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Abstract 

This paper works toward implementing a prototype demonstrating some of the capabilities 

of the FHIR specification. The specification requires a clear understanding of its different 

components in order to be successfully implemented, therefore the primary concern of this 

work is to understand and analyse FHIR’s concepts.  

The research conducted in this work revealed that FHIR is a well-designed specification, 

based on a powerful data model and technologies. Therefore, it sould help solving the 

interoperability issues of the healthcare eco-system. It has also been pointed that since FHIR 

is a recent standard, many of its uses and benefits are still to be discovered. Moreover, FHIR 

integrates well in the current health information technology context since it can be used in 

addition to existing standards.  

The analysis of the currently used technologies to implement FHIR evidenced that HAPI 

FHIR java library was the most suited library to develop a FHIR-based application in this work. 

Indeed, HAPI provides more capability and a better usability than alternative libraries. 

Implementing FHIR in a web application helped determined that FHIR does enable fast 

implementation and thus, can potentially drastically decrease the cost of systems integration 

in the healthcare industry. 

The objectives of this Bachelor thesis have been reached in 396 hours using the Scrum 

framework. Scrum features have facilitated the development of this work, in particular the 

creation of a product backlog and structuring the development with sprints in which user 

stories from the product backlog are broken into tasks. 

Keywords: FHIR, Healthcare, Interoperability, Specification, Web Application 
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Introduction 

As healthcare is progressively becoming paperless, the need for the exchange of clinical 

data between health information systems is increasing. Standards have provided health 

institutions with the possibility to widely implement the exchange of data within their 

information systems. For instance, allowing the patients data to be shared amongst different 

services of a hospital or across hospitals and organizations. As of today, the most implemented 

interchange standard within health information systems is the Health Level Seven version 2 

(HL7 v2) standard. V2 has significantly improved the way medical systems can exchange data 

and how they can use the exchanged information in multiple innovative manners. Indeed, 

more suitable care can now be provided and the probability of making diagnostic errors has 

decreased. Nevertheless, HL7 v2 has shown its limits regarding implementation costs and 

interoperability resulting in a lack of efficient electronic data exchange across institutions, for 

example, between private practices and hospitals. 

A recent survey (Transcend Insights, 2017) on the patients’ expectations of medical 

information sharing indicates that 64% of patients use a medical device or a mobile application 

to monitor their health, out of which, 71% think that this data could be helpful to practitioner 

and should be recorded in their health history. Because of the initiative to include the patients 

into their own health and because of the need for cheaper and more interoperable solutions, 

in 2014, the healthcare industry has seen emerged a new HL7 standard called the Fast 

Healthcare Interoperability Resources (FHIR).  

FHIR is full of promises: real-time data access, usage of current web technologies, freely 

available, a focus set on the implementation to enable the creation of fast and cost-effective 

solutions and ensure semantic interoperability. FHIR has the capabilities to improve and 

broaden the existing analytical process of clinical data. 

This works aims to understand the capabilities provided by the FHIR specification as well as 

testing some of those capabilities to evaluate FHIR against its promises. This paper focuses 

firstly on analyzing and presenting the different concepts of the FHIR specification by analyzing 

the context amongst which it has been created and the previously developed HL7 standards 

to understand the reasons behind its conception. In a second phase, existing tools to 
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implement FHIR-based solutions will be analyzed and evaluated in order to determine which 

technology is the most suited to develop a web application based on FHIR. 

The final part of this paper aims to present the application prototype realized and to 

provide an insight of the creation of a FHIR-based client application. The application prototype 

illustrates some of the capabilities of FHIR, evidenced by the research conducted in this work, 

with the practical implementation of FHIR in a web application. 
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1 Entering FHIR’s world 

The Fast Healthcare Interoperability Resources (FHIR) is a standard for the electronic 

exchange of health data. It has been designed by the Heath Level Seven (HL7) organization. 

The purpose of this specification is to enable a better interoperability in healthcare 

information systems. FHIR is a web-based toolbox, set of rules and frameworks defining how 

the exchange of clinical data should be excecuted between different healthcare applications 

and systems (HL7 International, n.d.-v). 

FHIR makes interoperability faster and easier to implement than existing standards, which 

leads to being able to create much cheaper solutions than by using alternatives. 

FHIR is based on previous HL7 standards which it combines and improves: HL7 version 2 

(v2), version 3 (v3) and the Clinical Document Architecture (CDA) (HL7 International, n.d.-v). 

The FHIR specification is entirely based on the concept of resources. A resource is a small 

piece of information that represents a real-world entity such as a patient, a location or an 

appointment. For its purpose of exchanging clinical data, FHIR determines four different 

paradigms to be used:  

- The representational state transfer (REST) Applications Programming Interface 

(API) 

- Messaging 

- Documents 

- Services (HL7 International, n.d.-g). 

1.1 FHIR’s origin 

1.1.1 HL7 International 
The HL7 International is a non-profit standards creating organization. It is globally well 

represented since it has members in more than 50 countries (Rouse & Sutner, 2015). The best 

way to understand its purpose is to reading its mission statement -  “To provide standards that 

empower global health data interoperability.” (HL7 International, n.d.-a) - and its vision: “A 

world in which everyone can securely access and use the right health data when and where 

they need it.” (HL7 International, n.d.-a). 
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1.1.2 The interoperability issues 
Nowadays, hospital information systems are composed of a variety of systems provided by 

different vendors. Those systems must work together by exchanging their data so that 

laboratorians, physicians, nurses and other actors of healthcare can, for example, access the 

electronic data relative to a patient. Furthermore, clinical data must be shared across 

institutions such as between a hospital system and a private practice system to enable a 

practitioner to consult his patient’s data. Another example is the transmission of a prescription 

from a physician to a pharmacist. 

Interoperability is a key point in making great sustainable healthcare information systems. 

In the health informatics context, interoperability means that separate medical systems or 

software can communicate without compromising the data, and this, without an extreme 

amount of effort (Datar, 2016). With interoperable health systems, the actors implicated in 

patient care use systems that can not only exchange data, but can also interpret and use the 

data in a meaningful manner to provide better medical care. Healthcare Information and 

Management Systems Society’s (HIMSS) definition of interoperability includes “[…] the ability 

of health information systems to work together within and across organizational boundaries 

in order to advance the effective delivery of healthcare for individuals and communities.” 

(HIMSS, 2013). 

Communication is the key to providing good healthcare. A technical1  and semantical2 

interoperability guarantee that systems will be able to communicate, but the supreme goal of 

interoperability is to reach a clinical interoperability level, meaning that clinicians from 

different teams are able to transfer patients’ care and this, by providing seamless care (Benson 

& Grieve, 2016). 

Improving interoperability in healthcare has been the mission of the HL7 international over 

the past three decades. HL7 has released different standards helping solve the interoperability 

issue in the healthcare industry: HL7 v2, v3 and FHIR. 

                                                      
1 Moving data from one system to another, not caring about the content’s meaning 
2 Data is understood and can be interpreted by both systems 
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1.1.3 Why standards are needed 
Standards are present in most aspects of the everyday life, to mention one in many, the 

notable International Organization for Standardization (ISO) that regulates from sanitary 

conditions of food to formats for time representation. Standards permit defining agreed-upon 

rules and definitions to ensure, for instance, safety, quality and communication. In health 

information technology (HIT), standards provide rules to define a common language and way 

of exchanging health data between and across organizations (Shaver, 2007). Standards enable 

the exchange of data by providing exchange formats for the data, data elements (the content 

to be shared) linked in data models and terminologies. Thus, standards are indispensable to 

achieve healthcare interoperability. 

1.1.4 HL7 v2 
The most notorious standard HL7 has developed to date is the HL7 v2. Considered as one 

of the base standards for the HL7 FHIR standard, HL7 v2 is a messaging standard for 

exchanging health data. Unlike FHIR, v2 is a database query language that allows to send 

messages to forward or retrieve electronic health information (Rouse & Sutner, 2015). 

According to HL7, this standard is the most implemented in healthcare worldwide. In HL7 v2, 

segments represent entities of the real world and hence resemble FHIR’s resources (HL7 

International, n.d.-b). 

1.1.4.1 The need to integrate 

HL7 v2 was designed to facilitate the creation of interfaces between healthcare systems. 

Before, custom interfaces had to be implemented in order for systems to communicate 

together. Custom interfaces require plenty of programming on the sending and the receiving 

applications, therefore these interfaces are expensive. As a result, only few custom interfaces 

were implemented in hospitals (Shaver, 2007). 

The HL7 approached the integration problematic by creating a standard defining 80 percent 

of the interfaces between systems and leaving 20 percent up for clients’ customization. 

HL7 v2 was thought to reduce integration costs thus enabling a wider range of institutions 

to build or migrate to integrated information systems. The use cases of the HL7 v2 standard 

provide an insight into why such integrated systems are needed (Wood, n.d.): 
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- Doctors need to be able to stay connected to specialists during patient’s care 

- Enable a connection between doctors and pharmacists in order to reduce errors 

- Different hospitals need to connect their hospital information systems(HIS) 

- The electronic health record (EHR) of a patient should be retrievable by any health 

application within the hospital information systems. 

1.1.4.2 The messages 

V2 determines the structure of the exchanged messages between systems but also the 

content of the data to be sent. Each of those messages are sent upon a trigger event as, for 

instance, a patient’s appointment (iNTERFACEWARE Inc., 2008). 

 

Figure 1 – HL7 v2 Message (HL7 International, 2010) 

The above message sends observations and results to a requiring system. This type of 

message could be sent from a laboratory system to a hospital system, for example. The 

content being sent is known by interpreting the type of message contained in the message 

header segment (MSH), here the code is ORU^R01 which indicates that the content of the 

message contains observations and results. R01 represents the trigger event. 

Some segments are required in this type of messages, including the message header, the 

patient identification (PID) and the observation request (OBR). Some are optional and 

repeatable like the observation (OBX) segment. V2 messages are mostly composed of simple 

primitive types such as strings or numbers (Corepoint Health, n.d.). 

As noticeable, v2 messages lack of human readability and the syntax is not simple to 

apprehend. 
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1.1.5 HL7 version 3 
HL7 v3 messaging standard attempts to improve over the HL7 v2 standard. The main issues 

of v2 that v3 tried to solve were the lack of a persistent data model, the lack of users and roles 

definitions and important flexibility of the standard. These issues lead the v2 to be somewhat 

inconsistent and incomplete. The v3 standard addressed these issues, it is therefore not 

backward compatible since it is a more detailed and rigid framework. 

This newer standard defines a clear data model and precise definitions. It allows less 

flexibility and thus makes it easier for the implementation of interfaces. Therefore, v3 

messaging standard is a cheaper option to implement and to maintain than the v2 standard. 

To be more detailed and consistent, HL7 v3 was built as a model-based methodology and 

established the Reference Information Model (RIM) of the healthcare information domain, a 

set of data types and a strong domain terminology (Beeler, n.d.). The RIM is an information 

model providing classes and elements to be used to compose v3 messages.  

 

Figure 2 - HL7 v3 RIM (Nawanan Theera-Ampornpunt, 2015, p. 40) 

The image above presents the v3 RIM’s main classes. It is structured by five key concepts: 

Entity, Role, Participation, Act and Act Relationship. Data content of HL7 v3 messages are 

defined by this information model (HL7, 2002, p. 1). The Act class stem from the purpose of 

the v3 messages of documenting the actions taken in a patient’s care. 
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1. <POLB_IN224200 ITSVersion="XML_1.0" xmlns="urn:hl7-org:v3" 
2. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">   
3. <id root="2.16.840.1.113883.19.1122.7" extension="CNTRL-3456"/> 
4. <creationTime value="200202150930-0400"/> 
5. <!-- The version of the datatypes/RIM/vocabulary used is that of May 
6. 2006 --> 
7. <versionCode code="2006-05"/> 
8. <!-- interaction id= Observation Event Complete, w/o Receiver 
9. Responsibilities --> 
10. <interactionId root="2.16.840.1.113883.1.6" 
11. extension="POLB_IN224200"/> 
12. <processingCode code="P"/> 
13. <processingModeCode nullFlavor="OTH"/> 
14. <acceptAckCode code="ER"/> 
15. <receiver typeCode="RCV"> 
16. <device classCode="DEV" determinerCode="INSTANCE"> 
17. <id extension="GHH LAB" root="2.16.840.1.113883.19.1122.1"/> 
18. <asLocatedEntity classCode="LOCE"> 
19.       <location classCode="PLC" determinerCode="INSTANCE"> 
20.       <id root="2.16.840.1.113883.19.1122.2" extension="ELAB-3"/> 
21.       </location> 
22. </asLocatedEntity> 
23. </device> 
24. </receiver> 
25. <sender typeCode="SND"> 
26. <device classCode="DEV" determinerCode="INSTANCE"> 
27. <id root="2.16.840.1.113883.19.1122.1" extension="GHH OE"/> 
28. <asLocatedEntity classCode="LOCE"> 
29.       <location classCode="PLC" determinerCode="INSTANCE"> 
30.       <id root="2.16.840.1.113883.19.1122.2" extension="BLDG24"/> 
31.       </location> 
32. </asLocatedEntity> 
33. </device> 
34. </sender> 
35. <!-- Trigger Event Control Act & Domain Content --> 
36. </POLB_IN224200> 
 

 
 

Listing 1 - V3 message sample, code source: (Spronk, 2007) 

Messages are sent using the Extensible Markup Language (XML) representation. The code 

snippet above shows a sample message. Line 19 is a good example of the linkage to the RIM, 

the classCode “PLC” refers to the Place entity defined in the RIM.  

