
Source-synchronous I/O Links using Adaptive
Interface Training for High Bandwidth

Applications

Vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung der Würde eines
Doktor–Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von

M. Tech.
Ashok Kumar Jaiswal

geboren am 04. März 1981
in Pratapgarh, Indien

Referent: Prof. Dr. Ing. Klaus Hofmann
Technische Universität Darmstadt

Korreferent: Prof. Dr. sc. techn. Andreas Herkersdorf
Technische Universität München

Tag der Einreichung: 22.04.2014
Tag der mündlichen Prüfung: 16.07.2014

D17

Darmstadt, 2014

Erklärung laut §9 der PromO

Ich versichere hiermit, dass ich die vorliegende Dissertation allein und nur unter Ver-
wendung der angegebenen Literatur verfasst habe. Die Arbeit hat bisher noch nicht zu
Prüfungszwecken gedient.

Darmstadt, 22.04.2014

C

Acknowledgments

This thesis is the outcome of my work as a research assistant at the Institute of Integrated
Electronic Systems, Technische Universität Darmstadt. First of all, I want to sincerely thank
my supervisor Prof. Klaus Hofmann for his kind advice and guidance. He supported me
not only in technical matters but was also available as a local guardian whenever I needed
any personal guidance. I also express my gratitude towards Prof. Andreas Herkersdorf,
who kindly accepted to act as co-supervisor for this thesis. His comments have been
very valuable for improving the quality of the work. Furthermore, I would like to thank
Prof. Franko Küppers, Prof. Ralf Steinmetz, and Prof. Christian Hochberger for acting as
members of the examination committee.

This whole journey would have not been so interesting without all colleagues at the
institute who made a great working atmosphere. I would like to thank Haoyuan Ying,
Prof. Thomas Hollstein, Prof. Mohamed Salem, Leandro Möller and Faizal Samman for
all the interesting discussions on Networks-on-Chip topic. I would specially like to thank
Yuan Fang who worked together as a great team member on high-speed chip-to-chip
communication topic. I would also like to thank Prof. Peter Gregorius for his finishing
comments on various papers. I thank my colleagues Boris Traskov, Christian Küller, Katrin
Schaechtle, Dr. Roland Steck who helped me in proof reading and German translation. I
also want to thank all the students who did their seminar, thesis under my supervision
and created a mutual-learning experience. Many thanks to Andreas Schmidt, Roland
Brand and Silvia Hermann for making our day-to-day life easy at our institute. I want to
thank my ex-Qimonda colleague Martin Maier regarding GDDR5 training hints. I want to
sincerely thank my mentor Andreas Jakobs (from Qimonda days) for all the suggestions to
improve the quality of the thesis.

I want to thank my wife Sapna for her love, patience and continuous support without
which firstly I could have not made the decision to join academia and secondly reach at
this stage of writing acknowledgment. Last but not the least, I would like to thank my
parents and entire family for their blessings.

E

Kurzfassung

Die Forderung nach permanenter Erreichbarkeit der Nutzer setzt eine ununterbrochene
Anbindung an das Internet und somit an zentrale Server voraus. Mit der exponentiellen
Zunahme von mobilen Endgeräten wie Smartphones, Tablets und Laptops wird der Da-
tentransfer zum Jahr 2018 voraussichtlich die Exabyte-Schwelle überschreiten. Zusätzlich
werden Anwendungen wie Videostreaming, Video-on-Demand, Online-Gaming und
Soziale Netzwerke das Datenvolumen weiter erhöhen. Zukünftige Anwendungsszenarien
wie Smart Cities, das Internet der Dinge, Industrie 4.0 und Machine-to-machine (M2M)
Kommunikation stellen darüber hinaus höchste Anforderungen an die Kommunikationsin-
frastruktur, wie z.B. hohe Datenraten bei gleichzeitig niedriger Leistungsaufnahme. Wis-
senschaftliche Untersuchungen wie die Erforschung des Weltalls sowie die Ölförderung
werden im Jahr 2018 voraussichtlich Rechengeschwindigkeiten im Exaflops/s-Bereich
benötigen, was einen Datendurchsatz pro Speicherschnittstelle im TB/s-Bereich erfordert.
Um einen solchen Datendurchsatz zu erreichen, müssen die I/O-Link-Geschwindigkeiten
zwischen zwei Geräten in den GB/s-Bereich erhöht werden.

Bei solch hohen Datenraten können Informationen sowohl über komplexe, serielle
Clock-Data-Recovery (CDR) als auch über einfachere, parallele Quellen-synchrone Verbind-
ungen übertragen werden. Obwohl CDR im Vergleich zur Quellen-synchronen Alternative
effizienter ist, sind für das Erreichen einer TB/s-Datenrate mehrere serielle Verbindungen
notwendig. Abgesehen davon kann die parallele Quellen-synchrone Übertragung hin-
sichtlich Leistungsaufnahme und Silizium-Flächenbedarf Vorteile für sich verbuchen,
da zusätzliche I/Os keine weiteren Hardwareressourcen erfordern. Bei hohen Daten-
raten treten bei Quellen-synchronen Verbindungen jedoch Probleme wie Rauschen der
Versorgungsspannung, Übersprechen, Inter-Symbol-Interferenzen (ISI) usw. auf, die
Laufzeitunterschiede zur Folge haben. Um diesen Problemen zu entgegnen, kann die
Methode des adaptiven Trainings im Zeitbereich angewandt werden, um weiterhin mit
höchsten Datenraten zu kommunizieren.

In dieser Dissertation werden zwei neue Architekturen für adaptive Quellen-synchrone
Verbindungen vorgestellt, die gegenüber bisherigen Implementierungen signifikante
Vorteile bezüglich Leistungsverbrauch und Siliziumfläche aufweisen. Die erste Architektur
basiert auf einer Verzögerungseinheit, die inkrementell kleinste Verzögerungen zur Phase
eines Takts addiert. Eine zweite Architektur basiert auf einem in der PLL (Phase Locked
Loop) integrierten Phaseninterpolator (PI). Dieser kann kleinste Verzögerungen zur Phase
eines Takts sowohl hinzufügen als auch subtrahieren. Dadurch kann die Synchronisation
auf Kosten höherer Komplexität schneller erreicht werden.Gerade bei Double Data Rate
(DDR) Systemen, die für Quellen-synchrone Systeme mit hohen Datenraten üblicherweise
eingesetzt werden, reduzieren auch ein nicht-optimaler Taktbaum sowie ein unausbal-

i

ii KURZFASSUNG

anciertes Tastverhältnis die Timingmarge. Um dem entgegenzuwirken, werden in dieser
Dissertation auch ein neuartiger Algorithmus zur Taktbuffergenerierung sowie ein neuar-
tiges Tastverhältnis-Korrekturglied vorgestellt. Dadurch kann auch eine Reduzierung der
Leistungsaufnahme Quellen-synchroner Systeme erreicht werden.

Abstract

Mobility is the key to the global business which requires people to be always connected to
a central server. With the exponential increase in smart phones, tablets, laptops, mobile
traffic will soon reach in the range of Exabytes per month by 2018. Applications like
video streaming, on-demand-video, online gaming, social media applications will further
increase the traffic load. Future application scenarios, such as Smart Cities, Industry 4.0,
Machine-to-Machine (M2M) communications bring the concepts of Internet of Things
(IoT) which requires high-speed low power communication infrastructures. Scientific
applications, such as space exploration, oil exploration also require computing speed in
the range of Exaflops/s by 2018 which means TB/s bandwidth at each memory node. To
achieve such bandwidth, Input/Output (I/O) link speed between two devices needs to be
increased to GB/s.

The data at high speed between devices can be transferred serially using complex
Clock-Data-Recovery (CDR) I/O links or parallely using simple source-synchronous I/O
links. Even though CDR is more efficient than the source-synchronous method for single
I/O link, but to achieve TB/s bandwidth from a single device, additional I/O links will
be required and the source-synchronous method will be more advantageous in terms
of area and power requirements as additional I/O links do not require extra hardware
resources. At high speed, there are several non-idealities (Supply noise, crosstalk, Inter-
Symbol-Interference (ISI), etc.) which create unwanted skew problem among parallel
source-synchronous I/O links. To solve these problems, adaptive trainings are used in
time domain to synchronize parallel source-synchronous I/O links irrespective of these
non-idealities.

In this thesis, two novel adaptive training architectures for source-synchronous I/O
links are discussed which require significantly less silicon area and power in comparison
to state-of-the-art architectures. First novel adaptive architecture is based on the unit delay
concept to synchronize two parallel clocks by adjusting the phase of one clock in only
one direction. Second novel adaptive architecture concept consists of Phase Interpolator
(PI)-based Phase Locked Loop (PLL) which can adjust the phase in both direction and
achieve faster synchronization at the expense of added complexity. With an increase in
parallel I/O links, clock skew which is generated by the improper clock tree, also affects
the timing margin. Incorrect duty cycle further reduces the timing margin mainly in
Double Data Rate (DDR) systems which are generally used to increase the bandwidth of a
high-speed communication system. To solve clock skew and duty cycle problems, a novel
clock tree buffering algorithm and a novel duty cycle corrector are described which further
reduce the power consumption of a source-synchronous system.

iii

Contents

1 Introduction 1
1.1 Problem description and motivation . 2
1.2 Source-synchronous I/O links: background 5
1.3 Source-synchronous I/O links: challenges . 9

1.3.1 Unwanted Board Skew . 9
1.3.1.1 Supply (Vref) noise / SSO noise 9
1.3.1.2 Crosstalk . 10
1.3.1.3 Inter-Symbol-Interference 11
1.3.1.4 Ci Mismatch . 11
1.3.1.5 Termination Mismatch . 12
1.3.1.6 Trace Length Mismatch . 12

1.3.2 Clock Skew and Duty Cycle . 13
1.4 Thesis Overview . 14

2 Source-Synchronous I/O Links: Adaptive Training 15
2.1 Introduction . 16
2.2 Current state-of-the-art architecture . 22
2.3 Novel Architectures . 23

2.3.1 Unit-delay phase incrementer . 25
2.3.2 PI-based PLL . 25

2.3.2.1 Functioning of the system 28
2.4 Conclusion . 31

3 Source-Synchronous I/O Links: Clock Skew and Duty Cycle 33
3.1 Clock Skew . 34

3.1.1 Background . 34
3.1.2 Power optimized buffering . 36

3.1.2.1 Preparing the clock-tree . 38
3.1.2.2 Pre-Buffering PVT evaluation 38
3.1.2.3 Buffering with clock-skew and slew-rate specifications . . . 39
3.1.2.4 Polarities . 41
3.1.2.5 Post-Buffering Optimization 41

v

vi CONTENTS

3.1.3 Scalability . 43
3.1.3.1 Improvements because of better clock-skew 43
3.1.3.2 Improvements within the algorithm. 43

3.2 Duty Cycle . 45
3.2.1 Circuit structure of the considered DCC 47
3.2.2 Novel Architecture with programmable charge pump 49

3.3 Conclusions . 50

4 Simulation Results 51
4.1 Adaptive trainings: Results . 52

4.1.1 Comparison with state-of-the-arts . 52
4.1.2 Results using circuit level simulation 54

4.1.2.1 Low Frequency Simulations 54
4.1.2.2 High Frequency Simulations 54

4.2 Clock Skew: Results . 55
4.2.1 Scalability . 55
4.2.2 Benchmarks . 56

4.3 Duty Cycle: Results . 57

5 Summary and Future Works 63
5.1 Summary . 64
5.2 Future Works . 64

A Design Methodology 67
1.1 Design Methodology using Matlab/Simulink-Cadence co-simulation 68

1.1.1 Related Work . 69
1.1.2 Design Flow . 70
1.1.3 Simulation Setup . 71
1.1.4 Simulation Results . 74

1.2 Conclusions . 76

B Implementation of PI-based PLL architecture 77
2.1 Introduction . 78
2.2 Implementation . 78

2.2.1 Phase-Frequency Detector . 79
2.2.2 Charge-Pump . 80
2.2.3 Operational Transconductance Amplifier 81
2.2.4 Voltage-to-Current Converters . 81
2.2.5 Current Controlled Oscillator . 83
2.2.6 Phase Selector and Frequency Divider 84
2.2.7 Programmable Filter . 85
2.2.8 Comparator . 87

CONTENTS vii

2.2.9 Digital Control . 87
2.2.10 Lock Detector . 88

References 91

Invention Disclosures 99

List of Own Publications 101

List of Unrelated Publications 103

Supervised Master Theses 105

Supervised Bachelor Theses 107

Supervised Seminars 109

Glossary 111

Resume 115

List of Tables

1.1 Comparison of Compound Annual Growth Rate (CAGR) of Global Device
Units and Global Mobile Data Traffic [1] . 2

1.2 Comparison of supercomputers with projected Exascale Machine [8] 3

1.3 High-speed CDR architectures . 4

1.4 High-Speed Source-Synchronous Architectures 5

1.5 Source-Synchronous Memories . 9

2.1 Propagation delays inserted the system. 29

2.2 Theoretical worst case error for the different configurations at 2 GHz Write
Clock (WCK). 31

2.3 Theoretical worst case error of 5GHz WCK configuration. 31

3.1 Weight parameters for controlled solution pruning 45

4.1 Comparison with other work . 54

4.2 Measured error of 2 GHz WCK configuration. 55

4.3 Measured error of 5GHz WCK configuration. 55

4.4 Run-time comparison of the novel buffering algorithm with seven different
randomly generated circuits. 56

4.5 Comparison between the results generated by Reliable Low Power Buffering
and Optimization algorithm (RLPBO) and Contango 2 57

4.6 Comparison with the previous work . 59

A.1 Modeling approaches and performance trade-off 76

B.1 PLL specifications. 78

B.2 Coarse-loop Voltage-to-Current (V2I) converter performance parameter. . . 82

B.3 Fine-loop V2I converter performance parameter. 83

B.4 Current Controller Oscillator (CCO) output performances. 85

B.5 Parameters of the components of the PLL. The Voltage Controller Oscillator
(VCO) gains were measured employing a filter resistor of 7 kΩ. 86

ix

x LIST OF TABLES

B.6 Laplace-domain features of the PLL systems and respective resistance values. 87

List of Figures

1.1 Conventional CDR . 3

1.2 Source-Synchronous System . 4

1.3 SSD-SSR in the Network Interface . 6

1.4 Intel Quickpath Interconnect . 7

1.5 Physical Layer of Intel Quickpath Interconnect 7

1.6 HyperTransport Interconnect . 8

1.7 Physical Layer of HyperTransport Interconnect 8

1.8 Source-Synchronous Skew Distribution [33] 10

1.9 Crosstalk [33] . 10

1.10 ISI [33] . 11

1.11 Ci-Mismatch [33] . 12

1.12 Termination-Mismatch [33] . 12

1.13 Clock Skew . 13

1.14 Duty Cycle Error . 13

2.1 Source-Synchronous Clock Forward (SSCF) link concept. 16

2.2 Adaptive Training Concept . 16

2.3 High-speed chip-to-chip communication . 17

2.4 PI example [46] . 17

2.5 QuickPath Receiver with two PIs [49] . 18

2.6 Digital CDR with two PIs [50] . 18

2.7 High-speed chip-to-chip communication with feedback 19

2.8 Intel QuickPath with Receiver Feedback . 19

2.9 High-speed Master-Slave communication . 20

2.10 High-speed chip-to-chip communication in Master-Slave configuration . . . 20

2.11 GDDR5 Example [35] . 21

2.12 GDDR5 training sequence [35] . 21

2.13 Error Detection and Correction (EDC) functionality during WCK2CK train-
ing [35] . 22

xi

xii LIST OF FIGURES

2.14 Current state-of-the-art [35] . 22

2.15 Current state-of-the-art: (A) Phase-detector (B) Phase-adjuster 23

2.16 Novel Architecture based on Unit-Delay Incrementer 24

2.17 Novel Architecture with PI-based PLL . 24

2.18 Custom Delay Cells in TSMC 65nm: (a) Voltage controlled buffer (28ps typ.
delay); (b) Voltage controlled inverter (10ps typ. delay); (c) Transmission
gate (3ps typ. delay) . 25

2.19 PI-based-PLL [57] . 26

2.20 Dual Loop PLL (DLPLL) architecture [59] . 26

2.21 PI-based PLL in CDR architecture [57] . 27

2.22 PLL architecture utilized in this design. 28

2.23 Bode-plot of the fine loop, coarse loop and open loop transfer functions. . . 29

2.24 step-response. 30

3.1 Overview of the clock generation . 35

3.2 Flowchart . 37

3.3 Adjustment of the tree topology prior to buffering 38

3.4 Flowchart of the post-buffering optimization of the clock-tree to achieve
clock-skew constraints . 42

3.5 Analog Duty Cycle Corrector (DCC) [69] . 46

3.6 Digital DCC [69] . 46

3.7 Mixed-signal DCC [80] . 47

3.8 Gain-boosting Charge Pump (CP) [80] . 48

3.9 Loop Analysis [80] . 48

3.10 CP characteristics simulated in TSMC 65nm for 3 GHz - 5 GHz 49

3.11 Programmable CP . 49

4.1 Schematic:Unit-Delay incrementer based architecture 53

4.2 Run-time of the buffering algorithm for different random circuits shows
linearity in the number of buffering positions 56

4.3 Output Duty cycle for 70% input duty cycle 58

4.4 Programmable CP and Buffer . 58

4.5 CP characteristics for 6 GHz & 7 GHz . 59

4.6 Output Duty cycle for 70% input duty cycle 60

4.7 Output Duty cycle for 30% input duty cycle 60

A.1 Conventional Design Flow . 68

A.2 Adopted Design Flow . 70

A.3 Abstract Specification . 71

LIST OF FIGURES xiii

A.4 Level 1: Matlab Simulation . 72

A.5 Level 2: Controller Block-Level Specification 73

A.6 Level 2: Matlab-HDL Co-simulation . 74

A.7 Level 3: Verilog-AMS and SPICE co-simulation 74

A.8 DQ in read training . 75

A.9 DQ in write training . 75

A.10 DQ before and after channel . 75

B.1 Schematic of the charge-pump employed in this design. 80

B.2 Schematic of the sub-threshold Operational Transconductance Amplifier
(OTA) employed in this design. 80

B.3 Schematic of the coarse loop V2I converter. 81

B.4 Schematic of the fine loop V2I converter. 82

B.5 Schematic of the four phases CCO. 83

B.6 Schematic of the delay cell.[57] . 84

B.7 Duty cycle corrector [92]. 84

B.8 Waveforms showing the difference between the selection of an anticipated
a) or a delayed b) VCO output in respect to the current one. 86

B.9 Waveforms of the control signals after the lock-in of the PLL. 88

B.10 Schematic of the lock detector. 88

Chapter 1

Introduction

1

2 CHAPTER 1 INTRODUCTION

1.1 Problem description and motivation

The growth in mobile devices like smartphones, tablets, laptops leads to the exponential
growth in mobile data traffic (Table 1.1) which may reach in the range of Exabytes by
2018 [1] due to high-definition videos, on-demand media, gaming, image search, social
media applications. This growth in mobile connectivity has initiated the paradigm shift
of not only connecting humans via mobile devices, but also connecting all the objects via
Machine-to-Machine (M2M) or Device-to Device (D2D) communications using Internet of
Things (IoT) infrastructure [2], [3] which will further enable smart cities [4] and industry
4.0 [5]. Table 1.1 shows that Compound Annual Growth Rate (CAGR) of traffic due to
M2M module will be 113% till 2018. With such data traffic increase, new optimized data
mining [6] and deployment schemes [7] are being investigated which will need energy
efficient computing platforms.

Table 1.1: Comparison of CAGR of Global Device Units and Global Mobile Data Traffic [1]

Device Type Growth in Devices Growth in Mobile Traffic

2013-2018 CAGR 2013-2018 CAGR

Smart Phone 18% 63%

Tablet 41% 87%

Laptop 13% 30%

M2M Module 43% 113%

Scientific applications like space explorations, oil exploration demand high computa-
tion in the range of ExaFlop/s. For space exploration, the Square Kilometer Array (SKA)
project [8] is initiated to build a next generation radio telescope which will require in excess
of one ExaFlop/s in order to process and reduce the massive amount of data generated by
the sensors. Table 1.2 shows the comparison among projected Exascale machine and two
recent top-of-the-line supercomputers where Theoretical Peak Performance (Rpeak) of the
system is measured in number of Flops e.g. petaFlops (PF). The memory bandwidth per
node is conservatively projected at 2-4 TB/s and the total power required is 20 MW. To
realize tomorrow’s Exascale systems, the chips need to bring energy efficiency down from
about 3000 pJ per flop to about 20 pJ per flop.

Due to this rising demand on computation, high bandwidth communication is re-
quired at all levels of the system design for example processor-to-processor or processor-
to-memory communications. The bandwidth of electrical communication links can be
increased either through increasing pin counts or increasing interface speed per link (or
some combination of the two). The 2010 International Technology Roadmap for Semicon-
ductors (ITRS) roadmap [9] predicts that the number of Application Specific Integrated
Circuit (ASIC) pins and microprocessor pins will increase 5% per year, respectively. It
also predicts that the high-performance off-chip Input/Output (I/O) speed will increase
10% per year up to over 50 Gbps in 2020 [9]. Each additional pin causes more power as
charging and discharging of pin capacitance is needed. It additionally increases package
and Printed Circuit Board (PCB) complexity.

1.1 PROBLEM DESCRIPTION AND MOTIVATION 3

Table 1.2: Comparison of supercomputers with projected Exascale Machine [8]

2009 2011 2018 2009 Vs 2018

Jaguar K computer projected factor

System Rpeak 2 PF 10 PF 1 EF O(1000)

Node Rpeak 125 GF 128 GF 1 - 11 TF O(10-100)

Power 6 MW 10 MW 20 MW O(10)

Energy/Flop 3 nJ/F 1 nJ/F 20 pJ/F - O(100)

System Memory 0.3 PB 1 PB 32-64 PB O(100)

Memory/Flop 0.6 B/F 0.1 B/F 0.03 B/F - O(10)

Memory BW/node 25 GB/s 64 GB/s 2-4 TB/s O(100)

Memory BW/Flop 0.2 B/s/F 0.5 B/s/F 0.002 B/s/F -O(100)

Total concurrency 225,000 548,352 O(109) O(105)

Due to the limitation on pin count, the current focus is on increasing link speed. The
data is sent over these high speed links using mainly two different clocking schemes:
Clock-Data-Recovery (CDR) [10],[11] and source-synchronous [12],[13]. Conventional
CDR (Figure 1.1) includes Phase Detector (PD), Phase Interpolator (PI), filter, Phase Locked
Loop (PLL) etc., which consume a significant amount of chip area and power. To achieve
fast and the accurate phase relationship between clock and data, CDR clocking schemes
employ different techniques, e.g. dual edge injection locking [14], eye-tracking [15], phase-
tracking [11], [16], [17], [18] while maintaining the power budget.

Figure 1.1: Conventional CDR

On the other hand, source-synchronous clocking system (Figure 1.2) is used for high-
speed parallel interfaces due to its simple clock distribution and fast power control tech-
niques [13]. As the clock is forwarded along with the data to the receiver, it eliminates the

4 CHAPTER 1 INTRODUCTION

need of receiver PLL and the data coding. However, non-idealities such as noise in chan-
nels, crosstalk, Inter-Symbol-Interference (ISI) affect both forwarded clock and data. To
solve these problems, additional techniques e.g. equalization circuits [12], common-mode
clocking [19], I/O calibration [13] are used.

