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ABSTRACT
Technological advancements in healthcare are continuously improving the quality of life.
Despite all technological innovations, many clinical systems and departments still operate
independently, making it challenging to process and exchange the diversity of registered
clinical information unambiguously. The recent growth of digital health initiatives and the
Covid-19 pandemic of 2020 strengthens the value of data interoperability in healthcare to
connect diverse software applications and information systems across different healthcare
providers. The lack of data interoperability in various healthcare environments implies that
leading healthcare organizations have to put a lot of effort into taking full advantage of the
data-intensive culture without losing the meaning of the information, ultimately resulting
in loss-making integration projects. This research highlights the need for standardization
in healthcare.
We aim to propose a scalable software solution applicable in a multi-institutional health-
care environment, reducing implementation burden and improving integration project
profitability. The developed solution focuses mainly on the extraction of cardiovascular in-
formation from diverse Electronic Health Record (EHR) platforms across Belgian (Flanders)
and Dutch healthcare organizations. To avoid losing affinity with healthcare’s realistic com-
plexity, we designed a software architecture and a prototype in collaboration with a Belgian
medical institution acting as a vendor-specific EHR reference site. The proposed extraction
method relies on a multi-institutional extraction method using vendor-specific standard-
ized clinical content. Subsequently, we applied an efficient transformation process on the
returned standardized dataset to deliver an unambiguously defined clinical dataset.
The proposed solution’s evaluation relies on three different pillars whereby we validated
the proposed solution on correctness, efficiency, and performance. The applied validation
mechanism results in an accurate software solution that meets the demands supporting
the cardiovascular workflow. The efficiency evaluation methodology relies on a cost model
estimating the implementation cost required to implement the prototype in another med-
ical setting and estimates an expected cost to scale up the prototype accommodating ad-
ditional clinical concepts. Although the validation results do not fully reflect reality due
to restrictive factors we had to consider during the implementation phase, the prototype
satisfies the demand to offer an accurate, efficient, and performing solution for the unam-
biguous representation of cardiovascular data into a multi-institutional setting.
Future research can contribute to scale up the proposed software solution to extract a
broader range of cardiovascular concepts. Since the proposed solution focuses only on
one EHR vendor, further investigation into similar multi-vendor EHR extraction methods
could make the software solution broadly deployable. Moreover, additional research can
give us better insights into semantic data mappings’ maintainability if we use dedicated
terminology solutions in the software architecture.
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1. INTRODUCTION
In recent years we have seen a massive increase in the amount of generated data [Botta
et al., 2016]. A similar trend applies within the healthcare industry due to rapid digitization
and new image acquisition technologies, producing large quantities of data through the
continuum of care [Belle et al., 2015]. Healthcare providers collect clinical data in various
domains, historically obtained during patient care and hospital admissions. Several clin-
ical resources contain specific data holding a valuable source of clinical information, and
each constitutes fundamental elements of insight that support medical decision-making
[Ashfaq and Nowaczyk, 2019]. Consequently, multi-source data collection is a critical as-
pect of ensuring clinical decision-making validity. In particular, data collection is a vital
aspect in preparing cardiovascular procedures, in which cardiologists diagnose and treat
certain cardiovascular conditions of cardiac disease patients.
Since the required data is spread across various autonomous clinical data sources, manu-
ally collecting such information is challenging and time-consuming. Additionally, signifi-
cant data diversity exists among many multi-vendor clinical source systems implemented
by medical providers leaving clinical practitioners at a disadvantage to harness the value
of siloed clinical information. As a result, healthcare providers have to deliver a lot of ef-
fort to collect cardiovascular data in an interpretable manner from multiple clinical data
sources. Unfortunately, the diversity between various clinical settings implies that health-
care providers have to repeat these efforts to obtain a comparable data set. Consequently,
healthcare providers encounter high integration costs, making integration projects loss-
making. As a central research question, we investigate how to design a scalable and multi-
institutionally deployable software solution to collect cardiovascular clinical data from mul-
tiple data sources in a standardized manner while preserving the meaning and context of
the collected data interpretable by both humans and machines. The solution aims to re-
duce the implementation burden and the resulting high implementation costs that health-
care organizations encounter to obtain cardiovascular data across Belgian (Flemish) and
Dutch healthcare providers. To align the proposed solution with practice, we develop a
prototype in a Belgian hospital focusing on developing and applying clinical care innova-
tion. The knowledge obtained from the practical implementation constitutes the basis to
deliver a valuable solution and contributes to estimating the proposed solution’s efficiency.
This research is divided into several sections. Section 2 presents a literature study of related
work containing crucial concepts that we consider in the research. The related work sec-
tion emphasizes the generic concept of interoperability and introduces several healthcare
interoperability standards. Further, it investigates data integration methods to retain the
clinical meaning of the collected information. This section also covers a literature study
about the use of a clinical data model, accommodating the continuously changing envi-
ronment across different healthcare institutions. We conclude this section with a short dis-
cussion to justify the decisions taken based on the investigated literature. In section 3, we
describe the complete cardiovascular data documentation process and indicate precisely
the positioning of the discussed use cases within this process. Section 4 deals with the
research methodology and technical aspect of this research and presents all sub-research
questions in more detail, breaking the central research question down into several chal-
lenges. This chapter also gives a detailed overview of the scientific research method used
to explain how we want to approach the problem and find a solution [Peffers et al., 2007].
After analyzing the diversity present between various clinical repositories, we investigate in
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section 5 the EHR market share across Belgian and Dutch healthcare organizations to gain
a better picture of the EHR landscape in this region. Based on the outcome of the market
analysis, we describe in section 6 design decisions to satisfy the proposed solution’s multi-
institutional perspective. In addition to these facts, section 6 also discusses how to accom-
modate possible variations between various ChipSoft EHR implementations due to locally
implemented customization decisions to deliver a uniform dataset aligned with our soft-
ware solution. We further elaborate on achieving a syntactic and semantically harmonized
representation of the source dataset to comply with a target clinical data model. Section
7 describes the entire software prototype’s implementation, employing the previous sec-
tion’s research design decisions. This section aims to align our prototype software solution
with a real clinical environment to reveal shortcomings in a clinical setting we overlooked
earlier during the research design. The following section 8 deals with the validation of the
proposed solution and discusses the validation process to verify the correctness of the gen-
erated clinical datasets and compliance with the applied data model. This section also
explains the applied cost model reporting the proposed solution’s efficiency estimating the
amount of time required to implement the prototype in other clinical settings or build a
more comprehensive cardiovascular dataset. In section 9 we summarize the results to all
sub-research questions answering the central research question. We conclude this study in
section 10, where we briefly discuss potential future research perspectives aligned with the
current investigation.

2. RELATED WORK
Patients’ healthcare data originate from many different source systems captured all across
various medical departments. The aggregation of clinical data into a central repository
of information is a crucial process to deliver physicians a valuable dataset representing
patient-related key insights from previous studies. In many cases, the diverse data repre-
sentation of clinical data is not uniform across all subsystems. Consequently, data diver-
sity and especially the interpretation of the clinical context are challenging in healthcare
[Bhartiya and Mehrotra, 2014]. As the number of data science applications in healthcare
raises significantly, we must deliver maximum efforts to present ambiguous medical in-
formation in an unambiguous and standardized way to make clinical data interpretable
and interchangeable [Waring et al., 2020]. Even in the face of the current Covid-19 pan-
demic, we have never had a greater demand to share clinical information between diverse
software solutions spread across the globe [O’Reilly-Shah et al., 2020]. Consequently, it is
potentially significant that data interoperability challenges do not prevent the exchange of
clinical data between various data solutions, making data interoperability a core concept
in healthcare. The Data Interoperability Standards Consortium1 defines interoperability
as ’the ability of systems and services that create, exchange and consume data to have clear,
shared expectations for the contents, context and meaning of that data’. In subsection 2.1,
we define interoperability in healthcare and subsequently reflect why this concept is essen-
tial to maximize digitization efficiency. This subsection also briefly discusses two crucial
interoperability concepts that significantly contribute to the unambiguous communica-
tion of clinical data [Lehne et al., 2019]. A first concept handles the syntactic interoperabil-
ity, presenting several formats to exchange clinical information. In contrast, the second

1https://datainteroperability.org/
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concept emphasizes the semantic interoperability, dealing with exchanging clinical data
employing a common vocabulary, enabling receiving systems to eliminate unambiguity to
promote accurate and reliable communication. In subsection 2.2, we investigate litera-
ture on diverse methodologies discussing how to extract clinical data, taking into account
existing data variations originating from various clinical data repositories (CDRs). We con-
ducted in subsection 2.3 a similar literature study focusing on the reusability of clinical
data in a multi-institutional environment and further discuss and evaluate a reference data
model to increase the level of interoperability spread across various healthcare institutions.
In section 2.4 we give some background information on the integration engine to deliver a
common data structure against multi-vendor CDRs. To conclude, we argue in subsection
2.5 the conclusions taken based on earlier reviewed literature outlining the foundation of
our study.

2.1. THE ROLE OF STANDARDS IN HEALTHCARE IT
Interoperability is in many businesses of significant value, helping enterprises automate
data processing [McMillan et al., 2017]. Easy access to data and seamless sharing of infor-
mation between different software applications is a prerequisite empowering digitalization
to foster collaboration. In addition to being essential in various industries, data interoper-
ability is also crucial in healthcare to enable the seamless exchange of health data between
different healthcare systems and health organizations to facilitate the exchange and inter-
pretation of medical data [Lehne et al., 2019]. In the context of healthcare, interoperability
facilitates seamless exchange of health data between different healthcare systems and orga-
nizations with the ability to interpret and use the exchanged data consistently. The collec-
tion of incorrect data can impact the decisions taken by the cardiologist with catastrophic
consequences for the patient. To achieve a satisfactory level of interoperability, we want to
elaborate further on both concepts of interoperability defined by Lehne et al. [2019]. We
will discuss first some standards to align the exchange of data between different healthcare
systems, ensuring the correct processing of the message content. Second, we elaborate on
how to maintain the context and meaning of the exchanged clinical data since the use of
an exchange standard is not sufficient to ensure a correct interpretation of the transferred
messages [Adel et al., 2018].

SYNTACTIC INTEROPERABILITY

Syntactic interoperability ensures the ability to exchange information between systems ac-
cording to a predefined data format [Lehne et al., 2019]. Today, healthcare organizations
apply healthcare messaging standards to exchange data in a structured style between dif-
ferent clinical data sources, promoting integration and sharing across independent source
systems [Dogac et al., 2007]. Health Level Seven (HL72) version 2 (v2) is the primary data
format standard to exchange clinical data, represented as a delimited file format contain-
ing embedded information without passing attribute information along with it. In figure 1,
we depict an example of the HL7 v2 message representation. HL7 v2 messages are created
based on a trigger event associated with a specific message type. Figure 1 represents an HL7
message triggered by a patient registration (A04 message type colored in yellow) into the

2https://www.hl7.org/
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clinical environment to notify another application a specific patient has arrived. An HL7 v2
message consists of a hierarchical message structure containing various segments, repre-
sented as a single line. For example, in figure 1 we represented two segments red-colored
to keep a clear overview of the complete HL7 message structure. Each HL7 segment begins
with a header (green-colored) and defines a logical group of data fields, identified with a
three-character coded segment identifier. The first message header (MSH) always deter-
mines the starting point of the HL7 message. Other message segments, such as the PID
segment, comprise patient demographics data, while the PV1 segment focuses more on
the visit information. Furthermore, each message segment consists of various fields sep-
arated by pipe characters. In some cases, specific HL7 fields can contain multiple values
composed of multiple components separated by a carat sign, as shown in blue. Those com-
ponents could consequently contain various subcomponents to represent more complex
data structures. The lack of robust agreements about the order, content, and semantics of
the data makes integration complex and time-consuming, causing software vendors to im-
plement the HL7 standards differently [Beeler, 1998]. This substantial diversity in HL7 im-
plementation makes data integration costly by slowing down integration cycles and making
them difficult to manage.

Figure 1: HL7 version 2 example message

As a result of a broader implementation of the HL7 v2 standard in various clinical do-
mains, the demand increased to develop a standard that supports more complex, domain-
specific, and reusable message formats for the event-oriented workflow. The lack of an
existing information model within the HL7 v2 standard resulted in the development of a
new HL7 version 3 (v3) standard, based on a reference information model (RIM) [Beeler,
1998]. The RIM defines an object-oriented approach leading to a fully specified, robust
standard to represent clinical data entities (e.g., patient administration, laboratory obser-
vation), fostering interoperability. Based on the RIM, the HL7 Clinical Document Architec-
ture (CDA) has been developed to support the exchange of clinical documents using the
XML3 standard. Figure 2 depicts a partial HL7 v3 message example in which the XML doc-
ument clearly outlines the body of the message. We emphasized the object-oriented struc-
ture by highlighting the patient-oriented object in yellow and the result-oriented object
in red. An object identifier uniquely identifies each resource to ensure global uniqueness
(green colored).

The flexibility, and consequently the broad implementation (see figure 3) of the HL7 v2
standard, combined with the lack of backwards compatibility of HL7 v3, resulted in far too
high implementation costs restricting the transition towards HL7 v3 in healthcare [Bender
and Sartipi, 2013]. Consequently, as depicted in figure 3, HL7 v2 is today the most widely

3https://www.w3.org/XML/
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Figure 2: HL7 version 3 partial example message

used standard. The internal version numbers represented on this figure refer to the contin-
uous updates of the standard that ensure continuity with current healthcare requirements.

Figure 3: Industrial usage of HL7 standards [Joyia et al., 2018]

Data exchange in HL7 v2 and v3 typically flows according to a point-to-point commu-
nication workflow, represented in figure 4. Data communication is managed by an HL7
integration engine, positioned in the middle between the various clinical information sys-
tem interfaces and the Electronic Health Record (EHR). The International Organization for
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Standardization (ISO) defines an EHR as a repository of information about the health status
of a subject of concern, in computer-processable form [Kwak, 2005]. The amount of informa-
tion contained by an EHR is highly dependent on the extent to which different information
systems are integrated and varies strongly per medical institution. The HL7 integration en-
gine provides flow control, data transformation and central monitoring between different
applications from various clinical departments.

Figure 4: HL7 data flow example managed by an integration engine

Today, Fast Healthcare Interoperability Resources (FHIR4) is the newest HL7 standard
for digitally exchanging healthcare data, addressing shortcomings in the previous HL7 stan-
dards. FHIR uses open standards and supports existing health and Internet Standards such
as HTTP, XML and JSON5. The standard has a resource-oriented architecture providing
atomic data access and supports a RESTful (REpresentational State Transfer) architecture
to manage resources [Fielding and Taylor, 2000]. FHIR is built around a REST API model
which is a better-formalized approach to exchange clinical data and provides a more effi-
cient way to query and retrieve clinical data [Ismail et al., 2016].

FHIR differentiates from previous HL7 standards as it is possible to make a specific re-
quest (e.g., a heart rate observation) without transmitting the complete message and pars-
ing the content. The atomic data access architecture is a considerable advantage compared
to the HL7 v2 and v3 standards. Another benefit of the FHIR standard is related to the
ability allowing clinical data providers examining the context of the obtained data using
web APIs. Web APIs offer a lightweight method to access and store clinical data in FHIR-
compatible databases accessible to clinicians and researchers for analysis. FHIR provides
software developers with the ability to create new applications by fully leveraging the un-
derlying healthcare IT system and introduce opportunities to grant patients secure access
to health data from mobile apps outside the hospital [Mandel et al., 2016]. FHIR is a contin-
uously evolving standard Benson [2010] following an Agile development process Manifesto

4http://hl7.org/fhir/
5https://www.json.org/

9



[2001]. Each FHIR specification6 is referencing to a maturity level describing the extent to
which the resources within this standard are mature. Maturity levels vary from level zero
(draft) to level six (normative). Standards for Trial Use (STU) specifications allow devel-
opers to practice the specification in real-world implementations before the specification
enters a normative version. Today, the most relevant specifications are the second draft
standard for trial use (DSTU2), the third standard for trial use (STU3), and FHIR release 4
(R4). The STU3 standard, published in 2017, is a full FHIR release for trial use where none
of the resources are normative. FHIR Release 4 is a new FHIR release, released in 2019,
containing changes and interoperability enhancements to promote interoperability in ex-
changing health data between healthcare institutions. The more current FHIR release 4 is
a standard that has been tested very intensively in practice and has gone through the full
development cycle of the FHIR maturity model. Consequently, this state-of-the-art FHIR
standard includes normative content that should enable developers to apply the standard
consistently and universally. The normative nature of an FHIR standard ensures that an
FHIR resource’s structure cannot change.

SEMANTIC INTEROPERABILITY

While syntactic interoperability describes the clinical dataset structure, semantic interop-
erability focuses on the messages’ content [Lehne et al., 2019]. Because health data exists in
many forms (e.g., laboratory results, vital signs, clinical documents), the diversity of clinical
data spanning various CDRs results in interoperability challenges to interpret the meaning
and context of different clinical concepts consistently [Bhartiya and Mehrotra, 2014]. Fo-
cusing on collecting clinical data, we can mainly categorize health data into two forms,
structured and unstructured data. Many literature reviews address the diversities between
unstructured and structured data in healthcare [Kruse et al., 2016] [Fong et al., 2015]. Struc-
tured data is represented as consistent and organized clinical data, while unstructured data
lacks this organization and corresponds with unorganized and irregular datasets introduc-
ing ambiguity, making analysis much more challenging. Parsing unstructured healthcare
data is associated with the textual processing of medical reports to fetch selective medi-
cal conclusions. Today, an investigation is already ongoing within Philips Research to find
accurate solutions for processing unstructured data. Consequently, we focus this research
only on structured data residing in predefined data fields.

