110 research outputs found

    Comparative study of healthcare messaging standards for interoperability in ehealth systems

    Get PDF
    Advances in the information and communication technology have created the field of "health informatics," which amalgamates healthcare, information technology and business. The use of information systems in healthcare organisations dates back to 1960s, however the use of technology for healthcare records, referred to as Electronic Medical Records (EMR), management has surged since 1990’s (Net-Health, 2017) due to advancements the internet and web technologies. Electronic Medical Records (EMR) and sometimes referred to as Personal Health Record (PHR) contains the patient’s medical history, allergy information, immunisation status, medication, radiology images and other medically related billing information that is relevant. There are a number of benefits for healthcare industry when sharing these data recorded in EMR and PHR systems between medical institutions (AbuKhousa et al., 2012). These benefits include convenience for patients and clinicians, cost-effective healthcare solutions, high quality of care, resolving the resource shortage and collecting a large volume of data for research and educational needs. My Health Record (MyHR) is a major project funded by the Australian government, which aims to have all data relating to health of the Australian population stored in digital format, allowing clinicians to have access to patient data at the point of care. Prior to 2015, MyHR was known as Personally Controlled Electronic Health Record (PCEHR). Though the Australian government took consistent initiatives there is a significant delay (Pearce and Haikerwal, 2010) in implementing eHealth projects and related services. While this delay is caused by many factors, interoperability is identified as the main problem (Benson and Grieve, 2016c) which is resisting this project delivery. To discover the current interoperability challenges in the Australian healthcare industry, this comparative study is conducted on Health Level 7 (HL7) messaging models such as HL7 V2, V3 and FHIR (Fast Healthcare Interoperability Resources). In this study, interoperability, security and privacy are main elements compared. In addition, a case study conducted in the NSW Hospitals to understand the popularity in usage of health messaging standards was utilised to understand the extent of use of messaging standards in healthcare sector. Predominantly, the project used the comparative study method on different HL7 (Health Level Seven) messages and derived the right messaging standard which is suitable to cover the interoperability, security and privacy requirements of electronic health record. The issues related to practical implementations, change over and training requirements for healthcare professionals are also discussed

    A Two-Level Identity Model To Support Interoperability of Identity Information in Electronic Health Record Systems.

    Get PDF
    The sharing and retrieval of health information for an electronic health record (EHR) across distributed systems involves a range of identified entities that are possible subjects of documentation (e.g., specimen, clinical analyser). Contemporary EHR specifications limit the types of entities that can be the subject of a record to health professionals and patients, thus limiting the use of two level models in healthcare information systems that contribute information to the EHR. The literature describes several information modelling approaches for EHRs, including so called “two level models”. These models differ in the amount of structure imposed on the information to be recorded, but they generally require the health documentation process for the EHR to focus exclusively on the patient as the subject of care and this definition is often a fixed one. In this thesis, the author introduces a new identity modelling approach to create a generalised reference model for sharing archetype-constrained identity information between diverse identity domains, models and services, while permitting reuse of published standard-based archetypes. The author evaluates its use for expressing the major types of existing demographic reference models in an extensible way, and show its application for standards-compliant two-level modelling alongside heterogeneous demographics models. This thesis demonstrates how the two-level modelling approach that is used for EHRs could be adapted and reapplied to provide a highly-flexible and expressive means for representing subjects of information in allied health settings that support the healthcare process, such as the laboratory domain. By relying on the two level modelling approach for representing identity, the proposed design facilitates cross-referencing and disambiguation of certain demographics standards and information models. The work also demonstrates how it can also be used to represent additional clinical identified entities such as specimen and order as subjects of clinical documentation

    An Interoperable Clinical Cardiology Electronic Health Record System - a standards based approach for Clinical Practice and Research with Data Reuse