Even though it has many advantages over the HL7 v2 standard, HL7 v3 will likely not replace 

it. Since it is not backward compatible, any migration to v3 from v2 will have considerable 

costs. When creating v3 applications and if a communication with v2 applications is needed, 

the new v3 applications will need to be able to speak not only v3 but also v2. This double cost 
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of implementation discourages healthcare providers from adopting the HL7 v3 standard 

(Johnson, 2012, p. 20). 

1.2 The need for FHIR 

Since HL7 v2 left too much space for customization, a lot of variants exist and caused a 

major problem for integration of data between health systems and institutions. Additionally, 

the v2 has a very particular and unique syntax that makes it tedious to implement. Another 

thing to point at is its lack of security and authentication capabilities, very problematic in 

healthcare to include distant applications in the exchange (e.g. applications for patients). 

These reasons cause problems for the v2’s interoperability and make it unsuited for mobile 

use (Datar, 2016). 

On the other hand, HL7 v3 has not managed to conquer an important share of the 

healthcare market. Not only since it is also too expensive to implement but because it is too 

complex. Yet another problem of the v3 it that it was not thought to be implemented directly:  

The philosophy is that the models are starter templates that will then be constrained for 

use by the implementing region or party. This places a large burden of work on the 

implementer. It also virtually guarantees that no two real-world implementations will be 

compatible and blocks international software vendors and solution providers from being 

able to offer consistent solutions across regions and languages. (Bender & Sartipi, 2013)  

HL7 v2’s and v3’s lack of interoperability, consistency and youth encouraged HL7 to think 

of a better standard that could benefit from HL7 standards’ years of experiences. To the 

increasing demand for a more modern and easier solution for interoperability, HL7 responded 

with a trendy web-based specification: FHIR. Moreover, there was a real need for clinical data 

mobile access that HL7 addressed by offering real-time APIs access. 

However, institutions will not likely invest in changing their working information systems 

to FHIR-based systems in the near future. FHIR has to co-exists with older standard and “[…] 

will be a standard that can be used to translate between standards and allow those systems 
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that are legacy systems using an older standard to still exchange information within the 

ecosystem of health information data” (Landi, 2016).  

As an example, the figure below shows how FHIR could work along with HL7 v2 standard. 

The HIS sends a v2 message to the Corepoint Integration Engine, the data is then pushed on 

the FHIR repository and made available to mobile applications (‘Use cases of FHIR’, n.d.). 

 

Figure 3 – FHIR and v2 (‘Use cases of FHIR’, n.d.) 

In the medical framework, several different actors that need to exchange confidential data 

are found. Not only physicians, laboratorian, pharmacists, specialists and administrative 

members but, more recently, patients tend to be included into their own healthcare. This also 

led to the need for more flexible and mobile-friendly interoperability solutions (Hay, n.d.). 

FHIR gives HL7 a fresher look with its REST architecture. It is also very familiar since it is 

using well known technologies like JavaScript Object Notation (JSON), XML, HyperText 

Transfer Protocol (HTTP), Secure Sockets Layer (SSL) and OAuth. 

FHIR opens the discussion of the creation of an application platform providing medical 

applications, like the one existing for Android. This way, FHIR applications created for one 

system could be made available for millions of others, significantly reducing medical 

applications development costs. The increasing competitivity would encourage vendors to 

propose better programs (Landi, 2016). 

Another great fact about FHIR is that it is freely available for implementers and numerous 

open-source implementations can be found, which is not the case for previous HL7 standards. 

This follows the original idea of FHIR: creating a fast (to implement) specification. It also solves 

the main problem of healthcare institutions of the cost of interoperability solutions. 
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2 The FHIR standard  

This chapter focuses on selected FHIR specification’s concepts. Since FHIR is a recent 

standard, it is important to analyze its concepts and capabilities to be able to implement it in 

a solution and to fully identify its potential benefits. The FHIR specification is vast, it could not 

be covered entirely in the context of this work, therefore only the main concepts and the one 

needed to implement FHIR have been selected for this analysis. At first, it might be difficult to 

build a mental visualization of FHIR, consequently a mind map3 has been appended to this 

paper. Since not much documentation is available on the FHIR specification, the main source 

of documentation for this analysis is the FHIR specification itself. 

The current version of the FHIR specification is the version 3.0.1 of the Release 3 Standard 

for Trial Use (STU). This latest release succeeds to the Draft Standards for Trial Use (DSTU) 2 

and the DSTU 1. 

HL7 has categorized the specification in distinct modules grouped in five levels, as 

illustrated in the following figure. The next subchapters introduce some of the most important 

modules composing FHIR. The modules gather and structure FHIR’s features, elements and 

concepts.  

                                                      
3 Appendix II 
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Figure 4 – FHIR resources structure (HL7 International, n.d.) 

The first level, the foundation module, explains the specification’s key elements: the 

resources and the four exchange paradigms defined. Level two supports the implementation, 

the Implementer Support module is presented in the work by describing FHIR Common Use, 

the Security and the Conformance elements. Level three contains administrative resources 

and is therefore treated in the “Resources” subchapter 2.1. Finally, the Workflow module will 

be presented. 

2.1 Resources 

FHIR defines several different types of resources to save and exchange data. Resources are 

the core concept of the FHIR specification. They are the modular representations of clinical 

and administrative entities. Resources can be grouped together in what is called a “bundle”. 
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HL7 classifies the resources in 6 main sections (HL7 International, n.d.-r): 

- Clinical: containing all the resources representing the content of a clinical record 

- Identification: comprises the entities involved in the healthcare 

- Workflow: includes the different tasks of a care process 

- Financial: concerns the billing and payment ability of the specification 

- Conformance: encompass the resources used during development, testing and 

managing FHIR 

- Infrastructure: belong in the level 1 module “Foundation”, it contains resources 

providing useful base functionalities such as a “binary” resource to store non FHIR 

resource format, it also defines the “bundle” resource used to group several 

different resources. 

Some resources are typically clinical whilst others are business entities such as the 

resources of the section “Financial” or “Administration”. These are made for the end users to 

display and manipulate them, whereas some are used by the systems to give specific 

information such as the resources in the “Conformance” section. An exhaustive list of all the 

resources can be found on the HL7 FHIR’s website4.  

As previously said, FHIR is built on this concept of resource. They can either be represented 

in XML, in JSON or in Terse Resource Description Framework (RDF) Triple Language (Turtle) 

format for the exchange (HL7 International, n.d.-f). 

Some attributes (also called elements) of a resource are required whereas others are 

optional. A resource must have a known identity such as a Uniform Resource Locator (URL), a 

type, structured data items and a version identifier. Some optional elements have been 

defined for every resource: an identity, meta data, a language and a reference to implicit rules. 

These, represented in JSON on the figure 5, are just some elements that a resource may 

contain, it could also contain other resources, text, extensions and many other attributes (HL7 

International, n.d.-q). 

                                                      
4 at https://www.hl7.org/fhir/resourcelist.html 

https://www.hl7.org/fhir/resourcelist.html
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Figure 5 – base resource (HL7 International, n.d.) 

Extending the base resource, FHIR defines a domain resource that is then extended by all 

the resources except “Bundle”, “Parameter” and “Binary”. Each other resource type respects 

this domain resource’s structure and is redefined to its specific needs. The domain resource 

adds the definition of a narrative (human readable text) that indicates the content of the 

resource. The Domain resource enables resources to include related resources and 

extensions. 

 

Figure 6 – UML diagram of a Domain Resource (HL7 International, n.d.) 

FHIR defines the usage of all the resources contained in the specification, for instance, the 

Patient resource is used according to HL7 for “Demographics and other administrative 

information about an individual or animal receiving care or other health-related services.” 

(HL7 International, n.d.-n). 

The figure 7 shows a JSON representation of a Patient resource. This resource includes a 

reference to a Practitioner resource in order to assign a general practitioner to this patient. 

Below the code, the narrative representation is displayed. The narrative is contained in the 

“div” attribute of the Patient resource. 

The “id” attribute represents the FHIR id of the resource attributed by the FHIR server upon 

the resource’s creation. This id must be unique and cannot be changed. On the other hand, 

the “value” attribute of the “identifier” element represents the Medical Record Number 
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(MRN) used by medical institutions to identify their patients in their systems. This id can be 

manipulated in the resource and is therefore used for the MRN which is subject to change 

(HL7 International, n.d.-n). 

 

Figure 7 - Patient resource in JSON and HTML narrative 

2.1.1 Validation 
FHIR supports the validation of resources. Validating resources is the process of checking 

that the resources are valid according to the following aspects (HL7 International, n.d.-x): 

- Structure: ensure that the content of the resource is defined by the specification 

- Cardinality: validate the correctness of the cardinality of all properties  

- Values Domains: ensure that values of properties are conformant to the set of rules 

defined for the specific types 

- Coding: check that codes and displays used are valid 

- Invariant: ensure the invariants5, constraints are properly followed 

- Profiles: check that the resource conforms to the profile6 referenced  

- Questionnaire: verify that a response to a Questionnaire is valid against the 

Questionnaire 

                                                      
5 https://www.hl7.org/fhir/conformance-rules.html#constraints 
6  See chapter 2.4.1 
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The following table shows the different validation tools suggested by the specification. The 

aspects supported for the validation are indicated for each tool. 

 

Figure 8 - validation tools (HL7 International, n.d.-x) 

2.2 The four Paradigms 

FHIR supports four paradigms to exchange data: RESTful API, Services, Messaging and 

Documents (HL7 International, n.d.-g). This paper focuses mostly on the RESTful approach 

since, to this day, it is the most used by implementers and it is also the one chosen to be 

implemented in the application prototype that has been developed during this work. 

2.2.1 RESTful API 
FHIR can be referred to as a RESTful specification, indeed it defines “a uniform connector 

interface” (Fielding, 2000), known as FHIR RESTful API, enabling a stateless client-server 

communication. FHIR core specification supports the Level 2 of the Richardson REST Maturity 

model, Level 3 is supported with the usage of extensions. 

 

Figure 9 - REST maturity model (Martin, n.d.) 
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FHIR supports Level 2 since it is using HTTP for interactions, it defines resources that can 

be requested individually and it exploits HTTP verbs (GET, PUT, POST, DELETE) for its 

operations. The hypermedia controls of Level 3 can be supported by adding extra data in 

resources containing links to further interactions (HL7 International, n.d.-h).  

2.2.1.1 REST 

The representational state transfer is an architecture style granting interoperability 

between systems over the internet. The REST idea is to use a simple way of communicating 

between machines, which is commonly HTTP. HTTP-based REST uses HTTP commands to 

perform create, read, update and delete (CRUD) operations (Elkstein, n.d.).  

REST is a style of software architecture and not a standard. It defines how networked 

resources are to be addressed and, on a bigger scale, how the web works. It was first 

presented by Roy Fielding in his doctoral thesis (cited in Douglas K Barry, n.d.). It is a popular 

choice for the development of web-services. Applications following REST principles are 

referred to as RESTful applications whereas APIs adhering to REST principles are called RESTful 

APIs (Rouse, n.d.). 

REST defines five main principles: 

- A uniform interface: the interface between clients and servers uses a well-defined 

set of methods to manipulate resources. Each resource must be identified in the 

requests with, for example, an URI. Each message must contain enough information 

for the server to process it. Resources are separated from the representations send 

to the clients (XML, JSON…) (‘What is REST?’, n.d.). 

- Stateless interactions: the server does not hold the client’s state between requests. 

All the information needed by a request must be contained by it. 

- Cacheable: responses can be cached by clients 

- Client-server: the client and the server are separated, the client is responsible for 

the requests and the server for the response and data storage 

- Layered system: a client cannot tell whether it is connected to an intermediate or 

an end server (Servage, 2013). 
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2.2.1.2 FHIR RESTful API 

The API defines a set of operations that can be performed on FHIR resources. Servers 

should provide a Capability Statement resource describing which operations and resources 

they support (HL7 International, n.d.-h). 

FHIR defines the following interactions: 

 

Figure 10 - FHIR API interactions (HL7 International, n.d.-h) 

Interactions may be used with the following form: VERB [base]/[type]/[id] 

{?_format=[mime-type]}. [base] represents the Service Base URL where all the resources 

defined by the interface are located. The usage of HTTPS is optional but production exchange 

of healthcare information shall use SSL (HL7 International, n.d.-h). The following subchapters 

present the most current API interactions. 

2.2.1.2.1 Read 

The read interaction is used to request the current content of a resource from the server 

(HL7 International, n.d.-h). For example, if a client requests the current state of a patient 

resource with “20207” as id from a FHIR RESTful test server, the read interaction will take this 

form: 

GET https://fhirtest.uhn.ca/baseDstu3/Patient/20207?_format=json 

https://fhirtest.uhn.ca/baseDstu3/Patient/20207?_format=json&_pretty=true
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2.2.1.2.2 Vread 

The vread interactions allow retrieving a specific state of a resource. It is essentially a read 

operation which has the version of the resource specified. Vread is performed using a HTTP 

GET command as follow: GET [base]/[type]/[id]/_history/[vid] {?_format=[mime-type]}. 

Servers supporting the FHIR API should support resources versioning, if not, it should be 

explicitly declared in their capability statement (HL7 International, n.d.-h). 

