

A unified quality measure engine for the Philips HealthSuite
digital platform
Citation for published version (APA):
Sykoudi Amanatidou, P., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software
Technology (ST) (2015). A unified quality measure engine for the Philips HealthSuite digital platform. [EngD
Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/21d2b8b5-bbf3-48fd-99b1-3ddd769d05af

i

A Unified Quality Measure Execution Engine for the

Philips Health Suite Digital Platform

Pelagia Sykoudi Amanatidou

September 2015

ii

A Unified Quality Measure Execution Engine for the

Philips Health Suite Digital Platform

Pelagia Sykoudi Amanatidou

September 2015

iii

A Unified Quality Measurement Engine for the Philips Health Suite Digital Platform

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

Philips Research Eindhoven University of Technology

Steering Group Pelagia Sykoudi

Muhammad Asim
 Ad Aerts

Date September 2015

Document status Public

The design described in this report has been carried out in accordance with the TU/e Code of Scientific Con-
duct

iv

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1414-1

A catalogue record is available from the Eindhoven University of Technology Library
(Eindverslagen Stan Ackermans Instituut; 2015/076)

Abstract This document conveys the results of the Unified Quality Measure Execution Engine
(UQMEE) for Philips Health Suite Digital Platform (HSDP) project. The nine month
project started on January 2015 and was conducted at Philips Research in the Health
Informatics Solution Services department. The objective of this project is focusing on
developing a tool for measuring the quality of healthcare services.

Healthcare delivery is shifting from volume (pay per visit, hospitalizations & tests) driv-
en care to outcomes driven care. This has resulted in increased focus on quality which
focuses on safe, effective, patient-centered, timely, efficient and equitable healthcare
delivery. Quality measure is a quantitative tool to assess the performance of an individu-
al or organization's performance in relation to a specified process or outcome via the
measurement of an action, process, or outcome of clinical care.

This project is focusing on the implementation of a quality measure execution engine
using HL7 standards i.e. Health Quality Measure Format (HQMF). HQMF is standard for
concise and unambiguous representation of quality measures, hence enable interoperable
execution of quality measures and benchmarking. HQMF specifies semantics, data con-
cepts and logic for representation of data and population criteria. UQMEE is envisioned
as a common asset for HSDP due to its applicability for multiple business units of Philips
Health Tech.

Keywords

quality measures, quality measure execution engine, HSDP, health quality measure for-
mat

Preferred
reference P.Sykoudi.Amanatidou, A Unified Quality Measure Execution Engine for Philips

Health Suite Digital Platform, SAI Technical Report, September 2015. (978-90-444-
1414-1)

Partnership This project was supported by Eindhoven University of Technology and Philips Research.

v

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the Eindhoven University of Technology or
Philips Research. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the Eindhoven University of Technology or Philips Research, and
shall not be used for advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report
is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-
sentation or undertaking whether expressed or implied, nor does it assume any legal liabil-
ity, whether direct or indirect, or responsibility for the accuracy, completeness, or useful-
ness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with
the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2015. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and Philips Research.

vii

Foreword

Healthcare delivery is shifting from volume-driven (pay per visit, hospitalizations,
and tests) care to outcome-driven care. This has resulted in an increased emphasis on
quality, which focuses on safe, effective, patient-centered, timely, efficient and equi-
table healthcare delivery. The quality measures or indicators are quantitative tools to
assess the performance of an individual or the organization's performance in relation
to a specified process or outcome via the measurement of an action, process, or out-
come of clinical care.

Philips Research is keen on delivering innovative solutions that leverage the quality
of healthcare services in the long run. As such, introducing a way to quantify the
quality of healthcare services from different healthcare providers is a matter of par-
ticular importance within the organization. In the Health Informatics Solution Ser-
vices (HISS) business unit of Philips Research, we readily identify the need to pro-
mote the merit of using a standard-based solution of a unified quality measure execu-
tion engine. We appreciate the necessity of a standard-based solution, because multi-
ple business units inside Philips are often requested to provide quality measure dash-
boards to their clients. As a result, we have to transfer knowledge of quality measure
standards in our district. For that case, we wished for a young professional who
would thoroughly investigate the relevant healthcare quality standards, so as to pro-
vide us with a standard-based engine.

Pelagia worked meticulously in order to derive a comprehensive software architec-
ture that could fit into our specifications. Thinking out of the box, she proposed a
design that welcomed changes. As a trainee for 9 months in Philips Research, Pelagia
lived up to my original expectations. As a graduate of the Electrical and Computer
Engineering Faculty of the Aristotle University of Thessaloniki (AUTH), I was con-
fident about her technical background and I appreciate the inquiring mind she devel-
oped in the OOTI program.

Pelagia’s work is paving the way for an extensible unified quality measure engine,
which can subsequently be integrated into the Philips Health Suite Digital Platform.
She cast light on the intricate complexity of the HL7 Quality Metrics standards and
delivered a prototype that is able to digest any compatible HL7 HQMF documents
and return the results in standard HL7 QRDA documents, thus enhancing the in-
teroperability aspects required in her assignment. She made a valuable contribution
towards better understanding the value of the healthcare quality standards and we can
already see the potentials in further elaborating her engine in the future.

Muhammad Asim
Senior Scientist
Philips Research

ix

Preface
This document you are holding is the technical report of the Unified Quality Measure
Execution Engine for the Philips Health Suite Digital Platform (UQMEE for HSDP).
The report contains information about the requirements, the design, and the devel-
opment performed in this project. The project lasted for nine months (January - Sep-
tember 2015) and was conducted for and within Philips Research, Eindhoven.

This document also constitutes the graduation thesis of the author, Pelagia Sykoudi
Amanatidou, as part of the Stan Ackermans Institute Software Technology PDEng
program of the Eindhoven University of Technology. The Professional Doctorate in
Engineering (PDEng) program, also known by its Dutch name “Ontwerpers
Opleiding Technische Informatica (OOTI),”is a two-year training program in which
projects for various industry partners are conducted. UQMEE for HSDP is the au-
thor’s graduation project of the PDEng program.

During this nine-month project, the author worked towards gathering the stakehold-
ers’ requirements, deriving the architecture and the design and executing the imple-
mentation. Based on the previous processes, other important aspects of the project are
also applied, such as planning and documentation.

Non-technical readers should refer to Chapters 1, 2 and 3 that set the context and the
goals of the project and Chapter 10, where the results are summarized. Technical
readers will be interested in Chapters 5-8 that describe the system requirements,
architecture, design, implementation, and deployment respectively.

September 2015

xi

Acknowledgements

I would like to express my deep gratitude to my company supervisor Asim Muham-
mad. I have learned many things since I worked with him. He spends a lot of time
ensuring that I have learned correctly healthcare concepts and guiding me on manag-
ing the project. In addition, he puts effort on providing me useful feedback on my
final report. I would also like to thank very much my second company supervisor,
Charalampos Xanthopoulakis. His help was invaluable. He introduces me possible
technology choices and provides me every day useful feedbacks and motivation for
the proper fulfillment of this project. Furthermore, I would like to express my grati-
tude to my university supervisor Ad Aerts, the General Director of the Software
Technology program. He was really supportive, willing to answer to my questions
during this 9-month project. He also spends a lot of time providing me a meaningful
feedback on my final report.

Special thanks to all the OOTI coaches for improving my technical and professional
skills in this two year program. I would also like to thank my colleagues at OOTI
who provided a friendly and constructive working atmosphere. Special thanks should
go to Ad Aerts the General Director of the Software Technology program and Maggy
De Wert, the OOTI secretary.

I take this opportunity to show my gratitude to the open source Cypress community,
they provided me useful answers to unknown concepts and procedures using their
tools. In addition, I would like to thank the anonymous community and open source
communities of the internet provided answers to technical issues, tutorials, problems.

Last but not least important, I owe more than thanks to my family, my friends and
loved ones for the encouragement throughout my life and work. Especially I would
like to thank from the depth of my heart Arash Shafiei for his support and the inspira-
tion he gave me for working and life these last two years being abroad.

September 2015

xiii

Executive Summary

The Unified Quality Measure Execution Engine for the Philips Health Suite Digital
Platform (UQMEE for HSDP) project was conducted for nine months in Philips
Research, Eindhoven. It is conducted under the auspices of the Philips Health Infor-
matics Solution Services business group. UQMEE is designed with a view to being
ported on the HSDP, a unified storage platform of Philips Research health data. As a
consequence, this project proposes and implements a prototype architecture which
aims at giving insights to the HSDP business group.

This project attempts to develop a quality measure execution engine in an interopera-
ble and unified way. Nowadays, due to the automation in healthcare, health data is
increasing. In that way, monitoring patient data and conducting quality measures in
healthcare delivery becomes more difficult. Medical practitioners need to estimate
the healthcare performance in specific operations such as clinical or financial pro-
cesses, outcomes or structural aspects. In order to handle the huge volume of health
data a uniform and constructive way needs to be applied. For the use and exchange of
health information healthcare standards are implemented by International HL7, a
non- profit organization. Especially for quality measures it has developed the Health
Quality Measure Format (HQMF). This standard establishes a unified form using
semantics, computation logic and representation of health elements for the quality
measure execution.

This project aspires the development and the execution of quality measures orches-
trated by international healthcare standards. UQMEE provides interoperability to
different Philips Research departments for conducting quality measures using HQMF
standards. For the representation of the measure results is applied the Quality Report
Document Architecture (QRDA Cat 3).

UQMEE main functionality is to transform the elements of the health standards doc-
uments into executable code. It is a web application software solution. This solution
promotes the use of HL7 standards for the execution of quality measures over clinical
and claims data. It proposes a modular architecture. Based on the technology choices
and the design, it allows a further extensibility of HQMF functionalities and back-
wards compatibility of HQMF previous releases.

Philips Research aims to introduce the added value using HL7 standards in its de-
partments performed quality measures through this project. With the advent of HSDP
as central health data storage, Philips aspires the implementation of such an engine
on HSDP. As a consequence, it may allow different healthcare providers to execute
their quality measures and view benchmarking reports using one unified engine.

xv

Table of Contents

Foreword ... vii

Preface .. ix

Acknowledgements ... xi

Executive Summary .. xiii

Table of Contents ... xv

List of Figures .. xix

List of Tables .. xx

1. Introduction .. 1

1.1 Context... 1

1.2 Introductory Concepts ... 2

1.3 Project Scope ... 5

1.4 Outline ... 5

2. Stakeholder Analysis .. 7

2.1 Philips Research .. 7

2.2 Eindhoven University of Technology (TU/e) 8

3. Problem Analysis .. 10

3.1 Philips business need ... 10

3.2 HL7 tools ... 11

3.3 Analysis of the problem ... 13

3.4 Design Opportunities .. 14

4. Domain Analysis ... 15

4.1 Introduction ... 15

4.2 Healthcare standards .. 15
4.2.1. Introduction to HL7 .. 15
4.2.2. Data Structure ... 20
4.2.3. Health Quality Measure Format ... 22
4.2.4. Quality Report Document Architecture Category III 29

4.3 HL7 quality measuring tools ... 33
4.3.1. Web based open source quality measure tools 33
4.3.2. Health-data-standard ... 33
4.3.3. HQMF2JS ... 36
4.3.4. Quality Measure Engine ... 38
4.3.5. Ruby on Rails Applications .. 38

4.4 Health data storage ... 39

xvi

4.4.1. Relational Databases ... 39
4.4.2. Document Schema-less databases .. 40

5. Requirements .. 42

5.1 Introduction ... 42

5.2 User requirements ... 42

5.3 Functional requirements ... 43

5.4 Non-Functional requirements ... 44

6. System Architecture ... 45

6.1 UQMEE for HSDP overview ... 45

6.2 Quality Measure Interface ... 47

6.3 Quality Measure Engine .. 50

6.4 Data model .. 52

7. System Design ... 56

7.1 QME design introduction .. 56
7.1.1. HQMF to Query transformation ... 57
7.1.2. HQMF_Parser – HQMF_Document ... 58
7.1.3. Mapper2Schema ... 61
7.1.4. Query Generator ... 61
7.1.5. Data_Criteria_2Query .. 61
7.1.6. Population_Query ... 62

8. Implementation ... 64

8.1 UQMEE Implementation ... 64

8.2 Technology choices for implementation of UQMEE components. .. 64
8.2.1. QMI and QME on Ruby on Rails framework 64
8.2.2. Parsing HQMF and QRDA libraries ... 66
8.2.3. Relational data management system and other alternatives 66
8.2.4. Data ... 67
8.2.5. QME – Object Relational Mapping .. 68

8.3 Conclusions ... 68

9. Verification & Validation .. 69

9.1 Introduction ... 69

9.2 Verification .. 69
9.2.1. Verification of the executed measures .. 69

9.3 Validation .. 71

10. Conclusions .. 73

10.1 Results .. 73
10.1.1. Results based on the requirements .. 73
10.1.2. Conclusions .. 74

10.2 Future work ... 76

11. Project Management ... 77

xvii

11.1 Introduction ... 77

11.2 Project time line ... 77

11.3 Communication .. 78

12. Project Retrospective .. 80

12.1 Introduction ... 80

12.2 Design opportunities revisited ... 80

12.3 Strong Points ... 80

12.4 Improvements Points ... 81

Appendix A ... 82

Appendix B ... 88

Glossary .. 95

Bibliography ... 96

About the Author ... 97

xix

List of Figures

Figure 1: Example usage of the HSDP storage space from different business groups

 ...10
Figure 2: UQMEE on top of HSDP ..10
Figure 3: Clinical Quality Measures roadmap ..12
Figure 4:HL7 RIM primary subjects ..17
Figure 5: Example of 5 vendor systems with 5 interfaces ..18
Figure 6: HL7 RIM ..19
Figure 7: XML format ..21
Figure 8: JSON format ...21
Figure 9: HQMF high level document structure ..23
Figure 10: QRDA category III overview ..30
Figure 11: QRDA Category III document report ...32
Figure 12: Activity diagram of HQMF parser of Health Data Standards33
Figure 13: HQMF R2.1 class model, based on RIM model35
Figure 14: HQMF2JS components ...37
Figure 15: Patient records in QRDA category I format ..37
Figure 16: Ruby on Rails logo ...38
Figure 17: Map-Reduce process ...41
Figure 18: UQMEE for HSDP as a black box ..45
Figure 19: UQMEE for HSDP ...45
Figure 20: UQMEE for HSDP overview diagram ..46
Figure 21: QMI and QME sub systems ..46
Figure 22: Quality measurement process ...47
Figure 23: MVC ...47
Figure 24: MVC package diagram of QMI ..48
Figure 25: Flow process of QMI ..49
Figure 26: Class diagram of QMI ...49
Figure 27: Sequence diagram from the moment the user selects an indicator until the

moment the corresponding HQMF is sent to QME ...50
Figure 28: Sequence diagram from the moment the QRDA is received till the

moment the results are shown to QM_Interface ..50
Figure 29: QME package diagram ...51
Figure 30: QME flow process overview...51
Figure 31: QME class diagram ...52
Figure 32: Example of HQMF data elements' relations ...53
Figure 33: Data model of UQMEE for HSDP ..54
Figure 34: Package model of Engine ..56
Figure 35: Highlighting the Measure Execution Engine process56
Figure 36: Relation between HQMF information to SQL-based queries57
Figure 37: Class diagram of Engine ...58
Figure 38: HQMF_Document class diagram ..60
Figure 39: Example mapping between data criteria and query61
Figure 40: In order tree-traversal ..62
Figure 41: Sequence diagram of query execution ..63
Figure 42: Relation between QMI and Ruby on Rails components65
Figure 43: QME component using schema less database ...67
Figure 44: Verification of executed measures ..69
Figure 45: UI of QMI ...73
Figure 46: Project time line ..78
Figure 47: Flow process of queries execution ..88

xx

List of Tables

Table 1: Example of Avendis Donabedian's model ... 2
Table 2: Interface number based on system number .. 18
Table 3: Population Types ... 27
Table 4: Measure Types ... 27
Table 5: Logic Operator types .. 27
Table 6: User Requirements ... 42
Table 7: Functional Requirements for UQMEE for HSDP .. 43
Table 8: Non-Functional Requirements for UQMEE for HSDP 44
Table 9: Indicators ... 54
Table 10: Data criteria elements examples of their query form 57
Table 11: Example of a continuous variable measure calculation 58
Table 12: Data criteria elements .. 59
Table 13: Example Data Criteria elements .. 59
Table 14: Population criteria elements ... 59
Table 15: Example Population Criteria elements ... 60
Table 16: Data criteria - SQL elements mappings ... 61
Table 17: Technologies used to realize each component ... 64
Table 18: Population types ... 70
Table 19: Condition checks of executed measures .. 70
Table 20: HQMF-QRDA possible states ... 71
Table 21: Indicator titles .. 71
Table 22: Indicators and their corresponding HQMF elements 72
Table 23: User Requirements ... 73
Table 24: Functional Requirements ... 74
Table 25: Non-functional requirements ... 74
Table 26: Temporal relations types .. 82
Table 27: Value element .. 83
Table 28: Attributes of Value element ... 83
Table 29: Arel-ORM functions .. 84
Table 30: HQMF elements ... 85
Table 31: Comparison operators’ mappings .. 86
Table 32: Aggregation operators’ mappings .. 86
Table 33: Logical operators’ mappings .. 87
Table 34: Value elements mappings .. 87

1

1.Introduction

This chapter presents the main theme of this project. In this overview, some introduc-
tory concepts are provided, as well as the project scope.

1.1 Context

This project is defined in the domain of the quality of healthcare delivery. As good
health is essential for people’s life, the quality of healthcare delivery is equally im-
portant. Insight into this quality is necessary to know for which aspects of healthcare
delivery the quality is good, and for which it needs to improve in order to achieve
good health.

Usually, an insight is built on information. In order to get insights into the quality of
healthcare delivery, it is necessary to monitor and evaluate actions that are taken in
order to deliver healthcare. By monitoring, we mean that data about healthcare deliv-
ery and outcomes need to be recorded. In that way, it could be used to compare care
delivery to patients or to examine the state of healthcare procedures. By evaluating,
we mean that measures need to be properly defined. Defined measures could be used
for a specific aspect of quality (e.g. medications prescribed to a heart-failure patient
on hospital discharge). As a result, it is evaluated whether the delivery of healthcare
meets the guidelines. It is crucial to measure quality, because without measuring we
cannot improve it, as Lord Kelvin said.

The definition of measures for evaluating the healthcare delivery is promoted by the
healthcare community. The healthcare community consists of non-profit, public or
private organizations. These organizations are not only focusing on healthcare
equipment development, but they are also providing procedures, such as developing
guidelines ensuring that the proper treatment is applied to the right patients. These
organizations have also attempted to establish standardized measures that allow the
objective scoring of the performance of healthcare practitioners, procedures and
resources.

Nowadays, due to the progress of technology in healthcare an increasing level of
automation of support services exists. The healthcare community requires more
health data and faster processes for the analysis of their processes and healthcare
delivery. Since many measurements and examinations are taken for each patient in
different health departments, the amount of health data is huge. As a consequence,
the evaluation of the quality measures on healthcare data needs to be automated too.

Medical practitioners need the entire picture of patients’ healthcare delivery to obtain
a correct overview of their clinical state. This requires the combination of many dif-
ferent sources of healthcare data. Many of these sources are autonomous and not yet
compliant with common standards. This leads to data integration problems. To get
reliable and accurate values for the measures, the data has to be complete and con-
sistent. This has led to another effort by the healthcare community to establish stand-
ards for the exchange of healthcare data between providers.

Philips Research is one of the members of the healthcare community. Since 1895,
Philips has contributed in healthcare to its high-end medical procedures in hospitals
by means of their advanced equipment, such as scanners, as well as to services for
home care. This fact establishes Philips as one of the healthcare organizations who
have obtained a very good overview on the healthcare delivery actions.

As Philips gained experience in healthcare, it is able to study related issues. For in-
stance, Philips could study the issues that arise when health data of different sources

2

is combined and measures are evaluated on the basis of it. One of the issues is to
assess whether the combined data used is sufficiently coherent and able to provide
reliable outcomes, in case a measure is applied to it.

To get a deeper insight in this issue, Philips Research has initiated a project that fo-
cuses on the design of a quality measure execution engine. Medical practitioners
need quality measures in order to get insights in the aspects of healthcare delivery i.e.
process, structure and outcomes. This tool consists of an engine that can execute any
quality measure defined according to the HL7 standard. Such standard definition of
quality measures also allows for benchmarking different healthcare providers. The
output of the tool is qualitative analysis reports upon the healthcare data of a provid-
er. Such a tool thus supports the improvement of both measures and data and may
contribute to obtaining more reliable insights.

