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Abstract

Guarding and searching problems have been of fundamental interest since the early

years of Computational Geometry. Both are well-developed areas of research and

have been thoroughly studied in planar polygonal settings.

In this thesis we tackle the Art Gallery Problem and the Searchlight

Scheduling Problem in 3-dimensional polyhedral environments, putting special

emphasis on edge guards and orthogonal polyhedra.

We solve the Art Gallery Problem with reflex edge guards in orthogonal

polyhedra having reflex edges in just two directions: generalizing a classic theorem by

O’Rourke, we prove that br/2c+ 1 reflex edge guards are sufficient and occasionally

necessary, where r is the number of reflex edges. We also show how to compute

guard locations in O(n log n) time.

Then we investigate the Art Gallery Problem with mutually parallel edge

guards in orthogonal polyhedra with e edges, showing that b11e/72c edge guards

are always sufficient and can be found in linear time, improving upon the previous

state of the art, which was be/6c. We also give tight inequalities relating e with

the number of reflex edges r, obtaining an upper bound on the guard number of

b7r/12c+ 1.

We further study the Art Gallery Problem with edge guards in polyhedra

having faces oriented in just four directions, obtaining a lower bound of be/6c − 1

edge guards and an upper bound of b(e+ r)/6c edge guards.

All the previously mentioned results hold for polyhedra of any genus. Addition-

ally, several guard types and guarding modes are discussed, namely open and closed

edge guards, and orthogonal and non-orthogonal guarding.

Next, we model the 3-dimensional Searchlight Scheduling Problem,

the problem of searching a given polyhedron by suitably turning some half-planes

around their axes, in order to catch an evasive intruder. After discussing several



generalizations of classic theorems, we study the problem of efficiently placing guards

in a given polyhedron, in order to make it searchable. For general polyhedra, we give

an upper bound of r2 on the number of guards, which reduces to r for orthogonal

polyhedra.

Then we prove that it is strongly NP-hard to decide if a given polyhedron is

entirely searchable by a given set of guards. We further prove that, even under

the assumption that an orthogonal polyhedron is searchable, approximating the

minimum search time within a small-enough constant factor to the optimum is still

strongly NP-hard.

Finally, we show that deciding if a specific region of an orthogonal polyhedron

is searchable is strongly PSPACE-hard. By further improving our construction,

we show that the same problem is strongly PSPACE-complete even for planar

orthogonal polygons. Our last results are especially meaningful because no similar

hardness theorems for 2-dimensional scenarios were previously known.
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Introduction

Recent advances in robotics and distributed computing have made it a realistic goal

to employ robots in surveillance and tracking, and also motivated countless theo-

retical studies in several areas of Computational Geometry, particularly concerning

vision and motion planning. In the last decades, in order to capture the key aspects

of these applications in simple, yet meaningful ways, several theoretical models have

been proposed and studied.

Arguably the oldest and most fundamental problem of this kind is the Art

Gallery Problem. In its original formulation, the problem consists in finding

a (minimum) set of points in a given polygonal room from which the entire room

is visible. The sides of the polygon model the room’s walls, and the chosen points

would be the locations of static guards, who collectively see the whole room and

protect it from intruders.

The Art Gallery Problem has been generalized and extended in several

directions, encompassing wider classes of geometric shapes, such as polygons with

holes. At the same time, stronger results were obtained for special shapes, such as

orthogonal polygons.

On the other hand, the problem may also be viewed as a pursuit-evasion game,

in which some guards attempt to capture a moving intruder. This scenario can

be modulated not only geometrically, but also based on the sensorial and motional

capabilities of the agents involved. Here, the problem shifts from statically guarding

an environment to dynamically searching it.

In the Searchlight Scheduling Problem, guards are static, but carry a

laser beam that can be turned around, in search of a moving intruder. The goal

of the guards is to move their lasers in concert, according to a fixed schedule, and

detect the intruder with a laser in a bounded amount of time, no matter how fast

he moves and which path he takes. The goal of the intruder is to escape the lasers
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and remain forever unseen.

Despite their seeming simplicity, both problems have proven quite challenging.

While the Art Gallery Problem, as an optimization problem, is known to be

NP-hard, the exact complexity of the Searchlight Scheduling Problem is still

unknown, and the capabilities of various types of searchers are not well-understood

either.

Very little is known about guarding and searching higher-dimensional environ-

ments. None of the most fruitful properties of polygons, such as triangulability and

the existence of an inherent ordering of edges and vertices (e.g., clockwise order),

can be meaningfully generalized to higher dimensions. Even for 3-dimensional poly-

hedral environments, a small set of negative results is known and, to the best of our

knowledge, major non-trivial positive theorems, algorithms or techniques have yet

to be found.

In this thesis, we set out to investigate the Art Gallery Problem and the

Searchlight Scheduling Problem in 3-dimensional polyhedra. The purpose of

our research is twofold: on the one hand, we seek to generalize some well-established

theorems, as well as to provide entirely new results; on the other hand, we aim

at gaining better insights on some long-standing open problems in 2-dimensional

scenarios, by abstracting them and expanding our perspective.

Thesis structure and contributions

Part I. This part is devoted to background information and some preliminary

results.

Chapter 1 surveys some well-known results on the Art Gallery Problem

and the Searchlight Scheduling Problem in the plane. We do not attempt

to give a thorough account of the state of the art of these problems, but we focus

on fundamental results and techniques, and a few additional aspects that will be

relevant in later chapters.

In Chapter 2, we define our notion of polyhedron, pointing out the main features

of our model. Historically, correct definitions of polyhedra have been quite elusive,

and this is an especially delicate task in our thesis, because different polyhedral

models yield somewhat different theorems.

In Chapter 3, we define several types of guards and guarding modes in polyhedra.

In particular, the notions of open segment guard and orthogonal guarding are novel
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contributions. We also prove some basic results concerning face guards and point

guards, concluding with some upper and lower bounds on edge guard numbers, and

the computational hardness of the minimum edge guard problem.