Still, the lack of unambiguously defined clinical data concepts challenges healthcare
providers and organizations to ensure efficient care. International terminology standards
offer a solution to control locally applied health vocabularies by identifying specific obser-
vations consistently and unambiguously. Logical Observation Identifiers Names and Codes
(LOINC7) is the international standard for identifying clinical and laboratory observations.
A LOINC code represents a unique code for a particular observation. On the other hand,
Systemized Nomenclature of Medicine Clinical Terms (SNOMED-CT8) is a multilingual in-
ternational terminology standard applied to encode clinical data supporting semantic in-
teroperability. Figure 5 refers to a specific segment of an HL7 v2 message containing a
LOINC code to identify and request an observation. The LOINC code ’600-7’, refers to the

6https://www.hl7.org/fhir/versions.html
7https://loinc.org/
8https://www.snomed.org/
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common name ’Bacteria identified in Blood by Culture’. The orange text box indicates the
request for the observation. The green text box points to the corresponding demand’s re-
sult containing the SNOMED-CT identifier and name, providing an unambiguous unique
reference to the clinical concept.

Figure 5: Example of HL7 message containing a codified test result

Recent developments address the variety present between different terminologies to
define particular clinical concepts [Saripalle et al., 2020]. Unified Medical Language Sys-
tem (UMLS9) describes a terminology standard addressing the existing diversity among
disparate clinical terminology standards. Through UMLS, we can design an abstract layer
on top of diverse terminology standards by applying a unified global terminology. The in-
ternational character of this research and the desire to find a solution that unambiguously
represents clinical concepts from various CDRs triggers us to bring several semantic stan-
dards together and represent them as one single entity. The representation of differently
expressed similar clinical concepts as one entity and the ability to maintain the relation-
ships among various terminology standards can enable third-party software applications
to represent the data in any terminology recognized by the UMLS standard. Additionally,
the UMLS standard can assist in finding the corresponding entity defined by diverse ter-
minology standards. In figure 6 we briefly explain the UMLS concept based on a practical
example. For example, if we consider the concept of stress echocardiography, we see that
this concept is defined slightly differently within different terminology standards but hav-
ing the same meaning. The terminology standards layer in figure 6 represents this existing
diversity among diverse terminologies. These clinical concepts refer within the UMLS stan-
dard to Atom Unique Identifiers (AUI), depicted as the middle layer in figure 6. The orange
highlighted text exposes slightly different names assigned to each clinical concept. For ex-
ample, we indicated three slightly different Dutch expressions holding the same meaning.
Subsequently, the atoms have a relationship with a Concept Unique Identifier (CUI), ex-
pressing all underlying terminology concepts as one single entity.

Despite international terminology standards that can significantly improve data qual-
ity by unambiguously representing clinical concepts, it remains practically a considerable
challenge to employ these standards in practice. Metke-Jimenez et al. [2018] designed a
solution to access diverse clinical terminology standards hiding the underlying software
solution’s complexity. The solution, called Ontoserver, provides unified access to multiple
clinical vocabularies and facilitates a mechanism to keep various chained terminology so-
lutions up-to-date with the most actual clinical terminologies. Consequently, the discussed

9https://www.nlm.nih.gov/research/umls
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Figure 6: The UMLS Concept

terminology server solution of Metke-Jimenez et al. [2018] can offer a possible solution to
translate locally defined clinical concepts into internationally recognized terminologies.
Moreover, the terminology solution can facilitate the management to keep locally deployed
terminology solutions up-to-date. Diomaiuta et al. [2017] proposes a software architecture
that makes practical use of such a terminology solution. The architecture assists healthcare
professionals in automatically translating registered codes toward their corresponding tex-
tual descriptions. The proposed system architecture can read and store clinical informa-
tion efficiently from and to clinical documents stored on a health server to fulfill semantic
interoperability. The study aims to represent a foundation for building more complex in-
teroperability solutions using the FHIR standard. The research conducted by Diomaiuta
et al. [2017] is limited to a software architecture capable of unambiguously representing a
minimal clinical dataset. Furthermore, the solution does not integrate with other existing
architectures, eliminating complex integrations with realistic medical environments.

Various programs are ongoing in the Netherlands to promote the unambiguous regis-
tration of clinical information10. Because unambiguous registration requires clear agree-
ments about the precise registration of clinical terms, hospitals move away from free text
registration to apply predefined clinical terms. An example is the Dutch multidisciplinary
administrative body (Dutch Hospital Data11) committed to setting up standardized vo-
cabulary listings containing relevant clinical concepts to assist clinical practitioners dur-

10https://www.nictiz.nl/
11https://www.dhd.nl
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ing registration activities. We recognize the development of a single unified language to
promote unambiguous registration. This uniform language expressed as ’Diagnosis the-
saurus12’ and the ’Verrichtingen thesaurus13’ ensures that medical practitioners can unam-
biguously register all patient treatment activities [Kieft et al., 2017]. These registration stan-
dards embrace various clinical specialties spanning diverse mappings with international
terminology systems (including cardiology) to promote international data exchange. Since
Dutch EHR suppliers agree to implement these registration standards, there are agree-
ments about registering health information in the Netherlands to facilitate the exchange
and promote reuse of healthcare data, called ’registration at the source’14 [Simons, 2019].
Additionally, it reduces the registration burden for clinical practitioners and accelerates
scientific research by unambiguously registering clinical concepts at a national level. All
these programs aim to promote a uniform clinical data representation independent from
the EHR vendor.

Because leading healthcare organizations address innovation by delivering scalable and
interoperable health information management solutions connecting data between various
in-house developed software solutions seamlessly, medical software development focus on
continuous evolution [Pascot et al., 2011]. To promote this, leading healthcare organiza-
tions developed digital health ecosystems to decouple healthcare data from cross-business
software solutions to reduce integration efforts [Gopal et al., 2019]. Software developers
can subsequently build new software solutions on top of the ecosystem, serving as a col-
laborative platform for accelerating cross-business integrated care solutions’ software de-
velopment. External product integration with the healthcare ecosystem using third-party
software adapters maximizes health data benefits enabling collaboration. Scaling up the
healthcare ecosystem by bringing multi-vendor health data together accelerates innova-
tion by making healthcare data enterprise-widely available in a secure ecosystem of infor-
mation and services according to a pre-defined common data model [Weir, 2019]. Figure
7 depicts a schematic overview representing a standardized integration of various software
products towards a common data model. Since FHIR provides the flexibility to model clin-
ical information in many ways, we need to shape core FHIR resources to optimize their use
in a particular setting. This modeling mechanism is called FHIR profiling. Various studies
describe applying the FHIR profiling mechanism to achieve semantic interoperability with
other software systems [Semenov et al., 2018] [Gulden et al., 2021]. We also recognize the
FHIR profiling mechanism’s appliance to describe clinical information models promoting
clinical data’s reusability in healthcare [Kieft et al., 2017]. We discuss this further in subsec-
tion 2.3.

2.2. HEALTH DATA EXTRACTION
Because CDRs store data in various formats according to specific terminology vocabularies,
the collected information needs to be transformed towards a standardized target reposi-
tory to represent a uniform data structure conforming to a predefined data model. Ong
et al. [2017] discussed an approach for health data extraction to provide a scalable solution

12https://www.dhd.nl/producten-diensten/diagnosethesaurus/paginas/diagnosethesaurus.aspx
13https://www.dhd.nl/producten-diensten/verrichtingenthesaurus/Paginas/Verrichtingenthesaurus.aspx
14https://www.registratieaandebron.nl/
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Figure 7: Standardized data model

harmonizing clinical data using the extract, transformation and load (ETL) process to lower
the technical burden and simplify the transformation process. ETL is a procedure to copy
data from one or more CDRs towards a target repository which represents the data into an-
other context compared to the source location. Ong et al. [2017] developed a dynamic ETL
(D-ETL) solution to extract data from multiple data sources and transform it into a com-
mon format according to a pre-agreed standard terminology that meets business needs.
The provided approach offers a flexible solution addressing critical technical challenges of
the ETL process such as compatibility, scalability, data quality and error handling.
Given the diversity in data representations caused by the originating CDRs, a compatibil-
ity challenge exists to transform the data into a commonly agreed target data model. This
transformation is achieved by an integration engine, generating SQL statements based on
existing transformation rules. The study reports that a great deal of knowledge and clinical
experience of the data structures is required to understand correctly which source data el-
ements correspond to the target data elements. Data integration tooling can help to realize
data mappings but is limited in functionality to address complex transformations.
Another challenge that Ong et al. [2017] faces is scalability, since clinical research systems
must be able to cope with the volume of requested health data and variety in CDRs across
different clinical research networks. The application of D-ETL rules, defining how to map
and combine source data fields to the target data format, shows that mappings can be ef-
ficiently shared and maintained across several teams sharing the same source and target
data formats. Efficient management of data transformations configurations is a valuable
feature that we should investigate further in this study to optimize the implementation ef-
fort between various healthcare settings for known data transformations.
Finally, data consistency and error handling plays a challenging factor in the ETL process.
Source data might be inconsistent, and conflicting data sets need to be identified as they
can affect the efficiency of the ETL process. The study showed that data validation is cru-
cial immediately after the data extraction process from source repositories to ensure the
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success of subsequent steps. Ong et al. [2017] concludes that this process is very time-
consuming. SQL queries can become complicated and require clinical, technical and spe-
cific knowledge of the CDR data structure to validate conflicting data elements before the
source data elements can be stored in the target database.

Besides healthcare, the previously discussed ETL technology is also applied in other
sectors, such as logistics, as business conditions in the global market require fast and effi-
cient decision-making solutions [Radivojević et al., 2013].

2.3. REUSABILITY OF HEALTHCARE DATA
The healthcare environment is a complex and dynamic system containing multi-vendor
clinical data repositories. Since digitization concerns various healthcare aspects, health-
care organizations need to flexibly deal with continuous changes in healthcare providers’
underlying IT infrastructure to deploy software solutions flexibly. Model-driven engineer-
ing methodologies can introduce standardization to tackle this problem since standardized
information models aim to increase productivity during the software development process
by reusing standardized data models [Schmidt, 2006]. However, implementing a common
data information model around different repositories remains a challenge in healthcare
[Demski et al., 2016].

Investigation of Marco-Ruiz et al. [2015] is related to the reusability of clinical data
stored in EHR systems. Richen and Steinhorst [2005] express it as harmonization, which
prevents or eliminates differences in the technical content of standards with the same
scope. Marco-Ruiz et al. [2015] focuses mainly on challenges in semantic interoperabil-
ity and the interoperability of different existing data models. The aim is to represent clini-
cal data as a uniform standard across multiple healthcare institutions, maintaining clarity
about the applied terminologies to avoid interpretation issues.
The discussed openEHR15 standard is currently a promising approach to address those
challenges built upon the two-level modeling approach using a reference information model
to represent clinical data. The two-level modeling approach allows the development of
a technical infrastructure entirely independent of the underlying clinical data model, de-
scribed as archetypes. Those archetypes form the main building blocks to model the clini-
cal data structures and describe a template defining the data representation and terminol-
ogy binding. The representation of clinical data, according to those templates, improves se-
mantic operability across different repositories. Marco-Ruiz et al. [2015] developed a data
warehouse architecture, based on openEHR archetypes, to address interoperability issues.
They provided a vendor and technology-neutral approach to query healthcare information
systems spread over multiple healthcare institutions. The proposed solution offers remark-
able advantages as applications can be developed around a centralized artifacts repository
containing openEHR compliant data. Several pilot studies show some investigation using
the openEHR standard and report challenges to agree on an internationally accepted clin-
ical data model [Haarbrandt et al., 2016] [Min et al., 2018]. Further investigation reports
limited research on a national and large-scale level [Li et al., 2018]. Some national develop-
ment initiatives are ongoingly related to the adoption of the openEHR standard. Still, due

15https://openehr.org/
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to the variety of the market and the lack of well-defined clinical information models, there
are no national agreements yet in Belgium and the Netherlands [Pedersen et al., 2017].

2.4. INTERFACING ENGINE
Accomplishing interoperability is crucial to fulfilling the goal of a fully integrated land-
scape, delivering a common data structure against multi-vendor CDRs. Today, different in-
tegrator engines are available to achieve interoperability between different medical reposi-
tories. As this research collaborates with Philips Research and Philips partnered with Orion
Health to team up interoperability for all business units, we aim to implement the solution
on the same interoperability platform. The Orion Health Rhapsody Integration Engine16

enables a high-performance, healthcare standard-based integration engine recognized as
a global health informatics solution [Binobaid et al., 2016].

2.5. RELATED WORK CONCLUSIONS
In this subsection, we want to argue the conclusions taken based on the earlier reviewed
literature. This literature review should outline the foundation for our further research.
Having access to clinical information at all times is essential to provide optimal care for
patients. Since we aim to develop a solution that can unambiguously represent cardio-
vascular data at all times, the previously discussed HL7 v2 and v3 standards expose short-
comings. The unstructured HL7 v2 standard and the high degree of customization make
this standard inappropriate in a multi-institutional environment. Moreover, the flat-file
structure makes it challenging to interpret messages. The successor HL7 standard (HL7 v3)
introduced a reference information model to offer more standardization and making infor-
mation easier to interpret but lacks recognition in Belgium and the Netherlands because
of its complexity. On the other hand, the Internet-based FHIR standard offers a common
ground to move away from proprietary data representations to exchange clinical informa-
tion. Detailed FHIR implementation guidelines published on the Internet empower soft-
ware developers to develop software applications across various platforms. Additionally,
the HL7 FHIR interoperability standard provides atomic data access through REST web
services, eliminating the need to share entire messages in contrast to older HL7 v2 and v3
standards. By giving software developers access to clinical data through an FHIR API, we
foresee significant benefits related to performance and accessibility. Although we believe
FHIR is a step in the right direction to enable unambiguous data exchange between differ-
ent software systems, the solution to true semantic data interoperability does not seem to
be for tomorrow. Due to the enormous variation present in the collected data, there is no
consensus on a clinical concepts’ data model. In our opinion, FHIR can offer an excellent
foundation to support semantic data interoperability to ensure a similar clinical data inter-
pretation at any location. Additionally, the REST API architecture’s simplicity makes data
easily accessible through modern web technology, enabling software developers to quickly
and easily access clinical information from any device. Still, by only using the FHIR stan-
dard, we cannot solve the entire interoperability issue.
For this reason, we started looking for solutions that can contribute to solving the semantic

16https://orionhealth.com/global/strategic-partners/rhapsody/
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problem using the FHIR standard. The solution provided by Metke-Jimenez et al. [2018]
describes an exciting and useful solution to address this problem. The study presents a ter-
minology solution based on the FHIR standard, making it possible to access different in-
ternationally recognized clinical terminologies through an API call. The solution also con-
sidered providing a centralized mechanism to keep the terminology server updated with
the latest release of clinical vocabularies. Within the context of our research, it seems rea-
sonable to include this feature to minimize implementation effort and maintainability of
clinical terminologies. A possible obstacle to this terminology solution is that the termi-
nology system cannot deal with locally applied terminology standards. Further research
should determine how we can deal with this efficiently.
Diomaiuta et al. [2017] proposes a software architecture that makes practical use of such
a terminology solution. This study forms an excellent foundation to get a clear picture of
the software architecture, taking into account semantic interoperability. However, this re-
search lacks any form of integration with other software platforms. As a result, we have to
investigate further how we can integrate an extensive dataset from various data reposito-
ries within the proposed software solution. It is also essential to note we need to explore a
solution deployable in a multi-institutional setting.
Ong et al. [2017] answers this integration issue very concretely and offers a solution en-
tirely aligned with our expectations. We aim to elaborate further in our study on the ap-
plied dynamic-ETL methodology because it is valuable for collecting and transforming ef-
ficiently various data elements towards a predetermined target data model.
Consequently, we explored several literature studies on how to model the extracted clini-
cal information unambiguously. Ultimately, we want to model the clinical concepts in an
unambiguous way to promote the clinical concepts’ reusability in different medical en-
vironments. Ideally, we are looking for a universal set of clinical models. The literature
search results show that reality is unfortunately different since we can model clinical data
in a dizzying array of compositions that include their characteristics and rules. We inves-
tigated the differences between FHIR and the openEHR standard. After comparing both
standards focusing on data interoperability, we can conclude that the FHIR standard is
better suited for customization in a standardized way without profiling a fixed clinical data
model. Additionally, FHIR offers a flexible solution for software developers to exchange
medical data through user-friendly and straightforward REST APIs. OpenEHR, on the other
hand, is more focused on the persistence of data, without space for customization in the
data model. Since we aim to obtain an unambiguously and enterprise-widely defined clini-
cal dataset accessible for cross-business software developers, we assume the FHIR standard
provides a better foundation to build innovative patient-centric applications supporting
clinical data exchange.

3. PROBLEM ANALYSIS
Cardiac catheterization is a medical procedure to diagnose and treat certain cardiovascular
conditions. During the medical examination, a long thin tube, called a catheter, is inserted
into an artery of the groin, neck, or arm. The catheter is guided through the blood vessels of
the patient to the patient’s heart. Next, the catheter is used by the performing physician to
perform diagnostic tests and treatment. The data flow of a heart catheterization procedure
consists of several processes addressing each a particular phase of the complete examina-
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tion. A complete cath documentation procedure exists of five parts, defined as mission
briefing, procedure logging, creation of the physician report, providing the inventory for
billing and registry, and patient debriefing as depicted in figure 8. The first documenta-
tion process addresses the mission brief to prefill and provide a single clear overview of the
essential patient-related information. Essential information contains patients’ medication
history, lab values, medical data about previous studies, and administrative information
registered into the EHR of the hospital. The mission-brief process should give the physi-
cian a complete picture of the patient, which is crucial for the physician to prepare for the
cardiovascular procedure.

Figure 8: The complete cath documentation process

Once the physician collected the crucial information, the procedure can start. During
procedural logging, nurses track essential events and material usage of the examination
(e.g., location of stents, functional measurements, and used materials). After finishing the
registration of all vital parameters and materials into the cardiovascular information sys-
tem, the physician can create and finalize the patients’ report containing a summary of the
catheterization procedure. The next process is a more time-consuming process, related to
billing and national registry reporting, to guarantee and monitor the quality of the cardio-
vascular procedures. Billing uses mainly the physician report and material usage as input,
while registry reporting requires a mandatory dataset imposed by national registry organi-
zations to improve the quality of care, such as the National Cardiovascular Data Registry17

(NCDR). The last phase of the cardiovascular procedure is the patient debriefing phase. The
physician informs the patient about what is happened during the examination and hands
over a printout to take home. These documentation processes have to be done manually
and require considerable effort from the medical staff.