1.2 Introductory Concepts

In this section, we elaborate on the types of measures for quality measurements and
how they are applied, as well as why data consistency has a crucial role the in
healthcare domain and how we can tackle interoperability issues. To clarify these
aspects, some introductory information is provided which is grouped in four sub
sections trying to answer the following questions.

1. What are the proper measures to assess healthcare quality?
2. How can we apply the measures in healthcare delivery?
3. What is the added value of health data consistency?
4. How can health data be made interoperable?

1. What are the proper measures to assess healthcare quality?

Common sense assumes a good quality of healthcare delivery when the resulting
health of patients is good. However, this is a subjective statement since “good health”
has different meaning to different people. There have been several attempts to objec-
tify the way to measure quality. A proper quality measure needs to be objectively
defined and backed by evidence.

In addition, it is important to know what aspect a quality measure is focusing on and
how it relates to the outcome, which is the end goal to measure, but not always possi-
ble to measure. One of these attempts derives from Avendis Donabedian [1], who
contributed to the study of quality in healthcare. Avendis established the Avendis
Donabedian’s model which is divided into three categories:

• Structural measures, which represent how care is organized
• Process measures, which focus on what was done
• Outcome measures, which show what has actually happened to patients

Some examples of these categories are presented in the Table 1.

Table 1: Example of Avendis Donabedian's model

Structural Measure Process Measure Outcome Measure
Number of medical prac-
titioners who have sys-
tems to track diabetes

patients

Percentage of patients
with diabetes who have
had an annual eye exam

during the last year

Percentage of diabetes
patients who are blind or
have compromised vision

3

The measures discussed here are often driven by the clinical practice guidelines [2].
Clinical practice guidelines set a list of “Evidence-based” recommendations for med-
ical practitioners about the care of patients with specific clinical conditions. “Evi-
dence-based” implies that the recommendation has been formulated as a conclusion
of an un-biased process of clinical research with findings of the highest quality and it
is trying to assist in patients’ care.

For instance, there is a clinical practice guideline which recommends that for obese
patients it is good to follow a special healthy diet during their stay in the hospital.
This guideline promotes the definition of a quality measure which assesses the pro-
cess that patients with obesity indeed follow such a healthy diet.

2. How can we apply the measures in healthcare delivery?

Quality measures are used for measuring the quality of healthcare delivery. Quality
measures can be also called indicators, because they indicate whether the healthcare
delivery meets the desired goals.

An indicator is often calculated as a ratio or proportion. A ratio exhibits the relative
size between two populations. It is required that the one is the subset of the other.
The resulting ratio lies between 0 and 1 and it can be converted into a percentage by
multiplying by 100.

For better understanding, an example of an indicator is given below [3] :

Clinical research has established that in case a patient has had a heart attack, taking
aspirin every day reduces the chance of having a second one. Based on this, a clinical
guideline has been established that recommends that physicians prescribe aspirin to
all patients who have had heart attack after discharge.

Due to this guideline, a quality analyst can apply a question to a hospital, such as:
how many heart attack patients were actually prescribed aspirin after their discharge.
In that way, an analyst is trying to establish if physicians’ decisions are according to
the guideline for the proper patients’ population.

However, not all the patients who have had heart attack receive aspirin, because
some of them are allergic to aspirin and others left the hospital without receiving
aspirin prescription.

In order to quantify the compliance with the guideline in this example, we define:

• Let Pdenom be the number of patients who had heart attack
• Let Pnum be the number of heart attack patients who were prescribed aspirin

after discharge

Then, if we have a population of 100 heart attack patients (Pdenom), of whom 96
were prescribed aspirin after discharge (Pnum), we get:

𝐏𝐏𝐏𝐏:𝐏𝐏𝐏𝐏𝐏𝐏 = 𝟎.𝟗𝟗 Eq 1.1

This number of heart attack patients represents the number of patients who actually
receive the aspirin prescription. Not all the patients who have had a heart attack have
received aspirin, because some of them may be allergic to aspirin or other patients
left the hospital without receiving an aspirin prescription. The resulting percentage
96% indicates for the specific hospital that most physicians prescribe aspirin to the
proper heart attack patients after discharge.

To determine whether the result reveals a good quality in this hospital, we should
also obtain statistical information about the expected results for this clinical condition

4

in the specific hospital. For instance, if in this specific hospital it is estimated that 5%
of the patients are often allergic to aspirin and they are not going to accept the medi-
cation, then the expected percentage of patients who have had heart attack and re-
ceive aspirin after discharge is 95%. In this case, the actual result reveals that the
healthcare quality in this hospital meets the expectations.

3. What is the added value of health data uniformity?

By data uniformity we mean data that is structured in the same form, with the same
semantics and concepts. When data is uniformed complying with the same standard,
then all of it can take part in standardized quality measurements. As a result the more
data participates in measurements, the more accurate results are provided. This fact
highlights the importance of data uniformity and especially in healthcare where the
quality is related to patients’ lives.

Specifically, health data should have the same format, following the same semantics
and structure. For example, lets define the measurement of obese patients in a set of
heath data by using the condition “Patients.Diagnosis = ‘Obesity’.” This measure can
be computed on all health data that includes fields such as “Patients,” “Diagnosis,”
and for this particular case has the state of diagnosis reported as “Obesity.” In case
the health data does not include this kind of fields, Patients and Diagnosis, it is ex-
cluded from this measurement. As a result, the used data in the measurement is not
complete as not all data could participate in the computation. However, in case the
health data contains this kind of fields, but the context is different, like “Cancer”
instead of “Obesity”, the quality measurement is executable giving 0 results.

Furthermore, including more health data in quality measurements brings more pre-
cise results, because the health information is richer. For instance, collecting health
data of patients from different sources can reveal more information about previous
medications and problems. This information can classify patients into correct groups
and provide a better consideration about their clinical conditions.

The above facts reveal the high added value of data uniformity in quality measure-
ments, so that the overview is complete and the value of measures’ outcome has
worth.

4. How can health data be made interoperable?

Health data interoperability can be strengthened by the establishment of international
standards for all healthcare information. If each healthcare provider in the world
complies with these standards, then health data can be transferred efficiently, as well
as better studies and analysis on heath data can be achieved.

A non-profit organization which contributes to health data interoperability is the
Health Level-7 International (HL7). This organization provides a complete frame-
work and related standards for the exchange, integration, sharing, and retrieval of
health information in an electronic format. It comprises the HL7 standard develop-
ment body, by which also standards are produced for interoperable exchange of clini-
cal information in the form of XML documents.

HL7 has developed two important standards for the interoperable representation of
quality measurement and the result of executing a quality measurement. These stand-
ards are the “Health Quality Measure Format (HQMF)” and the “Quality Reporting
Data Architecture (QRDA).”

HQMF is used for defining the content and the structure of an indicator. In other
words, HQMF is used for representing indicators. This standard provides the neces-
sary specifications for defining the structure, metadata, definitions, and logic of an

5

indicator. An indicator which is encoded according to HQMF is called an “eMeas-
ure.”

QRDA is used to define the representation of quality measurement results which are
used for analysis in a reporting data architecture document. The resulting format can
be a percentage, ratio, or a pair of continuous variables depending on the measure
type defined in the HQMF.

There are three categories of QRDA. QRDA Category 1 represents the results of an
indicator that are relevant to one patient. QRDA Category 2 represents a summary of
aggregate data across a defined population. The report may or may not identify pa-
tient specific data. QRDA Category 3 represents aggregated results computed for a
population, so it is not patient specific. The first and the third specifications are the
most used.

Taking everything into consideration, as Philips Research is able to study these as-
pects, it is working on the development of a quality measurement tool. This tool
would be able to use HL7 standards such as HQMF and QRDA Cat 3 providing in-
teroperability. It would be able to execute different indicators on the top of clinical
and claims data. Finally, it will provide performance results to care providers, so they
can take the proper actions in order to improve the quality of healthcare delivery.

1.3 Project Scope

This project has nine-month duration and its main goal is the development of a quali-
ty measurement tool upon a set of health data providing quality analysis reports.

This project would provide insights into the architecture and implementation to a
Philips business group that is responsible for the development of the Health Suite
Digital Platform (HSDP). So far, the used health data is not applied to any other
external system. In the future, in Philips Research, health data will be provided by the
HSDP. However, in this project the HSDP was not the provider of such data.

The scope is to design a software solution, which is able to:

1. Provide a User Interface (UI) to quality analysts, in which they can select a
specific indicator

2. Provide indicators using HL7 standards, like the HQMF
3. Provide a quality measure execution engine based on the HQMF standards
4. Provide the results of the HQMF according to the QRDA Category 3 format
5. Show the results for analysis using graphs on the UI

Out of scope on this project are the following:

1. This software solution is not required to be integrated into HSDP
2. This software solution is not required to measure quality in any arbitrary set

of health data
3. The UI in this phase does not need to provide support for composing new

indicators

1.4 Outline

Chapter 2 presents the stakeholders and explains their interest and contribution to
this project.

Chapter 3 describes the problem that this project is trying to solve.

Chapter 4 introduces technologies that are used in this project

6

Chapter 5 describes the issues and possible risks that this project may meet.

Chapter 6, 7, 8 describe the functional and non-functional requirements of the
project, as well as the system design and the architecture, and a detailed description
of its implementation.

Chapter 9 documents how the application is validated.

Chapter 10 outlines possible future work and further considerations.

Chapter 11 documents the project management of the project.

Chapter 12 is a reflection of the author on the project and the methodology.
■

7

2.Stakeholder Analysis

This chapter provides a short overview of the stakeholder parties, their role and their
expectations from this project.

2.1 Philips Research

There are three main stakeholders that have varying interests in this project, the
Health Informatics Solutions Services (HISS) group, the Hospital to Home business
group (H2H), and the Health Suite Digital Platform (HSDP). We introduce each of
them, as well as their goals and their requirements.

Healthcare Informatics Solutions Services (HISS) group

The objective of HISS is to optimize patient care by presenting the right information
at the right time to the right people. HISS supports users across the healthcare system
by managing and analyzing clinical or claims data.

The end users of such a measuring tool could be for instance the Chief Financial
Officers (CFOs), the Chief Executive Officers (CEOs), the Accountable Care Organ-
izations (ACOs), and care management staff. One expected added value of this pro-
ject is that it enables Philips customers, such as ACOs, to report the quality of their
performance. In addition, it can be used as a means for consulting care providers
achieving healthcare improvement. Furthermore, it can be used to provide insights
from the aggregated claims or clinical data, so the cost and the utilization of the re-
sources could be adapted to patients’ needs. For instance, the quality reporting per-
formance can show that the average visiting time in an emergency department (ED)
is high. As a result, it is indicated to care providers to improve the ED healthcare
delivery taking actions such as increasing the available resources.

The main technical feature that this project is expected to show is the usage of HL7
standards by introducing a coherent quality measuring tool. Various Philips business
groups can apply this tool, such as TASY, EMR, HTS and H2H, providing perfor-
mance reporting for a set of indicators.

Hospital to Home (H2H) group

The H2H group objective is to leverage the efficiency of the process of telehealth
clinical programs. Telehealth is a domain where a big variety of clinical programs
have been developed applying distant monitoring to patients by collecting their
health data. Quality measurements can be applied to this data to provide insights in
performance. The health data that has been collected in the monitoring process are
consistent with HL7 standards.

The current project aims at introducing to this business group the value of using HL7
for measuring quality.

The Health Suite Digital Platform (HSDP) group

The HSDP is a platform aiming at consolidating the Philips telehealth services. It is
expected to receive clinical and telehealth data from external providers, with the view
to generating comprehensive reports and identifying patterns for improving the effi-
ciency of various clinical programs.

The HSDP aspires to serve different business units with same needs for quality
measurements. The establishment of a common quality measurement tool in this

8

platform is valuable, as it can be applied within different business units. Each unit
could apply its individual indicators, and all units should follow the same structure
compliant with the HL7 standards. The insights gathered by this project, which are
related to the implementation, would be also helpful to the HSDP group.

Preventive Medicine

Another associated project to Philips Research which is focusing on the improvement
of health population is the Preventive Medicine, a project for a Brazilian healthcare
provider called Unity [4]. This is a project that provides several consultation pro-
grams and activities to patients who are willing to prevent further symptoms of dis-
eases, such as diabetes or obesity. Indicators of clinical and claims data can be used.
These indicators are applied to patients’ health data showing their performance dur-
ing a period in which they follow a specific activity program.

This project can be of benefit to the Preventive Medicine project in two ways: 1) due
to the need of handling a huge number of health data, it is helpful to use HL7 stand-
ards for indicators representation in order to have a scalable solution, and 2) they
may use the project’s software solution to visualize their results.

Specific stakeholders from Philips are the following:

• Muhammad Asim, Senior Scientist and HL7 Specialist and Designer (Com-
pany Supervisor)

His main requirement is the correct usage of the HL7 standards, as exempli-
fied by the quality measure engine that has been tested on several clinical
and claims data sets.

• Charalampos Xanthopoulakis PDEng - Senior Software Designer (Company
Supervisor)

His main requirement is that the software solution can demonstrate a modu-
lar, extensible architecture and sound technology choices, as manifested by
the object oriented techniques.

• Steffen Pauws – Senior Scientist (Project Manager of the H2H Analytics
project)

His main requirement is to obtain a software prototype which exposes the
value of using the HL7 standards on performance reporting, as demonstrated
by the Philips Research’s needs.

2.2 Eindhoven University of Technology (TU/e)

The Eindhoven University of Technology is responsible for the educational aspect of
this project. The TU/e’s interest in this project is seeing to it that it tackles a suffi-
ciently complex problem. The PDEng trainee carrying out the project should prove
herself to be capable of solving the problem by providing a high quality design for its
solution and validating this solution.

The representative stakeholder from the TU/e is Ad Aerts, the Program Director of
the Software Technology PDEng program, who serves the role of university supervi-

9

sor. The university supervisor should ensure that the design and documentation meet
the standards of a PDEng project.

A final stakeholder of this project is the author of this report. The author’s ambition
is to prove that she is able to derive a high quality design which will ensure her grad-
uation from the PDEng program.

The author’s role is to carry out and manage the project which includes deriving the
design and validating it, as well as managing the project tasks, such as planning, risk
management, and negotiating about which requirements to include in the project.
■

10

3.Problem Analysis

This chapter describes the problem that this project attempts to solve. It explains the
problem in Philips Research that leads to the need for developing the UQMEE.
Then it continues on presenting the existing tools applied for health standards and
their limitations in order to meet Philips Research needs. It concludes by the defini-
tion of the actual needs of Philips Research based on its available resources.

3.1 Philips business need

It is expected that all Philips Research business groups will eventually use the HSDP.
It is planned that different business groups can have a central storage space of their
data. In case these groups need to apply quality measurements on their data, it makes
sense to have a unified and standard solution. Philips Research wishes to introduce a
common asset of the platform. It is also expected to provide a standard-based engine,
so all different business groups can execute HQMF eMeasures. This concept of
HSDP as a central storage is illustrated in the following Figure 1.

Different business groups may benefit from the usage of a standard-based engine, as
they can access the data uniformly and they are able to handle its growth. In addition,
in case of a collaboration and data exchange between business groups, like the H2H
and EMR groups, the data scalability is significantly improved.

Clinical Data Re-
pository TASY

HTS H2H

EMR

HSDP

HSDP
UQMEE

Clinical Data Reposi-
tory

Clinical Data Reposi-
tory

Figure 1: Example usage of the HSDP storage space from different business groups

Figure 2: UQMEE on top of HSDP

11

So far, each business group uses its own technology for data analysis. This means
that they use their own individual format of data structure. They also use individual
data storage systems to analyze specific key performance on their own data. This has
caused an issue when it is necessary to combine health data from different sources or
when it is required to define a basis for performance analysis. As HL7 standards are
also based on international clinical practical guidelines, they give a reliable means to
measure quality.

For instance, in chapter 2 we mentioned the Preventive Medicine project. This pro-
ject consists of specific key performance indicators and patient health data of an
individual care provider called Unity [4]. This provider has specific needs and inter-
ests in health data analysis. Formulating the used performance indicators by means of
HL7 standards improve their analysis of results. HL7 standards enhance the usage of
indicators, because the applied key performance indicators derive from international
quality models and clinical guidelines. In that way, quality measurements are more
reliable. Care providers’ results may be also presented internationally giving an over-
view on its performance to international healthcare quality.

In general, the usage of HL7 standards in quality measurement exhibits two positive
side effects. The first is that the collaboration of different business groups is en-
hanced. The second effect is that the scalability of their quality measures is based on
HL7 standards, which provides consistency on their measurements.

3.2 HL7 tools

The building of a quality measurement engine based on HL7 can be materialized by
various tools.

HL7 joined forces with the National Quality Forum [5], a non-profit membership-
based organization which works for healthcare improvement. In year 2009, they
published the Health Quality Measure Format standard, an HL7 derived model for
quality measure definition in electronic format.

Figure 3 shows the relation between the National Quality Forum and the International
HL7 standards.

The National Quality Forum coordinates the authoring of quality indicators, using the
Measuring Authoring Tool, (MAT) and publishes a number of valid quality measures
in electronic format. The indicators or “eMeasures” use the HL7. HL7 also publishes
the Quality Reporting Data Architecture which consists of QRDA Category 1, a data
structure for patient data and QRDA Category 3, a data structure reporting the results
of HQMF eMeasures.

12

In addition, MITRE [6] is a non-profit US corporation that conducts research and
development centers sponsored by the federal government. Its attempt is to explore
and develop better healthcare solutions contributing in quality healthcare measure-
ments.

This organization provides clinical medical solutions and open source software tools
for enhancing the usage of healthcare standards. Using HL7 standards, MITRE pro-
vides open source libraries, such as the Health Data Standards set, which is a set of
libraries for supporting the generation and consumption of a variety of standards such
as the HITSP C32, the QRDA and the HQMF.

These libraries are commonly used in a set of web-based open source measuring
tools, such as Cypress and popHealth.

Cypress: Cypress is a testing tool of Electronic Health Records (EHRs) and EHR
modules in calculating Meaningful Use (MU) Stage 2 Clinical Quality Measures
(CQMs). It is open source and freely available for use by the health IT community.

popHealth: popHealth is an open source reference implementation software service
that automates the reporting of quality measures. Its objective is to simplify the re-
porting of summary quality measures, and streamline the exchange of summary qual-
ity data.

These tools are a reference point to the current project. Their exploration is deemed
appropriate, so as to leverage the knowledge gained, as well as to get inspired for
building new tools.

Figure 3: Clinical Quality Measures roadmap

13

3.3 Analysis of the problem

The direct usage of MITRE libraries yields technology limitations. These limitations
stem from the choice of database technologies, the design of web-based applications
and their design priorities such as performance.

On the other hand, Philips Research needs to introduce the use of HL7 standards with
a further goal to obtain a quality measuring tool on top of the HSDP. However, the
HSDP is not available yet, so there are no explicit limitations on the technology
choice, as well as definite specification of the available interfaces.

The main purpose of this project could be defined as follows:

Problem statement: “The design and development of a standard-based quality
measurement tool, using HL7 standards, providing scalable quality measurements in
interoperable health data.”

To develop such a tool it is also imperative the investigation of the already available
tools and the study of their possible use. The possible limitations that these tools may
bring could be:

• Specific technology choices for web-application solutions
• Dependency on their data base technologies
• Dependency on their design choices based on their priorities, like perfor-

mance

On the other hand, the needs of Philips business groups are:

• Exploration on the usage of the available technologies and promotion of the
HL7 standards added value

• Exploration of the suitable database technologies
• Need for new indicators in Philips Research business groups
• Need for an architecture which will be the input to the HSDP business group

Regarding the above statements, the project entitled “A Unified Quality Measure-
ment Engine for the Health Suite Digital Platform.”

It is called:

1. “Unified,” because it uses HL7 standards providing scalability and con-
sistency in business groups’ measures.

2. “Quality Measurement Engine,” because its goal is to measure the quality of
healthcare delivery in terms of executing quality eMeasures on clinical and
claims data.

3. “For the Health Suite Digital Platform,” because we aspire that this engine
would be part of the HSDP and it can be used by different business groups
to develop quality measurement dashboards for their customers.

