NASIC circuits is to eliminate the preskew and deskew networks. This is
possible by accepting a reduction in circuit throughput at the exchange of a huge
reduction in circuit area.

Since these delay networks are dedicated to signal synchronization, eliminating
them requires a detailed signal synchronization analysis. Other than a purely combi-
national circuit, the analysis is better done by choosing an architecture with a loop,
so an accumulator is employed. Its original representation in NASIC block diagram
is shown in Figure 4.11, data parallelism is 4 bits and the feedback path latency is 2
clock cycles. Similarly to the NML case, CircuitThroughput = 1/LoopLength.

B2 A2 B3 A3

mux mux mux

B0 A0 B1 A1

mux

Pre−skew network

De−skew network

FA1

FA1

FA1

FA1

1cc 1cc 1cc 1cc

1cc 1cc 1cc 1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc

1cc

1cc

1cc

1cc

1cc

1cc 1cc

1cc

1cc

1cc1cc

1cc

1cc

1cc

Figure 4.11. NASIC block diagram of 4-bit accumulator structure with pre-
skew and de-skew networks. Feedback latency equals 2 clock cycles and total
loop length is 5 clock cycles.

By removing the input and output synchronization blocks, the structure is re-
duced as in Figure 4.12.

65

4 – NASIC Circuit Modeling and Implementation

A0

B0

B1

B2

B3

A1

A2

A3

muxlat

muxlat

muxlat

muxlat

FA1

FA1

FA1

FA1

1cc

1cc

1cc

1cc
1cc

1cc

1cc

1cc

Figure 4.12. Block diagram of the optimized structure of 4-bit accumulator. The
pre-skew and de-skew networks are eliminated.

Simulations show that, without preskew and deskew networks, if the circuit is
purely combinational, there is a throughput reduction equal to the number of in-
puts. So a huge area is saved, at the cost of a reduction of performances. In case a
loop is present, the situation is different:

1) If No.bits >= LoopLength, it must wait for (No.bits) clock cycles to up-
date new input. => CircuitThroughput = 1/No.bits

2) If No.bits < LoopLength, it must wait for (LoopLength) clock cycles to
update new input. => CircuitThroughput = 1/LoopLength

In the first case there is again a performance reduction. In the second case
there is not. Since the original structure with networks has a throughput equal to
1/LoopLength, the new structure does not reduce the circuit original throughput
at the same time it greatly reduce area and therefore power consumption.

This technique can be exploited in any circuit. Considering for example, a 2-level
Accumulator (Figure 4.13), the optimized layout is depicted in Figure 4.14. The area
estimation on both structures in case of 6-bit data and 2 clock cycles feedback is
shown in Table 4.7.

66

4.3 – Structural Optimization

mux mux

B3 A3

mux

B2 A2

mux mux

B4 A4 B5 A5C0 C2 C5C4C3C1

S0 S2 S5S4S3S1

mux

B0 A0 B1 A1

mux

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc 1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

Figure 4.13. Detailed block diagram of traditional 6-bit accumulator
with 2 RCAs in cascade.

A0

B0

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

muxlat

muxlat

muxlat

muxlat

muxlat

muxlat

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

FA1

1cc

1cc

1cc

1cc
1cc

1cc

1cc

1cc

1cc

1cc

1cc

1cc

Figure 4.14. Detailed block diagram of optimized 6-bit accumulator
with 2 RCAs in cascade.

67

4 – NASIC Circuit Modeling and Implementation

Table 4.7. Area estimation comparison between two structures of 2-level Accumu-
lator (data = 8/16 bits, feedback latency = 6 clock cycles).

No.bits AREA [um2] with networks AREA [um2] without networks
8 40.0 26.6
16 129.56 66.42

This technique can therefore provide a huge boost in performance to any circuit
based on a technology with only a single layer available. NML, for example, can
greatly benefit from it.

The analysis performed in this thesis work, clearly highlights how architecture
optimization can improve emerging technologies. This work also highlights how,
only using a methodology that links device level research with high level analysis,
it is possible to evaluate the potential of a technology. For example, if a new device
has a higher power consumption with respect to existing technology, it does not
mean that the power consumption of a system based on this new technology will be
higher than existing solutions.

68

Chapter 5

Conclusions

Emerging technologies are a growing and complex reality. Many new technologies are
studied to replace or to complement the well developed CMOS circuits. To get a fair
assessment of a technology with respect to CMOS in this thesis a new methodology
has been developed. The methodology is based on the two main concepts. I) To
validate a technology it is mandatory to analyze complex architectures. II) The
analysis must be carried on considering technology fabrication constraints.

To reach this goal in this thesis high level models of two emerging technologies
were developed. These models embedd informations obtained from experiemntal
results and physical simulations to keep the obtained results as close as possible to
the real circuits. Using these models complex circuit architectures were analyzed for
NML and NASIC technologies. Results obtained allowed us to understand critical
problems that arise at architectural level and are related to their intrinsic pipelined
nature. As a results we were able to develop solutions to drastically improves per-
formance.

To obtain these results was only possible thanks to the methodology here devel-
oped. Furthermore the technological improvements here developed can be applied
also to existing CMOS circuits, where pipelining plays a key role to enhance perfor-
mance. This is a further demonstration of the validity of the developed methodology.

69

Part I

Appendix

Appendix A

Memristive Devices

A.1 Introduction to Memristive Devices

In 1971 Leon Chua has suggested the existence of a fourth fundamental passive
circuit element [34], called Memristor, combining the name of “memory” and “re-
sistor”. Its property value “Memristance (M)”, is defined as a function relation
between charge and flux, dϕ = Mdq as shown in Figure A.1. However, it was nec-
essary to wait until the year 2008 for Strukov et al. to announce the successful
implementation of a memristor at nanoscale level [35].

Figure A.1. The four fundamental two-terminal circuit elements: resistor, capaci-
tor, inductor and memristor. D.B. Strukov et al. “The missing memristor found”,
Nature, vol. 453, n. 1, 2008.

According to [35], the memristor can be characterized by an equivalent time-
dependent resistor whose value at a time t is linearly proportional to the quantity
of charge q that has passed through it. It does not include a factor influenced

71

A – Memristive Devices

explicitly by magnetic field, which might be the reason why memristive devices are
not so common in macro world.

Figure A.2. The coupled variable-resistor model for a memristor. a) Diagram
with a simplified equivalent circuit. b) c) The applied voltage (blue) and resulting
current (green) as a function of time t for a typical memristor. The resistance ratio
are in ROFF/RON = 380 b), and ROFF/RON = 160 in c). The insets in the
i-v plots in b) and c) show that for these examples the charge is a single-valued
function of the flux, as it must be in a memristor. D.B. Strukov et al. “The missing
memristor found”, Nature, vol. 453, n. 1, 2008.

In recent years large amount of attention and research efforts are done to study
memristive devices, in order to exploit their potential in both logic and memory
applications, such as memory storage, multi-state logic, and reconfigurable logic
gates.

