
Facoltà di Ingegneria dell’Informazione

Informatica e Statistica

Dipartimento di Scienze Statistiche

DOTTORATO DI RICERCA IN RICERCA OPERATIVA - XXIV ciclo

On the clique cover problem on claw-free
perfect graphs

Candidato Relatore

Claudia Snels Prof. Gianpaolo Oriolo

Marzo 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74323634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Alla mia Famiglia, quella vecchia e quella nuova

Alice nel paese delle meraviglie

“Ma io non voglio andare fra i matti”, osservò Alice.

“Be’, non hai altra scelta”, disse il Gatto “Qui siamo tutti matti. Io sono

matto. Tu sei matta.”

“Come lo sai che sono matta?” disse Alice.

“Per forza,” disse il Gatto: “altrimenti non saresti venuta qui.”

Lewis Carroll

Contents

Introduction 1

1 Basic notations and preliminary notions 3

1.1 Graphs . 3

1.2 Claw-free graphs . 6

1.3 Perfect Graphs . 7

1.4 Matchings . 9

1.5 Stable sets . 10

1.6 Clique covers . 12

1.7 Claw-free perfect graphs . 14

2 The mcc problem on claw-free perfect graphs 16

2.1 Introduction . 16

2.2 A short introduction to the 2-SAT problem 18

2.3 An algorithm for the mcc in quasi-line perfect graphs via 2-SAT 19

3 The mwcc problem on strip-composed perfect graphs 28

3.1 Strip-composed graphs . 28

3.2 The mwss problem on strip-composed graphs 30

3.3 Sketch of the steps . 31

3.4 Main result . 32

3.5 The gadgets . 34

3.6 Weighted clique cover of line and perfect graphs 48

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 50

3.7.1 The structure of G̃ and H 51

3.7.2 From a mwcc of G̃ to a mwcc of G 56

CONTENTS ii

3.7.3 When some strip is replaced by the strip H̃2
i = (T i

2, Ãi
2) 61

3.8 Conclusions . 63

4 The mwcc problem on strip-composed claw-free perfect graphs 65

4.1 Introduction . 65

4.2 Structure results for quasi-line graphs 66

4.3 Related work: an algorithm for the mwcc problem on claw-

free perfect graphs . 68

4.4 An algorithm for the mwcc on decomposable graphs 69

4.5 Computing a mwcc on a graph distance simplicial w.r.t. a

clique K . 71

4.6 Computing a mwcc for strips in case (b) 74

5 A fast algorithm to reduce proper and homogeneous pairs

of cliques 79

5.1 Introduction . 79

5.2 Preliminaries . 81

5.3 An algorithm for removing proper and homogeneous pairs . . 85

5.4 Preserving some graph invariant or property 90

Conclusions 95

Acknowledgments 97

Bibliography 99

List of Figures

1.1 A claw (u; v1, v2, v3) . 6

1.2 A claw-free graph which is not quasi-line 7

1.3 A quasi-line graph which is not line 7

1.4 A net . 8

3.1 Trivial strips H̃0
i , H̃1

i , H̃2
i , H̃3

i , possibly associated with the

strip Hi. 37

3.2 A graph G, composition of the 2-strips H1, . . . , H5 and the

1-strips H6, H7, H8. Partition P is given by

{{A1
1, A7

1}, {A
5
1, A6

1}, {A
1
2, A2

2, A3
2}, {A

2
1, A5

2, A4
1}, {A

3
1, A4

2, A8
1}}. 53

3.3 The weighted graph G̃, corresponding to graph G in Figure

3.2, and the weight function w such that w(v) = 1 for every

vertex v of G. 54

3.4 The root graph H of the line graph G̃ in Figure 3.3. 54

Introduction

The main goal of this thesis is to develop new combinatorial algorithms for

the clique cover problem (weighted and unweighted) on perfect graphs. This

problem has not received the same interest of its dual problem, the maximum

stable set problem; the most recent results on the minimum clique cover

problem on perfect graphs go back to the Eighties (Groetschel, Lovàsz, and

Schrijver in [21] and Hsu and Nemhauser in [22] and [23] for the subclass of

claw-free perfect graphs).

In the last years a lot of efforts have been devoted to a better understanding

of the structure of perfect graphs, mainly in trying to prove the strong

perfect graph conjecture (that was finally proved by Chudnovsky, Robertson,

Seymour and Thomas in [7]), and of other relevant classes of graphs, such as

claw-free graphs (with an outstanding series of papers by Chudnovsky and

Seymour, for a survey see [8]). These results introduce the idea that a graph

can be obtained with a composition of simpler graphs, called strips. The

understanding of the structure of claw-free graphs together with this new

composition operator for graphs has been the key for the development of a

new combinatorial algorithm for the maximum weighted stable set problem

(see [34] and [17]).

We want to exploit all the acquired knowledge on the structure of perfect

and claw-free graphs as it has already been done for the maximum weighted

stable set, to produce new algorithms for the minimum (weighted and un-

weighted) clique cover problem.

Let us now summarize the outcomes of our work, together with the way

those are organized in this thesis. We start in Chapter 1 with general defini-

tions and some basic properties and results on the combinatorial problems

Introduction 2

and classes of graphs mainly treated in this thesis. Then we move to the

minimum clique cover problem on claw-free perfect graphs; we present in

Chapter 2 a combinatorial algorithm for this problem which runs in O(|V |3)

and builds concurrently a minimum clique cover and a maximum stable set

of the graph. In Chapter 3 we study the weighted version of the problem

and we present an algorithmic theorem for the minimum weighted clique

cover problem on strip composed perfect graphs. This result will be one of

the building blocks for the algorithm for the minimum weighted clique cover

on strip-composed claw-free perfect graphs presented in Chapter 4.

In the second part of the thesis (Chapter 5) we present a reduction tech-

nique to remove proper and homogeneous pairs of cliques from a graph

while preserving some graph invariants. For some classical discrete opti-

mization problems, especially in claw-free graphs, proper and homogeneous

pairs of cliques represent an ‘annoying’ configuration of vertices, thus some

preprocessing routines have been developed in the literature, that eliminate

proper and homogeneous pairs of cliques. For example a reduction of proper

and homogeneous pairs of cliques for the mwss in claw-free graphs is pre-

sented in [34], and for the maximum clique and coloring problem in quasi-line

graphs in [24]. In the thesis we introduce a family of reductions that can be

used for removing proper and homogeneous pairs of cliques from a graph G

while maintaining some given graph invariant. This family includes the rou-

tines presented in the literature, underlining the common framework behind

them. Our reductions can be embedded in a simple algorithm that in at

most |E(G)| steps builds a new graph G′ without proper and homogeneous

pairs of cliques, and such that G and G′ agree on the value of the chosen

invariant.

Sources

Results in Chapters 2, 3 and 4 are joint work with Gianpaolo Oriolo and

Flavia Bonomo; an extended abstract of the results in Chapters 3 and 4

appears in the proceedings of the 2011 Cologne Twente Workshop. Results

in Chapter 5 are joint work with Gianpaolo Oriolo and Yuri Faenza and are

published in [16].

Chapter 1

Basic notations and

preliminary notions

We begin with a chapter on general purpose notations and notions that

will be used throughout the thesis. The exposition is very far from being

exhaustive: for any background material that we missed and a wider expo-

sition of the topics presented, the reader may refer to [44] for graphs, to [41]

for combinatorial optimization and to [40] for polyhedra, linear and integer

programming. We start with some general notations and definitions.

N,Z,Q,R denote respectively the set of natural, integer, rational and

real numbers. Given n ∈ N, we denote by [n] the finite set {1, 2, . . . , n}.

By Q+ (resp. R+) we denote the set of rational (resp. real) non-negative

numbers. Let f, g : N→ R be functions from the set of natural numbers to

set of real numbers. We say that f = O(g) if there exist constants c and N

such that f(n) ≤ c · g(n) for all integers n ≥ N . Given a set S, we define

2S to be the set of all subsets of S; if moreover S has a finite number of

elements, the size or cardinality |S| of S is the number of distinct elements

S contains. If f : S → R, for any S̄ ⊆ S we define f(S̄) :=
∑

s∈S̄ f(s).

1.1 Graphs

An undirected graph is an ordered pair G := (V, E), where V is a set of

vertices and E is a set of unordered pairs of vertices each of which is called

1.1 Graphs 4

edge. Alternatively, we denote respectively by V (G) and E(G) the set of

vertices and the set of edges of G. With a slight abuse of notation, we

denote by (u, v) or uv the edge corresponding to the unordered pair {u, v}.

If (u, v) ∈ E, we say that u, v are the extremes or endpoints of edge (u, v),

and that u, v are adjacent or joined by an edge in G. If there is a pair of

vertices {u, v} occurring more than once in E, we say that this pair is a

multiple edge. We deal with loopless graphs, i.e. we assume that (u, u) /∈ E

for each u ∈ V . For each v ∈ V , we denote by δ(v) the set of edges of G

with an endpoint in v. We mostly deal with simple graphs, that is graphs

without multiple edges; when our graph G will not be simple we will call it

multigraph. Given a set U ⊆ V , we denote by E(U) the set of edges of G

with exactly one endpoint in U .

A subgraph of a graph G(V, E) is a graph G′(V ′, E′) of G with E′ ⊆ E

and V ′ ⊆ V and u, v ∈ V ′ for each (u, v) ∈ E′. G′ is an induced subgraph

of G if, moreover, (u, v) ∈ E′ if and only if u, v ∈ V ′ and (u, v) ∈ E. Thus

an induced subgraph is uniquely identified by a set V ′ ⊆ V , and we denote

it by G[V ′]. Sometimes we shall refer to G \ V ′ as to the subgraph of G

induced by V \V ′. Given a graph G(V, E) and an integer k ∈ N, an ordered

set of vertices v1, . . . , vk is a walk (of length k − 1) if (vi, vi+1) ∈ E for

each i ∈ [k − 1]. If v1, . . . , vk are all distinct, the walk is called a path. If

P = v1, . . . , vk is a path, the vertex v1 is called the starting vertex or first

vertex of P and the vertex vk the end vertex or last vertex of P . Sometimes

both v1 and vk are called the end vertices or extremes or ends of P . We say

that a path P = v1, . . . , vk is induced if, moreover, for every 1 ≤ i < j with

j 6= i + 1, vivj /∈ E. A graph is connected if there exists a walk between any

two vertices of G. For j ∈ N, the j-th neighborhood Nj(v) of a vertex v ∈ V

is the set of vertices u ∈ V such that the minimum length of a walk joining

v and u is j (the graph G will be clear from the context). In particular, the

(first) neighborhood of v in G (N1(v) or N(v)) is the set of vertices that are

joined to v by an edge. We will denote with N [v] the closed neighborhood

of v, that is N [v] := N(v) ∪ {v}. A vertex v is isolated in G if N(v) = ∅. A

connected component of G is a maximal (w.r.t. to the vertex set) connected

induced subgraph of G. Two graphs G and H are said to be isomorphic if

1.1 Graphs 5

there exists a bijection φ : V (G) → V (H) such that (u, v) ∈ E(G) if and

only if (φ(u), φ(v)) ∈ E(H). Given graphs G and H, we say that G contains

H if there exists an induced subgraph of G that is isomorphic to H. A graph

that does not contain any induced subgraph isomorphic to a given graph H

is said to be H-free. The complement of a graph G is the graph G(V, E)

where E is the set of edges (u, v) with u 6= v such that (u, v) /∈ E. A graph G

is complete (or a complete graph) if its complement has no edge. Sometimes,

especially when dealing with induced subgraphs, we shall refer to an anti-G

as the complement of G. Given U, U ′ ⊂ V , we say that U, U ′ are complete

(to each other) in G(V, E) if for each u ∈ U , u′ ∈ U ′, (u, u′) ∈ E. We say

they are anticomplete (to each other) in G(V, E) if they are complete in the

complement of G. For some n ∈ N, an n-hole is a graph with n vertices

u1, . . . , un and edges (ui, ui+1) for each i ∈ [n − 1] plus the edge (un, u1).

An odd hole is an n-hole with n ≥ 4 odd. Similarly, one defines even holes,

odd antiholes, even antiholes.

Given a graph G(V, E), we say that a set U ⊆ V is a stable set of G if

no two elements of its are joined by an edge in G, while it is a clique if each

two elements of it are joined by an edge in G. We denote by α(G) the size of

the maximum stable set in G, and we often refer to α(G) as to the stability

number of G. We denote by ω(G) the size of the maximum clique in G, and

we often refer to ω(G) as to the clique number of G. A coloring of a graph

G(V, E) is a function f : V → N with the property that f(u) 6= f(v) for each

u, v ∈ V with (u, v) ∈ E. The chromatic number of G, denoted by χ(G),

is the size of the smallest co-domain over all functions f that are colorings

of G. Equivalently (but in a more combinatorial fashion), a coloring is a

function that assigns to each vertex of G a color such that two adjacent

vertices of G are not given the same color. The chromatic number of G is

then the cardinality of the smallest set C of colors such that there exists a

coloring of G that uses only colors from C. We say that G is k-colorable if

there exists a coloring of G that uses only colors from C, with |C| = k.

A graph G(V, E) is k-partite if V can be partitioned in k sets V1, . . . , Vk

and each edge of G has an endpoint in Vi and one in Vj with i 6= j (i.e. Vi

is a stable set for every i = 1, . . . , k). In the special case k = 2 the graph is

1.2 Claw-free graphs 6

said to be bipartite. We will often refer to complements of bipartite graphs

as cobipartite graphs: in those graphs the vertex set can be covered with

two cliques.

The intersection graph of a family of sets C is the graph with vertex set

C, two sets in C being adjacent if and only if they intersect.

1.2 Claw-free graphs

A graph is claw-free if it does not contain any induced subgraph isomorphic

to a claw (pictured in fig. 1.1).

u

v1

v2

v3

Figure 1.1: A claw (u; v1, v2, v3)

Claw-free graphs play a relevant role in combinatorial optimization be-

cause they are one of the first graph classes where it has been proved (in-

dependently by Sbihi [39] and Minty [31]) that a stable set of maximum

cardinality can be found in polynomial time, using a combinatorial algo-

rithm.

The structure of claw-free graphs has been extensively studied in a series

of papers by Chudnovsky and Seymour (see [8] for a survey). Their result

involves a lot of graph classes that are not of interest in this thesis, thus we

postpone a more accurate analysis of this result to Chapter 4.

A relevant subclass of claw-free graphs is the class of quasi-line graphs. A

graph is quasi-line if for every v ∈ V , N [v] can be covered with two cliques.

Trivially we cannot have a claw in a quasi-line graph, but some claw-free

graphs are not quasi-line (we can see an example in Figure 1.2)

Quasi-line graphs have been also studied in terms of graph structure

(again by Chudnovsky and Seymour [10]) and in terms of finding good upper

1.3 Perfect Graphs 7

Figure 1.2: A claw-free graph which is not quasi-line

bounds for the coloring number χ(G) ([24, 5]). Quasi-line graphs are also a

superclass of the very well known class of line graphs. A graph L(G) is a

line graph if it can be obtained as the intersection graph of the edges of a

non necessarily simple graph G (G instead is called the root graph of L(G)).

Again trivially any line graph is quasi-line but there are some quasi-line

graphs that are not line (see Figure 1.3 for an example)

Figure 1.3: A quasi-line graph which is not line

The most relevant result on quasi-line graphs for this thesis is an algo-

rithmic decomposition theorem presented in [17]. The result in [17] says that

a graph G quasi-line either is net-free (a net is pictured in Figure 1.4) or it

admits a strip decomposition, and this strip decomposition can be found in

polynomial time (for a definition of strip decomposition see Chapter 3). We

will go on further details on this result in Chapter 4.

1.3 Perfect Graphs

The clique number ω(G) and the coloring number χ(G) of a graph G(V, E)

are related by the inequality ω(G) ≤ χ(G), because in order to color all

the vertices of the graph we need at least to assign a different color to each

vertex of a clique of maximum size. Strict inequality can occur, for instance,

1.3 Perfect Graphs 8

Figure 1.4: A net

for any odd cycle of length at least five, and its complement. We can instead

always produce a graph where equality occurs, by adding to a graph G a

clique of size χ(G), disjoint from V .

However the case when equality occurs becomes much more interesting

and powerful when we require that equality holds also for all the induced

subgraphs of G. Berge [4] defined a graph G(V, E) to be perfect if ω(G′) =

χ(G′) holds for every induced subgraph G′ of G.

Various classes of graphs could be shown to be perfect, among those

the class of bipartite graphs and line graphs of bipartite graphs. Berge in

[3, 4] observed that for all those classes, also the complementary graphs are

perfect, thus conjectured what it is now known as the perfect graph theorem:

Theorem 1.1. [29] A graph is perfect if and only if its complement is

perfect.

Theorem 1.1 has been proved by Lovász in [29]. As we have already seen,

from the definition of perfect graphs it was straighforward from existing

theorems that some important classes of graphs were perfect (e.g. bipartite

graphs, complements of bipartite graphs, line graphs of bipartite graphs).

It was also clear that some graphs where not perfect, for example odd holes

and odd antiholes. Berge and P.C. Gilmore in [4] conjectured that a graph

is perfect if and only if it is odd holes and odd antiholes free. Nowadays

odd holes and odd antiholes free graphs are called Berge. Necessity of the

conjecture is trivial, but sufficiency is far from being trivial. This conjecture,

named strong perfect graphs conjecture in fact has been open for almost

fourty years, and it has been proved in a huge piece of work by Chudnovsky,

1.4 Matchings 9

Robertson, Seymour and Thomas [7].

Theorem 1.2. [7] A graph is perfect if and only if is Berge.

The previous result, which gives also a characterization of perfect graphs

in terms of minimally imperfect graphs (a graph G is minimally imperfect if

G is not perfect but all its induced subgraphs are perfect), will be extensively

used in this thesis.

1.4 Matchings

Given a graph G(V, E), a subset M of E is called a matching if any two

edges in M are disjoint. An important concept in finding a matching of

maximum cardinality (i.e. a maximum matching) is that of an augmenting

path. We say that a vertex u ∈ V is covered by a matching M if there exists

an edge uv for some v ∈ V such that uv ∈M .

Let M be a matching in a graph G(V, E). A path P in G is called M-

augmenting if P has odd length, its ends are not covered by M , and its

edges are alternatingly out of and in M .

The relevance of augmenting paths is due to the following theorem of Pe-

tersen [37].

Theorem 1.3. Let G(V, E) be a graph and let M be a matching in G. Then

either M is a matching of maximum size or there exists an M -augmenting

path.

This theorem has a straightforward algorithmic consequence: if we have

an algorithm that either finds an M -augmenting path for any matching M

or decide that it does not exists, then we can find a maximum size matching.

Finding an M -augmenting path can be done in polynomial time in general

graphs, thanks to Edmonds’ algorithm [13], which solves the problem in

O(|V |2|E|) (for a O(|V |3) implementation of the same algorithm see [41]).

Suppose we are also given a weight function w : E → R+ on the edges

of G, then one may ask if we can efficiently find a matching of G such

that w(M) =
∑

e∈M w(e) is maximum. The answer to this question is

affirmative and was given again by Edmonds [14]. The algorithm for the

1.5 Stable sets 10

maximum weight matching is a primal-dual algorithm and it runs in the

original version in time O(|V |2|E|) (again for a O(|V |3) implementation of

the same algorithm see [41]).

1.5 Stable sets

In a graph G(V, E) a stable set is a set of vertices any two of which are non

adjacent. The maximum size of a stable set in G is called the stable set

number or stability number of G, and is denoted by α(G). Determining the

stable set number is NP-complete (it can be shown via a reduction from a

satisfiability problem, see [41]). Nevertheless there some classes of graphs

where the problem is polynomially solvable and among those we have the

class of claw-free graphs and the class of perfect graphs.

In the following we will analyze some special features of stable sets in claw-

free graphs. Given a stable set S in a claw-free graph G(V, E), for every

vertex v ∈ V \ S, |N(v) ∩ S| ≤ 2 holds. We say that a vertex v is superfree

if N(v) ∩ S = ∅, is free if |N(v) ∩ S| = 1 and it is bound if |N(v) ∩ S| = 2.

The property that in claw-free graphs any vertex has at most two neighbors

in any stable set is relevant also from an algorithmic point of view.

Let G(V, E) be a claw-free graph and let S be a stable set in G. A walk

P = v0, v1, . . . , vk (given by its vertex-sequence) is called S-alternating if pre-

cisely one of vi−1, vi belongs to S, for each i = 1, . . . , k. It is an S-augmenting

path if moreover P is a path, v0, vk /∈ S and (S \ {v1, v3, . . . , vk−1}) ∪

{v0, v2, . . . , vk} is stable. This implies that (if k ≥ 2) each of v0 and vk

has precisely one neighbor in S, and each of v2, v4, . . . , vk−2 precisely two.

We can similarly define S-alternating cycles. S-augmenting paths are rele-

vant because of the following result (for a proof see [41]).

Lemma 1.4. If G is a claw-free graph with a stable set S, then there is a

stable set larger than S if and only if there exists an S-augmenting path.

The notion of augmenting paths somehow links the maximum stable set

problem in claw-free graphs to the maximum matching in general graphs. If

we consider a line graph G and we want to find a maximum stable set of G,

then we can build the root graph of G and find a maximum matching of it.

1.5 Stable sets 11

Thus, as line graphs are a subclass of claw-free graphs, finding a maximum

stable set in a claw-free graph is a generalization of the problem of finding

a maximum matching.

If in addition to the graph G(V, E) we are also given a weight function on

the vertices w : V → R+, then one may be interested on which is the stable

set S of G with w(S) maximum, that is a maximum weighted stable set.

We denote with αw(G) the weight of a maximum weighted stable set, and

again determining αw(G) is NP-complete in general graphs but the problem

is polynomially solvable in claw-free graphs and in perfect graphs.

It is a relevant and known fact that in perfect graphs maximum weighted

stable sets (and consequently also a maximum stable set) are precisely the

optimal solutions of the following linear program:

max
∑

v∈V

w(v)xv

∑

v∈C

xv ≤ 1 ∀C ∈ K(G)

xv ≥ 0 ∀v ∈ V

WhereK(G) is the family of all the maximal cliques of G. This linear pro-

gram has an exponential number of constraints, moreover in perfect graphs

the separation problem on this formulation reduces again to a maximum

weighted stable set, so the naïve approach of applying the ellipsoid method

to this program does not work. Nevertheless the problem is polynomially

solvable using Lovász θ(G) function.

Another property of stable sets in perfect graphs of particular interest for

this thesis is the following:

Property 1. A graph G is perfect if and only if for each induced subgraph

H of G there exists a stable set SH such that ω(H[V (H) \ SH]) < ω(H).

If we consider the complement graph G, which is perfect again, the last

property translates as follows:

Property 2. A graph G is perfect if and only if for each induced subgraph

H of G there exists a clique KH such that α(H[V (H) \KH]) < α(H).

1.6 Clique covers 12

Property 2 states that in a perfect graph G we always have a clique

that intersects all the maximum stable sets of G. We will call such a clique

crucial.

1.6 Clique covers

A clique cover (K, y) of G is a collection K of cliques, with a non-negative

weight yC assigned to each clique C ∈ K, such that, for each vertex v of G,
∑

C∈K:v∈C yC ≥ 1. A clique cover is minimum if the sum of all the weights

assigned to the cliques in K is minimum. We will denote with τ(G) the sum

of all the weights assigned to the cliques in K in a minimum clique cover

(K, y). Determining τ(G) is NP-complete in general graphs. We observe

that if yC is integer for every C ∈ K, then the set of cliques with yC > 0 is

a set of cliques covering V , in the sense that
⋃

C∈K:yC>0 C ⊇ V .

If we are also given a weight function on the vertices w : V → R+, a weighted

clique cover is a collection of cliques C of G, each with an associated value

yC , such that
∑

C∈C:v∈C yC ≥ w(v) for every v ∈ V . We say that a weighted

clique cover is minimum if its value
∑

C∈C yC is minimum. We denote with

τw(G) the value of a minimum weighted clique cover of G; again determining

τw(G) is NP-complete in general graphs.

In general graphs α(G) ≤ τ(G), because two vertices of a stable set

must be covered by different cliques and similarly αw(G) ≤ τw(G). In

perfect graphs α(G) = τ(G) and αw(G) = τw(G), because the minimum

weighted clique cover problem has the following linear programming formu-

lation (where again K(G) is the family of all the maximal cliques of G):

min
∑

C∈K(G)

yC

∑

C∈K(G):v∈C

yC ≥ 1 ∀v ∈ V

yC ≥ 0 ∀C ∈ K(G)

which happens to be exactly the dual of the linear program of the maxi-

mum weighted stable set in perfect graphs. It follows that we can determine

τw(G) in perfect graphs using Lovász θw(G) function in polynomial time.

1.6 Clique covers 13

If we want to compute also a minimum weighted clique cover of a perfect

graph G (and not only the number τw(G)), we can use a polynomial algo-

rithm proposed by Groetschel, Lovász and Schrijver in [21]. This algorithm

is not combinatorial and it uses the θw(G) function combined with other

techniques.

Another important property of the linear programming formulation for the

minimum weighted clique cover is that, if the graph G is perfect, then for

every integer weight function w : V → N there exists an integer optimal

solution. This property follows from a result of Fulkerson (see [18]) on an-

tiblocking pairs of polyhedra. We underline that the property we have just

mentioned does not mean that the polyhedron over which we are optimizing

is integral. In fact it is easy to see that it may have some fractional vertices.

Consider the following graph

a f e

b d

c

and the integer weight function that assigns a weight of 1 to every vertex.

Let us call K1 = {a, b, c}, K2 = {c, d, e}, K3 = {a, e, f} and K4 = {b, d, f}.

Consider the feasible point yK1
= yK2

= yK3
= yK4

= 1
2 : this point is a

fractional vertex of our polyhedron, because the only integer vertex that has

yK4
6= 0 has also y{a,c,e} 6= 0, and thus the point yK1

= yK2
= yK3

= yK4
= 1

2

cannot be obtained as a convex combination of other vertices.

From duality between the maximum weighted stable set problem and the

minimum weighted clique cover problem we can also derive an interesting

property of the latter. Let us consider a maximum weighted stable set S and

a minimum weighted clique cover: then every clique K in G with yK > 0

must intersect S, otherwise we would violate the complementary slackness

condition yK · (x(K) − 1) = 0. It follows that in perfect graphs we can

always express the family of cliques K with yK > 0 as the union over s ∈ S

1.7 Claw-free perfect graphs 14

of subfamilies Ks, where Ks = {K ∈ K : s ∈ K}.

1.7 Claw-free perfect graphs

The class of claw-free perfect graphs was studied extensively in the past. The

first structural result for this class was obtained by Chvatal and Sbihi in [12],

where they proved that every claw-free Berge graph can be decomposed via

clique-cutsets into two types of graphs: elementary and peculiar (as we will

not deal with those graph classes we skip the definition of them). In a suc-

cessive paper by Maffray and Reed [30] the structure of elementary graphs is

investigated and as a consequence an alternative proof that claw-free Berge

graphs are perfect is given (the first proof was due to Parthasarathy and

Ravindra [36]). Still, with those results, it was not possible to set a struc-

ture theorem for claw-free perfect graphs, because composing elementary

and peculiar graphs via clique-cutsets can lead to a claw. Nevertheless a

structure theorem for claw-free perfect graphs was finally settled by Chud-

novsky and Plumettaz in [6].