UQMEE for HSDP is a web-based application, which makes use of open source
libraries.

14

3.4 Design Opportunities

In this project, the following design opportunities are described, which aim at the
enchantment of the quality of this project.

Ease of use: This concerns two dimensions of the project. The one concerns user-
friendliness of the application. The end-user may reform quality measurements
through a user friendly UI. The other dimension concerns the elegance of the design.

Backward Compatibility: This concerns the compatibility to previous releases of
the HQMF standards. The usefulness of the solution depends on its capacity of being
able to accept previous releases of the standards.

Extensibility: This concerns the ability of the solution to be easily extensible for a
new functionality that HL7 standards may bring for the measurement in the future.
■

15

4.Domain Analysis

This chapter contains the analysis of the domains that are related to UQMEE for
HSDP. This analysis gives insights in the used technologies for the design and im-
plementation of this project.

4.1 Introduction

The technology of the Unified Quality Measurement Engine for HSDP covers the
following areas:

1. Healthcare standards
2. HL7 tools
3. Health data

These areas need to be analyzed in order to comprehend the proposed solution.

Healthcare standards are designed to allow healthcare providers and systems to ex-
change information by relying on a common set of concepts. These standards provide
a set of functionalities on transferring and documenting health data. The healthcare
standard information is usually stored in files using special representation languages.
These languages are defined through data structure formats, like XML or JSON. An
international healthcare standards organization is the Health Level 7 (HL7). HL7 is a
U.S.–based, American National Standards Institute (ANSI)-accredited health infor-
mation standards development organization.

Already existing HL7 quality measuring tools are also described in the following
section. Specifically, Cypress is described, a testing measuring tool which uses
HQMF indicators on a test health data set. This solution is a web application which
depends on technologies such as the Ruby on Rails framework. .

In addition, the investigation on the available data storage technologies is necessary.

4.2 Healthcare standards

4.2.1. Introduction to HL7

HL7 International is an ANSI [5] organization focusing on healthcare standards de-
velopment. This kind of organization produces standards which are called specifica-
tions or protocols oriented to various healthcare domains such as pharmacy, medical
devices and claims processing. Specifically, the HL7 target is to standardize clinical
and administrative data. Its name derives from the seven levels of the Open Systems
Interconnection (OSI) model [7], the Level Seven is the Application model.

The objective of HL7 is to provide interoperable standards to improve healthcare
delivery in terms of its workflow and its transferring knowledge between different
providers, such as private institutes, vendors and agencies. Its vision is to establish
the best and most widely used standards in healthcare.

In general, interoperability gives many advantages to business systems. There are
three main aspects of interoperability which make it important, the technical, the
semantic and the process. By technical, we mean the support of moving data from

16

one system to another. By semantic, we mean that the different systems are able to
understand the data in the same way. By process, we mean that various business
processes can work together.

The target groups applied the HL7 standard are the following:

 Clinical and Public Health Laboratories

 Clinical Decision Support Systems Vendors

 EHR, PHR Vendors and Health Care IT Vendors

 Lab Vendors

 Healthcare Institutions (hospitals, long term care, home care, mental health)

 Stand-alone family health history applications, family history sections in
personal health records, or family history modules within electronic health
records

 Primary Care and Specialty Physicians

There are two particular versions of HL7 standards, Version 2 and Version 3.

The HL7 Version 2 (V2) Messaging Standard-Application Protocol for Elec-

tronic Data Exchange in Healthcare Environments- supports the data exchange in
healthcare and so far is the most widely implemented healthcare standards world-
wide. Especially, HL7 Version 2.6 attempts to enhance the unified format for mes-
saging between different healthcare information systems by adding new messages
and domains to provide syntactic interoperability.

The HL7 Version 3 is an improved version of V2, which strives to improve the V2
process and its outcomes providing a fully specified standard. Some of the capabili-
ties that HL3 V3 brings are the following:

• Top-down message development with emphasis to the reusability of multi-
ple contexts and semantic interoperability

• Representation of complex relationships
• Formalisms for vocabulary support
• Solving re-use and interoperability across multiple domain contexts
• A uniform set of models
• Expanded scope to include community medicine, epidemiology, veterinary

medicine, clinical genomics, and security

The HL7 V3 development model is enhanced by the use of a well-defined infor-
mation model the Reference Information Model (RIM). RIM is an object model
which represents clinical data and identifies the life cycle of events that messages can
carry. It determines a robust set of data types and a complete set of healthcare domain
terminology. RIM is essential for HL7 standards development, since it increases
precision and reduces implementation cost.

Figure 4 shows the primary subject areas of the HL7 RIM.

17

In order to analyze the importance of the HL7 RIM for interoperability issues, it is
vital to describe the interoperability aspects in detail, as well as the specific contribu-
tion of the HL7 RIM.

Interoperability is the ability of two or more systems or components to exchange
information and reuse the information that has been exchanged. This definition pre-
sents the functional and semantic interoperability. Functional interoperability implies
the capability to reliably exchange information, and semantic interoperability implies
the ability to interpret and make effective use of the exchanged information. By “ef-
fective use,” we mean that the transferred information can be applied to any type of
computable algorithm which is appropriate to this health data type. In other words, it
is underling that if the semantic interoperability depends on standard models, then
more systems which also apply these models are able to reuse the information.

The HL7 V3 RIM supports the extension of semantic interoperability across all types
of clinical and related information systems such as

• Care provider systems which support electronic health records
• Healthcare delivery
• Patient administration
• Patient finance
• Clinical decision support
• Clinical research

For highlighting the role of the RIM, the following example is presented [1].

Back in 80s, when distributed healthcare application systems were developed the
number of their interfaces was increasing rapidly. For instance, two systems need one
interface, three systems need three interfaces and four systems need six interfaces for
exchanging information. Based on the formula of “number of combinations of n
elements taken r at a time” Eq 4.1, an estimation of the required interfaces given by
the number of systems is presented to Table 2.

𝐏!/(𝐏 − 𝐫)! 𝐫! Eq 4.1
𝐅𝐏𝐫 𝐫 = 𝟐 𝐚𝐏𝐏 𝐚𝐫𝐚𝐚𝐚𝐚𝐚𝐫𝐚 𝐄𝐄 𝟒.𝟏 𝐠𝐚𝐠𝐏𝐠 𝐏(𝐏−𝟏)

𝟐
 Eq 4.2

Acts

Participation

Roles Entities

Figure 4:HL7 RIM primary subjects

18

Table 2: Interface number based on system number

Systems: Interfaces:
3 3
4 6
5 10
10 45
20 190
30 435
50 1225

However, this number of interfaces cannot be maintainable. Large U.S. organizations
like Mayo Fdn or Duke and national systems in Europe obtain typically between 50-
100 such interfaces. The cost of 50-100k USD per custom interface indicates as
cheaper solution to apply an interface standard. This reduces the number of interfaces
for n systems to the cost of (n-1) interfaces.

In case each system complies to a standard interface, then 6 systems requires 6 inter-
faces, 30 systems requires 30 and 50 systems require 50, this results bring maintaina-
ble systems.

Figure 5: Example of 5 vendor systems with 5 interfaces

This actually means that any change that vendor “C” makes, Figure 5, their internal
lab data structures and vocabulary are mapped into a common semantic structure.
Systems A, B, D and E also map the standard-defined semantic lab structures into
their internal lab data structures. In other words, interfacing means mapping to/from
standard semantic structures.

Moreover, at a particular healthcare site, which consists of systems A1, B1, C1, D1,
and E1, systems can be developed based on a local lab standard or reference infor-
mation model. In case this site needs to interoperate with other sites, there needs to
be an overall lab reference model that each site can map its information.
In conclusion, HL7 RIM can tackle this need and provide a mature version of a
common reference healthcare applications information model.

Regarding Figure 4, a more detailed representation of HL7 RIM is shown in Figure 6.
The blue colored classes are the core classes and the orange colored shows the first
level of subclasses. Since RIM attempts to be a reference model that encloses the
entire healthcare domain, its knowledge can be useful for understanding any
healthcare application.

The following are examples of actions: a request or an order for a medical test is an
action; the report of the test result is an action, creating a diagnosis based on test
results and prescribing treatment based on the diagnosis. In simple terms, a medical
record is a record of each individual action of the diagnosis, the treatment and the
care of a patient.

More details for RIM concepts are depicted through the following:

19

• Each event in healthcare is called an Act, such as procedures, observations,

medications, supply or registration.
• Acts are related through an Act Relationship, such as composition, precon-

ditions, and revisions.
• Participations define the context of an Act, such as author, performer, sub-

ject or location.
• The participants are Roles, such as patient, provider, practitioner and em-

ployee.
• Roles are played by Entities, and subtypes of them can be persons, organiza-

tions, materials, places or devices.
• Role Link represents relationships between individual roles

From the classes of Figure 6 only Act, Entity and Role represents the exact class or
concept intended. In HL7 representation, a sub-type is addition to the RIM in case it
requires one specific attribute which cannot be inherited by its parent classes. Classes
that express unique concepts without the need of further attributes are represented
with distinct codes. Accordingly, the following coded attributes serve to further de-
fine the concept being modeled:

• classCode (in Act, Entity and Role): represents the exact class intention
• moodCode (in Act) and determinerCode (in Entity): represents an attrib-

ute which defines whether the class represents an instance or a kind of Act
or Entity

• code (in Act, Entity and Role): represents a particular classified type with-
in a particular classCode

The rest RIM classes, Participation, ActRelationship and Role Link represents vari-
ous concepts such as different forms of participation or different kinds of relation-
ships between acts. These concepts are represented by typeCode attribute.

Specifically, the specific state of an action is described by “mood” code. The “mood”
code specifies whether the Act is an activity that has happened, can happen, is hap-
pening, is intended to happen, or is requested to happen.

Figure 6: HL7 RIM

20

An act mood code could be:

Definition (DEF): Definition of an Act
Intent (INT): An intention to plan or perform an act
Request (RQO): A request or order for a service
Promise (PRMS): Intent to perform
Confirmation (CNF): Promise that has been solicited via an order
Event (EVN): An Act that actually happened

For instance, considering an Act which defines the occurrence of “Room Cleaning,”
the related mood codes could be defined as:

Mood code Statement
Proposal (PRP) Why don’t you clean your room?
Order/Request (RQO) Clean your room!
Promise (PRMS) I will clean my room tomorrow!
Event (EVN) Room is cleaned.

Moreover, Acts happen at a specific time which is defined by the Act.effectiveTime.
Act’s effective time is a time expression specifying the operative time of the Act, the
primary time for which the Act holds and the time of interest from the perspective of
the Act’s intention.

Furthermore, some of the Act relationships could be defined as following:

Type Definition
COMP Has component
PERT Has pertinent info
RSON Has reason
INST Instantiates
PRCN Has precondition
OCCR Occurrence

As Entity plays a particular Role, Participation expresses the context for an act, in
terms of who perform it, for whom it was done or where it was done. For example,
Joe Smith plays the role of the doctor. The doctor role participates in an act that can
be the ordering in which doctor is participating as author of an order. Some types of
participations can be author (AUT), data entry person (ENT), call back contact
(CBC), patient subject (PATSBJ), admitter (ADM), discharger (DIS), location
(LOC), consultant (CON), device (DEV) and responsible provider (RESPROV).

Taking everything into consideration, HL7 has defined a large amount of data types;
some of them are basic data types such as Booleans, but they can also specify encap-
sulated, coded, numerical or quantity data types.

HL7 documents are stored as data structures in xml or JSOM files. The next section
provides a reference to data structures. In latter chapters, on the basis of HL7 Refer-
ence Information Model, also other models are described, such as the Health Quality
Measure Format (HQMF) and Quality Report Document Architecture (QRDA).

4.2.2. Data Structure

1. Extensible Markup Language

XML data structure stands for Extensible Markup Language [8]. Markup languages
are used for the representation and processing of a text. Special codes define special

21

formatting styles for text layout and style. The code which is used for specifying the
formatting is called tags. An example of Markup Language is HTML.

The data of XML document is modeled into a linearization tree structure. This means
that several character strings are placed in each node in the tree. The tree structure
and the character strings together form the information content of a XML document.
Some of the characters in the document support the linearization and others consist
the information content.

Moreover, XML can be used in a variety of different contexts transferring data. It is
also used in Web Services sending requests back and forth without human interac-
tion.

2. JavaScript Object Notation

JSON stands for JavaScript Object Notation. It is a standard that uses human readable
text for transferring data objects. Data objects are structured as key-value pairs.
JSON is derived from the JavaScript scripting language, but it does not depend to any
programming language specification [9].

JSON is promoted as a lightweight alternative version of XML. Both of these formats
have support of creating, reading and decoding data. In addition, other examples of
data structure format could include OGDL, YAML and CSV.

In the following part, Figure 7 and Figure 8, there is an example of XML and its
corresponding JSON script format.

Figure 8: JSON format Figure 7: XML format

22

4.2.3. Health Quality Measure Format

The HL7 Health Quality Measure Format document was first initiated in 2010 and so
far it spans several releases. HQMF R1was the first attempt to represent internation-
ally the clinical quality measure metadata, data elements and logic. As HQMF R1 has
complex structure, then HQMF R2 was established to enhance its use. Its latest re-
lease is HQMF R2.1, issued in 2014, which structures the HQMF R2, into discrete
modules such as metadata layer, data layer and expression layer [10].

In this section, we describe the basic concepts and the use of the latest release HQMF
R2.1.

1. Use of HQMF standards

The HQMF represents a health quality measure in electronic format. HQMF
measures derive from clinical guidelines and its purpose is to evaluate the perfor-
mance of healthcare delivery by the comparison of the actual actions in healthcare to
the expected ones. The HQMF standard provides also a consistent and a formulated
way for querying patients’ data.

2. General Concepts

Figure 9 presents a high level introduction to the HQMF concepts is presented. And
the following XML snippet shows the high level XML structure of the HQMF stand-
ard.

<!-- Start of an HQMF R2 eMeasure. An eMeasure is enveloped by the QualityMeasureDocument element. -->
<QualityMeasureDocument>
<!-- Header attributes including Title, Narrative, Author, Custodian etc. -->
 <templateId />
 <title />
 <text />
 <author />
 <custodian />
 <verifier />

 <!-- defining the time period that this eMeasure applies to -->
 <controlVariable>
 <measurePeriod />
 </controlVariable>
 <!-- Miscellaneous metadata for an eMeasure -->
 <subjectOf>
 <measureAttribute />
 </subjectOf>

 <!-- Sections -->
 <!-- Measure Description Section -->
 <component>
 <measureDescriptionSection />
 </component>

 <!-- Data Criteria Section, containing actCriteria, etc. -->
 <component>
 <dataCriteriaSection />
 </component>

 <!-- Population Criteria Section containing an Initial Population, numeratorCriteria, denominatorCriteria
exclusions, exceptions, stratifier Criteria etc. -->
 <component>
 <populationCriteriaSection />
 </component>

23

<!-- Measure Observation Section containing expression language expressions for evaluation using Data
Criteria-->
 <component>
 <measureObservationsSection />

 </component>
</QualityMeasureDocument>
<!—end of eMeasure -->

In the above XML snippet, with blue color we indicate the introductory document
concepts for the eMeasure, such as its id, the author, the measure period of the
HQMF and its metadata. The red color presents the information of data criteria, pop-
ulation criteria and sections related to the measurement of the HQMF.

Specifically, the header contains information about the measurement such as name,
author, description, id, references and measure type, and the body contains all the
necessary sections which participated in the quality measure computation. The body
also contains a human readable text, which is used for the HTML representation of
the eMeasure.

3. Measure Period

Every HQMF document has a Measure Period. The Measure Period is a required
element for the proper definition of a quality measure. The Measure Period desig-

HQMF Body

HQMF Header

HQMF Document Structure

HQMF Document Attributes

Author

Measure Processing Metadata

Measure Period

Measure Description

Data Criteria

Population Criteria

Stratifiers Criteria

Measure Observations

Figure 9: HQMF high level document structure

24

nates the time period in which the measured data are determined, collected and in-
spected in this HQMF document.

The measure period is defined inside a control variable element, as this variable con-
trols the time period that the eMeasure is computed.

The Measure period class code is defined as observation (OBS), its mood code is
event (EVN), and its unique code is defined as MSRTP from the HL7 ActCode vo-
cabulary.

The measure period value could be defined by interval properties such as low, high,
and width values. The following XML snippet shows an example of measure period
definition.

4. Data Criteria Section

This is the core of the HQMF standard. Data criteria determine the specific content
that the HQMF document includes. To illustrate the usage of data criteria section the
definition of a criterion should be given:

“A criterion is a condition or a set of conditions that can be evaluated as TRUE or
FALSE for a given item.”

Especially, the data criteria of a quality measure identify a set of conditions that de-
fine if a data item is included in the measured population or not.
For example:

• Patient’s age is greater than 18 years old
• Patient’s diagnosis is set equal to Obesity

The types of data criteria vary over a large list of healthcare information. Some of
them are defined as:

• Patient Demographics
• Encounters
• Medications
• Lab Results
• Vital Signs
• Problems
• Procedures
• Allergies
• Immunizations

In addition, data criteria can express a nested time constraints to a patient population
number. This means that data criteria can be related to other data criteria or time
constrains through time relationships. To illustrate this kind of relationships, the
following examples are presented.

<!-- measure period is 2011-01-01 to 2011-12-31 -->
<controlVariable>

<measurePeriod>
<code code="MSRTP" codeSystem="2 2.16.840.1.113883.5.4">

<displayName value="Measurement period"/>
</code>

<value xsi:type="IVL_TS" highClosed="true" lowClosed="true">
<low value="20110101"/>
<high value="20111231"/>

</value>
</measurePeriod>

25

1. The patient had a blood measure lab test, one year before the measure peri-
od

2. The patient has an encounter during the measure period having a required
type of medication

Another important thing for the data criteria is the order they are applied. A different
order can give a different result.

Typically the data criteria section may include a definition section and several entries
for each data criterion.

Data criteria definition attributes

The definition element in data criteria section is not required for the proper definition
of an eMeasure. However, definitions may be used as a link between the data criteria
and the derived implementation data model such as the corresponding tables in
healthcare storage. For instance, if healthcare data model consists of tables such as
encounters or procedures, then the definition can be defined based on this infor-
mation, determining the general concepts in which data criteria are used. The defini-
tions may contain act, encounter, observation, procedure or supply.

The ability to specify the related implementation model allows the translation of the
measure into a computable form. It is only required to uniquely refer the specific data
model element to the particular corresponding information inside the data criteria.

In case of an act definition, the eMeasure should contain attributes like class code
which is set “ACT”, and the mood code is set “DEF”. In addition, an id uniquely
identifies the definition within the data criteria section, and it can be used to a data
criterion as a reference to its definition. The following XML snippet presents an
example encounter definition.

In the above snippet, the following attributes are defined:

• typeCode: instantiates the object
• classCode: defines the type of object, in this example is an encounter
• moodCode: defines the definition of this object
• id-root: identifies the specific id of this object
• extension: identifies the name of the data type

Data criteria entry attributes

Inside an entry a criterion can be defined. In this entry a local variable name is set
with the unique name of the criterion. This name is also used to refer the particular
criterion to other parts of the document like the population section.

It is aforementioned that the RIM objects are trying to cover conceptually all the
elements of healthcare delivery, For instance, Acts can include observations such as
lab result, blood pressure or infection. In the eMeasure for an Act criterion the at-
tribute “isCriterionInd” indicates that the specific act may have occurred and attrib-
utes like code identifies the specific information that the criteria presents.

 <definition typeCode = "INST">
 <encounterDefinition classCode = “ENC" moodCode = "DEF">
 <id root=“12345678" extension=“encounter"/>
 </encounterDefinition>
 </definition>

26

The following example presents a valid entry of a data criterion for a completed
weight observation.

Regarding the previous snippet, we can see that the observation criterion for weight
is presented. The observation criterion consists of a unique id and code elements
which determine the type of data. Usually, data criteria are defined using codes that
derive from the National Medicine Library. This library includes a huge amount of
codes which represents diseases, procedures, patients’ characteristics and medica-
tions. In this particular example, it is defined the code which represents the weight.
The code for weight is set using the code system SNOMED CT. Many code systems
are also used like LOINC and RXNORM.

The definition of data criteria usually contains more complex logic and relationships,
as a data criterion may depend on other criteria or time constrains. The following
XML snippet presents a criterion which includes temporally related information
which indicates that the criterion takes place during the measure period of the
eMeasure.