A.2 Memristive Devices and Switching Mecha-

nisms

Taking inspiration from [35], more and more memristive devices are being studied
in nanoscale devices. The main categories of memristive devices are Thin Film
Nanoarrays, Atomic Switches [37], Molecular Electronics [38], and Phase Change
Memory [39]. The most common devices are Thin Film Nanoarrays.

72

A.2 – Memristive Devices and Switching Mechanisms

Figure A.3. DC I-V measurements showing the “figure-8” hysteresis loops
of three different C20 molecular monolayer devices. D. R. Stewart et al.
“Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti De-
vices”, Nano Letters, vol. 4, n. 1, 2004.

Thin Film Nanoarrays

The nanoscale thin film technology has already been employed in the field of re-
sistance switching memory (ReRAM). A structure of metal/insulator/metal (MIM)
is adopted, for example, Pt/TiO2−x/TiO2/Pt is one of the most used materials. A
memristor layout using thin film nanoarrays can be seen in Figure A.4 C), showing
the possibility of implementing a nanoscale crossbar structure.

73

A – Memristive Devices

Figure A.4. A)Schematic of the device cross section after electroforming of
Pt/TiO2−x/TiO2/Pt with example switching i-v curve. B)The data from a
Pt/120nm TiO2−x/4nm TiO2/Pt device, showing 200 consecutive switching loops
after the forming step. C) AFM image of 1x17 nanojunctions. The cross-section
profile shows 50 nm half pitch and 13 nm height nanowires.A) M. D. Pickett et al.
“Switching dynamics in titanium dioxide memristive devices”, Journal of Applied
Physics, 2009. B) C) J. J. Yang et al. “The mechanism of electroforming of metal
oxide memristive switches”, Nanotechnology, May 2009.

Electrical switching behavior in metal oxide meristive devices is caused by the
coupled motion of electrons and ions within the oxide material. There are two
types of working principles in memristor cells, metallic filaments formed by elec-
trochemical metalization (Figure A.5) [42] and localized high conductance channels
of oxygen vacancies through the oxide film (Figure A.6) [41]. Since both of them
involve electrochemical reactions and physical deformation, the reproducibility is a
major concern for memristive devices, especially when including them in computa-
tional logic systems. This problem is mitigated by shrinking to the nanoscale and
by carefully control voltage.

74

A.2 – Memristive Devices and Switching Mechanisms

Figure A.5. Typical i-v characteristic of a Ag/Ag-Ge-Se/Pt electrochemical
metalization cell. Starting from OFF state D), under the external electrical field
rising, metallic filaments are grown gradually as A) to reach ON state B) cre-
ating galvanic metallic contacts. With voltage dropping C), the metal filaments
dissolute, and resets the cell. R. Waser et al. “Redox-Based Resistive Switch-
ing Memories - Nanoionic Mechanisms, Prospects, and Challenges”, Advanced
Materials, vol. 21, issue 25-26, July, 2009

75

A – Memristive Devices

Figure A.6. Gas bubble behavior under electric field in a large 60um device for
observation purpose. a) Junction initial state. b) c) Junction negative biased.
d)-h) Junction positive biased. g) Atomic force micrograph of eruption features
remaining after the bias voltage was removed. J. J. Yang et al. “The mechanism
of electroforming of metal oxide memristive switches”, Nanotechnology, May 2009.

76

A.2 – Memristive Devices and Switching Mechanisms

The switching behavior in of memristors is explained in Figure A.7.
In [43], a thin film memristor cell (W/TiO2/TiO2−x/W) was modeled as two

head-to-head Schottky diodes. By employing a “electron trapping-detrapping VO

(oxygen vacancy) induced modification of Schottky contact resistance” model, the
bipolar switching can be explained as:

• (a) At the beginning of negative voltage bias from 0 to -3V, with negative
voltage rising (curve 5), the cell shows a high resistance Schottky junction at
bottom electrode (BE) side and a forward bias diode at top electrode (TE)
side. At the same time, the majority of electrons are emitted from Vo leaving
a high concentration of V2+

o at the BE side.

• (b) When the bias voltage goes from -3V to 0, the resistance of BE Schottky
junction reach the minimum value. It represents the high conductance curve
(curve 6).

• (c) At the end of (b), the oxygen vacancies are neutralized when the voltage
become zero. While it is rising to 3V, the Schottky diode at BE side is forward
biased, and the diode at TE side shows high resistance (curve 7).

• (d) With electrons emission at both BE and TE side during the previous phase,
low resistance remains while switching from 3V to 0 (curve 9).

• In (e) the same operation of point (a) is repeated. However, with bias voltage
higher than -3.2V, local filamentary is formed and ohmic conduction path is
created as shown in (f).

Figure A.7. Electron trapping-detrapping in Vo-induced modification of
Schottky contact resistance model. B. Long et al. “Understanding the Charge
Transport Mechanism in VRS and BRS States of Transition Metal Oxide Na-
noelectronic Memristor Devices”, IEEE Transactions on Electron Devices,
vol. 58, n. 11, Nov. 2011.

77

A – Memristive Devices

A.3 Memristive Devices Architecture

Thin film memristors are normally organized with a crossbar structure, building
therefore a hybrid CMOS/Memristor circuit as proposed in Figure A.8 [44]. It
combines a CMOS subsystem integrating several layers of nanowire crossbars, where
the cross nanojunctions are constructed with thin film memristive materials. This
structure is ideal to design high density resistive memories.

Figure A.8. Basic idea of 3D Hybrid CMOS/Memristor circuits. A) Stackup of
CMOS subsystem with layers of memristor crossbar circuits. B) Memristor crossbar
topology. C) micrograph of array of metal oxide memristive devices, and typical
switching I-V curves. D. B. Strukov, “3D Hybrid CMOS/Memristor Circuits: Basic
Principle and Prospective Applications”, COMMAD, Dec. 2012.

78

Appendix B

SW NML Implementation VHDL
Modeling

B.1 NML Power Estimation VHDL Model

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

use work.QCA_package.all;

entity pot_clocco is

port(

clk : in std_logic_vector (3 downto 1);

num_nanomag_f1: in real;

num_nanomag_f2: in real;

num_nanomag_f3: in real

);

end pot_clocco;

architecture behavioural of pot_clocco is

signal AREA_EFF_NANOMAG_F1 , AREA_EFF_NANOMAG_F2 ,

AREA_EFF_NANOMAG_F3: real := init_real;

--NANOMAGNETS AREA EXPRESSED IN NANOMAGNETS

signal LUNG_FILO_F1_NANOMAG , LUNG_FILO_F2_NANOMAG ,

LUNG_FILO_F3_NANOMAG: real := init_real;

--LENGTH EXPRESSED IN NANOMAGNETS

signal LUNG_FILO_F1 , LUNG_FILO_F2 ,

LUNG_FILO_F3: real := init_real;

--WIRE LENGTH IN METERS

signal LUNG_FILO_EFF_F1 , LUNG_FILO_EFF_F2 ,

LUNG_FILO_EFF_F3: real := init_real;