This study focuses on the mission brief and registry management process within the
complete cath documentation process, depicted red in figure 8. The intention is to de-
velop a scalable solution to collect automatically diverse multi-source patient-related car-
diovascular data consistently in a pre-defined target data structure allowing efficient and
straightforward data manipulation. We define scalability as the possibility of deploying the
solution in various multi-vendor hospital environments in Flanders or the Netherlands. In

17https://www.ncdr.com
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addition to multi-institutional deployability, we define scalability as the ability to make the
solution future-proof in a relatively straightforward manner to process new clinical con-
cepts efficiently with minimal implementation cost. Today’s use cases consist of creating a
centralized dashboard for cardiologists and delivering a pre-defined dataset to an external
third-party registry entity for quality validation. In practice, healthcare companies envision
this problem on a much broader scale to facilitate the development of medical software
applications. The red highlighted process blocks in figure 8 refer to the positioning of the
use cases into the cath documentation process. Currently, physicians need to review the
previous relevant imaging and diagnostic studies to get a comprehensive view of the pa-
tients’ history. Our solution results in a less labor-intensive documentation process letting
cardiologists better prepare for the clinical procedure without the administrative burden
to collect the required information manually. Technically, the solution must contribute
to shortening the needed integration time across diverse medical institutions improving
cost-efficiency. Additionally, scalability fulfills an essential role in delivering a future-proof
solution capable of collecting broader data sets.

Figure 9 represents the diversity depicting the differences between medical institutions.
Hospitals can contain various clinical data repositories from different vendors holding clin-
ical data represented according to locally applied coding terminologies (represented by
the different colored clinical source systems). Furthermore, clinical repositories can of-
fer their data in different ways, which can differ per vendor and medical institution, and
where external factors can be decisive. Some important CDRs, depicted in figure 9, are the
laboratory information system (LIS) helping medical laboratories managing the laboratory
results and related documentation. Further, we depicted a PACS (Picture Archive and Com-
munication System) system representing a software system to store and diagnose clinical
imaging files. A PACS system’s primary purpose is to manage all captured medical images
efficiently according to the patients’ history. In addition to the EHR, we also illustrate a Car-
diovascular Information System (CVIS) acting as a data management platform optimized
to the cardiovascular physician’s needs.

Figure 9: Variety in clinical data sources across different medical institutions
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4. RESEARCH METHODOLOGY

4.1. RESEARCH OBJECTIVE
Medical organizations continuously produce large amounts of clinical data during daily ac-
tivities captured in many different facilities and multi-vendor systems. To empower health-
care organizations to continue improving patient care by developing innovative software
solutions, they need to gain powerful insights from these independent clinical data repos-
itories. Unfortunately, the lack of standardization across these various CDRs causes these
insights to be lost. For this reason, leading healthcare organizations are looking for an effi-
cient integration solution to collect and transform multi-sourced clinical data into unam-
biguously defined clinical data concepts. This solution empowers large healthcare organi-
zations to interpret clinical information in an unambiguous way delivering value to vari-
ous innovative software systems. However, healthcare organizations observe that realizing
such an interoperability solution is challenging because of the diversity across medical in-
stitutions. Because medical institutions control their own data workflow in a multi-vendor
setting, each integration project demands a lot of customization, resulting in high integra-
tion costs making healthcare IT projects unprofitable.
This study aims to tackle the existing variety in clinical data repositories and applied data
representations across different healthcare institutions, dealing with challenges to collect
data efficiently into a standardized target data format. Section 2 earlier outlined in more
detail the extraction process and highlighted critical technical challenges to be considered.
The goal is to provide an efficient solution that significantly reduces the data integrators’
configuration effort needed to collect and translate multi-sourced cardiovascular data con-
cepts towards an interpretable standardized data set. Additionally, we aim to estimate the
amount of time required to implement the prototype in another clinical setting. Further-
more, we want to estimate the amount of time needed to expand the designed prototype
with a definite number of clinical concepts. These time indications should enable health-
care organizations better to estimate the efficiency of integration projects in advance and
contribute to further optimize the scalability of the integration solution by revealing ineffi-
cient extraction and data transformation processes.

4.2. RESEARCH QUESTIONS
We aim to design a software architecture to efficiently prepare a standardized and inter-
pretable dataset containing accurate and consistent information from various subsystems.
To realize the collection of multi-sourced clinical data, we need to have a clear overview of
what we exactly want to represent into the target datastore. Based on a specified dataset,
which can be subject to variation, more investigation is required where exactly to find the
corresponding data in various CDRs inside the healthcare organization. Knowledge about
the location and the data representation makes it more convenient to understand how to
approach the different data sources.

An essential part of this research is finding an efficient solution that is deployable across
different healthcare institutions. To accomplish this aim, we would like to know if all nec-
essary clinical data elements are available in the source repositories and can be interpreted
consistently through our solution. It is essential to know how many of the required data is
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represented in a structured format to ensure the unambiguous representation of the source
data, making further processing possible. In case the source dataset is ambiguously defined
(e.g., unstructured), the transformation to the target data model will become much more
complicated and requires other resolving technologies. Because there is no consensus yet
defining an internally standardized target data model within Philips, we refer to a fictitious
data model to shape the information correctly according to the FHIR specification stan-
dard. Although we consider the retrieval of unstructured data out of this research’s scope,
it is useful to know which fraction of data we find in a structured and unambiguously de-
fined format in diverse CDRs. This information can help us further evaluate the solution’s
efficiency if we only focus on structured data.

As discussed in section 2, standardization is an important concept to transform clinical
data consistently across diverse clinical environments. To achieve transformations deploy-
able at different healthcare institutions, we want to find similarities in local data represen-
tations [Dykes et al., 2010]. To reduce the amount of work required to transform the data
while retaining the clinical context, we want to know if we can find some patterns related
to the data representation of specific clinical source systems. Finding those patterns can
boost the efficiency of the transformation process using predefined transformation sets.
The obtained knowledge should enable us to get a clear overview of reusable data transfor-
mations applicable within the software solution. Subsequently, we want to investigate how
to define and manage data transformations with minimal effort to improve our solution’s
scalability.

To match real situations, we want to set up a prototype to test our solution on a medical
institutions’ test environment. Furthermore, this study aims to deliver a prototype built
on the existing integration platform deployed worldwide across Philips’ integration port-
folio. The integration platform is mainly responsible for consolidating the extracted in-
formation from the appropriate source repositories so that software developers can have
rapid access to unambiguously represented cardiovascular information. Since Philips al-
ready developed standards-based interoperability solutions between patient care devices
and hospital information systems, we want to investigate the extent to which we can reuse
existing software components of these solutions within our prototype. Software reusability
defines reusing existing software components within the software development process to
develop new software. The involvement of existing software components empowers us to
minimize quality issues and drastically reduce the time required for the prototype devel-
opment process [Mateen et al., 2017].

To conclude this study, we would like to evaluate the developed solution in a clinical test
environment. Implementing this solution will give us some understanding of how the pro-
totyped solution will behave in a real clinical environment. After this final implementation,
we want to report a conclusion about the number of data elements collected successfully
from various source data repositories. Philips employed clinical scientists with the neces-
sary clinical background and experience are engaged to assess the correctness of the data
transformations. To validate the solution’s efficiency, we refer to a subset of software qual-
ity characteristics explained in the ISO-9126 standard 18 and literature focusing on how to

18https://www.iso.org/standard/22749.html
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measure software product quality [Jung et al., 2004] [Theodorou et al., 2017]. As a result, we
concentrated on some key indicators to determine the efficiency of the software solutions,
including:

• Efficiency - time behavior. Representing the time required to fulfill the entire ETL
process.

• Efficiency - scalability. Representing the extent to which the solution is future-proved
to extract more clinical concepts in a multi-institutional setting.

• Maintainability - changeability. Representing the effort required to add additional
clinical concepts.

Based on this research objective, we formulate the overall research question.
[RQ] How to design a scalable and multi-institutional deployable data integration solu-
tion for cardiovascular data?

To answer this question, we split the overall research question into several sub-questions.

• [SRQ1] Which clinical data repositories could be queried for cardiovascular data collec-
tion?

• [SRQ2] How to design an extraction method for cardiovascular data collection?

• [SRQ3] Which variations in data representation can be found across the different medical
institutions?

• [SRQ3a] How is cardiovascular data represented in various clinical environments?

• [SRQ3b] Which fraction of the cardiovascular data is in a structured format?

• [SRQ4] How to realize data transformation efficiently for expressing the cardiovascular
information in an interpretable fashion?

• [SRQ5] How efficient is the proposed software prototype?

• [SRQ5a] Which software metrics could be used to express the efficiency of the im-
plemented software prototype?

• [SRQ5b] What is the impact of the proposed software solution?

4.3. RESEARCH APPROACH
To achieve the aim of this research, we will apply the Design Science Research Methodol-
ogy for information systems research by Peffers et al. [2007]. It is a commonly accepted
framework to model the life-cycle of design science research. The process is composed of
several steps which define the design of the entire research methodology. Based on this
framework, we will classify the applied research methodology for this study into different
sub-processes, where we will explain the various activities referring to the corresponding
research questions.

Problem identification and motivation. Collecting patient-related information from
multi-source clinical data repositories is a labor-intensive task for a cardiologist to prepare
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optimal for a cardiovascular procedure. To support cardiologists collecting and organiz-
ing data for evidence-based decision support, we want to investigate how to leverage, with
minimal effort, the variety of healthcare data among different healthcare institutions (see
[SRQ1], [SRQ2], [SRQ3]).
The research is based on the collection of a predefined dataset representing crucial infor-
mation for cardiovascular procedures. A reference target dataset is delivered by Philips but
is subject to variation and is required to answer [SRQ1]. To answer this research question
of which clinical repositories we need to query, we have to evaluate which source reposito-
ries exist into several healthcare institutions’ IT environment holding a subset of the initial
target dataset. A clear overview of the various existing clinical data repositories is required
to understand the medical IT landscape’s variety, contributing to how we can retrieve this
data [SRQ2]. For this research, we are exclusively interested in the data representation of
structured datasets and the applied vocabulary used to codify clinical data [SRQ3a]. Based
on earlier information about the representation of data, we are interested in finding some
patterns in applying specific terminology systems for particular data sources in hospitals.
Pattern interception can improve the efficiency of our solution by implementing prede-
fined logic for recurring patterns. Possibly, we can find some exciting differences applied
on a national level or some pattern matching based on the vendor of the software appli-
cation. After identifying structured cardiovascular concepts in various CDRs, we want to
determine which fraction this represents from the intended Philips data set [SRQ3b]. This
information can give us a better understanding of the amount of cardiovascular data avail-
able in a structured manner across various CDRs.

Definition of the objectives for a solution. The objective of this study is to build a soft-
ware architecture and prototype to reduce the configuration effort as a result of the vari-
ety in healthcare data among medical institutions (see [SRQ4]). Significant challenges are
the diversity in data representation between various clinical data repositories and the re-
quirement to represent all collected data in a standardized target data structure for un-
ambiguous interpretation. The target data structure can serve as a supporting entity pro-
viding effortless access for software development activities or reporting efficiently patient-
centric quality measurements towards external quality organizations, ensuring evidence-
based cardiovascular care.

Design and development. This research’s delivery consists of a software architecture
proposal and a prototype for evaluating the proposed solution [SRQ4]. To propose a final
solution, the design of the software architecture should include four main components.
The first component is responsible for extracting the clinical data out of the different CDRs.
To query each data source repository, we need to find out how to access the data. The ear-
lier investigation, described in the related work section, can be used to answer [SRQ2]. Ad-
ditional research is required to investigate applicable extraction methodologies available
in hospitals. Knowing the most commonly used methods forms an excellent foundation
to continue designing the software architecture proposal. The second component of the
software architecture handles the variations related to data representations into all CDRs
and focuses more on maintaining semantic data interoperability [SRQ3]. The software ar-
chitecture design should send predefined queries to specific clinical repositories to collect
all the required information. The solution should map and process the data according to
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terminology rules, specified by a terminology server, being part of the architecture. The ter-
minology server should facilitate the required logic to transform all data elements towards
a predefined target data structure as discussed by Metke-Jimenez et al. [2018] in section 2.
All transformation tasks should be realized using the Rhapsody Orion Health19 interoper-
ability platform, worldwide deployed by Philips managing their interoperability solutions.
The interoperability platform’s presence makes the solution relatively easy to deploy with
existing Philips customers to streamline with other existing interoperability solutions. We
also need to keep efficiency in mind during the architecture design by managing even-
tually recognized applicable patterns to realize particular transformations. After the data
extraction and transformation, the third component of the architecture should store the
data elements into a predefined target data structure. Specific extracted fields may need
to be transformed and combined to conform to the target data model. We must investi-
gate how to realize these transformations in practice as efficiently as possible to increase
scalability. To lower the development effort, we will analyze which existing software com-
ponents of the integration engine are valuable to collect specific data from the CDRs. For
testing purposes, we will use a docker20 image to simulate our personal FHIR test imple-
mentation server for development and testing. This image is built on HAPI21, which is an
open-source implementation of the FHIR specification written in Java. It is important to
note that this test environment is only suitable for prototyping without ensuring scalabil-
ity and performance. To ensure patient-related information’s privacy and confidentiality in
the test environment, we will use Synthea22 as an open-source patient generator to simu-
late realistic Protected Health Information (PHI) data. When developing the prototype, we
also have to consider some essential non-functional requirements (NFR). Important NFRs,
defined in the ISO-2501023 model, are interoperability, functional correctness, functional
completeness, scalability, and reusability. Interoperability addresses the current compati-
bility issues introduced by the variety of data representations existing in the different CDRs.
We must accomplish the multi-source data extraction preserving the original data’s mean-
ing to represent the required complete data set. To facilitate the logic needed for a correct
data transformation, we need access to a terminology solution, as described earlier in this
section. Functional correctness and completeness require some validation and should be
handled by the fourth principal component of the solution, the validation part. The re-
maining NFRs are more related to the validation process and discussed in the Design Sci-
ence Research Methodology’s validation activity.
A preliminary scheme of the software architecture, representing the above design and de-
velopment process, is depicted in figure 10. The red and green entities correspond to the
principal software components of the architecture. The green entities represent eventual
existing components within the Philips integration engine, while the red ones represent
components that are yet to be developed. The Rhapsody configuration module corre-
sponds with the integrated development environment to build and configure all interfacing
and data processing components. Finally, the Rhapsody monitoring component can track
all the processed messages via a web interface.

19https://orionhealth.com/
20https://www.docker.com/
21https://hapifhir.io/
22https://synthetichealth.github.io/synthea/
23https://www.iso.org/standard/35733.html
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Figure 10: Prototype design
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Demonstration. Developing a prototype can give us more beneficial insights to better
understand any shortcomings or inefficiencies. First, we will set up a test environment in
the Philips lab to develop and test the prototype. Into this test environment, we should sim-
ulate an EHR and some additional clinical repositories containing cardiovascular resources
to reflect reality. The simulation in the test lab will only cover existing Philips products.
Meanwhile, implementing the prototype in a customer environment can add additional
value to simulate a more diverse environment. Consequently, we should implement the
prototype in a clinical test environment inside one medical institution located in Belgium
(Flanders) and the Netherlands. The option to apply the prototype in both countries has to
do with potential variations we want to discover and evaluate at the national level. In the
context of this study, it was not straightforward to get the support of two clinical institu-
tions willing to cooperate. The current Covid-19 pandemic plays an essential role in this.
As a result, we collaborate with an innovative Belgian healthcare institution to design the
prototype, and subsequently, we can rely on another Belgian reference hospital to assist
during validation testing.

Validation. The collection of clinical data from various source repositories is based
on the principle of the ETL process. An inefficient transformation process can lead to the
representation of incorrect values for cardiologists and affect the solution’s scalability. To
evaluate the solution, we will split the validation process into three parts. First, we want
to compare the obtained results with the values of the original data elements to validate
the correctness of the extracted data. Next, we will determine the evaluation criteria based
on some metrics that can be applied to assess the efficiency of the solution [SRQ5a]. The
intention is to measure the amount of time required to collect cardiovascular data in a med-
ical test environment from multi-source clinical data repositories and represent it into an
unambiguously defined clinical dataset. Additionally, we will provide a mechanism to es-
timate the amount of time it will take to implement the prototype in a different clinical
setting and estimate the time it will take to scale up the prototype to process a broader
range of clinical concepts. To conclude the validation part, we should evaluate all obtained
results to estimate the impact of the proposed software solution [SRQ5b].

5. SOLUTION PREPARATION
One of this study’s main goals is to analyze which fraction of the cardiovascular clinical
concepts defined in the earlier mentioned NCDR dataset we can collect from various clin-
ical environments. The ultimate goal is to achieve this by finding a multi-institutional
deployable solution to reduce the implementation time required to collect cardiovascu-
lar concepts. Having a mechanism to collect and represent extracted cardiovascular data
in a standardized and unambiguous way could significantly benefit software development
activities relying on unambiguously defined cardiovascular information because it sepa-
rates the technical design from the clinical concerns [Christensen and Ellingsen, 2016]. It
empowers software engineers to develop software applications independently from the un-
derlying (complex) clinical data model, usually unknown territory for software developers.

To better understand the relevant clinical concepts regarding Percutaneous Coronary
Intervention (PCI) procedures, treating the narrowing of coronary arteries, we use an Amer-
ican data set (cathPCI dataset) used for government registration purposes. We refer specif-
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ically to this American dataset because we want to conduct similar research beyond the
Benelux on a global scale. Since the American cathPCI reference dataset provides a clear
overview of PCI studies’ relevant parameters, we consider possible variations in PCI prac-
tice patterns between the Benelux and the United States [Inohara et al., 2020]. Despite this
diversity, the dataset provides an excellent reference to potential relevant parameters in
which doctors are interested in determining a patient medical condition. A detailed de-
scription of these clinical concepts defined in the cathPCI dataset is publicly available on
the Internet 24.