Part II. We dedicate this part to the Art Gallery Problem with edge guards

in polyhedra, which we believe to be the most natural extension of the original 2-

dimensional Art Gallery Problem with vertex guards in polygons, and more

likely to yield similar results. We are mainly concerned with orthogonal polyhedra,

which enjoy several deep structural properties that we thoroughly investigate and

put to use.

In Chapter 4, we focus on orthogonal polyhedra with reflex edges in only two

directions (as opposed to three). We generalize a classic theorem by O’Rourke,

providing a tight bound on the number of required reflex edge guards, in terms of

the number of reflex edges in the polyhedron. We also obtain upper bounds in terms

of the total number of edges, and we formulate some conjectures. To conclude the

chapter, we present an O(n log n) time algorithm to compute a guard set matching

our upper bounds.

In Chapter 5, we consider the problem of guarding orthogonal polyhedra with

mutually parallel edge guards. We give an upper bound on the number of guards

that improves on the previous state of the art, due to Urrutia. En route to this

result, we also give tight inequalities involving the number of reflex edges in an

orthogonal polyhedron and the total number of edges.

Chapter 6 extends the techniques used in Chapter 5 to polyhedra with faces

oriented in four directions (as opposed to three). We obtain new upper and lower

bounds, and formulate some conjectures.

Part III. Here we investigate an extension of the Searchlight Scheduling

Problem to polyhedral environments.

In Chapter 7, we carefully detail our 3-dimensional guard model. There are

several meaningful ways to extend the classic 2-dimensional model, and we choose

to employ segment guards who rotate half-planes of light with one degree of freedom.

We thoroughly motivate our choice with observations and examples.

In Chapter 8, we study one special type of guard, which we call filling guard.

We show how filling guards somewhat act as boundary guards in 2-dimensional

Searchlight Scheduling Problem, in that they enjoy the same positive prop-



viii INTRODUCTION

erties, and enable an extension of the classic “one-way sweep strategy” by Sugihara,

Suzuki and Yamashita. As a further application of the concept of filling guard, we

characterize the searchable problem instances containing only one guard. Finally,

we give a polynomial time algorithm to decide if a guard is filling.

In Chapter 9, we consider the problem of placing guards in a given polyhedron,

in order to make it searchable. We give a quadratic upper bound on the number

of guards that holds for general polyhedra, and we further show that placing one

guard on each reflex edge suffices for orthogonal polyhedra.

Chapter 10 is devoted to computational complexity issues. We first show that

deciding if a given problem instance is searchable is strongly NP-hard. Then we

consider the problem of minimizing search time, with the promise that the input

instance is searchable. We prove that approximating the minimum search time is

NP-hard, even for orthogonal polyhedra.

Finally, in Chapter 11, we consider a generalized Searchlight Scheduling

Problem, in which we do not necessarily have to search the entire environment,

but just a subregion given as input. We prove that the 3-dimensional version of this

Partial Searchlight Scheduling Problem is strongly PSPACE-hard, and

that its 2-dimensional version is PSPACE-complete. Our last result is especially

meaningful because it is the first hardness theorem related to the 2-dimensional

Searchlight Scheduling Problem, and it comes as a more sophisticated ver-

sion of its 3-dimensional counterpart.

Publications. Most of the material in this thesis has already been published.

Publications include the upper bounds on the number of parallel edge guards in

orthogonal polyhedra (joint work with Benbernou et al., [5]), most of Part III (sole

author, [55]), the NP-hardness of minimizing search time in orthogonal polyhedra

(joint work with Monge, [56]), and the PSPACE-completeness of partially searching

orthogonal polygons (sole author, [54]).
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Chapter 1

Background

Abstract

We survey some classic results on the Art Gallery Problem and the

Searchlight Scheduling Problem for planar polygons. Rather than pro-

viding a complete account of the state of the art for these two problems, we

illustrate some fundamental theorems and techniques that we are going to

generalize or employ in later chapters.

Specifically, we delineate the role of partitioning polygons as the first step

in computing guard locations for the Art Gallery Problem, and we point

out that minimizing the number of guards is computationally hard.

Then we survey the main results on the Searchlight Scheduling Prob-

lem, such as the one-way sweep strategy and its consequences, and the se-

quentializability of search schedules.

1.1 Art Gallery Problem

Consider a polygonal region P , representing an empty room. We say that two points

in the plane can see each other if the line segment connecting them lies entirely inside

P or on its boundary. The classic Art Gallery Problem consists in finding the

minimum number g(n) such that, in any polygon of n vertices, there exists a set of

g(n) points, called guards, that collectively see the whole interior of P .

Several results related to the Art Gallery Problem are surveyed in [36, 46,

51, 58]. In this section, we describe those that are most significant to our thesis.
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General polygons

Simple polygons. The Art Gallery Problem was originally posed for simple

polygons (i.e., polygons with no holes and whose boundary does not self-intersect)

by Klee at a conference in Stanford, in 1973. It was later established by Chvátal

that ⌊n
3

⌋
guards are necessary and sufficient to guard simple polygons with n vertices (see [16]),

and Chvátal’s proof was simplified by Fisk shortly after (see [23]).

We sketch Fisk’s proof. Let P be a polygon with n vertices. It is well-known that

P ’s interior is partitionable into n− 2 disjoint triangles by drawing n− 3 diagonals.

Such a decomposition is called triangulation, and can be computed in linear time

(see [13, 36]). Also, a triangulation of a polygon is a plane graph on its vertex set,

whose dual is a tree. By an inductive argument on the tree structure, one can easily

prove that the triangulation graph can be 3-colored, as shown in Figure 1.1. Since

some color is used on at most bn/3c vertices, we place a guard at every such vertex

to guard the entire polygon: indeed, each triangle in the triangulation has vertices

of all three colors, and is therefore guarded. The whole process can be performed in

linear time.