--WIRE LENGHT CONSIDERING WHITE SPACE AMONG CLOCK ZONES

signal LUNG_FILO_EFF_EFF_F1 , LUNG_FILO_EFF_EFF_F2 ,

LUNG_FILO_EFF_EFF_F3: real := init_real;

--WIRE LENGHT CONSIDERING SERIAL CONNECTION OF CLOCK WIRES

signal P_clock_to_mag_f1 , P_clock_to_mag_f2 ,

P_clock_to_mag_f3: real := init_real;

79

B – SW NML Implementation VHDL Modeling

--NUMBERS USED FOR POWER CALCULATION

signal P_clock_RI_f1 , P_clock_RI_f2 , P_clock_RI_f3: real := init_real;

--signal P_clock_LI_f1 , P_clock_LI_f2 , P_clock_LI_f3 : real := init_real;

signal S_WIRE: real;

--WIRES SECTION

signal R_WIRE_F1 , R_WIRE_F2 , R_WIRE_F3: real := init_real;

--WIRES RESISTANCE

signal L_WIRE_F1 , L_WIRE_F2 , L_WIRE_F3: real := init_real;

--WIRES INDUCTANCE

signal Log_aritmo_f1 , Log_aritmo_f2 ,

Log_aritmo_f3: real := init_real;

--LOGARITHM

signal POWER_LI_tot: real := init_real;

signal POWER_RI_tot , POWER_clock_to_mag_tot: real := init_real;

signal CIRCUIT_AREA: real := init_real;

-- CIRCUIT AREA

begin

AREA_EFF_NANOMAG_F1 <= num_nanomag_f1 * WASTED_SPACE;

AREA_EFF_NANOMAG_F2 <= num_nanomag_f2 * WASTED_SPACE;

AREA_EFF_NANOMAG_F3 <= num_nanomag_f3 * WASTED_SPACE;

LUNG_FILO_F1_NANOMAG <= AREA_EFF_NANOMAG_F1 / WIDTH_ZONE_NANOMAG;

LUNG_FILO_F2_NANOMAG <= AREA_EFF_NANOMAG_F2 / WIDTH_ZONE_NANOMAG;

LUNG_FILO_F3_NANOMAG <= AREA_EFF_NANOMAG_F3 / WIDTH_ZONE_NANOMAG;

LUNG_FILO_F1 <= LUNG_FILO_F1_NANOMAG * (HEIGHT_NANOMAG + NANOMAG_VERT_SEPAR);

LUNG_FILO_F2 <= LUNG_FILO_F2_NANOMAG * (HEIGHT_NANOMAG + NANOMAG_VERT_SEPAR);

LUNG_FILO_F3 <= LUNG_FILO_F3_NANOMAG * (HEIGHT_NANOMAG + NANOMAG_VERT_SEPAR);

LUNG_FILO_EFF_F1 <= LUNG_FILO_F1 * HEIGHT_SPACE_REL;

LUNG_FILO_EFF_F2 <= LUNG_FILO_F2 * HEIGHT_SPACE_REL;

LUNG_FILO_EFF_F3 <= LUNG_FILO_F3 * HEIGHT_SPACE_REL;

LUNG_FILO_EFF_EFF_F1 <= LUNG_FILO_EFF_F1 * WIRE_CURVE_REL;

LUNG_FILO_EFF_EFF_F2 <= LUNG_FILO_EFF_F2 * WIRE_CURVE_REL;

LUNG_FILO_EFF_EFF_F3 <= LUNG_FILO_EFF_F3 * WIRE_CURVE_REL;

S_WIRE <= (WIDTH_ZONE -WIRE_SEPAR) * WIRE_THICKNESS;

R_WIRE_F1 <= RESISTIVITA * (LUNG_FILO_EFF_EFF_F1/S_WIRE);

R_WIRE_F2 <= RESISTIVITA * (LUNG_FILO_EFF_EFF_F2/S_WIRE);

R_WIRE_F3 <= RESISTIVITA * (LUNG_FILO_EFF_EFF_F3/S_WIRE);

Log_aritmo_f1 <= (4.0* LUNG_FILO_EFF_EFF_F1) / WIDTH_ZONE;

Log_aritmo_f2 <= (4.0* LUNG_FILO_EFF_EFF_F2) / WIDTH_ZONE;

Log_aritmo_f3 <= (4.0* LUNG_FILO_EFF_EFF_F3) / WIDTH_ZONE;

L_WIRE_F1 <= LUNG_FILO_EFF_EFF_F1 * 2.0e-7 * (LOG(Log_aritmo_f1) -1.0);

-- CLOCK WIRES INDUCTANCE

L_WIRE_F2 <= LUNG_FILO_EFF_EFF_F2 * 2.0e-7 * (LOG(Log_aritmo_f2) -1.0);

L_WIRE_F3 <= LUNG_FILO_EFF_EFF_F3 * 2.0e-7 * (LOG(Log_aritmo_f3) -1.0);

CIRCUIT_AREA <= (LUNG_FILO_EFF_F1 * (WIDTH_ZONE + WIRE_SEPAR)) +

(LUNG_FILO_EFF_F2 * (WIDTH_ZONE + WIRE_SEPAR)) + (LUNG_FILO_EFF_F3 *

(WIDTH_ZONE + WIRE_SEPAR));

-- CIRCUIT AREA EXTIMATION

-- POWER CALCULATION

-- PHASE 1

80

B.2 – NML 1-bit Full Adder VHDL code with power estimator

Process_pot_clock_f1: process (clk (1))

begin

if clk (1) = ’1’ then

P_clock_RI_f1 <= R_WIRE_F1 * I_MAX * I_MAX;

--P_clock_LI_f1 <= ((L_WIRE_F1 * I_MAX * I_MAX)/2.0) / (T_CLOCK / 3.0);

P_clock_to_mag_f1 <= POT_CLOCK_TO_MAG * num_nanomag_f1;

elsif clk(1) = ’0’ then

P_clock_RI_f1 <= 0.0;

--P_clock_LI_f1 <= 0.0;

P_clock_to_mag_f1 <= 0.0;

end if;

end process;

-- PHASE 2

Process_pot_clock_f2: process (clk (2))

begin

if clk (2) = ’1’ then

P_clock_RI_f2 <= R_WIRE_F2 * I_MAX * I_MAX;

--P_clock_LI_f2 <= ((L_WIRE_F2 * I_MAX * I_MAX)/2.0) / (T_CLOCK / 3.0);

P_clock_to_mag_f2 <= POT_CLOCK_TO_MAG * num_nanomag_f2;

elsif clk(2) = ’0’ then

P_clock_RI_f2 <= 0.0;

--P_clock_LI_f2 <= 0.0;

P_clock_to_mag_f2 <= 0.0;

end if;

end process;

-- PHASE 3

Process_pot_clock_f3: process (clk (3))

begin

if clk (3) = ’1’ then

P_clock_RI_f3 <= R_WIRE_F3 * I_MAX * I_MAX;