A logical next step is to find out where exactly we can find the required information.
In this section, we want to answer the sub-research question one [SRQ1] to clarify which
clinical information sources we need to query to collect clinical concepts relevant for car-
diovascular examinations. As discussed earlier in section 3, we must consider being able
to deal with a multi-vendor system environment storing each clinical information accord-
ing to their own proprietary data format in a possibly unstructured way. Assuming we also
need to consider our software solution’s multi-institutional deployability, we soon realize
that we have to look for another efficient solution to obtain cardiovascular data. Further-
more, we see that due to the enormous increase in digitization of medical data and the
requirement to report data to government registries for quality control, hospitals accom-
modate centralized information systems platforms to collect heterogeneous data. Health-
care professionals consult these information systems to overview electronic health records
captured from heterogeneous systems [Steinhubl and Topol, 2015]. These information sys-
tems improve care quality by enabling the automatic integration of clinical data recorded
in various siloed data repositories. An example of such a centralized information system
is an EHR system that contains an enormous amount of structured and unstructured data
obtained from various healthcare systems. The availability of these massive amounts of
clinical data offers enormous benefits for clinicians and can support scientific research.
Those amounts of data can be used for various objectives improving healthcare, varying
from developing medical software applications, clinical research, quality registration, clin-
ical decision support Njie et al. [2015], etc. [Johnson et al., 2018].

As a result of the ZOL Genk data-driven mindset, we recognize a high degree of car-
diovascular data integration into the EHR. However, we cannot assume that every medical
organization integrates the same amount of clinical data within the locally deployed EHR
software platform. The amount of health technology and software applications to register
and analyze data within various hospitals introduces enormous technical and economic
challenges for healthcare organizations implying that hospitals cannot always afford the
same integration level with the EHR [Figueiredo, 2017]. As a result of the Covid-19 pan-
demic, we have not investigated the level of cardiovascular integration at other medical
institutions. However, to capture eventually missing cardiovascular information integrated
into the EHR, we aim to capture non-integrated cardiovascular information directly from
diverse siloed CDRs capable of providing an HL7 v2 message stream holding cardiovascu-
lar data. We mainly envision cardiovascular information systems (CVIS), depicted in figure
9, as possible non-integrated CDRs holding crucial cardiovascular information. For this
reason, we primarily focus on a software solution extracting cardiovascular data from EHR

24https://cvquality.acc.org/docs/default-source/ncdr/data-collection/cathpci_v5_codersdatadictionary_09172020.pdf
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software platforms. Additionally, we still envision the ability to complete missing cardio-
vascular information in the EHR with clinical concepts captured through a second data
extraction pipeline listening to HL7 v2 data communication.

5.1. MARKET ANALYSIS
In recent years, we have seen rapid growth in the adoption of EHR software platforms in
various medical settings, strengthening the centralized acquisition of vast amounts of clin-
ical data [Nguyen et al., 2014]. Therefore, we can assume that the EHR acts as a single
source of truth, integrating with individual siloed CDRs, making patient data hospital-wide
accessible to healthcare professionals and patients.

Since the intention is to focus mainly on EHR systems to extract cardiovascular data in
a multi-institutional environment, we first need to know which important EHR platforms
are active in Flanders and the Netherlands. In this section, we want to outline this diversity
by presenting our market analysis results. This market analysis is fundamental in deter-
mining the EHR vendors we should focus on to continue our research and answer SRQ1.
To accomplish an overview of the market, we consulted Philips’s installed base and entered
into discussion with individual medical institutions and EHR suppliers. In figure 11 we rep-
resent a graphical overview of the EHR market share in Flanders, while figure 12 represents
a similar overview for the Netherlands.

Figure 11: Market share EHR implementation Flanders

Figure 11 shows that Nexuzhealth is a substantial market leader for the Flanders region.
Nexuzhealth is an EHR, originated from a medical partnership between the academic hos-
pital Universitair Ziekenhuis Leuven and Cegeka, delivering the IT and consultancy ser-
vices. Both partners combined their knowledge and developed an EHR platform offering
software as a service (SaaS) to various healthcare institutions in Flanders. This SaaS plat-
form aims to lower customer concerns and the EHR software platform’s administrative bur-
den by providing a SaaS delivery model to create an interoperability platform between dif-
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ferent connected medical institutions, enabling efficient patient data exchange [Khan et al.,
2012]. Sharing information across various medical institutions and unambiguously inter-
preting the clinical data is essential to fulfilling this software delivery model. The unam-
biguous identification of patient data encourages interoperability and forms a fundamen-
tal concept within this study. On the other hand, Universitair Ziekenhuis Brussel developed
an integrated EHR software platform called Primuz. Besides Universitair Ziekenhuis Brus-
sel, eight other Flemish hospitals use the Primuz EHR software platform to promote data
interoperability between healthcare institutions. However, besides these two academic
health institutions and other associated hospitals implementing their EHR software plat-
forms, we observe that other large regional hospital groups in Belgium use ChipSoft25 as
their primary EHR supplier. Similar to healthcare facilities connected to one centralized
SaaS platform, we recognize the need to exchange clinical information between collabo-
rating hospitals using the ChipSoft EHR to optimize regional healthcare. Other hospitals in
Belgium are still looking for a new EHR vendor and are negligible in this study because of
their low market share. Since we are looking for a multi-institutional solution, we want to
focus on EHR software platforms with the highest possible market share.

Figure 12: Market share EHR implementation The Netherlands

Focusing on the Dutch market, we see in figure 12 a completely different EHR land-
scape. In the Netherlands, the market is determined by two EHR suppliers. The Dutch
market is dominated by ChipSoft and supplies 70% of the market. Besides ChipSoft, we see
Epic26 as the second leading supplier delivering EHR software solutions to hospitals. While
ChipSoft is only focused on the Dutch and Belgian (Flanders) market, Epic is a global EHR
software vendor.

25https://www.chipsoft.nl/
26https://www.epic.com/
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We can conclude from the market research that there are several existing software ven-
dors in both markets. Two major Belgian academic hospitals have actively contributed to
developing their EHR platform and Nexuzhealth offers this software platform as a SaaS
business model. Remarkably, only two EHR vendors are active in both countries. Other
software suppliers only remain operational nationally. For the Netherlands, ChipSoft is the
prominent EHR vendor, while Nexuzhealth is the leading EHR vendor in Belgium. ChipSoft
is a leading Dutch EHR supplier, active in both countries delivering total healthcare soft-
ware solutions for healthcare organizations. ChipSofts’ software platform HiX27 (Health-
care Information eXchange) is a hospital-wide information system managing electronic
health records. Epic is the second-largest software supplier in the Netherlands. Remark-
able, we see Epic infiltration in the Belgian market, but just outside Flanders in a French-
speaking hospital. Interestingly, Epic is a global software provider that benefits from global
innovation implemented within numerous medical institutions. The global presence makes
further research attractive for Philips Research by innovating in a worldwide applicable so-
lution. Nexuzhealths’ EHR solution is only present in the Belgian (Flanders) market and
holds 45% of the market share. Similarly, the Primuz EHR, developed by UZ Brussels, is
only active within Flanders.

5.2. APPROACH DIVERSE EHR SOFTWARE SUPPLIERS
This research aims to develop a scalable solution that can be applied within Flanders and
the Netherlands to extract cardiovascular data from different EHR platforms. We are cur-
rently providing an overview of the essential EPD suppliers present on the Flemish and
Dutch markets through market analysis. Following the market analysis results, we have ap-
proached the most present EHR suppliers to obtain more information about the software
platform’s architecture and functionality. Contacting EHR vendors is challenging and refers
researchers to medical institutions to discuss the architecture and functionality. EHR ven-
dors are unwilling to share their architecture with third parties to maintain their dominant
market share. Second, we must always consider privacy legislation regarding the use of
medical data as EHR vendors do not own the medical data stored in their software plat-
form. Unfortunately, we received rejecting signals from hospitals because no resources
could be made available to elaborate on this study in detail due to the Covid-19 pandemic.
In general, we noticed that EHR suppliers offering an EHR platform as a SaaS business so-
lution were very closed to any form of collaboration. For one particular supplier, we were
able to enter into a discussion. Ultimately, no follow-up has been giving for further partic-
ipation in this research. The other SaaS provider did not respond at all to any form of re-
quest participating in this study. Disregarding the SaaS suppliers in Belgium, the most fre-
quently present software suppliers are ChipSoft and Epic. ChipSoft, as a software supplier,
gives the impression of being very closed. Due to a research agreement between Philips
and the Belgian Ziekenhuis Oost-Limburg (ZOL) hospital in Genk, we agreed on an intern-
ship agreement to investigate how to approach cardiovascular data extraction from the HiX
ChipSoft software platform in a scalable way. The close cooperation with ZOL Genk gives us
the ultimate opportunity to test our proposed software architecture against our developed
prototype. Consequently, we will refer during this research to the ChipSoft framework on
which we will base our study. In contrast, Epic was willing to cooperate with our study but

27https://www.chipsoft.be/oplossingen/452/HiX
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indicated to contact specific hospitals for further investigation. Due to the lack of resources
within these hospitals, we could not continue this research for the Epic framework.

6. SOLUTION DESIGN
In this section, we would like to elaborate on the software solution design in response to the
proposed solution’s practical needs. Since we focus principally on EHR systems to extract
cardiovascular information, we want to continue our investigation by answering sub-study
question two [SRQ2] examining how to extract cardiovascular data in various clinical set-
tings. To investigate how to extract cardiovascular information, we need to consider pos-
sible variations between different ChipSoft EHR implementations due to locally applied
customizations made during the EHR implementation process in various medical organi-
zations [Tutty et al., 2019]. However, since we aim to find a software solution to reduce im-
plementation costs and make integration projects more profitable, we need to reduce the
time required to extract cardiovascular data from various CDRs. Therefore, we are looking
for a multi-institutional deployable mechanism to extract the data with as little effort as
possible for healthcare integrators. Consequently, we want to design our software solution
to represent the extracted data concepts from various ChipSoft EHR implementations in a
standardized manner [Kruse et al., 2016]. In subsection 6.1, we will describe in more de-
tail how we approach the data extraction mechanism. Secondly, we want to elaborate in
subsection 6.2 on the first part of sub-research question three [SRQ3a], discussing the data
representation variations of clinical information across different medical environments.
Additionally, we outline how we will accommodate these variations in our software design.
Finally, in subsection 6.3, we want to anticipate the design decisions on how to deal with
the transformation of specific data concepts, which should be an excellent stepping stone
towards our practical implementation. Figure 13 depicts a general conceptual overview of
the proposed solution design to which we refer throughout the following sections.

6.1. DATA EXTRACTION
Healthcare institutions have large amounts of data available to support clinical processes,
and EHR vendors offer various (customized) solutions to satisfy healthcare institutions’ in-
formation needs. After a thorough analysis and several discussions with EHR vendors, we
cannot find any standard method to extract cardiovascular data from various EHR plat-
forms. Proprietary EHR tooling and specifically written SQL queries on data warehouses
can offer possible solutions to meet the required (local) information needs. Data ware-
house solutions are used by healthcare institutions and form a separate repository mainly
used for reporting, research, and data analysis on EHR content [Karami et al., 2017]. A
significant advantage of a data warehouse is that the production EHR environment’s per-
formance is not compromised since data queries do not take place on the production EHR
database. Furthermore, data warehouse queries can be composed much more complicated
than EHR tooling, as data warehouses can contain more detailed information [Karami et al.,
2017]. Considering the data warehouse database synchronizes with the EHR production
database at fixed times, there is no real-time alignment with the production environment.
Additionally, developing a software solution to extract cardiovascular data using a data
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Figure 13: Schematic overview of the general design concept
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warehouse demands that the data extraction process produces normalized data exchange
formats making the solution multi-institutional deployable [Gavrilov et al., 2020]. The lack
of standardization between different data warehouse solutions in various clinical environ-
ments makes it difficult for a data warehouse to deal with existing EHR variations. Addi-
tionally, this data warehouse solution would only be useful if the hospital owns a data ware-
house solution. This possible non-existence causes limitations in the solution’s scalability
and justifies our choice not to use a data warehouse to extract the required information.

Because we focus this research on the ChipSoft framework, depicted light blue in figure
13, we aim to find a ChipSoft specific solution to ensure efficient multi-institution deploy-
ability. After a thorough analysis of the possibilities within the ChipSoft platform, we con-
cluded that ChipSoft has a data extraction tool available (called overview generator) within
the software platform able to generate data overviews on any possible data channel. The
content extracted from the EHR using the overview generator constitutes a representation
of the information as registered within the ChipSoft EHR platform. The reason for choosing
the ChipSoft overview generator is to make data extraction queries easily interchangeable
between different hospitals. This opportunity enables us to query diverse ChipSoft EHR
implementations through a predefined query aligned with our software solution.

6.2. DATA REPRESENTATION
Although we focus on the EHR software platform, acting as a single source of truth to ex-
tract clinical data, EHR systems can represent clinical information differently. Despite vari-
ous initiatives to promote standardization in healthcare, standardization lacks between dif-
ferent multi-vendor EHR implementations. Analysis shows that EHR vendors themselves
determine how they represent data internally in the EHR platform. Since EHR vendors
also see the need for standardization to introduce uniformity in healthcare, ChipSoft pro-
motes standardization by the unambiguous registration of clinical concepts using standard
content. We can define standard content as a ChipSoft-specific coding system containing
predefined clinical content and guidelines of different clinical concepts to promote stan-
dardized information exchange across medical organizations using the ChipSoft EHR. By
employing standardized representations, it is possible to request data in a standardized
manner for the ChipSoft framework. Standard content can offer uniformity promoting
data sharing capabilities, and ensures more standardization during cardiovascular report-
ing within the EHR. The ability to identify unambiguously clinical concepts across various
medical institutions is fundamental for our research. Using standard content will be es-
sential to deliver a software solution deployable among diverse clinical settings. Future
research should determine whether we can apply similar extraction techniques for other
EHR vendors.

Using Chipsofts’ overview generator, we emphasize the use of standard content to make
optimal use of standardization. The extraction method allows us to preload a controlled vo-
cabulary for specific clinical concepts into our practical implementation. Doing so stream-
lines data capture across different hospitals and returns at any time a controlled vocabu-
lary dataset. The orange data representation box, depicted in the data layer of figure 13,
represents a controlled vocabulary dataset returned by the ChipSoft extraction tool. We
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foresee that the query results will depend heavily on how clinical practitioners register the
data in other medical institutions. The applied clinical workflow and clinical practitioners’
willingness play a crucial role in registering clinical data. Therefore, clinicians must adapt
their working methods to register data unambiguously and efficiently. We will validate our
query’s reusability in various hospitals during section 8.2 where we handle scalability vali-
dation.

As described above, we can rely on ChipSoft’s overview generator tool to accomplish the
first step towards an unambiguous and consistent data extraction method. Using a generic
query, we can extract specific cardiovascular concepts from the cardiovascular report de-
fined in the ChipSoft software platform. The defined cardiovascular report includes all rel-
evant parameters recorded before, during, and after the patient’s PCI procedure within the
ChipSoft framework. Since ZOL Genk acts as a ChipSoft reference site in Belgium, par-
ticipating in the cardiovascular report development, all clinical concepts embodied in the
reference report are based on ChipSoft standard content. On the other hand, the ChipSoft
overview generator allows us to transfer predefined queries between different ChipSoft im-
plementations returning clinical concepts defined as standard content. This approach em-
powers us to apply the data extraction method in a multi-institutional environment. The
query’s reusability allows us to generate an output aligned with our proposed software so-
lution. Building this query required an enormous amount of time and knowledge about the
EHR’s data structures and location of the cardiovascular concepts. We elaborate further on
practicing the data extraction solution provided by ChipSoft in section 7.1.

A potential challenge for data interoperability within healthcare is how EHR vendors
and clinical practitioners apply proprietary clinical terminologies. Because clinical physi-
cians are hugely involved in these software platforms’ daily use, they can significantly im-
prove the usability of the software [Reisman, 2017]. On the other hand, they introduce data
variations between different healthcare organizations. Since other healthcare institutions
sometimes see the usefulness of certain local adjustments, ChipSoft integrates regularly
customized hospital demands with proven service into the standard content and identi-
fies these concepts with an internal Chipsoft standard content identifier. Subsequently, a
Chipsoft managed distribution mechanism ensures the transfer of this newly added entity
to all hospitals using the ChipSoft EHR, bringing uniformity between diverse clinical envi-
ronments.

Figure 13 illustrates a general schematic overview where various clinical data reposito-
ries contain important cardiovascular information. We represent these CDRs as dark blue
entities. As discussed earlier, we assume the centrally deployed EHR platform integrates
cardiovascular information originating from diverse CDRs through HL7 v2 communica-
tion. ChipSoft uses a universal communication server responsible for all HL7 v2 data in-
tegrations with the EHR software platform. Integration consultants must ensure data con-
version validity according to ChipSoft’s clinical content definition before accepting data
from clinical practitioners and suppliers’ software systems. The light blue depicted ’Chip-
soft Data Validation’ entity ensures the validation of incoming data within the ChipSoft
framework. Because we assume that not all CDRs integrate their valuable cardiovascular
information with the EHR platform, we offer a second extraction mechanism to capture
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cardiovascular information. On top of the extraction mechanism to capture cardiovascular
information from the EHR platform, we provide a second extraction mechanism to collect
cardiovascular information directly from HL7 v2 data. This second extraction mechanism
is handled by the ’HL7 Data Inbound Interface’ software component in the green depicted
proposed software solution entity in figure 13.
We can now make the previously discussed interoperability solution, represented in figure
7, more specific by unambiguously representing cardiovascular information to a common
data model in two ways. The proposed prototype offers the possibility to capture cardiovas-
cular information from two data extraction channels. A first extraction channel provides a
semantic mapping towards a common data-model by capturing HL7 messages, while a sec-
ond extraction channel provides this semantic mapping from multi-vendor EHR systems.
In addition to the current implementation delivering data integration from the ChipSoft
EHR and the HL7 data channel, we can scale-up the prototype to support more vendor-
specific EHR extraction channels. All realized integration channels of the prototype we
marked green in figure 14.

