20 research outputs found

    Algorithmic and explicit determination of the Lovász number for certain circulant graphs

    Get PDF
    AbstractWe consider the problem of computing the Lovász theta function for circulant graphs Cn,J of degree four with n vertices and chord length J, 2⩽J⩽n. We present an algorithm that takes O(J) operations if J is an odd number, and O(n/J) operations if J is even. On the considered class of graphs our algorithm strongly outperforms the known algorithms for theta function computation. We also provide explicit formulas for the important special cases J=2 and J=3

    The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications

    Get PDF
    The orthogonality dimension of a graph G=(V,E)G=(V,E) over a field F\mathbb{F} is the smallest integer tt for which there exists an assignment of a vector uvFtu_v \in \mathbb{F}^t with uv,uv0\langle u_v,u_v \rangle \neq 0 to every vertex vVv \in V, such that uv,uv=0\langle u_v, u_{v'} \rangle = 0 whenever vv and vv' are adjacent vertices in GG. The study of the orthogonality dimension of graphs is motivated by various application in information theory and in theoretical computer science. The contribution of the present work is two-folded. First, we prove that there exists a constant cc such that for every sufficiently large integer tt, it is NP\mathsf{NP}-hard to decide whether the orthogonality dimension of an input graph over R\mathbb{R} is at most tt or at least 3t/2c3t/2-c. At the heart of the proof lies a geometric result, which might be of independent interest, on a generalization of the orthogonality dimension parameter for the family of Kneser graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976). Second, we study the smallest possible orthogonality dimension over finite fields of the complement of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit construction of triangle-free nn-vertex graphs whose complement has orthogonality dimension over the binary field at most n1δn^{1-\delta} for some constant δ>0\delta >0. Our results involve constructions from the family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower bounds. We use them to answer a couple of questions raised by Codenotti, Pudl\'{a}k, and Resta (Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture over every finite field.Comment: 19 page

    On Minrank and Forbidden Subgraphs

    Get PDF
    The minrank over a field F\mathbb{F} of a graph GG on the vertex set {1,2,,n}\{1,2,\ldots,n\} is the minimum possible rank of a matrix MFn×nM \in \mathbb{F}^{n \times n} such that Mi,i0M_{i,i} \neq 0 for every ii, and Mi,j=0M_{i,j}=0 for every distinct non-adjacent vertices ii and jj in GG. For an integer nn, a graph HH, and a field F\mathbb{F}, let g(n,H,F)g(n,H,\mathbb{F}) denote the maximum possible minrank over F\mathbb{F} of an nn-vertex graph whose complement contains no copy of HH. In this paper we study this quantity for various graphs HH and fields F\mathbb{F}. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F)g(n,H,\mathbb{F}), which yields a nearly tight bound of Ω(n/logn)\Omega(\sqrt{n}/\log n) for the triangle H=K3H=K_3. For the real field, we prove by an explicit construction that for every non-bipartite graph HH, g(n,H,R)nδg(n,H,\mathbb{R}) \geq n^\delta for some δ=δ(H)>0\delta = \delta(H)>0. As a by-product of this construction, we disprove a conjecture of Codenotti, Pudl\'ak, and Resta. The results are motivated by questions in information theory, circuit complexity, and geometry.Comment: 15 page

    Propriétés géométriques du nombre chromatique : polyèdres, structures et algorithmes