--P_clock_LI_f3 <= ((L_WIRE_F3 * I_MAX * I_MAX)/2.0) / (T_CLOCK / 3.0);

P_clock_to_mag_f3 <= POT_CLOCK_TO_MAG * num_nanomag_f3;

elsif clk(3) = ’0’ then

P_clock_RI_f3 <= 0.0;

--P_clock_LI_f3 <= 0.0;

P_clock_to_mag_f3 <= 0.0;

end if;

end process;

-- TOTAL POWER CONSUMPTION

POWER_RI_tot <= (P_clock_RI_f1 + P_clock_RI_f2 + P_clock_RI_f3);

POWER_LI_tot <= P_clock_LI_f1 + P_clock_LI_f2 + P_clock_LI_f3;

POWER_clock_to_mag_tot <= (P_clock_to_mag_f1 + P_clock_to_mag_f2 + P_clock_to_mag_f3);

end behavioural;

B.2 NML 1-bit Full Adder VHDL code with power

estimator

-- 1bit FULL ADDER with Xwire0

-- totally there are 6 registers

library ieee;

81

B – SW NML Implementation VHDL Modeling

use work.QCA_package.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity FA_1 is

port (

clk : in std_logic_vector (3 downto 1);

A : in std_logic;

B : in std_logic;

Ci: in std_logic;

Co: out std_logic;

S : out std_logic;

num_nanomag_f1 : out real := init_real;

num_nanomag_f2 : out real := init_real;

num_nanomag_f3 : out real := init_rea);

end FA_1;

architecture STRUCTURAL of FA_1 is

signal S1 : std_logic_vector (3 downto 0);

signal S1_reg0 : std_logic_vector (3 downto 0);

signal S2 : std_logic_vector (4 downto 0);

signal S2_reg0 : std_logic_vector (4 downto 0);

signal S3 : std_logic_vector (4 downto 0);

signal S3_reg0 : std_logic_vector (4 downto 0);

signal S4 : std_logic_vector (6 downto 0);

signal S4_reg0 : std_logic_vector (6 downto 0);

signal S5 : std_logic_vector (2 downto 0);

signal S5_reg0 : std_logic_vector (2 downto 0);

signal S6 : std_logic_vector (1 downto 0);

signal S6_reg0 : std_logic_vector (1 downto 0);

signal G4 : std_logic;

signal num_nanomag_tot_f1 , num_nanomag_tot_f2 , num_nanomag_tot_f3: real := init_real;

component INV is

port(

X: in std_logic;

Y: out std_logic);

end component;

component MV is

port(

A_in: in std_logic;

B_in: in std_logic;

C_in: in std_logic;

out_MV: out std_logic);

end component;

component Xwire is --XWIRE0

port(

in_up: in std_logic;

in_down: in std_logic;

out_up: out std_logic;

out_down: out std_logic);

end component;

component register_generic is

generic (NBIT : integer);

82

B.2 – NML 1-bit Full Adder VHDL code with power estimator

port(

CLK: in std_logic;

D: in std_logic_vector (NBIT -1 downto 0);

Q: out std_logic_vector (NBIT -1 downto 0));

end component;

component pot_clocco

port(

clk : in std_logic_vector (3 downto 1);

num_nanomag_f1: in real;

num_nanomag_f2: in real;

num_nanomag_f3: in real

);

end component;

begin

num_nanomag_tot_f1 <= ((6.0* N_MAG_FF)+(3.0* N_MAG_INV))

*INT_OV_LOGIC_GATE_LEVEL;

num_nanomag_tot_f2 <= ((5.0* N_MAG_FF)+(2.0* N_MAG_MV)+ N_MAG_MV)

*INT_OV_LOGIC_GATE_LEVEL;

num_nanomag_tot_f3 <= ((5.0 * N_MAG_FF)+ N_MAG_INV+N_MAG_MV)

*INT_OV_LOGIC_GATE_LEVEL;

-- enter into Stage1

S1(0)<= B;

S1(1)<= A;

S1(2)<= A;

iv_stage1_0: INV port map (Ci , S1(3));

--S1(3) <= Ci;

-- passing the signals through REG1

REG1: register_generic

generic map (4)

port map (clk(1), S1, S1_reg0);

--endREG

-- enter into Stage2 , generate two Xwire gates

cr_stage2_0: Xwire port map (S1_reg0 (0), S1_reg0 (1), S2(0), S2(1));

cr_stage2_1: Xwire port map (S1_reg0 (2), S1_reg0 (3), S2(3), S2(4));

S2(2)<= S2(1);

-- passing the signals through REG2

REG2: register_generic

generic map (5)

port map (clk(2), S2, S2_reg0);

--endREG

-- enter into Stage3 , generate one inverters , one Xwire

S3(0)<= S2_reg0 (0);

S3(1)<= S2_reg0 (1);

cr_stage3_0: Xwire port map (S2_reg0 (2), S2_reg0 (3), S3(2), S3(3));

--iv_stage3_0 : INV port map (S2_reg0 (4), S3 (4));

S3(4)<= S2_reg0 (4);

-- passing the signals through REG3

REG3: register_generic

83

B – SW NML Implementation VHDL Modeling

generic map (5)

port map (clk(3), S3, S3_reg0);

--endREG

-- enter into Stage4 , assign the signals

--S4(0) <= S3_reg0 (0);

--S4(1) <= S3_reg0 (1);

iv_stage4_0: INV port map (S3_reg0 (0), S4(0));

iv_stage4_1: INV port map (S3_reg0 (1), S4(1));

--iv_stage4_2 : INV port map (S3_reg0 (2), G4);

G4 <= S3_reg0 (2);

S4(2)<= G4;

S4(3)<= G4;

S4(4)<= G4;

S4(5)<= S3_reg0 (3);

S4(6)<= S3_reg0 (4);

-- passing the signals through REG4

REG4: register_generic

generic map (7)

port map (clk(1), S4, S4_reg0);

--endREG

-- enter into Stage5 , generate two MV and one INV

mv_stage5_0: MV port map (S4_reg0 (0), S4_reg0 (1), S4_reg0 (2), S5(0));

mv_stage5_1: MV port map (S4_reg0 (4), S4_reg0 (5), S4_reg0 (6), S5(2));

iv_stage5_0: INV port map (S4_reg0 (3), S5 (1));

-- passing the signals through REG5

REG5: register_generic

generic map (3)

port map (clk(2), S5, S5_reg0);

--endREG

-- enter into Stage6 , generic one MV and one INV

iv_stage6_0: INV port map (S5_reg0 (0), S6 (0));

mv_stage6_0: MV port map (S5_reg0 (0), S5_reg0 (1), S5_reg0 (2), S6(1));

-- passing the signals through REG6

REG6: register_generic

generic map (2)

port map (clk(3), S6, S6_reg0);

--endREG

-- assign the output

Co <= S6_reg0 (0);

S <= S6_reg0 (1);

end STRUCTURAL;

B.3 NML Generic Ripple Carray Adder VHDL

code with power estimator

-- Ripple Carry Adder (Generic)

