307 research outputs found

    Algorithms for security in robotics and networks

    Get PDF
    The dissertation presents algorithms for robotics and security. The first chapter gives an overview of the area of visibility-based pursuit-evasion. The following two chapters introduce two specific algorithms in that area. The algorithms are based on research done together with Dr. Giora Slutzki and Dr. Steven LaValle. Chapter 2 presents a polynomial-time algorithm for clearing a polygon by a single 1-searcher. The result is extended to a polynomial-time algorithm for a pair of 1-searchers in Chapter 3.;Chapters 4 and 5 contain joint research with Dr. Srini Tridandapani, Dr. Jason Jue and Dr. Michael Borella in the area of computer networks. Chapter 4 presents a method of providing privacy over an insecure channel which does not require encryption. Chapter 5 gives approximate bounds for the link utilization in multicast traffic

    Search and Pursuit-Evasion in Mobile Robotics, A survey

    Get PDF
    This paper surveys recent results in pursuitevasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work

    Searching Polyhedra by Rotating Half-Planes

    Full text link
    The Searchlight Scheduling Problem was first studied in 2D polygons, where the goal is for point guards in fixed positions to rotate searchlights to catch an evasive intruder. Here the problem is extended to 3D polyhedra, with the guards now boundary segments who rotate half-planes of illumination. After carefully detailing the 3D model, several results are established. The first is a nearly direct extension of the planar one-way sweep strategy using what we call exhaustive guards, a generalization that succeeds despite there being no well-defined notion in 3D of planar "clockwise rotation". Next follow two results: every polyhedron with r>0 reflex edges can be searched by at most r^2 suitably placed guards, whereas just r guards suffice if the polyhedron is orthogonal. (Minimizing the number of guards to search a given polyhedron is easily seen to be NP-hard.) Finally we show that deciding whether a given set of guards has a successful search schedule is strongly NP-hard, and that deciding if a given target area is searchable at all is strongly PSPACE-hard, even for orthogonal polyhedra. A number of peripheral results are proved en route to these central theorems, and several open problems remain for future work.Comment: 45 pages, 26 figure

    Terrestrial camera traps: essential tool for the detection and future monitoring of the Critically Endangered Sira curassow Pauxi koepckeae

    Get PDF
    The only known population of Sira curassow Pauxi koepckeae resides within the Sira Communal Reserve, a chain of isolated and high-elevation outcrops of the Peruvian Andes. The species has previously been detected on just a handful of occasions, is thought to number less than 400 adult individuals and is Critically Endangered according to the International Union for Conservation of Nature Red List. As such, evaluating potential monitoring techniques to study the Sira curassow is of crucial importance to best inform future management strategies. We performed a preliminary assessment of camera traps to detect and collect novel ecological information on the Sira curassow. We used 17 cameras placed at regular altitudinal intervals (either 50 or 100 m) between 800 and 1800 m above sea level, 2 cameras placed at important habitat features, and 2 additional cameras placed on trails to assess hunting activity. Cameras were left in situ for 6 mo (March-September 2015). Sira curassows were detected at 26% of survey locations, totalling 19 independent detections. This resulted in an overall occupancy estimate of 0.25 across the whole transect and 0.55 across the current known elevational range. All records occurred between 1150 and 1500 m. Finally, we detail new ecological information obtained from the camera trap footage, readdress current threats to the species and provide recommendations regarding future monitoring