    Get PDF
    Computing the chromatic number and finding an optimal coloring of a perfect graph can be done efficiently, whereas it is an NP-hard problem in general. Furthermore, testing perfection can be carried- out in polynomial-time. Perfect graphs are characterized by a minimal structure of their sta- ble set polytope: the non-trivial facets are defined by clique-inequalities only. Conversely, does a similar facet-structure for the stable set polytope imply nice combinatorial and algorithmic properties of the graph ? A graph is h-perfect if its stable set polytope is completely de- scribed by non-negativity, clique and odd-circuit inequalities. Statements analogous to the results on perfection are far from being understood for h-perfection, and negative results are missing. For ex- ample, testing h-perfection and determining the chromatic number of an h-perfect graph are unsolved. Besides, no upper bound is known on the gap between the chromatic and clique numbers of an h-perfect graph. Our first main result states that the operations of t-minors keep h- perfection (this is a non-trivial extension of a result of Gerards and Shepherd on t-perfect graphs). We show that it also keeps the Integer Decomposition Property of the stable set polytope, and use this to answer a question of Shepherd on 3-colorable h-perfect graphs in the negative. The study of minimally h-imperfect graphs with respect to t-minors may yield a combinatorial co-NP characterization of h-perfection. We review the currently known examples of such graphs, study their stable set polytope and state several conjectures on their structure. On the other hand, we show that the (weighted) chromatic number of certain h-perfect graphs can be obtained efficiently by rounding-up its fractional relaxation. This is related to conjectures of Goldberg and Seymour on edge-colorings. Finally, we introduce a new parameter on the complexity of the matching polytope and use it to give an efficient and elementary al- gorithm for testing h-perfection in line-graphs.Le calcul du nombre chromatique et la détermination d'une colo- ration optimale des sommets d'un graphe sont des problèmes NP- difficiles en général. Ils peuvent cependant être résolus en temps po- lynomial dans les graphes parfaits. Par ailleurs, la perfection d'un graphe peut être décidée efficacement. Les graphes parfaits sont caractérisés par la structure de leur poly- tope des stables : les facettes non-triviales sont définies exclusivement par des inégalités de cliques. Réciproquement, une structure similaire des facettes du polytope des stables détermine-t-elle des propriétés combinatoires et algorithmiques intéressantes? Un graphe est h-parfait si les facettes non-triviales de son polytope des stables sont définies par des inégalités de cliques et de circuits impairs. On ne connaît que peu de résultats analogues au cas des graphes parfaits pour la h-perfection, et on ne sait pas si les problèmes sont NP-difficiles. Par exemple, les complexités algorithmiques de la re- connaissance des graphes h-parfaits et du calcul de leur nombre chro- matique sont toujours ouvertes. Par ailleurs, on ne dispose pas de borne sur la différence entre le nombre chromatique et la taille maxi- mum d'une clique d'un graphe h-parfait. Dans cette thèse, nous montrons tout d'abord que les opérations de t-mineurs conservent la h-perfection (ce qui fournit une extension non triviale d'un résultat de Gerards et Shepherd pour la t-perfection). De plus, nous prouvons qu'elles préservent la propriété de décompo- sition entière du polytope des stables. Nous utilisons ce résultat pour répondre négativement à une question de Shepherd sur les graphes h-parfaits 3-colorables. L'étude des graphes minimalement h-imparfaits (relativement aux t-mineurs) est liée à la recherche d'une caractérisation co-NP com- binatoire de la h-perfection. Nous faisons l'inventaire des exemples connus de tels graphes, donnons une description de leur polytope des stables et énonçons plusieurs conjectures à leur propos. D'autre part, nous montrons que le nombre chromatique (pondéré) de certains graphes h-parfaits peut être obtenu efficacement en ar- rondissant sa relaxation fractionnaire à l'entier supérieur. Ce résultat implique notamment un nouveau cas d'une conjecture de Goldberg et Seymour sur la coloration d'arêtes. Enfin, nous présentons un nouveau paramètre de graphe associé aux facettes du polytope des couplages et l'utilisons pour donner un algorithme simple et efficace de reconnaissance des graphes h- parfaits dans la classe des graphes adjoints

    Geometric Ramifications of the Lovász Theta Function and Their Interplay with Duality

    Get PDF
    The Lovasz theta function and the associated convex sets known as theta bodies are fundamental objects in combinatorial and semidefinite optimization. They are accompanied by a rich duality theory and deep connections to the geometric concept of orthonormal representations of graphs. In this thesis, we investigate several ramifications of the theory underlying these objects, including those arising from the illuminating viewpoint of duality. We study some optimization problems over unit-distance representations of graphs, which are intimately related to the Lovasz theta function and orthonormal representations. We also strengthen some known results about dual descriptions of theta bodies and their variants. Our main goal throughout the thesis is to lay some of the foundations for using semidefinite optimization and convex analysis in a way analogous to how polyhedral combinatorics has been using linear optimization to prove min-max theorems. A unit-distance representation of a graph GG maps its nodes to some Euclidean space so that adjacent nodes are sent to pairs of points at distance one. The hypersphere number of GG, denoted by t(G)t(G), is the (square of the) minimum radius of a hypersphere that contains a unit-distance representation of GG. Lovasz proved a min-max relation describing t(G)t(G) as a function of ϑ(G)\vartheta(\overline{G}), the theta number of the complement of GG. This relation provides a dictionary between unit-distance representations in hyperspheres and orthonormal representations, which we exploit in a number of ways: we develop a weighted generalization of t(G)t(G), parallel to the weighted version of ϑ\vartheta; we prove that t(G)t(G) is equal to the (square of the) minimum radius of an Euclidean ball that contains a unit-distance representation of GG; we abstract some properties of ϑ\vartheta that yield the famous Sandwich Theorem and use them to define another weighted generalization of t(G)t(G), called ellipsoidal number of GG, where the unit-distance representation of GG is required to be in an ellipsoid of a given shape with minimum volume. We determine an analytic formula for the ellipsoidal number of the complete graph on nn nodes whenever there exists a Hadamard matrix of order nn. We then study several duality aspects of the description of the theta body TH(G)\operatorname{TH}(G). For a graph GG, the convex corner TH(G)\operatorname{TH}(G) is known to be the projection of a certain convex set, denoted by TH^(G)\widehat{\operatorname{TH}}(G), which lies in a much higher-dimensional matrix space. We prove that the vertices of TH^(G)\widehat{\operatorname{TH}}(G) are precisely the symmetric tensors of incidence vectors of stable sets in GG, thus broadly generalizing previous results about vertices of the elliptope due to Laurent and Poljak from 1995. Along the way, we also identify all the vertices of several variants of TH^(G)\widehat{\operatorname{TH}}(G) and of the elliptope. Next we introduce an axiomatic framework for studying generalized theta bodies, based on the concept of diagonally scaling invariant cones, which allows us to prove in a unified way several characterizations of ϑ\vartheta and the variants ϑ\vartheta' and ϑ+\vartheta^+, introduced independently by Schrijver, and by McEliece, Rodemich, and Rumsey in the late 1970's, and by Szegedy in 1994. The beautiful duality equation which states that the antiblocker of TH(G)\operatorname{TH}(G) is TH(G)\operatorname{TH}(\overline{G}) is extended to this setting. The framework allows us to treat the stable set polytope and its classical polyhedral relaxations as generalized theta bodies, using the completely positive cone and its dual, and it allows us to derive a (weighted generalization of a) copositive formulation for the fractional chromatic number due to Dukanovic and Rendl in 2010 from a completely positive formulation for the stability number due to de Klerk and Pasechnik in 2002. Finally, we study a non-convex constraint for semidefinite programs (SDPs) that may be regarded as analogous to the usual integrality constraint for linear programs. When applied to certain classical SDPs, it specializes to the standard rank-one constraint. More importantly, the non-convex constraint also applies to the dual SDP, and for a certain SDP formulation of ϑ\vartheta, the modified dual yields precisely the clique covering number. This opens the way to study some exactness properties of SDP relaxations for combinatorial optimization problems akin to the corresponding classical notions from polyhedral combinatorics, as well as approximation algorithms based on SDP relaxations

    Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

    Get PDF
    The query complexity of graph properties is well-studied when queries are on the edges. We investigate the same when queries are on the nodes. In this setting a graph G = (V,E) on n vertices and a property P are given. A black-box access to an unknown subset S of V is provided via queries of the form "Does i belong to S?". We are interested in the minimum number of queries needed in the worst case in order to determine whether G[S] - the subgraph of G induced on S - satisfies P. Our primary motivation to study this model comes from the fact that it allows us to initiate a systematic study of breaking symmetry in the context of query complexity of graph properties. In particular, we focus on the hereditary graph properties - properties that are closed under deletion of vertices as well as edges. The famous Evasiveness Conjecture asserts that even with a minimal symmetry assumption on G, namely that of vertex-transitivity, the query complexity for any hereditary graph property in our setting is the worst possible, i.e., n. We show that in the absence of any symmetry on G it can fall as low as O(n^{1/(d + 1)}) where d denotes the minimum possible degree of a minimal forbidden sub-graph for P. In particular, every hereditary property benefits at least quadratically. The main question left open is: Can it go exponentially low for some hereditary property? We show that the answer is no for any hereditary property with finitely many forbidden subgraphs by exhibiting a bound of Omega(n^{1/k}) for a constant k depending only on the property. For general ones we rule out the possibility of the query complexity falling down to constant by showing Omega(log(n)*log(log(n))) bound. Interestingly, our lower bound proofs rely on the famous Sunflower Lemma due to Erdos and Rado

    Quantum Computation, Markov Chains and Combinatorial Optimisation

    Get PDF
    This thesis addresses two questions related to the title, Quantum Computation, Markov Chains and Combinatorial Optimisation. The first question involves an algorithmic primitive of quantum computation, quantum walks on graphs, and its relation to Markov Chains. Quantum walks have been shown in certain cases to mix faster than their classical counterparts. Lifted Markov chains, consisting of a Markov chain on an extended state space which is projected back down to the original state space, also show considerable speedups in mixing time. We design a lifted Markov chain that in some sense simulates any quantum walk. Concretely, we construct a lifted Markov chain on a connected graph G with n vertices that mixes exactly to the average mixing distribution of a quantum walk on G. Moreover, the mixing time of this chain is the diameter of G. We then consider practical consequences of this result. In the second part of this thesis we address a classic unsolved problem in combinatorial optimisation, graph isomorphism. A theorem of Kozen states that two graphs on n vertices are isomorphic if and only if there is a clique of size n in the weak modular product of the two graphs. Furthermore, a straightforward corollary of this theorem and Lovász’s sandwich theorem is if the weak modular product between two graphs is perfect, then checking if the graphs are isomorphic is polynomial in n. We enumerate the necessary and sufficient conditions for the weak modular product of two simple graphs to be perfect. Interesting cases include complete multipartite graphs and disjoint unions of cliques. We find that all perfect weak modular products have factors that fall into classes of graphs for which testing isomorphism is already known to be polynomial in the number of vertices. Open questions and further research directions are discussed
    corecore