Figure 14: Extended data model
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6.3. DATA TRANSFORMATION
Data transformation is one of the biggest challenges and is the most complex part of the
ETL process [Ong et al., 2017]. To develop a multi-institutional solution suitable to express
clinical information in a standardized way, we need to represent the clinical information
as much as possible towards internationally recognized terminology systems. We need to
achieve this by delivering a syntactic and semantically harmonized representation of the
source dataset after performing a series of operations on the source dataset to comply with
the target clinical data model. We represent this series of operations as a data transforma-
tion. Data transformation is converting the data and structure of a source data element
into a required data format of the target system [Mate et al., 2015].

Since we want to strengthen our solution, green depicted in figure 13 with debugging
and troubleshooting capabilities, we aim to store the raw data (CSV-file) untouched in a
database. Continuously having access to raw data enables us to identify and resolve is-
sues faster. This mechanism, managed by the software component ’Data Access Logic’,
offers the possibility to control and manipulate the transformation process during devel-
opment activities from the SQL database environment. Once the source data is in place
and extracted by the ’Data Access Logic’ from the SQL environment, we want to tackle data
quality as soon as possible. This pre-transformation phase, depicted in the green area as
the ’Character set encoding/XML validation’ entity, must make the data suitable for further
transformation by the proposed solution. Since one of the main tasks of a data transfor-
mation is about reformatting data structures, we want to describe the data representation
in our software solution. This description defines the XML message structure the message
must conform to before processing by the integration engine. We depicted the message
definition logic into the ’XML schema structure logic’ entity of figure 13. Describing data
structures is essential as we want to reformat data structures towards different hierarchical
output formats. Establishing such a reformatting between two data structures is achieved
through a mapping file incorporating both messages’ input and output XML schema struc-
ture. Because the XML schema structure and the ’mapper logic’ entity are highly dependent
on each other to fulfill data transformation, we connected in figure 13 both entities with a
dotted line in the proposed software solution artifact. To efficiently execute and manage
the transformation process of the obtained data from Chipsofts’ overview generator, we
aim to modularize this process into different sub-processes. ETL modularization is a tech-
nique to abstract common tasks into reusable units of work. We want to modularize the
ETL process by recognizing patterns in the obtained dataset Simitsis et al. [2009] to model
extracted source data concepts according to their corresponding FHIR resource. Conse-
quently, based on the pattern analysis, we realized direct mappings between the source
data concepts and their associated FHIR resources. One of the significant advantages of
applying a modulated design is splitting the transformation process into different sub-
processes. By separating the main transformation process into diverse (parameterized)
sub-processes, the software solution becomes more transparent and better prepared for
potential future extensions.
To maintain a clear overview of all clinical concepts during the ETL process, we give each
extracted clinical concept a unique identifier. Section 5 described earlier that this research
refers to a cathPCI dataset published by the NCDR. This dataset refers to various clinical
concepts relevant to cardiovascular PCI procedures suitable to the American healthcare
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quality monitoring program. Because the PCI dataset uses a wealth of standardized data
concepts, it represents each clinical data concept by a unique numeric identifier. Figure 15
represents an example of such a clinical concept expressing a ’Percutaneous Coronary In-
tervention Indication’, presented as concept ’7825’. We have applied a similar methodology
within our software solution to identify each clinical concept as a numerical data element.
This method helps us grouping all extracted clinical concepts into predefined categories
based on the identified numerical data element.

Figure 15: Reference towards clinical concept

By establishing a linking mechanism to link clinical concepts to a specific modular-
ization process, we aim to prepare our solution to support future extensions. This link-
ing mechanism ensures a relatively straightforward modification of the solution without
changing the code. To manage data transformations, we mainly use lookup tables in our
software solution. A lookup table is a multi-column data table containing input values to
provide a simple code-mapping solution without a database. The advantage of such a so-
lution is that lookup tables offer a centralized solution to manage all code mappings in
the integration solution. Additionally, lookup tables inject input validation as they only re-
turn translated values in case source information is adequately formed. In the case of no
matching values, rejection of the input occurs. Although the FHIR specification also pro-
vides options to manage relationships between diverse clinical concepts by implementing
the ConceptMap28 FHIR resource, this approach is more challenging in terms of maintain-
ability because integration consultants cannot efficiently perform modifications. Lookup
tables offer a much better solution because they are better accessible without changing the
code and significantly affect the solution’s maintainability and implementation time.

7. SOLUTION IMPLEMENTATION
This section elaborates on the entire prototype development process we have realized in
close collaboration with ZOL Genk to reveal the practical feasibility and shortcomings spe-
cific to the ChipSoft framework. In the subsections below, we discuss the entire ETL pro-
cess shaping the entire software architecture based on the software design concept dis-
cussed in the previous section. Figure 26 depicts the complete solution architecture dia-
gram. Since we have not yet answered entirely the previously defined sub-research ques-
tion three [SRQ3b], we will first answer SRQ3b based on the practical experience gained
during the extraction of clinical information from the ChipSoft EHR. Subsequently, we aim
to answer sub-research question four [SRQ4] on the results obtained by SRQ3b. To answer
this question, we developed a prototype to determine how we can realize the data transfor-
mation towards an interpretable clinical dataset.

28https://www.hl7.org/fhir/conceptmap.html
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7.1. DATA ANALYSTICS
In this subsection, we first answer sub-research question 3b [SRQ3b] and subsequently
discuss how we can practically extract information using the ChipSoft generator. Subse-
quently, we analyze the extracted cardiovascular ChipSoft dataset and model the clinical
concepts towards their corresponding FHIR resources. We will then analyze these data
modeling activities to optimize the prototype’s transformation process based on pattern
recognition.

Since we based this study on the clinical concepts specified in the CathPCI data dictio-
nary, defined by the NCDR, we experienced difficulties during implementation to find all
defined clinical concepts within the ChipSoft EHR. One of the key limitations we encoun-
tered relates to unclear clinical concept definitions included in the cathPCI registry data
set compared to the clinical concepts defined in the EHR [Faxon and Burgess, 2016]. A rea-
sonable cause of this is the existence of different quality registration entities operating in
diverse countries and the lack of standardized clinical concepts across registries and EHR
systems [Flynn et al., 2005]. Consequently, depending on the geographic region, EHR sys-
tems record clinical information differently and do not always capture clinical concepts as
defined by data quality registration entities. For example, we cannot find a reference in the
ChipSoft EHR to the clinical concept ’patient origin’ while it is part of the dataset defined
by the NCDR. The reason is that Belgian and Dutch PCI quality-oriented registries are not
asking for this information. Additionally, the Covid pandemic prevented us from extract-
ing even more complex clinical concepts and medication data from the EHR, for which
we required the assistance of cardiologists. Ultimately, we were able to identify 67 clinical
concepts in a structured format from the EHR out of a total of 345 defined clinical concepts,
representing approximately 20% of the complete cathPCI dataset. With the support of car-
diologists, we envision expanding the currently extracted dataset by 80%, representing ap-
proximately 35% of the total number of clinical concepts defined in the cathPCI dataset.
Due to the ever-increasing collaboration between medical institutions and the drive for
standardization in healthcare, we expect an accelerating trend using structured data in the
coming years. This trend may influence our results positively and make the solution even
more attractive in the future. Some essential aspects to justify this trend are the lower ef-
forts and costs required to ensure structured data quality compared to those required when
using unstructured data [Galetsi et al., 2019].

Figure 16 represents an example query created by the ChipSoft overview generator to
extract the clinical concept ’Stress Test Performed’. As mentioned earlier in section 6.3, this
clinical data concept is referencing to data element ’5200’ of the PCI data-dictionary. The
query’s output returns a boolean value stored into the data element Stress_Test_Performed5200
delivered to our solution. First, the query refers to a unique collection (CS00396378COLL)
object representing various tests performed for the PCI study. ChipSoft identifies each ID,
starting with ’CS’ as part of ChipSofts’ standard content, present within every ChipSoft im-
plementation in Belgium and the Netherlands. The collection represents a selectable value
set for the cardiologists in the EHR software. Next, we filtered the collection ’CS00396378COLL’
to remain only the performed tests representing a stress test. Depending on the number of
selected tests representing a stress test, the query assigns a boolean value indicating the
query’s outcome. A boolean value ultimately shows whether or not a stress test took place
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during the PCI examination. In the appendix of this study, we list three different examples
part of the entire ChipSoft query. The query results represent a consistent and fully imple-
mentable dataset aligned with the proposed software solution, interchangeable between
different ChipSoft EHR implementations. Figure 40 shows a first example where it is pos-
sible to access the patient’s first name directly. This type of query is the easiest method
to access data via the ChipSoft generator tool. A second example illustrates in figure 41 a
query where we applied a simple expression to determine whether the patient is a tobacco
user or not. As a final example, we present in figure 42 a more advanced query to determine
the application of specific cardiovascular tests during a PCI procedure. In those figures, we
highlighted the query expression in yellow and the corresponding clinical concept contain-
ing the query results in green.

Figure 16: Example of data extraction using ChipSofts’ overview generator

After running the developed query in the ChipSoft extraction tool, we obtain a comma-
separated values (CSV) file holding all the extracted information. Suppose we reflect this
action on the entire ETL process. In that case, we can associate the earlier described data
preparation stage, aligning the cardiovascular information with our prototype, to the ex-
traction process as the first step towards an unambiguously defined dataset. The query’s
strength envisions the interchangeability between various healthcare institutions that im-
plemented ChipSoft as an EHR. Next, our software solution needs to pick up the returned
CSV file containing all extracted data from the EHR for further processing.

Once the CSV input file is in place, questions arise about the second step in the ETL
process, transforming the CSV input towards the corresponding FHIR resources. As the
representation of clinical concepts into CDRs is subject to variation, we need to consider
a flexible mechanism to translate various vocabularies towards internationally recognized
terminologies. For this reason, we aligned the ChipSoft data transformation mechanism
entirely with the integration solution’s existing translation mechanism handling the se-
mantic mapping of the HL7 v2 data channel. This architecture’s advantage empowers us to
manage diverse extraction channels’ semantic mappings through one centralized configu-
ration setting managing data transformation. First, we analyzed all extracted clinical data
concepts embodied in the output of the ChipSoft overview generator. Using the FHIR spec-
ifications, published on the HL7 FHIR specification website29, we linked each extracted
clinical concept towards their corresponding FHIR resource. The FHIR standard defines
a FHIR resource as a blueprint representing a building block to exchange healthcare data.

29http://hl7.org/fhir/
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To maintain a clear overview while mapping all extracted clinical concepts to their corre-
sponding FHIR resources, we used a mapping worksheet, an Excel file supporting us to un-
derstand better the data representation requirements conform to the FHIR standard. This
approach has made it possible to model all data elements in associated FHIR resources
and enrich them semantically with their corresponding codings. Figure 19 represents a
schematic overview in UML style, providing an overview of the applied FHIR resources af-
ter mapping all obtained clinical data concepts. The data model depicts a graphical rep-
resentation of the required FHIR resources and their dependencies, expressing a general
data model needed to convert all obtained cardiovascular data concepts from the ChipSoft
framework to FHIR resources. Table 1 in the appendix of this study presents a brief de-
scription of the meaning of all used FHIR resources. Figure 17 shows a graphical overview
reporting the variety among the number of FHIR resources required to model the extracted
cardiovascular information originating from the ChipSoft EHR. Based on a total of 67 mod-
eled FHIR resources, we determined that we can model most clinical concepts, 52 to be
exact, as FHIR Observations resources. In general, FHIR Observation resources represent
measurements and assertions made about a patient undergoing an examination in a car-
diac intervention center.

Figure 17: Diversity among the number of applied FHIR resources required to model ChipSoft input

When modeling a FHIR Observation resource, we can determine the observation type
based on the observation result. In the previous section 6.3, we described this process as
data modularization. A simple example is the modeling of an observation in which the an-
swer can be yes or no. Such kinds of observation types we modeled as valueBoolean obser-
vations representing a boolean output. In addition to the valueBoolean observation types,
we recognized other observation types to model specific obtained information correctly.
Figure 18 represents a subdivision of the 52 classified FHIR observation resources based on
the various recognized observation types. In section 8.2, validating the prototypes’ scalabil-
ity, we discuss in more detail the numbers shown in figure 18. We aligned our solution with
all determined FHIR Observation resource types by creating sub-functions responsible for
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mapping these appropriate observation types. As discussed earlier, this modularization
technique improves the code’s readability and maintainability [Sedano, 2016]. Adjustments
considered necessary for specific observations can be much easier to locate than handling
all mapper activities into one large and unclear main mapper.

Figure 18: Diversity among the FHIR Observation types

Furthermore, due to the growing volume and variety of data within an EHR, we also
have to deal correctly with the concept of data quality. Data quality in healthcare must
consider several characteristics, including accuracy, validity, and consistency [Feder, 2018].
Data accuracy is an essential feature for exchanging clinical data and clinical decision sup-
port systems [Van Hoeven et al., 2017]. By applying validation techniques before accepting
clinical data from diverse CDRs, EHR solutions validate patient information and several
clinical concepts. As we retrieve the information directly from the EHR, our software solu-
tion can immediately perform the necessary data transformations to correctly model vari-
ous extracted clinical measurements towards their corresponding FHIR resource. The con-
cept of data consistency is a fundamental property for our software solution, as we want
to store clinical data in a standardized and unambiguous way. Returned clinical concepts
from the EHR, implemented in different medical settings, must be predictable to enable
data transformations towards unambiguously defined clinical concepts. The presence and
use of standard content in the Chipsoft EHR are crucial for delivering data consistency
among diverse clinical environments. According to Aerts [2018], it is preferable to avoid
data transformations as much as possible during mapping activities to ensure data quality.
Any form of data transformation opens up the possibility of introducing errors and reduc-
ing the data’s reliability. By making optimal use of the ChipSoft standard content in devel-
oping the extraction query, we strongly promote the returned values’ predictability across
multi-institutional environments. In section 7.3 we describe in more detail how we can
subsequently flexibly manipulate this returned data to facilitate conversion to the desired
output.
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Figure 19: FHIR datamodel
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7.2. CHIPSOFT DATA IMPORT
This subsection explains how we will practically import the CSV content extracted from the
ChipSoft EHR into the prototype. As discussed earlier in subsection 4.3, we decided to build
our software solution on the Orion Health Rhapsody platform to maintain interoperabil-
ity with other Philips interoperability solutions. Central to the concept of this integration
platform are routes and communication points (CPs). Routes form the path taken by the
message passing through the Rhapsody integration engine, while CPs connect with those
paths. Throughout the design process of our software architecture, we employed design
patterns with a proven integration solution efficiency to minimize the complexity of the
software architecture’s ability to handle variations in a flexible manner [Hohpe and Woolf,
2004]. Further, we want to maintain a clear overview of the entire message flow between
the various software components. The first developed route available in the software archi-
tecture diagram, represented in figure 20, handles data import.

Figure 20: Data import route

Once the ChipSoft extraction tool drops a CSV file, the CP of the data import route is
triggered to pick up the file, starting processing the content. The intention is that the Chip-
Soft extraction tool systematically delivers a CSV file to keep the FHIR CDR information up
to date. An event-driven daily scheduled task, triggered by the ChipSoft task server, can
systematically deliver new cardiovascular data extractions from the ChipSoft EHR. Since
cardiologists regularly report their conclusions about the cardiovascular examination later
than the examination date, minor adjustments to the cardiovascular report may occur af-
ter the surgery date. For this reason, we propose that the daily data extraction includes the
content of all cardiology examinations performed in the past seven days.
Because Rhapsody’s internal data format is XML, the route handles the message translation
of the CSV content to an XML structure. A script written in Javascript (CSV/XML translator
process) takes care of this, verifying the input of the CSV content.
The input validation process prevents specific input from causing the XML code to be
found syntactically incorrect [Grijzenhout and Marx, 2013]. It is also an essential valida-
tor to prevent fraudulent practices by injecting malicious code.
Finally, this route stores the data in a Microsoft SQL relational database. Furthermore, the
data import route’s output CP contains logic to check the input content’s existence in a SQL
database. The output CP verifies the cardiovascular report’s presence into the database
based on a unique identification number referring to the cardiovascular report extraction.
The outbound CP creates a new SQL entry representing a cardiovascular report extraction
in the case of non-existence. In contrast, the existence of a cardiovascular extraction report
triggers an update of an existing SQL entry. We identify non-existing and updated entries in
the database with a processing flag set to zero to indicate the SQL database’s cardiovascu-
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lar report’s processing state. Determining whether to process specific SQL entities further
depends on the value of the processing state.

7.3. CHIPSOFT EXTRACTION FRAMEWORK
After converting the CSV file content to a SQL table, the solution is ready to convert the car-
diovascular reports towards their corresponding FHIR resources. It is important to note
that the research’s elaborated solution has mainly focused on data processing obtained
from a ChipSoft EHR extraction. To minimize the software architectures’ complexity, we
want to decouple the various EHR software platforms from the prototype. On the other
hand, loose coupling requires maintaining a clear overview of the message flow. To keep
track of the message flow in the prototype, we want to label every incoming message. Mes-
sage labeling can help the software solution manage message flow routing by providing
each particular source CDR (EHR platform) a vendor-dependent label specifying the ex-
tracted data’s origin. Based on these labels, the software solution can apply specific routing
decisions to facilitate different EHR data representations.