2.2.1.2.3 Update 

Update is performed with: PUT [base]/[type]/[id] {?_format=[mime-type]}. It simply 

creates a new version of an existing resource on the server. The request body is a resource 

with the same id as the resource in the URL, if not the server will respond with a HTTP 400 

error code. 

A conditional create has been defined by FHIR allowing clients to update resources based 

on other criteria than their ids. The command is the following: PUT [base]/[type]?[search 

parameters]. HTTP PATCH command can be used to update resources when one does not 

need or have permission to update an entire resource (HL7 International, n.d.-h). 

2.2.1.2.4 Delete 

The delete interaction erases a resource. It is performed by the HTTP DELETE command 

knowing the id of the resource: DELETE [base]/[type]/[id]. The resource will no longer be 

found through search operations. It is possible to specify some types of resources that cannot 

be deleted and it is also possible not to enable deleting resources at all. As for updating, a 

conditional delete exists and allows deleting resources based on other parameters than their 

ids (HL7 International, n.d.-h). 

2.2.1.2.5 Create 

Creating a resource is achieved by an HTTP POST command. The id of the resource will be 

allocated by the server. The create URL has the form: POST [base]/[type] {?_format=[mime-

type]}. The request body must contain a FHIR resource. Once the resource has been 

successfully created, the server returns the new id and version id of the resource.  

It is possible to use a conditional create so that a resource is created only if no such resource 

can be found on the server (HL7 International, n.d.-h). 
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2.2.1.2.6 Search 

The search interactions can be operated with either the GET or the POST command. The 

GET command is formed as GET [base]/[type]{?[parameters]{&_format=[mime-type]}}, 

whilst the POST command is formed as POST 

[base]/[type]/_search{?[parameters]{&_format=[mime-type]}}. Those two search queries 

look for all resources of a given type on the server. Servers shall support both versions of the 

search interaction because of how GET and POST might be handled by proxies and user agents. 

Several search parameters apply to all FHIR resources: _content, _id, _lastUpdated, 

_profile, _query, _security, _tag, _text and _filter. For instance, to search a patient based on 

its id the following query is used: GET [base]/Patient?_id=23. When searching for one 

resource, a bundle will be returned by the server, therefore when the client is certain of the 

existence of the resource on the server, a read operation is more appropriate (HL7 

International, n.d.-s). 

The FHIR specification lists all the search parameters defined for each type of resource 

directly on each resource’s page (e.g. the patient page7).  

2.2.2 Services 
FHIR data exchange can be conceived as a service-oriented architecture (SOA). SOA is a 

well-known architecture in the software industry. Fundamentally, it can be considered as 

being a set of exposed services. As in real life, a provider offers a service to a consumer. The 

consumer obtains the result of the service without further considerations on how the result 

was achieved behind the scenes. In the information technology (IT) domain, services which 

represent business functions are made available to other systems through standard protocols 

(Phelps, 2007). 

To do so, the web-services technology is the most commonly used communication 

protocols. Web-services are exposed on the internet by providing applications, then the 

consuming applications can send and receive data by invoking those networked services 

(Doglas, n.d.).  

                                                      
7  At https://www.hl7.org/fhir/patient.html 

https://www.hl7.org/fhir/search.html#text
https://www.hl7.org/fhir/search.html#filter
https://www.hl7.org/fhir/patient.html
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Even though FHIR resources are created to best fit the RESTful API approach, it is possible 

to design an exchange architecture following the services approach. FHIR defines the two 

following SOA approaches: 

-  FHIR + WS* represents FHIR implementations using the web services stack as the 

communication protocol instead of REST. This would include use of FHIR resources as 

payload parameters in SOAP calls, for example 

- FHIR + SOA Pattern illustrates the impact of applying interaction patterns, exception 

handing and role definition, guided by SOA practices, atop an implementation 

technology (SOAP, REST, or others). 

(HL7 International, n.d.-u) 

FHIR could benefit from interesting SOA capabilities such as its low-coupling framework, its 

expertise in transactional integrity within distributed systems and its consistency in exception 

handling (HL7 International, n.d.-u). FHIR and SOA implementations combined may be a wise 

choice to make since “SOA provides guidance for how components interact, how to partition 

responsibilities, and how to manage workflows among different parts of systems, all of which 

have potential utility in FHIR implementation settings.” (HL7 International, n.d.-u).  

It is important to bear in mind that FHIR resources have been thought to be exploited by a 

RESTful implementation and implementing FHIR with SOA could engender a great amount of 

additional work.  

2.2.3 Messaging 
FHIR also defines a messaging exchange framework which enables sending routed 

messages from systems to systems to exchange content. This mechanism can either be 

implemented on the RESTful API or use an independent messaging system. 

This exchange was not designed to complete the RESTful API, but only to allow 

implementers to choose the way they want to exchange their content. It resembles HL7 v2 

exchange mechanism and may be interesting for v2 familiarized developers. 
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This exchange is event driven, a message is sent when triggered by an event such as a new 

prescription for a patient or a newly scheduled meeting. A message is in fact a bundle of 

resources which first resource is of type MessageHeader (HL7 International, n.d.-j). The 

appendix I of this work contains a FHIR message example to illustrate this point. Indeed, it is 

easier to understand how messages are formed by going through a concrete instance. 

2.2.4 Documents 
FHIR delineates a document exchange framework allowing systems to transmit documents. 

This framework is strongly based on HL7 CDA standard. 

Documents are bundles of resources of type “Document” that contain a Composition 

resource as their first entry, followed by the resources creating the actual content of the 

document. The resources forming the content of the message are referenced by the 

Composition. The bundle gathers the whole content of the document into one unique XML or 

JSON document (HL7 International, n.d.-d). The Composition resource is described by HL7 as: 

A set of healthcare-related information that is assembled together into a single logical 

document that provides a single coherent statement of meaning, establishes its own 

context and that has clinical attestation with regard to who is making the statement. While 

a Composition defines the structure, it does not actually contain the content: rather the full 

content of a document is contained in a Bundle, of which the Composition is the first 

resource contained. (HL7 International, n.d.-c) 

A FHIR document is immutable and has a fixed representation created either by humans, 

organizations or devices. It can be exchanged and stored by systems. FHIR documents can be 

signed to ensure the document’s authenticity. A binary resource may be included in the 

document to contain the stylesheet that will be used to nicely render the document for human 

readers. 

FHIR also provides a document reference resource for documents that are not assembled 

in FHIR (pre-existing documents) (HL7 International, n.d.-d). 
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2.3 Security and privacy 

FHIR not being a security protocol, it does not provide any security features. Nevertheless, 

as security and privacy of data are crucial elements in healthcare FHIR has been designed to 

work with many existing security solutions. FHIR describes how to protect a FHIR server with 

access controls and authorizations and how to keep tracks of the events performed with audit 

logging. FHIR advocates that implementations use existing security standards towards 

providing the encryption of communications, avoidance of information leaks on error 

occurrence, deactivation of scripts injection into narrative resources, logs records to track 

abnormal access behaviors and control of data access (HL7 International, n.d.-t).  

As a matter of fact, a production FHIR system will require a security system to be 

established. The following figures presents some integration possibilities. 

 

Figure 11 - FHIR security subsystem (HL7 International, n.d.-t) 

2.4 Conformance 

2.4.1 Profiles 
The FHIR specification defines foundations, on which many different solutions can be 

created, by providing base resources, frameworks and APIs. Since FHIR is intended to be used 

by a wide industry, adjustments and adaptations may occur so that the solution fits the 

implementers’ need. An item or package of these adaptations is known as a “profile”, while 

the process of adapting FHIR to specific use case’s need is referred to as “profiling”. A profile 

is in fact a “normal” FHIR resource that can be handled by any FHIR server (HL7 International, 

n.d.-p). 
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Common adaptations would be defining rules about (HL7 International, n.d.-p):  

- The usage of the resources specifying weather they are used or not and what 

components have been added or restricted 

- The API features available and how to use them 

Since FHIR is used in the vast industry of healthcare, many similar or overlapping 

adaptations may exist in different countries, institutions or for different vendors. FHIR 

implementations and resources shall declare the profiles they conform to. Servers list the 

profiles they support and check clients’ conformances. Resources declare their conformances 

in their metadata by referencing a profile by its URL (HL7 International, n.d.-p). 

2.4.2 Profiling artifacts 
FHIR provides a set of artifacts for profiling, they are presented in the table below. 

Artifact Description 

Implementation Guide 

(IG) 

A coherent and bounded set of adaptations that are 

published as a single unit. Validation occurs within the 

context of the Implementation Guide 

Package A group of related adaptations that are published as a 

group within an Implementation Guide 

Conformance Resource A single resource in a package that makes rules about 

how an implementation works. Described in the 

following point. 

Table 1 - FHIR profiling artifacts adapted from (HL7 International, n.d.-p) 

2.4.3 Conformance resources 
FHIR defines the need and usage of a conformance resource:  

Typically, Implementation Guides both restrict and extend APIs, resources and 

terminologies. FHIR provides a set of resources that can be used to represent and share the 
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decisions that have been made, and allows implementers to build useful services from them. 

These resources are known as the conformance resources. (HL7 International, n.d.-p) 

With these conformance resources, implementers can perform several tasks on the APIs: 

indicate what calls can be made and in which cases using the CapabilityStatement resource, 

offer additional search operations and search parameters that are not defined by the core 

specification (OperationDefinition and SearchParameter resource). They can also define how 

a resource, extension or datatype is used in the implementation with the StructureDefinition 

resource. The StructureDefinition resource allows to describe the elements used, indicate the 

one that are not and the extensions a resource or datatype supports (HL7 International, n.d.-

p). This resource can also be used to describe how a particular resource references a ValueSet 

resource defining the code values used and supported by that particular resource (e.g. LOINC 

codes). 

 For instance, a profile (Conformance resource) can be used to restrict a resource element’s 

cardinality or to limit the possible values it might take. It also allows to add new properties to 

a resource by extending it. The following image shows some interesting usage of a profile. 

 

Figure 12 - Resource profiling (Hay, 2014, p. 3) 
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2.5 Use cases 

FHIR describes several use cases that can be implemented with the FHIR standard. The 

following two use cases are presented: Personal Health Record (PHR) viewer and document 

repository. It is important to note that FHIR will be implemented to meet many other use 

cases, therefore the examples provided below are in no way an exhaustive listing of FHIR’s 

uses. 

2.5.1 PHR viewer 
An EHR system exposes a FHIR server that allows client applications to perform search and 

read operations on the Patient resource and on a set of clinical resources. This use case is 

illustrated by the schema below.  

 

Figure 13 – FHIR integration with EHR (Sangem, 2016) 

Further interactions could be allowed to client applications such as update. This use case 

would typically be defined by a scenario in which patients can have access to their personal 

health data via a mobile application or a patient portal (HL7 International, n.d.-w). 

A simulation of this use case has been implemented in the prototyping phase of this work. 

The project developed in the context of this work is, indeed, a simulation of the above real-

world use case since no EHR system has been integrated in the project. The EHR has been 

replaced by a web interface allowing the patient medical record’s creation, modification and 

deletion. 
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2.5.2 Document repository 
Integrating medical information from different sources can be done with the build of a 

patient-centric document repository.  
 
Integrating the Healthcare Enterprise’s (IHE) HE Cross-Enterprise Document Sharing (XDS) 

profile has been adopted as the main framework to create those types of repositories as “XDS 

allows for a federated system of repositories with a registry to provide coordinated access to 

the documents” (HL7 International, n.d.-w). FHIR provides the same capabilities as XDS and 

can be used to create more modern and user-friendly interfaces. Those interfaces can also 

easily be integrated to existing XDS environment. Furthermore, HL7 and IHE are currently 

working together to enhance the IHE Mobile access to Health Documents (MHD) profile8 (IHE, 

n.d.). 

2.6 Workflows 

Workflows are the essence of healthcare whether automated or not. Automated 

workflows improve the medical care in such a manner that many errors can be avoided and 

simplifies the work of care providers. FHIR is concerned with workflow management and aims 

to standardize the processes, activities and roles necessary to interoperable workflow 

executions. FHIR resources can be used in workflows without necessarily using FHIR for the 

execution although FHIR provides several mechanisms for that purpose. In some cases, the 

management of the execution of workflows might not even be required, FHIR supports these 

cases and allows handling them in a simple manner such as shown on Figure 14 (HL7 

International, n.d.-y). 

FHIR defines a set of resources (activities) that are used within workflows, three categories 

exist (HL7 International, n.d.-y):   

- Request: the resource requiring an action to be taken  

- Appointment, Task, MedicationRequest… 

- Events: resources expressing that an action has been taken 

- Encounter, Observation, SupplyDelivery, DiagnosticReport… 

- Definitions: resources describing an action that can be done (time-independent) 

                                                      
8 The profile defines a HTTP interface for XSD-based in order to access medical document from “mobile” 

applications 
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- PlanDefinition, Measure, Questionnaire… 

2.6.1 Workflow patterns 
The simplest workflow architecture using FHIR would be that (HL7 International, n.d.-z):  

1. The placer system Perfoms a RESTful create or update interaction on a resource of 

the receiver RESTful endpoint. 

2. The receiver then replies with an HTTP status indicating the state of the request and 

the response that can be provided in the payload of the HTTP response. 

Figure 14 is another example of a workflow architecture. The following steps are defined 

(HL7 International, n.d.-z):  

1. The placer system creates a resource of the request category on the filler FHIR 

server. This resource possesses a tag element indicating that action has to be taken 

upon the resource. 