It is remarkable that Hsu and Nemhauser in [22] were able to give another

proof that claw-free Berge graphs are perfect showing directly that for a

claw-free Berge graph G ω(G′) = χ(G′) holds for every induced subgraph

G′ of G.

One of the properties of claw-free perfect graphs, proved by Hsu and

Nemhauser in the same paper is the following:

Lemma 1.5. If G is a claw-free perfect graph, then G is quasi-line.

Proof. Let us consider a vertex v: as G is claw-free α(G[N(v)]) ≤ 2, but then

as G is perfect, if α(G[N(v)]) = 1 G[N [v]] is a clique, and if α(G[N(v)]) = 2

G[N [v]] is a cobipartite graph. It follows that for every v ∈ V , N [v] can be

covered by two cliques.

We will see in Chapter 2 that this lemma is of particular interest when

one wants to compute a minimum clique cover of a claw-free perfect graph.

We underline that while for quasi-line graphs there exists an algorithmic

decomposition theorem, this is not the case for claw-free perfect graphs,

1.7 Claw-free perfect graphs 15

because the decomposition of Chudnovsky and Seymour is not algorithmic.

Moreover we could not find, to the best of our efforts, a way to exploit the

characterization of the subclasses of claw-free perfect graphs for the com-

putation of the minimum weighted clique cover of claw-free perfect graphs.

This is why, when we refer to claw-free perfect graphs, we often refer to more

general theorems and decompositions for quasi-line (perfect and non-perfect)

graphs.

Chapter 2

The mcc problem on

claw-free perfect graphs

2.1 Introduction

Given a graph G, a clique cover of G is a collection of cliques, with a non-

negative weight yC assigned to each clique C in the collection, such that,

for each vertex v of G, the sum of the weights of the cliques containing v

in the collection is at least one. A minimum clique cover of G (mcc) is a

clique cover such that its value (the sum of the weights of all the cliques

in the collection) is minimum. If all the weights assigned to the cliques are

integer (i.e. zero or one), then a minimum clique cover can be interpreted

as a collection of minimum cardinality of cliques, such that each vertex of

the graph is contained in at least one clique in the collection.

The mcc problem on perfect graphs is the dual of the maximum stable set

problem (mss for short), thus for every perfect graph G the value of the

mcc, that we indicate with τ(G), is equal to the stability number α(G).

Moreover it can be shown that there always exists a minimum clique cover

that assigns an integer weight to the cliques of the graph.

The crucial property that is often used to tackle the problem on perfect

graphs is the following: let K(G) be the collection of all the maximal cliques

of G and let y be a mcc of G. For every clique C ∈ K(G) with yC = 1 and

every mss S of G C ∩ S 6= ∅.

2.1 Introduction 17

Definition 2.1. Let C be a clique of G. If C ∩ S 6= ∅ for every maximum

stable set S of G, then C is a crucial clique.

We can deduce that in an integer mcc (that is a mcc where yC ∈ {0, 1}

for every C ∈ C), every clique with yC = 1 is a crucial clique, and viceversa

every vertex v ∈ S for some mss S of G must be contained in some crucial

clique.

In fact a general technique to solve the mcc problem in perfect graphs could

be to iteratively find a crucial clique and delete it. By duality we know that

we would repeat this step at most α(G) ≤ |V | times. In this framework arises

the problem to find a combinatorial algorithm for claw-free perfect graphs; it

is known that in claw-free graphs the mss problem is polynomially solvable

via a combinatorial algorithm. The first combinatorial algorithm for the

mcc in claw-free perfect graphs has been proposed by Hsu and Nemhauser

in [22] and exploits the notion of crucial cliques and Lemma 1.5.

The algorithm in [22] starts with a mss of G and then computes a mcc

of G by iteratively finding and deleting crucial cliques. In particular, fixed

a vertex s ∈ S, they want to find a crucial clique containing s, and this

clique must be contained in N [s]. The algorithm they develop is based on

the fact that in claw-free graphs we can answer to the following question in

polynomial time: let v ∈ V , is v contained in some mss of G? In particular

they suggest to answer to this question looking for augmenting paths that

have an extreme in v (which was the most efficient way to look at this

problem at those times). It is nevertheless interesting to notice that in

every subclass of perfect graphs where it is easy to determine if a vertes or a

subset of vertices belong to a mss, a similar approach can be used and maybe

more efficient techniques can be applied to the basic step of finding a crucial

clique in N [s], for some s ∈ S where S is a mss of G. The algorithm of Hsu

and Nemhauser runs in O(|V |5), where V is the set of vertices of G (in [22]

is actually claimed that the running time is O(|V |5.5), but a more accurate

analysis of Minty’s algorithm (see [41]) shows that the actual running time

is O(|V |5)).

In this chapter we will make use of directed graphs. We give here some

basic definitions, for all the non mentioned definitions about directed graphs

2.2 A short introduction to the 2-SAT problem 18

the reader may refer to the corresponding definitions for undirected graphs

or to [41]. A directed graph is an ordered pair D(N , A) where N is a set

of nodes and A is a set of ordered pairs of vertices each of which is called

arc (that is the arc uv is different from the arc vu). Given a directed graph

D(N , A) and an integer k ∈ N, an ordered set of nodes v1, . . . , vk is a directed

walk (of length k − 1) if (vi, vi+1) ∈ A(D) for each i ∈ [k − 1]. If v1, . . . , vk

are all distinct, the walk is called a path. We say that a path P = v1, . . . , vk

is chordless if moreover there are no arcs (vi, vj), for every i, j such that

j − i ≥ 2. A directed graph is strongly connected if for every pair of nodes

{u, v} there exists a directed walk from u to v and a directed walk from v

to u. A maximal strongly connected subgraph of D is a strongly connected

component of D.

In next section we give a short introduction to the 2-SAT problem and

then, in Section 2.3 we introduce a new algorithm for the mcc problem on

claw-free perfect graphs. The aim of this algorithm is to grow at the same

time a mcc and a mss of G and it runs in O(|V |3), thus improving the

complexity bound for the problem.

2.2 A short introduction to the 2-SAT problem

Given a set of boolean variables U = {u1, . . . , up}, we say that a variable

ui ∈ U or its negation, that we denote with ¬ui, are terms and a disjunction

(that we indicate with ∨) of a subset of terms of U is a clause. We call a

conjunction (that we indicate with ∧) of clauses a formula; in particular a

formula, as we have defined it, is a conjuction of disjunction of terms. We

can always assume that formulas are conjuctions of disjunction of terms, that

is we can always assume that they are in the conjuctive normal form (CNF

for short). Finally a truth assignment is a function t : U → {true, false},

that assigns to each variable in U a value true or false.

A satisfiability problem looks for an answer to the following question:

given a formula, is there any truth assignment to the variables such that

the formula is true? The satisfiability problem is NP-hard (see [20]) even

when each clause contains only three terms. The 2-satisfiability (or 2-SAT)

problem is a satisfiability problem where each clause has exactly two terms:

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 19

it is polynomially solvable, in a time which is linear in the number of clauses

by an algorithm of Aspvall, Plass and Tarjan [1]. This technique is based on

the construction of the (directed) implication graph D of the given instance.

The implication graph D has the following structure: for every variable and

every negation of a variable there is a node, and for each clause wi∨wj there

are the arcs ¬wiwj and ¬wjwi. After building the implication graph D it is

necessary to find the strongly connected components of it. The key obser-

vation is that every strongly connected component corresponds to a set of

terms that must have the same value. Then one can build the condensation

of the implication graph, find a topological order of it and assign values ac-

cording to this topological order to the strongly connected components of the

implication graph in the following way: set the variables in a strongly con-

nected component W to true if W appears after the corresponding negated

component W̄ in the topological order, and to false otherwise. With this

procedure one can obtain a truth assignment of the 2-SAT instance (if any).

2.3 An algorithm for the mcc in quasi-line perfect

graphs via 2-SAT

We are given a stable set S of a claw-free perfect graph G(V, E), and without

loss of generality we assume that S is maximal and there are no augmenting

paths of length 2. For a vertex v ∈ V \ S that is bound, we let s1(v) and

s2(v) be its neighbors in S; for a vertex v ∈ V \ S that is free, we let s(v)

be its neighbor in S.

Our target is the following. We want to check if S is a maximum stable

set of G. In case it is, we want to build a suitable clique cover of G of size

|S|; in case it is not, we want to find an augmenting path.

We will achieve our target by formulating a suitable instance of the 2-

SAT problem. We will express the formula for the 2-SAT problem in the

2-conjunctive normal form, that is every clause is composed by two terms

and the formula is a conjunction of disjunctions. For every bound (resp.

free) vertex v ∈ V \ S, we define two variables, or terms, xvs1(v) and xvs2(v)

(resp. xvs(v)) and we say that e.g. xvs1(v) is true if and only if v is covered

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 20

with a clique containing s1(v). We denote by ¬xvs the negation of a term

xvs. We also introduce an “auxiliary” variable y. We consider three classes

of clauses:

(c1) for each u ∈ V \ S that is bound, xus1(u) ∨ xus2(u) must be true;

(c2) for each s ∈ S and each u, v ∈ N(s) that are non-adjacent, ¬xus∨¬xvs

must be true;

(c3) for each u ∈ V \ S that is free, both xus(u) ∨ y and xus(u) ∨ ¬y must

be true (i.e., xus(u) must be true).

Consider the 2-SAT instance made of the conjunction of all the above

clauses, which we denote in the following by the pair (G, S). It is straight-

forward to check that a clique cover of size |S| (in case it exists, it is a

minimum clique cover of G), induces a solution (i.e. a satisfying truth as-

signment) to (G, S). Vice versa, from a solution to (G, S) we can easily

build a clique cover of size |S| of G. In fact, for each vertex s ∈ S, let

X(s) := {s} ∪ {v ∈ N(s) : xvs true}. Note that for each free vertex u,

following the clauses (c3), u ∈ X(s(u)). Moreover, for each s ∈ S, X(s)

is a clique, following the clauses (c2). Finally, following the clauses (c1),

each bound vertex u belongs to either X(s1(u)) or to X(s2(u)). The family

{X(s), s ∈ S} is then a clique cover of size |S|, i.e. a minimum clique cover

of G.

Therefore a maximal stable set S is a maximum stable set of G if and

only if there exists a solution to the 2-SAT instance (G, S). Moreover, from

a solution to (G, S) we can easily build that minimum clique cover of G.

Following the above discussion, in order to design an algorithm for the

minimum clique cover problem of a claw-free perfect graph G, we are left

with the following question: what if S is not a maximum stable set of G,

i.e. there is no solution to the 2-SAT instance (G, S)? As we show in the

following, in this case, the implication graph of (G, S) “suggests” a path of

G that is augmenting with respect to S. We denote by D be the implication

graph of (G, S) and let D = D[V (D) \ {y,¬y}]. The implication graph D

has a very particular structure and every arc of D belongs to one of the

following classes:

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 21

1. Arcs that go from a positive term (that is a non negated variable) xvs

with v ∈ V \ S and s ∈ S ∩ N(v) to a negative term (that is the

negation of a variable) ¬xws with w ∈ V \ S and s ∈ S ∩N(w).

2. Arcs that go from a negative term ¬xvs1(v) with v ∈ V \ S bound to a

positive term xvs2(v).

3. Arcs that go from a negative term ¬xvs(v) with v ∈ V \S free to y and

to ¬y.

4. Arcs that go from y and ¬y to a positive term xvs(v) with v ∈ V \ S

free.

Lemma 2.2. Let u and v two free vertices of G. An augmenting path in G

between u and v corresponds in D to a chordless directed path from xus(u)

to ¬xvs(v). Vice versa, a chordless directed path in D from xus(u) to ¬xvs(v)

corresponds in G to augmenting path between u and v.

Proof. The first statement is trivial. Now let P be a directed path of D from

xus(u) to ¬xvs(v), with u and v free. By construction, P = xu0s0
,¬xu1s0

, xu1s1
,

¬xu2s1
, ..., xuksk

,¬xuk+1sk
, with u0 ≡ u and uk+1 ≡ v free, s0 = s(u0), sk =

s(v) and {s1(ui), s2(ui)} = {si−1, si}, for i = 1, . . . , k. Therefore, P induces

on G a walk Q = u0, s0, u1, s1, . . . , uk, sk, uk+1.

Claim 2.3. If the vertices of Q are different from each other, then Q is an

augmenting path.

Proof. Suppose the contrary. There must be either an edge uisj , with i 6=

j, j +1, or an edge uiuh with |i−h| ≥ 2. In the former case, either there is a

claw, or u (v) is bound, a contradiction. So, assume there are no edges uisj,

with i 6= j, j +1. By construction, we know also that there is no edge uiui+1.

Suppose there is an edge uiuh with |i − h| ≥ 2 and choose such an edge as

to minimize |i− h|. Then there is an odd hole in G, a contradiction.

We will indeed show that the vertices of Q are different from each other.

Claim 2.4. There is no g, 0 ≤ g ≤ k, such that both xugsg and ¬xugsg

belong to P .

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 22

Proof. For, suppose to the contrary. W.l.o.g let P ′ = xu0s0
, . . . , xugsg , ...,

xuhsh
,¬xuh+1sh

≡ ¬xug,sg . Note that the path P ′ is a directed path also for

the implication graph D′ = D(G′, S′) of the 2-SAT “sub-instance” associated

with the pair (G′ = G[{u0, s0, ..., uh, sh}], S′ = S ∩{s0, ..., sh}). Such a path

shows that S′ is not a maximum stable set for G′. (Otherwise, G′ would

have a clique cover of size |S′|, which has to “assign” u0 to s0. But this

leads to both xugsg and ¬xugsg being true, which is impossible.) But that is

a contradiction, as every vertex of V (G′) \S′ but u0 is bound w.r.t. S′, and

so in G′ there are no augmenting paths w.r.t. S′.

Claim 2.5. The vertices u0, u1, . . . , uk, uk+1 are different from each other.

Proof. Suppose now by contradiction that there are l and j with ul = uj and

k + 1 ≥ l > j ≥ 0. First suppose that both ul and uj are bound, therefore

k + 1 > l > j > 0, and the nodes ¬xujsj−1
and ¬xulsl−1

belong to P . Note

that either sl−1 = sj−1 or sl−1 = sj. In the former case, P is not simple,

as it visits twice the node ¬xujsj−1
. In the latter case, both the node xujsj

and the node ¬xujsj
belong to P , a contradiction to Claim 2.4. The case

where u0 = uk+1 leads to a contradiction along the same lines as the latter

case.

So, in order to prove the lemma, we are left with showing that the vertices

of Q ∩ S are different from each other. The following claim directly follows

from the hypothesis that P is chordless.

Claim 2.6. If there is a vertex si = sh with 1 ≤ i < h ≤ k, then uiuh+1 ∈ E.

We now suppose by contradiction that there is at least one pair {j, l},

with 1 ≤ j < l ≤ k and l − j ≥ 2, such that sj = sl. We choose the pair

{j, l} as to minimize l − j, and we break ties in favour of the pair with j

smaller.

Claim 2.7. C = sj, uj+1, sj+1, . . . , sl−1, ul, sj is an alternating chordless

cycle.

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 23

Proof. The vertices of C are distinct, following our choice of j and l. There-

fore, C is an alternating cycle. Also it has no chords: this is trivial if

l − j = 2; otherwise, it follows either from claw-freeness or from perfection

(in particular, if a vertex ui ∈ V (C) is adjacent to a vertex uh ∈ V (C), with

|h− i| ≥ 2, then there would be either a claw or an odd hole).

In the following we often rely on the next claim, whose simple proof

(based on claw-freeness) we skip.

Claim 2.8. Every vertex of V \C is either adjacent to exactly two vertices of

C that are consecutive, or to exactly three vertices of C that are consecutive,

or to four vertices of C and they are either consecutive or made of two pairs

of consecutive vertices.

Claim 2.9. j = 0, i.e. sl = s0. Moreover, N(u0) ∩ V (C) = {s0, ul} and

N(ul+1) ∩ V (C) = {s0, u1, s1}. In particular, sl+1 = s1.

Proof. The vertices uj, ul, uj+1 and ul+1 belong to N(sj). Note that, by

construction, ujul+1 ∈ E, while ujuj+1, ulul+1 /∈ E. Also, uj+1ul /∈ E, as it

would be a chord for C. So, in order to prevent the claw (sj; ul, ul+1, uj+1)

(resp. (sj ; ul, uj , uj+1)), we must have that ul+1uj+1 ∈ E (resp. ujul ∈ E).

Suppose that uj is bound, i.e. j > 0. Note that our choice of j and l is

such that sj−1 /∈ V (C). Then, in order to avoid the claw (uj ; ul, sj−1, ul+1),

we must have that ul+1sj−1 ∈ E, and so sl+1 = sj−1. Now observe that it

follows from Claim 2.8 that N(uj)∩V (C) = {sj , ul} and N(ul+1)∩V (C) =

{sj, uj+1}. But then uj , ul+1, uj+1, sj+1, . . . , sl−1, ul, uj is an odd hole, a

contradiction.

Therefore, j = 0, and sl = s0. It follows from Claim 2.8 that u0 is adja-

cent only to s0 and ul. Note that u0, s0, u1 ∈ N(ul+1). We claim that ul+1 is

bound. If not, from Claim 2.8, we have that N(ul+1)∩V (C) = {s0, u1}: but

then u0, ul+1, u1, s1, . . . , sl−1, ul, u0 is an odd hole, a contradiction. There-

fore ul+1 is bound. Since (ul+1; u0, u1, sl+1) is not a claw, sl+1u1 ∈ E, i.e.,

sl+1 = s1, and N(ul+1) ∩ V (C) = {s0, u1, s1}.

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 24

Claim 2.10. N(ul+2)∩V (C) = {u1, s1 ≡ sl+1, u2, s2 ≡ sl+2}. In particular,

ul+2 is bound.

Proof. By construction and Claim 2.9, ul+2 ∈ N(s1) and, from Claim 2.6,

u1ul+2 ∈ E. From Claim 2.9, we have that ul+1u2 /∈ E. Therefore, to

avoid the claw (s1; u2, ul+1, ul+2), we have that u2ul+2 ∈ E. We claim that

ul+2 is bound. If not, from Claim 2.8, we have that N(ul+2) ∩ V (C) =

{u1, s1, u2}: but then u0, ul+1, u1, ul+2, u2, s2, . . . , sl−1, ul, u0 is an odd hole,

a contradiction.

Therefore ul+2 is bound and claw-freeness shows that either (i) sl+2 ≡ s2

(note that, if l = 2, then sl+2 ≡ s0) or (ii) l > 2 and sl+2 ≡ s0. If (i) holds, we

are done because we have shown that N(ul+2)∩V (C) ⊆ {u1, s1, u2, s2}, but

from Claim 2.8, a vertex cannot be adjacent to more then four consecutive

vertices in C. If (ii) holds, then it follows from claw-freeness that ulul+2 ∈ E.

But then ul+2 is adjacent to three non consecutive vertices in C, u1, u2, ul,

contradicting Claim 2.8.

Now we must delve into two cases: l > 2 and l = 2. We first get rid of

the case l > 2.

Claim 2.11. Suppose that l > 2. For each i = 2, 3, . . . , l − 1, N(ul+i) ∩

V (C) = {ui−1, si−1 ≡ sl+i−1, ui, si ≡ sl+i} and {ul+1, ul+2, . . . , ul+i} is a

stable set.

Proof. The proof is by induction. The case i = 2 follows from Claim 2.10.

Now suppose that the statement holds for 2, 3, . . . , i < l − 2: we will show

that it holds also for i + 1 ≤ l − 1 (note that l ≥ 4 else we are done). By

construction, ul+i+1 ∈ N(si), and, from Claim 2.6, uiul+i+1 ∈ E. Then,

from claw-freeness, ui+1ul+i+1 ∈ E. Therefore, {ui, si, ui+1} ⊆ N(ul+i+1) ∩

V (C) and, from Claim 2.8, N(ul+i+1) ∩ V (C) ⊂ {si−1, ui, si, ui+1, si+1}. In

any case, by claw-freeness and inductive hypothesis, it follows that ul+i+1

is non-adjacent to {ul+1, ul+2, . . . , ul+i}; hence {ul+1, ul+2, . . . , ul+i+1} is a

stable set.

We now claim that N(ul+i+1) ∩ V (C) = {ui, si, ui+1, si+1}. If not, then

either ul+i+1 is free or ul+i+1 is adjacent to si−1 ≡ sl+i+1. In the former case,

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 25

there is an odd hole with vertices: u0, ul+1, u1, ul+2, . . . , ui, ul+i+1, ui+1, si+1,

. . . , ul−1, sl−1, ul, u0. In the latter case, Claim 2.6 shows that ui−1ul+i+1 ∈

E, a contradiction to the fact that N(ul+i+1)∩V (C) ⊂ {si−1, ui, si, ui+1, si+1}.

Claim 2.11 shows that, if l > 2, then ul+2, ul+3, . . . , u2l−1 are bound. By

the same arguments, it is possible to show that {ul−1, sl−1, ul} ⊆ N(u2l) ∩

V (C), N(u2l)∩V (C) ⊂ {sl−2, ul−1, sl−1, ul, sl ≡ s0} and {ul+1, ul+2, . . . , u2l}

is a stable set. However, if u0u2l /∈ E then u0, ul+1, u1, ul+2, . . . , ul−1, u2l, ul, u0

is an odd hole. Therefore u0u2l ∈ E; but in this case, there is an odd hole

with vertices: u0, ul+1, s1, u2, s2, . . . , ul−2, sl−2, ul−1, u2l, u0.

We therefore assume in the following that l = 2.

Claim 2.12. Suppose l = 2. For each ul+i with i ≥ 2 even, N(ul+i) ∩

V (C) = {u1, s1 ≡ sl+i−1, u2, s0 ≡ sl+i} and ul+i is complete to {u0, u1, u2, . . . ,

ul+i−2}. Similarly, for each ul+i with i ≥ 2 odd, N(ul+i)∩V (C) = {u2, s0 ≡

sl+i−1, u1, s1 ≡ sl+i} and ul+i is complete to {u0, u1, u2, . . . , ul+i−2}.

Proof. The proof is by induction. The case i = 2 follows from Claim 2.10

and because ul+2 has to be adjacent to u0, in order to avoid the odd hole

with vertices u0, u1, u2, u3, u4. Now suppose that the statement holds for

i ≥ 2: we will show that it holds also for i + 1.

Suppose first that i is odd, that is l + i + 1 is even and by construction

ul+i+1 ∈ N(s1). From Claim 2.6 ul+i+1 is adjacent to every ub with b < l + i

and b odd. Thus we are left to show that ul+i+1 is also adjacent to every uc

with c < l + i and even. Suppose by contradiction that there exists c < l + i

and even such that ucul+i+1 /∈ E, and choose the largest one. Then by

claw-freeness c 6= l + i− 1, and for the inductive hypothesis there is an odd

antihole with vertices uc, uc+1, . . . , ul+i, ul+i+1, uc. Finally we are left with

showing that s0 ∈ N(ul+i+1): suppose by contradiction that s0ul+i+1 /∈ E,

then s0, s1, u0, u1, u2, . . . , ul+i, ul+i+1, s0 is an odd antihole.

The case where i is even goes along the same lines as above.

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 26

It follows from Claim 2.12 that all the vertices in {u1, . . . , uk, uk+1} are

bound, when l = 2. But this is a contradiction to uk+1 free. Then all vertices

s0, s1, . . . , sk are different from each other.

The following lemma shows that finding the strong component of D

containing y is indeed sufficient to check whether the 2-SAT instance (G, S)

is feasible.

Lemma 2.13. Let C(y) be the strong component of D containing y. If u is

a free vertex of G, then xus(u) belongs to C(y) if and only if u is the extreme

of an augmenting path of G.

Proof. Let u be a free vertex of G, such that in G there is an augmenting

path between u and another free vertex v. Following Lemma 2.2, in D there

is a directed path P from xus(u) to ¬xvs(v) (and a directed path from xvs(v)

to ¬xus(u)). Note that trivially P is also a path of D. Also the arcs ¬xvs(v)y

and yxus(u) belong to A(D), because of the clauses (c3). Then there is a

directed cycle of D containing y and xus(u), so they are in the same strong

component of D, that is, C(y).

Suppose now that u is a free vertex of G and xus(u) belongs to C(y).

Therefore, there is a directed path from xus(u) to y. By construction, each

arc entering into y is of the form ¬xvs(v)y, with v a free vertex of G. So in

D there is a directed path from xus(u) to ¬xvs(v). Note that this path is also

a directed path of D, unless ¬y belongs to it; however, in this case, as again

each arc entering into ¬y is of the form ¬xzs(z)¬y, with z a free vertex of G,

there is a directed path from xus(u) to ¬xzs(z) that avoids y and ¬y, i.e., a

directed path of D. In both cases, it follows from Lemma 2.2 that u is the

extreme of an augmenting path of G.

We may therefore state our algorithm for the maximum stable set and

the minimum clique cover problem in claw-free perfect graphs.

Lemma 2.14. Algorithm 1 is correct and terminates in O(|V (G)|3).

Proof. Correctness follows from our previous results. We now deal with

complexity issues. We first observe that we repeat steps 1, 2 and 3, that

2.3 An algorithm for the mcc in quasi-line perfect graphs via

2-SAT 27

Algorithm 1

Require: A graph G(V, E) that is claw-free and perfect and a maximal

stable S set of G such that there is no augmenting path with length 2

w.r.t. S.

Ensure: A mcc and a mss for G(V, E).

1: Let D be the implication graph of the 2-SAT instance (G, S).

2: Let C(y) be the strongly connected component of D containing y.

3: If there is a free vertex u of G such that xus(u) belongs to C(y), then,

following Lemma 2.13, there exists an augmenting path P leaving from

u. Following Lemma 2.2, P can be found through a BFS in D. Let

S ← V (P)∆S and go back to step 1.

4: Else, following Lemma 2.13, S is a mss of G. A solution to the 2-SAT

instance (G, S) can be found by the second part of the algorithm of

Aspvall Plass and Tarjan. Then a minimum clique cover of G can be

built by setting X(s) := {s} ∪ {v ∈ N(s) : xvs true} for each s ∈ S.

5: Return {X(s), s ∈ S} and S.

is we augment S, at most |V (G)| times. Each of these steps takes at most

O(|V (D)|+ |A(D)|), in particular we can determine the strongly connected

components of D in time O(|V (D)| + |A(D)|) thanks to the algorithm of

Tarjan [42]. Step 4 is performed only once and also takes O(|V (D)|+|A(D)|)

(see [1]), so the algorithm terminates in O(|V (G)|(|V (D)| + |A(D)|)). We

finally observe that by construction |V (D)| = O(|V (G)|) and |A(D)| =

O(|V (G)|2), thus the bound given by the lemma is correct.

Chapter 3

The mwcc problem on

strip-composed perfect

graphs

In this chapter we present an algorithmic theorem for the minimum weighted

clique cover (mwcc for short) problem on strip-composed perfect graphs.

We show that, similarly to what has been done for the maximum weighted

stable set (mwss for short) in strip-composed graphs in [34], we can find

a mwcc of a strip-composed perfect graph in polynomial time if we can

solve in polynomial time the same problem on each strip and if the strip

decomposition of G is given. Moreover if the weight function is integer we

can find an integer mwcc.

In this chapter we make use also of multigraphs (the root graph of a simple

line graph can be a multigraph). We recall that a star or a multistar is

the set of edges incident to a vertex v, while a triangle or multitriangle is a

complete graph on three vertices with eventually multiple edges.