5. Population Criteria Section

The population criteria section identifies a population using one or more data criteria
elements. The elements that this section contains are based on the type of quality
measures which could be:

• Proportion - Ratio: the result of a fraction, between 0 and 1
• Continuous Variable: a number which results an average, summary, a medi-

an or any other computational statement
• Cohort: a number representing the requested group

<localVariableName value = “Observation_weight”>
<observationCriteria classCode="OBS" moodCode="EVN" isCriterionInd="true">
 <id root="f92aa450-73c0-11de-8a39-0800200c9a66"/>
 <code code="27113001" codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED CT">
 <displayName value="weight"/>
 </code>
 <statusCode code="completed"/>
</observationCriteria>

<entry typeCode="DRIV">
 <localVariableName value="EDEncounter" />
 <encounterCriteria classCode="ENC" moodCode="EVN" isCriterionInd="true">
 <code code="2.16.840.1.113883.3.117.1.7.1.292“ codeSystem="2.16.840.1.113883.3.560.101.1">
 <displayName value="Emergency Department Visit SNOMED-CT Value Set" />
 </code>
 <title value="Occurrence A of Encounter, Performed: Emergency Department Visit" />
 <statusCode code="completed"/>
 <participation typeCode="LOC">
 <role classCode="SDLOC"></role>
 </participation>
 <temporallyRelatedInformation typeCode="DURING">
 <criteriaReference classCode="OBS" moodCode="EVN">
 <id root="2.16.840.1.113883.3.100.100.123" extension="MeasurePeriod"/>
 </criteriaReference>
 </temporallyRelatedInformation>
 </encounterCriteria>
</entry>

27

Table 3 presents the different population types in HQMF.

Table 3: Population Types

Population
Types

Rules

IPP The initial patients’ population that is included in the measure
DENOM The denominator can be the same as the IPP in case there is an

additional data criteria, it is added to the IPP
NUMER The numerator population is a sub set of the DENOM
NUMER Ex-
clusions

The numerator exclusion population is a subset of NUMER which
has to be removed

DENOM Ex-
ceptions

In case the NUMER is resulted empty, then the DENOM Excep-
tions take place this is a subset of the DENOM

DENOM Ex-
clusions

The denominator exclusions is a subset of DENOM which has to
be removed from DENOM

MSRPOPL The measured population is the same as the IPP, including addi-
tional conditions and continuous variables

MSRPOPLEX The measured population exclusion is a sub set of MSRPOPL,
which has to be removed from MSRPOPL

For each measure type, the corresponding population types are defined in Table 4.

Table 4: Measure Types

Measure Type Population types
Proportion IPP, DENOM, NUMER, DENOM Exclusions, DENOM Excep-

tions, NUMER Exclusions
Ratio IPP, DENOM, NUMER, DENOM Exclusions, NUMER Exclu-

sions
Continuous
Variable

IPP, MSRPOPL, MSRPOPLEX

Cohort IPP

Population criteria are constructed using data criteria. In the population criteria, data
criteria are connected to each other by logical operations like AND, OR, NOT or
XOR.

The type of logical operators between the data criteria have the following format
shown in Table 5.

Table 5: Logic Operator types

Type Logic Operator Logic Statement
AllTrue AND A AND B
AllFalse NOR = NOT(OR) NOT (A OR B)
AtLeastOneTrue OR A OR B
AtLeastOneFalse NAND = NOT(AND) NOT(A AND B)
OnlyOneTrue XOR (A OR B)AND(NOT(A AND

B))
OnlyOneFalse XNOR (A OR B)AND(NOT(A AND

B))

To illustrate the usage of logical operators an example is given.

To identify the Initial Population that consists of information related to patients’
characteristics such as male patients between the ages of 16-74, two data criteria

28

elements are used. The first contains information about the patient date of birth and
the second contains conditions related to patients’ gender.

• Data Criteria Element 1: “Patient is between the ages of 16-74”
• Data Criteria Element 2: “Patient is male”
• Inclusion of both criteria is done using the “AllTrue” operator, which is a

logical AND, “AllTrue” {Data Criteria Element 1, Data Criteria Element 1}

The next XML snippet shows the structure of this example criteria included to initial
population. It is shown that the initial population criterion has its unique id, and code
which derives from HL7 ActCode. Each reference to a criterion and the use of logical
operations are defined within precondition attributes.

Moreover, population criteria can included deep nested logical operations, for in-
stance an AllTrure operation can contain AtLeastOneTrue conditions.

6. Stratifiers

Stratifiers are constructed using Data Criteria and determine the way the population
criteria should be grouped. In a quality measure computation, strata are usually de-
mographic information of patients like age, gender, ethnicity, race and payer.

Stratifier criterion can also have logic operations, as it can be defined by various
category combinations. The following stratifier example captures patients who are
less than 50 years old or female.

<initialPopulationCriteria classCode="OBS" moodCode="EVN" isCriterionInd="true">
<id root="c75181d0-73eb-11de-8a39-0800200c9a66"/>
<code code="IPOP" codeSystem="2.16.840.1.113883.5.4" codeSystemName="HL7 ActCode">

<displayName value="Included in Initial Population"/>
</code>
<precondition>
<allTrue>

<id root="9ea5d63f-f794-4b5d-ae33-e1091cb31d38"/>
<precondition typeCode="PRCN">
<!— Age 16-74 years-->

<criteriaReference classCode="OBS" moodCode="EVN">
<id root="f92aa450-73c0-11de-8a39-0800200c9a66"/>

</criteriaReference>
</precondition>
<precondition typeCode="PRCN">
<!—Gender male -->

<criteriaReference classCode="OBS" moodCode="EVN">
<id root="42e2aef0-73c4-11de-8a39-0800200c9a66"/>

</criteriaReference>
</precondition>

</allTrue>
</precondition>

</initialPopulationCriteria>

29

7. Continuous variable eMeasures

In case of continuous variable eMeasures additional attributes are defined in
HQMF document. Inside the section measureObservationDefinition, infor-
mation related to the applied computation of the measure score is set. Its
code should be defined as “AGGREGATE”. Specific type methods identify
the computations over data.

To clarify the usage of measureObservationDefinition the following exam-
ple XML snippet is provided.

 In this measure observation definition, we calculate the median visiting time
of an emergency department. In that case, it is necessary to subtract the discharge
(high) time from admission (low) time of each emergency department encounter.
Then the calculated value should take place to the median measurement method.

Additional type methods are count, sum, average, standard variance, minimum, max-
imum, median and mode.

All in all, HQMF provides a wide range of computational capabilities, and helps
standard developers to use healthcare information effectively.

4.2.4. Quality Report Document Architecture Category III

The Quality Report Document Architecture Category III is a template healthcare
standard document which is used to report the results of indicators which are com-

<stratifierCriteria>
<id root="aebb3a81-74da-21de-7a23-0800200c9a65"/>
<precondition>
<atLeastOneTrue>

<precondition>
<!-- Less Than 50 years of Age -->

<criteriaReference classCode="OBS" moodCode="EVN">
<id root="aebb3a51-73da-11de-8a39-0800200c9a55"/>

</criteriaReference>
</precondition>
<precondition>
<!-- Female Gender -->

<criteriaReference classCode="OBS" moodCode="EVN">
<id root="aebb8a52-73da-11de-8a39-0300200c9a11"/>

</criteriaReference>
</precondition>

</atLeastOneTrue>
</precondition>

</stratifierCriteria>

<!-- the resultant measure observation, defining the CV calculation -->
<measureObservationDefinition classCode="OBS" moodCode="DEF">

<code code="AGGREGATE" codeSystem="2.16.840.1.113883.5.4">
</code>
<value xsi:type="PQ">

<expression value="EDEncounter.Participation.Role.effectiveTime.high -
EdEncounter.Participation.Role.effectiveTime.low"/>

</value>
<methodCode>

<item code="MEDIAN" codeSystem="2.16.840.1.113883.5.84" />
</methodCode>
<component>

<criteriaReference>
<id root="c75181d0-73eb-11de-8a39-0800200c9a66"

extension="measurePopulation"/>
</criteriaReference>

</component>
</measureObservationDefinition>

30

puted by HQMF documents [11]. The QRDA category III document consists of the
following parts:

• CDA Header, Clinical Document Architecture
• Reporting Parameters
• Measure Section

In the first part, the header, there is the document id, the date that the document was
created, the author and other information related to the document information.

In the Reporting Parameters section, there is information about the reporting period
and in the Measure Section, there is information about the quality measures, their
number id, title and their version.

In the report body, the results of each population are presented and for each popula-
tion type the corresponding strata results. In the next figure, an example of the form
of the QRDA Cat III report is presented, after the Measure Section, the measure re-
sults are presented, in this case only for the Initial Population.

CDA Header

QRDA Calculated Summary Report

Document Id

Document Created

Performer

Author

Reporting Parameters

Measure Section

Performance Rate
Initial Population:
Male
Female
Not Hispanic or Latino
Hispanic or Latino
Black
White
Asian

Report Body

Figure 10: QRDA category III overview

31

In more details, the count results of each aggregate group contain:

• Measure data
• Reporting stratum
• Race supplemental data element
• Ethnicity supplemental data element
• Sex supplemental data element
• Payer supplemental data element

Measure data implies to the computed population type such as initial population,
denominator, and numerator. For this particular population, the group results are
documented which are specified in strata in HQMF. Finally, the counts related to
race, ethnicity, sex and payer are exhibits.

The next Figure 11 is a micrograph of a QRDA document format.

32

Figure 11: QRDA Category III document report

33

4.3 HL7 quality measuring tools

4.3.1. Web based open source quality measure tools

This section gives an overview of several open source projects and libraries which
are used for generating, parsing, and calculating HQMF queries against tested patient
records [12].

4.3.2. Health-data-standard

The Health-Data-Standard is an open source library for generating and consuming
several standardized healthcare related data formats. It includes libraries for parsing
HQMF documents and dealing with National Medical Library value sets.

In projects such as Cypress, which is a testing tool for quality measurements, the
need to parse the HQMF document leads to the use of the HQMF parser by the
Health-data-standard library. The following Figure 12 shows the activity diagram
parsing a HQMF file.

Figure 12: Activity diagram of HQMF parser of Health Data Standards

The HQMF Parser and converter are used by the Meaningful of Use stage 2, which
publishes measures defined using HQMF R1. HQMF R1 is a complicated format
with a deeply nested structure. The HQMF R2 was developed to address the com-
plexity of the HQMF R1 standard. The internal model of the HQMF in Cypress is
based on HQMF R2 RIM. Figure 13 presents the HQMF-model in HQMF R2 RIM
model. All HQMF files in xml format should be translated in this internal form. The
Parser supports files of HQMF R1, R2 and R2.1 releases.

34

All files should be aligned to this internal HQMF-model. In case the input to Parser
is a HQMF R1 file, it is parsed and it is converted to the internal HQMF R2 by pass-
ing through a two-pass filter. Actually, the converter consists of two passes into the
HQMF R2 format. The first pass converts most of elements like data criteria and
population criteria, and the second pass applies some changes regarding comparisons
between some kinds of population criteria, such as an observation criteria. In the end,
the parser outputs a JSON file, which is actually a representation of the HQMF ob-
jects in one document.

The HQMF-model is used as a reference model in which every HQMF document
should be aligned. The parser can search and extract the required elements from the
HQMF xml file and map it to the HQMF corresponding element that the HQMF
model represents.

The next sections describe more open source projects and libraries which are used to
create queries for various technologies. One of these projects is Cypress, an open
source testing measuring tool based on Mongo DB and its map-reduce framework.
The Cypress data is stored as patients’ oriented documents.

35

Figure 13: HQMF R2.1 class model, based on RIM model

36

4.3.3. HQMF2JS

The HQMF2JS project includes the Health-data-standard library. This project pro-
vides the JavaScript code for each indicator. In fact the JSON file (the output of the
parser) is translated into JavaScript code. This JavaScript code is generated using
other custom-build libraries, such as the patient-API, the HQMF library and the Log-
ging library.

What is the patient-API?

The patient-API provides an object-oriented wrapper for test patients’ data. Its class
structure is based on the Green CDA for C32 standard and it also supports additional
data items for the use of electronic health record systems by hospitals and health care
providers. In addition there are functions that filter all of the patients encounters
based on value sets.

What is the HQMF library?

The HQMF library implements some of HL7 data types and all of the required Quali-
ty Data Model - QDM functions. It also extends the patient API to provide conver-
sions between patient API primitives and the HL7 data types. For instance, the pa-
tient API event base class is extended to provide a method to yield an HL7 IVL_TS
that captures the start and end timestamps of the event.

What is the Logging library?

The logging library wraps the patient API functions and the HQMF library methods
to generate a log of the execution of an indicator for each test patient record. It is
used to determine what data and population criteria a patient record satisfies.

Figure 14 illustrates a structure of the HQMF2JS project. There are several JavaS-
cript templates for each data types such as data criteria, measure period, population
criteria and precondition. Based on the kind of data, the corresponding JavaScript
template is used to generate the analogous JavaScript object. During the conversion,
common utility functions of library assets and the map reduce process are applied to
JavaScript objects. In that way, the required functions are available for use in the map
reduce framework during the Mongo DB database connection.

37

Each of the generated JavaScript function of a data criterion should run against a
patient record. Figure 15 shows a part of a patient record, in QRDA Category 1 for-
mat. Every patient record consists of all the events that a patient participated in, ref-
ereeing its code and its values.

Figure 15: Patient records in QRDA category I format

This JavaScript code is executable by the Quality Measure Engine, which has been
developed by MITRE, and which is used by Cypress and Pophealth.

JavaScript
Generator

Converter

Map reduce
Utils

Data Criteria

Measure Period

Population Criteria

Characteristic

JavaScript Templates

Hqmf Utils

Patient API

Logging

Assets

Ruby components

Coffee script

JavaScript erb

HQMF2JS

Figure 14: HQMF2JS components

38

4.3.4. Quality Measure Engine

The Quality Measure Engine makes use of the following parts:
1. The generated JavaScript map functions which are derived from

HQMF2JS project
2. The value sets by each measure
3. The patient API
4. The type of the measure, for example proportion, cohort etc. In each

case a suitable reduce function is selected to execute.

The Quality Measure Engine is based on a bundle of indicators that MITRE pub-
lished and that are used in Cypress as testing measures. This bundle contains all the
precomputed indicators, indicators’ results, the test patient data, and the value sets for
each criteria. Then, after the Quality Measure Engine connects to the database, where
the bundle is loaded, it utilizes the map-reduce framework of the Mongo DB. The
map-reduce framework is based on JavaScript language.

Map-Reduce process

Step 1 – map function

Each map function can be run in a particular patient record and calculates if the pa-
tient includes a specific data criterion or not. In addition, the result of the map func-
tion is classified in the corresponding type of population where the criteria belongs.

Step 2 – reduce function

Based on the type of the measure, the corresponding reduce function takes place and
sums the results in each population.

This is the whole process that is executed using the above open source project and
library approach.

4.3.5. Ruby on Rails Applications

Due to the fact that the previous open source projects are web applications developed
on the Ruby on Rails framework, as well as that all the libraries are written in the
Ruby language, one of the related domains of UQMEE for HSDP relies on this
framework. The key point of the UQMEE for HSDP is to implement a prototype
application which gives insights into an architecture using HL7 standards.

Ruby on Rails features overview

Rails is a framework for web developed applications.
It is popular for its ease of use as it simplifies many
common repetitive tasks in web development [13].

Rails is written in Ruby. Ruby is used to Rails as Python to Django. However Ruby
is a new and very appealing language because of its elegance and its clarity.

Figure 16: Ruby on Rails logo

39

One of the greatest principles of Ruby on Rails development is the convention over
configuration. In simple words, the developers do not have to spend a lot of time
configuring files in order to set up the application. Rails provides a set of conventions
assisting in speeding up the development.

Another principle of Rails is the emphasis on RESTful application design. Rest (Rep-
resentational State Transfer) is a software architecture based on the client-server
relationship. As web applications require many request types to web servers, Rails
gives simplicity over the handling of request. GET serves for viewing things, POST
serves for creating things, PUT serves for updating and DELETE serves for deleting
things.

Over the last few years, Ruby on Rails is expanded and obtains more followers, due
to its ease of use and the fast developing.

Advantages and Disadvantages

1. The development time is lower than other frameworks allows. Ruby is an
object-oriented language. The fact that Ruby is supported by a large variety
of open source code available within the Rails community its availability of
its resources is underlining.

2. The Rails conventions allows developers to move between different Rails
projects easily, as each project will tend to follow the same structure and
code practices.

3. Ruby code is very readable and mostly self-documenting.
4. Rails has developed a strong focus on testing and has good testing frame-

works.
5. Rails and most of its libraries are open source and cost free.

1. Not all website hosts can support Rails. One of the reasons is that Rails is
more resource intensive than PHP. However, Rails-friendly hosts do exist,
for example, Heroku and Engine Yard. Alternatively, the Rails application
can be hosted on a Virtual Private Server (VPS) with Amazon EC2, or Li-
node.

2. Java and PHP are more widely used. As a result, there are more developers
in these languages. However the number of Ruby developers is growing fast
every year and its community is active.

3. As for the performance and scalability, Rails applications are not as fast as
Java or C, However the library JRuby in a Rails application improves the
performance characteristics at the same level as Java.

4.4 Health data storage

Another important domain for the implementation of the UQMEE-4-DHP is the data
base technologies [14].

4.4.1. Relational Databases

Relational databases are organized based on the relational data model. In this model
data is organized into one or more tables or relations of rows and columns identifying
a unique key for each row.

40

In principle, each object type described in a database is represented by its own table,
the rows represent instances of that type and the columns represent values attributed
to that instance. As each row obtain a unique key, various rows of one table can be
linked to rows of another table by mapping the corresponding keys to each other.

Software systems used to maintain relational databases are known as Relational Da-
tabase Management Systems (RDBMS), and virtually all relational database systems
use SQL, Structured Query Language, a querying language for updating and moder-
ating the database.

When developing a data storage system, usage of a relational database is good to be
applied for the following reasons:

1. There are relations between data.
2. There is reusability of data tables.
3. There is a need for data normalization, in terms of decreasing the dependen-

cy between the data.

4.4.2. Document Schema-less databases

In case the data storage system requires a high rate insert or select for big data, the
relational databases can provide high performance. In addition, when data fields
should be dynamically be configured then a document schema-less database could
give a better solution [15].

In that case, each document is a self-contained piece of semi-structured data, and the
data is de-normalized.

In general, based on the data type, if there is need to have document collections with-
out links between the different documents collections, the document schema-less
database can be suitably used. Starting applying links between documents, the use of
document schema-less database is misused.

One popular document schema-less database is Mongo DB, [16]. Mongo DB is suit-
able for big data and high rate inserts in a database. Moreover, it is a documentation
database, in other words, every record can be printed in a paper without being de-
pended on additional references to other documents.
Hadoop assists Mongo DB’s big data, [17]. Hadoop is a data ware house which pro-
vides massive data storage and faster processing.

An example of efficient querying patient data against a set of criteria using Mongo
DB identifies the following requirements:

1. Data is stored as patient record documents having various fields.
2. Map and reduce functions are written in JavaScript.
3. Depending on the data criteria, we have to provide the proper map JavaS-

cript functions:
a. Instantiation of methods and variables
b. Providing the appropriate map function

4. Reduce Function sums the results of the map functions based on the query-
ing criteria.

Example:

In this example [18], it is assumed that patient records consist of the following ele-
ments

{id, name, age, city, activities :{ physical, healthy eating}}

41

The requested query is defined: Find the number of activities that patients older than
20 years old are subscribed.

The first map step finds the patients who are older than twenty years old. Then, the
second step sums the results from the map step.

Map Reduce framework is used for big data but not for very complicated queries. In
addition it is well used when there is need for parallel data processing.■

Id
Name
Age
City

Activities

Query: age > 20
Sums the

map results

Map step Reduce step

Id
Name
Age
City

Activities

Patients’ records

Figure 17: Map-Reduce process

42

5.Requirements

In this chapter the requirements of this project are presented. The requirements repre-
sent a more analytical approach towards the definition of the problem and the ex-
pected solution. They depend on the stakeholder analysis, Chapter 2, and problem
analysis, Chapter 3.