Figure 1.1: Illustration of Fisk’s proof.

This upper bound on the guard number is also tight, because occasionally bn/3c
guards are necessary: consider for example the “comb polygon” depicted in Fig-
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ure 1.2. Each “tooth” of the comb requires one guard, as no point sees the tip of

two distinct tooths.

Figure 1.2: Comb polygon. It has 3k vertices and requires k guards.

Polygons with holes. If P has holes, the previous argument does not hold, be-

cause the triangulation’s dual is no longer a tree. However, a more sophisticated

argument, given in [29], reveals that ⌊
n+ h

3

⌋
guards are always sufficient and occasionally necessary, where h is the number of

holes.

Reflex vertices. Fisk’s method does not exploit P ’s shape at all, and this yields

particularly poor results when P is convex: a single guard is sufficient in this case,

but Fisk’s algorithm still places a linear amount of guards.

Let r be the number of reflex vertices in P (i.e., the vertices whose corresponding

internal angle exceeds 180◦). Choose a concave internal angle α, and cut P along

α’s bisector, obtaining two polygons with at most r − 1 reflex vertices in total. By

inductively repeating the process, P gets partitioned into at most r+1 convex parts,

and each part is such that one of its vertices is a reflex vertex of P . Therefore, if

r > 1, then r guards are always sufficient to guard P . To see that r guards are

sometimes necessary, consider the “shutter polygons” in Figure 1.3.

Notice that r can take any value between 0 and n − 3, so this algorithm is

occationally better, occasionally worse than the previous one, depending on P ’s

shape.
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Figure 1.3: Shutter polygons. At least one guard per reflex vertex is needed.

Orthogonal polygons

Simple orthogonal polygons. Better bounds can be obtained by restricting the

Art Gallery Problem to orthogonal polygons, i.e., polygons whose edges meet

only at right angles. Their simple structure allows for more ingenious partitions,

such as convex quadrilateralizations (i.e., partitions into convex quadrilaterals whose

vertices are also vertices of P ) and partitions into L-shaped pieces (i.e., orthogonal

hexagons). Both partitions can be employed to design a linear time algorithm that

places ⌊n
4

⌋
=
⌊r

2

⌋
+ 1

guards that collectively see P (refer to [36, 51]). A partition into L-shaped pieces is

shown in Figure 1.4. Such a partition, originally due to O’Rourke, will be generalized

in Chapter 4 to a wide class of orthogonal polyhedra, yielding a similar upper bound

on guard numbers.

This many guards are occasionally necessary, for example to guard the “orthog-

onal combs” shown in Figure 1.5.

Orthogonal polygons with holes. If holes are allowed, then the same upper

bound of bn/4c guards holds, as established by Hoffmann in [28]. However, if guards

are required to lie on vertices, no tight bound is known. O’Rourke proved that⌊
n+ 2h

4

⌋
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Figure 1.4: Orthogonal polygon partitioned into L-shaped pieces, and a guarding
set.

vertex guards are sufficient, and Shermer conjectured that⌊
n+ h

4

⌋
are necessary and sufficient (see [36]).

Figure 1.5: Orthogonal comb. It has 4k vertices and requires k guards.

Patroling guards

A different guard model was proposed by Avis and Toussaint in [4]. Imagine that a

static intruder has to be found by a squad of point guards, each of which “patrols”

an area. The easiest way to model this problem is to let each guard move back and
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forth on a line segment completely contained in the polygon. The intruder is caught

the moment a guard sees him during the patrol.

The example in Figure 1.6(a) reveals that⌊n
4

⌋
patroling guards may be necessary.

(a) (b)

Figure 1.6: Lower bound constructions for patroling guard numbers.

As established by O’Rourke in [35], bn/4c patroling guards are also sufficient

to guard any simple polygon, and their paths may be chosen among the polygon’s

diagonals.

However, Paige and Shermer noted that, if we insist on confining each guard to

move on an edge of the polygon, then bn/4c guards may not be sufficient, as the

two examples in Figure 1.6(b) show (refer to [46]).

Since no substantially different counterexamples are known, Toussaint conjec-

tured that ⌊n
4

⌋
+ o(1)

guards patroling edges are sufficient to guard any simple polygon. The best known

upper bound on edge guards is ⌊
3n

10

⌋
+ o(1),

as proved by Shermer in [47].
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For simple orthogonal polygons, Aggarwal proved in [2] that⌊
3n+ 4

16

⌋
patroling guards are necessary and sufficient, and may even be placed on diagonals.

It follows that, not surprisingly, patroling guards are indeed more “powerful”

than stationary guards, in all the aforementioned settings.

Minimizing guards

It was shown by Lee and Lin in [31] that minimizing the number of static point

guards required to guard a given simple polygon is strongly NP-hard. A similar

result for orthogonal polygons is also known. In Chapter 3, we will propose a

variation that can be also extended to the problem of edge-guarding orthogonal

polyhedra.

Recently, in [32], King and Kirkpatrick gave an O(log log OPT)-approximation

algorithm to guard a simple polygon with guards lying on the perimeter.

On the other hand, the problem of minimizing guards in simple polygons was

shown to be APX-hard by Eidenbenz in [21], but whether it is in APX remains an

open problem. With no restrictions on the number of holes, the problem is as hard

to approximate as SET COVER, as shown by Eidenbenz, Stamm and Widmayer

in [22]. As a consequence, it is NP-hard to find a guarding set of size o(log n).