Synchron‐
ization

DATADATA

CLK Flip‐Flop

Figure 1.2: Source-Synchronous System

Table 1.3: High-speed CDR architectures

CDR technology Data rate power area BER Power

Architecture (Gbps) (mW) (mm2) Efficiency

(mW/Gbps)

[10] 65nm CMOS 5 280 0.71 10−12 56.00

[14] 32nm SOI CMOS 5.814 32.2 0.58 10−10 5.54

[15] 90nm CMOS 8 232 0.29 10−12 29.00

[16] 90nm CMOS 8 160 0.48 10−15 20.00

[17] 40nm CMOS 8 235 0.45 10−10 29.38

[18] 65nm CMOS 10 102.56 0.25 - 10.26

[20] 32nm CMOS 11.8 78 0.16 2*10−15 6.61

[21] 65nm CMOS 12.5 12.3 0.24 10−12 0.98

[11] 65nm CMOS 40 655 1.78 10−12 16.38

Table 1.3 and Table 1.4 show the CDR and source-synchronous architecture characteris-
tics in recent publications, respectively. The shown numbers belong to a link representing
single electrical channel interface including transmitter and receiver circuitries. Further-
more, following conclusions can be made from these tables:

1. CDR architectures achieve in general higher data rates per link than source synchron-
ous architectures.

2. CDR architectures have better power efficiency per link for the same technology
with similar data-rate.

1.2 SOURCE-SYNCHRONOUS I/O LINKS: BACKGROUND 5

Table 1.4: High-Speed Source-Synchronous Architectures

Source technology Data rate power area BER Power

Synchronous (Gbps) (mW) (mm2) Efficiency

Architecture (mW/Gbps)

[12] 0.13um CMOS 8 280 0.13 10−10 35.00

[19] 40nm LP CMOS 5 25 - 10−15 5.00

[22] 32nm SOI CMOS 8 85 4.83 3.3*10−12 10.63

[23] 65nm CMOS 10 140 - 10−12 14.00

[13] 45nm SOI 11.5 34.4 - 10−9 4.3

With these observations, CDR architectures are the preferred option to achieve higher
data-rates at high power efficiency per link. To fulfill Exascale bandwidth, single CDR
link will not be sufficient and parallel links (32 or more channels) need to be considered.
Therefore, the total power consumption and complexity of CDR architectures will increase
linearly with an increase in the number of links as a CDR is needed for every link. In
other words, source synchronous architectures can reduce circuit complexity and power
for parallel link systems.

At high-speed, source-synchronous electrical interfaces are mainly limited by channel
non-idealities i.e. crosstalk, ISI etc. and need better control over the phase relationship
among clock and data and signal integrity. These channel non-idealities can be handled
by interface trainings where phases and signal quality of data/clocks can be controlled
according to the channel characteristics which lead to lower the Bit-Error-Rate (BER).
These adaptive interface trainings need to have a simple architecture with low power
consumption.

1.2 Source-synchronous I/O links: background

Source-synchronous systems have evolved from synchronous systems where transmitter
and receiver Integrated Circuits (ICs) use the same clock source. The speed of a synchron-
ous system is restricted by the fact that the flight time (timing delay) between transmitter
and receiver can not be more than the defined clock period. Therefore, to increase the
bandwidth, number of pins has to be increased which further increases the power con-
sumption and complexity of the chip. To overcome the flight time issue, the clock is also
forwarded along with the data from transmitter IC (source) to receiver IC (destination) that
is why this system is called source-synchronous (Figure 1.2). In such systems, bandwidth
can be increased directly by increasing the link frequency.

The source-synchronous concept has been adopted by many I/Os and memory in-
terfaces to fulfill high-bandwidth requirements. Scalable Coherent Interface (SCI) [24],
SGI-Craylink interface [25] and High-Performance Parallel Interface (HIPPI-6400-PH) [26]

6 CHAPTER 1 INTRODUCTION

have used Source Synchronous Drivers/Receivers (SSD/SSR) in the network interface
(Figure 1.3) for high speed network communication. SSD sends wide bus (e.g. 80 bits)
information with core frequency (e.g. 200 MHz) to high frequency (e.g. 800 MHz) network
with small bus (20 bits) while SSR performs the reverse operation.

Figure 1.3: SSD-SSR in the Network Interface

Quickpath interconnect [27] (Figure 1.4) is a high-speed point-to-point source-synchron-
ous interconnect used in Intel microprocessors. Physical layer (Figure 1.5) of Quickpath
interconnect consists of 20 bits wide two unidirectional data bus with 1 bit clock in each
direction which is able to provide 25.6 GB/s of low-latency bandwidth. Physical layer
comes with additional functionality of lane/polarity reversal, data recovery, deskew at the
receiver and waveform equalization, which fulfills Reliability, Availability, Serviceability
(RAS) requirements of high-performance systems.

On the other hand, HyperTransport 3 [28] (Figure 1.6) uses 32 bit full duplex point-
to-point source-synchronous interconnect (Figure 1.7) to achieve 51.2 GB/s bandwidth.
HyperTransport provides dynamic link clock/width adjustment on the fly and hot plug-
ging for server applications. It also uses training and equalization schemes for high
performance and signal reliability.

1.2 SOURCE-SYNCHRONOUS I/O LINKS: BACKGROUND 7

Figure 1.4: Intel Quickpath Interconnect

Data Signal Pairs

Data Signal Pairs

Clock Signal Pair

Clock Signal Pair

20

20

Tx

Rx

Rx

Tx

Device #1 Device #2

Figure 1.5: Physical Layer of Intel Quickpath Interconnect

Table 1.5 shows the source-synchronous memories and the respective achievable band-
width for graphics applications where connections are point-to-point and chips are directly
soldered on PCB board. The first generation of Source-Synchronous Dynamic Random Ac-
cess Memory (SDRAM) was Single Data Rate (SDR) where data is sampled at each positive
edge of the system (memory) clock. The next generations of SDRAM follow DDR scheme
where data is sent on both positive and negative edges of the system clock. Graphics
Dynamic Random Access Memory (GDRAM) is the variation of SDRAM working at higher
voltage than SDRAM to achieve better data-rate. Each improved GDRAM generation
[29], [30], [31] (GDDR, GDDR2, GDDR3, GDDR5) works at a faster memory clock, hence
achieving greater bandwidth (represented as Transfer rate in Table 1.5). GDDR5 is still

8 CHAPTER 1 INTRODUCTION

Figure 1.6: HyperTransport Interconnect

CLK
CTL

CAD[n:0]

CLK
CTL
CAD[n:0]

Figure 1.7: Physical Layer of HyperTransport Interconnect

considered in double data rate memory group as there is a separate WCK clock carrying
the data at both edges. If we compare the GDDR5 transfer rate (6 GT/s) to the system clock
(1500 MHz) then it is represented as a quad data rate memory. Extreme data rate dynamic
random-access memory (XDR) is a proprietary memory family from Rambus [32] which
sends 8 (XDR) and 32 (XDR2) data respectively on each system clock, hence providing
highest bandwidth (57.6 GB/s and 160 GB/s) among available memory chips. Due to the
high cost, XDR memories are mainly used in niche applications e.g. game consoles.

1.3 SOURCE-SYNCHRONOUS I/O LINKS: CHALLENGES 9

In summary, to achieve high bandwidth, high-speed interfaces have used point-to-point
connections. Some interfaces e.g. HyperTransport, Quickpath interconnect, XDR have used
differential signaling to reduce noise, crosstalk while other interfaces e.g. GDRAM have
used single-ended (SE) signaling due to limited pin constrains. Both types of interfaces
use some kind of interface trainings in the initialization process to make sure correct signal
transmission and use programmable on chip termination to reduce the reflection problem.

Table 1.5: Source-Synchronous Memories

Bus Size No. of Memory type Memory Transfers Transfer

chips clock /s rate

64 bits 4 SDR 133 MHz 0.13 GT/s 0.53 GB/s

64 bits 4 GDDR 350 MHz 0.7 GT/s 5.6 GB/s

64 bits 4 GDDR2 600 MHz 1.2 GT/s 9.6 GB/s

64 bits 4 GDDR3 1400 MHz 2.8 GT/s 22.4 GB/s

64 bits 2 GDDR5 1750 MHz 7 GT/s 56 GB/s

64 bits 4 XDR 900 MHz 7.2 GT/s 57.6 GB/s

64 bits 2 XDR2 625 MHz 20 GT/s 160 GB/s

1.3 Source-synchronous I/O links: challenges

1.3.1 Unwanted Board Skew

Source-synchronous system solves the problem of flight delay between transmitter and
receiver, but there are skew problems which limit the speed of the system. DDR SDRAM
also uses separate bidirectional DDR strobe (DQS) to latch the data properly. The skew
contribution of the system can be divided into three main components: Transmitter (Tx)
skew, Board skew and Receiver (Rx) skew as shown in Figure 1.8. In general, Tx and Rx
skew numbers are provided by the transmitter and receiver chip vendors. It is the board
skew which creates main deviation between the data and strobe timing at the receiver
as the skew is dependent on noise, crosstalk, ISI, Ci mismatch, termination mismatch,
trace-length mismatch and Process, Voltage and Temperature (PVT) variations.

1.3.1.1 Supply (Vref) noise / SSO noise

In high-speed data communication, due to the non-ideal power distribution network,
simultaneous I/O switching generates deterministic supply noise. Considering the worst
case slew rate and ±50mV Vref noise, strobe to data skew can be as large as 200ps [33].
There are mainly two techniques which can minimize the supply noise. The one approach

10 CHAPTER 1 INTRODUCTION

Figure 1.8: Source-Synchronous Skew Distribution [33]

is based on using the on-chip bypass capacitors [34]. The other approach is to reduce
the switching frequency by encoding data bits. For example, GDDR5 systems [35] use
Data Bit Inversion (DBI) pin which takes advantage of Pseudo Open Drain Logic (PODL)
termination where Direct current (DC) is only drawn when zero logic level is transmitted.
These techniques cannot completely eliminate the switching noise [36]. An advanced data
encoding technique or I/O signaling can be employed to further decrease SSO.

1.3.1.2 Crosstalk

Figure 1.9: Crosstalk [33]

Crosstalk [37], [38], [39] is an another limiting factor for high-speed data communication
systems. Crosstalk happens when switching behavior of the observed signal (victim) is
affected by the switching activity of neighboring signals (aggressors) which results in
unwanted skew. Crosstalk is measured in three modes : Differential Mode where the
victim and the aggressor have the different polarity; Common Mode where the victim
and the aggressor have the same polarity and Quite Mode where the aggressor is not
active which can be taken as a reference point to measure the skew Td and Tc caused by
differential and common modes (Figure 1.9) respectively. Crosstalk is mainly caused in
the package and PCB routing. The package needs to be designed specifically to minimize
crosstalk and supply noise by using adequate signal-to-power ratio for both Ball Grid

1.3 SOURCE-SYNCHRONOUS I/O LINKS: CHALLENGES 11

Array (BGA) package and PCB via patterns. For the PCB routing, stripline layers are
usually preferred compared to the micro-strip for high speed routing to minimize the far-
end crosstalk. To reduce the near-end crosstalk, signals switching on the same clock should
be routed together. However, due to the large number of signals, using only stripline wires
becomes very difficult with the conventional PCB technology. The line-to-line spacing
within the PCB needs to be chosen carefully in order to have minimal impact of crosstalk
to achieve high data-rates. Strobe signals should be isolated to reduce the skew between
strobe and data.

1.3.1.3 Inter-Symbol-Interference

Figure 1.10: ISI [33]

ISI [40], [41] refers to the symbol interference caused by switching while the signal
representing one data symbol is not settled properly, which may further lead to wrong
interpretation of the data at the receiver side. It reduces eye-opening at high data rate
significantly. As it affects both rising and falling edges, total ISI is given by Tr/2+ Tf/2
as shown in Figure 1.10. Impedance matching and equalization techniques are two main
solutions to overcome ISI problem. A compact voltage-mode equalizer with impedance
calibration was proposed in [42], which can be utilized in write transactions. A very fast
and efficient 1-tap Decision Feedback Equalizer (DFE) was proposed in [43] that can be
used in the read transactions in conjunction with a linear equalizer. Furthermore, input
capacitance (Ci) of I/O drivers should be kept low to reduce the reflections on the pad
while a large number of segments are needed for impedance matching which in-turn
increases Ci. A compromise has to be made between the number of segments and Ci value.

1.3.1.4 Ci Mismatch

Another source of skew comes from Ci mismatch (Figure 1.11) at different pins. It can be
measured by using Min/Max of Ci given in vendor datasheets.

12 CHAPTER 1 INTRODUCTION

Figure 1.11: Ci-Mismatch [33]

Figure 1.12: Termination-Mismatch [33]

1.3.1.5 Termination Mismatch

Termination mismatch occurs due to the PVT variation effect on the termination resistance.
It can be measured by simulating time required for the rise/fall time between DC value
and Vref level at different tolerance point of the termination resistor as shown in Figure
1.12.

1.3.1.6 Trace Length Mismatch

PCB routing can be different for parallel links which results in trace length mismatch. In
case of point-to-point short connection (5 cm or below), serpentine trace patterns can be
used to change the trace length. Serpentine traces can also cause additional skew due to
self coupling. Therefore, the distance between serpentine traces has to be carefully decided.
The change in the PCB dielectric constant and the trace impedance can also change the
propagation delay [33].

1.3 SOURCE-SYNCHRONOUS I/O LINKS: CHALLENGES 13

1.3.2 Clock Skew and Duty Cycle

Figure 1.13: Clock Skew

In source-synchronous systems many parallel data bits have to be synchronized with
the clock. In other words, the clock will have a large number of end-points (sinks) so the
clock tree has to be optimized to achieve low clock skew. Figure 1.13 shows that improper
clock buffering can also add additional skew in any direction (positive or negative). As the
demand for higher performance increases and the technology scales down, the clock-tree
synthesis has to be performed at higher frequencies and under larger process variations
while consuming the least possible amount of energy [44], [45]. Going to higher frequencies
lowers the acceptable levels of clock-skew (3 - 4% of the clock period) and slew-rate (10%
of the clock period) significantly so the impact of process variations on these parameters
needs to be analyzed properly.

Figure 1.14: Duty Cycle Error

14 CHAPTER 1 INTRODUCTION

In DDR SDRAM systems, 50% duty cycle of the signal is also important to achieve
same setup and hold margin at both rising and falling edges. Figure 1.14 shows if duty
cycle is not 50%, then there would be setup and hold time violations. Therefore, a DCC
has also to be investigated which can work at wide frequency range.

1.4 Thesis Overview

To address the challenges involved in high-speed source-synchronous I/O links, this thesis
focuses on adaptive interface training concept and its implementation. Chapter 2 first
describes the need of adaptive interface training in high-bandwidth source synchronous
communication systems and then presents two low power novel architecture: Unit-delay
and PI-based PLL architectures [99], [103]. In Chapter 3, a novel buffering algorithm [100]
for reliable low power clock tree is presented. It also describes a novel low power wide
range duty cycle corrector [101], [104] which provides 50% duty cycle for applications like
double data-rate memories. Chapter 4 provides the simulation results achieved in this
thesis. Finally, Chapter 5 concludes the thesis and summarizes the key contributions of
this thesis along with future directions. Appendix A explains the design methodology
[105] used to realize the concepts. Appendix B describes the standard building blocks used
for PI-based PLL adaptive training architecture.

Chapter 2

Source-Synchronous I/O Links: Adaptive
Training

15

16 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

2.1 Introduction

Receiver (RX)Channel (CH)Transmitter (TX)

TX PLL

Reference

Clock
Clock (A)

L Q

TX

LatchMUX Buffer

+

-

Buffer

Buffer

L Q

Q

RX

Latch
De-

MUX

+

-

Buffer

Δtdata

Δtclk

Δtsmp = Δtclk - Δtdata

Figure 2.1: Source-Synchronous Clock Forward (SSCF) link concept.

Many high-speed interfaces e.g. QuickPath Interconnect, HyperTransport interconnect,
XDR Dynamic Random Access Memory (DRAM), GDDR5 DRAM are using a Source-
Synchronous Clock Forward (SSCF) (Figure 2.1) technique to synchronize data and clock by
sending in parallel from transmitter to receiver. The Source-Synchronous Clock Forward
(SSCF) concept could make synchronization less complex at the receiver side as long
as the remaining timing uncertainty ∆tsmp at the receivers sampling latch is negligible.
However, distributed timing recovery concepts as they are used in Gbps data transmission
schemes are suffering from trace-length matching errors, skew, termination variations as
described in section 1.3. These challenging system conditions are increasing the system
cost significantly due to the need of complex synchronization schemes.

CLK CLK

DATA

Adaptive

Training

Figure 2.2: Adaptive Training Concept

2.1 INTRODUCTION 17

The current state-of-the-art handles these issues using adaptive training. Adaptive
training as shown in Figure 2.2 is used to synchronize the skewed data to the forwarded
clock so that the latching of data with respect to clock should be correct and have largest
possible setup and hold time which in turn reduces the possibility of errors in the system.

Chip 1 Chip 2

RX

Synchronization

DATA1

CLK1

DATA2

CLK2

RX

Synchronization
TX

TX

Figure 2.3: High-speed chip-to-chip communication

In high-speed chip-to-chip connection (Figure 2.3), first known data patterns (DATA1,
DATA2) are sent along with the clock (CLK1, CLK2) and at the receiver side, received
data is compared to the known pattern. In case of mismatch between the received data
and known pattern, the clock phase is adjusted at the receiver side using concept similar
to conventional analog CDR (Figure 1.1). In this case, forwarded clocks (CLK1, CLK2)
are used to generate different phases of the clock at the receiver so that the receiver
synchronization circuitry can select the correct phase of the clock based on the phase
detector to sample the DATA (DATA1, DATA2). Once training is complete, system can
start its normal operation.

VPBIAS

VNBIAS VNBIAS

VCTL[15:0]

CLKI CLKI CLKQ CLKQ

OUTN OUTP

VDD VDD

VCTL[15:0]

Figure 2.4: PI example [46]

In general, analog CDR [47, 48, 46] comprise PI based techniques which consumes

18 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

considerable area and power. Figure 2.4 shows a conventional analog PI [46]. The output of
the PI is a weighted sum of input clocks CLKI and CLKQ. VCTL[15:0] are the thermometer
code to control the PI phase-resolution (phase-steps) . As soon as CLK frequency increases,
fine phase resolution is needed to get the proper data-eye. To achieve such fine phase
resolution, large number of VCTL bits are required, which increase the PI area and consume
power exponentially.

Figure 2.5: QuickPath Receiver with two PIs [49]

Figure 2.6: Digital CDR with two PIs [50]

Intel’s QuickPath Interconnect [49] uses two PIs for each lane at receiver side (Figure

2.1 INTRODUCTION 19

2.5) to latch the data properly. The clock outputs from PI0 and PI1 samples the odd and
even data respectively at each falling edge. It eliminates the need of DCC circuit for
incoming data and PI output. The PI training is used to find the center of the received
data.

Loh and Emami-Neyestanak [50] presented all digital CDR (Figure 2.6) and showed
that a digital approach can reduce area, power and complexity in comparison to analog
circuits. The simplified digital CDR can also help to increase the yield of the system. A
simplified calibrated delay line is also used instead of PLL or Delay Locked Loop (DLL)
for generating multiple clock phases, but it uses two PIs for center data-eye and one for
edge-search.

Dan Oh et. al. [51] has proposed full time calibration approach at high-speed where
the timing center drift is tracked periodically. This calibration approach is complex and
may take longer time to converge.

Chip 1 Chip 2

RX

Synchronization

DATA1

CLK1

DATA2

CLK2

RX

Synchronization
TX Skew Control

TX Skew Control

Feedback1

Feedback2

Figure 2.7: High-speed chip-to-chip communication with feedback

Figure 2.8: Intel QuickPath with Receiver Feedback

Another way to increase the efficiency of the synchronization process in adaptive
training is to enable the transmitter chip to control the skew of data or clock based on
synchronization feedback from receiver side (Figure 2.7). This kind of feedback is useful
to track the changes due to PVT variations. Intel QuickPath interconnect [49] uses such

20 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

feedback mechanism to track the voltage and temperature drifts and control per lane
transmitter skew. In Figure 2.8, depending upon the feedback from PI and Variable
Offset Comparator (VOC), global compensation Finite State Machine (FSM) controls the
transmitter skew.

Chip 1 Chip 2

DATA

CLK Phase

information

Synchronization

Scheme
Feedback

Master Slave

Figure 2.9: High-speed Master-Slave communication

For high-speed master-slave communication (Figure 2.9), master chip (transmitter)
takes the full responsibility of data and clock synchronization depending upon feedback
(phase information) from slave chip (receiver). Memory systems use this configuration
where memory controller (master) communicates with single memory (slave e.g. GDDR5)
or memory banks (multiple slaves e.g. DDR3, DDR4). In this case, a lot of area and
power can be saved due to simplified slave chip. Even this concept can be applied to
any chip-to-chip communication system (Figure 2.10) where transmitter keeps the skew
control of the transmitted signal depending upon the phase information at the receiver.

Chip 1 Chip 2

RX

Phase

information

DATA1

CLK1

DATA2

CLK2

RX

Phase

information

 TX

Synchronization

Scheme

 TX

Synchronization

Scheme

Feedback1

Feedback2

Figure 2.10: High-speed chip-to-chip communication in Master-Slave configuration

Researchers have used the same complex CDR circuits for the adaptive synchronization
trainings in all the configurations (Figure 2.3, 2.7, 2.9). In this contribution, with the
feedback information from receiver chip, a digital transmitter synchronization scheme
has been employed to save considerable area and power. With digital scheme, it is less
sensitive to PVT variations, hence increase the system yield.

For simplicity, the example of a GDDR5 system (Figure 2.11) is used which com-
prises a memory controller (transmitter) connected to a GDDR5 memory (receiver) via
channel. From controller side, the channel consists of unidirectional control signals like
ADDR/CMD running at CLK and bidirectional data signals like DQ running at WCK.

2.1 INTRODUCTION 21

Memory

Controller

(GPU)

Memory

(GDDR5)

ADDR

CMD

System CLK (CLK)

DATA

DATA CLK (WCK)

EDC

Figure 2.11: GDDR5 Example [35]

WCK is running at double frequency with respect to CLK. The communication system
may have many other control signals, e.g. scan enable etc. From memory side, the channel
consists of unidirectional EDC, which provides different feedback information depending
on different memory mode settings.

AddressmTrainingmLoop
mmmmmmmmmm(optional)

mmmmmmmmmPowermUp

WCK2CKmTrainingmLoop

READmCDRmTrainingmLoop

WRITEmCDRmTrainingmLoop

StartmNormalmOperation

CMD

ADDR

WCK

DATA

CK

Command Command Command Command

Addr Addr Addr Addr Addr Addr Addr

D D D D D D D D D D D D D D D D D

Addr

Figure 2.12: GDDR5 training sequence [35]

At the GDDR5 memory power up sequence (Figure 2.12), different trainings e.g. ad-
dress training, WCK2CK training, read training, write training are required for proper
read/write operations at a very high-speed (2 Gbps or more). In GDDR5, ADDR is double
data rate i.e. ADDR is send at both positive and negative edges of CLK. ADDR training
is required to find the center of ADDR data at CLK edges. It is optional [35] as this can
be handled at circuit level. Similarly, read/write clock timing training is required to latch
DATA properly with respect to WCK.

The WCK2CK training refers to a defined timing relationship between both clocks
which should be within the timing margin determined by the GDDR5 memory specifi-
cation. During the WCK2CK training, the memory sends back internal phase alignment

22 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

X X X X X X X X X X1 1 1 1 X X X X X X X X X X0 0 0 0

CLK

WCK/2

EDC

WCK early WCK late

CLK

WCK/2

EDC

EDC Delay EDC Delay

Figure 2.13: EDC functionality during WCK2CK training [35]

information to the memory controller via EDC pin. In Figure 2.13, WCK/2 is sampled
at the rising edge of CLK and corresponding result is sent to EDC bits after EDC delay.
If WCK is early, then EDC is ”1111” and if WCK is late, EDC is ”0000”. The controller
can either increment or decrement the phase of WCK based on EDC information. The de-
scribed timing recovery scheme is based on a timing error detector at the receiver (an early
late detector scheme), the feedback path EDC and the loop control plus phase alignment
functionality at the transmitter side.