-- Num_RCA defines the number of bits

84

B.3 – NML Generic Ripple Carray Adder VHDL code with power estimator

-- the corresponding figure is in RCA.fig

library ieee;

use work.QCA_package.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity RCA_generic is

generic (Num_RCA : integer := 9);

port (

clk : in std_logic_vector (3 downto 1);

A : in std_logic_vector(Num_RCA -1 downto 0);

B : in std_logic_vector(Num_RCA -1 downto 0);

Ci: in std_logic;

Co: out std_logic;

S : out std_logic_vector(Num_RCA -1 downto 0);

num_nanomag_f1 : out real := init_real;

num_nanomag_f2 : out real := init_real;

num_nanomag_f3 : out real := init_real);

end RCA_generic;

architecture STRUCTURAL of RCA_generic is

signal Cin : std_logic_vector(Num_RCA downto 1);

signal X, Y, Z : std_logic_vector(Num_RCA -1 downto 0);

signal X_reg0 , Y_reg0 : std_logic_vector(Num_RCA -1 downto 1);

signal Z_reg0 : std_logic_vector(Num_RCA -1 downto 0);

signal num_nanomag_tot_f1 , num_nanomag_tot_f2 , num_nanomag_tot_f3: real := init_real;

signal num_temp_mag_f1: real_vector (Num_RCA *4-3 downto 0) := (others => init_real);

signal num_temp_mag_f2: real_vector (Num_RCA *4-3 downto 0) := (others => init_real);

signal num_temp_mag_f3: real_vector (Num_RCA *4-3 downto 0) := (others => init_real);

component FA_1 is

port (

clk : in std_logic_vector (3 downto 1);

A : in std_logic;

B : in std_logic;

Ci: in std_logic;

Co: out std_logic;

S : out std_logic;

num_nanomag_f1 : out real := init_real;

num_nanomag_f2 : out real := init_real;

num_nanomag_f3 : out real := init_real);

end component;

component sig_PG is

generic (Num_PG : integer);

port (

clk: in std_logic_vector (3 downto 1);

X: in std_logic;

85

B – SW NML Implementation VHDL Modeling

Z: out std_logic;

num_nanomag_f1 : out real := init_real;

num_nanomag_f2 : out real := init_real;

num_nanomag_f3 : out real := init_real);

end component;

component pot_clocco

port(

clk : in std_logic_vector (3 downto 1);

num_nanomag_f1: in real;

num_nanomag_f2: in real;

num_nanomag_f3: in real

);

end component;

component somma_segnali is

generic(

INTERCONNECTION_OVERHEAD: real := 1.0

);

port(

clock: in std_logic;

f1_mag , f2_mag , f3_mag: in real_vector;

n1_mag , n2_mag , n3_mag: out real := init_real;

);

end component;

begin

--assign the input signals

X<= A;

Y<= B;

-- generate the registers for the propagation of input signal A except the first bit

REG0_A:FOR i IN 1 TO Num_RCA -1 GENERATE

PG_arrayA: sig_PG

generic map(i*6)

port map(clk , X(i), X_reg0(i),

num_temp_mag_f1(i-1), num_temp_mag_f2(i-1), num_temp_mag_f3(i-1));

end GENERATE;

--endREG

-- generate the registers for the propagation of input signal B except the first bit

REG0_B:FOR i IN 1 TO Num_RCA -1 GENERATE

PG_arrayB: sig_PG

generic map(i*6)

port map(clk , Y(i), Y_reg0(i),

num_temp_mag_f1(Num_RCA -2+i), num_temp_mag_f2(Num_RCA -2+i),

num_temp_mag_f3(Num_RCA -2+i));

end GENERATE;

--endREG

-- generate all the 1bit FA

FA0: FA_1 port map (clk , X(0), Y(0), Ci, Cin(1), Z(0),

num_temp_mag_f1(Num_RCA *2-2), num_temp_mag_f2(Num_RCA *2-2),

num_temp_mag_f3(Num_RCA *2 -2));

86

B.3 – NML Generic Ripple Carray Adder VHDL code with power estimator

G1:FOR i IN 1 TO Num_RCA -1 GENERATE

FA_array: FA_1

port map (clk , X_reg0(i), Y_reg0(i), Cin(i), Cin(i+1), Z(i),

num_temp_mag_f1(Num_RCA *2+i-2),

num_temp_mag_f2(Num_RCA *2+i-2),

num_temp_mag_f3(Num_RCA *2+i -2));

END GENERATE;

--assign the Co output

Co <= Cin(Num_RCA);

-- generate the registers for the propagation of output signal S

REG0_S:FOR i IN 0 TO Num_RCA -1 GENERATE

PG_arrayB: sig_PG

generic map((Num_RCA -1-i)*6)

port map(clk , Z(i), Z_reg0(i),

num_temp_mag_f1(Num_RCA *3+i-2),

num_temp_mag_f2(Num_RCA *3+i-2),

num_temp_mag_f3(Num_RCA *3+i -2));

end GENERATE;

--endREG

S<= Z_reg0;

Summa: somma_segnali

generic map(

INTERCONNECTION_OVERHEAD => INT_OV_LOGIC_GATE_LEVEL

)

port map(

clock => clk(1),

f1_mag => num_temp_mag_f1 ,

f2_mag => num_temp_mag_f2 ,

f3_mag => num_temp_mag_f3 ,

n1_mag => num_nanomag_tot_f1 ,

n2_mag => num_nanomag_tot_f2 ,

n3_mag => num_nanomag_tot_f3

);

num_nanomag_f1 <= num_nanomag_tot_f1;

num_nanomag_f2 <= num_nanomag_tot_f2;

num_nanomag_f3 <= num_nanomag_tot_f3;

-- CALCOLO DELLA POTENZA

Pot_clock: pot_clocco

port map(

clk => clk ,

num_nanomag_f1 => num_nanomag_tot_f1 ,

num_nanomag_f2 => num_nanomag_tot_f2 ,

num_nanomag_f3 => num_nanomag_tot_f3

);

end STRUCTURAL;

87

Appendix C

NASIC VHDL Model

C.1 Nanotile Power Estimation VHDL Model

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

package NASIC_package is

constant init_real : real := 1.0;

---------------constants for NASIC ----------------

---------------TEMPORALI --------------------------

constant CK_cycle : time := 9 ns;

constant CK_cycle_third : time := 3 ns;

constant D_CK1 : real := 1.0e-1;

constant D_CK2 : real := 5.0e-1;

constant D_CK3 : real := 1.0e-1;

constant D_CK4 : real := 5.0e-1;

constant CK_space : time := 1 ns;

constant T_CK1_L1 : time := CK_space;

constant T_CK2_L1 : time := CK_space *2;

constant T_CK3_L1 : time := CK_space *3;

constant T_CK4_L1 : time := CK_space *4;

constant T_CK1_H : time := CK_cycle*D_CK1;

constant T_CK1_L2 : time := CK_cycle -T_CK1_L1 -T_CK1_H;

constant T_CK2_H : time := CK_cycle*D_CK2;

constant T_CK2_L2 : time := CK_cycle -T_CK2_H -T_CK2_L1;

constant T_CK3_H : time := CK_cycle*D_CK3;

constant T_CK3_L2 : time := CK_cycle -T_CK3_H -T_CK3_L1;

constant T_CK4_H : time := CK_cycle*D_CK4;

constant T_CK4_L2 : time := CK_cycle -T_CK4_H -T_CK4_L1;