1.2 Searchlight Scheduling Problem

Basics

The Searchlight Scheduling Problem (SSP) was first studied in [49] by Sug-

ihara, Suzuki and Yamashita as a more “dynamic” version of the Art Gallery

Problem. It is a search problem in simple polygons, where some stationary guards

are tasked to locate an evasive, moving intruder by illuminating him with search-

lights. Each guard carries a searchlight, modeled as a 1-dimensional ray that can

be continuously rotated about the guard itself, whereas the intruder follows an “un-

predictable” continuous path, running at unbounded speed and trying to avoid the

searchlights. Since the guards cannot know the position of the intruder until they
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catch him in their lights, the movements of the searchlights must follow a fixed

schedule, which should guarantee that the intruder is caught in finite time, regard-

less of the path he decides to take. The search takes place in a polygonal region,

whose sides act as obstacles both for the intruder’s movements and for the guards’

searchlights. In a way, the polygonal boundary benefits the intruder, who can hide

behind corners and avoid scanning searchlights. But it can also turn into a cul-de-

sac, if the guards manage to force the intruder into an enclosed area from which he

cannot escape.

Thus SSP is the problem of deciding if there exists a successful search schedule

for a given finite set of guards in a given simple polygon. Figure 1.7 shows an

instance of SSP with a search schedule.

(a) (b)

(c) (d)

Figure 1.7: Search schedule for two guards in a polygon. At each stage, the light
area is still “contaminated”, whereas the darker areas have been cleared.

A trivial necessary condition for searchability is that the guard positions should

guarantee that no point in the polygon is invisible to all guards. In other words,

the guard set should at least be a solution to the Art Gallery Problem in the

given polygon, otherwise the intruder could sit at an uncovered point and never be

discovered.
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Another simple necessary condition is that every guard lying in the interior of

the polygon (thus not on the boundary) should be visible to at least one other guard.

Without this, the intruder could remain in a neighborhood of a guard and just avoid

its rotating searchlight.

Concerning the problem of minimizing the number of guards to search a given

polygon, [49] also contains a characterization of the simple polygons that are search-

able by one or two suitably placed guards. A similar characterization for three guards

was also found by the same authors, but never published.1

On the other hand, Yamashita, Suzuki and Kameda, in [57], gave some upper

bounds on the minimum number of guards required to search a polygon (possibly

with holes) as a function of the number of guards needed to solve the Art Gallery

Problem in that polygon. In the same paper, the original SSP is further extended

by introducing guards carrying k > 1 searchlights, called k-guards.

One-way sweep strategy

Several sufficient conditions for searchability of simple polygons are detailed in [49],

all employing a general search heuristic called the one-way sweep strategy (OWSS),

illustrated in Figure 1.8.

First of all, two assumptions are made on the input data: every point in the

input polygon P is visible to at least one guard, and every guard is either on the

boundary of P or visible to another guard. As previously noted, if either condition

does not hold, P is trivially unsearchable. The OWSS algorithm takes a semiconvex

subpolygon R, “supported” by the searchlights of a set of guardsK, and an additional

guard ` not in K. R is partly bounded by the searchlights of K, and partly bounded

by P ’s boundary. Indeed, the part bounded by the searchlights contains no points

of non-convexity, hence the name “semiconvex”. ` is assumed to be outside R or on

its boundary, in such a way that it can see at least one point inside R. Now, the

heuristic attempts to clear R as follows: the searchlights in K are never moved, and

` starts sweeping R counterclockwise, until it reaches the boundary of an invisible

subregion R′. If possible, OWSS is applied recursively on R′, by adding ` to K and

picking a new searchlight `′ that meets the above requirements. Otherwise (i.e., if

such `′ does not exist), either R′ can be cleared by the guards that lie inside it (any

method can be applied here), or the heuristic fails.

1Source: private communication with M. Yamashita, 2010.
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(a) (b) (c)

(d) (e) (f)

Figure 1.8: Illustration of the one-way sweep strategy.

The above algorithm shows that SSP may be reduced to instances with no guards

on the polygon’s boundary. The OWSS can also be used as a tool to prove many

remarkable sufficient conditions for the existence of a search schedule, based on the

structure of the visibility graph of the input guards (i.e., the graph whose edges

connect the couples of guards that can see each other).

For example, there exists a search schedule if every connected component of the

visibility graph contains at least one guard lying on the boundary of the polygon.

Most notably, if all the guards lie on the boundary (and collectively see the whole

polygon), then they also have a search schedule.

Another sufficient condition for the existence of a search schedule is that the

visibility graph is connected, and there exists a guard whose removal does not dis-

connect it. Yet another sufficient condition is that the visibility graph is connected,

and there exist two guards such that no point in the polygon is visible to both of

them. More details can be found in [49].
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In [38], Obermeyer, Ganguli and Bullo described an asynchronous distributed

version of the OWSS, in which the guards are unaware of what lies outside their

field of view, and some degree of parallelism is also achieved.

We will propose an extension of the OWSS to polyhedra in Chapter 8.

Complexity and discretization

The problem of determining the computational complexity of SSP was not directly

addressed in the seminal papers [49, 57], but has acquired more interest over time,

and remains open. We will obtain some related complexity results in Chapters 10

and 11.

Obermeyer, Ganguli and Bullo showed in [39] that SSP is solvable in double

exponential time, by means of an exact cell decomposition technique that reduces the

space of all possible schedules to a finite graph, which is then searched systematically.

We will show in Lemma 11.8 that such a technique actually implies that SSP is in

PSPACE.

The discretization method consists in identifying a finite set of critical angles for

each guard. Guard ` is aiming its searchlight at a critical angle if and only if:

(i) ` is located on some edge of the polygon and aims its searchlight along that

edge;

(ii) `’s ray is tangent to a subpolygon that ` cannot see;

(iii) ` aims at another visible guard;

(iv) ` aims directly away from another visible guard.

It can be proved that, if a search schedule exists, then it can be transformed into

one in which only one guard is active at a time, and guards only stop or change

direction at critical angles. Such a schedule is said to be sequential and critical. In

Chapters 7 and 8, we will briefly discuss some conditions allowing sequentiability to

be extended to 3-dimensional scenarios.