2. The filler sends a HTTP status code indicating that the resource has successfully 

been created.  

3. After a certain time, the filler sends an event resource to the placer’s resource 

endpoint. The event resource references the request with a link (basedOn) to 

identify the resource for which the action has been fulfilled. 

4. The placer system replies with a 201 HTTP status code indicating that the resource 

has been created. 

 

Figure 14 - simple RESTful workflow pattern (HL7 International, n.d.-z) 
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Those two examples illustrate the basic mechanism of FHIR workflow management, in 

addition, the specification defines more advanced management patterns that manage the 

execution of workflows. The figure below shows an example of such a pattern. As it can be 

seen, the state of execution of the workflow is now trackable (tasks completed or not). As the 

previous example, this pattern manages the workflow using the FHIR API. 

 

Figure 15 - FHIR worflow management pattern (HL7 International, n.d.-aa) 
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3 Implementations analysis 

This chapter treats the current state of FHIR implementations. Some of the databases, 

libraries and frameworks that can be used to build FHIR systems will be reviewed. This paper 

does not claim that the tools presented are the only ones available to implement FHIR. The 

libraries, frameworks and databases presented, found as a result of the research conducted, 

have been analyzed in order to determine which library or framework use will best fit the 

creation of a FHIR-based application.  

3.1 Databases 

3 different approaches exist for FHIR object’s storage (McKenzie, 2014): 

- Storing the XML or JSON representation directly in a Not only SQL (NoSQL) Database 

- Storing the XML or JSON as a Binary Large OBject (BLOB) and save the index data in 

a table 

- Mapping the objects to a classic relational database (DB) 

The NoSQL approach is interesting in the FHIR context since most of the storage consist of 

storing objects in JSON format, a semi-structured type of data. JSON storage is handled 

natively in most NoSQL databases and thus does not require a lot of transformation in order 

to be persisted, retrieved and used in the application. NoSQL enables high performances on 

great volumes of data. It is also often cheaper to use since a lot of the databases are open-

source. 

To store JSON or XML objects it is also possible to use a relational database management 

system (RDBMS) and store them as a BLOB. The BLOB has the ability of storing binary data and 

is therefore often used to store audio files, images or multimedia files. Moreover, using a BLOB 

avoids having to do character conversions to the database’s text format and allows the storage 

of larger JSON documents (Oracle, n.d.). 
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Figure 16 – FHIR server MySQL database schema (Grieve, 2012) 

The figure above shows an example of a database schema that could be used to store FHIR 

resources and build a database supporting FHIR capabilities such as indexing, versioning and 

advanced searching. The actual content of the resource is in the table FhirVersions in the 

[Content] column. 

Supporting FHIR in a complete manner, be fully conformant, requires a well thought 

database model and might require a lot of different stored procedures in furtherance of 

keeping conformance to the specification. Building such a database will request special effort 

in modeling and maintenance since FHIR is still in development and thusly subject to change. 

The last option consists of storing the objects in a usual textual way in a relational database 

like MySQL, Oracle, Derby…, or in an object-oriented database such as PostgreSQL. Some new 

features of the RDBMS allow storing JSON in a native NoSQL-ish way enabling better search 

capabilities (Oracle, n.d.). 
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3.1.1 FHIRbase 

 

FHIRbase is an open-source database designed by Health Samurai Team to store and 

retrieve data in FHIR format and is now ready for production use. It is an extension of the well-

known PostgreSQL database.  The interaction with a FHIRbase DB is done using a PostgreSQL 

client with SQL syntax. To date, FHIRbase supports the DSTU-2 version of the FHIR 

specification. 

Instead of directly inserting, updating and deleting data inside the FHIRbase, stored 

procedures are used so that all the different actions required on data changes can be 

performed. Since PostgreSQL has a native support for JSON format (jsonb type), JSON is the 

format in which FHIRbase chose to store the FHIR resources. If XML is preferred in an 

application, it is always possible to convert the JSON with some code in the application directly 

(Health Samurai Team, n.d.-d). 

 

Figure 17 – Querying the patient table of FHIRbase (Health Samurai Team, n.d.) 

Figure 17 shows the structure and the data types of the patient table as conceived by 

FHIRbase. The JSON representation of the resource is stored using the native jsonb type, as 

explained before. The other types are texts and timestamps. 

FHIRbase

Git: https://github.com/fhirbase
License: MIT License
Type: open-source
Logo: http://fhirbase.github.io/
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With FHIRbase table structures, a patient resource is stored as following: 

 

Figure 18 - sample patient stored (Health Samurai Team, n.d.) 

3.1.1.1 Documentation and analysis 

All the documentation on FHIRbase is available online9. They have set up a nice working 

environment with tutorials, technical documentation, a demo, an installation guide and code 

samples. All information needed can be found very easily which should make working with 

FHIRbase enjoyable. 

 The project can be downloaded from GitHub10. It obtained 72 stars and has one main 

contributor niquola who is backed up by three others less committed contributors. Niquola 

works also on the fhir.js library as well as on Aidbox, which will be introduced later in this 

work. 

3.2 Framework: Aidbox 

 

As well as offering FHIRbase, Health Samurai Team offers free protected FHIR test servers 

and a cloud backend platform called Aidbox. Once an Aidbox account has been created, it is 

possible to create a “box” which corresponds roughly to a FHIR server instance. The Figure 19 

shows the interface to manage a box with Aidbox. 

                                                      
9 http://fhirbase.github.io/index.html 
10 https://github.com/fhirbase/fhirbase-plv8 

Aidbox

Website: https://aidbox.io/index.html
License: Entreprise License
Type: free
Logo: https://hello.aidbox.io/

https://github.com/niquola
http://fhirbase.github.io/index.html
https://github.com/fhirbase/fhirbase-plv8
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Figure 19 - An Aidbox box 

Aidbox has several out-of-the-box tools such as users, groups, security and client 

management. It also includes a DB console to interact with the underlaying FHIRbase and a 

REST console to operate on the FHIR sever. 

Aidbox allows to deploy single-page application (SPA) directly into a dedicated box. More 

complex applications work with aidbox as well, but require isolated web servers for their 

hosting. 

Aidbox proposes several different usages, one can use it as (Health Samurai Team, n.d.-a):  

- An API facade 

- A backend 

- A clinical data repository 

- An integration bus 

3.2.1.1 Features 

Aidbox provides a database to store health data, a FHIR compliant REST API for data access 

and exploit. It is also OAuth secured and enables the creation of security policies to restrict 

access to data. It also includes an interface for the user management and a registration 

module (Health Samurai Team, n.d.-b). 
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3.2.1.2 Documentation and analysis 

The documentation is well structured. At the same place11 , everything needed to get 

started with Aidbox and the implementation of an application using it can be found. If not, 

they have a reactive costumer service that will answer questions. 

Technical documentation, Implementation guide, user guide, code samples and even a 

sample app are available freely on their website. Although the documentation is not yet 

finished, it is already valuable and usable. 

3.3 Libraries 

3.3.1 The HAPI-FHIR Java library 

 

HAPI-FHIR is a java library that enables FHIR capability in an application. It is an open-source 

implementation of the FHIR specification. It has primarily been developed by the University 

Health network to build a FHIR RESTful server communicating with various data storages and 

repositories. The aim of this library is to allow fast, flexible and conformant implementations 

of FHIR. It provides not only a RESTful FHIR client but the API allows to create a RESTful FHIR 

server. 

                                                      
11 https://aidbox.io/docs/Features.html 

HAPI-FHIR

Git: https://github.com/jamesagnew/hapifhir/releases
License: Apache Software version 2.0
Type: open-source
Logo: http://hapifhir.io/

https://aidbox.io/docs/Features.html
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Figure 20 - HAPI-FHIR usage patterns (University Health Network, n.d.-b) 

HAPI can be utilized mainly in four different manners that are illustrated by the image 

above. Further explanations on those four manners (University Health Network, n.d.-b): 

1. Usage of a parser and an encoder to enable a conversion between the application and 

FHIR’s data model. 

2.  Use the HAPI FHIR client in an application to retrieve or save resources onto an external 

server. 

3. External FHIR client can interact with the application by accessing the HAPI FHIR server. 

4. Another way of implementing with HAPI FHIR is to deploy a HAPI JPA/Database server 

and develop applications to work with it 

HAPI API supports both XML and JSON encoding. For a better testability, a public open-

source test server built with HAPI-FHIR is available on the internet12 (University Health 

Network, n.d.-b). 

                                                      
12 At http://fhirtest.uhn.ca 

http://fhirtest.uhn.ca/
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3.3.1.1 Data model 

The interaction with FHIR model objects is done through a developer friendly Fluent 

Interface. Every FHIR resource type is defined by HAPI model classes. Since HAPI uses a fluent 

style, function calls can be done in a very practical way. Figure 21 illustrates a Patient object’s 

creation, the assignments of its attributes and how it is parsed to be displayed (University 

Health Network, n.d.-c). 

 

Figure 21 - Fluent style method calls (University Health Network, n.d.-c) 

3.3.1.2 RESTful Client 

The aim of this HAPI client is to ease the implementation, thus a built-in mechanism allows 

to connect to FHIR RESTful servers. Two types of clients are available with HAPI: the 

fluent/generic client and the annotation client. The first one is a simpler version that can be 

set up fast. The second one requires more effort to be implemented but allows a better 

compile-time checking against the servers (University Health Network, n.d.-f). 

The java client library is well documented and thus seems very practical to use. The Javadoc 

for FHIR STU 3 is freely available online13. All the classes representing fhir resources are listed, 

their methods and attributes are presented in a useful manner: often with descriptions, with 

datatypes, parameters and links to other embedded classes. 

3.3.1.3 RESTful Server 

It is very easy to add server capability to the application with the built-in HAPI Server 

mechanism. This HAPI RESTful server is based on Servlet and can be deployed in many existing 

containers. The implementation is almost entirely done using annotations and requires very 

little time (University Health Network, n.d.-g). 

As seen previously, it is also possible to use the HAPI FHIR RESTful server module to create 

an endpoint to exploit a chosen data source. The data source could be for example a database, 

                                                      
13 http://hapifhir.io/apidocs-dstu3/index.html 

http://hapifhir.io/apidocs-dstu3/index.html
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a clinical system or some files. The persistence module that HAPI provides allows to create a 

full server implementation backed up by a chosen database. (University Health Network, n.d.-

d). 

3.3.1.4 Documentation and analysis 

The HAPI API is well documented. For most features, Client or Server, some examples of 

code, explanations and implementation advices are available on the HAPI FHIR website14.  

The test server is a nice-to-have tool, it has a friendly user interface that most other test 

servers lack. Open source implementation examples are easily found, they often reveal 

themselves to be of great interest. As of now, HAPI’s test server is probably the most complete 

implementation of a fhir server available since it allows complex searches and implements a 

reference mechanism allowing, for instance, a patient resource to store a reference to its 

practitioner. 

The git project has one main and frequent contributor and three relatively frequent 

contributors. The main contributor is part of the University Health Network. The project has a 

372 stars rank.  

3.3.2 FHIR .NET API 

 

 Created by Furore Health Informatics, the .NET API is the reference implementation of the 

FHIR standard for the Microsoft .NET platform. Along with the library, Furore also introduced 

spark, an open-source FHIR server and Forge, a FHIR profiling tool. 

The library allows to rapidly create a RESTful FHIR client, offers classes for serialization and 

deserialization into XML and JSON formats as well as parsers, provides the possibility to define 

server calls with the search commands and class models to work with the data model of the 

                                                      
14 http://hapifhir.io/ 

FHIR .NET API

Git: https://github.com/ewoutkramer/fhir-net-api
License: BSD 3-clause Revised License
Type: open-source
Logo: https://fhir.furore.com/fhir-api/

http://hapifhir.io/
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FHIR specification. The API enables to work with extensions and a process of validation of data 

content, but those features are more complex to set up (Furore, 2017).  

The library allows to work efficiently with FHIR resources by defining a class for each 

resource. The REST operations are addressed with a very practical FHIR client as shown on the 

Figure below for the search interaction. 

 

Figure 22 - REST Search operation (FHIR Developer Days, 2014) 

3.3.2.1 Spark 

Spark is the open-source FHIR server implementation of Furore. It has been downloaded 

and used all around the world, mainly for testing purposes but in production environment as 

well. Spark offers a wide variety of features including a complete search implementation, 

Batch, History, XML and JSON support and Validation. Spark works with the OAuth and OpenID 

authentication protocols. 

A FHIR STU3 compliant Spark commercial version is being built to adapt to the production 

use (Furore, n.d.). 

Spark’s implementation can be downloaded from GitHub15. 

3.3.2.2 Documentation and analysis 

Even though the API has a sufficient amount of documentation, it is a bit short of 

explanations. The whole documentation can be found online16. 

An element to emphasize is the lack of server capability of the library to build FHIR servers. 

The Java HAPI API is more complete in that sense. Nevertheless, a proper server 

                                                      
15 at https://github.com/furore-fhir/spark 
16 http://ewoutkramer.github.io/fhir-net-api/docu-index.html 

https://github.com/furore-fhir/spark
http://ewoutkramer.github.io/fhir-net-api/docu-index.html
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implementation is available publicly and freely which allows to build complete FHIR solutions 

using .NET. 