3.1 Strip-composed graphs

Chudnovsky and Seymour in [8] introduced a strip composition operation

in order to define their decomposition result for claw-free graphs. The oper-

ation of strip composition can be generalized also to non-claw-free graphs,

3.1 Strip-composed graphs 29

and in the last years it has become a powerful mean to deeply understand

the structure of some graph classes and to develop a new decomposition ap-

proach for some combinatorial problems (f.e. see [34], for the mwss). First

we borrow some definitions from the work of Chudnovsky and Seymour.

Definition 3.1. A strip H = (G,A) is a graph G (not necessarily con-

nected) with a multi-family A of either one or two designated non-empty

cliques of G. The cliques in A are called the extremities of H, and H is

said a 1-strip if |A| = 1, and a 2-strip if |A| = 2.

We often abuse notations and when we refer to a vertex of a strip (or

a stable set etc.) we indeed consider a vertex (or a stable set etc.) of the

graph in the strip.

Definition 3.2. Let G = (G1,A1), . . . , (Gk,Ak) be a family of k vertex

disjoint strips, and let P be a partition of the multi-set of the cliques in

A1 ∪ . . . ∪ Ak. The composition of the k strips w.r.t. P is the graph G

that is obtained from the union of G1, . . . , Gk, by making adjacent vertices

of A ∈ Ai and B ∈ Aj (i, j not necessarily different) if and only if A and

B are in the same class of the partition P. In this case we also say that

(G,P), where G = {(Gj ,Aj), j ∈ [k]}, defines a strip decomposition of G.

We say that a graph G is strip-composed if G is a composition of some set

of strips w.r.t. some partition P. Each class of the partition of the extremi-

ties P defines a clique of the composed graph, and is called a partition-clique.

As an example we may think that every graph is strip-composed, with

the simple strip decomposition where every strip is a vertex and eventually

we take two times the same vertex in order to produce a 2-strip. It is easy

to see that this construction is not feasible for every graph and in particular

it is not feasible if the graph is not line.

Faenza, Oriolo and Stauffer in [17] have observed that the composition

operation preserves some graph properties.

A strip (G,A) is claw-free/quasi-line/line if the graph G+ that is ob-

tained from G as follows:

• if H = (G,A) is a 2-strip, with A = {A1, A2}, add two additional

vertices a1, a2 such that N(ai) = Ai, for i = 1, 2;

3.2 The mwss problem on strip-composed graphs 30

• if H = (G,A) is a 1-strip, with A = {A1}, add one additional vertex

a1 such that N(a1) = A1,

is claw-free/quasi-line/line.

Lemma 3.3. [17] The composition of claw-free/quasi-line/line strips is a

claw-free/quasi-line/line graph.

Suppose we are given a graph G and its strip decomposition (G,P). We

would like to exploit this decomposition in order to solve some combinatorial

optimization problems on G. One is clearly tempted to solve the problem

on each strip, because it may be easier than solve the problem on the whole

graph, and then try to combine the solutions obtained on each strip in order

to obtain a solution for the problem on G. This idea is a little bit too naïve,

but for the mwss a slightly more complicated decomposition approach has

shown to be successful.

3.2 The mwss problem on strip-composed graphs

In this section we briefly describe one of the results proposed in [34], con-

cerning the computation of the mwss in a strip-composed graph G, given its

strip decomposition (G,P). The main result of our interest in this chapter

is the following (rephrased with our notation):

Theorem 3.4. [34] Let G(V, E) be the composition of strips Hi = (Gi,Ai)

i = 1 . . . , k w.r.t. a partition P and let w be a non-negative weight function

defined on the vertex set V . Suppose that for each i = 1, . . . , k we can

compute a mwss of Hi in time O(pi(|V |)). Then the mwss problem on

G can be solved in time O(
∑k

i=1 pi(|V |) + match(|V |)), where match(n) is

the time required to solve the matching problem on a graph with n vertices.

If pi(|V |) is polynomial for each i, then the mwss can be solved on G in

polynomial time.

We introduced at the beginning of the chapter that our aim is to prove

a similar result for the mwcc on strip-composed perfect graphs, so before

doing this we need to analyze the main steps that in [34] have brought to

Theorem 3.4.

3.3 Sketch of the steps 31

Every strip Hi is replaced with a suitable gadget strip Ti, that is a single

vertex for each 1-strip and the complete graph with three vertices for each

2-strip (in this second case the extremities are two different edges of the

triangle and not by chance both gagdets are line strips). Then they define

a weight function on the vertices of those simpler strips; for every strip Hi

with extremities Ai
1 and Ai

2 this function depends on the values αw(Gi),

αw(Gi \Ai
1), αw(Gi \ Ai

2), αw(Gi \ (Ai
1 ∪Ai

2)) and αw(Gi \ (Ai
1∆Ai

2)), thus

if one can compute a mwss of Gi in polynomial time one can compute the

weight function of the simpler strips in polynomial time.

Together with the gadgets they define a suitable partition P̃ of the ex-

tremities of the simpler strips. In this way they obtain a graph G̃ which

is the strip composition of Ti i = 1 . . . , k w.r.t. the partition P̃ , and this

graph is line. Moreover from the construction of the gadget strips it is easy

to translate a mwss of G̃ into a mwss of G.

Finally as G̃ is a line-graph they can find a mwss of G̃ in the following

way: they build the root graph of G̃ and they find a maximum weight

matching in this graph. The solution of the matching problem on the root

graph of G̃ basically gives the solution to the question that was under the

naïve approach described before: how we suitably combine the mwss of the

strips in order to obtain a mwss of G?

We underline that this result applies to all strip-composed graphs, while

we aim at stating a similar result for the mwcc only for strip-composed

perfect graphs. Moreover this result has been used as a building block for the

first algorithm for the mwss on claw-free graphs not based on augmenting

paths techniques.

3.3 Sketch of the steps

In this section we want to give a big picture of the steps we need to obtain

our algorithmic theorem for the mwcc in strip-composed perfect graphs.

We give a short description of each step and we give a reminder to the

appropriate sections for the details.

Suppose we are given a perfect graph G that is the composition of strips

H1 = (G1,A1), . . . , Hk = (Gk,Ak) w.r.t. a partition P, and a non-negative

3.4 Main result 32

weight function w on V (G). We will follow the approach outlined in the

previous section for the mwss; however, as we explain in the following, the

task is now much more challenging.

We will compute a mwcc of G in three steps:

Step 1. We replace each strip Hi by a simple gadget strip H̃i = (G̃i, Ãi) and

compose the strips H̃i with respect to a suitable partition of the multi-

set
⋃

i=1..k Ã
i as to obtain a graph G̃. However, we cannot use the

gadgets strips defined in the previous section, as the graph G̃ might

be imperfect: this will lead us to define four different new gadgets,

with different parity properties, that are such that G̃ is odd hole free

and line, thus perfect [43]. We also define a suitable weight function

w̃ on the vertices of G̃, as well as new weight functions w1, . . . , wk on

the vertices of each strip. The details of this step are given in Section

3.5.

Step 2. Following [43], we may find a mwcc of G̃, w.r.t. the weight w̃, by run-

ning a primal-dual algorithm for the maximum weighted matching [19]

on the root graph of G̃. The details of this Step are given in Section

3.6.

Step 3. We reconstruct a mwcc of G from a mwcc of G̃ and a mwcc of each

of the strips Hi w.r.t. the weight function wi. Again, this will be more

involved than for the mwss problem, because unfortunately there is

not always a direct correspondence between cliques of G̃ and cliques

of G. Moreover, for some 2-strips Hi = (Gi,Ai), besides a mwcc of

the strip, we will also need also to compute a mwcc of some auxiliary

graph associated to the strip: the graph Gi
• that is obtained from Gi

by adding a new vertex x complete to both Ai
1 and Ai

2 and the graph

Gi
= that is the graph obtained from Gi by making Ai

1 complete to Ai
2.

This is the more technical step, and all the details are given in Section

3.7.

3.4 Main result

3.4 Main result 33

Now we are ready to state the main result we want to prove in this chapter.

Let Hi = (Gi,Ai) be a 2-strip, we indicate with Gi
• the graph obtained from

Gi by adding a new vertex x complete to both Ai
1 and Ai

2 and with Gi
= the

graph obtained from Gi making Ai
1 complete to Ai

2. It will be clear shortly

what we mean for even-short and odd-short strips; by now it is sufficient to

know that they are subclasses of strips that can be easily recognized.

Theorem 3.5. Let G be a perfect graph, composition of strips Hi = (Gi,Ai)

i = 1, . . . , k w.r.t. a partition P. For each i = 1, . . . , k let O(pi(|V (Gi)|)) be

the time required to compute:

• a mwcc of Gi and of Gi
•, if Hi is an odd-short strip and Gi

• is an

induced subgraph of G (thus perfect);

• a mwcc of Gi and of Gi
=, if Gi

= is an induced subgraph of G (thus

perfect), Ai
1 and in Ai

2 belong to the same class of P, and there is an

A1–A2 path of length two in the strip. In this case, when solving the

mwcc on Gi
=, one can restrict to the case where the weight function

wi defined on V (Gi
=) is such that αwi(Gi

=) = αwi(Gi
= \ (Ai

1 ∪Ai
2));

• a mwcc of Gi else.

Then the mwcc problem on G can be solved in time O(
∑k

i=1 pi(|V (Gi)|) +

match(|V (G)|)), where match(n) is the time required to solve the matching

problem on a graph with n vertices. If pi(|V (Gi)|) is polynomial for each i,

then the mwcc can be solved on G in polynomial time.

In order to prove Theorem 3.5 we follow the steps outlined in Section

3.3.

In order to obtain the complexity bound required by Theorem 3.5 we

need to compute in O(pi(|V |)) the weight functions w̃ and wi for G̃ and

each strip Hi respectively, and we will see why this is possible; we will go in

further details on this in Section 3.5. Moreover, each gadget is designed in

order to produce a graph G̃ (the composition of H̃1, . . . , H̃k with respect to

P̃), which is line and perfect. So, we also need to show that we can compute

a mwcc of a graph which is line and perfect in time O(match(|V |)). In

order to do this we again move to the root graph of G̃, and we will see in

3.5 The gadgets 34

Section 3.6, that solving the mwcc in G̃ is essentially equivalent to solving

the dual of a maximum weight matching problem on the root graph of G̃.

Now we show that if every step of Section 3.3 is correct, the statement of

our theorem is correct. Every gadget has at most three vertices, thus we can

replace every strip in time O(k) = O(|V (G)|). Moreover we have to compute

at most four mwcc for each strip, thus this step takes O(
∑k

i=1 pi(|V |)). Step

2 instead requires to compute the root graph of a line graphs with at most

3k vertices, and this can be done in time O(k) (for a proof of this see [17]),

and the dual of a maximum weight matching of H, therefore it can be done

in time O(match(|V |)). Finally Step 3 requires to solve a mwcc for each

strip (or eventually of some special graphs obtained from the strips), and it

can be done again in time O(
∑k

i=1 pi(|V |)). So we can conclude that if we

can correctly perform all the four steps, we can compute a mwcc of G in

time O(
∑k

i=1 pi(|V |) + match(|V |)).

3.5 The gadgets

In this section we describe the gadgets we use for every strip. We also show

that we can give an appropriate weight function to the vertices of those

gadgets. We remark that we assume that we can find in time O(pi(|V |)) a

mwcc of the i-th strip, and thus we can compute the desired weight function

of the i-th strip in time O(pi(|V |)).

In this section we make a heavy use of duality between the mwcc and

the mwss. The fact that for every induced subgraph J of G, αw(J) = τw(J)

is due to the perfection of G. We use this relation to easily prove the

correctness of the weight function defined on the vertices of each gadget,

but we underline that we never require the computation of any mwss on the

strips.

We denote the extremities of the strip Hi by Ai = {Ai
1, Ai

2} if Hi is a 2-

strip and by Ai = {Ai
1} if Hi is a 1-strip. We now delve into three cases: (i)

Hi = (Gi,Ai) is a 1-strip; (ii) Hi = (Gi,Ai) is a 2-strip with the extremities

in the same class of the partition P; (iii) Hi = (Gi,Ai) is a 2-strip with

the extremities in different classes of the partition. However, we analyze the

first two cases together.

3.5 The gadgets 35

For the first two cases the gadget will be a single vertex. In particular

we define the trivial 1-strip H̃0
i = (T i

0, Ãi
0), where the graph T i

0 consists on

a single vertex ci, and Ãi
0 = {{ci}}.

(i) Let δi
1 = αw(Gi \ Ai

1). We define w̃(ci) = αw(Gi)− δi
1.

(ii) Let δi
1 = αw(Gi \ (Ai

1 ∪ Ai
2)). We define w̃(ci) = max{αw(Gi \

Ai
1), αw(Gi \ Ai

2), αw(Gi \ (Ai
1 △Ai

2))} − δi
1.

Finally, if we use H̃0
i instead of Hi in the composition, the new partition

is P ′ := (P \ {P}) ∪ {(P \ Ai) ∪ Ãi}, where P ∈ P was the set containing

Ai.

Next we show that replacing a 1-strip or a 2-strip with both extremities

in the same class of P makes the value of the mwss drop of a quantity equal

to δi
1.

Lemma 3.6. Let G be the composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P, and let w : V (G) → R+ be a weight

function. Suppose that H1 is either a 1-strip or a 2-strip with the extremities

in the same class of the partition P. Let G′ be the composition of strips H̃0
1 =

(T 1
0 , Ã1

0), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition P ′

previously defined. Let w′ : V (G′) → R+ be the weight function defined as

w′(v) = w(v) for v ∈
⋃

i=2..k V (Gi), and w′(c1) = w̃(c1). Then αw(G) =

αw′(G′) + δ1
1.

Proof. First we prove αw(G) ≤ αw′(G′) + δ1
1 . Let A = A1 if H1 is a 1-strip

and A = A1 ∪A2 if H1 is a 2-strip with the extremities in the same class of

the partition P. Since A is a complete set in G, we can partition the stable

sets S of G in the following way:

1) S ∩A = ∅;

2) |S ∩A| = 1.

In case 1), we have that w(S) = w(S ∩ (G \G1)) + w(S ∩G1) ≤ w(S ∩

(G \G1)) + δ1
1 , where the last inequality follows from the fact that S misses

3.5 The gadgets 36

A. Therefore, w(S ∩ (G \ G1)) ≥ w(S) − δ1
1 . Moreover, S ∩ (G \ G1) is a

stable set of G′ and w′(S ∩ (G \ G1)) = w(S ∩ (G \ G1)). It follows that

αw′(G′) ≥ w(S)− δ1
1 .

In case 2), we have that w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1). If

H1 is a 1-strip, then w(S ∩ G1) ≤ αw(G1). If H1 is a 2-strip, then, as

|S ∩ A| = 1, we have that either S ∩ A ⊆ A1
1 ∩ A1

2, or S ∩ A ⊆ A1
1 \ A1

2, or

S∩A ⊆ A1
2\A

1
1. Then, either S∩G1 ⊆ G1\(A1

1△A1
2), or S∩G1 ⊆ G1\A1

2, or

S ∩G1 ⊆ G1 \A1
1. So, w(S ∩G1) ≤ max{αw(G1 \A1

1), αw(G1 \A1
2), αw(G1 \

(A1
1 △ A1

2))}. In this case, S ∩ (G \ G1) ∪ {c1} is a stable set of G′, and

w′(S ∩ (G \ G1) ∪ {c1}) = w(S ∩ (G \ G1)) + w̃(c1). Then we have that

αw′(G′) ≥ w(S ∩ (G\G1))+ w̃(c1) = w(S)−w(S ∩G1)+ w̃(c1) ≥ w(S)− δ1
1 ,

where the last inequality holds by the previous case analysis.

Thus we have shown that for every stable set S of G, αw′(G′) ≥ w(S)−

δ1
1 . In particular, this must hold for a mwss of G, so we obtain αw(G) ≤

αw′(G′) + δ1
1 .

Now we want to prove αw(G) ≥ αw′(G′) + δ1
1 . We can partition the

stable sets S′ of G′ in the following way:

1) c1 6∈ S′;

2) c1 ∈ S′.

In case 1), let S1 be a mwss of G1 \A. Then, as S′ misses c1 and there

are no edges between G1 \ A and G \ G1, S1 ∪ S′ is a stable set of G. It

follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ1
1 .

In case 2), let S1 be a stable set of G1 having only one vertex in A

of maximum weight. Now, S′ \ {c1} ∪ S1 is a stable set of G, so it holds

αw(G) ≥ w(S′ \ {c1} ∪ S1) = w′(S′) − w̃(c1) + w(S1). If H1 is a 1-strip,

then w(S1) = αw(G1). If H1 is a 2-strip, then w(S1) = max{αw(G1 \

A1
1), αw(G1 \A1

2), αw(G1 \ (A1
1 △A1

2))}. In both cases, w(S1)− w̃(c1) = δ1
1 ,

so αw(G) ≥ w′(S′) + δ1
1 .

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+

δ1
1 . In particular, this must hold for a mwss of G′, so we obtain αw(G) ≥

αw′(G′) + δ1
1 .

3.5 The gadgets 37

Figure 3.1: Trivial strips H̃0
i , H̃1

i , H̃2
i , H̃3

i , possibly associated with the strip Hi.

We will analyze now the case in which we have a 2-strip with the ex-

tremities in different classes of the partition. This case is more complicated

because we need to take into consideration the parity of the strips. First we

classify those 2-strips in even, odd, even-odd or non-connected.

Definition 3.7. Let U, W ⊆ V (G), we call a path P = v1, . . . , vk (k ≥ 1) a

U–W path, if v1 ∈ U , vk ∈W and vi /∈ U ∪W for 2 ≤ i ≤ k − 1.

Definition 3.8. We say that a 2-strip Hi is non-connected if there is no

Ai
1–Ai

2 path, and connected otherwise.

Definition 3.9. We say that a connected 2-strip Hi is even (resp. odd)

if every Ai
1–Ai

2 induced path has even (resp. odd) length. If a 2-strip has

both even and odd length Ai
1–Ai

2 induced paths, then we say that Hi is an

even-odd strip.

We call an odd or even-odd strip Hi odd-short if every odd Ai
1–Ai

2 path

has length one, and we call an even or even-odd strip Hi even-short if every

even Ai
1–Ai

2 path has length zero (i.e., it consists of a vertex in Ai
1 ∩Ai

2).

In the following when speaking of an even (resp. odd) Ai
1–Ai

2 path, we

will always mean that the path is induced.

In order to preserve perfection of the original graph G, we have to use

gadgets that have the same parity of the strips, otherwise we may introduce

odd holes. So we have to introduce separately odd gadgets and even gadgets,

plus some other convenient gadgets.

3.5 The gadgets 38

Let us consider a 2-strip Hi = (Gi,Ai) with the extremities in different

classes of the partition P. We want to introduce a gadget H̃i = (G̃i, Ãi)

and a new weight function w̃ on the vertices of G̃i, in such a way that, when

replacing Hi by H̃i in the strip composition for a suitable partition, the

difference between the weights of the mwss of the original graph and the

mwss of the new graph is δi
1, where δi

1 = αw(Gi \ (Ai
1 ∪Ai

2)).

Definition 3.10. Given a 2-strip Hi = (Gi,Ai) we define the associated

trivial strip H̃1
i = (T i

1, Ãi
1) as follows: V (T i

1) = {ui
1, ui

2}, E(T i
1) = ∅, Ãi

1 =

{Ãi
1, Ãi

2} and Ãi
1 = {ui

1}, Ãi
2 = {ui

2}. The new weight function w̃ gives the

following weights to the vertices of T i
1: w̃(ui

1) = αw(Gi \ Ai
2)− δi

1, w̃(ui
2) =

αw(Gi \ Ai
1)− δi

1.

If we use H̃1
i instead of Hi in the composition, the new partition is

P ′ := P \ {P1, P2} ∪ {(P1 \ {A
i
1}) ∪ {{u

i
1}}, (P2 \ {A

i
2}) ∪ {{u

i
2}}}, where

P1, P2 ∈ P : Ai
1 ∈ P1, Ai

2 ∈ P2.

Definition 3.11. Given a 2-strip Hi = (Gi,Ai) we define the associated

trivial strip H̃2
i = (T i

2, Ãi
2) as the following graph: V (T i

2) = {ui
1, ui

2, ui
3},

E(T i
2) = {ui

1ui
2, ui

2ui
3}, Ã

i
2 = {Ãi

1, Ãi
2} and Ãi

1 = {ui
1, ui

2}, Ãi
2 = {ui

3}.

The new weight function w̃ gives the following weights to the vertices of

T i
2: w̃(ui

1) = αw(Gi) − αw(Gi \ Ai
1), w̃(ui

2) = αw(Gi \ Ai
2) − δi

1, w̃(ui
3) =

αw(Gi \ Ai
1)− δi

1.

If we use H̃2
i instead of Hi in the composition, the new partition is

P ′ := P \ {P1, P2} ∪ {(P1 \ {A
i
1})∪ {{u

i
1, ui

2}}, (P2 \ {A
i
2})∪ {{u

i
3}}}, where

P1, P2 ∈ P : Ai
1 ∈ P1, Ai

2 ∈ P2.

Definition 3.12. Given a 2-strip Hi = (Gi,Ai) we define the associated

trivial strip H̃3
i = (T i

3, Ãi
3) as the following graph: V (T i

3) = {ui
1, ui

2, ui
3},

E(T i
3) = {ui

1ui
2, ui

2ui
3}, Ã

i
3 = {Ãi

1, Ãi
2} and Ãi

1 = {ui
1, ui

2}, Ãi
2 = {ui

2, ui
3}.

The new weight function w̃ gives the following weights to the vertices of T i
3:

w̃(ui
1) = αw(Gi \Ai

2)− δi
1, w̃(ui

2) = αw(Gi)− δi
1, w̃(ui

3) = αw(Gi \Ai
1)− δi

1.

If we use H̃3
i instead of Hi in the composition, the new partition is

P ′ := P \ {P1, P2} ∪ {(P1 \ {A
i
1}) ∪ {{u

i
1, ui

2}}, (P2 \ {A
i
2}) ∪ {{u

i
2, ui

3}}},

where P1, P2 ∈ P : Ai
1 ∈ P1, Ai

2 ∈ P2.

3.5 The gadgets 39

In next lemmas we show that the given weights are correct, in the sense

that every time we replace a 2-strip with the corresponding gadget the value

of the mwss drops by δi
1. These lemmas have a different proof depending

on the fact that the relation αw(G1 \ A1
1) + αw(G1 \ A1

2) R αw(G1) + δ1
1 ,

is satified with =, > or <. We will se later on that the satisfaction of this

relation is strictly related to the parity of the strips.

Lemma 3.13. Let G be the composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P, and let w : V (G) → R+ be a

weight function. Suppose that H1 is a 2-strip with the extremities in dif-

ferent classes of the partition P. Let G′ be the composition of strips H̃1
1 =

(T 1
1 , Ã1

1), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition P ′

previously defined. Let w′ : V (G′) → R+ be the weight function defined as

w′(v) = w(v) for v ∈
⋃

i=2..k V (Gi), and w′(v) = w̃(v) for v ∈ V (T 1
1). If

αw(G1 \ A1
1) + αw(G1 \ A1

2) = αw(G1) + δ1
1 , then αw(G) = αw′(G′) + δ1

1.

Proof. First we prove αw(G) ≤ αw′(G′) + δ1
1 . We can partition the stable

sets S of G in the following way:

1) S ∩ (A1
1 ∪A1

2) = ∅;

2) |S ∩A1
1|+ |S ∩A1

2| = 1;

3) |S ∩A1
1|+ |S ∩A1

2| = 2.

In case 1), we have that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\

G1))+ δ1
1 , where the last inequality follows from the fact that S misses both

A1
1 and A1

2. Therefore, w(S ∩ (G\G1)) ≥ w(S)− δ1
1 . Moreover, S ∩ (G\G1)

is a stable set of G′ and w′(S ∩ (G \G1)) = w(S ∩ (G \G1)). It follows that

αw′(G′) ≥ w(S)− δ1
1 .

Now we analyze case 2), in particular we suppose that |S ∩A1
1| = 1 and

|S∩A1
2| = 0; it follows that S∩A1

2 = ∅. Then w(S) = w(S∩(G\G1))+w(S∩

G1) ≤ w(S∩ (G\G1))+αw(G1 \A1
2), where again the last inequality follows

from the fact that S misses A1
2. Now we observe that S ∩ (G \G1)∪ {u1

1} is

a stable set of G′, and w′(S ∩ (G \G1)∪{u1
1}) = w(S ∩ (G \G1)) + w̃(u1

1) so

we have that αw′(G′) ≥ w(S∩(G\G1))+ w̃(u1
1) = w(S∩(G\G1))+αw(G1 \

3.5 The gadgets 40

A1
2)− δ1

1 ≥ w(S) − δ1
1 . The case in which |S ∩ A1

2| = 1 and |S ∩ A1
1| = 0 is

analogous.

In case 3), we have that both |S ∩ A1
1| = 1 and |S ∩ A1

2| = 1, that is

if A1
1 ∩ A1

2 = ∅, S takes a vertex in A1
1 and a vertex in A1

2, else S may

take a single vertex in A1
1 ∩ A1

2 or a vertex in A1
1 \ A1

2 and a vertex in

A1
2 \A1

1. It follows that w(S) = w(S ∩ (G \G1)) + w(S ∩G1) ≤ w(S ∩ (G \

G1)) + αw(G1). Moreover, S ∩ (G \G1) ∪ {u1
1, u1

2} is a stable set of G′, and

w′(S∩(G\G1)∪{u1
1, u1

2}) = w(S∩(G\G1))+ w̃(u1
1)+ w̃(u1

2). Then we have

that αw′(G′) ≥ w(S∩(G\G1))+ w̃(u1
1)+ w̃(u1

2) = w(S∩(G\G1))+αw(G1 \

A1
2)− δ1

1 + αw(G1 \A1
1)− δ1

1 = w(S ∩ (G \G1)) + αw(G1)− δ1
1 ≥ w(S)− δ1

1 ,

where the last equality holds by hypothesis.

Thus we have shown that for every stable set S of G, αw′(G′) ≥ w(S)−

δ1
1 . In particular, this must hold for a mwss of G, so we obtain αw(G) ≤

αw′(G′) + δ1
1 .

Now we want to prove αw(G) ≥ αw′(G′) + δ1
1 . We can partition the

stable sets S′ of G′ in the following way:

1) S′ ∩ {u1
1, u1

2} = ∅;

2) |S′ ∩ {u1
1, u1

2}| = 1;

3) |S′ ∩ {u1
1, u1

2}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪A1

2). Then, as S′ misses both

u1
1 and u1

2 and there are no edges between G1 \ (A1
1∪A1

2) and G\G1, S1∪S′

is a stable set of G. It follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ1
1 .

In case 2), we suppose that u1
1 ∈ S′ and let S1 be a mwss of G1 \ A1

2.

Then, as S′ misses u1
2, S′ \ {u1

1} ∪ S1 is a stable set of G. It follows that

αw(G) ≥ w(S′ \ {u1
1} ∪ S1) = w′(S′) − w̃(u1

1) + αw(G1 \ A1
2) = w′(S′) −

αw(G1 \ A1
2) + δ1

1 + αw(G1 \ A1
2) = w′(S′) + δ1

1 . The case in which u1
2 ∈ S′

is analogous.