Figure 21: ChipSoft extraction route

Figure 21, displays a polling consumer CP scanning unprocessed entries in the SQL
database. This polling mechanism is checking each second for unprocessed entries. The
polling consumer is a database CP in input mode, used in Rhapsody to poll a SQL table to
detect changes. Once the polling mechanism detects an unprocessed entry, the CP exe-
cutes a customized query, generating XML data representing the extracted data. It is essen-
tial to mention that HL7 v2 data originating from diverse CDRs can also enter this process-
ing route through the event-driven consumer CP. After converting all messages to XML, the
extraction route will merge all messages to fulfill a semantic mapping of both data sources
in one place. This design delivers a significant advantage in terms of maintainability since
we offer an interoperability solution to manage all semantic mappings in one central place,
no matter how many EHR systems the prototype supports.
An analysis of the XML structure after the polling consumer (EHR channel) reveals that we
could improve the polling mechanism’s standard XML format. The default applied XML
schema after the polling process displays the data in an unstructured style. Since we are
looking for a scalable and performant solution, we prefer to obtain a suitable XML struc-
ture immediately after running the custom query without manipulating the XML layout.
A well-thought-out XML structure must enable us to deal with data transformations effi-
ciently. By immediately obtaining the XML structure in the desired format, grouped by the
FHIR resources obtained from SRQ3b, we want to facilitate iteration to make the transfor-
mation process more efficient and scalable. Introducing an iterative character in the XML
structure should enable the solution to support adding new FHIR observations effortless
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without making changes to the code. For example, extending the prototype with a clinical
concept categorized as a particular FHIR resource is just a matter of incorporating the data
within the XML hierarchy’s desired element. Figure 22 shows part of the query applied to
define the XML hierarchy of the extracted data without manipulating the default XML for-
mat generated by the integration platform.

Figure 22: Part of ChipSoft Polling query

In addition to scalability, we also consider performance, the time needed to fulfill the
entire ETL process, as an essential requirement of the software solution. The query’s de-
sign impacts the solution’s performance as we can avoid an extra mapper by immediately
obtaining the XML structure in the desired format. Since mappers require an investment
in time and resources, we can gain significant time savings by eliminating an additional
mapper to get the data into the required format. In section 8.3, we describe performance
validation in more detail. Another essential element accelerating the performance of our
solution is the processing of messages in batches. This technique is also used in other do-
mains and ensures merging several messages as one message [Avilés-González et al., 2016].
This batch operation aims to drastically reduce overhead by eliminating the metadata pro-
duced from each message.
The content filter component removes the metadata from the extracted data and outputs
only refined extracted information.
The next applied design pattern used within this route is the splitter pattern. We apply this
design pattern to divide a message consisting of several elements into separate messages.
We call this process de-batching.
Subsequently, the message enricher design pattern enriches each separate message ob-
tained after the splitter pattern with additional content. The extra information added to the
message is irrelevant and employed within the software solution to distinguish between the
messages’ origin. The software solution assigns a distinction label based on a source iden-
tification label. Using the source identification label, we can later make specific routing
decisions based on the message’s origin. The message content enricher permits the solu-
tion to route messages from various EHR systems to separate data mappers. The Rhapsody
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variable manager provides a mechanism for specifying environment-specific parameters
to configure properties for related components. This technique introduces enormous flexi-
bility within the software solution to make appropriate choices without adjustments within
the code. Once the content enricher process assigned properties to the XML messages to
control the message stream, the solution is ready to accomplish the extracted data map-
pings to the corresponding FHIR resources’ elements.
Since FHIR is a continuously evolving standard Benson [2010], we need to prepare our soft-
ware architecture to handle distinct FHIR versions efficiently. To develop a solution that
can flexibly deal with this variety of FHIR standards, we offer a solution with two data trans-
lators. The primary data translator, depicted in figure 21 is responsible for translating the
extracted content into a normalized version. A second mapper discussed later in subsec-
tion 7.4 manages the normalized FHIR version’s translation into the desired FHIR standard.

The existence of a data integration solution to convert HL7 v2 data channels to FHIR
resources allowed us to develop further and fine-tune an already existing software archi-
tecture. Moreover, we could reuse existing message definition files applied in Rhapsody
describing various FHIR resources’ structure. To speed up the prototype’s development
process, we developed our software solution based on earlier Philips’s design decisions to
manage the variety in FHIR versioning. To build a flexible conversion mechanism to man-
age diverse and upcoming FHIR standards, software architects decided to use an older
DSTU1 standard as a reference standard during the FHIR toolkit development process.
Due to this decision and the ability to reuse the existing message definition file describ-
ing the FHIR DSTU1 message structure, we used a message translator pattern to map the
extracted cardiovascular content towards the existing referencing (normalized) FHIR spec-
ification standard. Before creating a Rhapsody translation component (’translator FHIR
DSTU1’ component in figure 21), we must define two message definitions describing the
input and the output message structure. Regarding the message translator’s input, the in-
put message’s definition depends on Rhapsody’s incoming XML structure after process-
ing the offered CSV content. In contrast, the message translator’s output definition file is
reusable from the already existing second message translator described in the following
subsection 7.4 as the second message definition’s input definition is similar to the output
definition of the first message translator component. Once both message definition files
are in place, a Java mapping engine manages the necessary mapping activities. Such a
mapping engine consists of a primary function with two parameters referring to the map-
per’s input and output message. To achieve this, we implemented separate sub-functions
for each unique FHIR resource holding the logic to map all corresponding FHIR resource
data elements. As discussed earlier, delegating the logic to sub-functions empowers us to
develop and maintain the code easily. Figure 43 shows an example where the mainChipSoft
function delegates responsibility for each FHIR resource mapping towards a correspond-
ing sub-process.
To realize consistent translations, the RhapsodyTableLookup() function, depicted in listing
1, permits us to build flexible lookup operations by enabling the data translator to look up
specific data entities and translate them accordingly. Figure 23 depicts an example of the
lookup entry managing the translation of the clinical concept extraction with ID ’7825’. For
this specific observation, the RhapsodyTableLookup function in listing 1 performs a lookup
to translate the obtained content towards a terminology code, representing the meaning of
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the clinical contents’ value. The function RhapsodyTableLookup() provides access to the
lookup table ’ChipSoft _NCDR_CodeableConcepts_NormalizedTranslation’ parameterized
with several parameters listed in figure 44 of the appendix to facilitate a dynamic transla-
tion towards a clinical code defined in the cathPCI dataset.

RhapsodyTableLookup (gNCDRCode ,"
ChipSoft_NCDR_CodeableConcepts_NormalizedTranslation "," NCDR_Code ","
"," ObservationCode ",observationCode ," Text_To_Be_Looked_Up ",value);

Listing 1: RhapsodyTableLookup function translating an observation value for a specific observation code

Figure 23: Rhapsody lookup table managing the translation of the observation value.

By applying this translation method, we could represent all clinical concepts unam-
biguously according to international terminology standards. Because we intensely expe-
rience that the mapping of clinical terminologies is not evident, we asked during imple-
mentation assistance of a third-party company30 specialized in clinical concept mappings.
Since clinical concepts are not always correctly defined within EHR systems, it is often chal-
lenging to find the appropriate terminology defined in international coding systems. The
existence of comparable vocabularies in various standards also counteracts the mapping
process and introduces confusion. Together with this company, we realized most of the
mappings for the ChipSoft extraction. As expected, we also encountered some ambiguities
in mapping specific clinical source concepts incorporated into multiple international cod-
ing systems. We solved this by linking clinical concepts precisely and with as much overlap
in meaning as possible. On the other hand, we also discovered clinical concepts where we
could not realize an unambiguous mapping. In this situation, we have applied a fictitious
coding standard referring to ChipSofts’ standard content.

The effort and complexity involved in establishing correct mappings make maintain-
ing these local mapping tables extremely difficult. Moreover, manual mappings ensure a
high error sensitivity of the mappings concept resulting in incorrect conversions. Addition-
ally, we must consider an increase in the number of future mappings to prepare the pro-
totype for a potential expansion supporting multi-vendor interoperability. Consequently,
local mapping tables cannot ensure the solution’s maintainability to achieve a scalable and
enterprise-wide interoperability level. To avoid this shortcoming, we want to delegate the
logic of a local terminology solution to a local hosted enterprise-wide terminology system,
represented as a red entity in figure 13. This enterprise-wide terminology solution must
take responsibility for the necessary translations of different clinical concepts, even for
other interoperability solutions provided by Philips. In addition to internationally termi-
nology coding systems, the enterprise-wide terminology solution can also host our already
realized mappings of locally applied codes.

30https://www.furore.com/
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As we strive for a maintainable multi-institutional solution, we propose implementing a
centralized terminology solution within the Philips ecosystem. We foresee integrating an
external terminology server hosted into the Philips ecosystem through a lightweight and
secured REST API call instead of addressing the locally hosted logic. Several sources em-
phasize the need for server terminology solutions within medical institutions [De Quirós
et al., 2018] [Metke-Jimenez et al., 2018]. In the Netherlands, there are very recent devel-
opments ongoing in applying a national terminology server that can serve to publish ter-
minologies of national importance to local terminology solutions automatically 31. This
evolution should improve the maintainability of local terminology solutions but lacks the
support of local translation tables. Due to the very recent developments, this solution has
not yet delivered proof of concept.

To tackle the just discussed problem avoiding confusion when similar concepts exist in
different terminology standards, we aim to represent each extracted clinical concept un-
der one common denominator in our prototype. Several research projects discussed in
the related work section show that we can solve this problem using UMLS. To integrate
UMLS into our software prototype solution, we need to access an external UMLS endpoint
through a UMLS API. Since it is not allowed to set up an external API call from our test en-
vironment in the hospital with UMLS, we have analyzed how we can implement a practical
test scenario. Before demonstrating a practical test, we have applied for a research license
to justify UMLS’s use within this research framework. Since UMLS requires access to an
external environment, and insecure endpoint APIs are vulnerable to security attacks Abrar
et al. [2018], we must take the necessary security measures to prevent cyber-attacks. Al-
though security falls outside this study’s scope, we hold it is worth mentioning security is
priority number one, especially in medical environments [Mattei, 2017]. To set up a secure
UMLS call, we first need to request a user access token (ticket-granting ticket) with a lim-
ited validity period of 8 hours. After successful authentication, we can request a single-use
service ticket (ST). The obtained ST enables us to perform one UMLS call during a time
window of 5 minutes. In case we want to implement UMLS within our solution, it is desir-
able to consider that we first need to set up secure authentication with the UMLS system.
We must therefore build in the necessary logic to establish a secure connection before per-
forming a translation. Once we have a secure connection, we can query the external UMLS
server to obtain uniform terminology. Based on an internationally recognized terminology
concept, we can subsequently obtain a unified view of this previously identified concept
by the UMLS standard. Figure 24, illustrates how to translate a SNOMED-CT code, repre-
senting a clinical concept ’Stress echocardiography’. In response to this GET request, where
we include various URL parameters, the UMLS system returns the corresponding uniform
UMLS concept with ID ’C0920208’. When setting up a UMLS call, it is essential to mention
that we can provide an equivalence attribute (searchType parameter in figure 24), reflecting
the nature of the mapping between the source element and the target element. In case we
cannot find an exact match for a particular clinical concept, UMLS empowers us to search
for generalized concepts by indicating the degree of equivalence concerning the current
clinical concept. To avoid performance problems, we want to minimize the number of ex-
ternal calls and cache realized UMLS mappings locally.

31https://www.nictiz.nl/standaardisatie/terminologiecentrum/nationale-terminologieserver/
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Figure 24: Example of API call to resolve a unified view of a clinical concept
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7.4. DATA TRANSLATOR FHIR TOOLKIT
As mentioned earlier, we have applied a second message translation pattern that permits
the solution to handle different FHIR standards dynamically. A second message translator
is responsible for mapping the normalized data structure to the desired FHIR standard out-
put. Figure 25 depicts a schematic overview of how our solution handles various standard
FHIR output formats.

Figure 25: Dynamic Data Translation Mechanism

Because the integration platform makes lookup tables directly accessible from JavaScript,
we can easily accommodate this dynamic behavior within the proposed solution at run-
time. By labeling incoming messages, we can allow our software to make individual choices
during message processing. Conditional connectors, marked by the red boxes in figure 25,
selectively route messages to the corresponding message translator based on the config-
ured FHIR version within a lookup table qualified for handling FHIR output type (XML or
JSON) and associated FHIR versions. Since we provide each source repository delivering
information to the software solution with a source identification number, we can easily
manage the output format individually without changing the code. The manipulation of a
centrally accessible parameter is sufficient to allow the solution to deal with different stan-
dards in various medical settings.
As mentioned earlier, we reused the second mapper code from the existing software solu-
tion within Philips. Since we encountered some obstacles during the realization of partic-
ular mappings, especially by the lack of specific data elements in the normalized message
structure, we had to make minor modifications in the second mapper. All applied changes
were well documented in the code using the built-in comment blocks in the respective data
translator.
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If we observe the data access methods in EHR solutions in the Belgian and Dutch mar-
ket in practice, we see that global EHR suppliers start offering FHIR APIs 32 33. These FHIR
APIs can speed up the integration and innovation process between third-party applications
and hospital EHR platforms, given that EHR platforms deliver data according to interna-
tional coding standards. To our knowledge, these direct FHIR integration options to extract
cardiovascular information are not available by ChipSoft at the time of writing. However,
we do see FHIR APIs emerging for the exchange of primary health data between healthcare
providers34. Due to the gradual adoption of FHIR and the rise of national collaborative
care platforms35, we foresee a decrease in the number of required transformations from
HL7 version 2 to FHIR resources in the future.

7.5. CLINICAL DATA REPOSITORY
This research aims to collect the various types of clinical information from several clinical
data sources unambiguously. In this subsection, we would like to focus on the load process
of the ETL process. The clinical data repository is part of the software solution containing
all extracted and transformed clinical information. The information is represented unam-
biguously within this clinical data repository according to an FHIR compliant data model.
In figure 45, we illustrate an anonymized FHIR dataset presented by the software proto-
type published to an FHIR compliant CDR. By representing all clinical information into an
FHIR-compliant repository, we can deliver a much more flexible healthcare solution offer-
ing a wide variety of development possibilities to build clinical applications.

7.6. SUBSCRIBERS
Philips is currently working on a state-of-the-art solution to develop a cardiovascular dash-
board representing relevant patient-centric parameters to cardiologists at the start of a car-
diovascular examination. The proposed architecture allows the ultimate opportunity to
build a dashboard based on a FHIR compliant data model. In addition to a cardiovascular
dashboard, as illustrated in purple in figures 13 and 26 as the Cardiovascular Care Orches-
trator (CCO) entity, the FHIR CDR can provide a solution to many healthcare product solu-
tion designs fostering innovation in mobile healthcare [Braunstein, 2018].

8. SOLUTION VALIDATION
We worked out earlier a software architecture through a Design Science Research Method-
ology and developed a prototype to reflect the proposed software architecture in practice.
This section concerns the validation of the proposed software solution, where we want to
answer sub-research question five, determining the efficiency of the developed prototype
[SRQ5]. We aim to gain a better understanding of the scalability and performance of the
software solution. We will first outline the entire validation process and subsequently de-
scribe the practical approach to ensure all prototype’s published FHIR resources’ correct-

32https://open.epic.com/Interface/FHIR
33http://fhir.cerner.com/
34https://www.chipsoft.be/hix-abc/artikel/215/Zorgverlenersportaal
35https://www.cozo.be/
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Figure 26: Solution Software Architecture
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ness. Next, we want to investigate how to measure the prototype’s efficiency based on the
practical experiences obtained during the prototype’s implementation phase [SRQ5a]. Ul-
timately, we want to estimate the impact of implementing the prototype in another health-
care institution and the effort required to scale up the prototype to process additional clin-
ical concepts [SRQ5b]. We conclude this section by interpreting the obtained validation
results.

8.1. FHIR STRUCTURE DEFINITION AND CONTENT VALIDATION
Recent advances in cardiovascular software solutions are looking for a FHIR-compliant
data layer solution to build REST-full software architectures [Gøeg et al., 2018]. For this
reason, we must ensure that after transformation, the most relevant FHIR resources are
well structured according to the previously chosen data model. Additionally, we want to
control that only specific FHIR resources may contain explicitly defined value sets of coded
clinical concepts embodied in our FHIR data model. A validation process must ensure the
correctness of the clinical data previously published by the software solution to the FHIR-
CDR. By restricting the FHIR-CDR only to accept well-structured FHIR-compliant and ap-
propriate data, we can present an accurate and unambiguously defined FHIR data layer
to third-party software solutions [Mandel et al., 2016]. In this section, we explain how we
applied the validation method to validate the structure and content of the generated FHIR
output.

VALIDATION PROCESS

Initially, the intention was to use a docker image to host an FHIR HAPI CDR environment
inside the prototype. We encountered some limitations during prototype validation be-
cause we could not adjust the docker image’s validation level of the HAPI environment. To
continue the research and better control the validation level, we decided to use the Vonk
server, which is Firely’s FHIR solution36. This FHIR server is an out-of-the-box solution,
available on Simplifier.net37, empowering us to control several features, including the val-
idation level. Simplifier.net is an FHIR development collaboration platform, publishing
software, tooling, and facilitating FHIR profile sharing, promoting efficient data exchange
in healthcare.

Since FHIR offers the flexibility to model a particular clinical concept in many ways, we
have set up a minimalistic FHIR compliant data model for this research to represent the
extracted information, depicted in figure 19. The validation process needs to check various
aspects defining explicitly the resource representing the extracted clinical concept. Impor-
tant aspects describe the FHIR resource’s hierarchy, considering the general composition
of the clinical concept, and verify all data elements’ conformance against the defined data
types of the standard. Validation also verifies whether the allowed cardinality of the individ-
ual data elements meets the expected multiplicity. FHIR profiles define such a set of rules
restricting an FHIR resource as specified by the FHIR specification. A FHIR resource sub-
sequently declares conformance to a profile in its metadata profile element. Because this
research aims to study how to design a scalable multi-institutional data extraction solution,

36https://fire.ly/
37https://simplifier.net/
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we are not primarily concerned with defining the FHIR data model. This section investi-
gates how to validate the FHIR resource’s correctness created by our solution to comply
with the FHIR standard specification. To validate the produced FHIR resources’ hierarchy,
we developed several FHIR profiles specific to our proposed prototype. The FHIR speci-
fications published on the Internet defines a core platform suitable in a variety of clinical
contexts. Based on these core FHIR specifications, we modeled the extracted EHR data
concepts by constraining the specification according to the corresponding clinical usage
context. Practically, the FHIR standard provides diverse conformance resources constrain-
ing the FHIR resource structure derived from the FHIR specifications. FHIR conformance
resources reflect the adaptations applied to the FHIR core specification. A structure defi-
nition, named FHIR profile, is such an FHIR conformance resource that permits us to de-
scribe the structure, cardinality, and used data types of constrained FHIR resources applied
in our solution. We published all generated and applied FHIR profiles to validate our FHIR
resources on Simplifier.net under the project ’my graduation’.