3.4 Platform: SMART 

 

Substitutable Medical Applications, Reusable Technologies (SMART) Health IT is an open 

and standards based application platform that helps developers create healthcare integrated 

apps.  

The SMART project was launched and is carried out by the Boston Children’s Hospital 

Computational Health Informatics Program and the Harvard Medical School Department for 

Biomedical Informatics. The idea is to enable and improve exchange around technology in 

healthcare and ease the development of applications by offering a platform, some libraries, 

open-source applications and a sandbox for testing. If supporting the SMART standard in an 

EHR or in a data warehouse, it is then possible to easily integrate existing apps of the platform 

into the said HIS (SMART, n.d.).  

To create SMART client apps whether native, mobile or web apps that can communicate 

with SMART supporting systems, SMART introduced SMART on FHIR. SMART on FHIR is a 

collection of open specifications and provides several FHIR client libraries and FHIR testing 

tools. 

To date libraries for three different programming environments can be downloaded: 

Javascript (SMART JS), Python and IOS (Swift-SMART). The created web apps can be integrated 

directly in the EHRs’ user interfaces. This allows the user to have every functionality needed 

at the same place (SMART Health IT, 2017a). 

In an article of the Journal of the American Medical Informatics Association, they used an 

analogy that explains clearly what the SMART platform is:  

SMART on FHIR

Git: https://github.com/smart-on-fhir
License: Licensed under the Apache License, Version 2.0
Type: open-source
Logo: https://smarthealthit.org/
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We drew an analogy with mobile phone platforms such as iPhone and Android, which lower 

the barrier to app development by providing a software platform with a published interface 

to a set of core services such as camera, address book, geo-location, and cell and wireless 

networks. The platform functionally separates the core system from the apps, and the apps 

are substitutable. (Mandl, et al., 2012) 

By enabling the creation of substitutable apps in medical systems, SMART enables to 

change quickly from an unsatisfying app to a better one with the lowest costs possible. This 

environment also empowers a more competitive market type and once again helps reducing 

HIS development costs (Mandl, et al., 2012). Those substitutable apps can be found on the 

platform’s App Gallery as illustrated here below.  

 

Figure 23 – The SMART App Gallery (‘SMART App Gallery’, n.d.) 

3.4.1 Data model 
The data layer of the SMART project is built on the FHIR REST API and the FHIR resources 

definition. In extension to the core capabilities of FHIR, SMART defines a bunch of profiles to 

better detail and adapt the specification to real world usage (‘What Is SMART?’, 2012). SMART 

uses the profiles introduced by The Argonaut Implementation Guide to enlarge FHIR resources 

capabilities (Argonaut Project, 2017). 
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3.4.2 SMART JS client 
This javascript client library can be downloaded on GitHub17. It uses an embedded fhir.js  

open-source library to interact with FHIR REST API servers. SMART JS adds the ability to work 

in the context of an EHRs. 

Thus, it handles the same API operations as the fhir.js library, the most important of those 

being: 

- FHIR CRUD (Create, Read, Update, Delete) 

- vread (reading a specific version of a resource) 

- search 

- fetchAll 

 

Figure 24 – FHIR JS resources’ creation (niquola, 2014)  

The figure above, shows how to create resources with the fhir.js library. It is easy and fast to 

implement and conforms to the FHIR specification. The other FHIR operations are as easy as 

the create function to set up. For example, the search operation is coded as simply as the 

following:  

 

Figure 25 – SMART js search (SMART Health IT, 2017b) 

                                                      
17 https://github.com/smart-on-fhir/client-js 

https://github.com/FHIR/fhir.js
https://github.com/smart-on-fhir/client-js
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 To have an idea of what can be built with SMART js, a live demo of a SMART sample client is 

available online18.  

3.4.2.1 Documentation and analysis 

The library is well documented on the SMART on FHIR website19, they have explanations and 

tutorials to get implementers started, but also on GitHub since they have extra information 

and documentation for the basis of the API. The only lack of documentation would be a 

presentation of the library’s structure and a technical guide. It might be difficult to understand 

how to use all the available classes. 

Currently the project has only 47 stars and two consistent contributors on GitHub, both part 

of the SMART Health IT. 

3.4.3 SMART on FHIR Python client 
The SMART on FHIR Python client allows setting up easily an interaction to a FHIR server or 

a SMART on FHIR server. It can be freely downloaded from GitHub20. For that mean, an out-

of-the-box FHIRClient class is available, it enables the interaction with a FHIRServer class. The 

client can be used with Python 2.7.10 and 3 (SMART Health IT, 2017f). 

The Figure below shows the classes’ structure of the Python client. The following elements 

are listed: the FHIRClient class responsible for the server interaction, the authentication class 

is for the OAuth 2.0 protocol that this client accepts and the models folder containing all the 

classes representing the FHIR resources. 

 

Figure 26 – Python client class structure (SMART Health IT, 2017) 

                                                      
18  https://plnkr.co/edit/DapXQaTONYSRSyylHdpu?p=preview 
19 http://docs.smarthealthit.org 
20 https://github.com/smart-on-fhir/client-py 

https://plnkr.co/edit/DapXQaTONYSRSyylHdpu?p=preview
http://docs.smarthealthit.org/
https://github.com/smart-on-fhir/client-py
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The client handles FHIR data within its classes using a parser that manages the serialization 

and deserialization (SMART Health IT, 2017f). To illustrate this, below, the patient resource is 

presented from its definition in the FHIR specification to its final class form in the python 

application. 

 

Figure 27 – Patient resource UML (HL7 International, n.d.-n) 

On the figure above the Unified Modeling Language (UML) diagram of the FHIR patient 

resource is presented. The figure 28 shows the different attributes of the python client’s 

patient class. It can be seen that the patient class follows and conforms to the FHIR patient 

resource definition. The parser will be used to convert from the FHIR resource received from 

the server (often in JSON format) to the application resource’s object in order to have a 

functional business object. 

https://github.com/smart-on-fhir/fhir-parser/tree/6eb44a9639a7fdab9d8f62781b33ecf5d7a9f40e
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Figure 28 - patient class of the python client (SMART Health IT, 2017e) 

Here below an example of how the library works with FHIR resources in its classes. As it can 

be seen, the library is well-structured, and thus allows fast familiarization and 

implementation. 

 

Figure 29 – working with FHIR data Python (client-py, 27 August 2014/2017) 
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3.4.3.1 Documentation and analysis 

The technical documentation21 is well organised and thus makes the search for information 

very pleasant. All the classes and structures are listed and have documentation in attachment. 

The lack here would be a programming guide containing some tutorials and sample codes to 

get started faster. 

As of end of May 2017, it has 43 stars on GitHub and one main contributor that works for 

the SMART organization.  

3.4.4 SWIFT-SMART IOS client 
This library is a complete FHIR implementation of a client for IOS 8, OS X 10.10 and higher 

versions. It can be entirely downloaded from GitHub22. 

Working in the same way as the above libraries, SWIFT-SMART provides a FHIR client to set 

up the interaction with a FHIR server. The instantiation of the client is fast, just like 

understanding how to work with it. In SWIFT’s wiki, a code sample shows that: 

                                                      
21  http://docs.smarthealthit.org/client-py/ 
22 https://github.com/smart-on-fhir/Swift-SMART. 

http://docs.smarthealthit.org/client-py/index.html
https://github.com/smart-on-fhir/Swift-SMART
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Figure 30 – SWITF client sample code (SMART Health IT, 26 June 2014/2016) 

The code of the figure above includes the Client initialization, lets the user log in to select 

a patient to fetch a patient’s MedicationOrder resource. The library is robust and practical to 

use. 

The model classes are complete regarding their conformance to the FHIR resource 

definitions. Once again, taking the same example used for the python library, if the patient 

resource definition is compared to the patient class provided by the SWIFT library, all 

necessary attributes are present: 
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Figure 31 – Patient resource’s attributes SWIFT (SMART Health IT, 2017c) 

3.4.4.1 Documentation and analysis 

Of all the different libraries review in this work, SWIFT is the best documented. A 

programming guide, a full documentation and a sample application are available23  and make 

the implementers’ jobs much easier.  

The project can be download from GitHub 24 . It currently has 45 stars and only one 

contributor working for the SMART Health IT organization. 

3.4.5 Comparative table 
To make the best decision regarding which library to use to implement a FHIR client to 

interact with a FHIR server, several criteria have to be considered. To help comparing between 

the libraries, a comparative table regrouping the different criteria selected has been realized 

and is presented below. 

                                                      
23At  http://docs.smarthealthit.org/Swift-SMART/ 
24 https://github.com/smart-on-fhir/Swift-SMART 

https://github.com/smart-on-fhir/Swift-SMART/wiki
https://github.com/smart-on-fhir/SoF-Demo
http://docs.smarthealthit.org/Swift-SMART/
https://github.com/smart-on-fhir/Swift-SMART
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Each criterion is perused below with a description and explanation for the way it is rated. 

The appreciation of some criteria uses a rating system on six points. As it is the common 

grading system in Switzerland, it is more understandable to grade in this fashion. The best 

grade is six, a sufficient work gets a four and, below that, are the insufficient grades. 

- Simplicity: how simple it is to use the library. The more the library has been 

designed for practical use, the more point it will obtain. 

- Documentation: is how the library is documented. A complete documentation 

includes a Programming guide, a Technical documentation, explanations and if 

possible a forum or chat. A complete documentation will receive the grade of six. 

- Exchange supported: shows the interoperability paradigm provided by the library. 

As seen previously FHIR thought of four different exchange: REST, messages, 

documents and services. 

- Server-side API: the library gets a point if it has an API for FHIR server creation 

(binary notation). 

- Authentication: The method supported for authentication, OAuth2 being the most 

important in the medical environment. 

- Data model: how the library handles the FHIR resources. 

- FHIR version: the latest FHIR version supported by the library. As of now, the latest 

release is STU3. 

- Sample applications/code: an appreciation on six points of the amount of code and 

application samples that can be found to help implementing a FHIR application 

using the library. To get a four the library’s documentation must give just enough 

samples to make the implementation feasible for a junior developer. The 

appreciation considers tutorials, samples of code and applications found on the 

internet, weather provided by the library’s or not. 

- REST operations: The FHIR REST API defines a set of base operations to be 

implemented. Some of the libraries have nicely implemented the operations and 

even extended their usage with for example some advanced search operation. 

Comparing the libraries, the one with the most operations will get the best grade 

and the others will be graded accordingly.  
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Criteria / Client 

library 

HAPI FHIR FHIR .NET 

API 

SMART ON 

FHIR JS 

SMART ON 

FHIR Python 

SWIFT-

SMART IOS 

Simplicity (6pts) 5,5 5 5 4,5 5 

Documentation 

(6pts) 

5 4 4,5 5,5 6 

Exchange 

supported 

REST: XML 

& JSON, 

MESSAGES 

REST: XML 

& JSON 

REST: JSON REST: JSON REST: JSON 

Server-side API 

(1/0) 

1 0 0 0 0 

Authentication HTTP basic 

/ OAuth2 

Not found HTTP basic 

/ OAuth2 / 

Cookies 

HTTP basic / 

OAuth2 

HTTP basic / 

OAuth2 

Data model Classes for 

every 

resource 

Classes for 

every 

resource 

Resources 

in JSON 

Classes for 

every 

resource 

Classes for 

every 

resource 

FHIR version STU3 STU3 Not found STU3 STU3 

Sample 

applications / 

code (6pts) 

5 3 5,5 4,5 4,5 

Rest Operations 

(6pts) 

5,5 4 5 4 6 

TOTAL 22 16 20 18,5 21,5 

Table 2 - Comparision table, author’s data 
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3.4.6 Discussion 
The analysis of the libraries evidenced that they are all well suited for the construction of a 

FHIR-based application. Documentation is provided for each one of them, although the 

amount of documentation varies significantly depending on the library. Libraries that lack 

documentation require a lot of time and effort to use, therefore it was a very important 

criterion in the context of this work. 

HAPI java comes in first place, closely followed by SWIFT. Then come the Javascript, the 

python and the .NET libraries. The research team collaborating on this project had no 

particular interest in a IOS client application but a strong preference for the application to be 

developed in Java or Javascript. Both these languages could easily meet the requirements of 

this work, nevertheless the java application obtained a better score for all the comparative 

criteria except the amount of code and application samples. On top of that, a FHIR server 

implementation is provided by HAPI and is fully compatible with the FHIR client of the library. 

Java also happens to be the main language taught at the HES-SO Valais-Wallis and thus, is a 

language I am acquainted with. The different arguments advanced led to the decision of 

selecting HAPI java library to facilitate the development of a web application based on the 

FHIR specification. 
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4 Prototype 

The aim of the application prototype that has been developed in the context of this work 

is to test and evaluate the implementation of a web application based on the FHIR standard 

using an existing client library. Furthermore, the objective is to demonstrate weather FHIR can 

really live up to its name by being fast to implement and weather it can become a significant 

element of the health information systems. 

The FHIR standard being under development, test servers available could not guarantee 

the functioning of the application in the future. In addition, test servers are not reliable since 

it is not possible to know when the servers are going to be unavailable due to maintenance. 

Consequently, the hosting of the FHIR server, using a full RESTful FHIR server implementation 

provided by HAPI-FHIR for the STU 3, is on a private server. The prototype interacts with this 

private RESTful FHIR test server. 

As explained in the previous chapter, to facilitate the implementation, the HAPI-FHIR java 

library has been selected for this project. The HAPI library provides a RESTful java client that 

has been designed to ease and accelerate the development of FHIR REST applications.  