    Get PDF
    Currently in hospitals, several information systems manage, very often autonomously, the patient’s personal, clinical and diagnostic data. This originates a clinical information management system consisting of a myriad of independent subsystems which, although efficient in their specific purpose, make the integration of the whole system very difficult and limit the use of clinical data, especially as regards the reuse of these data for research purposes. Mainly for these reasons, the management of the Genoese ASL3 decided to commission the University of Genoa to set up a medical record system that could be easily integrated with the rest of the information system already present, but which offered solid interoperability features, and which could support the research skills of hospital health workers. My PhD work aimed to develop an electronic health record system for a cardiology ward, obtaining a prototype which is functional and usable in a hospital ward. The choice of cardiology was due to the wide availability of the staff of the cardiology department to support me in the development and in the test phase. The resulting medical record system has been designed “ab initio” to be fully integrated into the hospital information system and to exchange data with the regional health information infrastructure. In order to achieve interoperability the system is based on the Health Level Seven standards for exchanging information between medical information systems. These standards are widely deployed and allow for the exchange of information in several functional domains. Specific decision support sections for particular aspects of the clinical life were also included. The data collected by this system were the basis for examples of secondary use for the development of two models based on machine learning algorithms. The first model allows to predict mortality in patients with heart failure within 6 months from their admission, and the second is focused on the discrimination between heart failure versus chronic ischemic heart disease in the elderly population, which is the widest population section served by the cardiological ward

    A unified quality measure engine for the Philips HealthSuite digital platform

    Get PDF

    Web application of physiological data based on FHIR

    Get PDF
    This paper works toward implementing a prototype demonstrating some of the capabilities of the FHIR specification. The specification requires a clear understanding of its different components in order to be successfully implemented, therefore the primary concern of this work is to understand and analyse FHIR’s concepts. The research conducted in this work revealed that FHIR is a well-designed specification, based on a powerful data model and technologies. Therefore, it sould help solving the interoperability issues of the healthcare eco-system. It has also been pointed that since FHIR is a recent standard, many of its uses and benefits are still to be discovered. Moreover, FHIR integrates well in the current health information technology context since it can be used in addition to existing standards

    Antibiotic resistance information exchanges : interim guidance

    Get PDF
    Antibiotic resistance (AR) is a major clinical and public health threat with potential to unravel more than half a century of human health advances offered by modern medical care. Unfortunately, modern healthcare delivery is notably contributory to the spread of antibiotic-resistant organisms, as patients who have become colonized with resistant organisms often receive care across multiple healthcare settings (e.g., ambulatory care, acute care hospitals (ACHs), and various long-term care (LTC) settings, including long-term acute care hospitals (LTACHs) and skilled nursing facilities (SNFs)).Although the threat of antibiotic-resistant organism transmission from a colonized patient to physically proximate patients remains for the duration of colonization, the lack of information sharing between healthcare facilities often results in the colonized status of a patient being unknown to a receiving or admitting facility. When this occurs, the appropriate infection control precautions are less likely to be used from the start of patient care, which increases the likelihood that resistant organisms will spread to other patients.The need for improved AR situational awareness is a major challenge to the U.S. Centers for Disease Control and Prevention\u2019s (CDC\u2019s) strategy to contain the most threatening forms of resistance and the genes responsible for such phenotypes. To fulfill their central role in implementing the CDC\u2019s containment strategy, some state health departments have developed systems (Multidrug-Resistant Organism (MDRO) Registries or MDRO Alert Systems, referred to herein as AR Information Exchanges (ARIEs)) that track patients previously colonized or infected with specific MDROs and then alert healthcare providers when these patients are admitted to a facility. The term AR Information Exchange emphasizes the importance of multidirectional information flow amongst healthcare facilities and public health authorities, as opposed to unidirectional data collection and storage.This interim guidance is intended for operational use by individuals and organizations responsible for developing or enhancing an ARIE; however, it does not constitute legal advice. Public health agencies should follow applicable laws, statues, and/or regulations when developing ARIEs with questions about directed to the entity\u2019s legal counsel.CS 324851-AARIE-Interim-Guidance-508.pdf20211158
    • …
    corecore