In case 3), let S1 be a mwss of G1. Now, S′ \{u1
1, u1

2}∪S1 is a stable set

of G, so it holds αw(G) ≥ w(S′ \ {u1
1, u1

2} ∪ S1) = w′(S′)− w̃(u1
1)− w̃(ui

2) +

αw(G1) = w′(S′)−αw(G1 \A1
1)−αw(G1 \A1

2)+2δ1
1 +αw(G1) = w′(S′)+ δ1

1 ,

where the last equality holds by hypothesis.

3.5 The gadgets 41

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+

δ1
1 . In particular, this must hold for a mwss of G′, so we obtain αw(G) ≥

αw′(G′) + δ1
1 .

Lemma 3.14. Let G be the composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P, and let w : V (G) → R+ be a

weight function. Suppose that H1 is a 2-strip with the extremities in dif-

ferent classes of the partition P. Let G′ be the composition of strips H̃2
1 =

(T 1
2 , Ã1

2), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition P ′

previously defined. Let w′ : V (G′) → R+ be the weight function defined as

w′(v) = w(v) for v ∈
⋃

i=2..k V (Gi), and w′(v) = w̃(v) for v ∈ V (T 1
2). If

αw(G1 \ A1
1) + αw(G1 \ A1

2) ≥ αw(G1) + δ1
1 , then αw(G) = αw′(G′) + δ1

1.

Proof. First we prove αw(G) ≤ αw′(G′) + δ1
1 . We can partition the stable

sets S of G in the following way:

1) S ∩ (A1
1 ∪A1

2) = ∅;

2) |S ∩A1
1|+ |S ∩A1

2| = 1;

3) |S ∩A1
1|+ |S ∩A1

2| = 2.

In case 1), we have that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\

G1))+ δ1
1 , where the last inequality follows from the fact that S misses both

A1
1 and A1

2. Therefore, w(S ∩ (G\G1)) ≥ w(S)− δ1
1 . Moreover, S ∩ (G\G1)

is a stable set of G′ and w′(S ∩ (G \G1)) = w(S ∩ (G \G1)). It follows that

αw′(G′) ≥ w(S)− δ1
1 .

Now we analyze case 2). First, suppose that |S∩A1
1| = 1 and |S∩A1

2| = 0

(or in other words S misses A1
2). Then w(S) = w(S∩(G\G1))+w(S∩G1) ≤

w(S∩(G\G1))+αw(G1\A1
2), where again the last inequality follows from the

fact that S misses A1
2. Now observe that S∩(G\G1)∪{u1

2} is a stable set of

G′, and w′(S∩(G\G1)∪{u1
2}) = w(S∩(G\G1))+w̃(u1

2). Then we have that

αw′(G′) ≥ w(S∩(G\G1))+w̃(u1
2) ≥ w(S)−αw(G1\A1

2)+αw(G1\A1
2)−δ1

1 =

w(S) − δ1
1 . Now suppose that |S ∩ A1

2| = 1 and |S ∩ A1
1| = 0 (or in other

words S misses A1
1). We obtain w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1) ≤

w(S∩(G\G1)+αw(G1\A1
1). In this case, S∩(G\G1)∪{u1

3} is a stable set of

3.5 The gadgets 42

G′ and this gives rise to the inequality αw′(G′) ≥ w(S ∩ (G\G1))+ w̃(u1
3) ≥

w(S)− αw(G1 \ A1
1) + αw(G1 \ A1

1)− δ1
1 = w(S)− δ1

1 .

In case 3), we have that both |S ∩ A1
1| = 1 and |S ∩ A1

2| = 1, that is if

A1
1 ∩A1

2 = ∅, S takes a vertex in A1
1 and a vertex in A1

2, else S may take a

single vertex in A1
1 ∩ A1

2 or a vertex in A1
1 \ A1

2 and a vertex in A1
2 \ A1

1. It

follows that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\G1))+αw(G1).

Moreover, S ∩ (G\G1)∪{u1
1, u1

3} is a stable set of G′, and w′(S ∩ (G\G1)∪

{u1
1, u1

3}) = w(S ∩ (G \G1)) + w̃(u1
1) + w̃(u1

3). Then we have that αw′(G′) ≥

w(S∩(G\G1))+w̃(u1
1)+w̃(u1

3) ≥ w(S)−αw(G1)+αw(G1)−δ1
1 = w(S)−δ1

1 .

Thus we have shown that for every stable set S of G, αw′(G′) ≥ w(S)−

δ1
1 . In particular, this must hold for a mwss of G, so we obtain αw(G) ≤

αw′(G′) + δ1
1 .

Now we want to prove αw(G) ≥ αw′(G′) + δ1
1 . We can partition the

stable sets S′ of G′ in the following way:

1) S′ ∩ {u1
1, u1

2, u1
3} = ∅;

2) |S′ ∩ {u1
1, u1

2, u1
3}| = 1;

3) |S′ ∩ {u1
1, u1

2, u1
3}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪A1

2). Then, as S′ misses u1
1, u1

2

and u1
3, and there are no edges between G1 \ (A1

1 ∪A1
2) and G \G1, S1 ∪ S′

is a stable set of G. It follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ1
1 .

In case 2), first suppose that u1
1 ∈ S′ and let S1 be a mwss of G1 \ A1

2.

Then, as S′ misses u1
2 and u1

3, S′ \ {u1
1} ∪ S1 is a stable set of G, and

w(S′ \ {u1
1} ∪ S1) = w′(S′)− w̃(u1

1) + αw(G1 \A1
2). It follows that αw(G) ≥

w(S′\{u1
1}∪S1) = w′(S′)−αw(G1)+αw(G1\A1

1)+αw(G1\A1
2) ≥ w′(S′)+δ1

1,

where the last inequality holds by hypothesis. Now suppose that u1
2 ∈ S′ and

let S1 be a mwss of G1 \A1
2. Then, as S′ misses u1

1 and u1
3, S′ \{u1

2}∪S1 is a

stable set of G, and w(S′\{u1
2}∪S1) = w′(S′)−w̃(u1

2)+αw(G1\A1
2). It follows

that αw(G) ≥ w(S′ \{u1
2}∪S1) = w′(S′)−αw(G1 \A1

2)+δ1
1 +αw(G1 \A1

2) =

w′(S′) + δ1
1 . Finally, suppose that u1

3 ∈ S′ and let S1 be a mwss of G1 \A1
1.

Then, as S′ misses u1
1 and u1

2, S′ \ {u1
3} ∪ S1 is a stable set of G, and

w(S′ \ {u1
3} ∪ S1) = w′(S′)− w̃(u1

3) + αw(G1 \A1
1). It follows that αw(G) ≥

w(S′ \ {u1
3} ∪S1) = w′(S′)−αw(G1 \A1

1) + δ1
1 + αw(G1 \A1

1) = w′(S′) + δ1
1 .

3.5 The gadgets 43

In case 3), from the structure of T2, we have that {u1
1, u1

3} ⊆ S′. Let

S1 be a mwss of G1. Now, S′ \ {u1
1, u1

3} ∪ S1 is a stable set of G, and

w(S′ \ {u1
1, u1

3} ∪ S1) = w′(S′) − w̃(u1
1) − w̃(u1

3) + αw(G1). It follows that

αw(G) ≥ w(S′\{u1
1, u1

2}∪S1) = w′(S′)−αw(G1)+δ1
1 +αw(G1) = w′(S′)+δ1

1 .

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+

δ1
1 . In particular, this must hold for a mwss of G′, so we obtain αw(G) ≥

αw′(G′) + δ1
1 .

Lemma 3.15. Let G be the composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P, and let w : V (G) → R+ be a

weight function. Suppose that H1 is a 2-strip with the extremities in dif-

ferent classes of the partition P. Let G′ be the composition of strips H̃3
1 =

(T 1
3 , Ã1

3), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition P ′

previously defined. Let w′ : V (G′) → R+ be the weight function defined as

w′(v) = w(v) for v ∈
⋃

i=2..k V (Gi), and w′(v) = w̃(v) for v ∈ V (T 1
3). If

αw(G1 \ A1
1) + αw(G1 \ A1

2) ≤ αw(G1) + δ1
1 , then αw(G) = αw′(G′) + δ1

1.

Proof. First we prove αw(G) ≤ αw′(G′) + δ1
1 . We can partition the stable

sets S of G in the following way:

1) S ∩ (A1
1 ∪A1

2) = ∅;

2) |S ∩A1
1|+ |S ∩A1

2| = 1;

3) |S ∩A1
1|+ |S ∩A1

2| = 2.

In case 1), we have that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\

G1))+ δ1
1 , where the last inequality follows from the fact that S misses both

A1
1 and A1

2. Therefore, w(S ∩ (G\G1)) ≥ w(S)− δ1
1 . Moreover, S ∩ (G\G1)

is a stable set of G′ and w′(S ∩ (G \G1)) = w(S ∩ (G \G1)). It follows that

αw′(G′) ≥ w(S)− δ1
1 .

Now we analyze case 2), in particular we suppose that |S ∩A1
1| = 1 and

|S∩A1
2| = 0 (that is S misses A1

2). Then w(S) = w(S∩(G\G1))+w(S∩G1) ≤

w(S ∩ (G \G1)) + αw(G1 \A1
2), where again the last inequality follows from

the fact that S misses A1
2. Now we observe that S∩(G\G1)∪{u1

1} is a stable

set of G′, and w′(S∩(G\G1)∪{u1
1}) = w(S∩(G\G1))+w̃(u1

1). We have that

3.5 The gadgets 44

αw′(G′) ≥ w(S∩(G\G1))+w̃(u1
1) ≥ w(S)−αw(G1\A1

2)+αw(G1\A1
2)−δ1

1 =

w(S) − δ1
1 . The case where |S ∩ A1

2| = 1 and |S ∩ A1
1| = 0 goes along the

same lines.

In case 3), we have that both |S ∩ A1
1| = 1 and |S ∩ A1

2| = 1, that is if

A1
1 ∩A1

2 = ∅, S takes a vertex in A1
1 and a vertex in A1

2, else S may take a

single vertex in A1
1 ∩ A1

2 or a vertex in A1
1 \ A1

2 and a vertex in A1
2 \ A1

1. It

follows that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\G1))+αw(G1).

Moreover, S∩(G\G1)∪{u1
2} is a stable set of G′, and w′(S∩(G\G1)∪{u1

2}) =

w(S ∩ (G \G1)) + w̃(u1
2). Then we have that αw′(G′) ≥ w(S ∩ (G \G1)) +

w̃(u1
2) ≥ w(S)− αw(G1) + αw(G1)− δ1

1 = w(S)− δ1
1 .

Thus we have shown that for every stable set S of G, αw′(G′) ≥ w(S)−

δ1
1 . In particular, this must hold for a mwss of G, so we obtain αw(G) ≤

αw′(G′) + δ1
1 .

Now we want to prove αw(G) ≥ αw′(G′) + δ1
1 . We can partition the

stable sets S′ of G′ in the following way:

1) S′ ∩ {u1
1, u1

2, u1
3} = ∅;

2) |S′ ∩ {u1
1, u1

2, u1
3}| = 1;

3) |S′ ∩ {u1
1, u1

2, u1
3}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪A1

2). Then, as S′ misses u1
1, u1

2

and u1
3, and there are no edges between G1 \ (A1

1 ∪A1
2) and G \G1, S1 ∪ S′

is a stable set of G. It follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ1
1 .

In case 2), first suppose that u1
1 ∈ S′ and let S1 be a mwss of G1 \ A1

2.

Then, as S′ misses u1
2 and u1

3, S′ \ {u1
1} ∪ S1 is a stable set of G, and

w(S′ \ {u1
1} ∪ S1) = w′(S′)− w̃(u1

1) + αw(G1 \A1
2). It follows that αw(G) ≥

w(S′ \ {u1
1} ∪S1) = w′(S′)−αw(G1 \A1

2) + δ1
1 + αw(G1 \A1

2) = w′(S′) + δ1
1 .

The case where u1
3 ∈ S′ goes along the same lines. Finally, let us suppose

that u1
2 ∈ S′ and let S1 be a mwss of G1. Then S′ \ {u1

2} ∪ S1 is a stable

set of G, and w(S′ \ {u1
2} ∪ S1) = w′(S′)− w̃(u1

2) + αw(G1). It follows that

αw(G) ≥ w(S′ \ {u1
2} ∪S1) = w′(S′)−αw(G1) + δ1

1 + αw(G1) = w′(S′) + δ1
1 .

In case 3), from the structure of T2, we have that {u1
1, u1

3} ⊆ S′. Let

S1 be a mwss of G1. Now, S′ \ {u1
1, u1

3} ∪ S1 is a stable set of G, and

w(S′ \ {u1
1, u1

3} ∪ S1) = w′(S′) − w̃(u1
1) − w̃(u1

3) + αw(G1). It follows that

3.5 The gadgets 45

αw(G) ≥ w(S′ \{u1
1, u1

2}∪S1) = w′(S′)−αw(G1 \A1
2)+ 2δ1

1−αw(G1 \A1
1)+

αw(G1) ≥ w′(S′) + δ1
1 , where the last inequality holds by hypothesis.

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+

δ1
1 . In particular, this must hold for a mwss of G′, so we obtain αw(G) ≥

αw′(G′) + δ1
1 .

Here we show how the condition on the weights of the gadgets is related

to the parity of the strips.

Lemma 3.16. If H1 = (G1,A1) is a non-connected strip then αw(G1\A1
1)+

αw(G1 \ A1
2) = αw(G1) + δ1

1 .

Proof. Let G1
1 be the connected component of G1 that contains A1

1, and let

G1
2 = G1 \ V (G1

1). Since G1 is a non-connected strip, then A1
2 is contained

in G1
2. The following equalities are straightforward, and imply the lemma.

αw(G1) = αw(G1
1) + αw(G1

2)

αw(G1 \ A1
2) = αw(G1

1) + αw(G1
2 \ A1

2)

αw(G1 \ A1
1) = αw(G1

1 \ A1
1) + αw(G1

2)

δ1
1 = αw(G1

1 \ A1
1) + αw(G1

2 \ A1
2)

Lemma 3.17. If H1 = (G1,A1) is an odd strip and G1 is perfect then

αw(G1 \ A1
1) + αw(G1 \ A1

2) ≥ αw(G1) + δ1
1 .

Proof. Let G∗ be the graph obtained in the following way: add to G1 a

vertex v1 complete to A1
1, a vertex v2 complete to A1

2, with v1 adjacent to

v2. As H1 is odd, A1
1 ∩ A1

2 = ∅. Besides, as G1 is perfect, G∗ is perfect.

We want to extend w to v1 and v2, so we let a = w(v1) and b = w(v2). We

choose a, b ≥ 0 and such that a + αw(G1 \A1
1) = b + αw(G1 \A1

2) > αw(G1):

that is always possible. A stable set in G∗ can either take v1 and then no

vertex of A1
1, or it can take v2 and then no vertex of A1

2 or it can miss both

3.5 The gadgets 46

v1 and v2. Then for our choice of the weights of v1 and v2 we have that

αw(G∗) = a + αw(G1 \A1
1) = b + αw(G1 \ A1

2).

Let y be a mwcc for (G∗, w) and let us denote with τw(G∗) its value; we

call h1 the value given by y to the clique {v1}∪A1
1, that is h1 = y{v1}∪A1

1
, we

call h3 the value given by y to the clique {v2} ∪ A1
2, that is h3 = y{v2}∪A1

2
,

and we call h2 the value given by y to the clique {v1, v2}, that is h2 =

y{v1,v2}. Now we define a new weight function w̃ on V (G1): w̃(v) = w(v)

∀v ∈ V (G1) \ (A1
1 ∪ A1

2), w̃(v) = w(v) − h1 ∀v ∈ A1
1, w̃(v) = w(v) − h3

∀v ∈ A1
2. Let us denote with τw̃(G1) the value of a mwcc of (G1, w̃), then

τw(G∗) = h1 + h2 + h3 + τw̃(G1) by the optimality of y for G∗ and the

definition of h1, h2, h3.

As G∗ is perfect we know that the maximum weight stable set problem

and the minimum weight clique cover on G∗ are dual problems and so every

vertex v belonging to a mwss of G∗ is covered exactly by a mwcc of G∗, that

is
∑

C∈K(G∗):v∈C yC = w(v), where K(G∗) is the set of maximal cliques of G∗.

In particular, for our choice of a and b, both v1 and v2 belong to mwss of

G∗, so we have that h1 +h2 = a and h2 +h3 = b. Moreover, again by duality,

αw(G∗) = τw(G∗), and we obtain h1+h2+h3+τw̃(G1) = a+αw(G1\A1
1), that

is h3+τw̃(G1) = αw(G1\A1
1), and h1+h2+h3+τw̃(G1) = b+αw(G1\A1

2), that

is h1 + τw̃(G1) = αw(G1 \ A1
2). But again by duality and by the perfection

of G1 we can rewrite those two equations as (i) h3 + αw̃(G1) = αw(G1 \A1
1)

and (ii) h1 + αw̃(G1) = αw(G1 \ A1
2).

As A1
1 and A1

2 are cliques we can easily deduce the inequality αw(G1) ≤

αw̃(G1) + h1 + h3 and by definition of the weight function w̃ it follows that

δ1
1 ≤ αw̃(G1); summing up these inequalities we obtain αw(G1) + δ1

1 ≤

2αw̃(G1) + h1 + h3, then using (i) and (ii) αw(G1) + δ1
1 ≤ αw(G1 \ A1

1) +

αw(G1 \ A1
2).

Lemma 3.18. If H1 = (G1,A1) is an even strip and G1 is perfect then

αw(G1 \ A1
1) + αw(G1 \ A1

2) ≤ αw(G1) + δ1
1 .

Proof. We build the following auxiliary strip H∗ = (G∗,A∗): we add a vertex

v complete to A1
1 and A∗ = {{v}, A1

2}. We observe that by construction and

the hypothesis on H1, H∗ is an odd strip and G∗ is perfect. We extend the

3.5 The gadgets 47

weight function of G1 to v, putting w(v) = a, where a > αw(G1). From the

choice of a we have the following equalities:

αw(G∗ \ {v}) = αw(G1)

αw(G∗ \ ({v} ∪A1
2)) = αw(G1 \A1

2)

αw(G∗) = max{a + αw(G1 \A1
1), αw(G1)} = a + αw(G1 \A1

1)

αw(G∗ \ A1
2) = max{a + δ1

1 , αw(G1 \A1
2)} = a + δ1

1

By Lemma 3.17 the following inequality holds αw(G∗ \{v})+αw(G∗ \A1
2) ≥

αw(G∗ \ ({v} ∪A1
2)) + αw(G∗), that is αw(G1) + a + δ1

1 ≥ αw(G1 \A1
2) + a +

αw(G1 \ A1
1) and therefore αw(G1) + δ1

1 ≥ αw(G1 \A1
2) + αw(G1 \A1

1).

As we have described more than one gadget we should give a method to

choose one gadget for every 2-strip Hi. In particular, if we can calculate the

values of the crucial clique covers (τw(Gi), τw(Gi \Ai
2), τw(Gi \Ai

1) and δi
1)

for each strip we can determine whether one of these three relations holds

1. τw(Gi) + τ i
1 > τw(Gi \ Ai

2) + τw(Gi \ Ai
1)

2. τw(Gi) + δi
1 < τw(Gi \Ai

2) + τw(Gi \Ai
1)

3. τw(Gi) + δi
1 = τw(Gi \Ai

2) + τw(Gi \Ai
1)

If 1) holds we know that the strip is either even or even-odd and we can use

H̃3
i as a suitable gadget. If 2) holds we know that the strip is either odd or

even-odd and we can use H̃2
i as a suitable gadget. If 3) holds we can simply

use H̃1
i as a suitable gadget. In this way we obtain an odd hole free graph,

which is line and so perfect (odd antiholes with length greater than 7 are

not line).

Remark 1. If G composition of strips H1 = (G1,A1), . . . , Hk = (Gk,Ak)

with respect to a partition P is odd hole free then G′ composition of H̃0
1 =

(T 1
0 , Ã1

0), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition

P ′ is odd hole free. If G composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P is odd hole free then G′ composition

of H̃1
1 = (T 1

1 , Ã1
1), H2 = (G2,A2), . . . , Hk = (Gk,Ak) with respect to the par-

tition P ′ is odd hole free. If G composition of strips H1 = (G1,A1), . . . , Hk =

(Gk,Ak) with respect to a partition P is odd hole free and H1 is either an

3.6 Weighted clique cover of line and perfect graphs 48

odd strip or an even-odd strip then G′ composition of H̃2
1 = (T 1

2 , Ã1
2), H2 =

(G2,A2), . . . , Hk = (Gk,Ak) with respect to the partition P ′ is odd hole free.

If G composition of strips H1 = (G1,A1), . . . , Hk = (Gk,Ak) with respect

to a partition P is odd hole free and H1 is either an even strip or an even-

odd strip then G′ composition of H̃3
1 = (T 1

3 , Ã1
3), H2 = (G2,A2), . . . , Hk =

(Gk,Ak) with respect to the partition P ′ is odd hole free.

Remark 2. Strips H̃0
i , H̃1

i , H̃2
i , H̃3

i are line strips. So, if we iteratively make

the substitution of the strip Hi by the corresponding gadget H̃j
i , from Lemma

3.3 the graph we obtain is a line graph.

Remark 3. Line graphs are Ck-free for k ≥ 7.

This last remark follows from the characterization of line graphs in terms

of forbidden induced subgraphs given by Beineke [2]. From these two re-

marks it follows that if we iteratively substitute on G every strip with the

corresponding gadget with respect to the validity of 1, 2 or 3, we obtain a

graph G̃ that is odd-hole free and a line graph, so it is perfect.

As a corollary of Lemmas 3.6, 3.13, 3.14 and 3.15, it follows that αw(G) =

αw(G̃)+
∑k

i=1 δi
1. Since both graphs are perfect, by duality the same relation

holds for the values of the mwcc of the two graphs.

3.6 Weighted clique cover of line and perfect graphs

Once we have replaced every strip with the suitable gadget we end up with

a graph G̃ = L(H) which is a line graph and it is perfect. We are then

left with the problem of solving the mwcc on L(H). In particular we can

observe that maximal cliques in L(H) correspond to multistars (i.e all the

edges incident to a vertex v) and multitriangles (i.e. a complete graph on

three vertices with eventually multiple edges) in the root graph H, so we

can try to solve a weighted stars and triangles edge cover in H instead that

a mwcc in L(H).

We observe that for our purpose we may assume that H is simple; in fact

if we have a set of parallel edges we delete all but one edge and we give to

3.6 Weighted clique cover of line and perfect graphs 49

this edge the maximum weight among the edges in the set, instead if we

have a loop we know that it corresponds to a simplicial vertex in L(H), so

we can cover it at the price of its weight with a suitable clique in L(H).

Consequently the LP program for the weighted stars and triangles cover in

H is the following

min
∑

v∈V

yv +
∑

t∈T

πt

yu + yv +
∑

t∈T :uv∈t

πt ≥ wuv ∀uv ∈ E(H) : u 6= v

yv ≥ 0 ∀v ∈ V (H)

πt ≥ 0 ∀t ∈ T

where T is the set of all the induced triangles of H. This linear program

looks like the odd set cover problem, i.e. the dual of the maximum weight

matching in H, except for the fact that we are not considering all the odd

sets (or similarly all the 2-connected hypomatchable subgraphs) but just the

triangles.

We can use the Edmonds’ primal dual algorithm for the maximum weight

matching to obtain a solution to this problem. We use a result of Trotter [43]

saying that a graph is a line perfect graph, i.e. a root graph of a perfect line

graph, if and only if it does not contain any elementary odd cycle of length

greater than three. As a consequence, in the same paper, it is obtained

that the facets of the matching polytope of a line perfect graph are the stars

constraints and the blossom inequalities for induced triangles. It follows that

the minimum weighted stars and triangles cover of H is exactly the dual of

the maximum matching problem, so we can use one of the many existent

primal dual algorithm for the maximum matching to obtain a solution of

the weighted stars and triangle edge cover of H, and the solution of this

problem will have a computational cost of O(match(|V (H)|)).

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 50

However, even for an integer weight function, the solution could be half

integer in the y variables. We can obtain an integer solution in the following

way:

• Consider the actual edge cover (y, π) and consider the graph H ′ in-

duced by the edges e = uv ∈ E(H) such that yu + yv +
∑

t∈T :uv∈t πt =

wuv and yu and yv are half integer.

• H ′ is not necessarily an induced subgraph of H, but is line perfect by

the characterization theorem of Trotter in [43].

• We can solve the unweighted version of the stars and triangle edge

cover on H ′ via the algorithm proposed by Trotter in time O(
√

|V (H ′)|

E(H ′)) (which is less then O(match(|V (H)|))). The solution of this

problem will give an integer adjustment of the half integer solution of

the stars and triangles weighted edge cover on H.

The resulting complexity of computing a minimum weight clique cover of

L(H) is then O(match(|V (H)|)) = O(|V (H)|2log|V (H)|) = O(|V (L(H))|2

log|V (L(H))|) = O(|V (G)|2log|V (G)|) = O(match(|V (G)|)) (using the primal-

dual algorithm for maximum weight matching by Gabow [19]).

3.7 Reconstructing a mwcc of G from a mwcc of

G̃

In this section we want to show that we can build a mwcc of G from a

mwcc of G̃. The first issue we have to address is the ‘translation’ of all the

maximal cliques of G̃ (recall that we can always assume that a mwcc gives

a positive value only to maximal cliques) into maximal cliques of G. We will

see that this will not always be the case. In order to deal with this problem

we detail the structure of G̃ and H.

The second issue will be to show that we can give a new weight function

to each strip in order to compute a mwcc w.r.t. this function, and this

clique cover together with the one obtained from the cover of G̃ will be a

mwcc of G.

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 51

3.7.1 The structure of G̃ and H

We first show how to build H. Krausz [27] proved the following:

Lemma 3.19. [27] A graph J(W, F) is the line graph of a multigraph if and

only if there exists a family of cliques Q such that every edge in F is covered

by a clique from the family Q, and moreover every vertex in W belongs to

exactly two cliques from the family Q.

In fact, as soon as we are given a family Q satisfying Lemma 3.19 w.r.t.

G̃, we may build H as follows: each clique K ∈ Q corresponds to a vertex

vK of H, and two vertices vK1
and vK2

of H are connected by |K1 ∩ K2|

(parallel) edges. In order to build Q, and therefore H, we start from the

set of partition cliques defined by P ′. Note that each vertex of G̃ belongs

to exactly one partition clique, but for each vertex ui
2 from each strip H̃3

i ,

as such a vertex belongs to exactly two partition cliques. Also note that

each edge of G̃ is covered by a partition clique, but for each edge ui
2ui

3 from

each strip H̃2
i . Therefore, in order to “complete” Q, we consider, besides

the partition cliques, the following set of completion cliques of G̃: a clique

{v} for each vertex v from each strip H̃1
i or H̃2

i ; a clique {v} for each vertex

v ≡ ui
1 from each strip H̃2

i ; a clique {v} for each vertex v ∈ {ui
1, ui

3} from

each strip H̃3
i ; a clique {ui

2, ui
3} from each strip H̃2

i . It is easy to see that

the union of the partition and the completion cliques satisfies Lemma 3.19.

The next remark summarizes the structure of H.

Remark 4. Suppose that P = {P1, . . . , Pr} and let H be the multigraph

such that L(H) = G̃. Then H is composed by: a set of vertices {x1, . . . , xr},

each xi corresponding to the class Pi of P.