In this chapter, two novel architectures based on unit-delay incrementer and PI-based
PLL for WCK2CK training are described which save considerable area and power. These
novel architectures are not specific to GDDR5 and can be applied to any high-speed source-
synchronous communication system which uses multiple high-speed clocks, hence needs
synchronization among these clocks.

Memory Controller

 (GPU)
Memory

(GDDR5)
CLK

 PLL
Delay

Divider

(1:2)
180 Flip

Q D

DATA

 PLL

Phase

Detector

Phase

Adjuster

(+/-)

D
R

V
D

R
V

D
R

V
D

R
V

D
R

V

D
R

V

CLK

WCK

EDC

Figure 2.14: Current state-of-the-art [35]

2.2 Current state-of-the-art architecture

In the current state-of-the-art, Figure 2.14 shows the block diagrams how WCK phase is
synchronized with CLK in GDDR5 memory system. Due to different speeds of CLK and
WCK, a separate DATA PLL is used for WCK path. At memory side, CLK path and WCK
path delays are different. CLK path includes driver and compensation delay and WCK

2.3 NOVEL ARCHITECTURES 23

Σ < 2, Σ > 2

[0
]

WCK.EXPECTED

EDC received data

Σ < 2, Σ > 2

[0
]

[1
]

[1
]

[2
]

[2
]

[3
]

[3
]

[4
]

[4
]

[5
]

[5
]

[6
]

[6
]

[7
]

[7
]

PI CounterLoop Filter

Over-Sampler

Phase

interpolator

Majority-Voting

Delayed Clock

(A) Phase-detector

(B) Phase-adjuster

WCK0, WCK90,

WCK180,WCK270

Phase

Information

Figure 2.15: Current state-of-the-art: (A) Phase-detector (B) Phase-adjuster

path includes driver, divider and 180 degree flip (to make WCK and WCK/2 polarity
same). Compensation delay in CLK path only can not guarantee required timing margin
between WCK and CLK at phase detector. Therefore, some control mechanism at the
controller side is required to adjust the phase of WCK.

The feedback EDC pins are asynchronous to the controller since there is no clock or
strobe signal along with the EDC data from the memory. The controller needs to track the
expected time of the EDC data accurately after sending the WCK2CK training commands.
Due to PVT variations, a conventional way for the exact information is to over-sample
EDC data (Figure 2.15(A)). Oversampling is done with respect to different phases of WCK
clock (WCK0, WCK90, WCK180, WCK270) to get multiple samples. After oversampling,
majority voting is used to detect phase information from over-sampled EDC data. Loop-
filter, PI counter with the special coding for PI control and PI itself (Figure 2.15(B)) are
used for phase adjustment. The loop Filter is used to avoid the false result due to the glitch
in the majority-voting circuit and the special coding in the PI counter is used for coarse
and fine phase shift control of PI to achieve faster and accurate phase adjustment.

2.3 Novel Architectures

To reduce area and power, two novel architectures were presented for multiple clock
synchronization. Figure 2.16 shows the first novel architecture based on the unit-delay
circuit where shift registers together with comparator work as a phase detector and unit-
delay circuit performs the phase adjustment functionality. In GDDR5, WCK is free running,
so the timing relation between WCK and CLK can be adjusted in one direction.

At the start of WCK2CK training, EDC is sampled at each positive edge of CLK and
stored in shift registers which are 4 bits wide and have a depth of 3. Assuming WCK is
early, then EDC is ”1111”, after 3 samples, shift register data would be ”1111 1111 1111”.

24 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

Memory Controller

 (GPU)
Memory

(GDDR5)
CLK

 PLL
Delay

Divider

(1:2)
180 Flip

Q D

DATA

 PLL

Shift

Registers

D
R

V

Comparator

Unit Delay

phase

Incrementer

D
R

V

D
R

V
D

R
V

D
R

V

D
R

V

CLK

WCK

EDC

Figure 2.16: Novel Architecture based on Unit-Delay Incrementer

Memory Controller

 (GPU)
Memory

(GDDR5)
CLK

 PLL
Delay

Divider

(1:2)
180 Flip

Q D
Shift

Registers
Comparator

Phase

interpolator

based

 PLL

(+/-)

D
R

V
D

R
V

D
R

V
D

R
V

D
R

V

D
R

V

CLK

WCK

EDC

Figure 2.17: Novel Architecture with PI-based PLL

Since EDC data comes from the memory and it has its own latency which is the sum of
EDC latency defined in the mode register of the memory, channel delay, other receiving
circuit delay. The phase-increment of WCK is done only at these latency intervals. After
some increment when WCK becomes late, EDC data changes to ”0000” and shift register
values become ”1111 1111 0000”, which means early-to-late transition has happened at the
phase detector in the memory and it is the right time to stop the training. A comparator
is needed, which compares this pattern ”1111 1111 0000” to the stored pattern in shift
registers. Once matched, the comparator generates a training stop signal. How closely
WCK and CLK are matched, depends on the resolution of the unit-delay circuit, at which
it increments the phase of WCK clock. In this novel architecture, the WCK phase is only
incremented in one direction until the comparator produces the training stop signal.

In the other novel architecture as shown in Figure 2.17, data PLL can be implemented
as a phase interpolated based PLL that can work as a phase adjuster circuit itself instead
of a separate unit delay circuit. The system utilizes the available PI in PLL for unit
delay increment. The WCK phase can be changed in any one direction (”+ or -”) or both
directions (” ± ”).

2.3 NOVEL ARCHITECTURES 25

2.3.1 Unit-delay phase incrementer

Unit-delay in Figure 2.16 can be implemented by as simple circuits as single transistor
load, inverter or Flip-flop and as complex circuits as a DLL or PI. The tWCK2CK timing
refers to the delay margin of WCK and CLK which can be handled by the memory phase
detector, thereby the delay of unit-delay incrementer circuit should be within the tWCK2CK

specification. GDDR5 specification [52] shows that the delay margin between WCK and
CK at the phase detector is 0.4*tCK. Therefore, for the reference frequency (CLK) of 1.5
GHz, the delay margin should be +/- 266 ps. TSMC 65nm low power library [53] has
many cells e.g. inverter (delay 15ps), buffer (delay 30ps), delay cell (delay 45ps), D
flip-flop (delay 80ps) which can be used as unit-delay incrementer circuit. Figure 2.18
shows 3 custom delay cells designed in TSMC 65nm: voltage controlled buffer, voltage
controlled inverter, transmission gate which can achieve granularity of 28ps, 10ps, 3ps
delay respectively in typical operating condition.

IN OUT

VP

VN

VP

VN

OUT

VP

VN

IN IN OUT

(a) (b)

(c)

Figure 2.18: Custom Delay Cells in TSMC 65nm: (a) Voltage controlled buffer (28ps typ. delay); (b)
Voltage controlled inverter (10ps typ. delay); (c) Transmission gate (3ps typ. delay)

2.3.2 PI-based PLL

Figure 2.17 shows the architecture with PI-based PLL. Many researchers ([54], [55], [56],
[57], [58]) have used DLL or PLL based CDR which includes a phase interpolation method
for fast data recovery. In [57], the authors used high resolution PI-based PLL to achieve
low dithering jitter as well as to achieve precise tracking of frequency modulated input
data. Figure 2.19 shows the detailed diagram of PI-based-PLL [57]. PI can be a simple
multiplexer controlled by comparator output to choose the one of the phases generated by
VCO. As this PI architecture consists digitally controlled circuitry and a multiplexer, it is
mostly immune to PVT variations. If the fine resolution is needed, which is not provided
by VCO, then an analog PI (Figure 2.4) can be used instead of simple multiplexer. In
the PLL feedback loop, divide by 2 is used as WCK is of twice the frequency of CLK.
In Figure 2.19, the phase of WCK can be incremented or decremented depending upon
comparator output. The comparator would have two fixed patterns ”0000 0000 1111” to
detect late-to-early transition and ”1111 1111 0000” to detect early-to-late transition.

A low supply voltage and a wide output frequency range make PI-based PLL design

26 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

PFD VCO

PI
Shift

Register

Com-

parator

/2

D
R

V

Memory Controller

 (GPU)

CLK

 PLL

D
R

V

D
R

V

WCK0WCKN

Figure 2.19: PI-based-PLL [57]

challenging. In order to achieve higher frequencies, the VCO gain has to be increased.
Another factor to increase the VCO gain is the lower filter output voltage due to low supply
voltage. Hence, the gain of the VCO should be as large as feasible with the technology
advancement. On the other hand, the increase in VCO gain makes it more sensitive to the
noise. To achieve low output noise, the loop bandwidth needs to be as small as possible,
which in turn makes the system response too slow. Hence, in a single loop PLL architecture
a compromise between responsiveness of the system and output noise is needed. This
compromise can be avoided by using DLPLL architecture instead of single loop PLL
architecture. One loop with narrow bandwidth and high gain is called coarse-loop and
other loop with wide bandwidth and low gain is called fine-loop. The coarse-loop with
narrow bandwidth reduces the noise, therefore the gain can be increased. The fine-loop
with a wide bandwidth generates a large noise on the output, hence, the gain has to be very
small. The DLPLL architecture has advantages of fast lock-in due to the large coarse-loop
bandwidth and low output noise due to the narrow fine-loop bandwidth.

Figure 2.20: DLPLL architecture [59]

2.3 NOVEL ARCHITECTURES 27

Williams et. al. have described the DLPLL architecture [59] as presented in Figure 2.20.
The advantages delivered by the DLPLL architecture are a higher output frequency at
the lower supply voltage, and, as shown by [60] a lower output jitter than an equivalent
single loop topology. It is composed of the same components of a CP PLL but there is an
additional integrator and VCO is controlled by two voltages instead of one. This forms
two different loops: coarse loop and fine loop, which are correlated.

As described in Figure 2.17, PLL architecture should also include PI for multiple
source-synchronous clocks synchronization technique. Hanumolu et. al. has described
a CDR architecture utilizing such PI-based PLL [57] shown in Figure 2.21. It employs a
∆Σ modulator to suppress quantization noise by generating extremely small phase steps.
A Phase Selector (PS) is used to select phases in the PLL. Basically, the PS is switched at
high frequency by the ∆Σ modulator which varies the output frequency until the optimum
phase to sample the data is achieved.

Figure 2.21: PI-based PLL in CDR architecture [57]

The PI-based PLL architecture (Figure 2.22) combines the advantages of PLL architec-
tures shown in Figure 2.20 [59] and Figure 2.21 [57]. VCO is implemented by a combination
of Voltage-to-Current (V2I) converters and a Current Controller Oscillator (CCO) which
are described in details in Appendix sections 2.2.4 and 2.2.5 respectively.

Coarse loop in Figure 2.22 has the following transfer function:

GC(s) =
Kc

s
Icp

N
1

s2C2RzC1 + s(C1 + C2)
Gm

sCI

ωc

s + ωc
(2.1)

where Kc is the VCO coarse loop gain, Icp is the CP current, N is the frequency division
ratio, C2, C1 and Rz1, Rz2, Rz3 are the capacitances and resistors of the filter, as shown in
Figure 2.22, Gm is the transconductance of the OTA, CI is the integrator capacitance and ωc

is the pole frequency of the coarse loop V2I converter. This loop has the function to set
the output frequency, therefore a high coarse-loop gain is necessary to cover the output
frequency range. To minimize the noise at the VCO input, its bandwidth is designed much
smaller than the system bandwidth.

Fine loop in Figure 2.22 has the following transfer function:

28 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

Figure 2.22: PLL architecture utilized in this design.

GF(s) =
K f

s
Icp

N
sRzC1 + 1

s2C2RzC1 + s(C1 + C2)
ω f

s + ω f
(2.2)

where K f is the VCO fine loop gain and ω f is the pole frequency of the fine loop V2I
converter. This loop has a bandwidth equal to the system bandwidth. To minimize the
noise at the VCO input, the gain is designed very small in this case. The final open loop
transfer function is given by the sum of the transfer functions of the coarse loop and fine
loop.

In Figure 2.23 the fine loop, the coarse loop and the open loop transfer functions are
displayed. The coarse loop gives the larger contribution at lower frequencies while the
fine loop affects the high frequency part of the bandwidth of the system. Hence, the fine
loop determines the phase margin and the bandwidth of the system. As reported by [59]
and [60], the system has to be designed in such a way that the coarse loop does not affect
the fine loop bandwidth or phase margin. Therefore, the crossover frequency, i.e. the
frequency at which the fine loop becomes dominant on the coarse loop, has to be designed
at a frequency much lower than the zero introduced in the fine loop by the loop filter. This
can be achieved only by reducing the coarse loop gain. Since the VCO coarse loop gain Kc

has to be as large as possible, the ratio between Gm and CI has to be minimized.

2.3.2.1 Functioning of the system

Figure 2.24 shows the step-response of DLPLL and a first order system which have the
pole frequency equal to the PLL bandwidth. The error between them is within 20%. In
system simulations, the controller switches the VCO output phase depending upon the
system delay. The delays are shown in Table 2.1.

The delmem CLK path includes transmitter driver, receiver driver, channel delay, custom
delay blocks. The delmem WCK path includes transmitter driver, receiver driver, channel
delay and divider. The delEDC path includes EDC delay, transmitter driver, receiver driver,
channel delay, shift registers and comparator.

2.3 NOVEL ARCHITECTURES 29

Figure 2.23: Bode-plot of the fine loop, coarse loop and open loop transfer functions.

Table 2.1: Propagation delays inserted the system.

path delay (ps)

delmem CLK 4197

delmem WCK 2730

delEDC 7597

delTOT = delEDC + delmem WCK + 2 ∗ tCLK (2.3)

Equation 2.3 shows the total system delay which is needed to update VCO output
phase. Considering the worst case scenario, 2 clock periods are added due to the unknown-
phase relationship between the rising edge of mem WCK or EDC and the sampling clock.
In case of 1GHz CLK, del TOT will be 12.327 ns. As VCO output phase will be updated in
the span of short time, the system response can be approximated with first order system.

30 CHAPTER 2 SOURCE-SYNCHRONOUS I/O LINKS: ADAPTIVE TRAINING

Figure 2.24: step-response.

The amplitude of the first order response after τ seconds is approximately equal to the
63.2 % of the final value of ∆phase. For a 4 phase system, ∆phase is 90◦ and in case of a 8 phase
system, ∆phase is 45◦.

delay rate =
∆phase ∗ (1 − e−1)

τ
(2.4)

The time constant of the dominant pole of the system is inversely proportional to the
bandwidth of the PLL, which is equal to:

τ =
1

2π fBW
(2.5)

The delay rate of the system is given by the phase change during the τ. Therefore, the
peak error can be derived by multiplying the delay rate and del TOT.

∆error = delay rate ∗ delTOT (2.6)

From Equation 2.6 can be inferred that the slower the response of the PLL, i.e. the
smaller the bandwidth of the PLL, the smaller the maximum error. Another improvement

2.4 CONCLUSION 31

can be delivered by increasing the number of phases, since a smaller step causes a smaller
delay variation.

Table 2.2: Theoretical worst case error for the different configurations at 2 GHz WCK.

phases bandwidth (MHz) Worst case error (ps)

4 10 61.16

4 6.4 39.14

8 10 30.58

8 6.4 19.57

Table 2.3: Theoretical worst case error of 5GHz WCK configuration.

phases bandwidth (MHz) Worst case error (ps)

4 6.4 11.14

Table 2.2 and Table 2.3 shows the theoretical results based on equations 2.3-2.6.

2.4 Conclusion

In this chapter, two novel architectures based on unit-delay incrementer and PI-based
PLL are described for high-speed communication systems consisting of multiple source-
synchronous clocks. The unit-delay incrementer circuit can be implemented using the
custom delay techniques depending on the technology characteristics. The PI-based PLL
architecture can be used for the phase delay control of data clock which avoids the need of
extra time required by the unit-delay incrementer based architecture due to uni-directional
phase change, but this advantage comes at the expense of addition complexity which leads
to more area and power.

Chapter 3

Source-Synchronous I/O Links: Clock
Skew and Duty Cycle

33

34 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

3.1 Clock Skew

For high-performance synchronous circuits, well-designed clock-trees that fulfill various
constraints (skew, slew-rate, power) are necessary. As the demand for higher performance
increases and the technology scales down, the clock-tree synthesis has to be performed at
higher frequencies and under larger process variations while consuming the least possible
amount of energy. Going to higher frequencies lowers the acceptable levels of clock-skew
(3-4% of the clock period) and slew-rate (10% of the clock period) significantly. Therefore,
the impact of process variations on these parameters plays a critical role. In source-
synchronous systems, many parallel data are transmitted together with the clock and the
clock skew directly affects the skew among different data. If clock skew is beyond the
given specification, the data skew will also be out of specification. Therefore, a clock-tree
design is critical for any high-speed source-synchronous system.

For clock-tree design, the basic question is the choice of topology. While mesh structures
are almost exclusively used in industry due to their robustness against process and design
variations [61], the recent ISPD 2010 [62] contest has shown that the tree topology has
its own advantages. Due to the simpler structure and easier mathematical problem
description of the tree topology, it allows good prediction and fine-tuning and as such, it
was shown to be more efficient than the mesh topology in the contest.

The construction of a clock-tree generally consists of multiple steps beginning with a
topology generation and an initial clock-tree. In the next step, buffers are inserted into
the clock-tree. This step is very important, as the buffers control the susceptibility against
process variations, but also increase the overall power consumption. While academia
extensively studied the clock buffering problem, the industry is seeking fast and scalable
solutions that are highly power efficient.

A fast buffering algorithm is presented in this chapter that reduces the number of
inserted buffers, while meeting skew and slew specifications. Specific contributions
include:

• Estimating susceptibility to process variations as the first step and then buffering the
clock-tree accordingly

• Generation of solution options during buffering that have low clock-skew to reduce
post-buffering optimization

• High scalability by reducing the run-time complexity of buffering to O(n)

• Power reduction of on average 14% with respect to the best known clock-tree for the
ISPD 2010 benchmarks.

• Slew-rate dependent delay estimation for higher accuracy

3.1.1 Background

The overall workflow of the clock generation algorithms is shown in figure 3.1. The
workflow begins with an algorithm to create a clock topology from a given set of sinks. In

3.1 CLOCK SKEW 35

Topology Generation:

Balanced Bipartion

Initial Clock Tree:

Deferred Merge Embedding

Buffer Insertion

Van Ginneken Slew based buffering Combined Approach

Delay estimation

Slew estimation

ngSpice simulation Elmore delay estimation

Skew Optimization:
Local Slack Optimization

Figure 3.1: Overview of the clock generation

this case, the algorithm for topology generation is the Balanced Bi-partition [63] algorithm.
In essence, this algorithm divides a set of sinks into two subsets that have equal capacitance.
Of all subsets that satisfy this condition, the solution with the smallest cost (which is
defined as the diameter) is chosen.

Then, an initial clock-tree is created by using the Deferred-Merge Embedding (DME)
algorithm [63]. This clock-tree is a zero-skew clock-tree. By using a linear delay model,
optimum wire-length can be achieved but it is exhaustive. On the other hand, by using
the Elmore-delay, a good heuristic solution can be achieved. The algorithm computes the
clock-tree in two phases, by first finding all possible placements of nodes in a bottom-up
phase and then placing the nodes in a top-down phase.

For the buffer insertion, three algorithms are considered: The Van Ginneken [64]
algorithm, the Slew based buffering [65] and the combined buffering approach.

36 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

In Van Ginneken’s algorithm, a clock-tree of tree topology is buffered for minimum
source-to-sink delay in two stages. The option with number k at node n is defined as the set
Optk,n = {treq,n,Csub,n} of required arrival time treq,n and subtree capacitance Csub,n at node n.
The required arrival time at every node is defined such that the clock arrives at the sinks
at t = 0. Typically, each node has multiple options, representing the different buffering
choices. By recursively computing these options in a bottom-up phase and pruning inferior
ones, a set of options for the root-node of the clock-tree is computed. From this set of
options at the root-node, the algorithm chooses the one that minimizes the required arrival
time treq and hence minimizes the source-to-sink delay. In a top-down phase, this option is
then implemented at every node. This buffering technique might use abundant amounts of
buffers, as the only target is to achieve minimum delay from source to sink, and therefore
is not power-efficient. Nonetheless, variations of this technique are effectively employed
by researchers on clock-tree synthesis [61, 45, 44].

In the algorithm developed by Hu et. al. [65] the clock-tree is buffered to achieve a given
slew-rate specification with minimum buffering. The clock-tree is processed similarly
to Van Ginneken’s algorithm by bottom-up iteration of nodes and selecting options that
satisfy the slew-rate specifications. Finally, the solution with least cost (e.g. number of
buffers or area) is implemented.

Accurate estimation of the slew-rate consists of two main steps: Estimating the slew-
rate degradation along a wire and the slew-rate at the output of a buffer. To iterate a tree,
the options for two sub-trees must also be merged at internal nodes. To guarantee that
the worst-case slew-rate is below the specification, the maximum slew-rate of these two
options is chosen.

The estimation of slew-rate degradation tslew,w along a wire w is given in equation 3.1
which is based on Bakoglu’s metric [66]. It gives an estimate for the increase in slew-rate
depending on the Elmore-delay of the wire.

tslew,w = ln(9) ∗ telmore,w (3.1)

The slew-rate at the output of a buffer at node v is proportional to the load C(v), a
proportionality constant Rb and an intrinsic slew-rate Kb, as given in equation 3.2. Both Rb

and Kb are characteristics of a buffer and can be determined through SPICE simulations.

tslew,b = C(v) ∗ Rb + Kb (3.2)

In the combined buffering approach, both skew and slew are considered in the con-
strains from the beginning. After buffering, local skew optimization by the means of local
clock slack optimization is applied as described in 3.1.2.5, to fine-tune the clock-tree with
regard to process-variations and local clock skew. In this phase, wire-snaking and delay
buffering are used to balance the clock-tree based on Elmore-delay or Spice simulations.

3.1.2 Power optimized buffering

The target of automated clock-tree generation is the creation of a buffered clock-tree that
satisfies the slew-rate and clock-skew specifications with minimum power consumption

3.1 CLOCK SKEW 37

Unbuffered

Clock-tree

Determine buffering

positions

Adjust Topology

Determine PVT susceptibility

Create options in

Bottom-Up phase

Choose buffer sizes and

buffer count boundaries

Choose option

at root

Implement option

in top-down phase

Run optimization

Simulate PVT

variations

Specifications

achieved

Optimized buffered

clock-tree

Increase boundaries

True

False

Figure 3.2: Flowchart

and area usage. In this problem specification, buffers play the main role, as on one hand,
buffer sizing and placement can improve timing quality, but on the other hand, each added
buffer also increases power and area of a circuit.

38 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

The main steps of this buffering approach are shown in Figure 3.2. These are:

• Pre-buffering estimation of the least amount of buffers and adequate buffer sizes
based on process knowledge

• Creating and extending possible points of buffer insertion

• Skew oriented buffering algorithm

• Iterative choice of a solution until targets for skew, slew and buffer number are met

3.1.2.1 Preparing the clock-tree

Before the buffering of the clock-tree can begin, suitable buffering positions in the clock-
tree have to be determined. In this implementation, placement of buffers in the initial
clock-tree is possible at each distance dplacement. Additionally, each node with two child
branches can be buffered at three positions as shown in figure 3.3: Directly at the node,
or at the top of the branches. The latter is especially important for clock-skew tuning
described in section 3.1.2.5. In that section, wire snaking is one of the methods to change
the delay characteristics of a source-to-sink path. To allow wire snaking without affecting
other nodes in the clock-tree, the wire segment where wire-snaking is used has to be
directly buffered.

Figure 3.3: Adjustment of the tree topology prior to buffering

3.1.2.2 Pre-Buffering PVT evaluation

The effect of PVT variations can have a severe impact on the clock-skew and slew-rate,
as cells and metal layers behave differently than assumed in the clock generation. To
be able to handle process variations without a large power overhead, these variations
are considered as early as possible in the clock generation flow. This algorithm uses
existing knowledge of the given technology and the range of expected process variations
to determine how strongly, the clock-tree will be affected by variations.