The source code of this project can be found on the compact disk provided in attachment 

as well as on GitHub25.  

4.1 Context 

This paper was realized within the Scrum framework. The realization of the work has been 

broken down into six sprints. The development of the application started at the third sprint 

and was finished during the fifth sprint. 

Each sprint had a fixed value of two weeks. At the end of a sprint, a review meeting was 

scheduled with the professor to share the progress made in the development, to validate the 

user stories done during the sprint and to obtain feedbacks. 

The Scrum documents are provided on the compact disk in attachment.  

                                                      
25 https://github.com/camouie/fhirtb 
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4.2 Use-cases 

The application supports three different roles with distinct authorizations: 

- Administrator 

- Doctor 

- Patient 

The demonstration application serves the following use cases: 

The administrator is responsible for the accounts creation for doctors and patients so that 

they can log into the app. He has access to all the resources on the FHIR server. He can also 

modify resources and delete them. 

The doctor has only access to his own patients’ data that he can display and edit. He can 

also display the height, the weight and the heart rate of each patient. He can see a graph of 

the evolution of the weight of each patient to analyze his patients’ weights tendencies. 

The patient has only access to his own medical information. He can display and edit it. Like 

the doctor, he can display the graph of the evolution of his weight. The patient connects 

punctually to the application to enter data about his health: his height, his weight and his 

heart rate. This application is then made available to doctors with the usage of FHIR. 

4.3 Disclaimer 

The aim of this work not being on the actual construction of a Java web application, the 

following chapters presenting the client application will focus on the FHIR implementation in 

the JSF application and will not treat the JSF part of said application. 

The codes snippets that are provided in this paper can be applied to a native java program, 

they do not require the set-up of a web application. The next chapters require the reader to 

be acquainted with Java programming language or, at a minimum, object-oriented 

programming languages in order to have a good understanding of the presented information. 
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4.4 Project Architecture 

The overall architecture of the project is illustrated in the figure below. The test application 

uses HAPI model objects to work with FHIR resources in the java code. The HAPI FHIR client 

then interacts with the FHIR server by sending and requesting resources via HTTP. The project 

also contains a MySQL database to store users’ information. 

 

Figure 32 - Architecture of FHIR project (University Health Network, n.d.-b) 

4.4.1 Overview of the client application 
The client application uses the HAPI-FHIR RESTful client library. HAPI provides two different 

types of clients. The Generic and the Annotation clients. This application implements the 

Generic client which is easier and faster to set up. The Annotation client is more powerful 

when it comes to compile-time checking against servers. It is mainly used when creating an 

interface for developers to interact with servers having specific operations. For the purpose 

of this work and the time allotted, the generic client was selected and proved itself more than 

sufficient (University Health Network, n.d.-f). 

The application is built with the latest JavaServer Faces framework (JSF) 2.2. This API as well 

as the others used in the project are included by using Apache Maven 3.5. 
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Figure 33 - pom.xml dependencies, source: author’s data 

The pom.xml abstract above presents the different libraries used in the application. The 

first three dependencies are libraries required to develop a JSF application. The fourth one is 

the HAPI-FHIR library allowing the use of all objects and models defined by HAPI for the STU 

3., the latest release of the FHIR specification. Then the MySQL API to work with a MySQL 

database is included. The last library used is Primefaces. This JSF user interface (UI) framework 

allows to easily create various component using third party libraries such as jQuery. The 

dynamic graph created in the project is rendered using Primefaces. Eclipse neon was used as 

development environment to for this application. 

No authentication protocol has been used in the application, nevertheless a login function 

has been implemented to ensure that only authenticated users have access to the application. 

In addition, an authorization mechanism is implemented to limit doctors and patients’ rights 

to access resources. 

4.4.2 FHIR Test server 
As mentioned previously, a private FHIR server has been created for the purpose of this 

work. This FHIR server is running and is configured to work with an internal Apache Derby 
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database. The fully contained server has been deployed to an Apache Tomcat server version 

8.0.45 and is functioning well26. 

At least a dozen of public FHIR test servers are available online and are very practical to 

rapidly build an application to test it against. However, most of them do not implement a 

reference mechanism or do not allow external referencing. This was very inconvenient for the 

application prototype since Patient resources include a Practitioner reference. Before setting 

up a private server, public test servers have been used to test the application. The two servers 

mainly used are the one that HAPI provides27 and the .NET FHIR server implementation called 

Spark28.  

Some differences appeared between these two FHIR implementations. Firstly, Spark allows 

some references but not others, for instance an Observation resource can contain a reference 

to its subject but Patients cannot hold references to their Practitioners, whereas HAPI has a 

more complete reference mechanism allowing, in this example, both references. Secondly, 

Spark does not suffer from the same latencies as the HAPI server. Important delays may occur 

when uploading a resource, the HTTP POST is executed and the client must wait few minutes 

for the resource to be available on the server for further queries. This delay happens mainly 

for resources referencing other resources. Lastly, the HAPI server catches up faster with the 

FHIR specification since it is already supporting the STU 3, which is not the case for Spark that 

still supports DSTU2. 

The full FHIR server implementation provided by HAPI that is used in this project is freely 

available for downloads on GitHub29. The server implementation is fully written in java using 

the dedicated FHIR-HAPI server library. The project downloaded can be modified and can be 

installed via command line. Once the project is installed the .war file can be generated with 

the command line as well. This .war file is the only needed artifact to deploy the project on a 

chosen server. 

                                                      
26 At http://213.136.91.24:8080/hapi-fhir-jpaserver-example/  
27 https://fhirtest.uhn.ca/ 
28 http://spark.furore.com/ 
29 https://github.com/jamesagnew/hapi-fhir  

http://213.136.91.24:8080/hapi-fhir-jpaserver-example/
https://fhirtest.uhn.ca/
http://spark.furore.com/
https://github.com/jamesagnew/hapi-fhir
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Very little configurations had to be made to the downloaded FHIR server project. The only 

two configurations necessary, for the client application to work properly, were to define the 

FHIR base URL and to enable external references on the server. 

 

public DaoConfig daoConfig() { 
 DaoConfig retVal = new DaoConfig(); 
 retVal.setSubscriptionEnabled(true); 
 retVal.setSubscriptionPollDelay(5000); 

retVal.setSubscriptionPurgeInactiveAfterMillis(DateUtils.MIL-

LIS_PER_HOUR); 

 

retVal.setAllowMultipleDelete(true); 
 

// Allow external references 
retVal.setAllowExternalReferences(true); 
 

retVal.getTreatBaseUrl-

sAsLocal().add("http://213.136.91.24:8080/hapi-fhir-jpaserver-exam-

ple/baseDstu3"); 
 

return retVal; 
 } 

  

Listing 2 - FHIR server configuration file based on http://hapifhir.io/doc_jpa.html 

Setting up a FHIR test server on a chosen server was surprisingly easy. HAPI’s open-source 

implementation is very complete and documentation is available for the configurations to be 

made. Further configurations could, for example, include setting up an authorization protocol. 

HAPI provides a very satisfying and nicely designed piece of software. 

4.4.3 Database 
The open source database server MySQL is used for the database. The database only 

contains information related to the users of the application. Since the FHIR server provides a 

storage for the resources it is not necessary for them to be stored in the MySQL database. 

The unique table of the database contains five columns. “Username” and “Password” are 

used for the login functionality. The “fhirid” column stores the FHIR resource’s id of a user. 

“Type” determines if the user is a patient, a doctor or an administrator. The “doctorid” is only 

used when references mechanism of the server does not allow for Patient resources to 

reference Practitioner resources. 
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Figure 34 - MySQL Database schema, source: author’s data 

4.5 Implementing FHIR client with HAPI-FHIR library 

Setting up the library is quickly done, it requires at least the HAPI-FHIR core JAR and the 

“structures” JAR to be included in the java project. The second one contains all the different 

classes for the FHIR resources and datatypes definition. The figure bellows shows an abstract 

of the java project’s build path with the two requested JARs. 

 

Figure 35 - HAPI FHIR app Java Build Path, source: author’s data 

Once the library is included in the project, it can be used for multiple purposes such as 

connecting to the server or creating java objects to handle FHIR resources.  

Implementing a web application communicating with a FHIR server turned out to be easier 

than expected. It seemed to be a tougher task due to the lack of source code examples for 

FHIR STU3. Indeed, most of code snippets provided by HAPI’s website are only valid for DTSU2, 

important modifications have been made in terms of datatypes, methods names and 

parameters in the STU3 supporting library. Fortunately, Javadoc30 is available for all versions 

of the library and helped us enormously throughout the implementation. 

The methods and attributes of the classes are commented but should be further detailed. 

It is often quite difficult to understand the purpose of the methods and how they should be 

used. 

                                                      
30 http://hapifhir.io/apidocs-dstu3/index.html 

http://hapifhir.io/apidocs-dstu3/index.html
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As an illustration, the figure bellow shows the Javadoc for two methods of the class 

“ContactPoint” representing a way of contacting a person (email, telephone…) that is stored 

in the telecom attribute of a person’s resource. It is not explicitly explained what those two 

methods do and thus, it is difficult to understand the difference between them and to know 

which one applies when the client application needs to retrieve a phone number or an email 

address from a Person resource. 

 

Figure 36 - HAPI STU 3 Javadoc (‘ContactPoint (HAPI FHIR Structures - DSTU3 2.5 API)’, n.d.) 

4.5.1 Application server connection 
Once the environment is set up, the coding of the interaction with a FHIR server can start. 

The HAPI library allowed us to execute this task swiftly. 

To prevent the application from downloading server’s metadata/conformance statement, 

it is important to disable it before creating a FHIR client. The conformance statement was 

unreachable on most public test servers and made the connection impossible. 

The following snippet shows the class created for the connection to the server. The last two 

lines of the snippet increase the socket and connection timeouts to ensure a minimum value 

to enable the application to retrieve resources. 
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private String serverBaseUrl = "http://213.136.91.24:8080/hapi-fhir-

jpaserver-example/baseDstu3"; 
 

private FhirContext ctx; 
 

public Fhircontextconnection() { 
  this.ctx = FhirContext.forDstu3(); 
 

// Disable server validation    

ctx.getRestfulClientFactory().setServerValidationMode(Server

ValidationModeEnum.NEVER); 
 

  // increase the timeout 
  ctx.getRestfulClientFactory().setConnectTimeout(60 * 1000); 

  ctx.getRestfulClientFactory().setSocketTimeout(60 * 1000); 
 

  // create the RESTful client to work with our FHIR server 

IGenericClient client = 

ctx.newRestfulGenericClient(serverBaseUrl); 

 } 

 
 

Listing 3 - FHIR connection java class 

4.5.2 Understanding the FHIR resources 
The application use cases require to manipulate three FHIR resources. The Patient, the 

Practitioner and the Observation resources. The first one is quite self-explanatory: The Patient 

resource stores patients related information as illustrated in multiples examples of this paper. 

The first step towards manipulating the needed resources is to understand what their 

purposes are and how they should be used. In that sense, the FHIR specification provides 

descriptions of each resource as well as code samples. The resource attributes are also listed, 

detailed and their cardinalities are shown to see whether they are required or not. The code 

samples can be found for all resources formats supported by FHIR. As of this work, the decision 

has been made to work with JSON, therefore the following examples will be in that format. 

The Practitioner resource is detailed in the FHIR specification and is descripted as covering 

“[…] all individuals who are engaged in the healthcare process and healthcare-related services 

as part of their formal responsibilities and this Resource is used for attribution of activities and 

responsibilities to these individuals.”(HL7 International, n.d.-o). 

In this project, the Practitioner resource will be used to save and exchange data related to 

the doctors of the application, the general practitioner of a patient. According to FHIR, other 
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example uses could include representing a dentist, a nurse, a medical technician, a pharmacist 

or any other healthcare worker.  

The abstract of code below shows what a Practitioner resource is made of. It does not differ 

that much from the Patient resource but for the “qualification” attribute. 

 

Figure 37 - Practitioner JSON example, source: (HL7 International, n.d.-o) 

 The “Observation” resource is defined by the FHIR specification to be “[…] a central 

element in healthcare, used to support diagnosis, monitor progress, determine baselines and 

patterns and even capture demographic characteristics.” (HL7 International, n.d.-l). The FHIR 

specification presents some uses for the Observation resource among which the usage that 

will be made of this resource is found: “Vital signs such as body weight, blood pressure, and 

temperature” (HL7 International, n.d.-l). 

“Vital signs” is in fact a core profile defined by FHIR for the Observation resource.  It 

redefines the Observation resource with further required elements: a status, a vital-signs 

code, a measure value, a patient, a time and a numeric result value.  

Three profiles of the Vital signs are important for the purpose of the test application. The 

data, found in the FHIR specification, relative to the said profiles has been aggregated in 

following the table. The table indicates the fixed codes to be used for the three Observations. 

 

https://www.hl7.org/fhir/observation-example.html
https://www.hl7.org/fhir/observation-example-bloodpressure.html
https://www.hl7.org/fhir/observation-example-f202-temperature.html
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Profile 

Name 

vital-signs 

code (LOINC) 

LOINC Name and Comments UCUM 

Unit 

Code 

Heart rate 8867-4 Heart rate - To supplement this vital sign 

observation, 8887-2 - Heart rate device type 

MAY be used as an additional observation. 