In [39], the problem of minimizing search time, in a scenario where searchlights

have bounded angular speeds, is also mentioned as an interesting and yet unexplored

variation of SSP. In Chapters 9 and 10, we will marginally consider this problem,

as well.
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Chapter 2

Polyhedra

Abstract

We define general polyhedra and several subclasses, such as orthogonal

polyhedra and c-oriented polyhedra. We review some well-known theorems,

such as Euler’s formula and the polyhedral Gauss–Bonnet theorem, and we

explore some structural properties of orthogonal polyhedra.

Furthermore, we consider the problem of partitioning polyhedra into con-

vex parts, first showing why planar triangulations do not generalize, and then

presenting some alternative partitions, mainly due to Chazelle.

2.1 Closed and open polyhedra

Basic definitions. Throughout the scientific literature, there is little agreement

around a precise definition of the notion of polyhedron. Unfortunately, different

definitions, arising in different contexts, are not always equivalent. Here follow the

definitions that we will use for the rest of the thesis.

Definition 2.1 ((closed) polyhedron). A (closed) polyhedron is the union of

a finite set of closed tetrahedra (with mutually disjoint interiors) embedded in R3,

whose boundary is a connected 2-manifold.

Remark 2.2. We stress that a polyhedron, by itself, is merely a subset of R3, with

no additional structure.
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As a consequence of our definition, a (closed) polyhedron is a compact topological

space and its boundary is homeomorphic to a sphere or a g-torus. g is also called

the genus of the polyhedron, and it is zero if the polyhedron is homeomorphic to a

ball. Moreover, the complement of a polyhedron with respect to R3 is connected.

(For a review on basic topological terminology and facts, refer to [3, 33].)

Sometimes, when studying visibility problems, we may be interested in a slightly

different notion of polyhedron.

Definition 2.3 (open polyhedron). An open polyhedron is the interior of a

closed polyhedron (i.e., a closed polyhedron minus its boundary).

Faces, vertices, edges. Since a polyhedron’s boundary is piecewise linear, the

notion of face of a polyhedron is well-defined as a maximal planar subset of its

boundary with connected and non-empty relative interior. Thus a face is a plane

polygon, possibly with holes, and possibly with some degeneracies, such as hole

boundaries touching each other at a single vertex. Any vertex of a face is also

considered a vertex of the polyhedron.

Edges are defined as minimal non-degenerate straight line segments shared by

two distinct faces and connecting two vertices of the polyhedron. Since a polyhe-

dron’s boundary is an orientable 2-manifold, the relative interior of an edge lies on

the boundary of exactly two faces, thus determining an internal dihedral angle (with

respect to the polyhedron). An edge is reflex if its internal dihedral angle is reflex,

i.e., strictly greater than 180◦. Hence, convex polyhedra have no reflex edges.

Observation 2.4. The intersection of any two distinct faces of a polyhedron is

either empty, or a vertex, or an edge. Each edge of a polyhedron contains exactly

two vertices as its endpoints, and lies on the relative boundary of exactly two non-

coplanar faces. Each vertex of a polyhedron belongs to at least three edges and to at

least three faces.

A discussion on possible degeneracies arising from an analogous definition of

polyhedron, along with a collection of notable examples, is contained in [11].

c-oriented polyhedra. A useful parameter to express the complexity of a poly-

hedron is the number of different orientations its faces have (see for instance [17]).
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Definition 2.5 (c-oriented polyhedron). A polyhedron is c-oriented if c vectors

exist, any three of which form a basis for R3, such that each face is orthogonal to

one of the vectors.

It is understood that the orientation of a face is merely the slope of the plane in

which the face is embedded. This should not be confused with the orientation the

face inherits as being part of an orientable 2-manifold, i.e., a polyhedron’s boundary.

For instance, a cube is 3-oriented even if there are six distinct normal vectors pointing

out of its faces. Similarly, a tetrahedron and a regular octahedron are both 4-

oriented, a regular dodecahedron is 6-oriented, and a regular icosahedron is 10-

oriented.

Representing polyhedra. There is no obvious choice of data structure for rep-

resenting polyhedra. Although discussing this topic goes beyond the scope of our

thesis, occasionally we will have to give algorithms and express their complexity.

We will generally assume that a polyhedron is stored as the array of its vertices,

together with the array of its faces. Each face is a sequence of indices into the vertex

array. The outer boundary of each face will be given in counterclockwise order with

respect to a normal vector poiniting outside, while its holes will be given in clockwise

order.

There are some issues arising from the finiteness of the representation of coor-

dinates, since the vertices of the same face are supposed to be coplanar. Coherency

of data may still be guaranteed (with obvious losses in the representability of some

polyhedral shapes), for example by triangulating the faces, but we will not delve

into this topic here. For a discussion on some more sophisticated ways to represent

polyhedra, refer to [11, 37]

When expressing asymptotic bounds with respect to the size of a polyhedron,

we will generically refer to n as the size of its representation. The robustness of this

choice is also testified by the results presented in the next section. For instance,

due to Euler’s formula and Observation 2.4, in a simply connected polyhedron the

number of faces is bounded by a linear function of the number of edges, which is

bounded by a linear function of the number of vertices, etc.



18 CHAPTER 2. POLYHEDRA

2.2 Notable identities

Euler’s formula. One of the reasons why we chose our polyhedral model is that

the Euler’s formula holds, along with its several consequences.

Theorem 2.6 (Euler–Poincaré). For any polyhedron of genus g with f faces, e

edges, v vertices, and a total of h holes on its faces, the identity

f + v + 2g = e+ h+ 2

holds.

A proof of the formula for polyhedra of arbitrary genus was first given by Poincaré

in [43], whereas Euler only gave the formula for simply connected polyhedra (also

refer to [26] for a comprehensive treatment of related subjects).

Remark 2.7. Euler’s formula is often presented without the h term, in that it is

usually assumed that the polyhedron’s faces are triangulated. It is straightforward to

obtain our version of the formula, by induction on h. Indeed, a face with n vertices

and h holes can be partitioned into n+ 2h− 2 triangles by drawing n+ 3h− 3 extra

edges. Such triangles can then be treated as “degenerate” (i.e., coplanar) faces.