3.1 CLOCK SKEW 39

The estimation has three requirements: Knowledge of the technology, understanding
of the circuit, and minimum post-buffering optimization. Knowledge of the technology
comes not only from accurate knowledge of process parameters, but has to come through
repeated buffering at that technology. In the agile development model, clock buffering
has to be performed repeatedly because of the continuous floor plan and placement
changes. Therefore, such parameters can be accurately modeled without additional cost.
Understanding of the circuit determines the estimated susceptibility to process variations
depending on circuit properties such as number of sinks, capacitances, and circuit sizes.
For this algorithm, a simple characterization based on Elmore delay estimation after the
initial clock-tree is used.

The pre-estimation based on the initial clock-tree directly leads to the requirement of
least amount of post-buffering optimization. If pre-estimation is not considered then wire-
snaking and similar techniques for optimization will lead to the change in the topology
and it deviates the actual circuit properties from those initially expected. Therefore, it is a
key achievement that this buffering algorithm requires only little tuning.

Depending on this estimation, possible buffer-sizes and a projected minimum amount
of required buffers are chosen. To illustrate this further, benchmarks 4 and 5 from the
ISPD 2010 contest [62] are chosen, which are also used for evaluation in section 4.2. Based
on fast Elmore delay calculations, it is possible to determine that the initial clock-tree is
much more susceptible for benchmark 4. As this benchmark also has a large number of
sinks, the technology based minimum buffer estimation was 2200. In benchmark 5, the
observed variation of the initial tree is much lower, which lead to a technology based buffer
estimation of 1500. With the techniques described in subsection 3.1.2.3 and in section 3.1.3,
the buffering algorithm finally leads to a solution with 2340 and 1659 buffers, respectively.
In this case, the buffer is constructed with 15 or 33 parallel inverters together based on the
buffer strength requirement against variations. These characterizations can be extracted
from a mapping generated after a multiple buffering runs.

The algorithm will buffer the clock-tree with at least the specified buffer count. If
the minimum buffer limit is chosen too high or the buffer sizes are too large, the power
consumption will not be minimized. Choosing very low values for the minimum buffer
count will lead to more computation time, as the algorithm will have to process the
clock-tree in multiple iterations due to large clock-skew. Despite this minor difficulty,
estimating the susceptibility of the clock-tree before buffering has the major advantage that
the buffered clock-tree will already have a natural resistance against process variations
and will not require excessive tuning in later stages. This directly relates to reduced power
consumption and required area. Furthermore, this will reduce the amount of iterations in
the post-buffering optimization stage described in subsection 3.1.2.5, which will greatly
reduce the computation time.

3.1.2.3 Buffering with clock-skew and slew-rate specifications

Once the appropriate buffer sizes are chosen, the clock-tree can essentially be buffered
similar to Van Ginneken’s algorithm [64] or Hu’s algorithm [65]. In a bottom-up phase, a
limited number of viable buffering solutions are determined for each node. These solutions
are characterized by low bottom-up skew and delay. Every solution is linked to its child

40 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

solutions and together, they represent one possible buffering of the whole subtree rooted
at that solution. A buffering solution is defined with index k at a node n as

Solk,n = {Csubtree,W,B, tslew, treq, tskew} (3.3)

which reflects the following parameters:

• Sub-tree capacitance Csubtree and weight W of the solution (e.g. ratio of power con-
sumption or area to a minimum size buffer)

• Buffer type B (zero-type if no buffer is present)

• Slew-rate tslew and required-arrival time treq at the node when using this option

• Accumulated clock-skew tskew

A solution Solk,nsink for a sink-node nsink is created from the subtree-capacitance of the
sink and initializing clock-skew, slew-rate, weight and buffer-type as zero-values:

Solk,nsink = {Csubtree,nsink , 0, 0, 0, 0, 0} (3.4)

A node is called merging-node nmerging if it has two child-nodes n1 and n2, since these
two branches have to be merged in the bottom-up process. Each of the child nodes n1 and
n2 has a set of solutions, SSol,n1 and SSol,n2. The minimum skew min(δskew) between any two
compatible solutions of SSol,n1 and SSol,n2 is calculated by iterating both sets. The imple-
mentation uses a maximum δskew,acceptable to define an acceptable level of introduced skew at
each node. If it is chosen too small, this constant will harm the generated output, since too
many options are pruned. A very large value also makes the whole skew consideration
redundant and thereby the computation time. In this evaluation, δskew,acceptable = 2 ∗min(δskew)
with a lower bound of 10ps performed well. In practice, good values for the respective
technology can easily be found by starting with a high value of δskew,acceptable and then,
iterative reducing it until run-time goals are met.

In an iteration of both sets, all solution pairs that have less than δskew are merged to
form a new solution Solk,nmerging . This is described in equations 3.5, 3.6, 3.7. The new tskew is
found by calculating the local clock skew in a nested iteration of both sets.

Csubtree,nmerging = Csubtree,n1 + Csubtree,n2 (3.5)

Wnmerging = Wn1 + Wn2 (3.6)

tslew,nmerging = max(tslew,n1, tslew,n2) (3.7)

New options for the parent-node are generated by adjusting the parameters of all
options at node n by taking the wire-delay, slew-rate degradation and wire-capacitance
into account:

Csubtree,p = Csubtree,n + c ∗ l (3.8)

tslew,p = tslew (3.9)

3.1 CLOCK SKEW 41

3.1.2.4 Polarities

The original buffering algorithm by Van Ginneken considers only non-inverting buffers.
In some publications [44], buffers are added at the root of inverted trees to change the
polarity where required. In [44], the authors propose to handle polarity mismatches by
inverter insertion, as the skew introduced by new inverters can be fixed by downstream
optimization. However, the effect of optimization on run time and power can be significant
and algorithmic consideration has to be taken into account for favorable results. In this
implementation, each option has an additional bit for the polarity. When buffering with
an inverting buffer, this bit is inverted. When merging two branches at a node, only those
options that have equal polarity can be merged. Similarly, only solutions of the same
polarity are considered for purging.

3.1.2.5 Post-Buffering Optimization

The buffering algorithm described in this chapter provides a buffered clock-tree that has
low clock-skew and was inherently built for PVT resistance. This results in two very
important and useful implications for post-buffering optimization:

• As the clock-skew is already low, we do not require extensive optimization af-
ter buffering as seen in other publications that use Van Ginneken’s algorithm for
buffering. Less optimization in this context directly implies less capacitance, as the
wire-length that would be used for wire-snaking is saved and fewer buffers are
inserted at this stage.

• Low initial skew means that this post-buffering optimization requires fewer simu-
lation iterations, which is crucial as the simulations (e.g. SPICE) require extensive
processing and are the main component of used CPU-time.

The flow of clock-tree tuning after buffering is shown in figure 3.4. As an early step,
the slew-rate of all nodes is calculated based on Bakoglu’s metric [66] as described in [65].
This is very important in the following steps, as it allows to precisely estimate the delay of
wires and buffers, which further reduces the amount of iterations. Then, groups of sinks
that are local, i.e. all within a specific distance of each other, are iterated and the slack is
determined, similarly to [44]. The slack of node k of local set S is given by equation 3.10.

tslack(k) = maxn∈S{tdelay(n)} − tdelay(k) (3.10)

The slack denotes the amount of delay that should be added to the delay of sink k to
balance the delay within local set S. The delay of sinks can either be determined by
estimation with the Elmore-delay and consideration of slew-rate, or with simulation. In
evaluations, Spice simulation is used for more accurate results.

Once the slack is determined for every sink, the slack at intermediate nodes is calculated.
If the node has only one child node, the slack is equal to the slack of the child-node.
Otherwise, the slack is the minimum of both child slacks and represents the common delay
that can be added to both lower subtrees without either of them exceeding the maximum
delay within the local group. As the optimization concentrates on connections between

42 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

Determine slew-rate

at all nodes

Determine local clock-slack

Determine clock-slack

of intermediate nodes

Determine clock-slack

of edges

Top-down iteration

of connections

Slack

balanced
Insert buffer

handled

all nodes

Buffered

Clock-tree

Finished Buffering &

Optimization

Balance slack by

moving parent node

Wire-snaking

Connection

is buffered

Buffering

Successful

Perform mini

wire-snaking

False False

True True

TrueFalse

True False

Figure 3.4: Flowchart of the post-buffering optimization of the clock-tree to achieve clock-skew
constraints

nodes, the slack of edges has to be determined. The slack of a connection tslack(k, v) is
defined to be the difference of the slack of the lower node v and the slack of the higher
node k:

tslack(k, v) = tslack(k) − tslack(v) (3.11)

3.1 CLOCK SKEW 43

Then, the delay is iteratively balanced. The following scheme is used for this purpose: If a
connection is buffered, then the wire-snaking technique is allowed. Theoretically, wire-
sizing may also be employed, but our implementation does not consider this technique as
wire-sizing techniques can lead to practical difficulties [44]. If the connection is not buffered,
using wire-snaking will also affect the delay of surrounding nodes that have a common
ancestor with the upper node of this connection. Therefore, the algorithm calculates
whether it is possible to add a buffer without changing the upstream capacitance. If this is
possible, the buffer is inserted. Otherwise, mini-wire-snaking is employed by drastically
reducing the amount of slack at the node by multiplying the computed slack value by
a reduction factor and then employing wire-snaking based on the reduced slack targets.
This will lead to higher overall delay, but helps to handle situations where the buffering
algorithm gets stuck at a sub-optimal solution because no connection can be adjusted.

3.1.3 Scalability

The novel buffering algorithm does not only achieve the best results for a buffered-clock-
tree, but is also highly scalable and faster than comparable algorithms. As described in
[67], scalability is an increasingly important problem in clock-tree synthesis.

Compared to Van Ginneken’s buffering algorithm [64], this algorithm directly tar-
gets slew-rate and clock-skew. The computational complexity reduction and run-time
improvements of this algorithm can be divided into two categories:

3.1.3.1 Improvements because of better clock-skew

As the algorithm leads to a buffered clock-tree with low clock-skew, the amount of opti-
mization required after buffering is very limited.

In the evaluation, clock skew after buffering was around 13−18ps, which greatly reduces
the amount of optimization iterations in comparison to Van Ginneken algorithm, which
typically lead to skew larger than 30ps. This is particularly important, as the optimization
iterations require costly SPICE simulations and may ultimately lead to increased wire
length and power overhead due to wire-snaking and additional delay buffers.

3.1.3.2 Improvements within the algorithm.

The key improvement with regard to Van Ginneken’s algorithm is the reduction of com-
plexity. Given B possible buffering positions, Van Ginneken’s algorithm leads to B + 1
solutions at the root of the tree and because of repeated iterations a general complexity is
order of O(B2). This algorithm uses an adaptive heuristic to drastically reduce the amount
of solutions by heavily constraining the solutions while maintaining excellent solution
quality as shown in section 4.2. By adaptively adjusting buffer-number, capacitance, delay
and slew limits, the amount of solutions at every node can be bounded by a constant
ksol. Instead of calculating and iterating many thousand solutions at each intermediate
node, the novel algorithm computes only at most ksol solutions per node. Therefore, the
bottom-up phase has a complexity of O(ksol ∗ B) resulting in linear complexity with respect

44 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

to the amount of buffering positions. The top-down phase is a simple iteration of all
buffering positions and therefore also has linear time complexity, resulting in overall linear
complexity.

Algorithm 1 Purging algorithm.
Require: SolutionList
Ensure: worstSolution
δmin = 0;
Solution worstSolution;
for all Solution s1 in SolutionList do

for all Solution s2 in SolutionList do
if s1.polarity , s2.polarity then

continue;
end if
δ = pd(s1.capacitance, s2.capacitance) ∗ wc;
δ+ = pd(s1.skew, s2.skew) ∗ wskew;
δ+ = pd(s1.rat, s2.rat) ∗ wrat;
δ+ = pd(s1.weight, s2.weight) ∗ wweight;
δ+ = pd(s1.slew, s2.slew) ∗ wslew;
if δ < δmin then

δmin = δ;
worstSolution = s2;

end if
end for

end for

In Algorithm 1, the pseudo-code is shown for a simplified purging process to effectively
delete a solution from the SolutionList at a buffering position. In a nested iteration of the
solution list, the minimal difference between any two solutions is calculated. For this
purpose, a method pd(k1, k2) is used that computes the percentage difference between two
numbers k1 and k2 as shown in equation 3.12.

pd(k1, k2) =
abs(k1) − abs(k2)

max(abs(k1), abs(k2))
(3.12)

The weights for capacitance, skew, required arrival time, buffer weight and slew rate are
wc, wskew, wrat, wweight, and wslew respectively. These weights reflect the importance of a fine
granularity for the specific parameter. They have to be chosen with respect to the actual
application domain. In a typical implementation, skew and required arrival time would be
assigned high weights, because even minor differences can be highly important. However,
the buffering would not be assigned a high weight wweight, because small differences do
not have a high impact on power consumption and therefore, it is acceptable for the buffer
count to have coarse granularity. Table 3.1 shows an example of weights chosen for the
evaluation. In actual implementation, dynamic programming can be employed to fasten
the purging algorithm and purge all overhead nodes at the same time.

3.2 DUTY CYCLE 45

Table 3.1: Weight parameters for controlled solution pruning

Parameter Value

wc 3

wskew 5

wrat 5

wweight 1

wslew 1.5

3.2 Duty Cycle

In high-speed source-synchronous systems, along with a strict clock skew requirement, a
duty cycle (on time per clock period) of 50% is also required to have a good setup and hold
timing margin. Systems (e.g. DDR3, GDDR5, XDR) which work on both rising and falling
edges of clock have stringent requirement of 50% duty cycle because a duty cycle error of
5% may lead to 10% performance degradation. Multi-phase clocking systems also require
symmetrical wave shapes which demand a precise 50% duty cycle [68]. Furthermore, the
clock distribution with different components like buffers and inverters, deteriorates the
clock duty cycle due to PVT variations, inaccurate modeling etc.

In [69], the authors compared an analog DCC with a digital DCC. Analog DCC (Figure
3.5) uses the voltage mode correction technique. In the feedback path, clamp and integrator
covert the duty cycle error into differential voltage. In the forward path, the duty cycle
corrector uses resulting differential voltage of the feedback path to adjust the rise time and
fall time of the input clock to achieve 50% duty cycle.

Digital DCC (Figure 3.6) uses the current mode correction technique. In the feedback
path, integrator (CP), pre-amplifier, comparator and FSM convert duty cycle error into digi-
tal up/down bits. In the forward path, the duty cycle corrector controls the programmable
current source/sink using up/down bits which in turn control the bias point of the inverter
to correct duty cycle.

Analog DCC provides more accuracy in the feedback path while digital DCC is more
suitable for low voltage applications and can provide wide duty correction range. The
result in [69] shows that digital DCC works at 6.4 Gbps data-rate (3.2 GHz clock frequency)
for ±10% input duty cycle error.

In [70], the authors utilize a binary search algorithm with Successive Approximation
Register (SAR) to control the duty cycle adjuster. The duty cycle adjuster controls the duty
cycle by delaying the rising/falling edge of the input clock based on SAR control bits.
However, this DCC works for 300 MHz - 1 GHz range which cannot be applied to high
frequency range applications such as GDDR5 and XDR.

In [71], [72], [73], the authors considered digital DCC techniques which work for wide
input duty cycle range (10%-90%) and achieve 1 GHz - 2 GHz operating frequency at 1.8
V power supply. In [74], the authors used dual-loop DCC architecture which works for 1
GHz -2 GHz at 0.9 V - 1.4 V power supply and handles 25% -75% input duty cycle range.

46 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

+

+

-

-

+

-
Integrator

Duty Corrector

Clkp

Clkn

Vcn Vcp

Duty Detector

Cko

Ckob

Clp

Cln

Buffer

Clamp

outp

outn

+/- 5% Duty

cycle error +/- 1% Duty

cycle error

Figure 3.5: Analog DCC [69]

Clkp

Clkn

Ckop

Ckon

Outp

Outn

mclk

Moutp

Moutn

Vcp

Vcn

Up/Dn

n-bits

Duty

Corrector

Clock Buffer

MUX Buffer

Integrator
Pre-amp +

Comparator F
S

M

m
-t

o
-1

 M
U

X

∫

Figure 3.6: Digital DCC [69]

In [75], the authors used hybrid feedback (digital as well as analog) to achieve better
loop stability and wide input duty cycle range (± 30%). This hybrid DCC works from 0.5
GHz - 2 GHz operating frequency range at 1.8 V of power supply. Similarly, in [76], the
authors also used mixed techniques where the coarse correction is done by a half cycle
delay line and the fine correction is done by analog feedback. They have achieved 200
MHz - 2 GHz operating frequency for ± 30% input duty cycle range at 1.2 V power supply.

In [77], the authors proposed all digital non-feedback duty cycle corrector which
includes a delay unit based on precharge logic gates. This DCC works for 400 MHz - 2
GHz operating range and 20% - 80% input duty cycle range at 1.8 V power supply.

In [78], the authors presented all digital duty cycle corrector with pulse-width detector.
This DCC can handle 10% - 90% input duty cycle error and can work for 100 MHz - 3.6
GHz operating frequency at 1 V power supply. In [79], the authors demonstrated wide
range duty cycle corrector specifically for GDDR5 SDRAM which can handle ± 100 ps
input duty error for 800 MHz - 3.5 GHz at 1.5 V power supply. It uses an anti-harmonic
asynchronous binary search (ABS) circuit for fast correction.

In [80], the authors proposed a mixed signal DCC which consists of a control stage,

3.2 DUTY CYCLE 47

a buffer stage and a gain boosting CP. This simple DCC architecture works for wide
frequency range (20 MHz - 2.5 GHz). For low frequency range (upto 800 MHz) at 1.3 V, it
can handle 1% - 99% input duty, while at high frequency (GHz), 20% - 80% of input duty
can be handled at 1.8 V power supply. The main limitation of this DCC architecture is
that the power supply has to be increased at higher frequencies from 1.3 V to 1.8 V due
to the cascode structure of the charge pump. Furthermore, the output duty cycle can not
be corrected beyond 2.5 GHz. Due to the simplicity of this DCC architecture with wide
frequency and input duty cycle range, this architecture has been investigated in details to
overcome its limitations.

Vctrl

Control Stage

Buffer Chain

Charge pump

Ckout

Ckin Vctrl
Ip

In

Figure 3.7: Mixed-signal DCC [80]

3.2.1 Circuit structure of the considered DCC

Figure 3.7 shows the circuit architecture of the considered DCC [80] which consists of three
stages: The control stage, The buffer chain, The charge pump. The control stage is a simple
push-pull structure where charging and discharging path are controlled by Vctrl (analog
voltage). Depending upon the Vctrl level, the duty cycle of the input clock (Ckin) increases
or decreases. This push-pull structure leads to faster locking time as it adjusts the rising
and falling simultaneously and doubles the gain. The buffer chain is the classical inverter
chain which is used to make the output of the control stage rail-to-rail. Figure 3.8 shows
the gain boosting CP. Current sources implemented by MP4 and MN3 transistors isolate
Vctrl from the Ckout to reduce the coupling effect, hence there will be less ripple on Vctrl
which leads to less jitter.

Figure 3.9 shows the loop analysis of the DCC (Figure 3.7) where KCS is the sensitivity
of the control stage, KBC is the gain of the clock buffer chain, KCP is the gain of charge
pump, Wout is the target pulse width of the output clock signal and Win is the pulse width
of the input clock signal. R and C are the equivalent output resistance of the charge pump
and the output capacitance of the charge pump respectively. τ0 is the time constant.

48 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

Bias Circuit

Vctrl

Ckout

CkoutMP1

MP2

MN1

MN2

MP3

MP4

MN3

MN4

Current
Source

PMOS
Switch

NMOS
Switch

Figure 3.8: Gain-boosting CP [80]

KBC
KCP

R
1 + s 0

KCS

+Win

Wout-

Figure 3.9: Loop Analysis [80]

F(s)|closed =
H(s)

1 + H(s)
=

KA
1+KA

1 + s
W0(1+KA)

; (3.13)

KA = KCSKBCKCPR; (3.14)

W0 =
1

RC
; (3.15)

Eq. 3.13 shows the closed loop transfer function of Figure 3.9. With the single pole, the
circuit is unconditionally stable. From Eq. 3.14 and Eq. 3.15, the parameters W0 and KA

are dependent on R. As the gain bandwidth product is constant for the control loop, R has
to be decreased to reduce the open loop gain KA and to increase the loop bandwidth.

In Figure 3.8, R is mainly dependent on current sources (MP4 and MN3) as MP3 and
MN4 transistors work as simple switches which will be on and off depending on Ckout.

3.2 DUTY CYCLE 49

To increase the bandwidth (to decrease R), sizes of MP4 and MN3 transistors have to be
increased.

3.2.2 Novel Architecture with programmable charge pump

600

610

620

630

640

650

660

670

680

690

3GHz 4GHz 5GHz

V
ct

rl
 (

m
V

) 30%

40%

50%

60%

70%

Figure 3.10: CP characteristics simulated in TSMC 65nm for 3 GHz - 5 GHz

Bias Circuit

Vctrl

Ckout

CkoutMP1

MP2

MN1

MN2

MP3

MP4

MN3

MN4

Current
Source

PMOS
Switch

NMOS
Switch

ADC
Combinational

Logic

D0 - D5

MP4

MN3

Vctrl D0 D5

Figure 3.11: Programmable CP

The DCC architecture [80] in Figure 3.7 can work from 20 MHz - 2.5 GHz. With the
presented architecture based on [80], the operating frequency range has been extended

50 CHAPTER 3 SOURCE-SYNCHRONOUS I/O LINKS: CLOCK SKEW AND DUTY CYCLE

from 3 GHz - 7 GHz with 30% - 70% input duty range as it can satisfy the specification
range of DDR3/GDDR5/XDR applications.

Figure 3.10 shows the Vctrl characteristics of CP simulated in TSMC 65nm for 3 GHz
to 5 GHz. Vctrl has good linearity for different frequencies and has a unique value for a
particular input duty cycle and a particular frequency. In other words, if the Vctrl value
is known, the operating frequency and the input duty cycle can be derived from it. This
property of Vctrl is used to make the CP programmable.

To increase the operating frequency range, MN3 and MP4 of Figure 3.8 can be replaced
by a set of switchable impedances (parallel transistors) to adjust resultant impedance
and thereby loop bandwidth depending on the operational frequency. Due to the par-
ticular frequency characteristics of Vctrl this can be used to derive the necessary control
information.

Figure 3.11 shows the programmable CP where Vctrl value (analog value) is converted
into digital bits using 6-bit Analog-to-Digital Converter (ADC) and combinational logic to
decode the value (e.g. D0-D5) which will in turn control the parallel transistors of MP4
and MN3. These parallel transistor can be designed in many ways: with same size; with
increase in unit size of each subsequent transistor (linear coding); with each subsequent
transistor doubling its size (binary weighted coding); with any customized coding based
on ADC readout for particular Vctrl value. As Vctrl is unique for particular frequency and
input duty cycle, ADC does not need to run at higher speed for quick sampling. ADC
sampling frequency depends on the fact how often the input frequency and the duty cycle
changes due to PVT variations or desired functionality.

3.3 Conclusions

This chapter presented novel algorithm features a buffering algorithm for a tree-structured
clock-tree. Along with accurate delay estimation by slew-rate consideration and early
preparation of the clock-tree for wire-snaking, the buffered clock-tree is very robust against
process variations. This chapter also described a novel programmable wide range duty
cycle corrector.

Chapter 4

Simulation Results

51

52 CHAPTER 4 SIMULATION RESULTS

This chapter provides the simulation results and comparison with state-of-the-arts for
adaptive training, clock skew and duty cycle concepts.