/min 

Body height 8302-2 Body height cm, [in_i] 

Body weight 29463-7 Body weight - To supplement this vital sign 

observation, 8352-7 - Clothing worn during 

measure and 8361-8 - Body position with 

respect to gravity MAY be used as 

additional observations. 

g, kg, 

[lb_av] 

Table 3 - Vital-signs profiles adapted from (HL7 International, n.d.) 

4.5.3 Manipulating the resources 
Once the concepts attached to each resource that will be manipulated is understood, the 

implementation can start. In the understanding phase, it is primordial to carefully look at the 

requirements for each resource so nothing is left out during the implementation. It is also very 

important to ensure that the correct resources are used for the correct data. In a matter of 

interoperability, it is necessary to indicate which units, codes and references are used.  

The application use cases require that the application performs the following interactions: 

create, update, search and delete a Patient and an Observation resource. The practitioner 

resources only require creation and search operations. 

Many code examples are available on the HAPI platform31 for the patient resource since it 

is the central element of a FHIR implementation. As of the two other types of resources used 

in the application, only one example of code for the observation resource’s creation was found 

                                                      
31 http://hapifhir.io/ 

https://www.hl7.org/fhir/heartrate.html
https://www.hl7.org/fhir/bodyheight.html
https://www.hl7.org/fhir/bodyweight.html
http://hapifhir.io/
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on the platform. However, operations on resources work the same way regardless of their 

types. The only variable is the attributes of the resources and their datatypes.  

In the subchapters below, the different FHIR operations used on the project’s resources are 

presented. The snippets of codes given as examples are extracted from the application’s code. 

Some are based on the example found on the HAPI platform. 

4.5.3.1 Creation 

The abstract of code of listing 4 shows the patient resource’s creation in the application. It 

is noticeable that the creation is simple and quick to perform. A patient object is created and 

assigned with the desired attributes. The identifier set is not the id of the resource, it is the 

simulation of a MRN. After the attributes’ assignments, the reference with the Practitioner 

resource representing the patient’s doctor is instantiated and assigned to the patient. When 

the patient object contains all needed elements, the resource can be created on the server 

with the client.create() method call (client being HAPI’s restful client). 

Once the patient resource is on the server, the three vital-signs observations for the patient 

are created. Finally, an entry is added to the database with the patient’s username and 

password so the patient (user) will be able to log into the application. 
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1. this.patient = new Patient(); 
 

2. Random randomGenerator = new Random(); 
3. int randomInt = randomGenerator.nextInt(10000000); 

 

4. //set patient base info 

5. this.patient.addName().addPrefix(prefix).setFamily(lastname) 
6. .addGiven(firstname); 

7. this.patient.setBirthDate(this.birthdate); 
8. this.patient.addIdentifier().setSystem("tb:fhir") 
9. .setValue("CP" + randomInt); 

 

10. //add the practitioner resource to the patient 

11. this.getSelectedDoctorbyID(); 
12. this.patient.addGeneralPractitioner(); 
13. List<Reference> ref = new ArrayList<Reference>(); 
14. ref.add(new Reference(this.doctor)); 
15. this.patient.setGeneralPractitioner(ref); 

 

16. MethodOutcome outcome = 
client.create().resource(this.patient).prettyPrint().encodedJson().ex

ecute(); 
 

17. IdType id = (IdType) outcome.getId(); 

18. this.patientid = id.getIdPart(); 
19. // create the observations for the patients 

20. this.createOBSforPatient(); 
21. // create an account for the patient in the DB so he can login later 
22. this.createPatientAccount(); 

  

Listing 4 - Patient resource creation 

Creating an observation resource works the same way, the method client.create() is used 

and takes the resource as parameter. A noticeable difference is that no narrative attribute will 

be generated for the observation as it is for the patient resource. Although a HAPI built-in 

narrative generator exists, the HAPI FHIR server does not take it into account for the 

Observations. Consequently, a narrative and a status must be added programmatically to the 

Observation resources as shown in lines 3 to 6 of the following snippet. 

As explained earlier, the application deals with three vital-signs Observations. The creation 

mechanism is the same for all three of them. The attributes’ values of the observation object 

will nonetheless change according to the vital it is recording.  The code of listing 5 shows the 

creation of the “Body weight” vital-sign.  
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1. Observation observation = new Observation(); 
 

2. observation.setSubject(new Reference(patient)); 
3. observation.setStatus(ObservationStatus.FINAL); 

 

4. Narrative text = new Narrative(); 
5. observation.getText().setStatus(Narrative.NarrativeStatus.GENERATED); 

6. observation.getText().setDivAsString("<div>Vital sign Observa-

tion<br/> of patient : "+ patient.getNameFirstRep().getFamily() + 

"</div>"); 
7. observation.setIssued(new Date()); 

 

8. // Give the observation a code (what kind of observation is this) 
9. Coding coding = observation.getCode().addCoding(); 

 

10. System.out.println("creating a bodyweight resource"); 
11. coding.setCode("29463-7").setSystem("http://loinc.org").setDis-

play("Body Weight"); 
 

12. // Create the quantity 

13. Quantity value = new Quantity(); 
14. value.setValue(bodymeasure) 

15. .setSystem("http://unitsofmeasure.org").setCode("kg"); 
16. observation.setValue(value); 

 

17. // Set the reference range 

18. SimpleQuantity low = new SimpleQuantity(); 
19. low.setValue(35) 

20. .setSystem("http://unitsofmeasure.org").setCode("kg"); 
21. observation.getReferenceRangeFirstRep().setLow(low); 

 

22. SimpleQuantity high = new SimpleQuantity(); 
23. high.setValue(90) 

24. .setSystem("http://unitsofmeasure.org").setCode("kg"); 
25. observation.getReferenceRangeFirstRep().setHigh(high); 

 

26. //creation of the resource on the server 

27. MethodOutcome outcome = client.create().resource(observation) 

28. .prettyPrint().encodedJson().execute(); 

29. //get the returned ID of newly created resource 

30. IdType id = (IdType) outcome.getId(); 

 
 

Listing 5 - Observation resource creation based on http://hapifhir.io/doc_rest_client_examples.html 

Now, if a request is made to the server for the resource created above with the following 

query:  

 

Figure 38 - FHIR search query 

 The server will reply with the bundle of figure 39. As figure 39 shows, the resource contains 

the required FHIR elements for a vital-sign, as explained in chapter 4.5.2: the status that is 

here “final”, a vital-signs code “29463-7”, a measure value “kg”, a patient referenced by its 

http://hapifhir.io/doc_rest_client_examples.html
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URL “Patient/78”, a datetime contained in the “issued” attribute and a numeric result value 

“67.0” representing the weight observation made on the patient. 

 

Figure 39 – Bundle of Body weight resource on the server 

The last resource type created is the Practitioner. The creation mechanic is once again the 

same. Attributes unused so far have been added to the practitioner object to test the library’s 

capabilities. It has four attributes that differ from the Patient, as presented on listing 6. The 

first one is the gender, then an “active” value telling weather the Practitioner is still working 

and, finally, some contact information: an email address and a telephone number. 
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1. this.practitioner = new Practitioner(); 

 

2. Random randomGenerator = new Random(); 
3. int randomInt = randomGenerator.nextInt(10000000); 

 

4. this.practitioner.addName().addPrefix(this.prefix).setFamily(this.las

tname).addGiven(this.firstname); 
5. this.practitioner.setBirthDate(this.birthdate); 
6. this.practitioner.addIdentifier().setSystem("tb:fhir").setValue("CP" 

+ randomInt); 
 

7. this.practitioner.setActive(true); 
8. if (this.gender.equals("F")) 
9. this.practitioner.setGender(AdministrativeGender.FEMALE); 

 

10. if (this.gender.equals("M")) 
11. this.practitioner.setGender(AdministrativeGender.MALE); 

 

12. ContactPoint email = new ContactPoint(); 
13. email.setSystem(ContactPoint.ContactPointSystem.EMAIL); 

14. email.setValue(this.email); 
 

15. ContactPoint tel = new ContactPoint(); 
16. tel.setSystem(ContactPoint.ContactPointSystem.PHONE); 

17. tel.setValue(this.telephone); 
 

18. ArrayList<ContactPoint> telecom = new ArrayList<ContactPoint>(); 
19. telecom.add(email); 

20. telecom.add(tel); 

 

21. this.practitioner.setTelecom(telecom); 
 

22. boolean userExists = DAO.userExists(this.email); 
 

23. if(!userExists){ 
24. //create the resource on the server 

25. MethodOutcome outcome = client.create().resource(this.practitioner) 
26. .prettyPrint().encodedJson().execute(); 

 

27. IdType id = (IdType) outcome.getId(); 

28. System.out.println("Resource is available at: " + id.getValue()); 
29. this.practitioner.setId(outcome.getId()); 

 

30. //add the doctor in the DB 

31. DAO.addPractitionerAccount(this.email, this.password, 
32. this.practitioner.getIdElement().getIdPart()); 
33. } 

 
 

Listing 6 -  Practitioner resource creation, source: application code 

To use methods to add attributes to objects, the right information in the right type must 

be given as arguments. For example, to set the gender of the Practitioner object to female, 

the documentation defines that a value of type “enum Enumerations.AdministrativeGender” 

must be given to the setGender() method (University Health Network, n.d.-e). Then, by 

studying the enumeration, the different constants it is holding can be found: 
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Figure 40 - Constants of gender enum (University Health Network, n.d.-a) 

Knowing the constants, the right information can be set to the resource, being here the 

“FEMALE” value. This way, the attribute gender is protected against false values assignments. 

For java developers or developers used to object oriented programming, creating resources 

should not be a burden. 

4.5.3.2 Read 

To retrieve the current version of a FHIR resource one can use the read interaction. It is 

simple to perform: 

 

1. this.patient = client.read() 
2. .resource(Patient.class).withId(this.logicalID) 
3. .execute(); 
  

Listing 7 - HAPI patient resource read interaction 

4.5.3.3 Update 

Updating a resource works the same way as creating one. Instantiate a java object with a 

resource retrieved from the server, then set all its attributes and finally update the resource 

on the server with the following lines of code: 

 

1. MethodOutcome outcome = client.update() 
2. .resource(this.patient).prettyPrint().encodedJson().execute(); 

 
 

Listing 8 - Patient update 
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4.5.3.4 Deletion 

The delete operation is the fastest to implement. A resource cannot be deleted while other 

resources reference it. Consequently, the deletion of the resources referencing a resource has 

to be performed prior to deleting the resource itself. Deletion requires very little coding. For 

instance, the patient deletion:  

 

1. VitalSignsHandler vh = new VitalSignsHandler(); 
2. vh.deleteobs(fhirid); 

 

3. //deletion of the resource 

4. client.delete().resourceById(new IdDt("Patient", fhirid)).execute(); 
  

Listing 9 - patient deletion 

4.5.3.5 Search 

As seen previously in this paper, FHIR RESTful API defines many different search operations. 

HAPI library makes it easy to search for resources with specific parameters. As an example, 

the code below shows how to retrieve all the patient resources that have the same doctor. 

When giving an Id as a parameter care should be taken to only use the portion of the id 

containing the actual numeric value (not the full URL). When requesting resources form the 

server, the reply will be in the form of a bundle even if only one resource is returned by the 

search query. 

Bundle response = client.search().forResource(Patient.class) 
.where(new ReferenceClientParam("general-

practitioner").hasId(doctorID)).prettyPrint() 
  .returnBundle(Bundle.class).execute(); 
  

Listing 10 – patients search with one parameter 

To add a parameter to the search of the figure above, simply add a where clause. For 

instance, if a client wants to retrieve all the patients of a given doctor that are called a 

certain name, it can add the following line of code to the query: 

.where(Patient.FAMILY.matches().values(this.lastname)). 

It is also possible to search using an URL, in the following code a URL is used to retrieve a 

specific type of vital-sign resource. Two search parameters are specified: the LOINC code and 

the subject which represents the patient whose observations it is. 
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1. String searchUrl = "Observation?subject=" +  
2.          patient.getIdElement().getIdPart() + "&code=" + rcode 

               + "&_pretty=true"; 
 

3. Bundle response = client.search() 

4.          .byUrl(searchUrl).returnBundle(Bundle.class).execute(); 
 

 

Listing 11 - Searching by URL 

HAPI has a strong and simple search mechanic, as seen on the previously presented 

snippets. The only delicate part is giving the right information in the correct data type to the 

search. To ensure this, the documentation should be thoroughly consulted. 

4.5.3.6 Vread 

The vread operation retrieves a specific version of a resource. The application performs a 

vread operation on the body weight Observation to obtain the weight of a patient over time. 

The demographics retrieved are then displayed in a dynamic graph as shown in appendix III. 

To achieve this, HAPI provides the method client.read() to which the FHIR id and the version 

of the resource have to be given.  

 

1. Observation bw = this.Obodyweight; 
 

2. String v = bw.getMeta().getVersionId(); 

3. int version = Integer.parseInt(v); 
 

4. ArrayList <Observation> obs = new ArrayList<Observation>(); 
 

5. for(int i = version; i>0; i--){ 
6.    String currentversion = String.valueOf(i); 
7.        Observation ob = client.read() 

8.                         .resource(Observation.class) 
9.                         .withIdAndVersion(bw.getIdElement().getId 
10.                        Part(),currentversion) 

11.                        .execute(); 

 

12.    obs.add(ob); 

13. } 

 

14. this.observations = obs; 
 

 

Listing 12 -vread interaction 

Like the other HAPI operations, vread is simple to set up. FHIR define a history interaction 

as follows “The history interaction retrieves the history of either a particular resource, all 
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resources of a given type, or all resources supported by the system”(HL7 International, n.d.-h). 