5.1 Introduction

In section 1.3 , the initial expectations state that this software solution should be
able to:

1. Provide a User Interface (UI) to quality analysts, in which they can select a
specific indicator for measuring

2. Provide indicators using HL7 standards, like HQMF
3. Provide a quality measure execution engine based on HQMF standards
4. Provide the results of the HQMF according QRDA Category 3 format
5. Show the results for analysis using graphs through the UI

In light of these points, the set of the requirements are categorized into:

• User requirements
• Functional requirements
• Non-functional requirements

5.2 User requirements

The end-user of the software solution could be medical practitioners, CFOs, ACOs,
and CEOs. These kinds of users do not always possess the knowledge of quality
measurement using HQMF. Their need is to obtain a tool in which they are able to
choose a specific indicator and request the corresponding results for analysis. In that
case the user requirements can be defined as follows in Table 6:

Table 6: User Requirements

ID Description
UR_1 The user should be able to select from a given list the indicator he

needs to measure
UR_2 The user should be able to submit a request for the measurement of a

specific indicator
UR_3 The user should be able to receive the resulting measurements through

graphs
UR_4 The user should be informed from the system about the possibly not

successful measurement of a specific indicator.

In UR_1, the indicators could be either clinical or claims indicator.

Regarding the user requirements, the following use case scenarios are defined in the
sub-function level:

• Select indicator type
• Request the measurement of a specific indicator

43

In the use case description, we assume that the end user is a medical practitioner. The
Use Case Scenario 1 (UCS 1) describes the interaction between the user and the sys-
tem where the user selects the indicator for measurement. The Use Case Scenario 2
(UCS 2) describes the process where the user submits the selected indicator for
measurement.

UCS 1:

1. The medical practitioner chooses the indicator types he needs to select from
a list, clinical or claims indicators

2. The system provides a list of indicators to the user
3. The medical practitioner selects the specific indicator for measurement

 UCS 2:

1. The medical practitioner submits the selected indicator (UCS 1)
2. The system calculates the quality measure of the specific indicator
3. The system displays to the medical practitioner the corresponding results

Extension 2.1 of UCS 2:
 Title: Invalid indicator

2-a The system informs the user when the indicator is not possible to be ex-
ecuted, because it is an invalid HQMF document

Extension 2.2 of UCS 2:

Title: Unsuccessful measurement
2-a The system informs the user in case the selected indicator is not possible
to be measured due to data inconsistency

Extension 2.3 of UCS 2:
Title: Unsuccessful querying
2-a The system informs the user in case of time out of the querying execu-
tion time, the session expires in 10 seconds

5.3 Functional requirements

In this project, the functional requirements are defined based on the needs of Philips
Research, as described in Chapter 3. Table 7 presents the extracted functional re-
quirements of UQMEE. These are identified by the Philips Research stakeholders
according to their needs.

Table 7: Functional Requirements for UQMEE for HSDP

Id Name Description
F1 HQMF standard

compliant
The UQMEE for HSDP should provide a HQMF based
measurement engine for a set of indicators formulating by
HQMF standards

F2 Data parsing The HQMF documents should be parsed using the HQMF
parser from Health data Standards library set

F3 Data storage The data should be stored in a structured way based on
HQMF data criteria definitions

F4 Reporting results The quality measurement results should be presented in a
QRDA Cat 3 document

F5 Supporting future use The UQMEE should provide extensible data model regard-
ing the HQMF elements, such as new procedures or prob-
lems

44

5.4 Non-Functional requirements

The non-functional requirements describe the qualities of the system. The non-
functional requirements are listed in Table 8.

Table 8: Non-Functional Requirements for UQMEE for HSDP

Id Name Description
NF1 Ease of Use The design of UQMEE should clearly illus-

trate the way the HQMF information is
translated to executable queries on a set of
health data. In that way the HSDP business
group can acquire proper insights that it has
to take into consideration for their environ-
ment

NF2 Backwards compatibility The UQMEE for HSDP should support all
the previous versions of HQMF releases,
(R1, R2, R2.1)

■

45

6. System Architecture

This chapter describes the system architecture of the UQMEE. It starts by outlining
the relation between the UQMEE for HSDP and its concepts are presenting the sys-
tem as a black box. Then, it gives an overview of its components and its data model
that are enclosed in this software solution.

6.1 UQMEE for HSDP overview

The UQMEE for HSDP is a tool to be deployed on top of HSDP which provides
access to health data of various sources. Figure 18 shows the UQMEE as a black box.

As medical practitioners should be able to choose the indicators for quality measure-
ment and view their results, HQMF for HSDP should also provide them the interac-
tivity to do that. Figure 19 shows the UQMEE, its UI and the Clinical Data Reposito-
ry within HSDP.

Figure 18: UQMEE for HSDP as a black box

Figure 19: UQMEE for HSDP

46

However, in this software solution, there is no integration between HSDP and
UQMEE. Data is stored in a data repository to which UQMEE connects directly,
Figure 20.

Regarding the fact that the UQMEE for HSDP needs a UI which we can call Quality
Measure Interface, the project can be divided into two main sub systems, the Quality
Measure Interface (QMI) and the Quality Measure Engine (QME), Figure 21.

Specifically, in the QMI the following actions take place:

• capture input and select the specific HQMF document, which is stored in
QMI

• the extraction of the measurement results from QRDA Cat 3
• the display of the results

Respectively, in the QME the following actions are taking place:

• The HQMF parsing
• The translation of the extracted HQMF objects into a query structure
• The execution of the queries to data model

Figure 20: UQMEE for HSDP overview diagram

Figure 21: QMI and QME sub systems

47

The role of these two sub-systems is important, as the first one is focusing on the
interface and the second one on the measurement execution. In that way, the depend-
ency between the QMI and the QME technologies is loosely coupled. A loosely cou-
pled system is more flexible, it is easier to modify and adapt for new purposes. This
approach exhibits the ease of use of this software solution, one of the design non-
functional requirements.

Figure 22 presents an overview of the process involving the QMI and the QME. The
user may select the indicator for measuring through the UI on QMI, where the corre-
sponding HQMF xml document is selected and is provided to the QME. In the QME,
the received HQMF xml document is transformed into queries which are executed on
the data model. Then, the results are placed into QRDA Cat 3 document and are sent
back to the QMI. In QMI, the results are extracted and are applied into suitable
graphs to be presented through the UI to the user.

The following sections present more details of the internal architecture and process of
QMI and QME.

6.2 Quality Measure Interface

This section presents an overview of the QMI architecture. In the QMI, the following
processes are included:

• User interaction
• Preparing and displaying the results to the user

The architecture pattern of QMI is the Model View Controller (MVC). It is based on
the interaction between the UI and the data model orchestrated by the controller.

Figure 22: Quality measurement process

Figure 23: MVC

48

The components of MVC architecture are the View, the Model and the Controller.
The Controller is the one which handles the interaction between the user through the
View and the Model. User actions can create events related to the Model. The Con-
troller also renders the new upcoming information towards the View. Figure 24
shows a package diagram of MVC architecture of QMI, in which are also presented
the related components of the QM_Controller, such as Validators, the
HQMF_Dispatcher, and the Parsers.

Clarifying the flow process of QMI, Figure 25 presents a diagram where the red
number depicts each step that is taken, as follows:

1: the user selects from the UI, a specific indicator title for measuring

2: the parameters of the selected indicator provides the input to the QM_Controller
which requests from the model the corresponding HQMF document from the model

3: the HQMF xml document is transferred to HQMF Dispatcher

4: the HQMF document is sent to QME

5-6: the results from QME are received in the form of a QRDA xml document and
sent to the QM_Controller

7: the QRDA cat 3 document is validated by QRDA Validator

8: the QRDA Validator sends a True or False indication to QM_Controller, indicat-
ing whether the QRDA document is well-formed based on its QRDA schema

9: the validated QRDA xml document is the input for the QRDA parser

10: the extracted results, such as the aggregated numbers of population (like IPP,
DENOM and NUMER), are sent to QM_Controller, where they are presented in
suitable charts, like bar charts for display

11: the results are presented through the UI to the user

Figure 24: MVC package diagram of QMI

49

Figure 25: Flow process of QMI

Figure 26 shows a high level class diagram of QMI. The QM_Controller is connected
to the model by two types of models Indicators and Reports. The model class Indica-
tor includes attributes of the used indicators, such as its title, and id. The class model
Reports consists of the elements of the received results derived from QRDA docu-
ments such as the population types counts.

The QM_Controller is also connected to QRDA_Validator, the HQMF_Dispatcher
and the QRDA_Parser. The HQMF_Dispatcher is a SOAP web service provider,
through this the HQMF xml document is sent to QME and the QRDA xml document
is received to QMI. The QRDA Validator checks the validity of the schema of the
received QRDA xml.

Figure 26: Class diagram of QMI

Regarding the QMI class diagram, two sequence diagrams are shown in Figure 27
and Figure 28. The first is set from the moment the user selects an indicator towards
the moment the indicator is sent to the QME. The second is set from the moment the
resulting QRDA document is received from the QME till the moment the results are
shown through the UI.

50

Figure 27: Sequence diagram from the moment the user selects an indicator until the

moment the corresponding HQMF is sent to QME

Figure 28: Sequence diagram from the moment the QRDA is received till the mo-

ment the results are shown to QM_Interface

6.3 Quality Measure Engine

This section presents the QME architecture and its main components. The QME
system presents the following three processes:

1. HQMF parsing
2. Query generation
3. Execution of queries on the data model

The following Figure 29 gives a general overview of the main components of QME.
In this case, there is no user interaction: the QME encloses an engine controller,
which uses other components such as validators, parsers, query generation and
QRDA generator.

51

Figure 29: QME package diagram

Figure 30: QME flow process overview

To clarify the flow process in this system the Figure 30 presents its steps.

1: QMI sends a HQMF xml document to the Engine Controller

2: the received HQMF xml is validated through the HQMF Validator

3: the HQMF Validator sends a True or False indication to Engine Controller, indi-
cating whether the HQMF document is well-formed based on HQMF schema

4: the valid HQMF xml is parsed by the HQMF parser

5: the extracted HQMF objects are used for query generation

6: the generated queries are transferred to Engine Controller

7: the Engine Controller sends the generated queries to the data model for execution

52

8: the results for each population type are returned by the Model to the Engine Con-
troller

9: the received results are sent to QRDA generator for conversion into a QRDA doc-
ument

10: the QRDA in xml format is sent back to the Engine controller

11: the QRDA document is sent to QMI

Regarding the QME process, the validation process is similar to QRDA Validator. It
checks for syntactic correctness of the HQMF xml schema of the received document.
Both in QMI and QME the validation attempts to ensure that the received documents
are complete and valid, complying with their schema. The HQMF parser is also part
of the Health data –standard library, as well as the QRDA generator, see Chapter 4.
In the query generation process, the extracted HQMF objects are structured in such a
way that they can be mapped to queries that are suitable for the chosen relational
data-base management system e.g. SQL-based.

Figure 31: QME class diagram

The class diagram of QME is presented in Figure 31. This class diagram does not
include design details of QueryGeneration: the analysis of the query generation is
presented in next Chapter 8.

6.4 Data model

In the preceding sections a general overview of the major components of the
UQMEE for HSDP is given. This section describes the type of the used data, as well
as its structure.

The HQMF model supports a big variety of health data types. Some of these could be
encounters, patient demographics, medications, procedures, physical exams, aller-
gies, lab results, problems, immunizations, vital signs and diagnostic results. Howev-
er, in this software solution some of them are used. It is not possible to include all
these data elements. The HQMF elements that are used are:

• Characteristics (patients’ demographics)
• Encounters
• Diagnosis
• Medications
• Procedures
• Transfers
• Activities

53

These data types highlight two main concepts: 1) the patient characteristics and 2) the
encounters. These two form the core of the data schema (Figure 32), as each patient
participates in an event in healthcare delivery.

Figure 32: Example of HQMF data elements' relations

In the patient characteristics, all the necessary information of the people dealing with
healthcare institutes and hospitals is included. This kind of information concerns
personal attributes of patients such as their birthdate, gender, race, ethnicity, risk
profile and payer type.

The encounter is also a core data type, as each process in a healthcare department
occurs within an encounter. For instance, during an encounter the patient may re-
ceive services such as a procedure like a surgery, a medication, a diagnosis or a con-
sultation. Due to this fact, the data model centers around the encounters, which can
have multiple conditions, costs, medications, transfers or procedures. In addition each
patient can be subscribed to multiple encounters. Figure 33 below presents the data
model of the UQMEE for HSDP.

54

Figure 33: Data model of UQMEE for HSDP

Based on this data model, the following indicators are used, and also some of their
data elements are presented, Table 9.

Table 9: Indicators

 Indicator Title Data elements
1 Obese Patients who achieved a weight loss of more than 2% characteristics, condi-

tions, measurements,
encounters

2 Obese Patients who participated in the Physical Activity Group
and performed weight loss more than 5%

characteristics, condi-
tions, measurements,
activities, encounters

3 Acute myocardial infarction (AMI) patients who are prescribed
aspirin at hospital discharge

characteristics, condi-
tions, medications,
encounters

4 Ischemic stroke patients with atrial fibrillation/flutter who are
prescribed anticoagulation therapy at hospital discharge

characteristics, condi-
tions, medication,
procedures, encoun-
ters

5 Patients with elective vaginal deliveries or elective cesarean
sections at >= 37 and < 39 weeks of gestation

characteristics, condi-
tions, procedures,
transfers, encounters

6 Median Time from ED Arrival to ED Departure for Discharged
ED Patients

characteristics, condi-
tions, encounters

7 Hearing Screening Prior To Hospital Discharge characteristics, condi-
tions, diagnostic
results

8 The average cost per occurrence for inpatient encounter during
the year 2012

Encounters, costs

9 The average length of stay for encounters during 2012 Encounters, costs

Regarding the functional requirement F5, the data extensibility in this data model can
be achieved by adding new processes during an encounter or increasing the attributes
in each table. For example, an encounter can be connected to diagnostic results, vital

55

signs or physical exams. In addition, a condition is possible to contain a primary and
secondary diagnosis.■

56

7. System Design

Chapter 6 gives an overview of the system architecture, while this chapter provides
more details of the process defining the components, modules and data for the
UQMEE system.

7.1 QME design introduction
The QME system performs the transformation of HQMF information into the respec-
tive queries. The package diagram of the Engine is given in Figure 34, and it consists
of the HQMF_Parser, the HQMF_Document and the Query_Generator.

In the Query_Generator component, the transformation of the HQMF information to
SQL-based queries is performed. The query generation may be represented as a text-
to-text transformation between HQMF and SQL statements.

In the following sections is descripted 1) the main process of mapping the HQMF
elements to SQL-based queries and 2) a description of the Engine components and
design.

Figure 34: Package model of Engine

Figure 35: Highlighting the Measure Execution Engine process

57

7.1.1. HQMF to Query transformation

It is important to point out that SQL commands may differ depending on each vendor
Database Management system. In general, SQL-based queries consist of the follow-
ing elements:

• Relations (Tables)
• Attributes (Columns)
• Select Statements
• Where Clauses
• Logical Operators
• Comparison Operators
• Aggregation Operators
• Joins

The simplest form of a SQL query may be a declaration of a SELECT statement such
as “SELECT column_name FROM table_name.” In case we want to query using a
specific criterion, the WHERE clause is used. For example, “SELECT column_name
FROM table_name WHERE column_name operator value”.

In case we need to combine multiple criteria to narrow data in a SQL statement, we
can use Logical Operators such as “SELECT column1, column2, columnN FROM
table_name WHERE [condition1] AND [condition2] …AND [conditionN].”

Data criteria elements define the data of interest included in the measure. Data crite-
ria elements can be mapped to SELECT statements using WHERE clauses.

Population is defined consisting of one or multiple combined data criteria. They
specify the required population for measurement. Population criteria may be mapped
as a unified group of WHERE clauses using Logical Operators.

For example, we can construct two Data Criteria (DC) elements and combine them as
follows, Table 10:

Table 10: Data criteria elements examples of their query form

DC Description Query
DC 1 “Patient is older than 16” SELECT * FROM patients WHERE age >16
DC 2 “Patient is male” SELECT * FROM patients WHERE gender

= “male”
DC 2 & 3 Combine the criteria

using the “AllTrue”
operator, mapped to
logical AND

SELECT * FROM patients WHERE age >16
AND gender = “male”

Figure 36: Relation between HQMF information to SQL-based queries

58

Other quality measures such as continuous variable measures define variable or cal-
culations used to score a particular aspect of performance. For example, a continuous
variable measure could calculate the median or average length of stay in hospital
during a year.

This kind of calculations is also mapped to SQL queries. The following table shows
an example of structuring a query, Table 11.

Table 11: Example of a continuous variable measure calculation

Type Description Query
Measure Popu-
lation (MP)

“Encounter is done
during 2013”

SELECT * FROM encounters WHERE en-
counter.admission_date ≥01/01/2013 AND
encounter.discharge_date ≤31/12/2013

Computation
Type (CT)

“Average length of
stay of patients in
hospital”

SELECT AVG(length of stay) FROM en-
counters

Combination of
MP and CT

Combine the two
criteria using the
“AllTrue” operator,
which is a logical
AND

SELECT AVG(length of stay) FROM en-
counters WHERE encounter.admission_date
≥01/01/2013 AND encounter.discharge date
≤31/12/2013

More details regarding the data criteria and the population criteria are presented in
Chapter 4 – section 4.2
Additional calculations can be defined, such as sum, find minimum or maximum.
More descriptive mappings among the HQMF elements and SQL-based functions is
set in Appendix A.

7.1.2. HQMF_Parser – HQMF_Document

Figure 37 presents the class diagram of the engine. The following part describes in
sequence the presenting classes and their functionality.

The execution of the engine starts from the moment the HQMF is parsed. Then the
extracted objects are set based on the HQMF_Document model. This model includes
only the computable information of HQMF, Figure 38.

As mentioned in Chapter 5, the quality measuring tool should be backwards compat-
ible to new HQMF versions and easy extensible in case of new HQMF functionali-
ties. The QME uses the HQMF parser of Health-data standards library which sup-
ports R1, R2 and R2.1 releases and is backward compatible. The HQMF parser is
described in Chapter 4 – section 4.3 . The parser encloses the HQMF R2 as its in-

Figure 37: Class diagram of Engine

59

ternal reference model, in case of parsing a HQMF R1 xml document; it transfers the
R1 to R2 model.

HQMF is composed by data and populations criteria, which are stored into sections.
The different types of populations and data criteria are distinguished by equivalent
names. Different data criteria are set in the same structure, the data criteria elements
are presented in Table 12. The different population types such as initial population or
denominator have similar population elements, Table 14.

Each data criteria type includes the following main extracted elements:

Table 12: Data criteria elements

Data criteria elements Description
local variable name The unique name of the criteria within the HQMF document
title The title of the data criteria
description A description of data criteria
type The general health data type to which the criteria belongs, such as

encounters, medications, and conditions
definition The specific definition of the equivelant data type such as

encounter, diagnosis, and patient characteristic race
field values Additional values that are included in data criteria
temporal references References to related criteria or time constraints using a logical

operator such as AND, OR, or DURING

For better understanding an example is given of the data criteria elements. This
example derives from the quality measure “Acute myocardial infarction (AMI) pa-
tients who are prescribed aspirin at hospital discharge.” It shows the elements of a
data criteria in which is defined the diagnosis of acute myocardial infarction (AMI).

Table 13: Example Data Criteria elements

Data criteria elements Example elements
local variable name DiagnosisActiveHospitalMeasuresAmi_precondition_5
title Hospital Measures - AMI
description Diagnosis, Active: Hospital Measures - AMI
type Conditions
definition Diagnosis
field values Ordinal
temporal references Diagnosis is defined during the Inpatient Encounter

Each population criteria type includes the following main extracted elements:

Table 14: Population criteria elements

Population criteria
elements

Description

type Indicates the population type like IPP, DENOM etc.
preconditions In the precondition sections is included a local variable name which

refers to the data criteria which take place to the definition of the
population

id The id code of the included data criterion
reference The local name of the included data criterion
conjuction_code The logical operator in which the data criterion is included

As above, for better understanding an example is given of the population criteria
elements. This example derives from the quality measure “Acute myocardial infarc-
tion (AMI) patients who are prescribed aspirin at hospital discharge.” It shows the
elements of the initial population criteria which includes a reference to a data criteria
in which is defined the diagnosis of acute myocardial infarction (AMI).