4.1 Adaptive trainings: Results

4.1.1 Comparison with state-of-the-arts

In comparison to the current state-of-the-art architecture (Figure 2.15), the novel archi-
tecture based on unit-delay (Figure 2.16) further reduces complexity as it does not need
separate phase generation units. The unit-delay architecture needs only unit-delay incre-
menter instead of large calibrated delay line. Phase-detector circuit is also simpler as it only
needs shift-registers and comparator which can be implemented using combination logic
while the current state-of-the art (Figure 2.15(A)) needs oversampling, majority voting.
Phase incrementer part in Figure 2.16 is a simple unit-delay and a multiplexer for path
control. It is obvious that in comparison with Figure 2.15(B) which includes the loop
filter, PI counter and the PI, the novel architecture based on unit-delay incrementer saves
considerable area and power.

However, the simplicity in the unit-delay architecture comes with the penalty of extra
time needed for synchronization as unit-delay can be applied only in the positive direction
(early to late transition). In the worst case, transition edge search from early to late needs
to be done for one reference clock cycle i.e. one CLK period. Nevertheless, this worst case
synchronization time is minimal in comparison to the whole training sequence including
power-up sequence and other read and write synchronization algorithms.

In the case of the second novel architecture with PI-based PLL, the timing penalty is
removed as a PI-based PLL has the advantage of correcting the phase in positive as well as
negative directions. If phase correction is needed in the negative direction (for example -10
degree), PI-based PLL will need less time to synchronize (only 2 steps with the resolution
of 5 degree) while unit-delay incrementer needs longer time (-10 degree = 350 degree i.e. 70
steps with the resolution of 5 degree) as it can correct phase in only positive direction. Each
phase-delay step consumes additional latency which is equal to the sum of EDC latency
(5ns [52]), channel delay (100ps - 200ps based on RLGC channel model), other receiving
circuit delay including shift-registers and comparator (3ns - 5ns). In the given example
of -10 degree phase difference, the PI-based architecture will take 20ns (2 steps * 10ns
latency) to complete WCK2CK training while the unit-delay architecture will consume
approximately 700ns (70 steps * 10ns latency) which is still negligible in comparison to
GDDR5 initialization time (400µs - 500µs [35]). A PI-based PLL has the disadvantage of
additional PLL complexity. The decision to choose one architecture over the other is based
on synchronization time Vs PLL complexity.

For the simulation setup, the first novel architecture is described in Verilog and synthe-
sized as shown in Figure 4.1 with TSMC 65nm low-power library ([53]). Figure 4.1 used 12
shift registers only for 3 samples of 4 bit EDC value and few logic gates for comparison
and multiplexer.

Table 4.1 compares the synthesis result with other works. The novel unit-delay archi-
tecture only consumes 0.89 mW power and 100 (µm)2 area which is 16.8 times less power

4.1 ADAPTIVE TRAININGS: RESULTS 53

E
D
C
_
sh
if
t_
re
g
[0
][
0
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[0
][
3
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[0
][
2
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[0
][
1
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[1
][
0
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[1
][
1
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[1
][
2
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[1
][
3
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[2
][
0
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[2
][
1
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[2
][
2
]

C
P

D
Q

E
D
C
_
sh
if
t_
re
g
[2
][
3
]

C
P

D
Q

C
L
K

E
D
C
[0
]

E
D
C
[1
]

E
D
C
[2
]

E
D
C
[3
]

W
C
K

W
C
K
_
O

Figure 4.1: Schematic:Unit-Delay incrementer based architecture

54 CHAPTER 4 SIMULATION RESULTS

Table 4.1: Comparison with other work

[50] [48] [46] Unit-delay PI-based PLL
architecture architecture

Process (nm) 90 65 65 65 65

Supply (V) 1.25 1.2 1 1.32 1.32

Data rate (Gbps) 9 1-6 10 10 10

Power (mW) 34.2 22 15 0.89 1.28

Area (µm)2 150000 3500 - 100 130

and 35 times less area than other works. If we use customized cells instead of TSMC
library cells, then further area and power can be saved. Considering PI as 8:1 multiplexer
in Figure 2.19, the architecture consumes 1.28 mW power and 130 (µm)2 area which are in
similar range as the unit-delay incrementer architecture. If higher resolution is required,
then PI-based PLL architecture will consume more power and area depending upon PI
(e.g. Figure 2.4) used in the architecture.

4.1.2 Results using circuit level simulation

In this section the results obtained from the circuit level simulation of PI-based PLL
architecture in cadence environment using TSMC 65nm low power library are shown and
compared. PI-based PLL block used in this architecture was part of master thesis [115].
The simulations are divided into the low frequency tests with a WCK frequency of 2 GHz
and the high frequency tests with WCK set equal to 5 GHz.

4.1.2.1 Low Frequency Simulations

The simulations consist of two main cases: one employing the VCO generating eight
phases and another one utilizing the VCO producing four phases. Each of these systems is
tested for the minimum and maximum PLL bandwidth. This will show the advantage and
disadvantage of each configuration. In the simulations the focus will be mainly laid on the
delay error between mem CLK and mem WCK because this quantity characterizes the best
the performance of the whole system. The results of the simulations are shown in Table
4.2.

4.1.2.2 High Frequency Simulations

The second part of the simulations lies in testing the system working at a much higher
frequency than in the previous case. The reference clock CLK is set at 2.5 GHz resulting in a
WCK frequency of 5 GHz. As shown in the previous cases, the PLL with lower bandwidth
performs the best. Therefore, for the high frequency simulation the low bandwidth resistor
will be selected. Also in this case the error, i.e. the delay between mem CLK and mem WCK,
is measured and reported in Table 4.3.

4.2 CLOCK SKEW: RESULTS 55

Table 4.2: Measured error of 2 GHz WCK configuration.

phases bandwidth (MHz) Peak error (ps) RMS error (ps)

4 10.3 44.79 24.13

4 7.26 31.02 16.0

8 10.3 16.02 10.22

8 7.26 9.194 5.76

Table 4.3: Measured error of 5GHz WCK configuration.

phases bandwidth (MHz) Peak error (ps) RMS error (ps)

4 4.9 7.72 4.245

Table 4.3 provides interesting information. The system performs better than the low
frequency scenario from both absolute and relative points of view. This improvement is
due to the higher frequency of the CLK, which has two consequences: first, the digital
circuits work faster providing the control signals sooner and, second, the sampling rate is
higher. These two aspects result in both quicker control signals and faster recognition of
the crossing of the alignment between the signals. However, the improvement is hampered
by the propagation delays of the signals and by the synchronous logic of the comparator
and the control.

Simulation results show that the PI-based PLL architecture can be used for the phase
delay control of data clock. The error generated by the system is dependent on the
bandwidth of the system, phase steps and the system delay. At 2 GHz WCK, with 8 phases
5.76 ps rms error is achieved while at 5 GHz WCK, with 4 phases rms error is 4.245 ps.

4.2 Clock Skew: Results

In this section, the evaluation of solutions generated with the novel buffering and opti-
mization technique is given. The clock tree generation using the novel algorithm was
implemented in a bachelor thesis [122] using C++ language. In subsection 4.2.1 the simu-
lated data that illustrates the high scalability of the algorithm is provided. In subsection
4.2.2 it is shown that the algorithm performs well in recent benchmarks and brings exten-
sive run-time and power reductions in comparison to other algorithms.

4.2.1 Scalability

The high scalability of the novel Reliable Low Power Buffering and Optimization algorithm
(RLPBO) in section 3.1.3 is elaborated. Based on the ISPD 2010 CNS benchmark suite,
circuits of varying size are randomly generated and the RLBPO buffering time along with

56 CHAPTER 4 SIMULATION RESULTS

initial clock-skew is measured. The results are presented in table 4.4. It is clearly visible
that directly after buffering, the clock-network already has good nominal skew. This is a
very important characteristic and helps to reduce further optimization time, as described
in 3.1.3. Figure 4.2 visually shows the linear relation between run-time and the number of
buffering positions for a wide range from 2,010 to 40,052 buffering positions.

Table 4.4: Run-time comparison of the novel buffering algorithm with seven different randomly
generated circuits.

Sinks Buffering Positions Nominal Skew [ps] Run-time [s]

20000 40052 1.88868 171

15000 30037 4.5465 120

10000 20035 2.14846 82

7500 15024 1.33554 62

5000 10016 1.382 43

2500 5018 1.66268 21

1000 2010 4.0756 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

20

40

60

80

100

120

140

160

180
Run−time comparison

Buffering positions

R
u
n
ti
m

e
 [
s
]

Figure 4.2: Run-time of the buffering algorithm for different random circuits shows linearity in the
number of buffering positions

4.2.2 Benchmarks

For evaluation of the buffering algorithm, the ISPD 2010 CNS benchmark suite [62] was
used. In five-hundred simulations, the output of the RLPBO running on a simple DME

4.3 DUTY CYCLE: RESULTS 57

implementation is shown in comparison to contest participants and the Contango 2 solution,
to strongest result for the ISPD 2010 benchmark suite featuring a tree topology to the best
of current knowledge.

Table 4.5: Comparison between the results generated by RLPBO and Contango 2

RLPBO Contango 2

Benchmark Capacitance LCS CPU Capacitance LCS CPU PC
(fF) (ps) (s) (fF) (ps) (s) (C)

3 49517 6.7553 578 55860 4.18 3840 -0.11355
4 61650.7 6.8867 1306 71840 4.46 6075 -0.14183
5 32756.1 6.11438 546 37690 4.41 2406 -0.13091
6 42011.5 7.1836 1044 47810 6.05 2660 -0.12128
7 62316.4 6.13 1385 72660 4.58 2351 -0.14236
8 42550.2 6.9502 636 52490 5.15 1987 -0.18937

The ISPD benchmarks are based on real designs and target a local clock-skew of 7.5ps
within a distance of 600µm. The slew-rate is required to be below 100ps. For simulation of
PVT variations, the benchmarks randomly vary the power supply voltage of buffers (max.
+-7.5%) and width of wire segments (max. +-5%) with a uniform distribution. In Table
4.5, a detailed comparison between RLBPO and Contango 2 is provided with regard to
capacitance (a simple metric for power consumption), Local Clock Skew (LCS) and CPU
run-time for six different benchmarks. RLBPO outperforms Contango 2 by providing a
solution much closer to the desired constraints and leads to a capacitance reduction of 14%
on average and an overall run-time reduction of 68% on average. Although simulations
and optimization steps were performed in Spice (ngspice simulator), due to the high quality
of our initial buffering, the number of optimization iterations reduces to approximately 3
to 6. Both results emphasize the importance of estimating the effect of process variations in
the very early buffering stage and show that the post-optimization that is necessary if the
susceptibility to process-variations is not considered properly before buffering, strongly
affects the quality of the generated clock network. Note that the main contribution is
buffering and light post-buffering optimizations. Therefore, the comparison is performed
against other implementations with the DME as the baseline. As this algorithm targets
the buffering stage of clock-network synthesis, it can therefore be combined with recent
research achievements in the area of mixed-topology clock-trees.

4.3 Duty Cycle: Results

The novel DCC architecture (Figure 3.11) is simulated in cadence environment using
TSMC 65nm low-power technology at 1.2 V power supply. Figure 4.3 shows that with
programmable CP, DCC can produce output duty cycle with error well below ±1% for the
operating frequency up to 5 GHz while convention CP (Figure 3.8) produces more than
10% output duty cycle error at 5 GHz. For converting Vctrl voltage to digital bits, a low
power 6-bit ADC [81] can be used at 1 MS/s which consumes only 40 µW.

58 CHAPTER 4 SIMULATION RESULTS

47

48

49

50

51

52

53

54

55

56

3GHz 4GHz 5GHz

O
u

tp
u

t
d

u
ty

 c
yc

le

conventional

programmable

Figure 4.3: Output Duty cycle for 70% input duty cycle

When the operating frequency is increased beyond 5 GHz, then the novel DCC has
shown unstable behavior. The limiting factor was the classical buffer chain design (increas-
ing sizes of consequent inverter). At a frequency of 6 GHz (clock period- 166 ps) with
the input duty cycle of 30% (49.8 ps on time), the input gate capacitance of big inverters
cannot be charged or discharged properly by the previous stage inverter. Therefore, sizes
of large inverters have to be reduced beyond 5 GHz. This can be easily achieved by using
an additional bit A0 as shown in Figure 4.4. The A0 bit can be an external input (in this
case) or can be generated by a frequency detector.

Vctrl

Control Stage

Buffer Chain

Charge pump

Ckout

Ckin

VctrlIp

In

ADC
Combinational

Logic

D0 - D7

A0

Figure 4.4: Programmable CP and Buffer

Till 5 GHz, A0 bit is 1 and normal operation works with parallel transistors on in large
inverters. Beyond 5 GHz, A0 bit is 0 and some parallel transistors are switched off to lower

4.3 DUTY CYCLE: RESULTS 59

560

580

600

620

640

660

680

700

6GHz 7GHz

V
ct

rl
(m

v)
 30%

40%

50%

60%

70%

Figure 4.5: CP characteristics for 6 GHz & 7 GHz

the effective size of large inverters and therefore the gate capacitance of the programmed
inverters are also reduced.

Figure 4.5 shows the Vctrl characteristics for 6-7 GHz. This Vctrl characteristic is similar
to the Figure 3.10 i.e. if Vctrl is known then the frequency and the input duty can be
derived from it. Figure 4.5 and Figure 3.10 differ in the absolute Vctrl voltage level e.g. for
70% input duty cycle at 5 GHz operating frequency, Vctrl is 640 mV while at 6 GHz, Vctrl
is 615 mV which is lower than 5 GHz value. To differentiate between them A0 bit is also
used in combinational logic (Figure 4.4).

Figure 4.6 and 4.7 shows that with the programmable CP and the programmable buffer
chain, the output duty cycle of 50% can be maintained upto 7 GHz operating frequency
for 30% - 70% input duty cycle with error well below ±1%.

TABLE 4.6 compares this work with the previous work [80] and shows that with the
novel programmable DCC architecture can achieve a wide frequency range.

Table 4.6: Comparison with the previous work

[80] this work

Process 180nm 65nm

Supply 1.8 V 1.2 V

Input Duty Range 20%-80% ≥ 1 GHz 30%-70% ≥ 3 GHz

Max. Frequency 2.5 GHz 7 GHz

Min. Frequency 20 MHz 20 MHz

Power 0.36 mW@1 GHz 0.11 mW@1 GHz

60 CHAPTER 4 SIMULATION RESULTS

44

46

48

50

52

54

56

58

60

62

3GHz 4GHz 5GHz 6GHz 7GHz

O
u

tp
u

t
d

u
ty

 c
yc

le

conventional

programmable

Figure 4.6: Output Duty cycle for 70% input duty cycle

50

52

54

56

58

60

62

tp
ut
 d
ut
y
cy
cl
e

conventional

programmable

44

46

48

3GHz 4GHz 5GHz 6GHz 7GHz

O
ut

Figure 4.7: Output Duty cycle for 30% input duty cycle

The novel DCC architecture has two main limitations. First limitation is that the
CP output (Vctrl) should reach a stable state to perform proper operation which needs
approximately 200 ns in this case. However; this time is much less than the PLL locked-in
time, which is in the range of 50 µs - 100 µs generally. Second limitation is that the novel
programmable DCC architecture is technology-dependent. If new technology is employed,
the whole architecture (including ADC and combination logic) has to be re-characterized
as Vctrl value is dependent on the supply voltage and the transistor characteristics.

This novel programmable mixed signal DCC architecture works up to 7 GHz and
produces output for 30% - 70% input duty cycle with an error below ±1% in TSMC 65nm

4.3 DUTY CYCLE: RESULTS 61

technology. This DCC is suitable for applications e.g. DDR3/GDDR5/XDR which perform
operations at a wide frequency range.

Chapter 5

Summary and Future Works

63

64 CHAPTER 5 SUMMARY AND FUTURE WORKS

5.1 Summary

In future, mobile traffic and supercomputing applications will demand Exascale bandwidth
which relates to GB/s bandwidth requirement per I/O link. It has been shown in chapter
1 that source-synchronous I/O links will perform better in terms of area and power if
many high speed links are used in parallel. It has also been shown that the state-of-the-
art systems use adaptive trainings to overcome non-idealities faced by parallel source-
synchronous I/O links. In this thesis, novel efficient adaptive training architectures have
been discussed. A novel clock tree buffering algorithm and a novel duty cycle corrector
have also been presented to compensate for clock skew and duty cycle error which are
critical for source-synchronous I/O links. Major contributions of this thesis are as follows.

• Novel Adaptive Trainings: Chapter 2 has shown that most of the state-of-the-art
source synchronous system used complex adaptive trainings based on analog ap-
proach. Two novel efficient adaptive architectures based on unit-delay and PI-based
PLL concepts [99], [103] with an example of multiple clock synchronization have
been explained in detail. First these concepts were analyzed using high level behav-
ioral models and compared with state-of-the-arts. PI-based PLL adaptive training is
implemented at the circuit level and the building blocks are described in appendix
B. Results in chapter 4 show that synchronization between multiple clocks can be
achieved with very low phase error (4.245 ps at 5 GHz) using PI-based PLL concept.

• Novel Clock Tree Buffering Algorithm: Chapter 3 described that at high speed, the
clock tree is the major source of power consumption and PVT variations affect the
clock skew. A novel reliable low power buffering algorithm [100] for clock tree has
been explained. This algorithm considers the PVT variations at topology stage itself
and inserts buffers into the clock tree accordingly. Results in chapter 4 show that
presented algorithm have achieved better results than the state-of-the-arts.

• Novel Duty Cycle Corrector: Chapter 3 also described the importance of the duty
cycle for high-speed DDR systems. A novel wide range duty cycle corrector [101],
[104] has been explained. Results in chapter 4 show that presented duty cycle
corrector can work up-to 7 GHz for 30% - 70% input duty cycle error.

5.2 Future Works

Novel concepts explained in this thesis has been implemented at the circuit level using
low power TSMC 65nm technology library. Next logical step is to realize these concepts in
hardware. A high speed board including transmitter, receiver chips and the possibility
of incorporating links with different lengths between transmitter and receiver have to be
designed. A novel testing concepts have to be developed for precise measurements. Apart
from hardware realization, following things can also be considered for future work.

• Re-trainings Mechanism: Even though adaptive training synchronize signals with
high resolution, external factors such as noise, PVT variations can still drift the
phase. A novel on-chip monitoring concept has to be developed on the basis of phase

5.2 FUTURE WORKS 65

difference detection or BER so that as soon as synchronization goes out of boundary
condition, re-training can be initiated.

• Adaptation to Optical links: Electric links will soon reach their maximum speed
limit and to increase the bandwidth, optical links will be incorporated. Adaptive
trainings have to be adjusted according to the optical link characteristics.

• Equalization Trainings: Non-idealities in transmitter, receiver and channel not only
affect the signal in the time domain (in terms of skew) but also in the voltage domain
(signal degradation). Signal degradation can result in false propagation of data.
Novel adaptive trainings presented in this thesis can solve the synchronization
problem only in time domain. To eliminate signal degradation, equalization trainings
can be added to adaptive training sequences.

Appendix A

Design Methodology

67

68 APPENDIX A DESIGN METHODOLOGY

1.1 Design Methodology using Matlab/Simulink-Cadence
co-simulation

The development of high performance integrated circuits using advanced technologies has
lead to an increased complexity in circuit design, particularly in the mixed-signal domain.
An early detection of design errors can avoid higher design cost and minimize time-to-
market. Therefore, a systematic methodology on system level ranging from concept to
implementation stage, has become increasingly important. It enables designers to explore
the system behavior at different abstraction levels, and thus to detect design flaws in the
early phase.

SystemLConceptLOMatlabEL
MixedLsignalLsimulation

BehavioralLModelingLOVerilog4Verilog2AMSEL

LogicLSynthesisLOFPGALCompilerEL

Digital

Analog

Tapeout

AnalogLCircuitLDesignLandL
SimulationLOSpectreE

TimingLSimulationLOVerilog2XLE

PlaceLandLRouteLOSOCLENcounterE LayoutLOVirtuosoE

PhysicalLVerificationOCalibreEL

LevelL6

LevelL7

LevelL3

LevelL4

LevelL5

LevelL6

LevelL7

Figure A.1: Conventional Design Flow

Figure A.1 illustrates a conventional mixed-signal top-down design flow. The flow
mainly consists of seven design levels. It begins with the mathematical verification of
system concept. Once system mathematical modeling is verified, block-level simulation
based on behavioral models will be performed. This level enables designers to verify
whether block-level subsystems can meet the system-level requirements. After successful
block-level simulation, the system is divided into digital and analog blocks. Digital sub-
flow comprises several levels such as synthesis, timing simulation and place and route
while analog sub-flow is followed by schematic design and layout. Finally, the designed
layout for mixed-signal is integrated and implemented in ASIC. Levels of abstraction are
decreased from level-1 to level-7.

For system-level simulation, the Matlab/Simulink framework has been widely adopted
for many years because of its available toolset and ease of use for algorithmic implemen-
tation. Many efforts have been made to integrate Matlab into popular EDA tool flows

1.1 DESIGN METHODOLOGY USING MATLAB/SIMULINK-CADENCE CO-SIMULATION 69

for different fields of applications, e.g. RFID [82], Power Electronics [83]. W. Hassairi et
al. [84] proposed a solution to SystemC/Matlab co-simulation for functional verification
of multi-abstraction level designs. B. Gestner et al. [85] developed Modelsim-Matlab
interface for RTL debugging and verification.

For behavioral-level simulation, Verilog-AMS has been applied for mixed-signal design
environments. As an extension of Verilog-HDL and Verilog-A, Verilog-AMS provides an
accurate behavioral modeling with a single simulator. P. Frey et al. [86] explained the
semantics of Verilog-AMS that connect modules between analog and digital contexts.

However, a major problem of the conventional design flow is that it requires a higher
level of refinement from Matlab/Simulink to Verilog-AMS. Although some existing tools,
like Simulink HDL Coder by Mathworks or Synphony HLS by Synopsys, allow synthesiz-
able HDL code generation direct from the Matlab/Simulink environment, generated RTL
are often unsuitable for efficient FPGA or ASIC implementation due to their limitation in
supported blocks. Therefore, a ”full-custom” Verilog-AMS for behavior modeling often
remains competitive. To benefit from both Matlab/Simulink and Verilog-AMS and to
minimize the design time, Matlab/Simulink-HDL co-simulation is presented.

This chapter aims to present an efficient methodology for mixed-signal design based
on Matlab/Simulink-HDL co-simulation and describes solutions found for overcoming
the known pitfalls. GDDR5 memory system application is used as a case study to verify
the presented method.

1.1.1 Related Work

The need for co-simulation is indispensable in mixed-signal design. It allows individual
components to exchange information in a collaborative manner by different simulation
tools running simultaneously. Moreover, different components at different abstraction lev-
els can be simulated using the co-simulation platform. In this way, both design acceleration
and verification of low-level designs with system-level models can be achieved.

P. Daglio et al. [87] proposed a VHDL-AMS method to explore the mixed-signal domain
at different abstraction levels by integrating different EDA tools. Based on the design flow,
an example of an embedded flash macro-cell is illustrated as a test case.

Verilog-AMS which is an alternative HDL for mixed-signal design is compared with
VHDL-AMS by F. Pecheux et al. [88] in terms of language aspects, expression of structure,
signal-flow semantics, etc., where an airbag system application was demonstrated as a
case study. However, both of them are close to implementation level. Their relatively slow
simulator for system validation makes them inefficient for complex applications such as
system-on-chips.

To fill the gap between algorithmic domain and hardware design, many methods [89]
[90] are proposed. Matlab-VHDL [89] shows its potential in validation of different system
architectures, but it is unsuitable for mixed-signal design due to its lack of analog/mixed-
signal support. SystemC-AMS [90] which is an extension of SystemC, combines the
powerful means to describe the systems from abstract specifications to RTL models and to
model continuous-time systems/discrete-event systems.