Polyhedral Gauss–Bonnet theorem. For each vertex v of a polyhedron, we

denote by kv its curvature, defined as 2π minus the sum of the face angles incident

to v.

The following theorem, relating the total curvature of the vertices of a polyhedron

with its genus, was originally discovered by Descartes, and later extended in various

directions by several authors, most notably Gauss and Bonnet.

Theorem 2.8 (polyhedral Gauss–Bonnet). In any polyhedron of genus g,∑
v

kv = 2π(2− 2g),

where v ranges through all vertices.

In the case of polyhedra, the proof follows elementarily from Euler’s formula,

and can be found in [18].
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The polyhedral Gauss–Bonnet theorem will be used in Chapter 5 to obtain tight

inequalities relating the number of edges in an orthogonal polyhedron with the

number of reflex edges.

Genus and reflex edges. An elementary consequence of the polyhedral Gauss–

Bonnet theorem is that higher genuses imply proportional amounts of reflex edges.

Theorem 2.9 (Chazelle–Shouraboura). In any polyhedron, the genus g and the

number of reflex edges r are related by the inequality

g 6 r + 1.

A simple proof of this inequality was given by Chazelle and Shouraboura in [15].

2.3 Orthogonal polyhedra

Terminology. A polyhedron is said to be orthogonal if each of its edges is parallel

to some axis. It follows that orthogonal polyhedra are 3-oriented. A cuboid is a

convex orthogonal polyhedron (some authors refer to cuboids as boxes).

Each face of an orthogonal polyhedron is an orthogonal polygon, perhaps with

holes, perhaps with degeneracies such as hole boundaries touching each other at a

single vertex.

Whenever considering orthogonal polyhedra, we implicitly define the vertical di-

rection (or up-down direction) to be the direction parallel to the z axis. Accordingly,

any direction parallel to the xy plane is called horizontal, and the direction parallel

to the x axis (resp. y axis) is called left-right (resp. front-back) direction. Thus,

the edges and faces of any orthogonal polyhedron are either vertical or horizontal,

and the x-orthogonal (resp. y-orthogonal) faces are called lateral faces (resp. front

faces).

k-reflex orthogonal polyhedra. Furthermore, we say that an orthogonal poly-

hedron is k-reflex if it has reflex edges parallel to at most k distinct axes. Thus, a

cuboid is 0-reflex, an orthogonal prism is 1-reflex, and the polyhedra in Figures 2.2
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and 2.5 are 3-reflex. In Chapter 4, we will consider a variation of the Art Gallery

Problem restricted to 2-reflex orthogonal polyhedra.

Vertex classification. In any orthogonal polyhedron, all convex dihedral angles

are 90◦ wide, and all reflex dihedral angles are 270◦ wide. Based on the number

of incident reflex and convex edges, the vertices of orthogonal polyhedra form six

distinct classes, denoted here by A, B, C, D, E and F, defined as follows.

Consider the eight octants determined by the coordinate axes intersecting at a

given vertex, and place a sufficiently small regular octahedron around the vertex,

such that each of its faces lies in a distinct octant. By Definition 2.1, the set of

the octahedron’s faces that fall inside (resp. outside) our orthogonal polyhedron is

connected: recall that the boundary of a polyhedron is a 2-manifold.

Consider all possible ways of partitioning the faces of the octahedron into two

non-empty connected sets, up to isometry (refer to Figure 2.1):

• There is essentially a single way to select one face (resp. seven faces). This

corresponds to an A-vertex (resp. a B-vertex).

• There is a single way to select two faces (resp. six faces). This case does

not correspond to a vertex of the orthogonal polyhedron: it implies that the

considered point is not a vertex of any face on which it lies.

• There is a single way to select three faces (resp. five faces). This corresponds

to a D-vertex (resp. a C-vertex).

• There are three ways to select four faces. One of them implies that the point

lies in the middle of a face, hence it does not correspond to a vertex. The

other two choices correspond to an E-vertex and an F-vertex, respectively.

Figure 2.2 shows a polyhedron exhibiting vertices of all types.

Bounds on the number of reflex edges. For orthogonal polygons with h holes,

there is a simple formula relating the number of vertices n with the number of reflex

vertices r:

n = 2r − 4h+ 4.

This can be easily proved by induction on h.
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A

B

C

D

E F

Figure 2.1: Vertex types for orthogonal polyhedra.

For edges in orthogonal polyhedra there is no such identity, but the total number

of edges still bounds the number of reflex edges, both from above and from below.

In Chapter 5, we will prove that the following tight inequalities hold for every

orthogonal polyhedron of genus g, with e edges, of which r > 0 are reflex:

e

6
+ 2g − 2 6 r 6

5e

6
− 2g − 12.

The proof is yet another application of the polyhedral Gauss–Bonnet theorem.
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C

D

E

F

Figure 2.2: Orthogonal polyhedron displaying vertices of all types.

2.4 Convex partitions

Tetrahedralizations

The main difficulty that arises when attempting to extend the results surveyed in

Chapter 1 to polyhedra is that triangulation, the most basic and versatile tool used

for polygons, does not generalize. Indeed, there are polyhedra whose interior cannot

be partitioned into tetrahedra without the addition of extra vertices (also called

Steiner points).

The Schönhardt polyhedron. A simple example of an untetrahedralizable poly-

hedron can be obtained by “twisting” a triangular prism by 30◦, while bending in-

side the lateral faces, as shown in Figures 2.3 and 2.4. This is also known as the

Schönhardt polyhedron, see [19, 36].

No matter how we pick four of the six vertices, the segment connecting two of

them lies outside the polyhedron, which is then untetrahedralizable. Nonetheless, it

can be decomposed into eight tetrahedra by adding a Steiner point in its center.