60

Table 15: Example Population Criteria elements

Population criteria
elements

Example population criteria elements

type IPP
preconditions id, reference
id Id: 5
reference reference: DiagnosisActiveHospitalMeasuresAmi_precondition_5
conjuction_code allTrue

Each criteria type is enclosed into a section in the class HQMF document. In that way
the section can be an abstract class and based on the criteria types specific classes are
instantiated providing different functionality.To apply this approach the Factory
Method design pattern is used. For each type of criteria section is instantiated the
corresponding class object.

This desing provides a simple way of extending the section types with minor changes
in the software code. In case there is a change on data criteria, the only change will
be applied in the corresponding code part. In addition, supposing that HQMF
standard provides a new section, a new class will be added inhering the
Section_Criteria_Factory, without influence the preceding functionality.

Figure 38: HQMF_Document class diagram

61

7.1.3. Mapper2Schema

In this class, there are functions which act as filters. To execute a measure, measure’s
HQMF elements should be present tin the dataset of the database. In this part, it is
checked whether HQMF elements are mappable to the data model attributes. In that
way, before the query generation, it is verified whether the HQMF can be executed.
In case one of the HQMF elements is not contained in the data model, the query
execution is not processed any further.

7.1.4. Query Generator

This class makes use of the HQMF objects (HQMF_Document) specifying the
generation of the queries. The final query generation is executed into three steps:

1. Each data criterion is transformed into a SQL condition statement.
2. Population criteria are combined into SQL statements.
3. Measure aggregation types such as sum, median, average are tranformed

into SQL aggregation constructs.

These preparation steps are implemented by Data_Criteria2Query, Population2Query
and Measure_Aggregator, respectively.

7.1.5. Data_Criteria_2Query

Based on the data criteria structure, Table 16, the following transformation is taking
place in Data_Criteria2Query.

Table 16: Data criteria - SQL elements mappings

Data Criterion element SQL elements
type table name
definition column name
title value that corresponds to the definition
field_values: {display name, value,
type such as intervals}

display name corresponds to column name,
the type defines the logical operators such
as greater or less

temporal_references: {reference to
time constrains or other criterion}

additional condition to the current query. It
is connected by “AND” operator and based
on its elements it expresses a condition

Based on the above description, an example is given in the Figure 32.

 Figure: Example mapping between data criteria and query Figure 39: Example mapping between data criteria and query

62

More mapping examples are described in Appendix B.

7.1.6. Population_Query

The population criteria include a nested combination of various data criteria. Each
population criteria type such as IPP or DENOM has the form of a tree. Each root of
the tree is a logical operator and each leaf a data criteria Figure 40. The tree
traversing is done in order [19].

Regarding Figure 40, if “All true” equals to the logical operator “AND” and “At least
one true” equals to the operator “OR” then the produced statement is: Criterion 1
AND (Criterion 2 OR Criterion 3). This statement defines the required population
that should be retrieved. Each criterion contains its own condition based on the
analysis in the previous section Data_Criteria_2_Query.

In case of a Measure Observation Definition section in HQMF, the included
computation type is extracted. In this class the computation in SQL format takes
place.

In the end in the Query_Generator class the produced conditions and statements are
combined into one statement per population. In that way the query is ready and is
sent for execution to the Model through the Controller (EngineController), MVC
architecture - Figure 23.

The next sequence diagram, Figure 41, illustrates the process flow from the moment
the HQMF is parsed till the moment the generated query is sent to the Engine Con-
troller.

Figure 40: In order tree-traversal

63

Figure 41: Sequence diagram of query execution

■

64

8.Implementation

In Chapter 6 and 7, the system architecture and design of UQMEE are presented.
This chapter describes the implementation of the UQMEE. It starts by presenting the
different components of UQMEE, followed by the technologies that are being used to
realize each of them. Then it continues analyzing each technology choice, as well as
some possible alternatives.

8.1 UQMEE Implementation

The UQMEE for HSDP is a web application, which consists of two sub-systems the
QMI and QME. It is developed using the Ruby on Rails framework. QMI provides
the ability to a user to select a specific indicator for quality measurement and displays
results of executing this indicator. QME provides the following functions: 1) pars-
ing HQMF and QRDA documents 2) query generation.
E
Table 17 presents the main components of UQMEE for HSDP and its corresponding
used technology.

Table 17: Technologies used to realize each component

Components Technology
QME, QMI Ruby on Rails framework
HQMFParser, QRDAParser Ruby libraries
Database SQLite
QME-QueryGenerator Object Relational Mapping

The next paragraph analyzes the technology choices for each of these components.

8.2 Technology choices for implementation of
UQMEE components.

8.2.1. QMI and QME on Ruby on Rails framework

The UQMEE solution is a web application. The Ruby on Rails framework is chosen
for web development since many open source libraries used for HQMF and QRDA
are using this framework. The Ruby on Rails framework is an ideal environment for
quick development of mini applications. For example, developers do not need to
spend much time configuring the connection between models, views and controllers.
Ruby on Rails conventions provide an easy navigation inside the application and
because there are plenty of open source Ruby libraries called gems the development
time is decreased. More information about Ruby on Rails framework can be found in
Chapter 4 section 4.3.5.

The Rails framework is based on the MVC architecture and it paves the way for
implementing Models, Views and Controllers. Some of the major Rails components
are:

Model: It provides a base for the data models in a Rails application. Specifically, it
maps the data models to Ruby objects and contains the corresponding business logic.

65

This sub-system is implemented using the ActiveRecord library which provides the
connection between the tables in a relational database and the Ruby program code.

Controller: It coordinates the interaction between the Views and the Model. It pro-
cesses incoming requests of querying the models for specific data and organizes the
data into a form that fits the needs of a given View. This sub-system is implemented
by the Action Controller library.

View: It gives a representation of the data in a specific form. This sub-system is
implemented in the ActionView library providing representation templates for data
display.

In our implementation, we used Rails release 4.2.1 and Ruby 2.0.

As mentioned before the UQMEE consists of the QMI and QME components. QMI
contains 1) the UI implementation, 2) QRDA parsing and validation and 3) other
interconnection processes between model and controller. Figure 42 shows the rela-
tion between the Quality Measure Interface where the UI implementation is con-
tained and the Action View, the QM Controller which uses the Action Controller and
the Model which makes use of the Active Record.

Figure 42: Relation between QMI and Ruby on Rails components

66

The UI implementation is based on HTML 5, CSS and JavaScript technologies. The
QRDA Parser and Validators are using Ruby libraries which are going to be de-
scribed in the following section 8.2.2.

Specifically for the UI implementation basic examples are studied from Twitter
Bootstrap and suitable templates are used [20]. Bootstrap is a free collection of tools
for creating websites and web applications. It contains HTML, CSS and JavaScript
design templates for typography, forms, buttons and other interface components.

For results rendering via graphs, an open source HTML 5-based library, the Chartjs
is used [21]. This library also provides good documentation for several types of
charts. Its community is active to the users of a library who are asking solutions over
their specific needs.

8.2.2. Parsing HQMF and QRDA libraries

The Health - data standard library is used for consuming HQMF and QDRA stand-
ards. The Health - data standard is a Ruby-based library. I used the 3.5.3 release for
this implementation. A new, green field implementation of a parser was not feasible
due to the lack of time. In addition, these libraries have been already used and tested
in various applications of quality measuring and testing procedures. Our research
showed that there are no other open source libraries for supporting HQMF or QRDA
parsing.

8.2.3. Relational data management system and other alternatives

The UQMEE for HSDP needs a suitable database for the computation of different
indicators. In general there are two options of database technologies, 1) the relational
database technology and 2) the schema-less database technology.

The database selection is based on the data relations and the required performance of
the UQMEE application. Chapter 4 – paragraph 4.4 provides an overview of the
available database technologies including their pros and cons. For this implementa-
tion, the chosen technology is the relational data model.

The reasons we choose the relational data model are the following:

1. Most healthcare providers use relational database systems
2. The current implementation depends only on HQMF, and QRDA open

source parsing libraries
3. The learning curve was lower compared to schema less database technolo-

gies during the required period

In case we use a schema-less database, like MongoDB, we may follow an implemen-
tation similar to Cypress, which is described in Chapter 4 - section 4.3 . The corre-
sponding QME component using a schema-less approach is illustrated in the follow-
ing Figure 43.

67

The advantages of using a schema less database technology could be: 1) less re-
sponse time, 2) data independency. Yet, Mongo DB does not offer the level of securi-
ty and transaction lacking intelligence offered by most known vendor Relational DB
systems.

The technology chosen for data management is SQLite [22], specifically the SQLite
3 version [23]. It is actually a light version of SQL supporting many of its features. It
is used for applications in small devices, such as mobile phones or tablets. SQLite is
not a client-server system, it is implemented as a library that can be included in an
application. As a result, the required configuration is simple. It also stores the entire
database into a disk file, which allows SQLite to process data that fit into the main
memory, extremely fast.

8.2.4. Data

During this project, there was an attempt to come up with a dataset which can be
used in this implementation. Unfortunately, none of the stakeholders had real health
dataset available to provide us. However, we obtained useful information to create
our own dataset based on the following three sources:

1. Clinical Measures
2. The Preventive Medicine indicators
3. Claims Indicators

There are already international clinical measures which are defined using the Clinical
Practice Guidelines. These cover a wide area of clinical issues such as medication,
diagnosis, encounters, problems and procedures.

The Preventive Medicine gave us some descriptions of the used indicators. These
indicators are related to obesity, diabetes, or quitting smoking. As a consequence the
created dataset also contains records regarding the Preventive Medicine indicators.

In addition, the last months I was given a dataset sample from an H2H project, the
Banner claims Reporting Project. This dataset includes information of the total inpa-
tient cost of patient encounters. Appropriate HQMF documents are created for re-
questing data such as the average inpatient cost during a month.

Figure 43: QME component using schema less database

68

8.2.5. QME – Object Relational Mapping

In the QueryGeneration component of QME system, the query generation takes place
for the measure specified in the HQMF document input.

During the development the queries are not produced as pure SQL code. In Ruby on
Rails queries are built in a higher level query language, namely the Object Relational
Mapping (ORM).

ORM is a programming technique in which a data Model is transformed into data
objects. For instance, a DB table patients is mapped to the Model class Patient. As a
result, we have to create an object and assign it to a variable. In addition, objects can
be cached in memory, reducing load on the database.

The biggest advantage of using ORM is the fact that there is no need for developers
to write code specific to a particular database. It allows the developers to start a pro-
ject using SQLite and later on migrate to MySQL or PostgreSQL.

On the other hand, working with ORM frameworks requires a learning curve for
developers. Moreover, some actions such bulk insert, update, or delete are slower
when implemented using ORM. In that case, it is more efficient to use native SQL
queries.

All in all, using ORM simplifies a lot the process of query generation. In addition an
open source tool, is called the Algebra of Relational query operators (Arel) [24], is
used. It is a SQL Abstract Syntax Tree (AST) manager for Ruby, developed on top of
ORM. It is a framework which simplifies the generation of complex SQL queries.

8.3 Conclusions

Regarding the technology choices for this implementation there were no specific
limitations. The SQLite manages 12 tables in this implementation and the maximum
number of joins in a query was 5, both of which are below the limitations of SQLite.
However the response time varies based on the complexity of the query and the exe-
cution of groupings. The response time range is between 0.134 msec and 10 sec. The
application runs in a system model of Intel(R) Core (TM) i5-4570 CPU @ 3.20 GHz.

■

69

9.Verification & Validation

This chapter discusses the verification and the validation of UQMEE for HSDP.
Firstly it describes the main aspects that are verified. Secondly, it presents the valida-
tion of the system during the query generation process.

9.1 Introduction

The UQMEE main functionality is the execution of quality measures. A quality
measure is executed on a known dataset in a database. For the execution of a quality
measure, we have to assert two main points 1) that the execution of quality measure
gives correct results, 2) the engine delivers the expected behavior. The first point
implies the verification of the system and the second its validation.

In the verification process of the system, it has to be assured: 1) the correct usage of
the data objects and 2) the correct query execution on the known dataset. For the
validation, a number of test cases are applied in order to prove the engine’s proper
operations. The following section gives details for the aforementioned processes.

9.2 Verification

In this section, the verification process is described. This process verifies that the
executed results of the quality measures are as it is expected to be. In other words,
necessary conditions are checked, based on HQMF measures.

9.2.1. Verification of the executed measures

The UQMEE provides measures over a data set with elements that are relevant to
these measures. The context of the data model in this project is created regarding the
used indicators. We assume the number of patients belonging to a specific category.
In that way, we can compare the computed results with the expected ones, Figure 44.

The computed results are given by each population type based on HQMF, Table 18.

Figure 44: Verification of executed measures

70

Table 18: Population types

Population type Description
Initial Patient Population (IPP) It is the initial group of patients
Denominator (DENOM) It is the same or a subset of initial patient

population
Denominator Exclusion (DENEX) It is a subset of the denominator with

patients to be excluded from denomina-
tor

Denominator Exception (DENEXCP) It is a subset of the denominator exclud-
ed patients from denominator, this set is
used as numerator in case the numerator
is equal to zero

Numerator (NUM) It is a subset of the denominator
Numerator Exclusions (NUMEX) It is a subset of the numerator

After the quality measure results are extracted as population types, there is need to
compute a ratio or a proportion using these populations. Based on HQMF standards,
there is a set of conditions that can be applied for checking, Table 19.

Table 19: Condition checks of executed measures

 Conditions sets
1 𝐼𝐼𝐼 ∪ 𝐷𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼, 𝐼𝐼𝐼 ≠ ∅

2 𝐷𝐷𝐷𝐷𝐷 ∪ 𝐷𝐷𝐷𝐷𝐷 ∪ 𝐷𝐷𝐷𝐷𝐷𝐷𝐼 = 𝐷𝐷𝐷𝐷𝐷,

 𝐷𝐷𝐷𝐷𝐷 ≥ ∅ 𝑎𝑎𝑎 𝐷𝐷𝐷𝐷𝐷𝐷𝐼 ≥ ∅

3 𝐷𝑁𝐷 ∪ 𝐷𝑁𝐷𝐷𝐷 = 𝐷𝑁𝐷, 𝐷𝑁𝐷𝐷𝐷 ≥ ∅

4 𝐷𝐷𝐷𝐷𝐷 ∪ 𝐷𝑁𝐷 = 𝐷𝐷𝐷𝐷𝐷, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎 𝑚𝑚𝑎𝑚𝑚𝑝𝑚

5 NUM ∩ DENOM = ∅, ratio measure

Regarding Table 19 for each case, we note the following situations:

1. The Initial Patient Population set should be always equal to or greater than
Denominator. The Denominator is a subset of Initial Population.

2. The Denominator Exclusion and Denominator Exceptions are subset of the
Denominator.

3. The Numerator Exclusion is a subset of the Numerator
4. For a proportion measure the Numerator is a subset of the Denominator
5. For a ratio measure the Numerator and Denominator intersection is empty

In the current implementation, there is no case that the numerator or initial patient
population equals to zero. However, the above conditions are applied to ensure that

71

the numeric results are appropriate to compute a ratio. As a result the cases below are
covered by the dataset for the used indicators.

• 𝐼𝐼𝐼 > 0
• 𝐷𝐷𝐷𝐷𝐷 > 0
• 𝐷𝑁𝐷 > 0
• 𝐷𝑁𝐷𝐷𝐷 ≥ 0,𝐷𝐷𝐷𝐷𝐷 ≥ 0,𝐷𝐷𝐷𝐷𝐷𝐼 ≥ 0

What are not covered in the verification phase are the cases that the IPP or DENOM
or NUM equals to zero. In case the result of one of these populations is zero, there
are two cases; 1) the quality measure cannot be computed as a ratio, 2) in case the
NUM is zero and the quality measure includes a DENEXCP, in that case the DEN-
EXCP population is used as the NUM, and then the quality measure is able to be
executed.

9.3 Validation

The validation is performed executing the test cases (indicators) to the system
demonstrating the system behavior to a client or user who understands the HQMF
input and the expected output. These test cases should check the following functions:

1. A valid HQMF indicator should be executed
2. An invalid HQMF indicator should not be executed
3. A valid QRDA document should be executed
4. An invalid QRDA document should not be executed

Table 20 lists possible states and their expected behavior.

Table 20: HQMF-QRDA possible states

State Expected behavior
(1) HQMF valid The HQMF syntax is valid. The system sends the HQMF

document to HQMF parser
(1.1) HQMF
executable

After parsing, it is checked whether the elements of HQMF
are available on the data set or not. In case the elements are
available the HQMF is executable.

(1.2) HQMF not
executable

After parsing, it is checked whether the elements of HQMF
are available on the data set or not. In case the elements are
not available the HQMF is not executable.

(2) HQMF inva-
lid

The system informs the user that it is not possible to execute
the specific indicator because the HQMF is not in proper
syntax.

(3) QRDA valid The system sends the QRDA document to QRDA parser
(4) QRDA inva-
lid

The system informs the user that the results cannot be ex-
tracted because the QRDA syntax is not proper

Regarding the state (1.1) and (1.2), a quality measure can be executed when the re-
quired data elements are present in the data model. For instance, in case a criterion
refers to an attribute that is not present in the data model, the executed query will
give a SQL exception. In this case, the user will get a message indicating that the
current indicator is not able to be executed and that a specific element is missing.

Table 21 presents the test case indicators.

Table 21: Indicator titles

 Indicator Title
A Obese Patients who achieved a weight loss of more than 2%

72

B Obese Patients who participated in the Physical Activity Group
and realized a weight loss of more than 5%

C Acute myocardial infarction (AMI) patients who were pre-
scribed aspirin at hospital discharge

D Ischemic stroke patients with atrial fibrillation/flutter who were
prescribed anticoagulation therapy at hospital discharge

E Patients with elective vaginal deliveries or elective cesarean
sections at >= 37 and < 39 weeks of gestation

F Median Time from ED Arrival to ED Departure for Discharged
ED Patients

G Hearing Screening Prior To Hospital Discharge

H The average cost per occurrence for inpatient encounter during
the year 2012

I The average cost per patient for inpatient encounter during the
year 2012

J The average length of stay for encounters during 2012

In order for the execution of an indicator, all its elements should be mapped to the
data elements in the data model. This is indicated by True in Table 22. It is shown
that the indicator G cannot be executed as the element diagnostic result is not includ-
ed in the data model.

Table 22: Indicators and their corresponding HQMF elements

Indicators/
data types

A B C D E F G H I

characteristics True True True True True True True True True
medications True True True
conditions True True True True
encounters True True True True True True
costs True True
activities True
diagnostic
results

 False

procedures True True True
measurements True True
Transfers True

In the current implementation, all the above indicators except G, produces a valid
HQMF document. However, for indicators A and B, it is checked what is the behav-
ior of the system in case the HQMF is not valid. In this case the computation is not
done and the user can select a new indicator.

For the validation of the QRDA, the syntax of the document is checked based on its
schema. In this implementation, all the QRDA documents are passed as syntactically
correct. There is no test case that checks the behavior of the system in case the doc-
ument is not valid or an element of QRDA is missing.
■

73

10. Conclusions

This chapter gives an overview of the results of UQMEE for HSDP project. It pre-
sents possible alternatives and future extensions.

10.1 Results

The UQMEE is a web-based software solution providing a proof of concept quality
measure execution engine using healthcare standards. It constitutes an input to the
HSDP business group. The HSDP is a central data storage platform designed to be-
come accessible from all the Philips Research groups in the future. The final goal of
the HISS group is to build a unified quality measure execution engine on top of the
HSDP. In that way, various health data analytics groups may apply their measures
using one unified measure execution engine based on international healthcare stand-
ards.

10.1.1. Results based on the requirements

Based on the requirements in Chapter 5, this section describes the way how the soft-
ware solution meets the corresponding requirements. The requirements are presented
again in the next tables, Table 23, Table 24, and Table 25.

Table 23: User Requirements

ID Description
UR_1 The user should be able to select from a given list the indicator he

needs to measure
UR_2 The user should be able to submit a request for the measurement of a

specific indicator
UR_3 The user should be able to receive the resulting measurements through

graphs
UR_4 The user should be informed by the system about the possibly unsuc-

cessful measurement of a specific indicator.

The UQMEE provides the Quality Measure Interface sub system (QMI), in which the
UI is developed. The user is able to select one of the indicators by selecting the title
of the corresponding quality measure. After the submission, the user is able to view
the results through graphs. Figure 45 shows the UI of QMI presenting the aggregated
results of the quality measure “Acute myocardial infarction (AMI) patients who are
prescribed aspirin at hospital discharge.”