To verify the functionality of RTL-level models from Matlab/Simulink, the presented

70 APPENDIX A DESIGN METHODOLOGY

SystemvConceptvOMatlabEv
Mixedvsignalvsimulation

LogicvSynthesisvOFPGAvCompilerEv

BehavioralvModelingvOVerilog2VerilogfAMSEv

Digital

Analog

AnalogvCircuitvDesignvandv
SimulationvOSpectreE

TimingvSimulationvOVerilogfXLE

PlacevandvRoutevOSOCvENcounterE LayoutvOVirtuosoE

RemainingvBlocksvOMatlabEv

Matlab2SimulinkfHDLvcofsimulation

Tapeout

PhysicalvVerificationOCalibreEv

Levelv4

Levelv5

Levelv6

Levelv7

Levelv5

Levelv6

Levelv7

Figure A.2: Adopted Design Flow

method using Matlab/Simulink-HDL co-simulation for mixed-signal design is preferred.
It benefits from both Matlab/Simulink and Verilog-AMS, and can be easily extended to
include SystemC-AMS component models.

1.1.2 Design Flow

Figure A.2 illustrates the adopted design flow [105]. Compared to the conventional design
flow, Matlab/Simulink-HDL co-simulation is added at level-2. Each level in presented
design flow is explained in detail in the following section.

• Level 1: System concept is developed using Matlab/Simulink. At this level, system
specifications and requirements are clarified and mathematical functional verification
of system behavior is performed at the highest abstraction level.

• Level 2: Abstract implementation is done at block-level using Matlab/Simulink-HDL
co-simulation. After system modeling, some design blocks are refined in Verilog-
AMS. Co-simulation between Matlab and Verilog-AMS can accelerate block level
implementation.

• Level 3: This level is the refinement of level-2. Verilog-AMS models of analog circuits
can be replaced by Spectre netlist, if available. The Verilog-AMS and SPICE co-
simulation could be extremely time-consuming for complex mixed-signal circuit

1.1 DESIGN METHODOLOGY USING MATLAB/SIMULINK-CADENCE CO-SIMULATION 71

designs. Multiple iterations are needed between level-2 and level-3 to make Verilog-
AMS model fine-tuned with real circuits.

• Level 4: Logic is synthesized at gate-level for digital circuits. This level can be moved
to level-3 if co-simulation in level-3 is not executed.

• Level 5: Timing simulation takes place for digital circuits. By replacing the model
with generated gate-level netlist in level-4, timing behavior is simulated with consid-
eration of propagation delays due to logic elements and interconnecting.

• Level 6: Layout of digital circuits are obtained using place-and-route tools and layout
of analog circuits is custom-made.

• Level 7: Designed layout is integrated for mixed-signal.

Memory

Controller

(GPU)

Memory

(GDDR5)

ABI

ADDR

CMD

CLK

DQ

DBI

WCK

EDC

Figure A.3: Abstract Specification

1.1.3 Simulation Setup

An example of GDDR5 memory system [35] is used for a case study. GDDR5 is a standard
for graphics synchronous Dynamic Random Access Memory (DRAM) which is currently
the highest bandwidth memory available and accepted in the market. It is suitable for
server applications and has minimized system cost by comparably low requirements for
the PCB design. GDDR5 runs at GHz range frequency and provides additional features
such as EDC, data and address bus inversion for power reduction (DBI/ABI) as depicted
in Figure A.3. At GHz speed, communication between controller and memory becomes
very challenging. For example, for a data rate of 5 Gbps, the max data window is 200 ps.
In this small window (data-eye), data would be affected by transmitter/receiver noise,
package/channel non-idealities or any kind of noise sources.

To find the center of the data-eye, JEDEC has come up with training sequences [35] as
illustrated in Figure 2.12 which run at the initialization of the GDDR5 system to verify if
data can be read/write successfully from/to the memory. In GDDR5 memory system, 2
clocks are provided: CK for command/address and WCK for data. WCK runs twice the
CK frequency. After power up, different trainings start sequentially in the initialization
phase. The address training is optional since it runs at lower frequency CK which is not as

72 APPENDIX A DESIGN METHODOLOGY

critical as data. In WCK2CK training, WCK needs to be aligned with CK on the memory
side for synchronization issues. After that, all DQ pins are trained to guarantee that the
sample clock can meet the center of the data-eye diagram with some predefined margin.
Since write training depends on the right read training, the latest has to be operated first.
Due to the high complexity in GDDR5 memory system, prototype in ASIC may take some
time.

Controller Memory

CA

WCK

DQ
D

EDC

DBI

Channel

CK

CA

WCK
DQ

CK
DBI

DQ

EDC

Figure A.4: Level 1: Matlab Simulation

Figure A.4 represents level-1: Matlab simulation setup. Write and read paths are
separated to verify write and read commands independently. No external testbench is
required since controller uses the built-in test. In both memory controller and memory,
subsystems such as PLL, global clock distribution and transceivers are implemented in
Matlab/Simulink. Communication channels in terms of S-Parameters are converted into
Simulink models and Additive White Gaussian Noise (AWGN) in the channel is modeled
as well.

After a successful run of MATLAB setup in level-1, level-2 starts with design blocks
implementation. For example, the memory controller at block-level is illustrated in Figure
A.5 in detail. It consists of memory controller core and physical (PHY) I/O Interface. The
submodules in the memory controller core include scheduler, address mapper, I/O handler,
Control and Settings Register (CSR), training engine, etc. Scheduler, as the main module in
the core, has the task to control the other submodules for different modes for example read
and write. Address mapper and I/O handler take care of the incoming/outgoing address
and data. CSR contains all settings for the memory controller as well as for the attached
memory devices. Training engine deals with different trainings after power up. In the PHY
I/O interface, submodules such as FIFOs, serializers, deserializers, phase-interpolators
and I/O drivers are implemented.

Figure A.6 depicts Matlab-HDL co-simulation setup. At this level, controller and
memory are described in Verilog/Verilog-AMS. I/O drivers in controller/memory are
analog and implemented in Verilog-AMS while all digital components in Verilog. The
channel model is still represented by a Simulink model as that in level-1. Controller and
memory HDL-views are generated by Cadence Incisive configuration in Matlab. The HDL-
view provides two buttons, one for compilation and the other for elaboration. These two
buttons avoid new generation of HDL-views if some changes are made in Verilog-AMS

1.1 DESIGN METHODOLOGY USING MATLAB/SIMULINK-CADENCE CO-SIMULATION 73

W
IS

H
B

O
N

E

w
ri

te
-d

a
ta

-h
a

n
d

le
r

M
C

G
0

(m
e

m
o

ry
c

o
m

m
a

n
d

g
e

n
e

ra
to

r)

s
c

h
e

d
u

le
r

a
d

d
re

s
s

 g
e

n
e

ra
to

r
(s

tr
e

a
m

in
g

)

re
a

d
-d

a
ta

-

h
a

n
d

le
r

b
u

s
 c

o
n

tr
o

ll
e

r

a
d

d
re

s
s

 m
a

p
p

e
r

d
e

c
o

d
e

r

6
4

b
it

6
4

b
it

6
4

b
i

t

6
4

b
it

D
A

T
A

 I
/O

s
e

tt
in

g
s

to

a

ll
 m

o
d

u
le

s

M
E

M
O

R
Y

 C
O

N
T

R
O

L
L

E
R

in
it

/t
ra

in
in

g
p

o
w

e
r

u
p

/d
o

w
n

A
D

D
R

C
M

D

2
5

6
b

it

c
lo

c
k

g
e

n
e

ra
ti

o
n

C
L

K

C
S

R
(c

o
n

tr
o

l&
 s

e
tt

in
g

s
re

g
is

te
r)

I/
O

-h
a

n
d

le
r

6
4

b
it

2
5

6
b

it

P
H

Y
 I

O
 I

n
te

rf
a

c
e

 (
D

Q
0

)

O
D

T

C
o

n
tr

o
l

T
ra

in
in

g

E
n

g
in

e

P
H

Y
 I

O
 I

n
te

rf
a

c
e

 (
D

Q
3

0
)

P
h

a
s

e

C
o

u
n

te
r

P
h

a
s

e

C
o

u
n

te

r

T
x

F
if

o

R
x

F
if

o

tx
_

d
a

ta
[7

:0
]

tx
_

d
a

ta
[2

4
7

:2
4

0
]

tx
_

d
a

ta
[2

5
5

:2
4

8
]

rx
_

d
a

ta
[2

5
5

:2
4

8
]

S
e

ri
a

li
z

e
r

D
e

s
e

ri
a

li
z

e
r

P
I

P
I

:n
i

:4

:n
i

:4
rx

_
c

lk

:n
t

tx
_

c
lk

T
x R

x
Q

D

QPhases

Phase
s

R
e

ti
m

in
g

D
C

D

c
o

rr
e

c
ti

o
n

tx_en[1:0]
rx_en[1:0]

P
H

Y
 I

O
 I

n
te

rf
a

c
e

 (
D

Q
 3

1
)

d
a

ta
-s

ig
n

a
ls

 (
3

2
/6

4
b

it
)

c
o

n
tr

o
l-

s
ig

n
a

ls

d
a

ta
-s

ig
n

a
ls

 (
2

5
6

b
it

)

rx
_

d
a

ta
[2

4
7

:2
4

0
]

rx
_

d
a

ta
[7

:0
]

Figure A.5: Level 2: Controller Block-Level Specification

codes. In addition, communication between two HDL blocks needs data type conversion
from integer to bus for vector signals such as 32 bits data DQ.

Figure A.7 represents level-3: whole memory system in Cadence-AMS environment.

74 APPENDIX A DESIGN METHODOLOGY

Controller Memory

Double-Click
Compile
HDL0file

Double-Click
Launch
HDL0Simulator

Double-Click
Compile
HDL0file

Double-Click
Launch
HDL0Simulator

CKE_n
CS_n

RAS_n

CAS_n

WE_n

CK_n

WCK01

WCK01_n

WCK23

WCK23_n

DQ1
DBI_n1

ADDR

CKE_n
CS_n

RAS_n

CAS_n

WE_n
CK
CK_n

WCK01

WCK23

DQ_2
DBI_n_2
ADDR

WCK01_n

WCK23_n

DQ_1

DBI_n_1

EDC_1

IN
T2

BU
S

DQ2

EN

DBI_n2

EDC

Delay

Delay

Channel

Step

boolean

Matlab/Simulink Verilog-AMSVerilog-AMS

INT2BUS

CK

Delay

Figure A.6: Level 2: Matlab-HDL Co-simulation

Figure A.7: Level 3: Verilog-AMS and SPICE co-simulation

The difference between Figure A.6 and Figure A.7 is only the channel models, all other
block models remain the same. Channels are modeled using multiple transmission lines
which used RLGC models derived from the characterization of the real package and the
channel.

1.1.4 Simulation Results

The built-in test in the memory controller has followed the training sequences. After
training, normal read and write commands are operated. The whole simulation time
for the complete test run in Verilog-AMS is 11,000,000ps. The real execution time for

1.1 DESIGN METHODOLOGY USING MATLAB/SIMULINK-CADENCE CO-SIMULATION 75

Matlab/Simulink-HDL co-simulation is in the range of several hours while for Verilog-
AMS and SPICE co-simulation several days.

TimeA=6663.706ns

DQ2[31:0]

DQ_1[31:0]

WCK

CK

TimeB=6663.746ns

J

J A2 J A3 J A4 J A5 J A6

A1 A2 A3 A4 A5 A6

A1

JJ J J J

Figure A.8: DQ in read training

A1 A3A2 A4 A5 A6

A1 A2 A4A3 A5 A6DQ_2[31:0]

DQ1[31:0]

WCK

CK

TimeA=7654.481ns

TimeB=7654.523ns

Figure A.9: DQ in write training

0 2 4 6 8 10 12
x 106

0

0.5

1

1.5
DQ before channel

0 2 4 6 8 10 12
x 106

 0.5

0

0.5

1

1.5
DQ after channel

Figure A.10: DQ before and after channel

Figure A.8 and Figure A.9 illustrate the DQ path as an example in two different
scenarios: read training and write training. In these figures, symbols A1 to A6 represent

76 APPENDIX A DESIGN METHODOLOGY

Table A.1: Modeling approaches and performance trade-off

Parameter Verilog/ SystemC-AMS SPICE Matlab/

VHDL-AMS Simulink-HDL

Accuracy Med-High Med-High High Med-High

Abstraction Any Abstraction Any Abstraction Transistor/ Any Abstraction

Level Level Level Netlist Level Level

Time to model Low to Medium Low High Low

Simulation Low Medium-High High Medium-High

Run Time

Required Simulators AMS libs with Simulators Simulators

Tools GCC/Simulators

random data while J for jitter in data modeled in the memory. As depicted in Figure A.6,
for read training, data DQ 1 on the memory side is sent to DQ2 on the memory controller
side through the channel while for write training, data DQ1 on the memory controller side
is received by DQ 2 on the memory side. The total delay from transmitter to receiver for
both read and write is around 40ps due to the channel. Figure A.10 illustrates a single bit
DQ[0] out of 32 bits data before and after the channel. The noise in amplitude is caused by
noise modeled in the channel.

Table A.1 compares various modeling approaches. The main parameters considered are
accuracy, abstraction levels, time required for modeling the system, simulation time and
required tools. SPICE has the highest accuracy compared to other approaches, but it also
requires the highest time to model and large simulation run time. Matlab/Simulink-HDL
co-simulation has a similar level of accuracy in comparison to Verilog/VHDL/SystemC-
AMS, but it provides ready to use system-level tool-set which reduces the time required
for modeling.

1.2 Conclusions

An efficient methodology for mixed-signal memory system using Matlab/Simulink-HDL
co-simulation is presented in this chapter. As opposed to the conventional design flow,
this approach employs Matlab/Simulink-HDL co-simulation framework for the system
behavior verification to accelerate design time.

Appendix B

Implementation of PI-based PLL
architecture

77

78 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

2.1 Introduction

Chapter 2 has described PI-based PLL architecture for multiple source-synchronous clocks
synchronization technique which adopts the phase in both directions to reduce the time
required for synchronization training. The desired PLL requirements are listed in Table
B.1.

Table B.1: PLL specifications.

Parameter Value

Process technology low-power TSMC 65 nm CMOS logic

Supply voltage Analog and digital supply 1.1 V ± 5%

Reference clock frequency range 100 MHz, 2.5% single ended

Ref. spread spectrum 0.5% down-spread

VCO working range 1.6 GHz - 3.6 GHz

VCO operational frequency range 1.6 GHz - 5GHz

Number of phases 4 with 90◦ delay and 8 with 45◦ delay

Output phase D-C 50% ± 1.5% (with 3 σ mismatch)

Long-term (500UI) p-p jitter simulated
with a 100 kHz, 10% p-p supply square
wave and 5% substrate square wave

15% output cycle

Period p-p jitter simulated with a
100kHz, 7.5 % p-p supply square wave
and 1% substrate square wave (max)

± 1.5 % output cycle

Lock-in time < 5000 reference cycles (50 µs)

Junction temperature (nom,min,max) 65◦ C, 0◦, C 125◦ C

Closed loop -3dB bandwidth 0.5-0.1 ref. clock and programmable

Damping factor ζ > 0.7

Output phase load 500 fF each

Power dissipation 35 mW @ 1.1V with load

2.2 Implementation

In this chapter, the implementation of PI-based PLL [115] will be described. Two different
systems will be compared: one employs a PLL generating 4 phase while the other one
utilizes a PLL producing 8 output phases. The figures and descriptions in the following
sections deal for the sake of briefness with the four phases case.

The aim of this design is to find a compromise between power, area and phase error of
the synchronization system. For this purpose, the performances of the system employing
a 4-phases VCO are compared with those delivered by a system with an 8-phases VCO. In

2.2 IMPLEMENTATION 79

addition to this examination, an analysis of the variation of the phase error as a function
of the bandwidth of the PLL is also carried out. To make the last investigation possible
a programmable filter is employed. The PLL presented in Figure 2.22 is formed by the
following components.

2.2.1 Phase-Frequency Detector

The Phase-Frequency Divider (PFD), on the top left of Figure 2.22, is a classic PFD described
in a VHDL module. The pin for the reference frequency of the PFD is connected to the
signal CLK, while the pin of the feedback frequency is connected to the Frequency Divider
(FD). The PFD VHDL code is described as following:

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3

4 −−−

5 −− B e h a v i o u r a l d e s c r i p t i o n o f a 2 4 − c o u n t e r −−

6 −−−

7

8 e n t i t y PFD i s
9 port (

10 f r e f , f vc o : in s t d l o g i c ; −− c o u n t e r i n t i a l v a l u e

11 up , dn : out s t d l o g i c −− ’ 1 ’ i f c o u n t e r = 0 , ’ 0 ’ o t h e r w i s e

12) ;
13 end PFD ;
14

15 a r c h i t e c t u r e behavioural of PFD i s
16 s ignal r s t d e l , r s t : s t d l o g i c := ’ 1 ’ ;
17 s ignal tmp up , tmp dn : s t d l o g i c ;
18

19 begin
20 proc up : process (f r e f , r s t)
21 begin
22 i f (r s t = ’ 1 ’) then
23 tmp up <= ’ 0 ’ ;
24 e l s i f (f r e f ’ event and f r e f = ’ 1 ’) then
25 tmp up <= ’ 1 ’ ;
26 end i f ;
27 end process proc up ;
28

29 proc dn : process (f vco , r s t)
30 begin
31 i f (r s t = ’ 1 ’) then
32 tmp dn <= ’ 0 ’ ;
33 e l s i f (f vco ’ event and f vc o = ’ 1 ’) then
34 tmp dn <= ’ 1 ’ ;
35 end i f ;
36 end process proc dn ;
37

38 up <= tmp up ;
39 dn <= tmp dn ;
40 r s t d e l <= tmp up AND tmp dn ;
41 r s t <= r s t d e l a f t e r 10 ps ;
42 end behavioural ;

The signal rst del was added to provide a delay in reset in order to reduce the effects of
the CP dead-zone of the PFD. The minimum UP or DN pulse in the simulation is equal to
200 ps.

80 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

2.2.2 Charge-Pump

The outputs of the PFD are connected directly to the current CP, which works at the same
supply voltage as the rest of the system. In order to minimize the current mismatch a
replica-biased CP is employed and its schematic is shown in Figure B.1.

Figure B.1: Schematic of the charge-pump employed in this design.

To reduce the charge-injection phenomenon, an Operational Amplifier (OPAMP) is
connected in a voltage-follower fashion between output and dummy switches. Doing
so, charge injection is significantly reduced. The OPAMPs have a gain equal to 60 dB, a
bandwidth of 10 MHz and a rail-to-rail input stage. The CP output current is injected into
the loop filter. The kind of filter utilized in this design is the same shown in [59] but it also
presents the feature to make the PLL work with three different bandwidth. This aspect
will be discussed in detail later.

V+
Io

Ma

Mb

IbiasIbias

V-M1 M2

M3 M4

Figure B.2: Schematic of the sub-threshold OTA employed in this design.

2.2 IMPLEMENTATION 81

2.2.3 Operational Transconductance Amplifier

The filter generates two output signals: one is the fine loop voltage and is sent directly to a
V2I converter, while the second output is connected to the OTA input. To have the smaller
coarse loop bandwidth, the ratio between Gm and CI, as shown in Equation 2.1, needs to
be designed as small as possible.

As shown by [60], a sub-threshold design is helpful to minimize the transconductance
Gm of the OTA and at the same time keeping the physical implementation small. The
schematic of the circuit is shown in Figure B.2. The differential pair of the OTA, formed
by the transistors M1 and M2, is biased employing two current generators producing a
current of 320 nA each. The transistors Ma and Mb, whose gates are connected to the
differential input pins, are placed between the sources of the transistors of the differential
pair.

This configuration for sub-threshold differential stages is proposed by [91]. However,
in this work PMOS transistors are employed instead of NMOS transistors in order to
reduce both transconductance and noise at minimum aspect ratio. Another advantage of
this configuration is a higher linear range in the characteristic of the OTA. The measured
transconductance Gm is 1.122 µS and the output resistance Zout 39.84 MΩ.

2.2.4 Voltage-to-Current Converters

In the coarse loop, the current generated by the OTA loads the capacitance CI and its
voltage is converted into a current by a V2I converter (Figure 2.22). The architectures of
the V2I converters implemented in this design are taken from [57]. The V2Is are employed
because, according to [57], they can effectively reduce the alteration of phase margin and
bandwidth of the system due to process variations on the filter resistor.

The V2I converter for the coarse-loop has the OTA integrator output voltage as input.
The output of the circuit is the gate voltage -i.e. the current source bias voltage necessary
for the CCO to generate a frequency proportional to the voltage imposed by the control
circuit. The gain of the coarse-loop converter needs to be maximized as required by the
DLPLL design.

VCoarse

RC

ICoarse

Figure B.3: Schematic of the coarse loop V2I converter.

The circuit, shown in Figure B.3, is composed by:

82 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

• an OPAMP

• a PMOS transistor of the same size of the VCO coarse-loop current drivers

• a resistor RC as large as the filter resistor Rz

This approach delivers two main advantages:

• the linear characteristic of the V2I converter compensates for the VCO non-linear
gain characteristic

• matching the V2Is resistors with the resistor of the filter, makes the loop bandwidth
and phase margin virtually unaffected by process variations of the resistor of the
filter.

The designed coarse-loop V2I performance parameter are described in Table B.2.

Table B.2: Coarse-loop V2I converter performance parameter.

RC 8 kΩ

Gain 10−4A/V

bandwidth 52.515 MHz

However, the same V2I design is not suitable for the fine loop as the pole of the coarse
loop V2I converter would deteriorate the phase margin of the entire system. For this
reason the transconductor design is utilized, as the pole introduced by it, does not affect
the phase margin as well as the bandwidth of the system.

The fine-loop V2I converter shown in Figure B.4 takes the input voltage from the node
connecting the CP, the capacitor C2 and the resistor Rz. The output is the gate voltage
necessary to make the CCO produce a current proportional only on a narrow range to the
input voltage. It is important to remark that the aim of the fine-loop V2I converter design
is to minimize its gain as a requirement of the DLPLL design. The circuit is composed of
two source-follower transistors with active load.

IFine

VFineVREF

RF

Figure B.4: Schematic of the fine loop V2I converter.

The Fine-loop V2I performance parameters are described in the Table B.3.

2.2 IMPLEMENTATION 83

Table B.3: Fine-loop V2I converter performance parameter.

RF 8 kΩ

Gain 17µA/V

bandwidth 2.9 GHz

2.2.5 Current Controlled Oscillator

The CCO has the task to integrate the filtered phase error and generate the proper output
frequency. Such element has the following requirements:

• duty cycle: 50% ± 2% with 3 σ mismatch

• minimum load capacitance of 500 pF on each phase

• frequency range 1.2-6 GHz

• trise and t f all have to be smaller than the 25 % of the period

The phase error voltage is converted into a current by the voltage-to-current converter,
and then sent to the CCO and the output frequency is generated. The design of the CCO
(Figure B.5) is based on a wide frequency range ring oscillator and duty-cycle correctors as
presented by [57].

DELAY
 CELL

DELAY
 CELL

D.C.
correct

D.C.
correct

ICoarseIFine

WCK0
WCK90

WCK180
WCK270

Figure B.5: Schematic of the four phases CCO.

The ring oscillator is made up by delay cells (Figure B.6) introduced by [92] and
modified by [57], in order to have two control signals.

Delay cell does not produce equal rise and fall time. Due to the difference between
rise-time (fixed by the bias current) and the fall-time (fixed by the circuit), a large D-C error
is still present at the CCO output. To correct the signal, each differential output is sent to a
dual-path differential-to-single ended amplifier and then to a crossed couple of inverters
which forms a duty cycle corrector shown in Figure B.7.

84 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

M1

M2 M4

M3

M1'

M2'M4'

M3'

in
out_n

in_n
out

Icoarse Icoarse

Ifine Ifine

Figure B.6: Schematic of the delay cell.[57]

Figure B.7: Duty cycle corrector [92].

The CCO generating eight phases consists of the same components connected in the
same fashion but with double number. A buffer stage, able to drive a maximum load
capacitance of 500 fF up to 6 GHz operating frequency, is connected to each output of the
CCO.

The performances obtained from the circuit are shown in Table B.4. The output fre-
quency satisfies the specifications both for maximum and minimum frequency.