---------------AREA e POTENZA --------------------------

88

C.1 – Nanotile Power Estimation VHDL Model

constant WIDTH_NW : real := 1.0e-8;

-- WIDTH NANOWIRE

constant WIDTH_UW : real := 1.0e-7;

-- WIDTH MICROWIRE

constant SPACE_NW : real := 1.0e-8;

-- SPACE BETWEEN TWO NANOWIRES

constant SPACE_UW : real := 1.0e-7;

-- SPACE BETWEEN TWO MICROWIRES

constant SPZWID_NW : real := WIDTH_NW + SPACE_NW;

-- WIDTH OCCUPIED IN PRESENCE OF ONE NANOWIRE

constant SPZWID_UW : real := 2.0* WIDTH_UW + 2.0* SPACE_UW;

--WIDTH OCCUPIED BY A SET OF POWER MICROWIRES

constant NTVdd : real := 2.0;

constant NTFreq : real := 1.0e9;

constant NTCgate : real := 5.0e-17;

constant NTCds : real := 5.65e-17;

function CalcArea (NumIn ,NumNW_H ,NumOUT ,INTERCONNECTION_OVERHEAD: real)

return real;

function CalcPow (NumIn ,NumNW_H ,NumOUT: real)

return real;

end NASIC_package;

Package body NASIC_package is

function CalcArea (NumIn ,NumNW_H ,NumOUT ,INTERCONNECTION_OVERHEAD: real)

return real is

variable ANDwid , ORwid , H, NWArea , UWhor , UWver , UWArea , NTarea: real;

begin

ANDwid := (NumIN +2.0) * SPZWID_NW;

-- PIANO AND WIDTH including two Horizontal clock nanowires

ORwid := NumOUT * SPZWID_NW;

-- PIANO OR WIDTH

H := (NumNW_H +2.0) * SPZWID_NW;

-- PIANO HIGHT including two Vertical clock nanowires

-- = Length of Vertical Microwire

NWArea := H * (ANDwid + ORwid);

-- PianoAND_WID + PianoOR_WID

--= TOTAL WIDTH of NANOTILE Nanowire space

--= Length of Horizontal Microwire

UWhor := SPZWID_UW * (ANDwid + ORwid);

UWver := SPZWID_UW * H;

UWArea := 2.0* UWhor + 2.0* UWver;

NTarea := (NWArea + UWArea) * INTERCONNECTION_OVERHEAD;

return NTarea;

end CalcArea;

function CalcPow (NumIn ,NumNW_H ,NumOUT: real) return real is

variable HWCds , HWCap , ORCds , ORCap , Pdclk , Pdin , Pdhw , Pdout , Pd_SUM: real;

begin

-- Dyanmic Power Dissipation on Clock signal nanowires

-- Hpre and Heva dipend on NumHWire

-- Vpre and Veva dipend on NumOutWire

89

C – NASIC VHDL Model

Pdclk :=2.0*0.5*2.0* NumNW_H*NTCgate*NTVdd*NTVdd*NTFreq +2.0*0.5

2.0 NumOut*NTCgate*NTVdd*NTVdd*NTFreq;

-- Dynamic Power Dissipation on Input signal nanowires

-- Switching activity of each input = 1.

-- Each input nanowire has the number of Gate Capacitance of 0.5* NumInWire .

Pdin:=NumIn *0.5*1.0*0.5* NumIn*NTCgate*NTVdd*NTVdd*NTFreq;

-- Dynamic Power Dissipation on Horizontal signal nanowires

-- Each horizontal wire has the number of Gate Capacitance of

-- 0.5* NumOutWire .

-- Sum of horizontal wire switching activity = 2.

HWCds := (2.0+0.5* NumIn)* NTCds;

HWCap := 0.5* NumOut*NTCgate+HWCds;

Pdhw :=0.5*2.0* HWCap*NTVdd*NTVdd*NTFreq;

-- Dynamic Power Dissipation on Output signal nanowires

-- Sum of a couple of outputs switching activity = 2.

-- Each output wire has the number of Gate Capacitance of 2*Cg.

ORCds := (2.0+ NumNW_H *0.5)* NTCds;

ORCap := 2.0* NTCgate+ORCds;

Pdout :=0.5* NumOut *0.5*2.0* ORcap*NTVdd*NTVdd*NTFreq;

Pd_SUM :=Pdclk+Pdin+Pdhw+Pdout;

return Pd_SUM;

end CalcPow;

end NASIC_package;

90

Appendix D

NASIC Structure Optimization

D.1 Testbench for optimized 6-bit Accumulator

structure

Testbench for optimized 6-bit Accumulator structure with feedback la-
tency of 2 clock cycles.

-- testbench ACCUMULATOR ASYNCRONOUS

-- Looplength <= Nbit

-- Cycling Time limit = Nbit

library ieee;

use work.NASIC_package.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity testbench2_ACC6x2 is

end testbench2_ACC6x2;

architecture behavioral of testbench2_ACC6x2 is

COMPONENT ACCasync IS

GENERIC(Nbit : INTEGER := 4;

NFF_loop : INTEGER := 1);

PORT (

CLK : IN STD_LOGIC_VECTOR (4 DOWNTO 1);

A, nA : IN STD_LOGIC_VECTOR(Nbit -1 DOWNTO 0);

B, nB : IN STD_LOGIC_VECTOR(Nbit -1 DOWNTO 0);

Ci, nCi : IN STD_LOGIC; -- Ci , nCi carry inputs

Init , nInit : IN STD_LOGIC;

-- SELECT NEW SEED PORT

W, nW : IN STD_LOGIC;

-- REGISTER NEW VALUE

Co, nCo : OUT STD_LOGIC;

S, nS : OUT STD_LOGIC_VECTOR(Nbit -1 DOWNTO 0);

SumAREA : OUT real := init_real;

SumPOWER: OUT real := init_real

);

END COMPONENT;

91

D – NASIC Structure Optimization

-- SEGNALI INPUT OUTPUT

signal a_i : std_logic_vector (5 downto 0) := "000000";

signal na_i : std_logic_vector (5 downto 0) := "111111";

signal b_i : std_logic_vector (5 downto 0) := "000000";

signal nb_i : std_logic_vector (5 downto 0) := "111111";

signal Init_i : std_logic := ’0’;

signal nInit_i : std_logic := ’1’;

signal w_i : std_logic := ’0’;

signal nw_i : std_logic := ’1’;

signal ci_i : std_logic := ’0’;

signal nci_i : std_logic := ’1’;

signal co_i : std_logic := ’0’;

signal nco_i : std_logic := ’1’;

signal s_i : std_logic_vector (5 downto 0);

signal ns_i : std_logic_vector (5 downto 0);

signal area_i : real := init_real;

signal power_i : real := init_real;

signal clock: std_logic_vector (4 downto 1);

begin

dut: ACCasync

generic map(6, 2)

port map (

CLK => clock ,

A => a_i ,

nA => na_i ,

B => b_i ,

nB => nb_i ,

Ci => ci_i ,

nCi => nci_i ,

Init => Init_i ,

nInit => nInit_i ,

W => w_i ,

nW => nw_i ,

Co => co_i ,

nCo => nco_i ,

S => s_i ,

nS => ns_i ,

SumAREA => area_i ,

SumPOWER => power_i

);