Figure 45: UI of QMI

74

A quality measure can be executable or not based on the data elements that are stored
in the data model. In case an element is missed, for instance vital signs, it cannot be
mapped to the data model. As a result, the system does not execute queries but sends
a message to the user indicating the missing elements.

Table 24: Functional Requirements

ID Description
F1 The UQMEE for HSDP should provide an HQMF based measurement

engine for a set of indicators formulated in terms of HQMF standards
F2 The HQMF documents should be parsed using the HQMF parser from

Health data Standards library set
F3 The data should be stored in a structured way based on HQMF data

criteria definitions
F5 The UQMEE should provide an extensible data model regarding the

HQMF elements, such as new procedures or problems

Regarding the functional requirements in Table 24, the F1 requirement is met by
using HQMF documents in which the quality measures are defined. The documents
are used in release 1, 2 or 2.1 from Centers for Medicare & Medicaid Services
(CMS). The F2 requirement is met by using the HQMF parser of Health-data-
standards, an open source library which is backwards compatible to HQMF R1, R2
and R2.1. The F3 requires the data to be compatible with HQMF data. For this case,
data is stored in groups of medications, diagnosis, procedures and patients’ character-
istics see data model in Chapter 6 - section 6.4.. The extensibility of the data model
(F5 requirement) is a matter of the data elements relations. For this case, the data
model has as central relational table the encounters, each procedure, medication or
new health data element can be defined as a new relation to the encounter, see Chap-
ter 6 - section 6.4 .

Regarding the non-functional requirements, Table 25, the UQMEE tries to give a
clear design giving two sub systems the QMI and QME. In that way, the system is
flexible and decoupled. The first sub-component is focusing on the UI and the second
in the quality measure engine (NF1). As it is mentioned, the NF2 requirement is met
by using a compatible HQMF parser of Health-data-standards.

Table 25: Non-functional requirements

ID Description
NF1 The design of UQMEE should clearly illustrate the way the HQMF

information is translated to executable queries on a set of health data.
In that way the HSDP business group can acquire proper insights that it
has to take into consideration for their environment

NF2 The UQMEE for HSDP should support all the previous versions of
HQMF releases, (R1, R2, R2.1)

10.1.2. Conclusions

UQMEE exposes the value of using healthcare standards in Philips Research through
its software solution. The set of healthcare standards gives a uniform way for the
exchange and use of health data. It is analogous to a common health language. It
supplies a basis with the same semantics, forms and context on health data. Health
data is explicitly organized into groups based on its functions. For example, data
related to medications are organized including the reason for prescription, adverse
effects or allergies. As a result, the extensibility of quality measures is easier, and
multiple groups can execute their measure using the UQMEE.

75

UQMEE is a unified quality measure execution engine in which quality measures are
structured using HQMF health standards issued by International HL7. It allows a
medical practitioner to select a specific clinical or claims indicator to calculate the
performance of a healthcare provider. For instance, a clinical practitioner can see
how many heart disease patients were prescribed with aspirin after discharge from a
hospital, how many of them were allergic to aspirin, how many left the hospital
against medical advice or how many were transferred to another institute.

To execute a measure, we need to apply the measure on a suitable dataset. In this
solution the following achievements are done, 1) a dataset was created for testing the
functionality that can be reused, 2) a working prototype is built for an engine to com-
pute measures and display results of the computation.

Specifically the dataset is created based on: 1) clinical indicator examples from Cen-
ters for Medicare & Medicaid Services (CMS) [25], an organization developed health
and human services, 2) clinical indicator examples of Preventive Medicine project,
and 3) examples of claims indicators.

The working prototype provides an end-to-end functionality. The solution consists of
steps in which a HQMF document can be transformed into executable SQL queries.
The system is modular and other technology can be applied. For instance, in case
another technology is applied for building queries, in the system only the package
Query Generation needs to be changed, see chapter 7, section 7.1.

In this project, other similar tools were investigated. UQMEE uses open source
parsers for HQMF and QRDA, which are Ruby libraries. These tools can bring in-
sights regarding alternative approaches. In addition, in this solution a relational data
model is used, as most of healthcare providers use RDBMS. The UQMEE generates
queries based on a transformation of HQMF to SQL-based queries.

An alternative technology of query generation could involve a domain specific lan-
guage. The HQMF to SQL-based queries transformation can be also implied as a text
to text transformation, text HQMF elements to text SQL statements. For text to text
transformation other tools can be also used, such as Xtext [26]. This is a framework
for developing domain specific languages. This tool allows developers to create their
own parser using a model to model transformation, HQMF to SQL model. It can be
used in Eclipse environment.

Another alternative technology choice could refer to the database system. The data-
base system is a choice which depends on the performance needs and the data rela-
tions. The schema-less database can be ideal in case data is stored independly as
patient records. It is also suitable for handling big data, due to owning efficient map-
reduce functions. Patient records could be structured using the QRDA Cat 1 health
standard. QRDA Cat 1 contains information such as medications, measurements,
diagnosis, or encounters on patient level.

All in all, based on future HSDP needs, there is a broad area for selecting a proper
technology. Since HSDP is expected to serve as a common data storage platform of
Philips Research business groups, new performance needs will be exposed.

76

10.2 Future work

Taking a further step of QMEE, possible future work could be:

1. Integration to HSDP

As the main goal of this project is to initiate a measuring tool on top of
HSDP, further work can be done in this direction. The HSDP group could
provide its available interfaces used for connection to the engine. It is also
investigating over the proper technologies to use. For instance, a new engine
could be developed in Java. In that way, various groups inside Philips can
compute their quality measures using one standard-based engine. Their
measures can be scalable and compliant with international standards, as well
as they can use a tested and valid tool for their measures.

2. Providing an authoring measurement tool

Another future task could be the development of a measurement authoring
tool. The authoring of measures capability allows users to generate new in-
dicators through the UI. The authoring tool gives the freedom to users such
as clinicians or data analysts to produce quality measures based on their
needs of their group and the aspects they are interested in measuring.

In the current solution, the available indicators are fixed. The authoring tool
should be based on HQMF and independent of the data set available. The
user should be able to define what they want to measure. The engine should
also be parametrized by the HQMF – Schema mappings and so be quite ge-
neric. Whether results are obtained or not, depends on the available data set.

Developing a measurement authoring tool requires time and a proper UI de-
sign, so a user without having knowledge of HQMF standards can create
through simple concrete steps an indicator based on his need.

3. Enabling of security features

In the current implementation, the UQMEE poses no restrictions on user ac-
cess. In this software solution we built a prototype application for demon-
strating a standard based quality measure engine. In real life situations, the
UQMEE could be enhanced with security features controlling the level of
user access on the data and protecting potentially sensitive patient infor-
mation.

■

77

11. Project Management

Whereas the previous chapters describe the whole UQMEE architecture and imple-
mentation process, this chapter discusses the organization and the management of the
project.

11.1 Introduction

This section outlines the management of this project. In order to present it, we give
an overview of its main phases and the people involved.

The UQMEE delivers a unified quality measure execution engine for a known health
dataset using HL7 - HQMF standards within 9-months. During this period, the main
challenge was the understanding and the correct use of this kind of standards. To
understand the health standards, it was necessary to study the HQMF and QRDA and
experiment with various examples of using them. In this domain the only profession-
al with a related background is my company supervisor, Asim Muhammad. He is
considered to be a HL7 Specialist and his main concern was to ensure that we are
using the standards properly. As a consequence, the communication with the supervi-
sor was really crucial for the progress of this project.

The development of a quality measure execution engine requires an initial period of
investigation and trying out existing technologies. Then the requirements of the pro-
ject can be set, based on our needs and later on, we can continue with the design and
implementation of the engine.

The main phases of this project can be roughly set as follows:

1. Study and investigation of the domain: study of the HL7 standards and
investigation of proper technologies

2. Requirements analysis: define the scope of the project and its requirements
3. Design: create the architecture and design
4. Implementation and testing: development of UQMEE
5. Documentation: document and manage the work

These phases during the nine-month period are presented in the next section

11.2 Project time line

Figure 37 presents the time line of the project based on the aforementioned five phas-
es. Each phase is described following the time line order.

Study and investigation of the domain: In the initial phase, there was a period of
studying the domain of health standards. Specifically, the studied aspects are: 1) the
value and use of quality measures, 2) HL7 main concepts, 3) HQMF concepts, 4)
QRDA concepts and use. In order to reuse some of the existing tools for health
standards, we investigated a set of open source projects, such as Cypress, popHealth,
Bonnie and MAT. In addition, we also explored possible technology solutions for
data storing and web development.

78

Requirements analysis: In this phase, the scope and the requirements of the project
are defined. At the beginning of the project, the initial requirements were different.
For instance, the first requirements included the integration of UQMEE with HSDP.
However, the HSDP was not available and later on this requirement was set out of
scope. Also the possibility of developing an authoring measurement tool with the
engine was investigated. This task was also set out of scope for this current imple-
mentation due to the lack of time. Finally, the first version of UQMEE is developed
as a Ruby on Rails web-application.

Design: In the design phase, we modeled the components of the system trying to
meet the expectations of the defined system requirements. We also sketched the ar-
chitecture of the system.

Implementation and testing: The development of the UQMEE takes place in this
phase. In order to choose the proper tools, investigation and trials of different tech-
nologies were applied. It was a real challenge to learn the Ruby on Rails framework
and Ruby libraries, from scratch at such a fixed timeframe. The implemented engine
was tested based on a known dataset.

Documentation: We documented initial concepts for our own understanding. We
also wrote some draft documents for presenting progress in front of the supervisors.
Preparation of presentations was also conducted in weekly and monthly periods.

Finalize: In the end of the project, some remaining tasks were conducted. These
tasks were administrative work, cleaning code, and documentation, as well as prepar-
ing final presentation and demonstration.

11.3 Communication

During this nine-month project, once per week we scheduled a progress update meet-
ing with the two company supervisors. Especially during the first months, we com-
municated daily, as they tried to guide on understanding the use of healthcare stand-
ards. In our weekly meetings we performed two main tasks 1) report on the progress
of the current deliveries, and 2) presentation of results or findings.

Figure 46: Project time line

79

Once per month, we scheduled a monthly project steering group meeting (PSGM)
with both TU/e and company supervisors. In these meetings the subject was set in
high- level description of the project progress. The main discussed points were:

• Presentation of the current tasks
• Presentation of the next monthly tasks
• Discussion over the project state

■

80

12. Project Retrospective

This chapter finalizes the documentation of the UQMEE project by presenting a
reflection of the author on the project.

12.1 Introduction

This project was very interesting, as it introduced the vast domain of healthcare tech-
nologies over data analysis. During these months, we learned a lot of aspects regard-
ing the quality of health care delivery. This project attempts to provide insight into
healthcare quality. In that way, it is known which aspects of delivery is good, and
which needs to improve in order to achieve good health.

12.2 Design opportunities revisited

In chapter 3 the following design criteria were considered for UQMEE.

• Ease of use
• Backward Compatibility
• Extensibility

We conclude that the above design opportunities are met in the UQMEE by the fol-
lowing statements:

Ease of use: we provide a UI which any non-technical user can use to measure quali-
ty. As far as for the usage of the components, the UQMEE is decomposed into two
parts the QMI and QME, providing flexibility and loose coupling to the system. As a
result, possible changes on the system can be done easily. Different technologies for
front and back end can be applied without dependencies between them.

Backward Compatibility: we use for parsing the HQMF standard a HQMF parser
which is backward compatible to R1, R2 and R2.1. This parser is already used from
several health providers.

Extensibility: To further extensible of functions, the Factory Method design pattern
has been applied. In this way, we can define an interface for creating different objects
and functions that can be instantiated through sub classes. As a result, in case there is
a new extension in the HQMF functionality a new object can be instantiated.

12.3 Strong Points

We present the following strong points for our approach:

Balancing the exploration of a huge domain with a concrete prototype. We believe
that we singled out concepts of the domain that are relevant for this project.

Fast learner: In this project we worked with different tools. We had to learn Ruby on
Rails framework and the usage of various Ruby libraries in a short period.

Working incrementally: We created a basic version of our system. Then we enhanced
the proto-type incrementally focusing on different components per iteration

81

12.4 Improvements Points

We identified the following points that we could improve:

Organizing better the process of studying the HQMF, QRDA standards as well as the
HL7 concepts. I think that we spent a lot of time to understand them theoretically.
The organization of practical examples from the beginning of the project would be a
better approach.

We underestimated the effort needed for the documentation. In the end of the project,
even though we tried to provide an early documentation, it still took a lot of time to
provide a clear description of all the UQMEE aspects.

■

82

Appendix A

In this section the mappings between HQMF elements and SQL-based functions
using Arel-ORM are described. This section is organized into four parts. The first
part gives a generic description of the HQMF elements needed to be mapped to SQL
expressions. The second part includes the SQL expressions using Arel/ORM syntax.
The third part presents the HQMF elements and its expressions and the forth part
includes the mappings between the HQMF elements and Arel-ORM functions.

Part 1

• Temporally Related Information type Code

The temporal related information element allows two acts to be related by the mo-
ment they occur with respect to each other. In terms of data criteria this implies that
two data criteria can be related to each other using the section of temporally related
information. Temporal calculations could be timing relations such as DURING or
CONCURRENT.

For example, in case an A act (represented on data criterion) occurs during B, then:

A DURING B is true if all of the following are true:

• A.effectiveTime.low must be non-null
• A.effectiveTime.high must be non-null
• B.effectiveTime.low must be non-null OR null with a nullFlavor of NINF
• B.effectiveTime.high must be non-null OR null with a nullFlavor of PINF
• B.effectiveTime.low <= A.effectiveTime.low <= B.effectiveTime.high
• B.effectiveTime.low <= A.effectiveTime.high <= B.effectiveTime.high

If any of the above is false, DURING is false

Table 26: Temporal relations types

 Concept Code Print name Definition
1. CONCURRENT concurrent with A relationship in which the source

act's effective time is the same as the
target act's effective time.

2. DURING occurs during including end points, as defined in
the act's effective times

3. EAE ends after end of A relationship in which the source
act's effective time ends after the
target act's effective time.

4. EAS ends after start of A relationship in which the source
act's effective time ends after the
start of the target act.

5. EBE ends before end The source act ends before the end
of the target act

6. EBS ends before start of A relationship in which the source
act's effective time ends before the
start of the target act.

7. ECW ends concurrent with A relationship in which the source
act's effective time ends with the end
of the target act's effective time.

8. ECWS ends concurrent with
start

The source act ends when the target
act starts

83

9. EDU ends during A relationship in which the source

act ends within the target act's effec-
tive time (including end points, as
defined in the act's effective times)

10. OVERLAP overlaps with A relationship in which the source
act's effective time overlaps the
target act's effective time in any
way.

11. SAE starts after end of A relationship in which the source
act starts after the end of the target
act.

12. SAS starts after start of The source act starts after the start
of the target act.

13. SBE starts before end The source act starts before the end
of the target act.

14. SBS starts before start of A relationship in which the source
act starts before the start of the tar-
get act.

15. SCW starts concurrent with with A relationship in which the
source act's effective time starts with
the start of the target act's
effective time

16. SCWE starts concurrent with
end

The source act starts when the target
act ends.

17. SDU starts during A relationship in which the source
act starts within the target act's ef-
fective time (including end points,
as defined in the act's effective
times)

• Value

The value element is used for representing a specific required value of a HQMF ele-
ment. For instance, a value can represent the measure period, the length of stay in
hospital or the age of a patient.

Table 27: Value element

Value
Value
Type

QTY(INT, RE-
AL,MO,PQ,RTO,TS,CO)

In this case it shall contain an
expression which indicates how
the value is computed

QTY: Abstract type quantity
INT: Integer
REAL: Real number
MO: Monetary amount
PQ: Physical quantity
RTO: Ratio
TS: Point in time
CO: Coded ordinal
IVL: Interval
ST: Character string

Table 28: Attributes of Value element

Value Description Additional elements

84

Value Type Type can be
IVL_TS or
PIVL_TS or any
other kind

low The actual value LowClosed, indicates whether the low value
is included into the interval

high The actual value HighClosed, indicates whether the high
value is included into the interval

width The actual value Type, indicates the type of the value and the
unit the unit kind

• Excerpt – Type Code

This is used to indicate how the target of the relationship will be a filtered subset of
the total related set of targets. It is used when there is a need to limit the number of
components to the first, the last, the next, the total, the average, or some other filtered
or calculated subset.

Value Constraints (used when the target is Observation Criteria only)
MAX maximum Selects the observation with the largest value
MIN minimum Selects the observation with the smallest value
Time Constraints

LAST, expected last

Selects the act that is expected to occur the farthest in the
future

FIRST, first known

Selects the first known occurrence of the act

Summaries
SUM, summary Represents a summary of all acts. The effective Time repre-

sents the outer boundary of all occurrences, repeat Number
represents the total number of repetitions, etc.

Part 2

Table 29: Arel-ORM functions

 Comparison Operators
 Arel/ORM function Symbol
1a .eq =
2a .not_eq ! =
3a .lt <
4a .gt >
5a .lteq <=
6a .gteq >=
7a .in IN
8a .created_at IN / BETWEEN
 Aggregation Functions
9a Arel/ORM function Expression
10a .having HAVING
11a .sum SUM
12a .average AVG
13a .minimum MAX
14a .maximum MIN
15a .count COUNT
16a .order ORDER
 Logical Operators and other conditions
17a Arel/ORM function Expression

85

18a .and AND
19a .not NOT
20a .or OR
21a .where WHERE, it is used as an AND Statement
22a .group GROUP BY
23a .first Choose the first table item
24a .last Choose the last table item

Part 3

Table 30: HQMF elements

 Comparison Operators
 HQMF Comparison of 2 events, A

and B
Expression

 Checking the following statements should be taken in any case
A.effectiveTime.low must be non-null
A.effectiveTime.high must be non-null
B.effectiveTime.low must be non-null OR null with a nullFlavor of NINF
B.effectiveTime.high must be non-null OR null with a nullFlavor of PINF

1b CONCURRENT B.effectiveTime.low = A.effectiveTime.low
B.effectiveTime.high = A.effectiveTime.high

2b DURING B.effectiveTime.low <= A.effectiveTime.low <=
B.effectiveTime.high
B.effectiveTime.low <= A.effectiveTime.high <=
B.effectiveTime.high

3b EAE A.effectiveTime.high < B.effectiveTime.high
4b EAS A.effectiveTime.high > B.effectiveTime.low
5b EBE A.effectiveTime.high < B.effectiveTime.high
6b EBS A.effectiveTime.high < B.effectiveTime.low
7b ECW A.effectiveTime.high = B.effectiveTime.high
8b ECWS A.effectiveTime.high = B.effectiveTime.low
9b EDU A.effectiveTime.high = B.effectiveTime.low
10b OVERLAP A.effectiveTime.high > B.effectiveTime.high

A.effectiveTime.low > B.effectiveTime.low
11b SAE A.effectiveTime.low > B.effectiveTime.high
12b SAS A.effectiveTime.low > B.effectiveTime.low
13b SBE A.effectiveTime.low > B.effectiveTime.low
14b SBS A.effectiveTime.low < B.effectiveTime.low
15b SCW A.effectiveTime.low = B.effectiveTime.low
16b SCWE A.effectiveTime.low >= B.effectiveTime.high
17b SDU A.effectiveTime.low >= B.effectiveTime.low

A.effectiveTime.low <= B.effectiveTime.high

 HQMF Aggregation Functions Expression
18b COUNT Count
19b SUM Summary
20b AVERAGE Average
21b STDEV.S Standard deviation Sample
22b Deviation. Deviation
23b VARIANCE.S Variance Sample
24b STDEV.P Standard deviation Population
25b VARIANCE.P Variance Population
26b MIN Minimum
27b MAX Maximum
28b MEDIAN Median

 HQMF Logical Operators Expression

86

29b AllTrue AND
30b AllFalse NOT OR
31b AtLeastOneTrue OR
32b AtLeastOneFalse NOT AND
33b OnlyOneTrue XOR
34b OnlyOneFalse XOR

HQMF Value element
35b Low and lowClosed= true <=
36b Low and lowClosed = false <
37b high and highClosed = true >=
38b high and highClosed = false >

Part 4

Table 31: Comparison operators’ mappings

Table 32: Aggregation operators’ mappings

HQMF Arel/ORM
18b 15a
19b 11a
20b 12a
21b No ready

functions
22b No ready

functions
23b No ready

functions
24b No ready

functions
25b No ready

functions
26b 13a
27b 14a
28b No ready

functions

HQMF Arel/ORM
1b 1a
2b 5a
3b 3a
4b 4a
5b 3a
6b 3a
7b 1a
8b 1a
9b 1a
10b 3a
11b 3a
12b 3a
13b 3a
14b 4a
15b 1a
16b 5a
17b 5a and 6a

87

Table 33: Logical operators’ mappings

HQMF Arel/ORM
29b 18a
30b 19a and

20a
31b 20a
32b 19a and

18a
33b No ready

functions
34b No ready

functions

Table 34: Value elements mappings

HQMF
Value

Arel/ORM

35b 5a
36b 3a
37b 6a
38b 4a

■

88

Appendix B

Data Criteria Mappings

The following section presents the flow process of the generation of SQL queries.
The inserted xml file is parsed through the HQMF parser from the Health Data
Standards library. The results of the parser are JSON objects, which have been
mapped to the HQMF model R2. Then the extracted JSON objects are mapped into
ORM-Arel objects which generate the final SQL query.