• For each strip Hi such that we use H̃3
i instead of Hi in the composition

and such that Ai
1 ∈ Pj and Ai

2 ∈ Pℓ we have:

– An edge xjxℓ (this edge corresponds to the vertex ui
2 of T i

3)

– Vertices zi
j and zi

ℓ

– Edges zi
jxj and zi

ℓxℓ (the edges zi
jxj and zi

ℓxℓ correspond to the

vertices ui
1 and ui

3 of T i
3, respectively)

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 52

• For each strip Hi such that we use H̃2
i instead of Hi in the composition

and such that Ai
1 ∈ Pj and Ai

2 ∈ Pℓ we have:

– A vertex yi
jℓ

– A vertex zi
j

– Edges yi
jℓxj and yi

jℓxℓ (the edges yi
jℓxj and yi

jℓxℓ correspond to

the vertices ui
2 and ui

3 of T i
2, respectively)

– An edge zi
jxj (this edge corresponds to the vertex ui

1 of T i
2)

• for each strip Hi such that we use H̃0
i instead of Hi in the composition

and such that Ai
1 ∈ Pj we have:

– A vertex zi
j

– An edge zi
jxj (this edge corresponds to the vertex ci of T i

0)

• For each strip Hi such that we use H̃1
i instead of Hi in the composition

and such that Ai
1 ∈ Pj and Ai

2 ∈ Pℓ we have:

– Vertices zi
j and zi

ℓ

– Edges zi
jxj and zi

ℓxℓ (the edges zi
jxj and zi

ℓxℓ correspond to the

vertices ui
1 and ui

2 of T i
1, respectively)

We now analyze the maximal cliques of G̃. We already pointed out

that [43] each maximal clique of G̃ corresponds to either a multistar of H

or to a multitriangle of H.

We start with multistars of H. By construction, each multistar of H

corresponds to either a partition or a completion clique of G̃. It is easy to

see that each partition clique is maximal. A completion clique is maximal if

it either coincides with some partition clique, or it is a clique {ui
2, ui

3} from

some strip H̃2
i . In particular, if the extremities of H̃2

i belong to the classes

Pj and Pℓ ∈ P
′, {ui

2, ui
3} is maximal if and only if there is no strip H̃3

a whose

extremities are in the same classes Pj and Pℓ, as otherwise {ui
2, ui

3, ua
2} would

be a larger clique.

We now move to multitriangles of H. Trivially, each multitriangle of H

induces a maximal clique of G̃. By construction, the multitriangles of H

delve into two classes. A first class are those induced by vertices xj, xℓ, xk

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 53

Figure 3.2: A graph G, composition of the 2-strips H1, . . . , H5 and the 1-strips

H6, H7, H8. Partition P is given by

{{A1
1, A7

1}, {A5
1, A6

1}, {A1
2, A2

2, A3
2}, {A2

1, A5
2, A4

1}, {A3
1, A4

2, A8
1}}.

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 54

Figure 3.3: The weighted graph G̃, corresponding to graph G in Figure 3.2, and the

weight function w such that w(v) = 1 for every vertex v of G.

Figure 3.4: The root graph H of the line graph G̃ in Figure 3.3.

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 55

such that: there exist H̃3
a , H̃3

b , H̃3
c with the extremities of H̃3

a in Pj and Pℓ,

the extremities of H̃3
b in Pℓ and Pk, the extremities of H̃3

c in Pk and Pj.

By construction, each of the strip Ha, Hb, Hc is either an even strip or an

even-odd strip (Gi,Ai), for i ∈ {a, b, c}. Let a1, a2 be the endpoints of an

even Aa
1–Aa

2 path, and define b1, b2 and c1, c2 analogously. Then these three

paths along with the edges a2b1, b2c2 and a1c1 induce an odd hole, unless

the three paths have length zero, i.e, a1 = a2, b1 = b2 and c1 = c2. That

is the case when G is a perfect graph. If a1 = a2, b1 = b2 and c1 = c2

then Aa
1 ∩ Aa

2 6= ∅, Ab
1 ∩ Ab

2 6= ∅ and Ac
1 ∩ Ac

2 6= ∅ and by construction

(Aa
1 ∩Aa

2)∪ (Ab
1 ∩Ab

2)∪ (Ac
1 ∩Ac

2) is a clique. Moreover, Ha, Hb and Hc are

even-short strips.

A second class of multitriangle of H are those induced by vertices xj, xℓ, yi
jℓ

such that: there exist H̃3
a and H̃2

i with one of the two extremities in a class

Pj and the other in a class Pℓ. Note that such a multitriangle “arises” from

some non-maximal completion cliques of G̃, see above. For these multitri-

angles we can show the following claim.

Claim 3.20. Suppose that in H we have a (multi)triangle yi
jℓxjxℓ, then

there is an odd or even-odd 2-strip (Gi,Ai) with a vertex x in G complete

to both extremities. Moreover Hi is an odd-short strip.

Proof. As we have in H the edge xjxℓ, there must be in G̃ a correspond-

ing H̃3
k gadget with vertex set {uk

1 , uk
2 , uk

3}, and in G a corresponding even

or even-odd strip (Gk,Ak) with one of the two extremities in Pj and the

other in Pℓ. As we have the two edges yi
jℓxj and yi

jℓxℓ there must be in G̃

a corresponding H̃2
i gadget with vertex set {ui

1, ui
2, ui

3}, and in G a corre-

sponding odd or even-odd strip (Gi,Ai) with one of the two extremities in

Pj and the other in Pℓ. Moreover, we observe that the triangle yi
jℓxjxℓ in

H corresponds to the triangle uk
2ui

2ui
3 in G̃. The strip (Gi,Ai) is odd or

even-odd, thus it has at least an Ai
1-Ai

2 odd path, while (Gk,Ak) is even or

even-odd, thus it has at least an Ak
1-Ak

2 even path. Then, in order to avoid

odd-holes, Ak
1 ∩ Ak

2 6= ∅ and every odd path in Gi should be of length one.

Thus (Gk,Ak) is an even-short strip, the intersection Ak
1 ∩ Ak

2 is nonempty

and complete to Ai
1 ∪Ai

2, and (Gi,Ai) is an odd-short strip.

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 56

3.7.2 From a mwcc of G̃ to a mwcc of G

A dual solution to the maximum weighted matching problem on H will

give a weight to each multistar and multitriangle of H (and w.l.o.g. we

assume that this weight is non-zero only for multistars and multitriangles of

H correspoding to maximal clique of G̃). This solution is trivially a mwcc

of G̃. We are left to show how to “translate” a mwcc ỹ of G̃, w.r.t. the

weight w̃, into a mwcc y of G, w.r.t. the weight w.

First, we would like to associate to each maximal clique of G̃ a maximal

clique of G. However, there is a catch: the maximal cliques of G̃ arising

from the completion cliques might not correspond to any clique of G. We

will address this issue later; while we now assume that:

(*) no strip Hi has been replaced by the strip H̃2
i = (T i

2, Ãi
2), i.e., each

maximal cliques of G̃ corresponds to a maximal clique of G.

In particular, we will show which clique of G to associate to a maximal

clique K̃ of G̃ corresponding to either a multistar centered at some vertex

xj of H, or to a multitriangle xjxℓxk of H. In the former case, we will

translate K̃ into the partition-clique K =
⋃

Ai
d
∈Pj

Ai
d, and set y(K) = ỹ(K̃).

In the latter case, following the discussion in the previous section, we will

translate K̃ into the clique induced by K =
⋃

d∈Ijℓk
(Ad

1 ∩Ad
2), where Ijℓk is

the set of indices d of even-short 2-strips Hd = (Gd,Ad) in the decomposition

having their two extremities in two different sets in {Pj , Pℓ, Pk}, and again

set y(K) = ỹ(K̃).

Now we want to show that we can “extend” y (we refer to y in the

following as a partial cover) into a mwcc of G, w.r.t. the weight w. As

we show in the following, we will be able to cover the “residual” weight of

the vertices in each strip Hi = (Gi,Ai), building upon a suitable weighted

clique cover of Gi of value at most δi.

We first deal with 1-strips. Let Hi = (Gi,Ai) be a 1-strip. Hi has been

replaced by the strip H̃0
i = (T i

0, Ãi
0), where the graph T i

0 consists on a single

vertex ci, and Ãi
0 = {{ci}}. It follows from the discussion in Section 3.7.1

that there is only one clique in the support of ỹ covering Ãi
0 = {{ci}}, and

that clique corresponds in G to the partition clique from the class of P

which Ai
1 belongs to. Therefore, each vertex in Ai

1 is covered by a single

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 57

clique in the support of y, with weight at least w̃(ci) = αw(Gi)− δi
1, where

δi
1 = αw(Gi \ Ai

1). Then we can “extend” y into a mwcc of G, w.r.t. w,

because of the following lemma:

Lemma 3.21. Let Hi = (Gi,Ai) be a 1-strip. Let wi : V (Gi) 7→ R+ be

defined as follows:

wi(v) = w(v) for v ∈ V (Gi) \Ai
1;

wi(v) = max{0, w(v) − b} for v ∈ Ai
1

with b ≥ αw(Gi)− δi
1. Then αwi(Gi) = δi

1.

Proof. Let S be a stable set of Gi\Ai
1. Since wi(v) = w(v) for v ∈ V (Gi)\Ai

1,

it follows that wi(S) = w(S) ≤ αw(Gi \ Ai
1) = δi

1. Now consider a stable

set S of Gi containing one vertex v ∈ Ai
1. If wi(v) ≤ 0, then wi(S) =

w(S \ v) + wi(v) ≤ w(S \ v) ≤ αw(Gi \ Ai
1) = δi

1; if wi(v) > 0, then

wi(S) = w(S)− b ≤ w(S) − αw(Gi) + δi
1 ≤ δi

1.

We now move to 2-strips that have been replaced by H̃0, i.e. strips

with both extremities in the same class of P. Let Hi = (Gi,Ai) be such a

strip. Hi has been replaced by the strip H̃0
i = (T i

0, Ãi
0), where the graph

T i
0 consists on a single vertex ci, and Ãi

0 = {{ci}}. It follows from the

discussion in Section 3.7.1 that there is only one clique in the support of

ỹ covering Ãi
0 = {{ci}}, and that clique corresponds in G to the partition

clique from the class of P which Ai
1 and Ai

2 belong to. Therefore, each vertex

in Ai
1 ∪ Ai

2 is covered by a single clique in the support of y, with weight at

least w̃(ci) = max{αw(Gi \Ai
1), αw(Gi \Ai

2), αw(Gi \(Ai
1△Ai

2))}−δi
1, where

δi
1 = αw(Gi \ (Ai

1 ∪Ai
2)). Then we can “extend” y into a mwcc of G, w.r.t.

w, because of the following lemma:

Lemma 3.22. Let Hi = (Gi,Ai) be a 2-strip. Let Gi
= be the graph obtained

from Gi by adding the edges between Ai
1 and Ai

2. Let wi : V (Gi) 7→ R+ be

defined as follows:

wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪Ai

2);

wi(v) = max{0, w(v) − b} for v ∈ Ai
1 ∪Ai

2

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 58

with b ≥ max{αw(Gi \ Ai
1), αw(Gi \ Ai

2), αw(Gi \ (Ai
1 △ Ai

2))} − δi
1. Then

αwi(Gi) = δi
1. Moreover, if Gi

= is perfect, any mwcc of Gi
= w.r.t. wi does

not assign strictly positive weight to the clique Ai
1 ∪Ai

2.

Proof. First note that αw(Gi
=) = max{αw(Gi \ Ai

1), αw(Gi \ Ai
2), αw(Gi \

(Ai
1 △ Ai

2))}. Now, let S be a maximum stable set of Gi \ (Ai
1 ∪ Ai

2) w.r.t.

w. Since wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪ Ai

2), then wi(S) = w(S) =

αw(Gi \ (Ai
1 ∪ Ai

2)) = δi
1. On the other hand and by the same reason, any

stable set S of Gi
= such that wi(S) > δi

1 should contain a vertex v ∈ Ai
1∪Ai

2,

such that wi(v) > 0, i.e., wi(v) = w(v)−b. Since it is a clique of Gi
=, there is

at most one such vertex. So, wi(S) = w(S)− b ≤ w(S)−αw(Gi
=) + δi

1 ≤ δi
1.

Then αwi(Gi
=) = δi

1. If Gi
= is perfect, any mwcc of Gi

= with respect to

wi should have weight δi
1. In particular, every clique with strictly positive

weight must intersect any mwss of Gi \ (Ai
1 ∪Ai

2). So, in any mwcc of Gi
=,

the clique Ai
1 ∪Ai

2 has weight zero.

Note that the last sentence of the previous lemma implies that, if Gi
= is

perfect and there are no two vertices v1 ∈ Ai
1 and v2 ∈ Ai

2 having a common

neighbor in V (Gi) \ (Ai
1 ∪ Ai

2), then any mwcc of Gi
= w.r.t. wi is in fact

a mwcc of Gi w.r.t. wi. Otherwise, we must be able to compute a mwcc

of Gi
= in order to reconstruct a clique cover of G from a clique cover of G̃.

This is why we require in Theorem 3.5 that a mwcc of Gi
= can be computed

in time O(pi(|V (Gi)|)) in this case.

We now move to 2-strips that have been replaced by H̃1. Let Hi =

(Gi,Ai) be such a strip. Hi has been replaced by the strip H̃1
i = (T i

1, Ãi
1),

where V (T i
1) = {ui

1, ui
2}, E(T i

1) = ∅, Ãi
1 = {Ãi

1, Ãi
2} and Ãi

1 = {ui
1}, Ãi

2 =

{ui
2}. It follows from the discussion in Section 3.7.1 that there is only one

clique in the support of ỹ covering Ãi
1 = {ui

1}, and that clique corresponds

in G to the partition clique from the class of P which Ai
1 belongs to, and the

same holds w.r.t. to ui
2 and Ai

2. Therefore, each vertex in Ai
1 is covered by a

single clique in the support of y, with weight at least w̃(ui
1) = αw(Gi \Ai

2)−

δi
1, and each vertex in Ai

2 is covered by a single clique in the support of y,

with weight at least w̃(ui
2) = αw(Gi\Ai

1)−δi
1, where δi

1 = αw(Gi\(Ai
1∪Ai

2)).

Recall that αw(Gi \ Ai
1) + αw(Gi \ Ai

2) ≥ αw(Gi) + δi
1, as we replaced Hi

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 59

with H̃1
i . Then we can “extend” y into a mwcc of G, w.r.t. w, because of

the following lemma:

Lemma 3.23. Let Hi = (Gi,Ai) be a 2-strip. Let wi : V (Gi) 7→ R+ be

defined as follows:

wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪Ai

2);

wi(v) = max{0, w(v) − b1} for v ∈ Ai
1 \Ai

2;

wi(v) = max{0, w(v) − b2} for v ∈ Ai
2 \Ai

1;

wi(v) = max{0, w(v) − b1 − b2} for v ∈ Ai
1 ∩Ai

2.

with b1, b2 such that b1 ≥ αw(Gi \ Ai
2) − δi

1, b2 ≥ αw(Gi \ Ai
1)− δi

1, and

b1 + b2 ≥ αw(Gi)− δi
1. Then αwi(Gi) = δi

1.

Proof. On one hand, let S be a mwss of Gi\(Ai
1∪Ai

2) w.r.t. w. Since wi(v) =

w(v) for v ∈ V (Gi)\(Ai
1∪Ai

2), then wi(S) = w(S) = αw(Gi\(Ai
1∪Ai

2)) = δi
1.

On the other hand and by the same reason, any stable set S such that

wi(S) > δi
1 should contain a vertex v ∈ Ai

1 ∪ Ai
2 such that wi(v) > 0. In

fact, w.l.o.g., we can assume that every vertex in S has strictly positive

weight. Now, we have four cases to consider: S contains a vertex v of Ai
1

and no vertex of Ai
2; S contains a vertex v of Ai

2 and no vertex of Ai
1; S

contains a vertex v of Ai
1 ∩ Ai

2; or S contains a vertex v of Ai
1 \ Ai

2 and a

vertex v′ of Ai
2 \ Ai

1. In the first case, wi(v) = w(v) − b1 and so wi(S) =

w(S)−b1 ≤ w(S)−αw(Gi \Ai
2)+δi

1 ≤ δi
1. The second case is symmetric. In

the last two cases, wi(S) = w(S)− b1 − b2 ≤ w(S) − αw(Gi) + δi
1 ≤ δi

1.

We now move to 2-strips that have been replaced by H̃3
i but are not

even-short, i.e. Ai
1 ∩ Ai

2 = ∅. Let Hi = (Gi,Ai) be such a strip. Hi

has been replaced by the strip H̃3
i = (T i

3, Ãi
3), with V (T i

3) = {ui
1, ui

2, ui
3},

E(T i
3) = {ui

1ui
2, ui

2ui
3}, Ã

i
3 = {Ãi

1, Ãi
2} and Ãi

1 = {ui
1, ui

2}, Ãi
2 = {ui

2, ui
3}. It

follows from the discussion in Section 3.7.1 that there is only one clique in

the support of ỹ covering ui
1 (resp. ui

3), and that clique corresponds in G

to the partition clique from the class of P which Ai
1 (resp. Ai

2) belongs to.

Therefore, as Ai
1 and Ai

2 do not intersect, each vertex in Ai
1 is covered by

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 60

a single clique in the support of y, with weight at least w̃(ui
1) = αw(Gi \

Ai
2)− δi

1, where δi
1 = αw(Gi \ (Ai

1 ∪ Ai
2)); analogously, each vertex in Ai

2 is

covered by a single clique in the support of y, with weight at least w̃(ui
3) =

αw(Gi \Ai
1)− δi

1. Note also that w̃(ui
1) + w̃(ui

3) ≥ w̃(ui
2) = αw(Gi)− δi

1, as

the only maximal cliques of G̃ covering ui
2 contains either ui

1 or ui
3; therefore,

αw(Gi \ Ai
1) + αw(Gi \ Ai

2) ≥ αw(Gi) + δi
1. Then we can “extend” y into a

mwcc of G, w.r.t. w, because of Lemma 3.23 again.

We now move to 2-strips that have been replaced by H̃3
i and are even-

short, i.e. Ai
1 ∩ Ai

2 6= ∅. Note that such strips might be involved in some

multitriangles in the root graph of G̃.

Let Hi = (Gi,Ai) be such a strip. Hi has been replaced by the strip

H̃3
i = (T i

3, Ãi
3), with V (T i

3) = {ui
1, ui

2, ui
3}, E(T i

3) = {ui
1ui

2, ui
2ui

3}, Ã
i
3 =

{Ãi
1, Ãi

2} and Ãi
1 = {ui

1, ui
2}, Ãi

2 = {ui
2, ui

3}. It follows from the discussion

in Section 3.7.1 that there is only one clique in the support of ỹ covering

ui
1 (resp. ui

3), and that clique corresponds in G to the partition clique from

the class of P which Ai
1 (resp. Ai

2) belongs to. Therefore, each vertex in

Ai
1 \Ai

2 is covered by a single clique in the support of y, with weight at least

w̃(ui
1) = αw(Gi \Ai

2)− δi
1, where δi

1 = αw(Gi \ (Ai
1 ∪Ai

2)); analogously, each

vertex in Ai
2\A

i
1 is covered by a single clique in the support of y, with weight

at least w̃(ui
3) = αw(Gi \Ai

1)−δi
1. As for the vertices in Ai

1∩Ai
2, they might

be also covered, with weight a ≥ 0, by some clique K =
⋃

d∈Ijℓk
(Ad

1 ∩ Ad
2),

with i ∈ Ijℓk (recall that Ijℓk is the set of indices d of even-short 2-strips

Hd = (Gd,Ad) in the decomposition having their two extremities in two

different sets in {Pj , Pℓ, Pk}). Note that it follows that w̃(ui
1) + w̃(ui

3) + a ≥

w̃(ui
2) = αw(Gi)− δi

1, as the only maximal cliques of G̃ covering ui
2 contains

either ui
1 or ui

3; therefore, αw(Gi \ Ai
1) + αw(Gi \ Ai

2) + a ≥ αw(Gi) + δi
1.

Then we can “extend” y into a mwcc of G, w.r.t. w, because of the following

lemma:

Lemma 3.24. Let Hi = (Gi,Ai) be an even-short 2-strip such that Gi is

perfect. Let wi : V (Gi) 7→ R+ be defined as follows:

wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪Ai

2);

wi(v) = max{0, w(v) − b1} for v ∈ Ai
1 \Ai

2;

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 61

wi(v) = max{0, w(v) − b2} for v ∈ Ai
2 \Ai

1;

wi(v) = max{0, w(v) − b1 − b2 − a} for v ∈ Ai
1 ∩Ai

2.

with b1, b2, a be such that b1 ≥ αw(Gi \Ai
2)− δi

1, b2 ≥ αw(Gi \Ai
1)− δi

1, and

a + b1 + b2 ≥ αw(Gi)− δi
1. Then αwi(Gi) = δi

1.

Proof. On one hand, let S be a mwss of Gi \ (Ai
1 ∪ Ai

2) w.r.t. w. Since

wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪ Ai

2), then wi(S) = w(S) = αw(Gi \

(Ai
1 ∪ Ai

2)) = δi
1. On the other hand and by the same reason, any stable

set S such that wi(S) > δi
1 should contain a vertex v ∈ Ai

1 ∪ Ai
2 such that

wi(v) > 0. In fact, w.l.o.g., we can assume that every vertex in S has

strictly positive weight. Now, we have four cases to consider: S contains

a vertex v of Ai
1 and no vertex of Ai

2; S contains a vertex v of Ai
2 and no

vertex of Ai
1; S contains a vertex v of Ai

1 ∩ Ai
2; or S contains a vertex v

of Ai
1 \ Ai

2 and a vertex v′ of Ai
2 \ Ai

1. In the first case, wi(v) = w(v) − b1

and so wi(S) = w(S) − b1 ≤ w(S) − αw(Gi \ Ai
2) + δi

1 ≤ δi
1. The second

case is symmetric. In the third case, wi(v) = w(v) − b1 − b2 − a, and so

wi(S) = w(S) − b1 − b2 − a ≤ w(S) − αw(Gi) + δi
1 ≤ δi

1. In the last case,

wi(v) = w(v)− b1 and wi(v′) = w(v′)− b2, and so wi(S) = w(S)− b1− b2 ≤

w(S)−αw(Gi \Ai
2)−αw(Gi \Ai

1)+2δi
1. Note that, since Hi is an even-short

strip, the strip H ′
i = (Gi\(Ai

1∩Ai
2), {Ai

1\A
i
2, Ai

2\A
i
1}) is either non-connected

or odd, so by Lemma 3.17, αw(Gi\Ai
1)+αw(Gi\Ai

2) ≥ αw(Gi\(Ai
1∩Ai

2))+δi
1.

Thus wi(S) ≤ w(S)− αw(Gi \ (Ai
1 ∩Ai

2)) + δi
1 ≤ δi

1.

3.7.3 When some strip is replaced by the strip H̃2
i = (T i

2, Ãi
2)

We finally deal with the case where the hypothesis (*) does not hold, i.e.

some strip Hi has been replaced by the strip H̃2
i = (T i

2, Ãi
2).

Let Hi = (Gi,Ai) be such a strip. Hi has been replaced by the strip H̃2
i =

(T i
2, Ãi

2), with V (T i
2) = {ui

1, ui
2, ui

3}, E(T i
2) = {ui

1ui
2, ui

2ui
3}, Ã

i
2 = {Ãi

1, Ãi
2}

and Ãi
1 = {ui

1, ui
2}, Ãi

2 = {ui
3}. We also set: w̃(ui

1) = αw(Gi)−αw(Gi \Ai
1),

w̃(ui
2) = αw(Gi \Ai

2)− δi
1, w̃(ui

3) = αw(Gi \Ai
1)− δi

1.

Recall that, in this case, there might be some maximal cliques of G̃ that

do not correspond to any maximal clique of G. We will show how to define

3.7 Reconstructing a mwcc of G from a mwcc of G̃ 62

a weight function on the vertices of the strip Hi as to get a cover with the

same value which includes only cliques.

Recall that these “fake” cliques correspond in the root graph H to some

star centered at yi
jℓ and to some multitriangle yi

jℓxjxℓ. We first deal with

the case where in H there is a multitriangle yi
jℓxjxℓ. In this case, the 2-strip

(Gi,Ai) is odd-short, and there is at least one vertex x that is complete

to Ai
1 ∪ Ai

2, and belongs to some strip (Ga,Aa) whose extremities are in

the same class as (Gi,Ai). Without loss of generality, we assume that x is

unique (in fact, if there are more vertices, then they form a clique of G).

We prove the following lemma, which essentially shows that, if our cover of

G̃ has assigned a weight a > 0 to the triangle yi
jℓxjxℓ, then we can discard

this triangle and ask for a mwcc of value δi
1 + a in the graph induced by Gi

and x, in such a way that x is covered by a quantity greater or equal to a.

Lemma 3.25. Let Hi = (Gi,Ai) be a 2-strip. Let Gi
• be the graph obtained

from Gi by adding a new vertex x complete to both Ai
1 and Ai

2. Let wi :

V (Gi) 7→ R+ be defined as follows:

wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪Ai

2)

wi(v) = max{0, w(v) − b1} for v ∈ Ai
1 \Ai

2,

wi(v) = max{0, w(v) − b2} for v ∈ Ai
2 \Ai

1;

wi(v) = max{0, w(v) − b1 − b2} for v ∈ Ai
1 ∩Ai

2.

with b1, b2, a such that b1 ≥ αw(Gi) − αw(Gi \ Ai
1), a + b1 ≥ αw(Gi \

Ai
2)− δi

1, a + b2 ≥ αw(Gi \Ai
1)− δi

1. Then αwi(Gi
•) = δi

1 + a. In particular,

αwi(Gi) ≤ δi
1 + a.

Proof. On one hand, let S be a mwss of Gi \ (Ai
1 ∪ Ai

2) w.r.t. w. Then

S ∪ {x} is a stable set of Gi
•. Since wi(v) = w(v) for v ∈ V (Gi) \ (Ai

1 ∪Ai
2),

then wi(S ∪ {x}) = w(S) + wi(x) = αw(Gi \ (Ai
1 ∪ Ai

2)) + a = δi
1 + a. In

fact, since x is complete to Ai
1 ∪Ai

2 in Gi
•, any stable set of Gi

• containing x

should be composed by x and a stable set of Gi \ (Ai
1 ∪ Ai

2), and will have

weight wi at most δi
1 + a. So, any stable set S such that wi(S) > δi

1 + a

should contain a vertex v ∈ Ai
1 ∪ Ai

2 such that wi(v) > 0. In fact, w.l.o.g.,

3.8 Conclusions 63

we can assume that every vertex in S has strictly positive weight. Now, we

have four cases to consider: S contains a vertex v of Ai
1 and no vertex of

Ai
2; S contains a vertex v of Ai

2 and no vertex of Ai
1; S contains a vertex v

of Ai
1 \ Ai

2 and a vertex v′ of Ai
2 \ Ai

1; or S contains a vertex v of Ai
1 ∩ Ai

2.

In the first case, wi(v) = w(v) − b1 and so wi(S) = w(S) − b1 ≤ w(S) −

αw(Gi \ Ai
2) + δi

1 + a ≤ δi
1 + a. The second case is symmetric. In the

third case, wi(v) = w(v) − b1 and wi(v′) = w(v′) − b2, and in the last case

wi(v) = w(v)−b1−b2. So, in both cases, wi(S) = w(S)−b1−b2. By adding

the first two required inequalities, it follows that a + b1 + b2 ≥ αw(Gi)− δi
1,

so wi(S) ≤ w(S) − αw(Gi) + δi
1 + a ≤ δi

1 + a.