-- GENERAZIONE DEL CLOCK1

CLOCCO1: process

begin

for i in 0 to 1000000 loop

clock (1) <= ’0’;

wait for T_CK1_L1;

clock (1) <= ’1’;

wait for T_CK1_H;

clock (1)<= ’0’;

wait for T_CK1_L2;

end loop;

end process;

-- GENERAZIONE DEL CLOCK2

92

D.1 – Testbench for optimized 6-bit Accumulator structure

CLOCCO2: process

begin

for n in 0 to 1000000 loop

clock (2) <= ’0’;

wait for T_CK2_L1;

clock (2) <= ’1’;

wait for T_CK2_H;

clock (2) <= ’0’;

wait for T_CK2_L2;

end loop;

end process;

-- GENERAZIONE DEL CLOCK3

CLOCCO3: process

begin

for t in 0 to 1000000 loop

clock (3) <= ’0’;

wait for T_CK3_L1;

clock (3) <= ’1’;

wait for T_CK3_H;

clock (3) <= ’0’;

wait for T_CK3_L2;

end loop;

end process;

-- GENERAZIONE DEL CLOCK4

CLOCCO4: process

begin

for s in 0 to 1000000 loop

clock (4) <= ’0’;

wait for T_CK4_L1;

clock (4) <= ’1’;

wait for T_CK4_H;

clock (4) <= ’0’;

wait for T_Ck4_L2;

end loop;

end process;

SendData: process

begin

a_i <= "000011";

na_i <= "111100";

b_i <= "000010";

nb_i <= "111101";

wait for 7* 3 *CK_cycle_third; -- wait for (nbit +1)=7 clock

a_i <= "000101";

na_i <= "111010";

wait for 6* 3 *CK_cycle_third; -- wait for nbit =6 clock

a_i <= "001001";

na_i <= "110110";

wait for 6* 3 *CK_cycle_third; -- wait for nbit =6 clock

a_i <= "001111";

na_i <= "110000";

wait for 6* 3 *CK_cycle_third; -- wait for nbit =6 clock

wait;

end process SendData;

93

D – NASIC Structure Optimization

CONTROL: process

begin

-- 1st clock: Register seed B

Init_i <= ’1’;

nInit_i <= ’0’;

w_i <= ’1’;

nw_i <= ’0’;

wait for 3 *CK_cycle_third;

Init_i <= ’0’;

nInit_i <= ’1’;

w_i <= ’0’;

nw_i <= ’1’;

wait for 3* 3 *CK_cycle_third; -- wait for (fbk +1)=(2+1) clock cycles

w_i <= ’1’;

nw_i <= ’0’;

wait for 3 *CK_cycle_third;

w_i <= ’0’;

nw_i <= ’1’;

wait for 5* 3 *CK_cycle_third; -- wait for (nbit -1)=(6 -1) clock cycles

for i in 0 to 1000000 loop

w_i <= ’1’;

nw_i <= ’0’;

wait for 3 *CK_cycle_third;

w_i <= ’0’;

nw_i <= ’1’;

wait for 5* 3 *CK_cycle_third; -- wait for (nbit -1)=(6 -1) clock cycles

end loop;

wait;

end process;

end behavioral;

94

Bibliography

[1] C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein. “Quantum cellular
automata”, Nanotechnology, vol.4, pp. 49â57, 1993.

[2] G. L. Snider, A. O. Orlov, R. K. Kummamuru, R. Ramasubramaniam, I. Am-
lani, G. H. Bernstein, C. S. Lent, J. L. Merz, W. Porod “Shape engineering for
controlled switching with nanomagnet logic”, Dept. of Electrical Engineering,
University of Notre Dame, Notre Dame, Indiana, USA.

[3] Juanchi Wang, “Emerging Technologies For Biosequence Analysis” Master
Thesis, Politecnico di Torino, Dept. Eletr., Torino, Italy, Nov. 2012.

[4] R. K. Kummamuru, A. O. Orlov, R. Ramasubramaniam, C. S. Lent, G. H.
Bernstein, and G. L. Snider, “Operation of a Quantum-Dot Cellular Automata
(QCA) Shift Register and Analysis of Errors”, IEEE Transactions on Eletron
Devices, vol. 50, n. 9, Sept. 2003.

[5] A. Khitun, K. L. Wang, “Multi-functional edge driven nano-scale cellular au-
tomata based on semiconductor tunneling nano-structure with a self assem-
bled quantum dot layer”, Superlattices and Microstructures, vol. 37, pp. 55-76,
2005.

[6] C.S. Lent, B. Isaksen, “Clocked Molecular Quantum-Dot Cellular Automata”,
IEEE Transactions on Electron Device, vol. 50, no. 9, september 2003.

[7] M. Graziano, M. Vacca, M. Zamboni, “Magnetic QCA Design: Modeling,
Simulation and Circuitsâ, Cellular Automata Innovative Modelling For Science
And Engineering, Intechweb.org, 2011

[8] M.T. Alam, J. De Angelis, M. Putney, X.S. Hu, W. Porod, M.T. Niemier,
G.H. Bernstein “Clocking Scheme for Nanomagnet QCA”, Center for Nano
Science and Technology, Dept. of Electrical Engineering, Dept. of Computer
Science and Engineering, University of Notre Dame, Notre Dame, Indiana,
USA.

[9] M. T. Niemier, G. H. Bernstein, G. Csaba, A. Dingler, X. S. Hu, S. Kurtz, S.
Liu, J. Nahas, W. Porod, M. Siddiq, E. Varga, “Nanomagnet logic: progress
toward system-level integration”, Dept. of Electrical Engineering, Dept. of
Computer Science and Engineering, University of Notre Dame, USA.

95

Bibliography

[10] M. Vacca, L. Di Crescenzo, M. Graziano, M. Zamboni, A. Chiolerio, A. Lam-
berti, E. Enrico, F. Celegato, P. Tiberto, and L. Boarino, “Electric clock for
NanoMagnet Logic Circuits”, Dept. of Electronics and Telecommunications,
Politecnico di Torino, Istituto Italiano di Technologia (IIT), Istituto Nazionale
per la Ricerca Metrologica (INRIM), Italy, 2013

[11] Marco Vacca, “Emerging Technologies - NanoMagnets Logic (NML)” Doctoral
Thesis, Politecnico di Torino, Dept. Eletr., Torino, Italy, Mar. 2013.