Deciding tetraheralizability. The Schönhardt polyhedron was used by Ruppert

and Seidel in [45] to prove that deciding if a given polyhedron is tetrahedralizable

without the addition of Steiner points is NP-complete.
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Figure 2.3: Construction of the Schönhardt polyhedron.

Figure 2.4: Schönhardt polyhedron, top view.

The octoplex. There are untetrahedralizable polyhedra also among orthogonal

polyhedra. Figure 2.5 shows an example, called octoplex in [34].

To prove that the octoplex is not tetrahedralizable, observe that there are points

p around its center, such that the segment connecting p with any vertex necessarily

crosses the boundary. It follows that such points p cannot belong to any tetrahedron

in a tetrahedralization, hence the octoplex is untetrahedralizable.

Bounds on partitions into tetrahedra

Chazelle and Palios proved in [14] that any simply connected polyhedron with n

vertices and r reflex edges can be partitioned, with the addition of Steiner points,

into O(n + r2) tetrahedra. The partition can be computed in O(n + r2) space and
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Figure 2.5: Octoplex.

O((n + r2) log r) time. Since in most applications n greatly exceeds r, the method

is viable in practice.

The algorithm starts by eliminating some low-degree vertices called “cups” in

order to reduce the size of the polyhedron to O(r), and then proceeds by erecting

vertical “fences” that partition the resulting shape into O(r2) prisms, which are

easily tetrahedralized.

Due to Theorem 2.9, the same upper bounds also hold for polyhedra of any

genus, as observed by Chazelle and Shouraboura in [15].

The O(n+ r2) bound on the number of tetrahedra is asymptotically tight in the

worst case, as the class of Chazelle’s polyhedra shown in Figure 2.6 implies (see [12]).

Indeed, the reflex edges on the bottom reflex edges lie on the hyperbolic paraboloid

z = xy, while those on the top reflex edges lie on z = xy + ε. If ε is small enough,

the intersection of the region lying between the two hyperbolic paraboloids with any

convex subset of the polyhedron can only have such a small volume that a quadratic

number of convex pieces is necessary to cover the whole volume.

Decompositions into convex parts

Note that Chazelle’s polyhedra (Figure 2.6) also yield a lower bound of Ω(r2) on

the number of convex parts (not necessarily tetrahedral) required to decompose a
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Figure 2.6: Chazelle’s polyhedron.

polyhedron with r reflex edges.

In [12], Chazelle showed how to partition any polyhedron into at most

r2

2
+
r

2
+ 1

convex pieces (with the addition of Steiner points) in O(nr3) time and O(nr2) space,

where n is the number of vertices.

The proposed algorithm, called “revised naive decomposition” in [12], picks a

reflex edge and resolves it by cutting the polyhedron along a plane adjacent to that

edge. Then the decomposition proceeds recursively on the resulting pieces, mak-

ing sure that the reflex edge parts that originally belonged to the same reflex edge

are all resolved with coplanar cuts. (A very similar decomposition will be thor-

oughly described in Chapter 9 and applied to the 3-dimensional Searchlight

Scheduling Problem.)

Again, the partition obtained is asymptotically optimal, and the algorithm is

viable due to the low amount of reflex edges in polyhedra encountered in most

applications.
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Chapter 3

Guards

Abstract

We define several types of guards and guarding modes in polyhedra, also

introducing some new concepts. Namely, we consider face guards and edge

guards, each of which may be open or closed, and traditional point guards.

Furthermore, we distinguish between orthogonal and non-orthogonal guard-

ing.

We give matching upper and lower bounds quantifying the relationship

between closed and open edge guards in orthogonal polyhedra, showing that

closed edge guards are three times more “powerful” than open edge guards.

Next, we provide some upper and lower bounds on the number of point

guards, edge guards, and face guards required to guard a given polyhedron.

We review the state of the art on each problem, while also proving some new

basic facts. We discuss both general and orthogonal polyhedra, and both

closed and open guards.

Finally we focus on edge guards again, and we give some hardness proofs

related to the computation and approximation of minimum edge guard num-

bers, employing almost direct generalizations of well-known planar construc-

tions.
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3.1 Visibility and guarding

Visibility

Given two points x and y, we denote by xy the (closed) straight line segment joining

x and y, and by x̃y the corresponding open segment, i.e., x̃y = xy \ {x, y}.
Visibility with respect to a (closed or open) polyhedron P is a relation between

points in R3: point x sees point y 6= x (equivalently, y is visible to x) if xy \ {x} lies

entirely in P . x sees itself if and only if it belongs to P .

Note that, if P is a closed polyhedron, then visibility is a symmetric relation. In

this case, a “visibility segment” xy could touch P ’s boundary, or even lie on it.

On the other hand, if P is an open polyhedron, its boundary “occludes” visibility:

if x sees y, no portion of xy, except the endpoint x, can lie on the boundary of P .

Hence, even if a boundary point cannot see itself, it can see some points inside P .

When P is understood, we can safely omit any explicit reference to it, and just

generically refer to visibility.

Definition 3.1 (visibility region). The visibility region V(x) of a point x ∈ R3

(with respect to some polyhedron) is the set of points that are visible to x. The

visibility region of a set X ⊆ R3, denoted by V(X), is the set of points that are

visible to at least one point in X.

With respect to open polyhedra, visibility regions are open sets. This property

will be used in this chapter in a couple of occasions.

Proposition 3.2. For every X ⊆ R3, the visibility region of X with respect to an

open polyhedron P is an open set.

Proof. We will prove our claim just for X = {x}. In general,

V(X) =
⋃
x∈X

V(x),

which is open because it is a union of open sets.

First of all, if x does not lie in the topological closure of P , then its visibility

region is the empty set, which is open. Otherwise, let f be a face of P not containing

x. The region of space occluded by f is a closed set O(x, f), shaped like a truncated

unbounded pyramid with apex x and base f . Taking the union of all O(x, f)’s, for
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every face f not containing x, we obtain a closed set O(x), because P has finitely

many faces.