We underline that the last sentence of Lemma 3.25 suggests also how to

“translate” the weight a possibly assigned to the star centered in yi
jℓ and, in

general, how to deal with the strips that have been replaced by H̃2.

3.8 Conclusions

From the collection of all the results in this chapter we can finally write an

algorithm for computing a mwcc in a strip-composed graph G when the

decomposition is given.

Clearly under the hypothesis of Theorem 3.5, Algorithm 2 finds a mwcc

in polynomial time, with running time O(
∑k

i=1 pi(|V (Gi)|)+match(|V (G)|)).

3.8 Conclusions 64

Algorithm 2

Require: A graph G(V, E), its strip decomposition (G,P) where G =

{(Gj ,Aj), j ∈ [k]} and a weight function w : V → R+.

Ensure: A mwcc for G(V, E) w.r.t. the weight function w.

1: Replacement Step:

1.1 For each 1-strip Hi = (Gi,Ai) compute δi
1 = τw(Gi \ Ai

1) and τw(Gi);

replace Hi with the gadget H̃0
i and modify P accordingly to this replacement.

1.2 For each 2-strip Hi = (Gi,Ai):

1.2.1 If ∃P ∈ P such that Ai
1, Ai

2 ∈ P , then compute δi
1 = τw(Gi \ (Ai

1∪Ai
2)),

τw(Gi \Ai
1), τw(Gi \Ai

2) and τw(Gi \ (Ai
1 △ Ai

2)); replace Hi with the gadget

H̃0
i and modify P accordingly to this replacement.

1.2.2 Else compute τw(Gi \Ai
1), τw(Gi \Ai

2), τw(Gi) and δi
1 = τw(Gi \ (Ai

1 ∪

Ai
2)):

• If τw(Gi \Ai
1) + τw(Gi \Ai

2) = τw(Gi) + τw(Gi \ (Ai
1 ∪Ai

2)) replace Hi with

the gadget H̃1
i and modify P accordingly to this replacement;

• If τw(Gi \Ai
1) + τw(Gi \Ai

2) > τw(Gi) + τw(Gi \ (Ai
1 ∪Ai

2)) replace Hi with

the gadget H̃2
i and modify P accordingly to this replacement;

• If τw(Gi \Ai
1) + τw(Gi \Ai

2) < τw(Gi) + τw(Gi \ (Ai
1 ∪Ai

2)) replace Hi with

the gadget H̃3
i and modify P accordingly to this replacement;

2: Line perfect graph step: Let G̃ and w̃ be the graph and the weight function

obtained from the Replacement Step. G̃ is a perfect and line graph (cfr Remarks

1, 2, 3).

2.1 Compute the root multigraph H of G̃ (cfr Section 3.7.1).

2.2 Compute a mwcc ỹ of G̃ w.r.t to the weight function w̃ (cfr Section 3.6).

3: Reconstruction step:

3.1 For each clique with ỹ(K̃) 6= 0 that corresponds to a maximal clique of

G (to check this it is sufficient to check from which variable of the stars and

triangle edge cover of H comes the clique K̃) set K according to Section 3.7.2

and y(K) = ỹ(K).

3.2 For each clique with ỹ(K̃) 6= 0 that does not correspond to a maximal

clique of G (to check this it is sufficient to check from which variable of the

stars and triangle edge cover of H comes the clique K̃) add a new vertex x

complete to both extremities to a suitable odd or even-odd 2-strip and assign

to it a weight wi(x) = ỹ(K) (cfr Section 3.7.3).

3.3 For each strip Hi = (Gi,Ai) with i = 1, . . . , k compute from ỹ the new

weight function wi according to Lemmas 3.21, 3.22, 3.23 and 3.24.

3.4 For each strip Hi = (Gi,Ai) with i = 1, . . . , k compute a mwcc yi of

Gi of value δi
1 w.r.t. the new weight function wi. If Hi is a 2-strip with both

extremities in the same class of the partition and Lemma 3.22 does not apply,

compute a mwcc yi of Gi
= w.r.t. wi. If Hi is a 2-strip to which we have added

a new vertex x in Step 3.2, compute a mwcc yi of Gi
•

w.r.t. wi.

3.5 For every clique K set y′(K) = y(K) +
∑

i yi(K).

4: Return y′.

Chapter 4

The mwcc problem on

strip-composed claw-free

perfect graphs

4.1 Introduction

In this chapter we want to apply the result presented in Chapter 3 on the

mwcc on strip-composed perfect graphs to the subclass of claw-free perfect

graphs, or in other words we want to customize Algorithm 2 to the claw-

free case. For the mwcc on claw-free perfect graphs an algorithm has been

proposed by Hsu and Nemhauser in 1984 (see [23]); this algorithm mimics

the algorithm for the unweighted case proposed by the same authors in [22]

and in particular it starts with the computation of a mwss of the graph G

(for a more detailed description of this algorithm see Section 4.3).

Our aim for the class of claw-free perfect graphs was to design an algorithm

for the mwcc problem that did not need to compute any mwss. With this

aim in mind we have tackled the problem on the subclass of strip-composed

claw-free perfect graphs, because in the last decade the structure of quasi-line

graphs was deeply investigated, with some results that give a very detailed

description and characterization of the strips that, through composition, can

be part of a quasi-line graph.

Among all the results on the structure of quasi-line graphs (for a brief outline

4.2 Structure results for quasi-line graphs 66

see Section 4.2) a relevant role in this chapter is played by an algorithmic

decomposition theorem by Faenza, Oriolo and Stauffer [17]. The key idea

in this chapter is to combine their result with our theorem on the mwcc on

strip-composed perfect graphs and obtain from this combination a combina-

torial algorithm for the mwcc on strip-composed claw-free perfect graphs.

From Theorem 3.5 this algorithm can be polynomial if we can solve in poly-

nomial time the mwcc problem on the strips: thanks to the characterization

of the strips given by Faenza, Oriolo and Stauffer we show that this is pos-

sible (in Sections 4.5 and 4.6).

4.2 Structure results for quasi-line graphs

We have already underlined in the introductory chapter that the structure

of claw-free graphs has been fully investigated in the outstanding series of

papers by Chudnovsky and Seymour. One of the paper of this series is

specifically dedicated to the subclass of quasi-line graphs (see [10]): the

main result of this paper is the following structure theorem.

Theorem 4.1. [10] Every connected quasi-line trigraph G is either a linear

interval join or a thickening of a circular interval trigraph.

It is not of interest to introduce here what is a trigraph, a thickening or a

circular interval trigraph. What we want to notice is that Theorem 4.1 says

that either G is in a very well known subclass of trigraphs (i.e. a thickening

of a circular interval trigraph), or it is the composition of some basic classes

of trigraphs (i.e. a linear interval join). Chudnovsky and Seymour in the

introduction of the paper explain that a special paper was needed for quasi-

line graphs especially for the cases of graphs with α(G) ≤ 3; in particular

every graph with α(G) = 2 is claw-free but not necessarly quasi-line. The

problem with this kind of result is that, whilst it is very useful in terms

of graph structure, because it gives a very detailed description of all the

‘building blocks’ of the linear interval join, it cannot be easily exploited

from an algorithmic point of view, or in other words it is not clear if and

how we can find those building blocks in polynomial time. In fact there

is no algorithm for a combinatorial optimization problem using this result

4.2 Structure results for quasi-line graphs 67

(Chudnovsky herself in a paper with Ovetsky where they give bounds for

the χ(G) of a quasi-line graph and give an algorithm to find an approximate

coloring (see [5]), does not use this theorem).

In [34] the authors propose a first attempt towards an algorithmic decompo-

sition theorem for quasi-line graphs: the decomposition was not as efficient

as more recent works, but thanks to it the authors could develop the first

algorithm for the mwss on claw-free graphs that does not use augmenting

paths techniques. Finally in [17] Faenza, Oriolo and Stauffer proposed the

following algorithmic decomposition theorem for quasi-line graphs.

Theorem 4.2. [17] Let G(V, E) be a connected quasi-line graph. In time

O(|V ||E|), one can:

(i) either recognize that G is net-free;

(ii) or provide a decomposition of G into k ≤ |V | quasi-line strips (G1,A1),

. . . , (Gk,Ak), with respect to a partition P, such that each graph Gi is

distance simplicial with respect to each clique A ∈ Ai.

Moreover, if Ai = {Ai
1, Ai

2}, then:

– either Ai
1 = Ai

2 = V (Gi);

– or Ai
1 ∩ Ai

2 = ∅ and there exits j2 such that Ai
2 ∩ Nj2

(Ai
1) 6= ∅,

Ai
2 ⊆ Nj2−1(Ai

1) ∪Nj2
(Ai

1) and Nj2+1(Ai
1) = ∅, where Nj(Ai

1) is

the j-th neighborhood of Ai
1 in Gi (and, analogously, there exits

j1 such that Ai
1 ∩ Nj1

(Ai
2) 6= ∅, Ai

1 ⊆ Nj1−1(Ai
2) ∪ Nj1

(Ai
2) and

Nj1+1(Ai
2) = ∅). Besides, each vertex in A has a neighbor in

V (Gi) \A, for each clique A ∈ Ai. Finally, if Ai
1 ∩Ai

2 are in the

same set of P, then Ai
1 is anticomplete to Ai

2.

This theorem is indeed a structure theorem, because it says that either

G belongs to a class of graphs (claw and net-free graphs), or it is the compo-

sition of some strips, but the most interesting thing is that we can say if G

falls in case (i) or (ii) in O(|V ||E|) time. Again this theorem was exploited

to obtain an algorithm for the mwss problem, with a relevant improvement

of the running time.

4.3 Related work: an algorithm for the mwcc problem on

claw-free perfect graphs 68

We will call a connected claw-free perfect graph G decomposable if it falls in

case (ii) of Theorem 4.2. Decomposable graphs are strip-composed graphs,

moreover Theorem 4.2 states that there is an algorithm that provides the

decomposition in strips. In Section 4.4 we describe an algorithm for the

mwcc on decomposable graphs.

4.3 Related work: an algorithm for the mwcc prob-

lem on claw-free perfect graphs

Before the structure of claw-free graphs was deeply investigated, Hsu and

Nemhauser in [23] have presented the first combinatorial algorithm for the

mwcc problem on claw-free perfect graphs. It was already known that the

problem was polynomially solvable on all perfect graphs using an algorithm

by Groetschel Lovász and Schrijver (see [21], this algorithm is not combina-

torial), but there was an interest on finding some combinatorial algorithms

for subclasses of perfect graphs. The algorithm in [23] uses the property

that in perfect graphs we always have a crucial clique:

Definition 4.3. Let G(V, E) be a graph with a weight function on the ver-

tices w : V → R+. A clique K of G is crucial if and only if K ∩ S 6= ∅ for

every mwss S of G.

Observe that once we have a crucial clique C we can find in polynomial

time a suitable δ such that yC = δ, w′(v) = w(v) − δ for every v ∈ C and

w′(v) = w(v) for every v ∈ V \ C and αw′(G) = αw(G) − δ (we can find in

polinomial time such a δ because the graph is perfect, thus we can compute

a mwss in polynomial time). Hence if we have a combinatorial algorithm

that finds a crucial clique in a perfect graph G, we can iteratively find such

a clique and a suitable δ, till every vertex has weight zero (or if we delete

vertices with weight zero, till the graph G is empty). This gives a simple

pseudopolynomial algorithm for all perfect graphs.

Hsu and Nemhauser do in their algorithm for claw-free perfect graphs some-

thing very similar to the pseudopolynomial procedure that we have just

sketched for the whole class of perfect graphs. They find a mwss S of G

4.4 An algorithm for the mwcc on decomposable graphs 69

and then they select an s ∈ S and find a family of crucial cliques Ks con-

taining s such that
∑

K∈Ks
yK = w(s) and such that the weighted stability

number αw(G) has dropped down by quantity
∑

K∈Ks
yK . With these two

conditions they know that S \ {s} is a maximum weighted stable set in G

where the vertices have a new weight function w′(v) = w(v)−
∑

K∈Ks:v∈K yK,

and they can iterate the procedure.

The key fact is that in order to find a crucial clique in N(s) they need only to

understand which vertices or subset of vertices in N(s) belong to a mwss of

G, and to do this they use Minty’s augmenting path algorithm for the mwss

[31] (which has a flaw that has been corrected by Nakamura and Tamura,

see [32], or can be avoided via preprocessing, as Schrijver shows in [41]).

Moreover, thanks to the quasi-liness of the graph, they can show that the

algorithm is polynomial.

We can conclude that the algorithm of Hsu and Nemhauser is essentially

a “dual” algorithm as it relies on any algorithm for the mwss problem in

claw-free graphs (we have, nowadays, several algorithms for this, see [31,

32, 34, 17, 33, 41]), and, in fact, builds a mwcc by a clever use of linear

programming complementarity slackness. The computational complexity of

the algorithm by Hsu and Nemhauser is O(|V (G)|5.5). To the best of our

knowledge, this is so far the only available combinatorial algorithm to solve

the mwcc in claw-free perfect graphs.

We observe that the algorithm proposed by Hsu and Nemhauser needs to

compute at the beginning a mwss of the whole graph, and then it needs to

compute many augmenting paths. We would like to have an algorithm which

either avoids at all the computation of mwss of the graph G, or it builds

at the same time a mwcc and a mwss of G, using for this computation a

routine for the unweighted versions of the problems.

4.4 An algorithm for the mwcc on decomposable

graphs

In this section we present an algorithm for the mwcc problem on decompos-

able graphs. This algorithm is basically the algorithm for strip-composed

4.4 An algorithm for the mwcc on decomposable graphs 70

perfect graphs of Chapter 3, customized on decomposable graphs, that,

thanks to Theorem 4.2, have a special structure of the strips. We will use

the same notation of Chapter 3, in particular G̃ will be the composition of

the gadgets w.r.t. the partition P̃ and H is the root graph of G̃.

If we are interested in finding a mwcc of G, following Theorem 3.5, we

must show that for a strip that is distance simplicial we can compute in

polynomial time: a mwcc of the strip; a mwcc of Gi
•, i.e. Gi plus a vertex

complete to both extremities, when the strip (Gi,Ai) is odd-short; a mwcc

of Gi
=, i.e. Gi plus the edges joining the extremities Ai

1, Ai
2 of the strip,

when they are in the same class of the partition and there is an Ai
1–Ai

2 path

of length two. Before getting into these details we underline that some of

the results in Chapter 3 are not necessary.

This is the case for Lemma 3.24. Suppose that in a decomposable graph we

have a multi-triangle xj , xℓ, xk in H such that: there exist H̃3
a , H̃3

b , H̃3
c with

the extremities of H̃3
a in Pj and Pℓ, the extremities of H̃3

b in Pℓ and Pk, the

extremities of H̃3
c in Pk and Pj . By construction, each of the strip Ha, Hb,

Hc is either an even strip or an even-odd strip (Gi,Ai), for i ∈ {a, b, c}. Let

a1, a2 be the endpoints of an even Aa
1–Aa

2 path, and define b1, b2 and c1, c2

analogously. Then these three paths along with the edges a2b1, b2c2 and a1c1

induce an odd hole, unless the three paths have length zero, i.e, a1 = a2,

b1 = b2 and c1 = c2. That is the case when G is a perfect graph. If a1 = a2,

b1 = b2 and c1 = c2 then Aa
1 ∩Aa

2 6= ∅, Ab
1 ∩Ab

2 6= ∅ and Ac
1 ∩Ac

2 6= ∅. Then

from Theorem 4.2, as G is a decomposable perfect graph, Aa
1 = Aa

2 = Ga,

Ab
1 = Ab

2 = Gb and Ac
1 = Ac

2 = Gc.

So, to the clique of G̃ corresponding to the (multi)triangle xixjxℓ in H,

we will assign in G the clique induced by
⋃

d∈Iijℓ
Gd, where Iijℓ is the set

of indices d of 2-strips in the decomposition, that have been replaced by

H̃3
d , and having their two extremities belonging to two different sets from

{Pi, Pj , Pℓ}. It follows that we do not need Lemma 3.24, because in a strip

Hi with Ai
1 = Ai

2, Gi is a clique, δi
1 = 0, τw(Gi\Ai

2) = 0 and τw(Gi\Ai
1) = 0.

Thus all the vertices of Gi are already covered by the mwcc of G̃.

Next we want to show that we can solve in polynomial time the mwcc in

each strip, or in the other graphs required by Theorem 3.5. In order to

4.5 Computing a mwcc on a graph distance simplicial w.r.t. a

clique K 71

show this we have to distinguish two cases: (a) 1-strips and 2-strips with

extremities in different classes of the partition P without a vertex complete

to both extremities, (b) 2-strips with extremities in the same class of the

partition and a path of length two between the extremities and odd-short

2-strips with extremities in different classes of the partition P and a vertex

complete to both extremities.

For case (a) , from Theorem 4.2 we know that the Gi corresponding to the

strip Hi is distance simplicial w.r.t. both extremities (or w.r.t. the unique

extremity for 1-strips). We will describe how to compute a mwcc in graphs

distance simplicial w.r.t. a clique in next section.

For case (b) we know again that the graph Gi corresponding to the strip Hi

is distance simplicial w.r.t. the extremities (and thus we can find a mwcc of

such graphs as we do for graphs falling in case (a)), but we cannot say that

the graphs we obtain adding to the strip the edges between the extremities or

a vertex complete to both extremities fall in this class. We can nevertheless

find in polynomial time a mwcc of such graphs. We give more details in

Section 4.6.

4.5 Computing a mwcc on a graph distance sim-

plicial w.r.t. a clique K

From Theorem 4.2 we know that the graphs corresponding to strips that

fall in case (a) are distance simplicial w.r.t. both extremities (or w.r.t. the

unique extremity for 1-strips). For graphs distance simplicial w.r.t. some

clique K we have designed an algorithm that does not need the computation

of any mwss of the graph. We start with some definitions and some easy

propositions, then we outline an algorithm for finding a mwcc in a distance

simplicial graph G(V, E) with a weight function w : V → R+ on the vertices.

Definition 4.4. We say that a clique K of a connected graph G is distance

simplicial if, for every j, α(Nj(K)) ≤ 1. In this case, we also say that G is

distance simplicial with respect to K.

We assume therefore that G has a clique K such that for every 1 ≤ j ≤ t,

4.5 Computing a mwcc on a graph distance simplicial w.r.t. a

clique K 72

α(Nj(K)) = 1 and Nt+1(K) = ∅. We let K1 be this clique and let Kj+1 :=

Nj(K1), for every 1 ≤ j ≤ t.

The following propositions are trivial (note that Propositions 4.5, 4.6

and 4.7 hold as soon as a graph has some clique K such that N(K) is a

clique: for our distance simplicial graph K1 is such a clique).

Proposition 4.5. Let S be a mwss S of G. Then S ∩ (K1 ∪N(K1)) 6= ∅.

Proposition 4.6. Let S be a mwss S of G. If S ∩ K1 = ∅, then ∃ s ∈

S ∩N(K1) complete to K.

Proposition 4.7. Let K := K1 ∪ {v /∈ K1 : v is complete to K1}. Then K

is a clique that intersects every mwss of G.

In particular it follows from proposition 4.7 that K is a crucial clique

(see definition 4.3).

Algorithm 3

Require: A graph D(V, E) that is distance simplicial graph w.r.t. a clique

K1 and a weight function w : V → R+.

(Assume Kj+1 := Nj(K1) 6= ∅, for every 1 ≤ j ≤ t, Nt+1(K1) = ∅).

Ensure: A mwcc for D(V, E) w.r.t. the weight function w.

1: Let i← 1; Q← V ; y = 0;

2: While Q 6= ∅ let D ← D[Q] and do:

2.1 Let j ∈ [t] be such that K1 ∩ Q = . . . = Kj−1 ∩ Q = ∅ and

Kj ∩Q 6= ∅.

2.2 Let K ← Kj ∪ {v /∈ Kj : v is complete to Kj in the graph D[Q]}.

2.3 Let v̄ be the vertex of K with minimum (current) weight w.

2.4 Let Q← Q \ {v ∈ K : w(v) = w(v̄)}.

2.5 For each v ∈ K, let w(v)← w(v) − w(v̄).

2.6 Let yK ← w(v̄).

3: Return y.

Lemma 4.8. Algorithm 3 is correct and can be implemented as to run in

O(|V (D)|2)-time.

4.5 Computing a mwcc on a graph distance simplicial w.r.t. a

clique K 73

Proof. We claim the following property.

Claim 4.9. Let Q ⊆ V (D) be a nonempty subset of vertices. Let j ∈

{1, . . . , t + 1} be such that Ki ∩Q = ∅ for every 1 ≤ i < j, and Kj ∩Q 6= ∅.

Then, in D[Q], (Kj ∩Q) ∪ {v ∈ Q \Kj : v is complete to Kj in the graph

D[Q]} is a crucial clique.

Proof. Since D is distance simplicial w.r.t. K1, (Kj ∩Q) ∪ {v ∈ Q \Kj : v

is complete to Kj ∩Q in the graph D[Q]} is a clique in D[Q]. Suppose that

there is a mwss S in D[Q] that does not intersect it. In particular, j < t+1,

no vertex of S belongs to Kj , and no vertex of S is complete to Kj ∩ Q.

Since Kj+1 is a clique, at most one vertex S belongs to it, and any other

vertex of S is anticomplete to Kj . In any case, there is a vertex in Kj that is

anticomplete to S, a contradiction to the maximality of S, since the weight

w is strictly positive. This proves the claim.

By the claim, the set K we build at step 2.2 is a clique that intersects

every mwss of the current graph. In steps 2.5 and 2.6 we are decreasing the

weighted stability number of the current graph by y(K), or in other words
∑

K∈K(D) y(K) = αw(D) (where K(D) is the collection of all the cliques

of the graph D). In fact let us call w′ the weight function after step 2.5

and suppose by contradiction that αw′(D) > αw(D) − w̄, and denote with

S′ the maximum weight stable set w.r.t. the weight function w′ and with

D′ := D[Q] after step 2.4. We have to analyze two cases: (i) S′∩K 6= ∅ and

(ii) S′∩K = ∅. If (i) holds then αw′(D) = w′(S′) = w(S′)− w̄ ≤ αw(D)− w̄

which is a contradiction. If (ii) holds we know that in D′, K̄ = K̄j∪{v /∈ K̄j :

v is complete to K̄j in the graph D[Q]}, where K̄j is Kj restricted to vertices

with strictly positive weight, is a crucial clique, so in particular S′ ∩ K̄ 6= ∅.

Since S′ ∩K = ∅ and S′ ∩ K̄ 6= ∅, we have that S′ contains a vertex x /∈ K̄j

such that x is complete to K̄j in the graph D[Q] that in D was not complete

to Kj, or in other words, x was not adjacent to some vertex z ∈ Kj of weight

w̄. But then we can consider the set S′ ∪ {z} and we can observe that this

is a stable set in D, and its weight is w′(S′) + w̄ = αw′(D) + w̄ > αw(D),

which is a contradiction.

4.6 Computing a mwcc for strips in case (b) 74

Moreover, as the stop condition for step 2 is Q = ∅, we have covered

every vertex with its weight and this concludes correctness.

It is trivial to observe that steps 2.1 to 2.6 can be implemented as to run

in O(|V (D)|)-time, and we can easily observe that they will be repeated at

most |V (D)| because each time we perform step 2.4 the cardinality of the

set Q strictly decreases.

Thanks to Algorithm 3 we can compute a mwcc of Gi for every i =

1, . . . , k. We are left to show that we can compute also a mwcc of the graph

induced by an odd-short 2-strip with a vertex complete to both extremi-

ties and that we can compute a mwcc of the graph induced by a 2-strip

with the two extremities in the same class of P and the edges connecting

the two extremities, when there is a path of length two between those two

extremities.

4.6 Computing a mwcc for strips in case (b)

In this section we show that we can compute in polynomial time a mwcc

for the graphs Gi
• and Gi

= when required from Theorem 3.5.

We start with graphs obtained from odd-short 2-strips Hi plus a vertex

complete to both extremities, that we denote again with Gi
•. We have seen

in Section 3.7 of Chapter 3 that we may need to cover these graphs when we

have a multitriangle yi
jlxjxℓ in the root graph of G̃, in order to reconstruct a

mwcc of G from a mwcc of G̃. We have also seen that in this case the strip

Hi is odd-short and by claim 3.20, Gi
• is an induced subgraph of G. It follows

that Gi
• is claw-free and perfect: in next lemma we show that under this

conditions (claw-freeness and perfection of Gi
•) the graph we obtain adding

a vertex complete to both extremities of and odd-short strip is cobipartite.

Lemma 4.10. Let Hi = (Gi,Ai) be an odd-short strip satisfying condition

(ii) of Theorem 4.2, and such that the graph Gi
• obtained from Gi by adding

a new vertex x complete to both Ai
1 and Ai

2 is claw-free and perfect. Then,

Gi
• is the complement of a bipartite graph.

4.6 Computing a mwcc for strips in case (b) 75

Proof. Since Gi
• is odd-short then Ai

2 ∩ N(Ai
1) 6= ∅. As Hi satisfies con-

dition (ii) of Theorem 4.2, N3(Ai
1) is empty, either N2(Ai

1) is empty or

Ai
2 ∩ N2(Ai

1) 6= ∅, and Ai
2 ⊆ N(Ai

1) ∪ N2(Ai
1). If N2(Ai

1) is empty, then

(Ai
1∪{x}, N(Ai

1)) is a bipartition of Gi
•. The same holds if N2(Ai

2) is empty.

So, suppose that N2(Ai
1) and N2(Ai

2) are both nonempty.

We claim that

(i) N(Ai
1) \Ai

2 = N(Ai
2) \Ai

1

(ii) N2(Ai
1) \ (Ai

1 ∪Ai
2) = ∅

Proof of Claim (i). Let v ∈ N(Ai
1) \ Ai

2 then, since Gi is distance sim-

plicial with respect to Ai
1, v is complete to Ai

2 ∩ N(Ai
1), that is nonempty.

And so, v ∈ N(Ai
2). Symmetrically, every vertex in N(Ai

2) \ Ai
1 belongs to

N(Ai
1), and that proves the claim.

Proof of Claim (ii). Suppose there is a vertex v ∈ N2(Ai
1) \ Ai

2. Then,

since Gi is distance simplicial with respect to Ai
1, v is complete to Ai

2 ∩

N2(Ai
1), that is nonempty. And so, v ∈ N(Ai

2). But, by claim (i) v would

then belong to N(Ai
1), a contradiction.

In particular, Claims (i) and (ii) imply that B = V (Gi) \ (Ai
1 ∪ Ai

2) ⊆

N(Ai
1) is a clique.

The vertices of Gi
• can be partitioned into four cliques, namely Ai

1, Ai
2,

{x}, and B, such that {x} is complete to Ai
1 ∪ Ai

2, and B is complete to

(N(Ai
1) ∩ Ai

2) ∪ (N(Ai
2) ∩ Ai

1). Moreover, by Theorem 4.2, each vertex in

(N2(Ai
1) ∩ Ai

2) ∪ (N2(Ai
2) ∩ Ai

1) has a neighbor in B. In particular, since

N2(Ai
1) ∩Ai

2 is nonempty, B is nonempty.

Since Gi
• is perfect, in order to prove that it is the complement of a

bipartite graph, it is enough to prove that it has no stable set of size three.