    Guarding and Searching Polyhedra

    Get PDF
    Guarding and searching problems have been of fundamental interest since the early years of Computational Geometry. Both are well-developed areas of research and have been thoroughly studied in planar polygonal settings. In this thesis we tackle the Art Gallery Problem and the Searchlight Scheduling Problem in 3-dimensional polyhedral environments, putting special emphasis on edge guards and orthogonal polyhedra. We solve the Art Gallery Problem with reflex edge guards in orthogonal polyhedra having reflex edges in just two directions: generalizing a classic theorem by O'Rourke, we prove that r/2 + 1 reflex edge guards are sufficient and occasionally necessary, where r is the number of reflex edges. We also show how to compute guard locations in O(n log n) time. Then we investigate the Art Gallery Problem with mutually parallel edge guards in orthogonal polyhedra with e edges, showing that 11e/72 edge guards are always sufficient and can be found in linear time, improving upon the previous state of the art, which was e/6. We also give tight inequalities relating e with the number of reflex edges r, obtaining an upper bound on the guard number of 7r/12 + 1. We further study the Art Gallery Problem with edge guards in polyhedra having faces oriented in just four directions, obtaining a lower bound of e/6 - 1 edge guards and an upper bound of (e+r)/6 edge guards. All the previously mentioned results hold for polyhedra of any genus. Additionally, several guard types and guarding modes are discussed, namely open and closed edge guards, and orthogonal and non-orthogonal guarding. Next, we model the Searchlight Scheduling Problem, the problem of searching a given polyhedron by suitably turning some half-planes around their axes, in order to catch an evasive intruder. After discussing several generalizations of classic theorems, we study the problem of efficiently placing guards in a given polyhedron, in order to make it searchable. For general polyhedra, we give an upper bound of r^2 on the number of guards, which reduces to r for orthogonal polyhedra. Then we prove that it is strongly NP-hard to decide if a given polyhedron is entirely searchable by a given set of guards. We further prove that, even under the assumption that an orthogonal polyhedron is searchable, approximating the minimum search time within a small-enough constant factor to the optimum is still strongly NP-hard. Finally, we show that deciding if a specific region of an orthogonal polyhedron is searchable is strongly PSPACE-hard. By further improving our construction, we show that the same problem is strongly PSPACE-complete even for planar orthogonal polygons. Our last results are especially meaningful because no similar hardness theorems for 2-dimensional scenarios were previously known

    Coverage & cooperation: Completing complex tasks as quickly as possible using teams of robots

    Get PDF
    As the robotics industry grows and robots enter our homes and public spaces, they are increasingly expected to work in cooperation with each other. My thesis focuses on multirobot planning, specifically in the context of coverage robots, such as robotic lawnmowers and vacuum cleaners. Two problems unique to multirobot teams are task allocation and search. I present a task allocation algorithm which balances the workload amongst all robots in the team with the objective of minimizing the overall mission time. I also present a search algorithm which robots can use to find lost teammates. It uses a probabilistic belief of a target robot’s position to create a planning tree and then searches by following the best path in the tree. For robust multirobot coverage, I use both the task allocation and search algorithms. First the coverage region is divided into a set of small coverage tasks which minimize the number of turns the robots will need to take. These tasks are then allocated to individual robots. During the mission, robots replan with nearby robots to rebalance the workload and, once a robot has finished its tasks, it searches for teammates to help them finish their tasks faster

    A Scenario-Based and Game-Based Geographical Information System (GIS) Approach for Earthquake Disaster Simulation and Crisis Mitigation

    Get PDF
    The current research study aims to introduce the experience of implementing a serious game using the concept of game-based GIS approach for crisis management during earthquake disasters. In this study, we aimed to develop a game-based GIS approach and examine its efficiency for simulating earthquake rescue management in Tabriz city. In designing this game, typical scenario-based, game-based GIS methods and techniques were employed, and the proposed approach was applied to crisis management. To achieve this goal, we addressed the technical details regarding the development and implementation of the scenario-based and game-based GIS approach. Based on the results, game-based simulations can be considered an efficient approach for disaster simulation and can improve the skills of rescue teams. The outcome of this application is an intellectual game that almost all users at any age can play, and the game can challenge their ability to solve critical issues. The results are critical for explaining the effectiveness of rescue teams and crisis management facilities. As we intended to develop an approach for the simulation of earthquake disasters and emergency responses, we therefore conclude that the results of this study can also be employed to improve the skills of rescue teams and citizens for dealing with crises resulting from earthquake disasters. As a result of this research, the developed tool is published, together with this paper, as an open source and can be employed for any scenario-based analysis in other case studies. By presenting a-state-of-the-art approach, the results of this research study can provide significant contribution to further the development of GIScience and its applications for disaster and risk mitigation and management.Deutsche Forschungsgemein-schaft (DFG, German Research Foundation)Open Access Publication Fund of Humboldt-Universität zu BerlinPeer Reviewe

    Autonomous cooperation of heterogeneous platforms for sea-based search tasks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 87-90).Many current methods of search using autonomous marine vehicles do not adapt to changes in mission objectives or the environment. A cellular-decomposition-based framework for cooperative, adaptive search is proposed that allows multiple search platforms to adapt to changes in both mission objectives and environmental parameters. Software modules for the autonomy framework MOOS-IvP are described that implement this framework. Simulated and experimental results show that it is feasible to combine both pre-planned and adaptive behaviors to eectively search a target area.by Andrew J. Shafer.M.Eng

    Oceanus.

    Get PDF
    v. 34, no. 2 (1991
    • …
    corecore