Figure 27 schematically illustrates the validation process to verify our own developed
FHIR resources’ structure against the FHIR specification. The validation process starts by
supplying the FHIR CDR with the FHIR conformance resources, highlighted in red, defin-
ing the expected FHIR resources’ structure. After providing the FHIR Structure Definitions
to the FHIR-CDR, we publish the prototype’s FHIR output towards the FHIR-CDR. The out-
come of this validation process returns the validation operation outcome reflecting the ac-
ceptance of the data instance into the FHIR-CDR.

Figure 27: Validation Process

IMPLEMENTATION OF THE FHIR VALIDATION PROCESS

As mentioned earlier, Vonk enables us to manage the validation process. A configuration
file empowers us to choose between three validation levels. Figure 28 depicts in red the
three validation levels available in Vonk. By selecting the first validation level (OFF), we
bypass the entire validation process. The FHIR-CDR does not perform any validation, and
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the CDR accepts any FHIR resource without regard to the loaded FHIR profiles. A second
option (CORE) allows us to increase the validation level. In this case, the only requirement
is that the FHIR resources must conform to the FHIR core specification as published on the
FHIR website 38. By selecting the third option (FULL), the CDR performs validation against
the core profiles and supplementary against the profiles defined within the metadata ele-
ment of the FHIR profile. We applied the most restrictive option to validate the resources
against our own developed FHIR profiles.

Figure 28: Control Validation Level

To determine whether a specific FHIR resource, previously generated by the prototype,
is compliant with a particular assigned profile, the FHIR standard included various valida-
tion functionality. Figure 29 presents a small-scale hierarchical overview of the involved
FHIR resources implemented during the validation process of the FHIR Observation re-
source types employed by our prototype. We want to outline the validation process through
two examples. In the first example (outlined in red), we briefly explain the validation pro-
cess for validating an FHIR Observation of the type CodeableConcept. As discussed earlier,
these are observations where we aim to validate particular clinical concepts defined in the
ChipSoft standard content. As a second example (outlined in yellow), we describe the val-
idation of an FHIR Observation classified as type ValueQuantity. This validation process
mainly concerns the correctness of the measured value represented in an FHIR Observa-
tion resource. Before we can validate the generated FHIR CodeableConcept observation
resources, we need to build additional FHIR resources to support the validation process
and then load them into the FHIR-CDR of our software solution. The red-colored entities in
figure 29 refer to applied FHIR ValueSet resources containing a list of authorized code sets
defined within specific terminology standards. These ValueSet resources empower us to
reject any FHIR Observation resource holding unspecified clinical codes. By applying this

38http://hl7.org/fhir/STU3/
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method, we can guarantee that our software solution rejects unwanted clinical concepts.
Next, we developed for each FHIR Observation of the type CodeableConcept a FHIR Struc-
ture Definition resource. The green depicted Structure Definition resources describe the
underlying structure that the FHIR resources must conform to following the earlier agreed
data model before the software solution finally accepts the observation resource. We ap-
plied a similar validation method in the second example. However, since ValueQuantity
FHIR Observation types aim to contain quantified amounts expressed in arbitrary units,
we will not be able to apply a FHIR ValueSet to validate the clinical content. Instead of
defining a FHIR ValueSet resource, we defined a datatype profile where we can outline the
required coding system and unit representation of the measurement. We depicted in figure
29 these datatype profiles in orange.

Figure 29: Observation validation
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To elaborate on a clear presentation of a ValueQuantity FHIR Observation, we need to
verify at least three different parameters to facilitate the unambiguous electronic commu-
nication and interpretation of clinical concepts.

1. Since our solution relies on clinical information captured and stored by other data
sources, we want to ensure that the measured value or amount generated by our soft-
ware solution is a realistic representation of the extracted value.

2. To ensure that the communicating parties attach the same meaning to the informa-
tion exchanged, we must assign concise semantics to each defined unit. For this rea-
son, we want to ensure that the base unit of the measurement corresponds to the
base unit expected for this particular observation.

3. Since the language of medicine is complex, we want to ensure that our solution ap-
plies the correct terminology to represent the generated clinical concepts. Because
we want to avoid errors introduced by manipulating lookup tables, we want to ensure
that our solution only accepts terminologies intended for use in a particular context.

To verify these criteria in practice, we linked each FHIR Observation object of the type
ValueQuantity with a single FHIR Structure Definition (green-colored), uniquely identi-
fied by name and observation ID (e.g., ObservationHeight_6000 StructureDefinition). This
FHIR profile enforces the FHIR Observation structure, imposing restrictions on the corre-
sponding clinical concept’s coding and coding system. By restricting this structure, we can
enforce that the patient’s height is only accepted when the code and the associated cod-
ing system reference the correct values defined by the terminology system. This way, we
can guarantee that a patient’s height always points to the correct code within a predefined
terminology system. Next, the observation height Structure Definition refers internally to
another datatype profile, depicted in orange, restricting the default FHIR quantity value
type. By enforcing a restriction on the default FHIR quantity type, we can explicitly restrict
specific conditions expressing the patient’s height. Figure 30 represents an example where
we profile the Quantity data type by restricting some elements. We indicate that the unit
element, representing a human-readable unit, must be expressed in centimeters. Also, the
element system must contain a reference to the Unified Code for Units of Measure. We re-
strict this by enforcing the element to use a URI pointing to the corresponding code system
(http://unitsofmeasure.org). Finally, we indicate in the code element how we want to ex-
press the computer processable form of this quantity datatype. Additionally, the quantity
type profile allows us to configure a range defining a minimum and a maximum expected
value of the patients’ height. Figure 46 of the appendix includes an XML representation of
a structure definition illustrating the restrictions mentioned above and highlights all mod-
ifications in yellow. The FHIR-CDR rejects all FHIR resources that do not comply with the
imposed restrictions.

The software solution offers a simple solution to declare a FHIR resource conformance
through a particular profile by populating each FHIR resource’s metadata element with a
profile URL. Figure 31 demonstrates how we designed the solution to assign an FHIR pro-
file to a particular FHIR resource through a lookup table. The canonical name defined in
the lookup table determines the corresponding FHIR resource’s compliance with a specific
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Figure 30: Restriction of Quantity datatype

structure definition. This design empowers us to adapt the validation process quickly with-
out making changes to the code.

Figure 31: Solution to link a ProfileURL to a specific clinical concept

To avoid errors when constructing FHIR profiles manually due to the high error prone-
ness, we decided to use the Forge39 FHIR profile editor tool distributed at Simplifier.net
to create and edit FHIR profiles graphically. Forge easily allows us to browse through the
FHIR element tree structure graphically and automatically creates JSON structure defini-
tion resources to impose restrictions on the FHIR specifications. Since the Forge tool in-
tegrates with Simplifier, we have published the FHIR profiles against our public project.
Publishing the profiles empowers us to validate the Structure Definitions against the FHIR
resources generated by our software solution. The ability to manually validate the created
FHIR resources before publishing them to our test CDR permits us to build the Structure
Definitions gradually. Invoking the online Simplifier validation tool40 helps us identify
problems during the Structure Definitions’ creation process and allows us to validate the
conformance of the generated resources against the specifications defined by our profiles.
Once the profiles and valuesets are in place and tested using the online validation tool,
we can preload our Vonk test CDR environment with the customized conformance FHIR
resources to constrain the default FHIR specifications. We can control all conformance re-
sources through an administrative FHIR API to manage our prototype’s validation process.
For this study, we used Postman41 to load the conformance resources to the Vonk test FHIR
server. Postman is an HTTP post client tool that we can use to perform basic create, read,
update and delete (CRUD) operations on the FHIR CDR. Figure 32 represents an example
of such an operation to send a conformance FHIR resource to the CDR through a POST
HTTP operation.

39https://fire.ly/products/forge/
40https://simplifier.net/validate
41https://www.postman.com/
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Figure 32: Example of Postman POST operation to send a structure definition to test CDR.

The procedure described above allowed us to validate all published FHIR resources for
syntactic and semantic correctness. Based on the applied validation method, we have de-
tected several errors during implementation related to syntax violations. After making the
necessary adjustments in our prototype, we could successfully validate all published FHIR
resources in the FHIR CDR.

8.2. SCALABILITY VALIDATION
Since our study results indicate that there is still a perspective to expand the cardiovascular
dataset, leading healthcare organizations such as Philips desire to estimate in advance how
much time it will take to extend the prototype to a broader dataset. This subsection briefly
lists the necessary activities required to prepare our software solution to process new car-
diovascular concepts. Finally, we also explain how we can verify the prototype’s scalability
among other clinical environments implementing the ChipSoft EHR.

In case the ChipSoft data extraction tool offers a new CSV file that includes additional
clinical observations, we need to make some adjustments before the prototype can pro-
cess the newly added concepts. A fundamental change in the data import route is re-
quired to load the CSV file’s new composition, including recently added content, into the
SQL database. This change mainly involves adapting some SQL statements to store the
CSV content in the database correctly. Once the additional information is available in the
database, the polling mechanism, located in the ChipSoft extraction route, requires a minor
modification through altering the query to incorporate the new content in the XML struc-
ture. As a result of the extended XML structure, we have to adapt the XML schema of the
new incoming data structure to offer the normalized data transformer subsequently with
this schema. After implementing these minor changes, the software solution can process
the newly added cardiovascular concepts automatically, given that specific lookup tables
require alterations to process particular clinical concepts. These adjustments depend on
the FHIR Observation type. It is important to note that we focus on automated processing
of clinical concepts classified as FHIR Observations to reduce implementation time. Clini-
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cal concepts not classified as FHIR Observations always require manual intervention in the
code. Despite the applied modularization technique, it is possible to locate precisely where
code adjustments are needed. A correct classification must determine the observation type
of each particular clinical concept. Figure 29 represents some instances of possible obser-
vation types in blue (e.g., valueBoolean, valueQuantity, valueCodeableConcepts,...).

Based on the just discussed efforts needed to go through the entire ETL process, we have
developed a cost model to determine the software solution’s efficiency [Naik and Nayak,
2017]. This model can symbolize the total costs we have to consider while implementing
the current prototype in another healthcare environment using the ChipSoft EHR. Addi-
tionally, the cost model can also provide a price indication if we have to accommodate
more clinical concepts than currently covered by the prototype. We developed the cost
model based on the practical knowledge gained during the prototype development pro-
cess. These insights have given us an indication of the time required to develop the proto-
type. To further refine the cost model, we listed the expected fixed cost based on the time
necessary to shape an individual clinical concept towards its corresponding FHIR resource.
To achieve this, we measured a unit price for each activity during development activities.
The unit price represents the amount of time required, expressed in hours, to fulfill one sin-
gle data modeling activity. After classifying the clinical concepts presented earlier in figure
17 and figure 18, we gained a better overview of the distribution and the number of FHIR re-
sources required to model our obtained dataset from the ChipSoft framework. To estimate
a representative calculation of the time necessary to transform additional clinical concepts
by the prototype, we referenced our time calculations on the FHIR resource allocation ra-
tio into the prototype’s covered dataset. Using this ratio, we calculated this FHIR resource’s
weight in the enlarged portion of the dataset. To determine the FHIR resource transforma-
tion cost in the enlarged portion, we need to multiply the weight by the previously allocated
action’s unit price. Finally, by accumulating all the costs needed per activity, we obtain the
project’s total cost in hours. In figure 33, we applied a cost calculation method to determine
the total project cost for three use cases. The first calculated cost (yellow-colored column)
represents a baseline cost representing the development effort, expressed in hours, needed
to build our prototype. A second reference price indication shows the cost to implement
the prototype in another hospital using the ChipSoft EHR (green-colored column). The
latter cost indication estimates the time required to expand the prototype processing fifty
additional clinical concepts (orange-colored column).

Based on this cost model, we can conclude that the significant investment costs can
reimburse themselves by implementing the prototype in other healthcare facilities using
the same EHR. The implementation cost is principally limited to setting up an integration
server hosting the software solution, loading the software configuration, and performing
some basic configuration activities. The standardized representation of clinical concepts
stored inside an EHR platform strengthens interoperability, empowering us to align our
prototype in advance to the supplied dataset by the EHR. A similar study should further
investigate whether a similar extraction approach applies to other EHR vendors. Based on
the cost model analysis of figure 34, expanding the existing prototype with fifty additional
cardiovascular concepts, we can deduce that a considerable time is required to develop the
ChipSoft query (blue-colored - 37,5 hours). This time is mainly spent collecting the stan-
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Figure 33: Cost Model
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dardized clinical concepts within the EHR platform and subsequently representing them in
the desired fashion through the query. A significant amount of knowledge of the EHR struc-
ture and clinical experience is required to complete the extraction. Once the baseline query
is available, we can reuse the query in other ChipSoft EHR environments and develop it fur-
ther incrementally. A second significant cost is mapping clinical concepts to international
coding standards (dark blue-colored - 20 hours). The locally defined clinical concepts in-
cluded in ChipSofts’ standard content dataset require a great deal of effort to align them
unambiguously with international coding standards. A possible proposal to suppress these
costs is to use terminology solutions automating the mapping process. State-of-the-art
technology can support the mapping process by reducing the time needed to accomplish
mappings between different coding schemes. Additionally, terminology solutions have the
advantage that the previously locally managed translation tables can be preloaded cen-
trally, so centralized management can keep these terminology solutions maintainable and
up-to-date with the most recently published codes [Metke-Jimenez et al., 2018].

Figure 34: Results Cost Model

A third challenge (orange-colored - 12 hours) denotes the time required to adapt the
solution to process new data. Connecting the prototype to a new dataset always requires
an adjustment to adapt the solution’s configuration. Some changes are necessary to get
the CSV information into the SQL database and align the new XML schema with the new
dataset. Moreover, we recognize that manual interventions are still essential by configuring
lookup tables to shape the extracted information according to the FHIR specification. How-
ever, we also recognize that specific clinical concepts need code modifications to transform
them into FHIR resources. We note minor code modifications needed for the FHIR Obser-
vations resources tackled within this study (light blue-colored - 2,8 hours). In contrast, we
recognize that other FHIR resources demand more code modifications to model the clini-
cal information according to the FHIR specification (green colored - 11,19 hours).

If we want to estimate our prototype’s efficiency, we can emphasize the clinical con-
cepts modeled as FHIR Observation resources. These represent the vast majority of the
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clinical concepts in the initial dataset. By focusing on these FHIR Observations, we can
determine the weight of the number of resources not requiring any code modification. Fig-
ure 35 shows the FHIR Observations weight distribution where we need to adapt code to
realize the transformation to the FHIR specification correctly, colored in orange. Based
on these numbers, we can apply the formula depicted in figure 36 below, outlining the
weighted arithmetic mean representing the cost resulting from the time saved avoiding a
code change.

Figure 35: Weight Distribution FHIR Observation resources related to required code changes

x = Σn
i=1gi .xi

Σn
i−1.gi

Figure 36: Applied formula to calculate weighted arithmetic mean

We can classify, in total, from the 67 clinical concepts extracted by the ChipSoft query,
52 clinical concepts as FHIR Observations. Consequently, this means that we can process
47 of the 52 observations in total without making code changes. This amount represents
a significant amount compared to other FHIR resources where each resource requires a
code modification. Suppose we calculate the weighted arithmetic mean of all FHIR Obser-
vations that do not require code adjustments related to the total number of modeled FHIR
resources. In that case, we can conclude that approximately 37 FHIR Observation resources
are eligible if we round up the results. In figure 37, we illustrate the formula’s application to
calculate the arithmetic mean to our findings within this research context.

Suppose we assume that the fixed unit price of an FHIR Observation classified clinical
concept is 0.75 hours. In that case, we can determine that the prototypes’ efficiency is ap-
proximately 28 hours (37 FHIR Observation resources * 0.75 hours), indicating we can save
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x = 0.6+0.4+47.52+0.1+0.4

6+4+52+1+4
= 36.48

Figure 37: Calculate weighted arithmetic mean

about 28 working hours by grouping all FHIR resources and adapting the prototype trans-
formation process accordingly.

To gain insight into the prototype’s scalability among other clinical environments im-
plementing the ChipSoft EHR, we examined the results after transferring the standardized
query between different medical settings. We involved another Belgian medical institution
in loading our developed query into their ChipSoft EHR software platform. Consequently,
we investigated the query’s results by examining whether the prototype can interpret the
returned data set. A practical test illustrates that the prototype can perfectly integrate the
returned dataset. Next, we analyzed the differences between the ZOL Genk dataset and
the other medical institution dataset. This analysis reveals that not all hospitals record the
same amount of data in their EHR. We concluded that the other Belgian healthcare institu-
tion registered 37 fewer clinical concepts for the same query compared to ZOL Genk. After
investigation, we revealed the hospital is currently transitioning to register all data centrally
within the EHR. Within the framework of government guidelines regarding quality registra-
tion and reimbursed treatments, various customized interfaces are operational to deliver
required information from a local cardiovascular information system to quality organiza-
tions. Furthermore, government policies require clinical information delivery for quality
purposes through a dedicated healthcare platform [Delvaux et al., 2018]. Currently, the
lack of an automatic bi-directional delivery mechanism hinders the interfacing with EHR
software platforms.
In addition to the ongoing transition phase, we also note that not all clinical departments
integrate the same information within the EHR. Differences in clinical workflows among
hospitals can affect the EHR integration level justifying the data variation. For example,
we refer to the EHR integration of the hemodynamic (blood flow analysis) data within ZOL
Genk. During this project, a separate integration project was ongoing to integrate this infor-
mation into the EHR, illustrating that the lack of EHR integrations across different hospitals
causes an unbalanced amount of cardiovascular data in different EHR platforms.