Since the non-neighbors of x form a clique, if there is a stable set of size 3,

then it has one vertex in each of Ai
1∩N2(Ai

2), Ai
2∩N2(Ai

1), and B. Let v, v′

be two nonadjacent vertices in Ai
1 and Ai

2, respectively. Then, they cannot

have both a common neighbor and a common non-neighbor in B. To the

contrary, let w be a common neighbor and w′ a common non-neighbor of v, v′

in B. Since B is a clique, w, w′, v, v′ induce a claw in Gi, a contradiction.

Suppose that v, v′ have a common non-neighbor in B. Since they have also

4.6 Computing a mwcc for strips in case (b) 76

at least one neighbor each in B, and they do not have a common neighbor,

there exist w, w′ ∈ B such that w is adjacent to v and not to v′ and w′ is

adjacent to v′ and not to v. But then vww′v′x induce a hole of length five

on Gi
•, a contradiction. So, there is no stable set of size three in Gi

•, and it

is the complement of a bipartite graph.

Let G be a cobipartite graph and let K1 and K2 be two cliques of G,

with K1 ∪K2 = V . Then G is distance simplicial w.r.t. K1 and w.r.t. K2

and we can use algorithm 3 to find a mwcc of G.

Finally, we need to face the case of 2-strips with both extremities in the same

class of the partition P. We observe that the graphs induced by these strips

are distance simplicial w.r.t. each one of the extremities but the graph we

obtain adding to those strips the edges between the extremities in general

it is not distance simplicial w.r.t. one of the extremities.

First we recall from the previous chapter that when we have to compute

the weight function on the vertices of the gadget associated to 2-strips with

both extremities in the same class of the partition P, we never need to

consider the edges between the extremities, thus for that purpose we can

treat these 2-strips as 2-strips with extremities in different classes of the

partition and use the algorithm presented in Section 4.5.

Hence we need only to show that we can compute in polynomial time a

mwcc of Gi
= induced by a graph Gi corresponding to a 2-strip Hi plus the

edges between the extremities of value δi
1 = αw(Gi \ (Ai

1∪Ai
2)), which is the

value we are left to cover after finding a mwcc of G̃. From Lemma 3.22 we

know that we can neglect the edges between the extremities only when the

two extremities do not have any common neighbour in V (Gi) \ (Ai
1 ∪ Ai

2).

In next lemmas we are going to show how to deal with the case when there

are two vertices v1 ∈ Ai
1 and v2 ∈ Ai

2 having a common neighbor in V (Gi) \

(Ai
1 ∪Ai

2).

Lemma 4.11. Let Hi = (Gi,Ai) be a 2-strip satisfying condition (ii) of

Theorem 4.2, and such that there are two vertices v1 ∈ Ai
1 and v2 ∈ Ai

2

having a common neighbor in V (Gi) \ (Ai
1 ∪Ai

2). Let w be a strictly positive

weight function defined on the vertices of Gi, and let δi
1 = αw(Gi \ (Ai

1 ∪

Ai
2)). Let Gi

= be the graph obtained from Gi by adding the edges between

4.6 Computing a mwcc for strips in case (b) 77

Ai
1 and Ai

2. Suppose that αw(Gi
=) = δi

1 and that Gi
= is perfect and claw-

free. Then, V (Gi
=) \ (Ai

1 ∪ Ai
2) can be partitioned into three complete sets,

namely B = (N(Ai
1) \Ai

2)∩ (N(Ai
2) \Ai

1), C1 = N(Ai
1) \ (Ai

2 ∪N(Ai
2)) and

C2 = N(Ai
2) \ (Ai

1 ∪ N(Ai
1)). Moreover, B is complete to C1 ∪ C2, Ai

1 is

anticomplete to C2 and Ai
2 is anticomplete to C1.

Proof. Let us consider now the graph Gi that, by Theorem 4.2, is distance

simplicial with respect to Ai
1 and Ai

2 and in which, by the same theorem,

Ai
1 is anticomplete to Ai

2. By hypothesis, there are two vertices v1 ∈ Ai
1

and v2 ∈ Ai
2 having a common neighbor in V (Gi) \ (Ai

1 ∪ Ai
2). So, B =

NGi
(Ai

1) ∩ NGi
(Ai

2) = (NGi
=(Ai

1) \ Ai
2) ∩ (NGi

=(Ai
2) \ Ai

1) is non-empty.

So, there is a vertex in Ai
2 ∩ NGi

2 (Ai
1) and, by Theorem 4.2, N4

Gi

(Ai
1) is

empty. Symmetrically, N4
Gi

(Ai
2) is empty. Let C1 = NGi

(Ai
1) \NGi

(Ai
2) =

NGi
=(Ai

1) \ (Ai
2 ∪ NGi

=(Ai
2)) and C2 = NGi

(Ai
2) \ NGi

(Ai
1) = NGi

=(Ai
2) \

(Ai
1 ∪NGi

=(Ai
1)). Since Gi is distance simplicial with respect to Ai

1 and Ai
2,

B is a clique and it is complete to C1 and C2. Moreover, NGi
(Ai

1)C1 ∪ B,

and NGi
(Ai

2) = C2 ∪B. Since B is non-empty, Ai
2 ∩NGi

2 (Ai
1) is non-empty.

Since NGi

2 (Ai
1) is a clique, NGi

2 (Ai
1) ⊆ (Ai

2∪NGi
(Ai

2))\NGi
(Ai

1) = Ai
2∪C2.

Symmetrically, NGi

2 (Ai
2) ⊆ (Ai

1 ∪NGi
(Ai

1)) \NGi
(Ai

2) = Ai
1 ∪ C1. Suppose

that NGi

3 (Ai
1) is non-empty, and let v ∈ NGi

3 (Ai
1). Then v has a neighbor

in NGi

2 (Ai
1) ⊆ Ai

2 ∪ NGi
(Ai

2), thus v ∈ Ai
2 ∪ NGi

(Ai
2) ∪ NGi

2 (Ai
2) ⊆ Ai

2 ∪

C2 ∪ B ∪ Ai
1 ∪ C1 ⊆ Ai

1 ∪ NGi
(Ai

1) ∪ NGi

2 (Ai
1), a contradiction. Therefore,

NGi

3 (Ai
1) and NGi

3 (Ai
2) are empty, and the lemma holds.

Lemma 4.12. Let Hi = (Gi,Ai) be a 2-strip satisfying the conditions of

Lemma 4.11, and let B, C1, C2, Gi
= be defined as there. Let w be a strictly

positive weight function defined on the vertices of Gi, and let δi
1 = αw(Gi \

(Ai
1∪Ai

2)). Suppose that αw(Gi
=) = δi

1 and that Gi
= is perfect and claw-free.

Then, either Gi
= is the complement of a bipartite graph, or there exists a

mwcc of Gi that is also a mwcc of Gi
=. In particular, αw(Gi) = δi

1.

Proof. Suppose that there is no mwcc of Gi that is also a mwcc of Gi
=.

Then, every mwcc of Gi
= contains a clique C that is not a clique of Gi,

thus, it intersects both Ai
1 and Ai

2 and, since Ai
1 is anticomplete to C2 and

4.6 Computing a mwcc for strips in case (b) 78

Ai
2 is anticomplete to C1, C ⊆ Ai

1 ∪ Ai
2 ∪ B. Since C is a crucial clique of

Gi
= (it has positive weight in a mwcc of Gi

=), C intersects every maximum

weight stable set of Gi
=. In particular, since αw(Gi

=) = αw(Gi \ (Ai
1 ∪Ai

2)),

it intersects every maximum weight stable set of Gi \ (Ai
1 ∪Ai

2). So, there is

a maximum stable set S of Gi \(Ai
1∪Ai

2) such that S ⊆ B, namely, S = {b},

with b ∈ B. Since {b} is also a maximum stable set of Gi
= and w is strictly

positive, b is complete to V (Gi
=)\{b}. Finally, a quasi-line graph containing

a universal vertex is complement bipartite.

If Gi
= is cobipartite, then we can compute the mwcc as we described

before. If it is not again we may simply ignore the edges between the two

extremities of the strip and then compute a mwcc in Gi, which is distance

simplicial w.r.t. each one of the extremities, using Algorithm 3.

Finally we can prove the following theorem for decomposable graphs

Theorem 4.13. Let G(V, E) be a claw-free perfect graph with a weight func-

tion on the vertices w : V → R+ and let G be as in case (ii) of Theorem

4.2. Then we can compute a mwcc of G w.r.t. w in time O(|V (G)|3), using

Algorithm 2.

Proof. From Theorem 3.5, we know that, given the decomposition of G in

strips, we can compute a mwcc of G in time O(
∑k

i=1 pi(|V |) + match(|V |)).

For every 2-strip with extremities in different classes of P and for every

1-strip, from Lemma 4.8 pi(|V |) = O(|V (Gi)|2). For every 2-strip with the

extremities in the same class of P, we first need to check if Gi
= is cobipar-

tite, which takes O(|V (Gi)|+ |E(Gi
=)|), and then we either compute directly

a mwcc of Gi
= or we compute a mwcc of Gi, and in both cases it takes

O(|V (Gi)|2). Finally, for the computation of the mwcc of Gi
•, when needed,

it takes again O(|V (Gi)|2). Then O(
∑k

i=1 pi(|V |)) = O(|V (G)|2) and the

overall complexity Algorithm 2 for the mwcc is O(|V (G)|2+|V (G)|2log|V (G)|)

= O(|V (G)|2log|V (G)|) (using the primal dual algorithm for maximum

weight matching by Gabow [19])). As it takes O(|V (G)|3) to obtain the

decomposition in strips, this is the overall complexity bound of the algo-

rithm.

Chapter 5

A fast algorithm to reduce

proper and homogeneous

pairs of cliques

5.1 Introduction

A pair of vertex-disjoint cliques {K1, K2} is homogeneous if every vertex

that is neither in K1, nor in K2 is either adjacent to all vertices from K1,

or non-adjacent to all of them, and similarly for K2. Homogeneous pairs of

cliques were first defined in the context of bull-free graphs [11], and seem to

play a non-trivial role in combinatorial, structural and polyhedral properties

of claw-free graphs. For instance, a well-known decomposition result by

Chudnovsky and Seymour is as follows:

Theorem 5.1. [8] For every connected claw-free graph G with α(G) ≥ 4, if

G does not admit a 1-join and there is no homogeneous pair of cliques in G,

then either G is a circular interval graph, or G is a composition of linear

interval strips, XX-strips, and antihat strips.

See [8] for the definition of graphs and operations involved in Theorem

5.1: we skip them, since they are of no use here. What is interesting to

us is the fact that homogeneous pairs of cliques are somehow an annoying

structure: as it is written in [8], "There is also a “fuzzy” version of this (i.e.

5.1 Introduction 80

Theorem 5.1), without the hypothesis that there is no homogeneous pair of

cliques in G, but it is quite complicated". (This more complex version of

the theorem is actually given in [9].) A similar situation can be found in the

structure theorem on Berge graphs [7].

In the literature, some effort has been devoted to design reduction tech-

niques to get rid of homogeneous pairs of cliques that are also proper. We

say that a pair of cliques {K1, K2} is proper if each vertex in K1 is neither

complete nor anticomplete to K2, and each vertex in K2 is neither complete

nor anticomplete to K1. Those reduction techniques are designed to preserve

graph invariants, such as chromatic number [25, 24] and stability number

[34], or graph properties, such as the property of a graph of being quasi-line

[5], fuzzy circular interval [35], or even facets of the stable set polytope [15].

The state of the art complexity for recognizing whether a graph G(V, E) has

some proper and homogeneous pairs of cliques is O(|V (G)|2|E(G)|) [24, 38].

In this chapter, we introduce a reduction operation that generalizes and

unifies those different techniques. It essentially replaces a proper and ho-

mogeneous pair of cliques {K1, K2} with another pair of cliques {A1, A2}

that is homogeneous but non-proper. A large number of pairs {A1, A2} can

be used in our reduction, and the choice of a particular pair is done de-

pending on some invariant (or property) we want the reduction to preserve.

Regardless of this choice and of the number of proper and homogeneous

clique of the input graph G, we show that our reduction can be embedded

in a fast algorithm that iteratively replaces a proper and homogeneous pair

of cliques {Ki
1, Ki

2} with a non-proper and homogeneous one {Ai
1, Ai

2}, and

outputs after |E(G)| iterations a graph without proper and homogeneous

pairs of cliques. We stress that the algorithm is not graph-class specific, i.e.

it works with any simple graph in input. Our main result will be then the

following:

Theorem 5.2. Let G(V, E) be a graph. Algorithm 5 builds a sequence of

graphs G = G0, G1, . . . , Gq, with q ≤ |E(G)|, such that Gq has no proper

and homogeneous pairs of cliques, and each Gi, i < q, is obtained from Gi−1

by replacing a proper and homogeneous pair of cliques {Ki
1, Ki

2} with an

homogeneous pair of cliques {Ai
1, Ai

2}. The algorithm can be implemented

5.2 Preliminaries 81

as to run in O(|V (G)|2|E(G)|+
∑q

i=1 p(i))-time, if, for i = 1, . . . , q, it takes

p(i)-time to generate Gi+1[Ai
1 ∪Ai

2], from the knowledge of Gi, Ki
1 and Ki

2.

Combining this theorem with a few results from the literature, we will

show some more facts, among which:

• we can reduce in time O(|V (G)|
5

2 |E(G)|) the coloring problem (resp.

the maximum clique problem) on a graph G(V, E) to the same problem

on a graph G′ without proper and homogeneous pairs of cliques;

• we can reduce in time O(|V (G)|2|E(G)|) the maximum weighted stable

set problem on a graph G(V, E) to the same problem on a graph G′

without proper and homogeneous pairs of cliques.

The remainder of the chapter is organized as follows: in Section 5.2 we

give some definitions and some preliminary results, in Section 5.3 we define

a general algorithm for removing proper and homogeneous pairs of cliques,

in Section 5.4 we show how one can tailor the algorithm in order to preserve

a desired graph invariant or property.

5.2 Preliminaries

Given a simple graph G(V, E), let n = |V (G)| and m = |E(G)|. We recall

that we denote by uv an edge of G, while we denote by {u, v} a pair of

vertices u, v ∈ V . We say that v is universal to u ∈ V if v is adjacent to u

and to every vertex in N(u) \ {v}. Let S ⊂ V , then x /∈ S is complete (resp.

anticomplete) to S in G if S ∩N(x) = S (resp. S ∩N(x) = ∅). Finally a C4

is an induced chordless cycle on four vertices.

Definition 5.3. Let G be a graph and {K1, K2} be a pair of non-empty and

vertex-disjoint cliques. The pair {K1, K2} is homogeneous if each vertex

z 6∈ (K1∪K2) is either complete or anti-complete to K1 and either complete

or anti-complete to K2.

Definition 5.4. Let K be a clique of a graph G and let v /∈ K. v is proper

to K if v is neither complete nor anti-complete to K, and P (K) is the set

of vertices that are proper to K.

5.2 Preliminaries 82

Definition 5.5. Let G be a graph and {K1, K2} be a pair of non-empty and

vertex-disjoint cliques. The pair {K1, K2} is proper if each vertex u ∈ K1

(K2, respectively) is proper to K2 (K1). A pair of vertex-disjoint cliques that

are proper and homogeneous is also called a PH pair.

We skip the simple proof of the following lemma.

Lemma 5.6. Let G be a graph and {K1, K2} be a homogeneous pair of

cliques. Then {K1, K2} is proper if an only if, for each i ∈ {1, 2} and x ∈ Ki,

there exist y1, y2 ∈ Ki (possibly y1 = y2) such that x is non-universal to y1

and y2 is non-universal to x.

In fact, one can show that for each clique Ki of a proper pair {K1, K2}

there always exist two vertices x, y ∈ Ki that are non-universal to each

other. Namely, we have the following (see Lemma 1 in [15]):

Lemma 5.7. Let {K1, K2} be a proper pair of cliques in a graph G. Then

G[K1 ∪K2] contains C4 as an induced subgraph.

Hence, when looking for a PH pair in a graph, one can start from a

pair of vertices that are adjacent and not universal to each other, and then

determine whether they have a PH-embedding, namely:

Definition 5.8. Let u and v be two adjacent vertices of a graph G. We say

that u and v have a PH-embedding if they are not universal to each other,

and there exists a PH pair of cliques {K1, K2} such that u, v ∈ K1. We also

denote by PH(G) the set of pairs of vertices of G that have a PH-embedding.

The next lemma is therefore trivial.

Lemma 5.9. If no pair of vertices of G have a PH-embedding, then G has

no PH pairs of cliques.

Given two adjacent vertices that are non-universal to each other, a sim-

ple algorithm recognizes in O(n2)-time whether they have a PH-embedding.

This routine, which we report below, was independently proposed by King

and Reed [24] and Pietropaoli [38] (see also [35]). Actually King and Reed

designed an algorithm for a slightly different problem: call {K1, K2} a non-

trivial homogeneous (NTH) pair of cliques in G if {K1, K2} is a homogeneous

5.2 Preliminaries 83

pair of cliques in G, and G[K1 ∪K2] has an induced C4. Lemma 5.7 implies

that each PH pair of cliques is a NTH pair of cliques, and one can imme-

diately check that the converse does not always hold. But given a NTH

pair of cliques {K1, K2}, one can obtain a PH pair of cliques H1, H2 with

H1 ⊆ K1, H2 ⊆ K2, by iteratively removing from {K1, K2} vertices that are

non-proper to the opposite clique. Thus, in order to find a NTH pair one

can look for a PH pair: this is exactly what King and Reed do in [24] (see

Section 3).

Algorithm 4 Finding a PH-embedding

Require: A graph G, and a pair of adjacent vertices {u, v} that are not

universal to each other.

Ensure: A PH-embedding {K ′, K} for {u, v}, if any.

1: K ′ := {u, v}; K := P ({u, v});

2: while K is a clique and P (K) 6= K ′ do

3: K ′ := K, K := P (K);

4: end while

5: if K is not a clique then there is no PH-embedding for {u, v}: stop.

6: else P (K) = K ′ and {K, K ′} is a PH-embedding for {u, v}: stop.

Theorem 5.10. [24], [38] It is possible to implement Algorithm 4 as to run

in O(|V (G)|2).

Besides considering pairs of cliques that are proper and homogeneous,

we will also consider pairs of cliques that are homogeneous but non-proper.

This leads to the following definition:

Definition 5.11. Let G be a graph and {A1, A2} be a pair of non-empty

and vertex-disjoint cliques that are not complete to each other. The pair

{A1, A2} is Cfree
4 if G[A1 ∪A2] has no induced C4. A pair of cliques that is

Cfree
4 and homogeneous is also called a Cfree

4 H pair.

It follows from Lemma 5.7 that no pair of Cfree
4 cliques is proper. We

skip the simple proof of the next lemma.

Lemma 5.12. Let G be a graph and {A1, A2} be a pair of non-empty and

vertex-disjoint cliques that are not complete to each other. Then {A1, A2} is

5.2 Preliminaries 84

Cfree
4 if and only if the following holds: if u and v ∈ A1 then u is universal

to v or v is universal to u (note that this property holds if and only if the

same happens with the vertices of A2).

The next lemma analyzes the possible intersections between PH and

Cfree
4 H pairs of cliques.

Lemma 5.13. Let G(V, E) be a graph with a PH pair of cliques {K1, K2}

and a Cfree
4 H pair of cliques {A1, A2}. Then K1 ∩ A2 = K2 ∩ A1 = ∅ or

K1 ∩A1 = K2 ∩A2 = ∅.

Proof. We start with the following:

Claim 5.14. Ki ∩A1 = ∅ or Ki ∩A2 = ∅, for i = 1, 2.

Proof. Without loss of generality, suppose to the contrary that there exist

a ∈ A1 and b ∈ A2 such that a, b ∈ K1. Being K1 proper to K2, there exist

c, d ∈ K2 (possibly non-distinct) such that ad, bc /∈ E. We first show that

c, d /∈ A1 ∪ A2. Note that d /∈ A1 and c /∈ A2. Now suppose that d ∈ A2;

it follows that d 6= c. Since c is adjacent to d and not adjacent to b, and

{A1, A2} is a homogeneous pair, it follows that c ∈ A1. But then a, b, c, d

induce a C4 on G[A1 ∪A2], and therefore neither a is universal to c nor c is

universal to a, which is a contradiction to Lemma 5.12. We get an analogous

contradiction if we assume that c ∈ A1.

So c, d /∈ A1 ∪A2; being ad, bc /∈ E and {A1, A2} a homogeneous pair, c

is anti-complete to A2 and d is anti-complete to A1. Since K2 is a clique, it

follows that K2 ∩ (A1 ∪ A2) = ∅. Since A1 ∪ A2 is not a clique, there exist

a′ ∈ A1, b′ ∈ A2 such that a′b′ /∈ E. Note that da′ /∈ E and that a′ /∈ K2.

We now show that a′ /∈ K1. For, suppose the contrary; then b′ 6= b and

b′ /∈ K1, and so b′ is proper to K1 and therefore belongs to K2, which is a

contradiction, since we already argued that K2 ∩ (A1 ∪A2) = ∅.

Hence a′ /∈ K1 ∪ K2. Since {K1, K2} is a proper pair, there exists a

vertex e ∈ K2 such that ea ∈ E. Since K2 ∩ (A1 ∪ A2) = ∅ and {A1, A2}

is a homogeneous pair, it follows that ea′ ∈ E. On the other hand, we

observed that da′ /∈ E. But then a′ is proper to K2, contradicting a′ /∈ K1.

(End of the claim.)

5.3 An algorithm for removing proper and homogeneous pairs 85

From the claim, we may assume without loss of generality that K1∩A1 =

∅. In this case, the statement follows if K2 ∩ A2 = ∅, so suppose that

there exists v2 ∈ K2 ∩ A2. It again follows from the previous claim that

K2 ∩ A1 6= ∅; hence the statement follows if K1 ∩ A2 = ∅. So suppose

that there exists v1 ∈ K1 ∩ A2; since {K1, K2} is a proper pair, it follows

that v1, v2 ∈ A2 are not universal to each other, a contradiction to Lemma

5.12.

5.3 An algorithm for removing proper and homo-

geneous pairs

We now define an operation of reduction that is crucial. This operation

essentially replaces a PH pair of cliques with a Cfree
4 H pair of cliques. The

latter pair will be defined through a suitable graph that we call, for shortness,

a non-proper 2-clique.

Definition 5.15. A non-proper 2-clique H{A1,A2} is a graph with a Cfree
4

pair of cliques {A1, A2}, such that V (H{A1,A2}) = A1 ∪A2.

Definition 5.16. Let G be a graph with a PH pair of cliques {K1, K2}.

Also let H{A1,A2} be a non-proper 2-clique graph vertex-disjoint from G. The

PH reduction of G with respect to (K1, K2, H{A1,A2}) returns a new graph

G|K1,K2,H{A1,A2}
defined as follows:

• V (G|K1,K2,H{A1,A2}
) = (V (G) \ (K1 ∪K2)) ∪ (A1 ∪A2);

• Let x, y be vertices of G|K1,K2,H{A1,A2}
. The edge xy ∈ E(G|K1,K2,H{A1,A2}

)

if and only if one of the following holds:

– xy ∈ E(G) with x, y /∈ K1 ∪K2;

– xy ∈ E(H{A1,A2}) with x, y ∈ A1 ∪A2;

– y ∈ A1, x /∈ K1 ∪K2 and x is complete to K1;

– y ∈ A2, x /∈ K1 ∪K2 and x is complete to K2.

We skip the trivial proof of the following lemma.

5.3 An algorithm for removing proper and homogeneous pairs 86

Lemma 5.17. The graph G|K1,K2,H{A1,A2}
is such that the following prop-

erties hold:

• {A1, A2} is a Cfree
4 H pair of cliques;

• if x, y ∈ A1 (resp. x, y ∈ A2), then x is universal to y or y is universal

to x;

• if |K1| ≥ |A1| and |K2| ≥ |A2|, then the graph G|K1,K2,H{A1,A2}
can be

built in time O(|V (G)|2) and |V (G|K1,K2,H{A1,A2}
)| ≤ |V (G)|.

The following crucial lemma shows that all the PH pairs of G|K1,K2,H{A1,A2}

are “inherited" by the input graph G.

Lemma 5.18. Let {w1, w2} be a pair of adjacent vertices of G|K1,K2,H{A1,A2}

with a PH-embedding. Then:

1. w1 and w2 do not both belong to A1 ∪A2;

2. if w1, w2 /∈ A1 ∪A2, then {w1, w2} also admits a PH-embedding in G;

3. if w1 ∈ A1 (resp. w1 ∈ A2) and w2 /∈ A1 ∪ A2, then, for each a ∈ K1

(resp. a ∈ K2), {a, w2} admits a PH-embedding in G.

Proof. Throughout the proof, when referring to vertices of G|K1,K2,H{A1,A2}
,

we call artificial the vertices of A1∪A2, and non-artificial the others. More-

over, we let G′ = G|K1,K2,H{A1,A2}
and let {K ′

1, K ′
2} be a PH-embedding for

{w1, w2} in G′.

It follows from Lemma 5.17 that {A1, A2} is a Cfree
4 H pair of cliques of

G′. Therefore it follows from Lemma 5.13 that K ′
1 ∩ A2 = K ′

2 ∩ A1 = ∅

or K ′
1 ∩ A1 = K ′

2 ∩ A2 = ∅. Now suppose that w1, w2 ∈ A1 ∪ A2, and

recall that, by definition, w1, w2 ∈ K ′
1. It follows that either w1, w2 ∈ A1,

or w1, w2 ∈ A2. Thus, there exist two vertices of A1 (resp. A2) that are

non-universal to each other, contradicting Lemma 5.17. Therefore w1 and

w2 do not both belong to A1 ∪A2, i.e. statement 1 holds.

W.l.o.g. in the following we assume that K ′
1 ∩ A2 = K ′

2 ∩ A1 = ∅. Now

define the sets H1, H2 of vertices in G as follows: for i = 1, 2, if K ′
i has no

artificial vertices, define Hi = K ′
i; otherwise Hi = (K ′

i ∩ V (G)) ∪Ki. Note

5.3 An algorithm for removing proper and homogeneous pairs 87

that this implies that H1 ∩ K2 = H2 ∩ K1 = ∅ and that H1 and H2 are

cliques.

Claim 5.19. Let u, v ∈ K ′
1 (respectively K ′

2) be two non-artificial vertices

of G′ such that u is non-universal to v in G′. Then u, v ∈ H1 (respectively

H2) and u is non-universal to v in G.

Proof. We prove the statement for u, v ∈ K ′
1. Since u, v are non-artificial,

u, v ∈ H1 by definition. By hypothesis, there exists z ∈ K ′
2 s.t. uz /∈

E(G′), vz ∈ E(G′). If z is non-artificial, z ∈ H2 by definition, thus u is

non-universal to v in G. Suppose now z is artificial, then z ∈ A2, since

K ′
2 ∩A1 = ∅. Then by construction v is complete and u anticomplete to K2

in G, thus u is non-universal to v in G. (End of the claim.)

Claim 5.20. Let u, v ∈ K ′
1 (respectively K ′

2), and suppose u is artificial and

v is not. Then {v} ∪K1 ⊆ H1 (resp. {v} ∪K2 ⊆ H2). Furthermore:

1. If u is non-universal to v, then a is non-universal to v for each a ∈ K1

(respectively K2).

2. If v is non-universal to u, then v is non-universal to a, for each a ∈ K1

(resp. K2).