2.2.6 Phase Selector and Frequency Divider

In order to make the PLL shift the output phase, PS is employed. Such circuit is able
to choose one among the four or eight VCO output signals either with delayed or with
advanced phase with respect to the current one. However, only adjacent outputs can be
selected, e.g. from ph 90 to either ph 0 or ph 180.

The PS is composed by:

2.2 IMPLEMENTATION 85

Table B.4: CCO output performances.

Ibias µA f GHz D-C error

5 1.044 0.259%

10 1.793 0.26%

15 2.454 0.415%

20 3.076 0.371%

25 3.674 0.002%

30 4.258 0.238%

35 4.834 0.217%

40 5.427 0.548%

45 5.975 0.472%

50 6.543 0.065%

60 7.66 1.34%

• a multiplexer to select the phase;

• a counter to switch to both higher and lower phases as long as the output is not the
desired one;

• a 2-to-4 bits decoder;

• an inverting output buffer;

• a register for the control signals to avoid the switching to happen at any moment.

As shown in Figure B.8, the transition to a signal with a larger delay causes a glitch to
happen on the selector output signal sel out. This results into an erroneous count of the FD
which makes the PLL to loose the lock. On the contrary, the transition to a waveform with
a smaller delay does not result into glitches.

To solve this issue the phase selector needs to use a synchronization circuit, as presented
in [93], in order to properly select the VCO outputs, a signal with a delay larger than the
current one is selected. The output of the PS is sent to a FD. The frequency division ratio is
equal to 2, and it is necessary to generate the signal WCK needed for the functioning of
the synchronization system.

2.2.7 Programmable Filter

Another feature of the PLL implemented in this design is the filter programmability. Three
different bandwidths can be set by selecting three different resistors for the filter. The
capacitors are instead kept constant in order to minimize the area of the programmable
filter. Ideally the bandwidths of 5, 7.5 and 10 MHz are meant to be selected. It is also
important to mention that, according to the design in [57], each V2I converter employs a
resistor whose value is equal to the resistor of the filter. Three equal resistors have to be

86 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

WCK0

WCK90

WCK180

WCK270

a)

sel 180

sel 90

sel out

b)

sel 180

sel 90

sel out

Figure B.8: Waveforms showing the difference between the selection of an anticipated a) or a
delayed b) VCO output in respect to the current one.

employed to make the PLL system work with one desired bandwidth. Since in this system
three different bandwidths can be selected and each case utilizes three resistors, the system
contains nine resistors. Another consequence of the employment of V2I converters is that
the coarse and fine loop gains are affected by the resistance value in the filter which is
equal to the resistance value used in the V2I converter. The gains of the components in the
loop were measured and are shown in Table B.5.

Table B.5: Parameters of the components of the PLL. The VCO gains were measured employing a
filter resistor of 7 kΩ.

outputs 4 8

Icp 10.416 µA 76.11 µA

Kc 8.6 GHz/V 2.6 GHz/V

K f 1.3 GHz/V 0.176 GHz/V

Gm 1.122 µS 1.122 µS

CI 34 pF 20 pF

The filter was designed in the following fashion. First three different filters are designed
for the three different bandwidths, i.e. 5, 7.5 and 10 MHz, and a phase margin of 70◦.
At this point the capacitors for the bandwidth of 7.5 MHz are chosen as a compromise
between the two other cases. After this, an iterative design procedure starts. Indeed, a
variation of the filter resistance not only varies the PLL bandwidth, but also the VCO gains.

2.2 IMPLEMENTATION 87

For this reason first a new resistance value for the desired bandwidth and phase margin
is set and, then, the new VCO fine loop gain K f is measured. With the new value of K f

a new resistor value Rz is found and set. The procedure is repeated until suitable values
of phase margin and bandwidth are obtained. Although it is not possible to achieve both
desired bandwidths and wanted phase margins, however the designer can find a suitable
compromise within the specification boundary. The design of the systems has as goal
phase margins larger than 65◦ and resistor values seized in such a way that the worst case
process variations cause the variation ranges not to overlap. The attained resistance values
and parameters are shown in Table B.6.

Table B.6: Laplace-domain features of the PLL systems and respective resistance values.

System φM deg -3dB bandwidth MHz Rz kΩ

1 69.1965 6.4 4.1

2 72.3844 8.67 5.6

3 70.7082 10 7

The quantity reported in the second column of Table B.6 is the phase margin measured
in degrees, then the closed-loop bandwidth is reported in the third column and the
obtained resistance values are listed in the fourth column. The criteria on phase margin
and resistance are verified in this design to show that the bandwidth and phase margin
are determined by the fine loop alone (Figure 2.23).

2.2.8 Comparator

The comparator receives four EDC signals from the memory. When EDC switches from
’low’ to ’high’ and it keeps this value for the following two pulses, the signal l2e presents a
pulse, whose length is equal to the reference clock. On the contrary e2l produces a pulse
when EDC shifts from ’high’ to ’low’ and EDC remains at this level for the following
two pulses. Hence, the pulses occur on the outputs three reference clock cycles after the
transition on EDC. The four different lines are sampled at a reference clock frequency
by four flip-flops. The comparison saves the two previous sampled values in eight flip-
flops connected downstream. This design has the advantage to insure the stability of the
transition on EDC in order to provide a cleaner signal to the digital control.

2.2.9 Digital Control

The digital control selects a phase at the VCO output according to the signals produced
by the comparator. In addition to e2l and l2e, the counter is also varied by a clock whose
frequency is smaller than the CLK one. This additional counting is necessary in order
to make the PLL approach the needed delay and ultimately to have the phase selector
switching solely among two phases. The frequency division ratio depends on the number
of phases generated by the VCO and by the reference frequency. The value is chosen in

88 APPENDIX B IMPLEMENTATION OF PI-BASED PLL ARCHITECTURE

such a way that, once the system starts switching with only two phases, the counter needs
to be varied only by the control signals. Therefore, the variation forced by the FD, which is
reset each time either e2l or l2e is ’high’, has no chance to occur.

EDC 0

e2l

l2e

sel 0

sel 90

sel 180

sel 270

Figure B.9: Waveforms of the control signals after the lock-in of the PLL.

In Figure B.9 are shown the signals that control the loop. In the first part the phase
selector is incremented by the FD and the length of the pulse is fixed. As soon as the
logic level of EDC changes, the phase selector is varied according to the signals l2e and
e2l generated by the comparator. Henceforth the increment due to the FD does not occur
anymore.

UP
DN

lock
RF

CF

R1

R2

R3

R4

M1

M2

Figure B.10: Schematic of the lock detector.

2.2.10 Lock Detector

The lock detector is needed in order to start the aligning system only after the PLL has
locked-in. It is based on an analog architecture shown in Figure B.10.

The circuit lies in integrating the output of a NOR gate driven by the up and dn signals,
generated by the PFD inside the PLL. Once the filter output has crossed the threshold
voltage, the lock signal acquires the ’high’ voltage level. The value of the resistor RF is 33
KΩ and the value of the capacitor CF is 10 pF. At the output of the filter a non-inverting

2.2 IMPLEMENTATION 89

Schmitt-trigger is used as a voltage comparator in order to avoid very quick commutations
on the lock signal in proximity of the threshold voltage. The schematic of this component
was taken from [94]. The resistors were designed in order to have the lower threshold
voltage equal to 606 mV and the upper threshold voltage equal to 980 mV.

References

[1] Cisco VNI Mobile 2014. www.cisco.com.

[2] L. Atzori, A. Iera, and G. Morabito. “From ”smart objects” to ”social objects”: The
next evolutionary step of the internet of things”. In: Communications Magazine, IEEE
52.1 (Jan. 2014), pp. 97–105.

[3] O. Bello and S. Zeadally. “Intelligent Device-to-Device Communication in the
Internet of Things”. In: Systems Journal, IEEE PP.99 (Jan. 2014), pp. 1–11.

[4] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. “Internet of Things
for Smart Cities”. In: Internet of Things Journal, IEEE PP.99 (2014), pp. 1–1.

[5] Zukunftsprojekt Industrie 4.0. http://www.bmbf.de/de/19955.php.

[6] C. Tsai, C. Lai, M. Chiang, and L.T. Yang. “Data Mining for Internet of Things: A
Survey”. In: Communications Surveys Tutorials, IEEE 16.1 (Feb. 2014), pp. 77–97.

[7] J. Huang, Y. Meng, X. Gong, Y. Liu, and Q. Duan. “A Novel Deployment Scheme
for Green Internet of Things”. In: Internet of Things Journal, IEEE PP.99 (Jan. 2014),
pp. 1–1.

[8] P. C. Broekema, R. V. Nieuwpoort, and H. E. Bal. “ExaScale High Performance
Computing in the Square Kilometer Array”. In: Proceedings of the Workshop on
High-Performance Computing for Astronomy Date. Astro-HPC ’12 (2012), pp. 9–16.

[9] International Technology Roadmap for Semiconductors (ITRS) 2010. http://public.
itrs.net.

[10] H. Yamaguchi, H. Tamura, Y. Doi, Y. Tomita, T. Hamada, M. Kibune, S. Ohmoto,
K. Tateishi, O. Tyshchenko, A. Sheikholeslami, T. Higuchi, J. Ogawa, T. Saito, H.
Ishida, and K. Gotoh. “A 5Gb/s transceiver with an ADC-based feedforward CDR
and CMA adaptive equalizer in 65nm CMOS”. In: Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), IEEE International (Feb. 2010).

[11] M. Chen, Y. Shih, C. Lin, H. Hung, and J. Lee. “A Fully-Integrated 40-Gb/s
Transceiver in 65-nm CMOS Technology”. In: Solid-State Circuits, IEEE Journal
of 47.3 (Mar. 2012), pp. 627–640.

91

www.cisco.com
http://www.bmbf.de/de/19955.php
http://public.itrs.net
http://public.itrs.net

92 REFERENCES

[12] J.E. Jaussi, G. Balamurugan, D.R. Johnson, B. Casper, A. Martin, J. Kennedy, N.
Shanbhag, and R. Mooney. “8Gb/s source-synchronous I/O link with adaptive
receiver equalization, offset cancellation, and clock de-skew”. In: IEEE Journal of
Solid-State Circuits 40.1 (Jan. 2005), pp. 80–88.

[13] T.O. Dickson, Y. Liu, S.V. Rylov, B. Dang, C.K. Tsang, P.S. Andry, J.F. Bulzacchelli,
H.A. Ainspan, X. Gu, L. Turlapati, M.P. Beakes, B.D. Parker, J.U. Knickerbocker,
and D.J. Friedman. “An 8x 10-Gb/s Source-Synchronous I/O System Based on
High-Density Silicon Carrier Interconnects”. In: Solid-State Circuits, IEEE Journal of
47.4 (Apr. 2012), pp. 884–896.

[14] K. Maruko, T. Sugioka, H. Hayashi, Z. Zhou, Y. Tsukuda, Y. Yagishita, H. Konishi,
T. Ogata, H. Owa, T. Niki, K. Konda, M. Sato, H. Shiroshita, T. Ogura, T. Aoki,
H. Kihara, and S. Tanaka. “A 1.296-to-5.184Gb/s Transceiver with 2.4mW/(Gb/s)
Burst-mode CDR using Dual-Edge Injection-Locked Oscillator”. In: Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), IEEE International (Feb. 2010).

[15] K. Fukuda, H. Yamashita, F. Yuki, M. Yagyu, R. Nemoto, T. Takemoto, T. Saito, N.
Chujo, K. Yamamoto, H. Kanai, and A. Hayashi. “An 8Gb/s Transceiver with 3A-
Oversampling 2-Threshold Eye-Tracking CDR Circuit for -36.8dB-loss Backplane”.
In: Solid-State Circuits Conference, ISSCC. Digest of Technical Papers. IEEE International
(Feb. 2008).

[16] A. Hayashi, M. Kuwata, K. Suzuki, T. Muto, M. Tsuge, K. Nagashima, D. Hamano,
T. Usugi, K. Nakajima, M. Ogihara, N. Mikami, and K. Watanabe. “A 21-channel
8Gb/s transceiver macro with 3.6ns latency in 90nm CMOS for 80cm backplane
communication”. In: VLSI Circuits, IEEE Symposium on (June 2008).

[17] W. Chen, C. Tsai, C. Chang, Y. Peng, F. Hsueh, T. Yu, J. Chien, W. Huang, C. Lu, M.
Lin, C. Fu, S. Yang, C. Wong, W. Chen, C. Wen, L. Wang, and C. Pu. “A 2.5-8Gb/s
transceiver with 5-tap DFE and Second order CDR against 28-inch channel and
5000ppm SSC in 40nm CMOS technology”. In: Custom Integrated Circuits Conference
(CICC), IEEE (Sept. 2010).

[18] Z. Gao, H. Yu, P. Chiang, Y. Yang, and F. Zhang. “A 10Gb/s wire-line transceiver
with half rate period calibration CDR”. In: Circuits and Systems, IEEE International
Symposium on (May 2009).

[19] J. Zerbe, B. Daly, L. Luo, W. Stonecypher, W. Dettloff, J.C. Eble, T. Stone, J. Ren, B.
Leibowitz, M. Bucher, P. Satarzadeh, Q. Lin, Y. Lu, and R. Kollipara. “A 5 Gb/s Link
With Matched Source Synchronous and Common-Mode Clocking Techniques”. In:
Solid-State Circuits, IEEE Journal of 46.4 (Apr. 2011), pp. 974–985.

[20] F. Spagna, L. Chen, M. Deshpande, Y. Fan, D. Gambetta, S. Gowder, S. Iyer, R.
Kumar, P. Kwok, R. Krishnamurthy, C. Lin, R. Mohanavelu, R. Nicholson, J. Ou,
M. Pasquarella, K. Prasad, H. Rustam, L. Tong, A. Tran, J. Wu, and X. Zhang. “A
78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-

REFERENCES 93

rate CDR in 32nm CMOS”. In: Solid-State Circuits Conference Digest of Technical Papers
(ISSCC),IEEE International (Feb. 2010).

[21] K. Fukuda, H. Yamashita, G. Ono, R. Nemoto, E. Suzuki, N. Masuda, T. Takemoto,
F. Yuki, and T. Saito. “A 12.3-mW 12.5-Gb/s Complete Transceiver in 65-nm CMOS
Process”. In: Solid-State Circuits, IEEE Journal of 45.12 (Dec. 2010), pp. 2838–2849.

[22] A.L.S. Loke, B.A. Doyle, S.K. Maheshwari, D.M. Fischette, C.L. Wang, T.T. Wee, and
E.S. Fang. “An 8.0-Gb/s HyperTransport Transceiver for 32-nm SOI-CMOS Server
Processors”. In: Solid-State Circuits, IEEE Journal of 47.11 (Nov. 2012), pp. 2627 –2642.

[23] D. Walter, S. Hoppner, H. Eisenreich, G. Ellguth, S. Henker, S. Hanzsche, R. Schuffny,
M. Winter, and G. Fettweis. “A source-synchronous 90Gb/s capacitively driven
serial on-chip link over 6mm in 65nm CMOS”. In: Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), IEEE International (Feb. 2012).

[24] IEEE SCI standard. http://standards.ieee.org/findstds/standard/15
96-1992.html.

[25] SGI interface. http://www.sgi.com.

[26] HIPPI-6400-PH. http://hsi.web.cern.ch/HSI/gsn/gsnhome.htm.

[27] Quickpath Interconnect. http://www.intel.com/content/www/us/en/io/q
uickpath-technology/quick-path-interconnect-introduction-pa

per.html.

[28] HyperTransport Interconnect. http://www.hypertransport.org.

[29] Samsung GDDR products. http://www.samsung.com.

[30] Hynix GDDR products. http://www.skhynix.com.

[31] Micron GDDR products. http://www.micron.com.

[32] Rambus XDR products. http://www.rambus.com.

[33] Micron Technical Notes. http://www.micron.com/products/support/tech
nical-notes.

[34] D. Oh and C. Yuan. In: Prentice Hall, 2011.

[35] GDDR5 JEDEC Standard. http://www.jedec.org/standards-documents/
docs/jesd212.

[36] K. Ha, L. Kim, S. Bae, K. Park, J. Choi, Jun Y., and K. Kim. “A 0.13- µm CMOS 6
Gb/s/pin Memory Transceiver Using Pseudo-Differential Signaling for Removing
Common-Mode Noise Due to SSN”. In: Solid-State Circuits, IEEE Journal of 44.11
(Nov. 2009), pp. 3146–3162.

[37] S. Mukherjee, D. Oh, A. Vaidyanath, D. Dressler, and A. Sendhil. “Challenges in
extending single-ended graphics memory data rates”. In: Electrical Performance of
Electronic Packaging and Systems (EPEPS), IEEE 21st Conference on (Oct. 2012).

http://standards.ieee.org/findstds/standard/1596-1992.html
http://standards.ieee.org/findstds/standard/1596-1992.html
http://www.sgi.com
http://hsi.web.cern.ch/HSI/gsn/gsnhome.htm
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.hypertransport.org
http://www.samsung.com
http://www.skhynix.com
http://www.micron.com
http://www.rambus.com
http://www.micron.com/products/support/technical-notes
http://www.micron.com/products/support/technical-notes
http://www.jedec.org/standards-documents/docs/jesd212
http://www.jedec.org/standards-documents/docs/jesd212

94 REFERENCES

[38] A. Amirkhany, W. Beyene, C. Madden, A. Abbasfar, D. Secker, D. Oh, M. Hekmat, R.
Schmitt, and Chuck Yuan. “On overcoming the limitations of single-ended signaling
for graphics memory interfaces”. In: Solid State Circuits Conference (A-SSCC), IEEE
Asian (Nov. 2011).

[39] D. Oh, S. Chang, C. Madden, J. Kim, R. Schmitt, M. Li, C. Ware, B. Leibowitz, Y.
Frans, and N. Nguyen. “Design and characterization of a 12.8GB/s low power
differential memory system for mobile applications”. In: Electrical Performance of
Electronic Packaging and Systems, (EPEPS) IEEE 18th Conference on (Oct. 2009).

[40] R. Lugannani. “Intersymbol interference and probability of error in digital systems”.
In: Information Theory, IEEE Transactions on 15.6 (Nov. 1969), pp. 682–688.

[41] W. Xiang and S.S. Pietrobon. “On the capacity and normalization of ISI channels”.
In: Information Theory, IEEE Transactions on 49.9 (Sept. 2003), pp. 2263–2268.

[42] A. Amirkhany, J. Wei, N. Mishra, J. Shen, W. Beyene, T. Chin, C. Huang, V. Gadde,
K. Kaviani, P. Le, M. M, C. Madden, S. Mukherjee, L. Raghavan, K. Saito, D. Secker,
F. Shuaeb, S. Srinivas, T. Wu, C. Tran, A. Vaidyanathan, K. Vyas, M. Jain, K. Chang,
and C. Yuan. “A 12.8-Gb/s/link tri-modal single-ended memory interface for
graphics applications”. In: VLSI Circuits (VLSIC), Symposium on (June 2011).

[43] K. Kaviani, T. Wu, J. Wei, A. Amirkhany, J. Shen, T. J. Chin, C. Thakkar, W.T. Beyene,
N. Chan, C. Chen, B.R. Chuang, D. Dressler, V.P. Gadde, M. Hekmat, E. Ho, C.
Huang, P. Le, Mahabaleshwara, C. Madden, N.K. Mishra, L. Raghavan, K. Saito, R.
Schmitt, D. Secker, X. Shi, S. Fazeel, G.S. Srinivas, S. Zhang, C. Tran, A. Vaidyanath,
K. Vyas, M. Jain, K.K. Chang, and Xingchao Yuan. “A Tri-Modal 20-Gbps/Link
Differential/DDR3/GDDR5 Memory Interface”. In: Solid-State Circuits, IEEE Journal
of 47.4 (Apr. 2012), pp. 926–937.

[44] D. Lee, M. Kim, and I.L. Markov. “Low-power clock trees for CPUs”. In: Computer-
Aided Design (ICCAD), IEEE/ACM International Conference on (Nov. 2010).

[45] D. Lee and I.L. Markov. “Contango: Integrated optimization of SoC clock networks”.
In: Design, Automation Test in Europe Conference Exhibition (DATE) (Mar. 2010).

[46] S. Hu, C. Jia, K. Huang, C. Zhang, X. Zheng, and Z. Wang. “A 10Gbps CDR based
on phase interpolator for source synchronous receiver in 65nm CMOS”. In: Circuits
and Systems (ISCAS), IEEE International Symposium on (May 2012).

[47] R. Kreienkamp, U. Langmann, C. Zimmermann, T. Aoyama, and H. Siedhoff. “A
10-gb/s CMOS clock and data recovery circuit with an analog phase interpolator”.
In: IEEE Journal of Solid-State Circuits 40.3 (Mar. 2005), pp. 736–743.

[48] B. Abiri, R. Shivnaraine, A. Sheikholeslami, H. Tamura, and M. Kibune. “A 1-to-
6Gb/s phase-interpolator-based burst-mode CDR in 65nm CMOS”. In: Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), IEEE International (Feb. 2011).

REFERENCES 95

[49] N. Chowdhury, J. Wight, C. Mozak, and N. Kurd. “Intel Core i5/i7 QuickPath
Interconnect receiver clocking circuits and training algorithm”. In: VLSI Design,
Automation, and Test (VLSI-DAT), International Symposium on (Apr. 2012).

[50] M. Loh and A. Emami-Neyestanak. “A 3x9 Gb/s Shared, All-Digital CDR for High-
Speed, High-Density I/O”. In: IEEE Journal of Solid-State Circuits 47.3 (Mar. 2012),
pp. 641–651.

[51] D. Oh, A. Vaidyanath, C. Madden, Y. Frans, and W. Kim. “Optimizing the timing
center for high-speed parallel buses”. In: Electronic Components and Technology
Conference (ECTC), IEEE 62nd (May 2012).

[52] Hynix GDDR5 Datasheet. http://www.hynix.com/datasheet/pdf/graphi
cs/H5GQ1H24AFR(Rev1.0).pdf.

[53] TSMC 65nm Library. http://www.tsmc.com/english/dedicatedFoundry/
technology/65nm.htm.

[54] C. Hsu, C.Y. Lau, and M.H. Perrott. “A Delay-Locked Loop using a Synthesizer-
based Phase Shifter for 3.2 Gb/s Chip-to-Chip Communication”. In: Solid-State
Circuits Conference, (ESSCIRC) Proceedings of the 32nd European (Sept. 2006).

[55] S. Callender and A.M. Niknejad. “A phase-adjustable Delay-Locked Loop utilizing
embedded phase interpolation”. In: Radio Frequency Integrated Circuits Symposium
(RFIC), IEEE (June 2011).

[56] P. Larsson. “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability”.
In: IEEE Journal of Solid-State Circuits 34.12 (1999), pp. 1951–1960.

[57] P. K. Hanumolu, G. Wei, and U. Moon. “A Wide-Tracking Range Clock and Data
Recovery Circuit”. In: IEEE Journal of Solid-State Circuits 43.2 (2008), pp. 425–439.

[58] M. Zanuso, S. Levantino, C. Samori, and A.L. Lacaita. “A Wideband 3.6 GHz
Digital ∆Σ Fractional-N PLL With Phase Interpolation Divider and Digital Spur
Cancellation”. In: IEEE Journal of Solid-State Circuits 46.3 (Mar. 2011), pp. 627–638.

[59] S. Williams, H. Thompson, M. Hufford, and E. Naviasky. “An improved CMOS
ring oscillator PLL with less than 4ps RMS accumulated jitter”. In: Custom Integrated
Circuits Conference, Proceedings of the IEEE (Oct. 2004).

[60] R. Nonis, N. Da Dalt, P. Palestri, and L. Selmi. “Modeling, design and characteriza-
tion of a new low jitter analog dual tuning LC-VCO PLL architecture”. In: Circuits
and Systems, 2004. ISCAS ’04. Proceedings of the 2004 International Symposium on 4
(May 2004), IV–553–6 Vol.4.