HAPI does provide a history() method for its generic client and allows to retrieve the entire 

history of resources all at once which would have been a better fit for this mean, but it is 

lacking documentation and could not be correctly set up. 

4.5.3.7 HAPI’s evaluation 

A challenging aspect of working with the HAPI library is finding the methods that retrieve 

or set the wanted attributes of a resource object. When starting to work with the library it can 

be a time-consuming task. Once identified, using them often takes further researching. The 

library defines numerous datatypes that engender difficulties to work with HAPI methods 

since they require or return unfamiliar datatypes (HAPI objects, enumerations…). 

As an illustration, let’s consider the assignments of a telephone number and an e-mail 

address to a practitioner object. Firstly, the documentation says that the setTelecom() method 

should be used. The setTelecom() method needs a list of objects of type ContactPoint as 

parameter. Each ContactPoint then needs to be assigned with two values: a system and a value 

by using the setSystem() and the setValue() methods. Those methods also have specific 

datatypes as parameters. Consequently, the simple adding of a telephone number requires 

quite a lot of searching and trials before it is fully working. The following snippets shows in 

code the above explanation. 

 

1. ContactPoint email = new ContactPoint(); 
2. email.setSystem(ContactPoint.ContactPointSystem.EMAIL); 

3. email.setValue(this.email); 
 

4. ContactPoint tel = new ContactPoint(); 
5. tel.setSystem(ContactPoint.ContactPointSystem.PHONE); 

6. tel.setValue(this.telephone); 
 

7. ArrayList<ContactPoint> telecom = new ArrayList<ContactPoint>(); 
8. telecom.add(email); 
9. telecom.add(tel); 

 

10. this.practitioner.setTelecom(telecom); 
  

Figure 41 - setting a telephone number attribute 

For instance, when the application needs to retrieve the usual last name of a patient, the 

following code will have to be executed: getNameFirstRep().getFamily(). This is not very 
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intuitive, at first, it is tempting to use instead the getName() method of the patient object. 

However, the getName() method returns a list of “HumanName” whilst getNameFirstRep() 

directly returns the first entry. Indeed, FHIR allows patient to have several different given 

names and lastname.  

The same remark applies to the id attribute. When a vread operation is performed, for 

instance, the id of the FHIR resource to retrieve has to be given as parameter with this code: 

getIdElement().getIdPart(). Resources objects have a method called getId() that is tempting to 

be used instead:  

 

Figure 42 - getId() method Javadoc 

The problem is that the getId() method returns a full URL, not only the numerical id used in 

the URL, and that the Vread operation only needs the numeric portion of the id. The 

documentation attached to the method is not very clear on this, neither is the requirement 

for a numerical value of the vread parameters. Therefore, the library is disparaged because of 

its lack of penetrability32 for some methods and classes. 

The examples above illustrate the main disadvantage of HAPI and its best advantage at the 

same time: it contains a lot of classes that are full of functionalities. The great number of 

classes does not reduce the quality of the API since the naming of most classes, methods and 

properties give a good understanding of their capabilities. Also, it is not the consequence of a 

poor design pattern, classes are constructed in a hierarchical and modular manner. 

Programming with HAPI becomes a lot easier over time, once the classes have been used 

for one resource object, the mechanism is similar for the others. This factor is an important 

point in evaluating the usability of a library.  

The work done by the University Health network to provide this HAPI API is highly 

remarkable. Indeed, not only the API is well designed but an incredible amount of FHIR 

                                                      
32 The simplicity with which the API can be explored, analysed and its components understood (Clarke, n.d.) 
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features are provided. The FHIR features tested such as the different server’s API interactions 

or server connection represent a substantial gain in time. Even when using a limited amount 

of the available capabilities of the API, it still is a valuable addition to a FHIR implementation 

since it is quickly and easily installed. 

  



Camille Pellaton 

74 

Conclusion 

The analysis of the current state of the FHIR specification showed how vast FHIR capabilities 

are. As FHIR uses well-known technologies for the representation of data, FHIR’s data model 

is straightforward to apprehend. However, the complexity and variety of medical use cases 

engendered the design of a large data model with complex linkage. The application prototype 

demonstrated that it is not tedious to work with FHIR resources. The use made of FHIR in this 

work does confirm that FHIR is a fast-implementable technology, indeed with the usage of 

existing tools, it is possible to rapidly create a valuable and FHIR compatible piece of software. 

Nevertheless, account must be taken that the FHIR client implemented only makes use of 

three types of ressources within a testing environment, a real-world use would require much 

more effort. The prototype was tested against various FHIR RESTful servers. As a result, it was 

possible to observe that adaptations should be made to an application so it can work with 

different server implementations. Implementing FHIR requires to carefully look at the server 

capabilities since available public APIs might not offer the functionalities needed by an 

application. 

The HAPI library has proved itself very usable and useful. The main problems encountered 

during the implementation were the lack of clarity and explanations of the documentation 

that slowed down the development on some occasions. Despite this problem, the library 

greatly helps the development of a FHIR-based application. Indeed, the FHIR data model is 

already represented in its entirety in the library and many built-in mechanism, such as the 

implemented FHIR client class, allow to save precious time. 

In addition, the analysis showed the interests of the REST API approach that FHIR takes on 

clinical data exchange. This client-server, query-response, architectural style offers to FHIR-

based applications easy access to data exposed either through private intra-hospital interfaces 

or public interagency interfaces regardless of the vendors of the systems exchanging the data. 

Moreover, this light-weight communication makes FHIR well suited for mobile use which is an 

increasing need in the modern healthcare landscape. 

FHIR does not attempt to reinvent the wheel by relying on many existing technologies, that 

have already proven themselves (e.g. OAuth2) adding valuable features to the specification. 
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A major benefit of FHIR evidenced in this work is its granularity. By providing its XML or JSON 

resources, FHIR enables care providers to access smaller portion of data than existing standard 

based upon document exchange, leading to considerable time saving.   

FHIR represents a great opportunity for healthcare interoperability. Not only is it easier to 

implement than existing standards, it is also more inclined to provide semantical 

interoperability. FHIR has many advantages over HL7 existing standards, it provides real-time 

data access, allows just about the right amount of flexibility and is not as complicated nor 

requires as much expertise and money to be implemented. 

Since FHIR is recent it is available as a standard for trial use, consequently hindsight is 

lacking to identify its drawbacks. Due to the standard’s recency it has been difficult to find 

documentation to support the analysis. Today, as the standard is still evolving, it refrains the 

adoption of the standard. As explained, the FHIR specification is open and freely available 

which helps creating a community amongst which implementations are shared, significantly 

helping developers to implement a FHIR solution. 

This work could continue by testing further the FHIR specifications, especially by taking 

more complex use cases in order to identify some of the standard’s drawbacks. For instance, 

by including an authentication protocol to the FHIR application or by implementing a 

validation mechanism to validate the created resources. Integrating FHIR in an EHR system 

using SMART on FHIR could also be an interesting extension to this work.  

The main difficulty of this work was to synthetize the analysis of the FHIR specification since 

it is huge and defines numerous elements. It was sometimes difficult to stay focus on the 

objectives of the work and not get lost in immensity of the FHIR subject. 

On a personal note, this work has enriched my knowledge in many domains. I learned a lot 

on subjects that interest me such as healthcare and its information systems interoperability, 

java programming and web technologies. This project has also allowed me to improve many 

of my soft skills, especially self-discipline, perseverance and efficiency. 
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Appendix I: FHIR message example 

<Bundle xmlns="http://hl7.org/fhir"> 

  <id value="10bb101f-a121-4264-a920-67be9cb82c74"/>  

  <type value="message"/>  

  <entry>  

    <fullUrl value="urn:uuid:267b18ce-3d37-4581-9baa-6fada338038b"/>  

    <resource>  

      <MessageHeader>  

        <id value="efdd254b-0e09-4164-883e-35cf3871715f"/>  

        <text>  

          <status value="generated"/>  

          <div xmlns="http://www.w3.org/1999/xhtml"> 

              

<p> This message is a request to link Patient records 654321 

(Patient Donald DUCK @ Acme Healthcare, 

Inc) and 123456 (Patient Donald D DUCK @ Acme Healthcare,    

Inc)</p>  

            

          </div>  

        </text>  

        <event>  

          <system value="http://hl7.org/fhir/message-events"/>  

          <code value="patient-link"/>  

        </event>      

        <timestamp value="2015-07-14T11:15:33+10:00"/>  

        <source>  

          <endpoint value="http://example.org/clients/ehr-lite"/>  

        </source>  

        <responsible>  

          <reference value="http://acme.com/ehr/fhir/Practitioner/2323-33-

4"/>  

        </responsible>  

      <!--    this message is posted to http://acme.com/ehr/fhir,  

             with an event 'link' to link 2 patient records, and nominates 

             2 patients on the server    --> 

        <focus>  

          <reference value="http://acme.com/ehr/fhir/Patient/pat1"/>  

        </focus>  

        <focus>  

          <reference value="http://acme.com/ehr/fhir/Patient/pat12"/>  

        </focus>  

      </MessageHeader>  

    </resource>  

  </entry>  

  <entry>  

    <fullUrl value="http://acme.com/ehr/fhir/Patient/pat1"/>  

    <resource>  

      <Patient>  

        <id value="pat1"/>  

        <text>  

          <status value="generated"/>  

          <div xmlns="http://www.w3.org/1999/xhtml"> 

             

            <p> Patient Donald DUCK @ Acme Healthcare, Inc. MR = 654321</p>  

           

          </div>  

        </text>  

        <identifier>  

          <use value="usual"/>  
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          <type>  

            <coding>  

              <system value="http://hl7.org/fhir/v2/0203"/>  

              <code value="MR"/>  

            </coding>  

          </type>  

          <system value="urn:oid:0.1.2.3.4.5.6.7"/>  

          <value value="654321"/>  

        </identifier>  

        <active value="true"/>  

        <name>  

          <use value="official"/>  

          <family value="Donald"/>  

          <given value="Duck"/>  

        </name>  

        <gender value="male"/>  

        <contact>  

          <relationship>  

            <coding>  

              <system value="http://hl7.org/fhir/patient-contact-

relationship"/>  

              <code value="E"/>  

            </coding>  

          </relationship>  

          <organization>  

            <reference value="Organization/1"/>  

            <display value="Walt Disney Corporation"/>  

          </organization>  

        </contact>  

        <managingOrganization>  

          <reference value="Organization/1"/>  

          <display value="ACME Healthcare, Inc"/>  

        </managingOrganization>  

      </Patient>  

    </resource>  

  </entry>  

  <entry>  

    <fullUrl value="http://acme.com/ehr/fhir/Patient/pat12"/>  

    <resource>  

      <Patient>  

        <id value="pat2"/>  

        <text>  

          <status value="generated"/>  

          <div xmlns="http://www.w3.org/1999/xhtml"> 

             

            <p> Patient Donald D DUCK @ Acme Healthcare, Inc. MR = 

123456</p>  

           

          </div>  

        </text>  

        <identifier>  

          <use value="usual"/>  

          <type>  

            <coding>  

              <system value="http://hl7.org/fhir/v2/0203"/>  

              <code value="MR"/>  

            </coding>  

          </type>  

          <system value="urn:oid:0.1.2.3.4.5.6.7"/>  

          <value value="123456"/>  

        </identifier>  
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        <active value="true"/>  

        <name>  

          <use value="official"/>  

          <family value="Donald"/>  

          <given value="Duck"/>  

          <given value="D"/>  

        </name>  

        <gender value="other"> 

          <extension url="http://example.org/Profile/administrative-

status"> 

            <valueCodeableConcept>  

              <coding>  

                <system value="http://hl7.org/fhir/v2/0001"/>  

                <code value="A"/>  

                <display value="Ambiguous"/>  

              </coding>  

            </valueCodeableConcept>  

          </extension>  

        </gender>  

        <managingOrganization>  

          <reference value="Organization/1"/>  

          <display value="ACME Healthcare, Inc"/>  

        </managingOrganization>  

      </Patient>  

    </resource>  

  </entry>  

</Bundle>  

 

Source: (HL7 International, n.d.-i) 
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Appendix II: FHIR mind map 

The following image includes the root node of the maps and the main branches. Then the 

other pictures follow the branches of the map to give better detailed views. 
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Source: author’s data 
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Appendix III: Weight tracker function 

 

source: author’s data 

 

  



Camille Pellaton 

91 

Author’s declaration 

Je déclare, par ce document, que j'ai effectué le travail de bachelor ci-annexé seul, sans 

autre aide que celles dûment signalées dans les références, et que je n'ai utilisé que les sources 

expressément mentionnées. Je ne donnerai aucune copie de ce rapport à un tiers sans 

l'autorisation conjointe du RF et du professeur chargé du suivi du travail de bachelor, y 

compris au partenaire de recherche appliquée avec lequel j'ai collaboré, à l'exception des 

personnes qui m'ont fourni les principales informations nécessaires à la rédaction de ce travail 

et que je cite ci-après : 

- Fabien Dubosson, collaborateur à l’Institut Informatique de gestion. 

- Michael Schumacher, professeur HES et collaborateur à l’Institut Informatique de 

gestion. 

Camille Pellaton, 02.08.2017. 

 