[12] M. Vacca, J. Wang, M. Graziano, M. RuoRoch, M. Zamboni, “Feedbacks in
QCA: A Quantitative Approach”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, Oct. 2015.

[13] G. Csaba, and W. Porod “Behavior of Nanomagent Logic in the Presence of
Thermal Noise”, Center for Nano Science and Technology, University of Notre
Dame , Notre Dame, Indiana, USA.

[14] M. Vacca, M. Graziano, and M. Zamboni “Majority Voter Full Characteriza-
tion for Nanomagnet Logic Circuits” IEEE Transactions on Nanotechnology,
vol 11, no. 5, Sept. 2012.

[15] M. Vacca, M. Graziano, M. Zamboni, “NanoMagnet Logic Microprocessor:
Hierarchical Power Analysis”, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 21, pp. 1410-1420, 2012.

[16] J. Wang, M.Vacca, M. Graziano, M. RuoRoch, and M. Zamboni “Biosequences
analysis on NanoMagnet Logic”, International Conference on IC Design and
Technology (ICICDT), May 2013.

[17] L. R. Murphy, A. Wallqvist and R. M. Levy, “Simplified Amino Acid Al-
phabets for Protein Fold Recognition and Implication for Foldingâ, Protein
Engineering,vol. 13, pp. 149â152, 2000.

[18] G. Urgese, “Analysis and Design of an Optimized HW Accellerator for Protein
Alignment”, Master thesis,Politecnico di Torino, Dept. Eletr., Torino, Italy,
Sept. 2012.

[19] G. Causapruno, G. Urgese, M. Vacca, M. Graziano, and M. Zamboni, “Protein
Alignment Systolic Array Throughput Optimization”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 1, pp. 68-77, 2014.

[20] G. Urgese, M. Graziano, M. Vacca, M. Awais, S. Frache, and M. Zamboni,
“Protein Alignment HW/SW Optimizations”, The IEEE International Con-
ference on Electronics, Circuits, and Systems (ICECS), 2012.

[21] J. Das, S. M. Alam, and S.Bhanja, “Low Power Magnetic Quantum Cellular
Automata Realization Using Magnetic Multi-Layer Structures”, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol 1, no. 3, Sept.
2011.

[22] P. Yang, R. Yan, and M. Fardy, “Semiconductor Nanowire: What’s Next?”,
Nanoletters, pp. 1529-1536, 2010.

96

Bibliography

[23] W. Lu, P. Xie and C. M. Lieber, “Nanowire Transistor Performance Limits
and Applications”, IEEE Transactions on Electron Devices, vol. 55, Nov. 2008.

[24] G. Shen, and D. Chen, “One-dimensional Nanostructure for electronic and
optoelectronic devices”, Front. Optoelectron. China, pp. 125-138, 2010.

[25] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, “Logic
Gates and Computation from Assembled Nanowire Building Blocks”, Science,
vol. 294, Nov. 2001.

[26] P. Narayanan, J. Kina, P. Panchapakeshan, P. Vijayakumar, and K. S. Shin,
M. Rahman, M. Leuchtenburg, I. Koren, C. O. Chui and C. A. Moritz,
“Nanoscale Application Specific Integrated Circuits”, IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures, June 2011.

[27] Y. Cui, X. Duan, J. Hu, and C.M. Lieber. “Doping and electrical transport
in silicon nanowires”, J. Phys. Chem. B, vol. 104, no. 22, pp. 5213-5216, June
2000.

[28] T. Wang, Z. Qi, C. A. Moritz, “Opportunities and challenges in application-
tuned circuits and architectures based on nanodevices”, First ACM Interna-
tional Conference On Computing Frontiers, pp. 503-511, april 2004.

[29] T. Wang, P. Narayanan, M. Leuchtenburg, C. A. Moritz “NASICs: A
Nanoscale Fabric for Nanoscale Microprocessors”, Electrical and Computer
Engineering Department, University of Massachusetts Amherst, USA.

[30] P. Narayanan, M. Leuchtenburg, T. Wang, C. A. Moritz, “CMOS Control
Enabled Single-Type FET NASIC”, Electrical and Computer Engineering De-
partment, University of Massachusetts Amherst, USA.

[31] M. Graziano, S. Frache, M. Zamboni, “ A Hardware Viewpoint on Biose-
quence Analysis: What’s Next?”, âACM Journal on Emerging Technologies
in Computing Systems, Nov. 2013.

[32] P. Panchapakeshan, P. Vijayakumar, P. Narayanan, C. O. Chui, I. Koren, and
C. A. Moritz, “3-D Integration Requirements for Hybrid Nanoscale-CMOS
Fabrics”, IEEE International Conference on Nanotechnology, Aug. 2011.

[33] P. Panchapakeshan, P. Narayanan, and C.A. Moritz, “N3ASICs: Design-
ing Nanofabrics with Fine-Grained CMOS Integration”, IEEE/ACM Inter-
national Symposium on Nanoscale Architectures, 2011.

[34] L. Chua, “Memristor - The missing circuit element”, IEEE Transactions on
Circuit Theory, vol. CT-18, no. 5, pp. 507â519, Sep. 1971.

[35] D.B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found”, Nature, vol. 453, n. 1, 2008.

[36] D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J.O.
Jeppesen, K. A. Nielsen, and J. F. Stoddart, “Molecule-Independent Electrical
Switching in Pt/Organic Monolayer/Ti Devices”, Nano Letters, vol. 4, n. 1,
2004.

97

Bibliography

[37] M. Aono and T. Hasegawa, “The Atomic Switch”, Proceedings of the IEEE,
vol. 98, issue. 12, 2010.

[38] C. Johns, D. A. A. Ohlberg, S. Wang, R. S. Williams, and M. S. Islam,
“Nanoscale Switching Junctions Based on an Organic Monolayer of Molecules
and Solid Electrolytes”, IEEE International Conference on Nanotechnology,
Aug. 2007.

[39] W. WeÅnica, M. Wuttigc, “Reversible switching in phase-change materials”,
Materials Today, vol. 11, pp. 20-27, June 2008.

[40] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D.
R. Stewart, and R. S. Williams, “Switching dynamics in titanium dioxide
memristive devices”, Journal of Applied Physics, 2009.

[41] J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N.
Lau, and R. S. Williams, “The mechanism of electroforming of metal oxide
memristive switches”, Nanotechnology, May 2009.

[42] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive
Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges”,
Advanced Materials, vol. 21, issue 25-26, July, 2009.

[43] B. Long, J. Ordosgoitti, R. Jha, and C. Melkonian, “Understanding the Charge
Transport Mechanism in VRS and BRS States of Transition Metal Oxide
Nanoelectronic Memristor Devices”, IEEE Transactions on Electron Devices,
vol. 58, n. 11, Nov. 2011.

[44] D. B. Strukov, “3D Hybrid CMOS/Memristor Circuits: Basic Principle and
Prospective Applications”, COMMAD, Dec. 2012.

98