[61] D.J. Lee and I.L. Markov. “Multilevel Tree Fusion for Robust Clock Networks”. In:
IEEE/ACM International Conference on Computer-Aided Design (Nov. 2011).

[62] C. N. Sze. “ISPD 2010 High Performance Clock Network Synthesis Contest: Bench-
mark Suite and Results”. In: Proceedings of the 19th International Symposium on
Physical Design. ISPD ’10 (2010).

http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm

96 REFERENCES

[63] T. Chao, Y. Hsu, J. Ho, and A.B. Kahng. “Zero skew clock routing with minimum
wirelength”. In: Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on 39.11 (Nov. 1992), pp. 799–814.

[64] L.P.P.P.V. Ginneken. “Buffer placement in distributed RC-tree networks for minimal
Elmore delay”. In: Circuits and Systems, 1990, IEEE (1990).

[65] S. Hu, C.J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi, and C. N. Sze. “Fast Algorithms
for Slew Constrained Minimum Cost Buffering”. In: Proceedings of the 43rd Annual
Design Automation Conference. DAC (2006).

[66] H. Bakoglu. In: Reading: Addison-Wesley, 1990.

[67] S. Krishnamoorthy. “The Upcoming Golden Age of Placement Research”. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2012).

[68] M.-J.E. Lee, W.J. Dally, and P. Chiang. “Low-power area-efficient high-speed I/O
circuit techniques”. In: IEEE Journal of Solid-State Circuits 35.11 (Nov. 2000), pp. 1591–
1599.

[69] L. Raghavan and T. Wu. “Architectural Comparison of Analog and Digital Duty Cy-
cle Corrector for High Speed I/O Link”. In: VLSI Design, (VLSID) 23rd International
Conference on (Jan. 2010).

[70] Y. Min, C. Jeong, K. Kim, W.H. Choi, J. Son, C. Kim, and S. Kim. “A 0.31-1 GHz
Fast-Corrected Duty-Cycle Corrector With Successive Approximation Register for
DDR DRAM Applications”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.8 (Aug. 2012), pp. 1524–1528.

[71] S. Kao and S. Liu. “A Wide-Range All-Digital Duty Cycle Corrector with a Period
Monitor”. In: Electron Devices and Solid-State Circuits, (EDSSC) IEEE Conference on
(Dec. 2007).

[72] S. Kao and Y. You. “Clock buffer with duty cycle corrector”. In: SOC Conference
(SOCC), IEEE International (Sept. 2010).

[73] H. Huang, C. Liang, and W. Chiu. “1-99% input duty 50% output duty cycle
corrector”. In: Circuits and Systems, (ISCAS) IEEE International Symposium on (May
2006).

[74] R. Mehta, S. Seth, S. Shashidharan, B. Chattopadhyay, and S. Chakravarty. “A
programmable, multi-GHz, wide-range duty cycle correction circuit in 45nm CMOS
process”. In: ESSCIRC, Proceedings of the (Sept. 2012).

[75] S. Han and J. Kim. “Hybrid duty-cycle corrector circuit with dual feedback loop”.
In: Electronics Letters 47.24 (2011), p. 1311.

[76] J.H. Wu, J.H. Gu, L.Z. Zhang, and M. Zhang. “Full-MOSFET mixed-mode duty
cycle corrector”. In: Electronics Letters 47.19 (2011), p. 1067.

REFERENCES 97

[77] J. Gu, J. Wu, D. Gu, M. Zhang, and L. Shi. “All-Digital Wide Range Precharge Logic
50% Duty Cycle Corrector”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.4 (Apr. 2012), pp. 760–764.

[78] J. Ke, S. Huang, and D. Kwai. “A high-resolution all-digital duty-cycle correc-
tor with a new pulse-width detector”. In: Electron Devices and Solid-State Circuits
(EDSSC), IEEE International Conference of (Dec. 2010).

[79] D. Shin, K.J. Na, D. Kwon, J.H. Kang, T. Song, H.D. Jung, W.Y. Lee, K.C. Park, J.H.
Park, Y.S. Joo, J.H. Cha, Y. Jung, Y. Kim, D. Han, B.J. Choi, G.I. Lee, J.H. Cho, and
Y.J. Choi. “Wide-range fast-lock duty-cycle corrector with offset-tolerant duty-cycle
detection scheme for 54nm 7Gb/s GDDR5 DRAM interface”. In: VLSI Circuits,
Symposium on (June 2009).

[80] H. Huang, C. Liang, and S. Sun. “Low-power 50% duty cycle corrector”. In: Circuits
and Systems, (ISCAS) IEEE International Symposium on (May 2008).

[81] C.Y. Chen, M. Le, and K.Y. Kim. “A low power 6-bit flash ADC with reference
voltage and common-mode calibration”. In: VLSI Circuits, IEEE Symposium on (June
2008).

[82] C. Angerer, R. Langwieser, and M. Rupp. “Evaluation and exploration of RFID
systems by rapid prototyping”. In: Personal and Ubiquitous Computing 16, Issue 3
(Mar. 2012), pp. 309–321.

[83] B. Oraw, V. Choudhary, and R. Ayyanar. “A cosimulation approach to model-based
design for complex power electronics and digital control systems”. In: SCSC (2007).

[84] W. Hassairi, M. Bousselmi, and M. Abid. “The co-simulation interface SystemC/-
Matlab applied in JPEG algorithm”. In: ReCoSoC (2011).

[85] B. Gestner and D.V. Anderson. “Automatic Generation of ModelSim-Matlab Inter-
face for RTL Debugging and Verification”. In: MWSCAS (2007).

[86] P. Frey and D. O’Riordan. “Verilog-AMS: Mixed-signal simulation and cross domain
connect modules”. In: Behavioral Modeling and Simulation, Proceedings IEEE/ACM
International Workshop on (2000).

[87] P. Daglio and C. Roma. “A fully qualified top-down and bottom-up mixed-signal
desgin flow for non volatile memories technologies”. In: DATE (2003).

[88] F. Pecheux, C. Lallement, and A. Vachoux. “VHDL-AMS and Verilog-AMS as
alternative hardware description languages for efficient modeling of multidiscipline
systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24.2 (Feb. 2005), pp. 204–225.

[89] A. Leconitre, D. Dragomirescu, and R. Plana. “System architecture modeling of an
UWB receiver for wireless sensor network”. In: Proc. of 7th Int. Embedded Computer
Systems: Architectures, Modeling, and Simulation(SAMOS) Workshop (2007).

98 REFERENCES

[90] A. Vachoux, C. Grimm, and K. Einwich. “Towards analog and mixed-signal SOC
design with systemC-AMS”. In: Field-Programmable Technology, Proceedings IEEE
International Conference on (Jan. 2004).

[91] A. Wang, B. H. Calhoun, and A. P. Chandrakasan. In: Boston, MA: Springer, 2007.

[92] P. Raha. “A 0.6-4.2V low-power configurable PLL architecture for 6 GHz-300 MHz
applications in a 90 nm CMOS process”. In: VLSI Circuits, Digest of Technical Papers.
Symposium on (June 2004).

[93] N. Krishnapura and P.R. Kinget. “A 5.3-GHz programmable divider for HiPerLAN
in 0.25-/spl mu/m CMOS”. In: IEEE Journal of Solid-State Circuits 35.7 (July 2000),
pp. 1019–1024.

[94] Adding Extra Hysteresis to Comparators. Application Note 3616, Maxim Integrated
Products, Sept. 19 2005.

[95] N. Da Dalt, E. Thaller, P. Gregorius, and L. Gazsi. “A low jitter triple-band digital
LC PLL in 130nm CMOS”. In: Solid-State Circuits Conference, (ESSCIRC) Proceeding
of the 30th European (Sept. 2004).

[96] R. Kho, D. Boursin, M. Brox, P. Gregorius, H. Hoenigschmid, B. Kho, S. Kieser,
D. Kehrer, M. Kuzmenka, U. Moeller, P. Petkov, M. Plan, M. Richter, I. Russell, K.
Schiller, R. Schneider, K. Swaminathan, B. Weber, J. Weber, I. Bormann, F. Funfrock,
M. Gjukic, W. Spirkl, H. Steffens, J. Weller, and T. Hein. “75nm 7Gb/s/pin 1Gb
GDDR5 graphics memory device with bandwidth improvement techniques”. In:
Solid-State Circuits Conference - Digest of Technical Papers, (ISSCC) IEEE International
(Feb. 2009).

[97] R. Kho, D. Boursin, M. Brox, P. Gregorius, H. Hoenigschmid, B. Kho, S. Kieser,
D. Kehrer, M. Kuzmenka, U. Moeller, P.V. Petkov, M. Plan, M. Richter, I. Russell, K.
Schiller, R. Schneider, K. Swaminathan, B. Weber, J. Weber, I. Bormann, F. Funfrock,
M. Gjukic, W. Spirkl, H. Steffens, J. Weller, and T. Hein. “A 75 nm 7 Gb/s/pin 1 Gb
GDDR5 Graphics Memory Device With Bandwidth Improvement Techniques”. In:
Solid-State Circuits, IEEE Journal of 45.1 (Jan. 2010), pp. 120–133.

[98] Understanding Data Eye Diagram Methodology for Analyzing High Speed Digital Signals.
www.onsemi.com/pub/Collateral/AND9075-D.PDF.

www.onsemi.com/pub/Collateral/AND9075-D.PDF

Invention Disclosures

[99] A. Jaiswal, Y. Fang, and K. Hofmann. “Method and device for correcting a phase
shift in a time synchronised system”. In: Application no. EP12174388.4 (June 2012).

[100] S. Königsmark, A. Jaiswal, and K. Hofmann. “Method for constructing a clock tree”.
In: Application no. EP12174388.4 (Sept. 2012).

[101] A. Jaiswal, Y. Fang, and K. Hofmann. “A wide range programmable duty cycle
corrector”. In: Application no. EP13162421.5 (Apr. 2013).

[102] Y. Fang, A. Jaiswal, and K. Hofmann. “Method and means for improving the data
transfer integrity in a time synchronised system”. In: Application no. EP12183643.1
(Sept. 2012).

99

List of Own Publications

[103] A. Jaiswal, Y. Fang, P. Gregorius, and K. Hofmann. “Adaptive Low-Power Syn-
chronization Technique for Multiple Source-Synchronous Clocks in High-Speed
Communication Systems”. In: Digital System Design (DSD), Euromicro Conference on
(Sept. 2013).

[104] A. Jaiswal, Y. Fang, K. Nawaz, and K. Hofmann. “A wide range programmable duty
cycle corrector”. In: SOC Conference (SOCC), IEEE 26th International (Sept. 2013).

[105] A. Jaiswal, Y. Fang, K. Hofmann, and P. Gregorius. “An efficient methodology
for mixed-signal high-speed memory design using Matlab/Simulink-HDL co-
simulation”. In: Solid-State and Integrated Circuit Technology (ICSICT), IEEE 11th
International Conference on (Oct. 2012).

101

List of Unrelated Publications

[106] Y. Fang, A. Jaiswal, and K. Hofmann. “Low-power signal integrity trainings for
multi-clock source-synchronous memory systems”. In: SOC Conference (SOCC),
IEEE 26th International (Sept. 2013).

[107] Y. Fang, L. Chen, A. Jaiswal, K. Hofmann, and P. Gregorius. “Adaptive Equalizer
Training for High-Speed Low-Power Communication Systems”. In: Digital System
Design (DSD), Euromicro Conference on (Sept. 2013).

[108] Y. Fang, L. Chen, A. Jaiswal, and K. Hofmann. “Transmitter Equalizer Training
Based On PilotSignal and Peak Detection”. In: IEEE International Conference on
Electronics, Circuits, and Systems (ICECS) (2013).

[109] Y. Fang, U. Muhammad, A. Jaiswal, and K. Hofmann. “Low-Power Design of
Hybrid Digital Impedance Calibration For Process, Voltage, Temperature Compen-
sations”. In: IEEE International Conference on Electronics, Circuits, and Systems (ICECS)
(2013).

[110] H. Ying, A. Jaiswal, T. Hollstein, and K. Hofmann. “Deadlock-free generic routing
algorithms for 3-dimensional Networks-on-Chip with reduced vertical link density
topologies”. In: Journal of Systems Architecture 59.7 (2013), pp. 528 –542.

[111] H. Ying, A. Jaiswal, and K. Hofmann. “Deadlock-free routing algorithms for 3-
dimension Networks-on-Chip with reduced vertical channel density topologies”.
In: High Performance Computing and Simulation (HPCS), International Conference on
(July 2012).

[112] H. Ying, A. Jaiswal, M.A.A. El Ghany, T. Hollstein, and K. Hofmann. “A simula-
tion framework for 3-dimension Networks-on-chip with different vertical channel
density configurations”. In: Design and Diagnostics of Electronic Circuits Systems
(DDECS), IEEE 15th International Symposium on (Apr. 2012).

[113] H. Ying, A. Jaiswal, T. Hollstein, and K. Hofmann. “A Fast Congestion-Aware
Flow Control Mechanism for ID-Based Networks-on-Chip with Best-Effort Com-
munication”. In: Digital System Design (DSD), 14th Euromicro Conference on (Aug.
2011).

103

104 LIST OF UNRELATED PUBLICATIONS

[114] T. Hollstein, F.A. Samman, A. Jaiswal, H. Ying, M. Glesner, and K. Hofmann.
“Invited paper: Design criteria for dependable System-on-Chip architectures”. In:
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 6th International
Workshop on (June 2011).

Supervised Master Theses

[115] D. Gadler. “Phase Interpolator Based PLL”. In: (Jan. 2013).

[116] J. Goldeck. “Generalized GDDR5 Controller”. In: (May 2011).

[117] L. Chen. “Equalization Circuits for Noise Cancellation”. In: (Dec. 2012).

[118] M. Uzair. “Digital Impedance Ccalibration for PVT Compensation”. In: (Jan. 2013).

[119] J. Bargon. “Implementation of Phase interpolator-based clock data recovery”. In:
(Jan. 2014).

[120] L. Thimmaiah. “Design and Implementation of PAR-BS for GDDR5 Memory Con-
troller in a UVM Verification Environment”. In: (Jan. 2014).

[121] T. Wiemer. “Gem5 verification environment for parallelism-aware memory con-
troller”. In: (Jan. 2014).

105

Supervised Bachelor Theses

[122] S.T.C. Koenigsmark. “Clock-Tree Optimization techniques”. In: (Aug. 2012).

[123] K. Heid. “Integration and Verification of XHiNoC in the Atlas framework”. In: (Mar.
2011).

[124] D. Wolf. “High Performance DRAM Scheduling Algorithms for Multi Thread-ed
Systems”. In: (Oct. 2012).

[125] D. Walk. “High-Speed Serializer and Deserializer”. In: (Sept. 2013).

107

Supervised Seminars

[126] J. Bargon. “Study of co-simulation with VHDL and SystemC for XHiNoC”. In: (Oct.
2010).

[127] Z.A. Chohan. “Survey of High Speed Communication Protocols and Future Chal-
lenges”. In: (Feb. 2012).

[128] M.D. Serrano. “Transceivers for high-speed IOs”. In: (Oct. 2012).

[129] K. Nawaz. “High Speed Duty Cycle Corrector”. In: (Oct. 2012).

[130] M.M. Ahmed. “Level Shifters for High Speed System”. In: (Oct. 2012).

109

Glossary

ADC Analog-to-Digital Converter. 50, 57, 60, 111

ASIC Application Specific Integrated Circuit. 2, 68, 111

AWGN Additive White Gaussian Noise. 72, 111

BER Bit-Error-Rate. 4, 5, 65, 111

BGA Ball Grid Array. 10, 111

CAGR Compound Annual Growth Rate. ix, 2, 111

CCO Current Controller Oscillator. ix, xiii, 27, 81–85, 111

CDR Clock-Data-Recovery. iii, ix, xi, xii, 3–5, 17–20, 25, 27, 111

Ci input capacitance. 11, 111

CP Charge Pump. xii, 27, 45, 47–50, 57–60, 79, 80, 82, 111

CSR Control and Settings Register. 72, 111

D2D Device-to Device. 2, 111

DBI Data Bit Inversion. 10, 111

DC Direct current. 10, 12, 111

DCC Duty Cycle Corrector. xii, 14, 19, 45–47, 49, 57–61, 111

DDR Double Data Rate. iii, 7, 9, 14, 64, 111

DFE Decision Feedback Equalizer. 11, 111

DLL Delay Locked Loop. 19, 25, 111

DLPLL Dual Loop PLL. xii, 26–28, 81, 82, 111

DME Deferred-Merge Embedding. 35, 56, 57, 111

DRAM Dynamic Random Access Memory. 16, 111

111

112 GLOSSARY

EDC Error Detection and Correction. xi, 21–24, 28, 29, 52, 71, 87, 88, 111

eye The eye diagram [98] is constructed from a digital waveform by folding the parts of
the waveform corresponding to each individual bit into a single graph with signal
amplitude on the vertical axis and time on horizontal axis. The resultant graph will
represent the average statistics of the signal and will resemble an eye. 3, 11, 18, 19,
71, 72, 111

FD Frequency Divider. 79, 85, 88, 111

FSM Finite State Machine. 20, 111

GDRAM Graphics Dynamic Random Access Memory. 7, 9, 111

HIPPI-6400-PH High-Performance Parallel Interface. 5, 111

I/O Input/Output. iii, 2, 4, 5, 9–11, 14, 64, 72, 111

IC Integrated Circuit. 5, 111

IoT Internet of Things. iii, 2, 111

ISI Inter-Symbol-Interference. iii, xi, 4, 5, 9, 11, 111

ITRS International Technology Roadmap for Semiconductors. 2, 111

LCS Local Clock Skew. 57, 111

link electrical channel interface including transmitter and receiver circuitries. iii, xi, 2–6,
12, 16, 64, 65, 111

M2M Machine-to-Machine. iii, 2, 111

OPAMP Operational Amplifier. 80, 82, 111

OTA Operational Transconductance Amplifier. xiii, 27, 80, 81, 111

PCB Printed Circuit Board. 2, 7, 10–12, 111

PD Phase Detector. 3, 111

PF petaFlops. 2, 111

PFD Phase-Frequency Divider. 79, 80, 88, 111

PHY physical. 72, 111

PI Phase Interpolator. iii, xi, xii, 3, 14, 17–20, 22–27, 31, 52, 54, 55, 64, 78, 111

PLL Phase Locked Loop. iii, ix, x, xii, xiii, 3, 4, 14, 19, 22, 24–28, 30, 31, 52, 54, 55, 60, 64, 72,
78–80, 84–88, 111

113

PODL Pseudo Open Drain Logic. 10, 111

PS Phase Selector. 27, 84, 85, 111

PVT Process, Voltage and Temperature. 9, 12, 19, 20, 23, 25, 38, 41, 45, 50, 57, 64, 111

RAS Reliability, Availability, Serviceability. 6, 111

RLPBO Reliable Low Power Buffering and Optimization algorithm. ix, 56, 57, 111

Rpeak Theoretical Peak Performance. 2, 111

Rx Receiver. 9, 111

SAR Successive Approximation Register. 45, 111

SCI Scalable Coherent Interface. 5, 111

SDR Single Data Rate. 7, 111

SDRAM Source-Synchronous Dynamic Random Access Memory. 7, 9, 14, 111

SE single-ended. 9, 111

sinks end-points. 13, 34–36, 39, 41, 111

SKA Square Kilometer Array. 2, 111

SSCF Source-Synchronous Clock Forward. xi, 16, 111

SSD/SSR Source Synchronous Drivers/Receivers. 6, 111

SSO Simultaneous Switching output. 10, 111

Tx Transmitter. 9, 111

V2I Voltage-to-Current. ix, xiii, 27, 28, 81–83, 85, 86, 111

VCO Voltage Controller Oscillator. ix, xiii, 25–29, 54, 78, 82, 84–87, 111

VOC Variable Offset Comparator. 20, 111

VREF reference voltage. 111

WCK Write Clock. ix, 8, 20–25, 31, 54, 55, 71, 72, 85, 111

XDR Extreme data rate dynamic random-access memory. 8, 9, 111

Resume

Name: Ashok Kumar Jaiswal

Data of birth: March 4th, 1981

Place of birth: Pratapgarh, India

Academic Background

1993-1995 High school at “S. R. M. Inter College Pilibhit”, India

1995-1997 Intermediate school at “G. I. C. Raebareli”, India

1998-2002 B. Tech. (Bachelor of Technology) at “K. N. I. T. Sultanpur”, India

2002-2004 M. Tech. (Master of Technology) at “I. I. T. Delhi”, India

2009-2014 Dr. Eng. (Doctor of Engineering) at “T. U. Darmstadt”, Germany

Work Experience

2004-2006 Design Engineer at “Infineon Technologies”, Bangalore, India

2006-2009 Concept Engineer at “Qimonda Technologies”, Munich, Germany

2009-2014 Research assistant at “Institute of Integrated Electronic Systems”,
Technische Universität Darmstadt, Germany

115

116 RESUME

	1 Introduction
	1.1 Problem description and motivation
	1.2 Source-synchronous I/O links: background
	1.3 Source-synchronous I/O links: challenges
	1.3.1 Unwanted Board Skew
	1.3.1.1 Supply (Vref) noise / SSO noise
	1.3.1.2 Crosstalk
	1.3.1.3 Inter-Symbol-Interference
	1.3.1.4 Ci Mismatch
	1.3.1.5 Termination Mismatch
	1.3.1.6 Trace Length Mismatch

	1.3.2 Clock Skew and Duty Cycle

	1.4 Thesis Overview

	2 Source-Synchronous I/O Links: Adaptive Training
	2.1 Introduction
	2.2 Current state-of-the-art architecture
	2.3 Novel Architectures
	2.3.1 Unit-delay phase incrementer
	2.3.2 PI-based PLL
	2.3.2.1 Functioning of the system

	2.4 Conclusion

	3 Source-Synchronous I/O Links: Clock Skew and Duty Cycle
	3.1 Clock Skew
	3.1.1 Background
	3.1.2 Power optimized buffering
	3.1.2.1 Preparing the clock-tree
	3.1.2.2 Pre-Buffering PVT evaluation
	3.1.2.3 Buffering with clock-skew and slew-rate specifications
	3.1.2.4 Polarities
	3.1.2.5 Post-Buffering Optimization

	3.1.3 Scalability
	3.1.3.1 Improvements because of better clock-skew
	3.1.3.2 Improvements within the algorithm.

	3.2 Duty Cycle
	3.2.1 Circuit structure of the considered DCC
	3.2.2 Novel Architecture with programmable charge pump

	3.3 Conclusions

	4 Simulation Results
	4.1 Adaptive trainings: Results
	4.1.1 Comparison with state-of-the-arts
	4.1.2 Results using circuit level simulation
	4.1.2.1 Low Frequency Simulations
	4.1.2.2 High Frequency Simulations

	4.2 Clock Skew: Results
	4.2.1 Scalability
	4.2.2 Benchmarks

	4.3 Duty Cycle: Results

	5 Summary and Future Works
	5.1 Summary
	5.2 Future Works

	A Design Methodology
	1.1 Design Methodology using Matlab/Simulink-Cadence co-simulation
	1.1.1 Related Work
	1.1.2 Design Flow
	1.1.3 Simulation Setup
	1.1.4 Simulation Results

	1.2 Conclusions

	B Implementation of PI-based PLL architecture
	2.1 Introduction
	2.2 Implementation
	2.2.1 Phase-Frequency Detector
	2.2.2 Charge-Pump
	2.2.3 Operational Transconductance Amplifier
	2.2.4 Voltage-to-Current Converters
	2.2.5 Current Controlled Oscillator
	2.2.6 Phase Selector and Frequency Divider
	2.2.7 Programmable Filter
	2.2.8 Comparator
	2.2.9 Digital Control
	2.2.10 Lock Detector

	References
	Invention Disclosures
	List of Own Publications
	List of Unrelated Publications
	Supervised Master Theses
	Supervised Bachelor Theses
	Supervised Seminars
	Glossary
	Resume