Figure 47: Flow process of queries execution

To clarify the way the mappings are being executed three example cases are illustrat-
ed.
The first example shows how a data criterion declares the required population group
using only the basic elements for structuring a data criterion.

The basic elements for structuring a data criterion are the elements such as the id, the
title and definition which can define a criterion without further references to another
criterion.

The second and the third example shows a declaration of data criterion using an out-
bound information from other criteria and temporally related information to other
criteria using timing relations like during, concurrent etc. These three cases can be
combined declaring a criterion in any case.

 Query Generation Example 1

89

 Data criterion in xml format

1.

2.
3.
4.

5.

<entry typeCode="DRIV">
 <localVariableName value="Obese"/>
 <observationCriteria moodCode="EVN" classCode="OBS">
 <templateId>
 <item root="root_templateId number" identifierName="root_identifierName"/>
 </templateId>
 <id root="number_root_id" extension="Obese"/>
 <code code="test" displayName="Diagnosis" codeSystem="2.16.840.1.113883.6.1"/>
 <text value="Diagnosed Obese "/>
 <statusCode code="active"/>
 <definition>
 <criteriaReference moodCode="EVN" classCode="OBS">
 <id root="test" extension="diagnosis"/>
 </criteriaReference>
 </definition>
 </observationCriteria>
</entry>

 Mapping between xml and parsed objects
1.
2.
3.
4.
5.

 id extension => title
 text value => description
 status code => status
 definition-criteria reference- id extension => definition
 In the parser there is a mapping for the case that definition = “diagnosis”

"diagnosis":{
 "title":"diagnosis",
 "category":"conditions",
 "definition":"diagnosis",
 "status":"",
 "sub_category":"",
 "hard_status":false,
 "patient_api_function":"allProblems",
 "not_supported":false},

 }
 category => type

 Data criterion objects after be parsed

1.
2.

5.
4.
3.

 "Obese": {
 "title": "Obese",
 "description": "Diagnosed Obese",
 "children_criteria": [
],
 "type": "conditions",
 "definition": "diagnosis",
 "status": "active",
 "hard_status": false,
 }

 Mapping between parsed criterion objects and SQL objects
 Table => type

Field table => definition
Field content => title

 ORM – Arel script
 type = Arel::Table.new(:type)

query = type.project(Arel.sql(‘*’)).where(type[:definition].eq(‘title’))
For this example, the corresponding query will have the following form:
query = conditions.project(Arel.sql(‘*’)).where(conditions[:diagnosis].eq(‘Obese’))

90

The second example shows how a data criterion declares the required population
group included an out-bound relationship with another criteria defining related val-
ues.

In the example, the data criterion consists of an encounter criteria declaring the Inpa-
tient Encounter event, and an outbound relation with an observation criterion in
which the encounter length of stay is defined.

 Query Generation Example 2
 Data criterion in xml format

1.

2.
3.

4.

5.

6.

7.

<entry typeCode="DRIV">
 <localVariableName value="OccurrenceAOccurrenceAEncounterInpatient1_precondition_9"/>
 <encounterCriteria moodCode="EVN" classCode="ENC">
 <templateId>
 <item root="2.16.840.1.113883.10.20.28.3.5" identifierName="encounter, performed
template"/>
 </templateId>
 <id root="2.16.840.1.113883.3.100.1" exten-
sion="OccurrenceAEncounterInpatient1_precondition_9"/>
 <code xsi:type="CD" valueSet="2.16.840.1.113883.3.666.5.307">
 <displayName value="Encounter Inpatient"/>
 </code>
 <text value="Encounter, Performed: Encounter Inpatient"/>
 <definition>
 <criteriaReference moodCode="EVN" classCode="ENC">
 <id root="2.16.840.1.113883.3.100.1" extension="encounter"/>
 </criteriaReference>
 </definition>
 <outboundRelationship typeCode="SUBJ">
 <observationCriteria classCode="OBS" moodCode="EVN">
 <id root="OccurrenceAEncounterInpatient1_precondition_9_LENGTH_OF_STAY"/>
 <code code="183797002" codeSystem="2.16.840.1.113883.6.96" codeSys-
temName="SNOMED-CT">
 <displayName value="Length of Stay"/>
 </code>
 <value xsi:type="IVL_PQ" highClosed="true" >
 <low nullFlavor="NINF"/> <high value="120" unit="d"/>
 </value>
 </observationCriteria>
 </outboundRelationship>
 <outboundRelationship typeCode="OCCR">
 <localVariableName controlInformation-
Root="ENCOUNTER_PERFORMED_ENCOUNTER_INPATIENT"
controlInformationExtension="A"/>
 <criteriaReference classCode="OBS" moodCode="EVN">
 <id root="2.16.840.1.113883.3.100.1" extension="OccurrenceAEncounterInpatient1"/>
 </criteriaReference>
 </outboundRelationship>

 ORM to SQL

 SELECT * FROM conditions WHERE conditions.diagnosis = ‘Obese’

91

 </encounterCriteria>
 Mapping between xml and parsed objects
1.
2.
3.
4.

5.
6.
7.

Code -> Display name value => title
text value => description
definition-criteria reference- id extension => definition
In the parser there is a mapping for the case that definition = “encounter”

"encounter":{

 "title":"encounter",

 "category":"encounters",

 "definition":"encounter",

 "status":"",

 "sub_category":"",

 "hard_status":false,

 "patient_api_function":"encounters",

 "not_supported":false},

category => type

outbound relationship -> value => field values
outbound relationship ->local variable => specific_occurrence_const
Out bound relationship -> Criteria reference => source_data_criteria

1.
2.
4.
3.

6.
7.

5.

 "OccurrenceAEncounterInpatient1_precondition_9": {
 "title": "Encounter Inpatient",
 "description": "Encounter, Performed: Encounter Inpatient",
 "type": "encounters",
 "definition": "encounter",
 "status": "performed",
 "hard_status": false,
 "negation": false,
 "specific_occurrence": "A",
 "specific_occurrence_const": "ENCOUNTER_PERFORMED_ENCOUNTER_INPATIENT",
 "source_data_criteria": "OccurrenceAEncounterInpatient1",
 "variable": false,
 "field_values": {
 "LENGTH_OF_STAY": {
 "type": "IVL_PQ",
 "high": {
 "type": "PQ",
 "unit": "d",
 "value": "120",
 "inclusive?": true,
 "derived?": false
 }
 }
 }
 }

 Mapping between criterion object and SQL objects
 Table => type

Field table => definition
Field content => title
Additional field value => field_values
Field value content = > value
Comparison Operator => inclusive? & low/high
Field unit => unit

 The corresponding query from the extracted objects in ORM – Arel script
 type = Arel::Table.new(:type)

92

Arel comparison function = .lteq (less than equal to)
query = type.project(Arel.sql(‘*’)).where(type[:definition].eq(‘title’).and(
type[:field_values].lteq(value)))
For this example, the corresponding query will have the following form:
query = conditions.project(Arel.sql(‘*’)).where(encounters[:encounter].eq(‘Encounter Inpa-
tient’).and(encounters[:length_of_stay].lteq(120)))

 ORM to SQL
 SELECT * FROM encounters WHERE encounters.encounter = ‘ Encounter Inpatient’

AND encounters.length_of_stay <=120

In the third example, a data criterion is defined having a temporally timing related
information with the measure period.

 Query Generation Example 3
 Data criterion in xml format

1.

2.
3.

4.

5.

6.

 <entry typeCode="DRIV">
 <localVariableName value="OccurrenceAOccurrenceAEncounterInpatient1_11"/>
 <encounterCriteria moodCode="EVN" classCode="ENC">
 <templateId>
 <item root="2.16.840.1.113883.10.20.28.3.5" identifierName="encounter, performed
template"/>
 </templateId>
 <id root="2.16.840.1.113883.3.100.1" exten-
sion="OccurrenceAEncounterInpatient1_11"/>
 <code xsi:type="CD" valueSet="2.16.840.1.113883.3.666.5.307">
 <displayName value="Encounter Inpatient"/>
 </code>
 <text value="Encounter, Performed: Encounter Inpatient"/>
 <definition>
 <criteriaReference moodCode="EVN" classCode="ENC">
 <id root="2.16.840.1.113883.3.100.1" extension="encounter"/>
 </criteriaReference>
 </definition>
 <temporallyRelatedInformation typeCode="EDU">
 <criteriaReference moodCode="EVN" classCode="OBS">
 <id root="2.16.840.1.113883.3.100.1" extension="MeasurePeriod"/>
 </criteriaReference>
 </temporallyRelatedInformation>
 <outboundRelationship typeCode="OCCR">
 <localVariableName controlInformation-
Root="ENCOUNTER_PERFORMED_ENCOUNTER_INPATIENT"
 controlInformationExtension="A"/>
 <criteriaReference classCode="OBS" moodCode="EVN">
 <id root="2.16.840.1.113883.3.100.1" exten-
sion="OccurrenceAEncounterInpatient1"/>
 </criteriaReference>
 </outboundRelationship>
 </encounterCriteria>
 </entry>

 Mapping between xml and parsed objects
1.
2.
3.

Display name value => title
text value => description
In the parser there is a mapping for the case that definition = “encounter”

"encounter":{

 "title":"encounter",

 "category":"encounters",

 "definition":"encounter",

93

4.
5.
6.

 "status":"",

 "sub_category":"",

 "hard_status":false,

 "patient_api_function":"encounters",

 "not_supported":false},
category => type

definition-criteria reference- id extension => definition
temporally Related Information => temporal_references
outbound relationship -> criteria reference => source_data_criteria

1.
2.

3.
4.

6.

5.

 "OccurrenceAEncounterInpatient1_11": {
 "title": "Encounter Inpatient",
 "description": "Encounter, Performed: Encounter Inpatient",
 "code_list_id": "2.16.840.1.113883.3.666.5.307",
 "type": "encounters",
 "definition": "encounter",
 "status": "performed",
 "hard_status": false,
 "negation": false,
 "specific_occurrence": "A",
 "specific_occurrence_const": "ENCOUN-
TER_PERFORMED_ENCOUNTER_INPATIENT",
 "source_data_criteria": "OccurrenceAEncounterInpatient1",
 "variable": false,
 "temporal_references": [
 {
 "type": "EDU",
 "reference": "MeasurePeriod"
 }
]
 }

 Mapping between criterion object and SQL objects
 Table => type

Field table => definition
Field content => title
Additional temporal reference field (Event A) => temporal_references -> reference
Comparison Operator => temporal_references -> type
Additional temporal reference field (Event B) => source data criterion, which has the same attributes
as the current criterion , which has start and end point

 The corresponding query from the extracted objects in ORM – Arel script
 type = Arel::Table.new(:type)

Comparison Operator => Ends During => using the <= or >= operators
query = type.project(Arel.sql(‘*’)).where(type[:definition].eq(‘title’).and(“encounters.end_point >=
MeasurePeriod.start AND encounters.end_point <= MeasurePeriod.end”))

For this example, the corresponding query will have the following form:

query = conditions.project(Arel.sql(‘*’)).where(encounters[:encounter].eq(‘Encounter Inpatient’).
and(“encounters.end_point >= MeasurePeriod.start AND encounters.end_point <= MeasurePeri-
od.end”))

 ORM to SQL
 SELECT * FROM encounters WHERE encounters.encounter = ‘ Encounter Inpatient’ AND

encounters.end_point >= MeasurePeriod.start AND encounters.end_point <= MeasurePeri-
od.end

94

The type of the temporally related information can be: [DURING, OVERLAP, SBS,
SAS, SAE, EBS, EAS,SDU,ECW,SCW, ECWS, SBCW, SBCWE, SACW,SACWE,
SBDU,EBCW,EBCWS,EACW,EACWS, EADU, CONCURRENT]
■

95

Glossary

HL7 Health Level Seven International is a not-for-profit, ANSI-

accredited standards development organization
HQMF Health Quality Measures Format is a HL7 standard for documents

quality measurements
HSDP HealthSuit Digital Platform is a cloud application which is devel-

oping in Philips Research for storing health data
QRDA Quality Report Document Architecture is a HL7 standard for re-

porting the results of quality measurements
UI User Interface is the designed space where interactions between

human and machine occur
HISS Health Informatics Solution Services Philips business group
H2H Hospital to Home Philips business group
MAT Measuring Authoring Tool
MITRE MITRE is a non-for-profit organization that operates research and

development centers sponsored by the federal government
RIM Reference Information Model is a component of the HL7 V3 fami-

ly of standards
HITSP C32 It is a summary document of medical consumers. The content may

include administrative and clinical information
AREL It is an algebra relational language. It simplifies the generation of

complex SQL queries
ORM Object Relational Mapper. It is a programming technique for con-

verting data between incompatible type systems in object-oriented
programming languages

UQMEE Unified Quality Measure Execution Engine. It is software solution
which transforms HQMF elements into executable queries con-
ducting quality measures over a set of health data

96

Bibliography

[1] R. Suñol, "Avedis Donabedian," International Society for Quality in Health

Care 2000, vol. 12, pp. 451-454, 2000.
[2] "Open Clinical," Open Clinical, 1 July 2004. [Online]. Available:

http://www.openclinical.org/guidelines.html.
[3] Quality Forum, "Understanding Performance Measures: Anatomy and

Types," Quality Forum, 2013.
[4] "Unity Health Care," Unity Health Care, [Online]. Available:

http://www.unityhealthcare.org/.
[5] "Health Level Seven International," [Online]. Available: http://www.hl7.org/.
[6] "MITRE," [Online]. Available: http://www.mitre.org/.
[7] "webopedia," Webopedia, [Online]. Available:

http://www.webopedia.com/quick_ref/OSI_Layers.asp. [Accessed 22 April
2015].

[8] "Extensible Markup Language (XML)," [Online]. Available:
http://www.w3.org/XML/.

[9] "JavaScript Object Notation," [Online]. Available: http://json.org/.
[10] C. Q. I. W. Group, "HL7 V3 QM, DSTU R2.1," 2014.
[11] "Quality Reporting Document Architecture - Category III, DSTU Release 1,"

2012.
[12] "Cypress: Meaningful Use Stage 2 Testing and Certification Tool," Cypress:

Meaningful Use Stage 2 Testing and Certification Tool, 26 April 2013.
[Online]. Available:
http://projectcypress.org/documents/cypress_software_design_20130422.pdf.

[13] "Ruby on Rails," [Online]. Available: http://rubyonrails.org/.
[14] "Database," Wikipedia, the free encyclopedia, 2015.
[15] "NoSQL," Wikipedia, the free encyclopedia, 2015.
[16] "mongoDB," [Online]. Available: https://www.mongodb.org/.
[17] "Apache Hadoop," [Online]. Available: https://hadoop.apache.org/.
[18] "Map-Reduce, mongoDB," [Online]. Available:

http://docs.mongodb.org/manual/core/map-reduce/.
[19] "Tree traversal," wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Tree_traversal.
[20] "Bootstrap," [Online]. Available: http://getbootstrap.com/.
[21] "Chart.js," [Online]. Available: http://www.chartjs.org/.
[22] "SQLite," [Online]. Available: https://www.sqlite.org/.
[23] "SQLite," [Online]. Available: https://www.sqlite.org/version3.html.
[24] "Arel," [Online]. Available: https://github.com/rails/arel.
[25] "Centers for Medicare and Medicaid Services," [Online]. Available:

https://www.cms.gov/.
[26] "eclipse," [Online]. Available: https://projects.eclipse.org/projects/tools.xtend.
[27] "NML," Value Set Authority Center U.S. National Library of Medicine,

[Online]. Available: https://vsac.nlm.nih.gov/. [Accessed 21 August 2015].
[28] "Measuring Authoring Tool," Measuring Authoring Tool, [Online]. Available:

https://www.emeasuretool.cms.gov/.
[29] "django," [Online]. Available: https://www.djangoproject.com/.
[30] PostgreSQL. [Online]. Available: http://www.postgresql.org/.

97

[31] "MySQL," [Online]. Available: https://www.mysql.com/.

About the Author

Pelagia Sykoudi Amanatidou received her diploma in
Electrical and Computer Engineering from the Aristotle
University of Thessaloniki, Greece in 2013. During her
studies she focused on Software Technology and Com-
puter Science. Her diploma thesis is titled “Navigation of
a robot using potential fields and neural networks in a
given place and design of methods for its efficient explo-
ration.” It was an opportunity to study many artificial
intelligence methods and specialize in the field of genetic
algorithms. In addition, during her studies, she was a
member of PANDORA, the University’s robotics team,
where she took part on developing the robot’s software
development of interface for establishing reliable com-
munication between the different types of modules for
each part of the robot. The team won the 2nd place in the
RoboCup World Competition 2013, in Eindhoven.

98

	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 Introductory Concepts
	1.3 Project Scope
	1.4 Outline

	2. Stakeholder Analysis
	2.1 Philips Research
	2.2 Eindhoven University of Technology (TU/e)

	3. Problem Analysis
	3.1 Philips business need
	3.2 HL7 tools
	3.3 Analysis of the problem
	3.4 Design Opportunities

	4. Domain Analysis
	4.1 Introduction
	4.2 Healthcare standards
	4.2.1. Introduction to HL7
	4.2.2. Data Structure
	4.2.3. Health Quality Measure Format
	4.2.4. Quality Report Document Architecture Category III

	4.3 HL7 quality measuring tools
	4.3.1. Web based open source quality measure tools
	4.3.2. Health-data-standard
	4.3.3. HQMF2JS
	4.3.4. Quality Measure Engine
	4.3.5. Ruby on Rails Applications

	4.4 Health data storage
	4.4.1. Relational Databases
	4.4.2. Document Schema-less databases

	5. Requirements
	5.1 Introduction
	5.2 User requirements
	5.3 Functional requirements
	5.4 Non-Functional requirements

	6. System Architecture
	6.1 UQMEE for HSDP overview
	6.2 Quality Measure Interface
	6.3 Quality Measure Engine
	6.4 Data model

	7. System Design
	7.1 QME design introduction
	7.1.1. HQMF to Query transformation
	7.1.2. HQMF_Parser – HQMF_Document
	7.1.3. Mapper2Schema
	7.1.4. Query Generator
	7.1.5. Data_Criteria_2Query
	7.1.6. Population_Query

	8. Implementation
	8.1 UQMEE Implementation
	8.2 Technology choices for implementation of UQMEE components.
	8.2.1. QMI and QME on Ruby on Rails framework
	8.2.2. Parsing HQMF and QRDA libraries
	8.2.3. Relational data management system and other alternatives
	8.2.4. Data
	8.2.5. QME – Object Relational Mapping

	8.3 Conclusions

	9. Verification & Validation
	9.1 Introduction
	9.2 Verification
	9.2.1. Verification of the executed measures

	9.3 Validation

	10. Conclusions
	10.1 Results
	10.1.1. Results based on the requirements
	10.1.2. Conclusions

	10.2 Future work

	11. Project Management
	11.1 Introduction
	11.2 Project time line
	11.3 Communication

	12. Project Retrospective
	12.1 Introduction
	12.2 Design opportunities revisited
	12.3 Strong Points
	12.4 Improvements Points

	Appendix A
	Appendix B
	Glossary
	Bibliography
	About the Author