8.3. PERFORMANCE VALIDATION
Since diverse software applications can take advantage of up-to-date unambiguously de-
fined medical data, we want to overview the number of messages the prototype can handle.
For example, before a clinical dashboard can refresh some data, the information provided
must go through the entire ETL process before the prototype can make the data unambigu-
ously available for third-party software applications. For this reason, the speed to complete
the ETL process and the update intervals in which we supply new data are essential factors
of the prototype. To determine the processing speed at which the prototype can extract
data and transform it into unambiguous information, we subjected the prototype to a per-
formance test. Initially, we systematically duplicated the incoming data set, consisting of
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some cardiovascular interventional report extractions, by simulating additional PHI data
using a patient generator42. A significant advantage of using such a tool is that we can
generate patient data without worrying about legal and privacy restrictions. The patient
generator’s tool disadvantage is that we cannot produce clinical information comparable
to the ChipSoft extraction tool’s data. This restriction prevents us from reproducing the
existing variation in clinical data from real-world situations. Since we aim to simulate the
existing variety of registered clinical concepts to perform representative performance tests,
we completed the test with real data from cardiovascular interventional studies. To ensure
the patients’ legal and privacy restrictions, we performed performance tests only on the
hospital’s test environment.

We initiated the performance tests based on a data set representing approximately 550
cardiovascular studies. Next, we repeatedly submitted this complete dataset to the proto-
type for further processing over eight hours. Subsequently, we analyzed the message queue
within the integration platform’s monitoring tool. By adjusting the repeated pattern fre-
quency, which determines how often we deliver a test dataset to the software solution, we
could visually determine when message queuing occurs in the prototype. The moment
messages queuing occurs represents the prototype’s pivot point, indicating that the mes-
sage throughput has reached its limit and further message processing starts slowing down.
Figure 38 depicts the frequency pattern indicating the timestamps sending in batches con-
taining 550 cardiovascular reports extractions from the ChipSoft EHR.

Figure 38: Frequency pattern for submitting test data in batches.

Performance tests show that the prototype can process every 20 minutes a batch of
550 cardiovascular exams without message queuing. Figure 39 shows the graphical repre-
sentation of the throughput measured at the outbound communication point in response
to the supplied batched dataset at a time interval of 20 minutes. The visualization shows
that a new batch is only delivered after the prototype has finished processing the previous
dataset. In the short zones where we do not register data throughput, we provide in real-
world situations the necessary time to convert new (non-existing) CSV content to the SQL
environment.

From this result, we can conclude that we need approximately two seconds to complete
the entire ETL process holding 67 clinical concepts. It is important to mention that most
of the time is required to publish the data to the FHIR CDR (load phase of the ETL pro-
cess). Since we use an HTTP client CP to establish a request to the FHIR-CDR using the
HTTP protocol, we apply synchronous communication to publish the messages. The use

42https://synthetichealth.github.io/synthea/
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Figure 39: Throughput data publisher in response to 20 minutes input frequency.

of synchronous communication means that our solution publishes a FHIR message to the
FHIR-CDR immediately after the CP receives a message from the integration engine. After
getting back a successful processing code from the FHIR server, the HTTP client can deliver
the subsequent FHIR message produced by the prototype.

As earlier stated, we have indicated that we want to consider possible report adjust-
ments performed by cardiologists later than the study date. For this reason, we proposed
to schedule a daily batch containing the cardiovascular reports of the last seven days. This
proposal suggests that our prototype could handle a daily maximum of roughly 78 (550
cardiovascular reports / 7 days) cardiovascular studies within 20 minutes. Estimating an
average PCI procedure time of 40 minutes Mahmud et al. [2017], we can assume our proto-
type can manage this PCI procedure rate. Considering that we performed the tests on a test
environment with evaluation software where we could not increase the number of simul-
taneous connections to the FHIR-CDR, we can assume that the processing speed is much
higher in practice. Additionally, the processing of this batch of PCI-related information re-
quires only a short-term processing capacity of the underlying IT environment. We can fill
the idle time of the prototype by processing in parallel HL7 v2 messages. Since we expect
that this mainly concerns measurement results, broadcasted at any time during procedure
time, we do not expect any performance problems.

9. CONCLUSIONS
This study investigated how to develop a scalable software architecture to collect cardio-
vascular information from multi-source clinical repositories with minimal integration ef-
fort. The goal was to develop a reliable solution to unambiguously represent a subset of
cardiovascular information, specified in the NCDR CathPCI Registry dataset, according to
international terminology standards to boost data interoperability and clinical software de-
velopment. The ability to deploy the solution in diverse medical institutions aimed to re-
duce healthcare organizations’ high implementation costs and ultimately make integration
projects more profitable.
Our main research question concerned the investigation of designing a scalable and multi-
institutional deployable data integration solution for the collection and transformation of
cardiovascular data towards an unambiguously defined dataset. We have presented an an-
swer to this main research question by clarifying the problem definition through answering
five sub-research questions.

The first research question deals with investigating in which clinical repositories we can
access cardiovascular information. We focused on a reference dataset listing several cardio-
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vascular concepts. Investigation revealed that healthcare providers accommodate an enor-
mous amount of clinical data captured from diverse siloed data repositories. The medical
institution’s data-driven mindset participating in this study shows a high degree of car-
diovascular data integration with the hospital-wide information system (EHR). However,
we cannot assume that all medical institutions integrate cardiovascular information to the
same extent into the EHR. Covid-19 has prevented us from obtaining a detailed view of var-
ious multi-vendor clinical data repositories that may contain cardiovascular information in
a multi-institutional environment. On the other hand, we recognize that many clinical data
repositories still exchange information through HL7 v2 communication but lacking data in-
tegration with hospital-wide information systems. Because this study aimed to investigate
a multi-institutional deployable solution and hospitals facilitate an integrated EHR system
for the central storage of clinical information, we focused on these EHR software platforms
to extract cardiovascular data. To outline the multi-vendor EHR landscape across Belgian
(Flanders) and Dutch healthcare providers, we conducted a market analysis and found sev-
eral existing EHR vendors in both markets. Despite the great variety, we can conclude that
ChipSoft is the only prominent EHR vendor active in both markets. Interestingly, ChipSoft
is only active in the Belgian and Dutch markets, while Epic is active globally. Due to time
constraints and the ongoing Covid-19 pandemic, we have focused exclusively on the Chip-
Soft EHR as a clinical data repository to extract cardiovascular information. Although we
focus on hospital-wide information systems to extract and transform cardiovascular infor-
mation in this study, we still provide the ability to collect and transform cardiovascular data
from various clinical data sources based on HL7 v2 data streams delivered by those clinical
data repositories.

For the second sub-research question, we explored an appropriate extraction method
to extract cardiovascular information subject to variation in diverse clinical settings. To-
gether with different EHR vendors and the collaborating hospital where we implemented a
prototype, we have investigated various extraction methods. We concluded that standard-
ization is a fundamental concept to realize a data extraction within diverse environments
subject to change. Since hospitals do not always have the appropriate reporting and data
analysis objectives and do not comply with standardized extraction methods, we opted for
a vendor-specific extraction technique to extract the EHR data in a standardized way. We
have discovered that the ChipSoft EHR provides a data extraction tool able to create data
overviews immediately derived from the EHR data platform. Furthermore, this extraction
method offers the opportunity to export and import developed data extraction overviews
between different clinical environments. The result of this extraction method shapes the
input dataset aligned with the developed multi-institutional deployable prototype.

The third research question deals with the representation of cardiovascular information
across different clinical information systems and clarifies which fraction of cardiovascular
data is in a structured format. An analysis of the data shows that ChipSoft uses vendor-
specific standard content to express clinical concepts. The standard content is a vendor-
specific coding system that introduces uniformity to approach diverse clinical concepts
in different medical settings and is an essential concept within this research. Our study
results illustrate that by fully aligning our extraction query on standard content, we can
extract identical clinical concepts from different clinical environments in a standardized
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way to deliver a uniform dataset to the developed software prototype. Out of 345 clinical
concepts defined in the NCDR cathPCI data dictionary, we were able to find 67 standard-
ized clinical concepts in the ChipSoft EHR, representing 20% of the information listed in
the cathPCI data dictionary. However, we believe that the Covid-19 pandemic may have
slightly affected this outcome since we could not rely on cardiologists’ expertise to extract
more complex clinical entities. Under normal conditions, we expect to be able to increase
the amount of cardiovascular data to 35%.
Due to the ever-increasing collaboration between medical institutions and the drive for
standardization in healthcare, strongly motivated by the Covid-19 pandemic, we expect
to see an increasing trend in the number of cardiovascular concepts extracted from EHR
systems in the coming years. Despite, we also observe large differences in the amount of
registered data in the EHR among different healthcare organizations. Results show that for
the same standardized query, 55% fewer results are returned in a different clinical setting.
After discussing these results with this medical organization, the hospital IT management
claims an ongoing transition towards a full EHR integration of all siloed cardiovascular data
stores. The main reason is that dedicated government healthcare platforms do not yet sup-
port a bidirectional delivery mechanism for an automatic reporting interface between soft-
ware applications and government entities. Since hospitals recognize the importance of a
central registration platform, the lack of such an interface implies that hospitals do not yet
require mandatory integration of all CDRs with the EHR.

The fourth sub-research question concerns how we can efficiently deal with data trans-
formations to express cardiovascular information in an interpretable fashion. To answer
this research question, we developed a software prototype to align our proposed software
architecture to a realistic clinical work environment. We have found that the FHIR stan-
dard gains widespread support and momentum among healthcare developers due to the
detailed FHIR specification guidelines and the lightweight atomic data access design. The
developed prototype is fully aligned with the FHIR standard and offers a flexible way to
generate unambiguously defined data sets for various (future-proof) FHIR standards. Ad-
ditionally, we discovered that clinical terminologies are fundamental to transform clinical
concepts into internationally recognized meaningful data concepts interpretable by hu-
mans and computers. In compliance with this existing FHIR standard, we developed the
prototype to transform the extracted cardiovascular concepts into unambiguously defined
datasets suitable for diverse objectives to improve data interoperability within healthcare.
During the prototype development, we discovered some inefficient message handling tech-
niques preventing efficient message transformation. We tackled these inefficiencies by de-
veloping a query that immediately represents the extracted clinical concepts in an orga-
nized fashion to improve data transformation efficiency. The development of the proto-
type has revealed some shortcomings in the management of clinical terminologies. Link-
ing proprietary clinical concepts with internationally recognized terminologies is a time-
consuming task, which also requires clinical knowledge. However, we can conclude that
the prototype’s applied design is not maintainable if used in various multi-vendor clini-
cal environments. We recognize difficulties in maintaining the locally managed translation
tables when scaling up the number of clinical concepts. Additionally, we envision a ris-
ing complexity for the management of semantic data interoperability due to an increased
number of EHR software platforms supported by our prototype. Research results show that
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it is better to deploy centrally managed terminology solutions to keep the solution main-
tainable and prevent possible translation errors due to human error by expanding semantic
mappings. In addition to the realized local semantic mappings applicable for the ChipSoft
EHR, enterprise-wide terminology solutions can contain semantic mappings based on in-
ternational coding standards. Since these terminology solutions also offer the possibility to
publish semantic mappings to local terminology solutions, this can introduce enormous
advantages to keep locally deployed terminology solutions up-to-date with the most re-
cent semantic mappings. In addition to the proposal to implement a centrally managed
terminology solution, we have analyzed in this study how we can express clinical concepts
spanning different vocabularies. We addressed this problem with UMLS and explored how
this solution could fit into our prototype. Due to technical and security restrictions, we
did not integrate UMLS in our prototype but only demonstrated how to obtain a uniform
UMLS lookup.

The last sub-research question clarifies how to measure the proposed solution’s effi-
ciency to determine the prototype’s impact on integration costs. As a first indicator, we
checked the output of the software solution towards correctness. We went through a vali-
dation process to validate the generated FHIR resources on both structure and content. Be-
fore going through the validation process, we developed several FHIR profiles for each clini-
cal concept extracted from the ChipSoft EHR. By linking the corresponding FHIR profiles to
the generated FHIR resources, we successfully validated all FHIR resources created by the
software prototype. By completing this validation process, we can guarantee that all out-
put generated by the proposed software solution represents realistic and unambiguously
defined information according to international terminology standards. A second essential
indicator concerned validating the scalability of the software solution. We investigated the
prototype’s scalability by increasing the number of extracted cardiovascular concepts de-
livered to the prototype and analyzed the extent to which the multi-institutional solution
returns cardiovascular data after deployment in another healthcare institution. To answer
this question, we have built a cost model based on some software quality characteristics.
This cost model estimates the hours required to implement the current prototype in a dif-
ferent clinical setting. Moreover, this cost model estimates the number of hours needed
to expand the current prototype if more clinical concepts have to be processed. During
the development process, we found that most of the time is required to collect clinical con-
cepts from the EHR platform. We found that this requires a thorough knowledge of the EHR
structure and an excellent background of the context of all clinical concepts. Additionally,
we concluded that aligning all extracted clinical concepts with internationally recognized
terminology systems requires an enormous amount of effort. However, we determined that
this investment cost can reimburse itself because the prototype is relatively easy to imple-
ment in other clinical environments. The cost model results show that we need barely 12
hours to deploy the prototype in a different medical setting, including integration server
setup. Further analysis shows that implementing the proposed software solution reduces
implementation time by 28 hours through adjusting the prototypes’ extraction method and
optimizing the subsequent transformation process. When we expand the prototype with
about 50 additional clinical concepts on top of the currently obtained data set, our cost
model reports that we still need approximately 89 hours to implement this modification.
Investigation reveals that we could predict a drastic decline in the prototype’s implementa-
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tion time by relying on a centrally managed terminology solution. Further research should
provide a clear indication of the explicit time savings. Since this cost model concentrates
on the extraction of cardiovascular data from the ChipSoft EHR, similar research should
demonstrate whether similar conclusions apply to other EHR vendors. The last indicator
used to determine the prototype solution’s impact is the processing speed to go through
the entire ETL process. To validate performance, we subjected the prototype to a stress test
in which we presented a ChipSoft EHR extraction holding 550 cardiovascular studies, each
consisting of 67 clinical concepts. We could determine our prototype’s maximum through-
put rate by adjusting the polling frequency defining the rate at which we extract data from
the ChipSoft EHR. We visually determined that message queuing occurred after delivering
a cardiovascular dataset every 20 minutes towards the prototype. Based on these results,
we can conclude that the prototype takes around two seconds to go through the entire
ETL process for one cardiovascular report extraction. However, we remark the bottleneck
mainly occurs while delivering the output of the prototype towards the FHIR-CDR. We can
explain this behavior since we practice with evaluation software for the simulation of the
FHIR CDR. Despite the use of evaluation software, we can conclude that the prototype’s
processing speed is more than adequate to meet a production environment’s requirement
to extract cardiovascular data from the ChipSoft EHR.

10. FUTURE WORK
This research mainly focused on developing a prototype to extract cardiovascular data in a
multi-institutional environment. We discovered that hospitals centrally record and collect
their clinical data originating from various clinical data repositories. Market research re-
vealed that different EHR vendors are active in Belgian and Dutch healthcare organizations.
Although this research focuses on extracting cardiovascular information from the ChipSoft
EHR, the aim is to develop a multi-vendor compatible prototype able to process cardiovas-
cular information originating from multi-vendor EHR providers. As Epic is a global EHR
provider, the intention is to expand the research into the American market, making the so-
lution globally deployable. Another interesting possibility we want to explore is a further
investigation of the terminology solution. Because it was not allowed to connect our pro-
totype with an external terminology solution in the clinical test environment, and we had
no budget for a local test deployment of a local terminology solution, no additional tests
were possible. We limited the practical implementation to some minimalistic tests. Ide-
ally, we want to implement the prototype in combination with a test terminology solution
where it is possible to import the local terminology mappings within a local or remote ter-
minology solution. This setup should give us a better view of the maintainability of the
solution. Furthermore, additional research using state-of-the-art technologies, supported
by terminology solutions, can provide a better insight into whether these contribute to the
effort required for unambiguous mapping of clinical concepts to international terminology
standards. Based on the cost model results, we see the potential to develop the prototype
further to allocate extracted clinical concepts automatically. In our opinion, the automatic
recognition of FHIR observations can significantly improve the prototype’s efficiency. On-
going research by Kiourtis et al. [2019] shows the economic impact of this technology. Fu-
ture integration of this technology can give more insight into this research’s feasibility in
combination with our prototype.
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APPENDIX

Figure 40: Example of ChipSoft extraction query where data is directly accessed

Figure 41: Example of ChipSoft extraction query where data is accessed through a simple expression
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Figure 42: Example of ChipSoft extraction query where data is accessed through applying a more advanced
expression

FHIR resource resource content
Organization A representation of a medical institution where the

cardiovascular study is performed.
Patient Demographics and other administrative information about

an individual undergoing a cardiovascular examination.
Observation A representation of a measurement and simple assertions

made about a patient, device or other subject.
Encounter An interaction between a patient and healthcare provider

for the purpose of providing healthcare service(s) or
assessing the health status of a patient.

Practitioner A person who is directly or indirectly involved in the
provisioning of healthcare.

FamilyMemberHistory Significant health events and conditions for a person related
to the patient relevant in the context of care for the patient.

Provenance Provenance of a resource is a record that describes entities
and processes involved in producing and delivering or
otherwise influencing that resource.

Table 1: Description of used FHIR resources http://hl7.org/fhir/STU3/
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Figure 43: Modularization of the ETL process
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Figure 44: Description of RhapsodyTableLookup() function parameters
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Figure 45: Partial example of anonymized FHIR output generated by the prototype.
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Figure 46: Example of a FHIR Structure Definition restricting Height Quantity datatype
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