Proof. We prove the statement for u, v ∈ K ′
1. We are assuming that

K ′
1 ∩ A2 = ∅, hence u ∈ A1. So by definition, {v} ∪K1 ⊆ H1. Suppose u

is non-universal to v: there exists z ∈ K ′
2 s.t. uz /∈ E(G′), vz ∈ E(G′). If

z is an artificial vertex, then z ∈ A2, which implies that v is complete to

K2, while each vertex a ∈ K1 is proper to K2. If z is non-artificial, then

by construction z is anticomplete to K1 while vz ∈ E(G). This shows 1.

Now suppose that v is non-universal to u, i.e. there exists z ∈ K ′
2 such

that uz ∈ E(G′), vz /∈ E(G′). If z is an artificial vertex, then K2 ⊆ H2

and v is anticomplete to K2; since each vertex a ∈ K1 is proper to K2, v

is non-universal to a. If z is non-artificial, then z is complete to K1 in G,

while zv /∈ E(G); thus, v is non-universal to a ∈ K1.(End of the claim.)

Claim 5.21. {H1, H2} is a PH pair of cliques in G.

5.3 An algorithm for removing proper and homogeneous pairs 88

Proof. We already observed that H1 and H2 are cliques, and it is straight-

forward to see that {H1, H2} is a homogeneous pair. So we conclude the

proof by showing that H1 is proper to H2 (the other case following by sym-

metry).

We need to show that each vertex x ∈ H1 has at least one neighbor and

at least one non-neighbor in H2. Recall that x /∈ K2. Suppose first that

x ∈ K1; then by construction K1 ⊆ H1 and K ′
1 has at least one artificial

vertex, say a. Since {K ′
1, K ′

2} is a proper pair, it follows from Lemma 5.6

that there exist a vertex t1 ∈ K ′
1 to which a is non-universal, and a vertex

t2 ∈ K ′
1 which is non-universal to a. If t1 or t2 is artificial, then K ′

2 intersects

A2 (recall that a, t1, t2 ∈ A1 have the same neighborhood outside K ′
2) and

consequently, by construction, K2 ⊆ H2; then the statement follows since

{K1, K2} is a proper pair of cliques. Conversely, if both t1 and t2 are non-

artificial, then, using Claim 5.20, we conclude that in G x is non-universal

to t1 and that t2 is non-universal to x, and therefore x has at least one

neighbor and at least one non-neighbor in H2.

Suppose now x /∈ K1: then, x is a non-artificial vertex of K ′
1, and since

{K ′
1, K ′

2} is proper, it follows again from Lemma 5.6 that there exist a vertex

t1 ∈ K ′
1 to which x is non-universal, and a vertex t2 ∈ K ′

1 which is non-

universal to x. If both t1 and t2 are non-artificial, then also in G we have

that x is non-universal to t1 and t2 is non-universal to x. If t1 or t2 is

artificial, then thanks to Claim 5.20, we may suitably replace t1 or t2 with

vertices from K1 as to get the same conclusion. (End of the claim.)

We conclude the proof of the lemma: part 2 holds by Claims 5.19 and

5.21, while part 3 holds by Claims 5.20 and 5.21.

As we show in the following, if we iterate the reduction of Definition

5.16, we end up, in at most |E(G)| steps, with a graph without PH pairs

of cliques. We first need a definition and a simple lemma, going along the

same lines of Definition 5.16 and Lemma 5.18. For a graph G, we denote by
(V (G)

2

)

the set of unordered pairs of vertices of V (G).

Definition 5.22. Let G and G′ := G|K1,K2,H{A1,A2}
be as in Definition 5.16,

and let S ⊆
(V (G)

2

)

. The set S|K1,K2,H{A1,A2}
⊆

(V (G′)
2

)

is the set of pairs

5.3 An algorithm for removing proper and homogeneous pairs 89

{x, y} such that one of the following hold:

• {x, y} ∈ S and x, y /∈ A1 ∪A2;

• x ∈ A1, y /∈ A1 ∪A2 and {{a, y} | a ∈ K1} ⊆ S;

• y ∈ A2, x /∈ A1 ∪A2 such that {{x, a} | a ∈ K2} ⊆ S.

Corollary 5.23. Let G, G′ := G|K1,K2,H{A1,A2}
, S and S′ := S|K1,K2,H{A1,A2}

be as in Definition 5.16 and Definition 5.22.

(i) If S is a superset of PH(G), then S′ is a superset of PH(G′).

(ii) If |K1| ≥ |A1| and |K2| ≥ |A2|, then |S′| < |S| and S′ can be built

from S in time O(|V (G)|2).

Proof. (i) Pick any pair {w1, w2} of vertices of G′ which admit a PH-

embedding in G′: by part (1) of Lemma 5.18, they cannot both belong to

A1 ∪A2. Suppose that w1, w2 /∈ A1 ∪A2. Then, by part (2) of Lemma 5.18,

{w1, w2} also have a PH-embedding in G and thus {w1, w2} ∈ S. Then, by

construction, {w1, w2} ∈ S′. Now, suppose that exactly one of them belongs

to A1 ∪ A2, w.l.o.g. w1, and let first w1 ∈ A1; then by part (3) of Lemma

5.18, for each a ∈ K1, {a, w2} is a pair of vertices with a PH-embedding in G,

i.e. {{a, w2}, a ∈ K1} ⊆ PH(G) ⊆ S. Then, by construction, {w1, w2} ∈ S′.

A similar argument works for w1 ∈ A2. (ii) The statements holds easily by

construction.

We are now ready to give our algorithm, see Algorithm 5 in the following.

Note that it is fully determined, but for the choice of the non-proper 2-

clique graph H{Ai
1
,Ai

2
} to be used in each iteration i. In fact, the definition

of H{Ai
1
,Ai

2
} will in general depend on Gi, Ki

1 and Ki
2: this will be discussed

in the next section. Given our previous arguments, it is easy to conclude

that Theorem 5.2 correctly predicts the output and the time complexity of

Algorithm 5: we skip details.

Let us remark here that in Algorithm 5 we start with a set S0 = E(G),

since we assumed no prior knowledge is available on the pair of vertices

of G that are candidate to have a PH-embedding. For specific graphs we

5.4 Preserving some graph invariant or property 90

may have a better knowledge of those, and consequently start from a set S0

smaller in size. This may lead to asymptotically faster implementations of

Algorithm 5.

Algorithm 5 Eliminating all proper and homogeneous pairs of cliques

Require: A graph G.

Ensure: A graph Gq, without PH pairs of cliques, that is obtained from G

by successive PH reductions.

1: i := 0; G0 := G; S0 := E(G);

2: while Si is non-empty do

3: pick a pair {u, v} ∈ Si;

4: using Algorithm 4 check whether the pair {u, v} ∈ Si has a PH-

embedding in Gi;

5: if u, v have a PH-embedding {Ki
1, Ki

2} then

6: let H{Ai
1
,Ai

2
} be a non-proper 2-clique graph vertex-disjoint from

V (G0)∪ V (G1)∪ . . .∪ V (Gi) and such that |Ki
1| ≥ |A

i
1| and |Ki

2| ≥

|Ai
2|;

7: Gi+1 := Gi|Ki
1
,Ki

2
,H

{Ai
1

,Ai
2

}
(see Definition 5.16);

8: Si+1 := Si|Ki
1
,Ki

2
,H

{Ai
1

,Ai
2

}
(see Definition 5.22);

9: i := i + 1;

10: else

11: remove the pair {u, v} from Si;

12: end if

13: end while

14: q := i.

15: return Gq.

5.4 Preserving some graph invariant or property

In this section, we show that suitable PH reductions preserve graph invari-

ants, such as chromatic number, stability number, and clique number, or

graph properties, such as perfection, or the property of a graph of being

fuzzy circular interval. Most of these reductions were in fact proposed in

the literature in specific contexts, but they can actually be embedded in the

5.4 Preserving some graph invariant or property 91

unifying setting of PH reductions.

In some cases [15, 25, 24, 35] the reductions that were used have the

following form: take a PH pair of cliques {K1, K2} and remove some suitable

set of edges between vertices of K1 and vertices of K2 so that, in particular, in

the resulting graph, no C4 is contained in the subgraph induced by K1∪K2.

In another case [34] the reduction has the following form: take a PH pair

of cliques {K1, K2} and add all possible edges between vertices of K1 and

vertices of K2 but one. It is easy to show that all those types of reductions

can be interpreted in terms of our PH reduction, so we skip such details

when presenting them. Therefore, they can be embedded into the iterative

framework of Algorithm 5, and one may rely on the complexity bound given

by Theorem 5.2.

We begin with a reduction introduced by King and Reed [25, 24] for re-

moving edges in a PH pair of cliques while preserving the chromatic number.

Recall that χ(G) denotes the chromatic, χf (G) the fractional, and ω(G) the

clique number of a graph G.

Lemma 5.24. [25] Let G be a graph and suppose that we are given a PH pair

of cliques {K1, K2} of G. Also, let X be a maximum clique in G[K1 ∪K2],

and let G′ be the graph obtained from G by removing each edge uv ∈ E(G)

such that: u ∈ K1; v ∈ K2; {u, v} 6⊆ X. Then:

(i) G′ can be built in time O(|V (G)|
5

2) (from the knowledge of G, K1 and

K2);

(ii) χ(G) = χ(G′), χf (G) = χf (G′) and each k-coloring of G′ can be

extended into a k-coloring of G of in time O(|V (G)|
5

2).

(iii) ω(G) = ω(G′), and each clique of G′ is also a clique of G.

(iv) If G is claw-free (resp. quasi-line; perfect), then G′ is claw-free (resp.

quasi-line; perfect).

(One should mention that Lemma 5.24 can be extended to the case where

{K1, K2} is a nonskeletal and homogeneous pair of cliques [25]. Also, An-

drew King [26] pointed us that this lemma is non-trivially implied by some

5.4 Preserving some graph invariant or property 92

proofs in [5]. In that paper, Chudnovsky and Ovetsky introduce another re-

duction for PH pairs of cliques, which is quite similar to the one above. This

reduction preserves quasi-liness, while not increasing the clique number of

G. It is a simple exercise to show that the reduction in [5] can be interpreted

in terms of our PH reduction. Finally, we mention that proposition (iii) of

Lemma 5.24 is not stated in [25], but it is almost straightforward.)

By embedding the reduction above in the iterative framework of Al-

gorithm 5, we can reduce the problem of computing the chromatic (resp.

clique) number on a given graph G to the same problem on a graph G′

without PH pairs of cliques.

Corollary 5.25. From a graph G one can obtain in time O(|V (G)|
5

2 |E(G)|)

a graph G′ without PH pairs of cliques such that χ(G) = χ(G′) and ω(G) =

ω(G′). One can also derive an optimal coloring of G from an optimal color-

ing in G′ in time O(|V (G)|
5

2 |E(G)|), while a maximum clique in G′ is also

a maximum clique in G.

As argued by Li and Zang [28], the maximum weighted clique problem

in the complement of a bipartite graph can be reduced to maximum flow,

and hence solved in time O(n3). By building on the latter fact (and slightly

increasing the complexity), Corollary 5.25 can be extended to the computa-

tion of a graph G′ without PH cliques that preserves the maximum weighted

clique and its value.

Consider now the maximum weighted stable set problem. Oriolo, Pie-

tropaoli, and Stauffer [34] provide a reduction that preserves the value of

a maximum weighted stable set. (We refer to [34] for more details and for

the precise definition of the reduction, which is actually stated for the more

general class of semi-homogeneous pairs of cliques.) By embedding their

reduction in Algorithm 5, we obtain the following lemma:

Corollary 5.26. Let G(V, E) be a graph with a weight function w : V 7→ R

defined on its vertices. In time O(|V (G)|2|E(G)|) one can build a graph G′

without PH pairs of cliques such that a maximum weighted stable set of G′

is also a maximum weighted stable set of G.

5.4 Preserving some graph invariant or property 93

Interestingly, if we now move from the maximum weighted stable set

problem to the stable set polytope ST AB(G) of a graph G, we can also

embed a result in [15] in our framework. Eisenbrand et al. show – see the

remark following Lemma 5 in [15] – that each facet of the stable set polytope

ST AB(G) is also a facet of another graph G′ (obtained from G by removing

edges) that does not contain any PH pair of cliques. As one easily checks

(cfr. the proof of Lemma 5 in [15]), also their result can be phrased in the

framework of Algorithm 5.

We now move from graph invariants to graph properties. First, Oriolo,

Pietropaoli, and Stauffer [35] show that a suitable reduction of PH pairs

of cliques preserves the property of a graph of being, or not being, a fuzzy

circular interval graph, and they exploit this fact in an algorithm for recog-

nizing fuzzy circular interval graphs. Their reduction can also be embedded

in our framework. In fact, Theorem 5.2 is already used in [35] for bounding

the complexity of the recognition algorithm. Finally, every PH reduction

preserves perfection, and under very general conditions it does not turn a

non-perfect graph into a perfect one. We give just a sketch of the proof of

the latter fact, since the arguments used are quite standard.

Lemma 5.27. Let G be a perfect graph with a PH pair of cliques {K1, K2}.

Also let H{A1,A2} be a non-proper 2-clique graph vertex-disjoint from G.

Then the graph G|K1,K2,H{A1,A2}
is perfect. The converse implication holds

true if A1 is not anticomplete to A2.

Proof. Recall that a graph is perfect if and only if it contains neither odd

holes, nor odd antiholes [7]. Let {Q1, Q2} be a homogeneous pair of cliques

in a graph G: it is easy to show that each odd hole (resp. each odd antihole)

of G takes at most one vertex from Q1 and at most one vertex from Q2.

Suppose first that G′ = G|K1,K2,H{A1,A2}
is not perfect, i.e. there is an

induced subgraph H ′ of G′ that is either a odd hole or an odd antihole. By

building on the fact that |V (H ′) ∩ A1| ≤ 1 and |V (H ′) ∩ A2| ≤ 1, one can

easily construct an odd hole (resp. an odd antihole) of G from H ′, thus

showing that G is not perfect as well. Let now A1 be not anticomplete to

5.4 Preserving some graph invariant or property 94

A2 in G′; then, one can analogously show that if G is not perfect, neither is

G′.

We conclude by pointing out that, with the exception of the reduction

from Lemma 5.24 (since X ⊆ K1 or X ⊆ K2 may happen), all the reductions

from the current section do not turn an imperfect graph into a perfect one.

Conclusions

In this thesis we mainly studied some combinatorial algorithms for the min-

imum clique cover (unweighted and weighted) in perfect graphs. Here we

want to give an outlook on the possible future directions of research in this

topic.

In Chapter 2 we have presented a combinatorial algorithm for the mcc

problem on claw-free perfect graphs which relies on the solution of a suitable

instance of the 2-SAT problem. We observe here that when we solve such

an instance of the 2-SAT problem (or we conclude that the instance is not

satisfiable and we find an augmenting path), we are actually asking for an

integer feasible solution of the following linear system of inequalities (here

S is the current stable set):

xvs ≥ 1 for every free vertex v with s ∈ N(v) ∩ S

xus + xvs ≤ 1 for every s ∈ S and u, v ∈ N(s), uv /∈ E

xus1
+ xus2

≥ 1 for every bound vertex u with {s1, s2} = N(u) ∩ S

where the variable xvs for s ∈ S and v ∈ V \ S represents how much v

is covered from s. An interesting consequence of this observation is that we

use the 2-SAT algorithm to test integer feasibility of the previous system,

and maybe more efficient techniques can be applied. Moreover it is easy to

observe that if there are no free vertices the solution where each variable has

value 1
2 is always a fractional feasible solution of the previous system, thus

we can give very easily a trivial solution to the mcc problem on claw-free

perfect graphs.

For the mwcc problem on perfect graphs in Chapter 3 we have presented

an algorithmic theorem for perfect graphs that are composition of strips

Conclusions 96

and we have described an application of this theorem to claw-free graphs in

Chapter 4. Nevertheless it would be interesting to look for other applications

of Theorem 3.5 on subclasses of strip-composed perfect graphs (that are not

subclasses of claw-free graphs) where the mwcc is easy to compute. In

this way, thanks to the machinery presented in Chapter 3 and following the

same steps we did for the claw-free case in Chapter 4, one could obtain a

polynomial algorithm for the mwcc on those graph classes.

Finally Chapter 4 leaves the following open question: can we find a poly-

nomial time combinatorial algorithm for the mwcc which is more efficient

than the algorithm of Hsu and Nemhauser and that can handle a general

(i.e. not only strip-composed) claw-free perfect graph? We claim that the

answer is yes if we can efficiently find an integer feasible solution of the

following system of linear inequalities (or conclude that there is no solution

and thus find a weighted augmenting path):

xvs ≥ w(v) for every free vertex v with s ∈ N(v) ∩ S

xus + xvs ≤ w(s) for every s ∈ S and u, v ∈ N(s), uv /∈ E

xus1
+ xus2

≥ w(u) for every bound vertex u with {s1, s2} = N(u) ∩ S

where again the variable xvs for s ∈ S and v ∈ V \S represents how much

v is covered from s. In fact, suppose we have a solution of such a system

and let us fix a vertex s ∈ S: we define in G[N [s]] a new weight function

w′
s(s) = w(s) and w′

s(v) = xvs for every v ∈ N(s). As G[N [s]] is cobipartite

we can find a mwcc w.r.t. to the weight function w′
s in polynomial time

(see the algorithm for graphs that are distance simplicial w.r.t to a clique in

Section 4.5), let ys be such a mwcc. Then it is easy to see that y =
⋃

s∈S ys

is a mwcc of G.

We believe that testing (integer) feasibility in the previous system of lin-

ear inequalities can be done in polynomial time with a tecnhique that again

produces an auxiliary directed graph, as in the unweighted case. There are

non trivial details to be developed regarding how to obtain an augmenting

path from a non feasible system and how to make a polynomial number of

iterations of this sketched algorithm.

Acknowledgments

This thesis is the outcome of a three years research period mainly spend

at the University of Rome “Tor Vergata”. In these three years I had the

opportunity to meet a lot of friendly and inspiring people.

First of all I would like to thank Gianpaolo and Flavia. I have met Gian-

paolo in 2005, when he was teaching a course on graph theory and network

flows. Before that course, mathematics for me was mostly represented by

functions, derivatives, integrals, and all this stuff that people teaching to en-

gineers love. Any other form of mathematics was mostly a game: Gianpaolo

showed me that behind such a game there was a charming and rigorous

structure, and I think this is something he continues to teach me every day.

I met Flavia when I was working on my master thesis in 2008. I hope that

in all this time spent working together I have managed to catch at least a

small fraction of her energy and enthusiast approach to graph theory. She

is a coauthor of all the research work presented in this thesis except for

Chapter 5, and she is also the author of the intricate pictures of Chapter 3.

One of the best experiences of this research period has been the Spring

School on Graph Theory held in May 2010 in Montreal. There I finally gave

a face to the “famous” Maria Chudnovsky and Paul Seymour. I am really

thankful to them for all the time and effort they have spent to try to explain

in clear and simple words the massive work they have made on the structure

of perfect graphs, claw-free graphs and bull-free graphs.

These three years of work would have never been the same without all

the room mates of the Ph.D. room, both for scientific discussion and for fun.

Thus I would like to thank Yuri (Faenza, which is a coauthor of the work

presented in Chapter 5), Laura and her incomprehensions with the laptop,

Acknowledgments 98

Enrico and his sister on the phone, Marco and his teletubbies jumpers,

Gianmaria “non se po fa un discorso serio”, Simone, Matteo, Arianna and

Irene. Moreover I would like to thank all the other people of the Operations

Research group: Andrea, Sara and Veronica.

Finally I would like to thank my mother and my father for giving me the

inspiration for research. Since I remember they brought me to conferences,

workshops and laboratories all around the world: I had no idea of the work

behind this, but it looked good!

Last but not least I would like to thank Michele: you have been my

first and best supporter, understanding my frustrations and encouraging

my successes. For all the rest you know, this is just the beginning of a very

challenging adventure.

Bibliography

[1] B. Aspvall, M.F. Plass, and R.E. Tarjan "A linear-time algorithm for

testing the truth of certain quantified boolean formulas", Information

Processing Letters 8, 121-123, (1979).

[2] L.W. Beineke "Characterizations of derived graphs", Journal of Combi-

natorial Theory 9, 129-135, (1970).

[3] C. Berge "Les problemès de coloration en théorie de graphes", Pubbli-

cations de l’Institut de Statistique de l’Université de Paris 9, 123-160,

(1960).

[4] C. Berge "Some classes of perfect graphs", in Six papers on Graph The-

ory, Research and Training School, Indian Statistical Institute, Calcutta,

1-21, (1963).

[5] M. Chudnovsky, and A. Ovetsky "Coloring quasi-line graphs", Journal

of Graph Theory 54, 41-50, (2007).

[6] M. Chudnovsky, and M. Plumettaz "The Structure of Claw-Free Perfect

Graphs", submitted for pubblication, (2011).

[7] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas "The Strong

Perfect Graph Theorem", Annals of Mathematics 164, 51-229, (2006).

[8] M. Chudnovsky, and P. Seymour "The Structure of Claw-free Graphs",

Surveys in Combinatorics 2005, London Mathematical Society Lecture

Note Series 327, 153-171, (2005).

BIBLIOGRAPHY 100

[9] M. Chudnovsky, and P. Seymour "Claw free Graphs V. Global structure",

Journal of Combinatorial Theory, Series B 98, 1373-1410, (2008).

[10] M. Chudnovsky, and P. Seymour "Claw-free Graphs VII. Quasi-line

graphs", to appear in Journal of Combinatorial Theory, Series B.

[11] V. Chvátal, and N. Sbihi "Bull-free Berge graphs are perfect", Graphs

and Combinatorics 3, 127-139, (1987).

[12] V. Chvátal, and N. Sbihi "Recognizing claw-free Berge graphs", Journal

of Combinatorial Theory, Series B 44, 154-176,(1988).

[13] J. Edmonds "Paths, trees and flowers", Canadian Journal of Mathemat-

ics 17, 449-467, (1965).

[14] J. Edmonds "Maximum matching an a polyhedron with 0,1-vertices"

Journal of Research National Bureau of Standards Section B 69, 67-72,

(1965).

[15] F. Eisenbrand, G. Oriolo, G. Stauffer and P. Ventura "Circular One

Matrices and the Stable Set Polytope of Quasi-Line Graphs", Combina-

torica 28(1), 45-67, (2008).

[16] Y. Faenza, G. Oriolo and C. Snels "A fast algorithm to remove proper

and homogeneous pairs of cliques (while preserving some graph invari-

ants)", Operations Research Letters 39(3), 213-217, (2011).

[17] Y. Faenza, G. Oriolo and G. Stauffer "An algorithmic decomposition of

claw-free graphs leading to an O(n3)-algorithm for the weighted stable

set problem", Proceedings of the XXII Annual ACM-SIAM Symposium

On Discrete Algorithms, (2010).

[18] D.R. Fulkerson "On the perfect graph theorem", Mathematical Pro-

gramming, 69-76, (1973).

[19] H.N. Gabow "Data structures for weighted matching and nearest com-

mon ancestor with linking", Proceeding of the First Annual ACM-SIAM

Symposium on Discrete Algorithms, 321-325, (1990).

BIBLIOGRAPHY 101

[20] M.R. Garey, D.S. Johnson "Computers and Intractability: A Guide to

the Theory of NP-completeness", W.H. Freeman, (1979).

[21] M. Groetschel, L. Lovász and A. Schrijver "Geometric Algorithms and

Combinatorial Optimization", Springer, Berlin, (1988).

[22] W.L. Hsu, and G.L. Nemhauser "Algorithms for minimum covering

by cliques and maximum clique in claw-free perfect graphs", Discrete

Mathematics 37 (2-3), 181-191, (1980)

[23] W.L. Hsu, and G.L. Nemhauser "Algorithms for maximum weight

cliques, minimum weighted clique covers and cardinality colorings of

claw-free perfect graphs", Annals of Discrete Mathematics 21, 317-329,

(1984)

[24] A.D. King, and B.A. Reed "Bounding χ in Terms of ω and ∆ for Quasi-

Line Graphs", Journal of Graph Theory 59, 215-228, (2008).

[25] A.D. King "Claw-free graphs and two conjectures on ω, ∆ and χ" PhD

Thesis, Mc Gill University, Montreal, (2009).

[26] A.D. King, Personal Communication, (2010).

[27] J. Krausz "Démonstration nouvelle d’un théorème de Whitney sur les

réseaux", Mat. Fix. Lapok 50, 75-85, (1943).

[28] X. Li, and W. Zang "A Combinatorial Algorithm for Minimum

Weighted Colorings of Claw-Free Perfect Graphs", Journal of Combi-

natorial Optimization 9, 331-347, (2005).

[29] L. Lovász "Normal hypergraphs and the perfect graph conjecture", Dis-

crete Mathematics 2, 253-267, (1972).

[30] F. Maffray, and B. Reed "A description of claw-free perfect graphs",

Journal of Combinatorial Theory, Series B 75, 134-156, (1999).

[31] G.J. Minty "On maximal independent sets of vertices in claw-free

graphs", Journal of Combinatorial Theory, Series B 28, 284-304, (1980).

BIBLIOGRAPHY 102

[32] D. Nakamura, and A. Tamura "A revision of Minty’s algorithm for

finding a maximum weighted stable set of a claw-free graph", Journal of

the Operations Research Society of Japan 44, 194-204, (2001).

[33] P. Nobili, and A. Sassano "A reduction algorithm for the weighted stable

set problem in claw-free graphs", In L. Adacher, M. Flamini, G. Leo,

G. Nicosia, A. Pacifici, and V. Piccialli, editors, Proc. 10th CTW, 223-

226, (2011).

[34] G. Oriolo, U. Pietropaoli, and G. Stauffer "A new algorithm for the max-

imum weighted stable set problem in claw-free graphs" In A. Lodi, A.

Panconesi and G. Rinaldi, editors, Proceedings Thirteenth IPCO Con-

ference, 77-96, (2008).

[35] G. Oriolo, U. Pietropaoli, and G. Stauffer "On the Recognition of Fuzzy

Circular Interval Graphs", Submitted Manuscript, (2010).

[36] K.R. Parthasarathy, and G. Ravindra "The strong perfect graph con-

jecture is true for K1,3-free graphs", Journal of Combinatorial Theory,

Series B 21, 212-223,(1976).

[37] J. Petersen "Die Theorie der regulären graphs", Acta Mathematica 15,

193-220, (1891).

[38] U. Pietropaoli "Some classical combinatorial problems on circulant and

claw-free graphs" PhD Thesis, Università di Roma La Sapienza, 2008.

An extended abstract appeared in 4OR 7(3), 297-300, (2009).

[39] N. Sbihi, "Algorithme de recherche d’un stable de cardinalité maximum

dans un graphe sans étoile", Discrete Mathematics 29, 53-76, (1980).

[40] A. Schrijver "Theory of Linear and Integer Programming", Wiley, New

York, (1986).

[41] A. Schrijver "Combinatorial optimization. Polyhedra and efficiency (3

volumes)", Algorithms and Combinatorics 24. Berlin: Springer, (2003).

[42] R.E. Tarjan "Depth first search and linear graph algorithms", SIAM

Journal Computing 1(2), 146-160, (1972).

BIBLIOGRAPHY 103

[43] L.E. Trotter "Line perfect graphs", Mathematical Programming 12, 255-

259, (1977).

[44] D.B. West "Introduction to graph theory", Pearson Education, (2001).