The region occluded by the faces containing x is the corresponding unbounded

solid angle, external with respect to P , which is a closed set. Its union with O(x) is

again a closed set, whose complement is therefore an open set. By definition, this

is exactly V(x).

Observation 3.3. For closed polyhedra, a weaker statement holds: the visibility

region of any point, with respect to a closed polyhedron, is a closed set (the proof is

similar to that of Proposition 3.2). However, the visibility region of an infinite point

set, with respect to a closed polyhedron, may be neither a closed set nor an open set.

Guard types and guarding modes

Given a polyhedron P , our variations of the Art Gallery Problem ask for a tight

bound on the minimum k such that there exists a guarding set G = {g1, · · · , gk}
that completely sees P . In other terms, we require that

P =
k⋃
i=1

V(gi).

The exact nature of the guards gi depends on the particular variation of the

problem we are considering. Our guards could be:

• Point guards, i.e., points chosen anywhere.

• Boundary point guards, i.e., points chosen on P ’s boundary.

• Vertex guards, i.e., points chosen among P ’s vertices.

• Segment guards, i.e., line segments lying in the topological closure of P .

• Boundary segment guards, i.e., line segments lying on P ’s boundary.

• Edge guards, i.e., line segments chosen among P ’s edges.

• Face guards, i.e., polygons chosen among P ’s faces.
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Orthogonal guarding. We can further distinguish a more restrictive guarding

mode, which we will often use in conjunction with edge guards in orthogonal poly-

hedra. We say that an edge guard e orthogonally sees a point x (with respect to

some polyhedron) if there is a point y ∈ e that sees x, such that xy is orthogonal to

e. Similarly, we introduce the variant of the Art Gallery Problem in which an

(orthogonal) polyhedron must be orthogonally guarded by edge guards.

Bound parameters. The parameters used to express bounds on guard numbers

depend on the nature of the guards themselves. We usually bound point guards in

terms of the number of vertices of the polyhedron, and we bound face guards in

terms of the total number of faces. We may bound segment and edge guards either

in terms of the total number of edges, or of the number of reflex edges.

3.2 Open edge guards

Although in the traditional variations of the Art Gallery Problem, guards are

usually topologically closed sets, we introduce a different model, which we claim is

more natural in certain circumstances.

Segment guards, edge guards and face guards may be closed or open, depending

on whether they contain their relative boundary or not. For instance, an open edge

guard is an edge minus its endpoints.

Motivations

In Part II, we will study the Art Gallery Problem for edge guards. We will

generally consider closed edge guards in conjunction with closed polyhedra, and

open edge guards in conjunction with open polyhedra.

To better understand our motivations for studying open edge guards in open

polyhedra, consider a polyhedron representing an empty room with solid walls. We

are tasked to place guards in this room, who can detect unwelcome intruders. Be-

cause an intruder cannot hide “within” a wall, but rather must be located inside

the room, there is no need to guard the walls of the room, i.e., the boundary of the

polyhedron.

A guarding problem can alternatively be viewed as an illumination problem, with

guards acting as light sources. Incandescent lights are modeled as point guards, and
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fluorescent lights are modeled as segment guards. In the latter case, it may be

convenient to disregard the endpoints of the edge guards. Indeed, the amount of

light that a point interior to the polyhedron receives is proportional to the total

length of the segments illuminating it. Employing the open edge guard model in

open polyhedra ensures that if a point is illuminated, it receives a strictly positive

amount of light, and makes the model more realistic.

Observe that these two notions of illuminated points (visible to an open edge

guard or receiving a strictly positive amount of light from closed edge guards) cease

to be equivalent in the case of closed polyhedra.

Comparing open and closed edge guards

Although closed edge guards have only two more points than their open counter-

parts, they can be three times more “powerful”. This is because the number of open

guards needed to guard a polyhedron may be three times the corresponding number

of closed edge guards. For open orthogonal polyhedra, this bound becomes tight.

Theorem 3.4. Any open orthogonal polyhedron guardable by k closed edge guards

is guardable by at most 3k open edge guards, and this bound is tight.

Proof. Given a set of k closed edges that guard the entire polyhedron, we first

construct a guarding set of open edges of size at most 3k and then show that this

set also guards the entire polyhedron. The construction is as follows: for each closed

edge uv from the original guarding set, place the open edge ũv into the new guarding

set. To replace the endpoint u, add a reflex edge ũw, with w 6= v, if one such edge

exists. Otherwise, add any other edge incident to u. Similarly, an incident edge,

preferably reflex, is selected for the other endpoint v. Hence, for each edge of the

original guarding set, at most three open edges are placed in the new guarding set.

To prove the equivalence of the two guarding sets, we show that the region that

was guarded by endpoint u of the closed edge uv from the original guarding set

is guarded by some point belonging to the interior of uv or the interior of uw, as

chosen above, i.e., V(u) ⊆ V(ũv) ∪ V(ũw).

Let x ∈ V(u). By Proposition 3.2, a small-enough ball B centered at x belongs

to V(x). We consider a right circular cone C with apex u, whose base is centered at

x and is contained in B. Clearly, C ⊂ V(u). Let D be a (small-enough) ball centered
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at u that does not intersect any face of the polyhedron except those containing u

(refer to Figure 3.1).

u

v

w

y

x

z

ρ

D

C

B

Figure 3.1: Construction from the proof of Theorem 3.4.

We prove that D ∩ P ⊆ V(ũv ∩ D) ∪ V(ũw ∩ D).

If u is an A-vertex (recall the classification of vertices from Chapter 2 and refer to

Figure 2.1), then D∩P ⊆ V(ũv∩D). If u is a B-vertex (as illustrated in Figure 3.1),

then of the eight octants in which D is partitioned by orthogonal planes crossing at

its center, one is external to P . Out of the seven octants that need be guarded, six

are guarded by ũv ∩ D. The same holds for ũw, and together they guard all seven

octants (two of the octants guarded by ũv are missing a face, but those two faces

are guarded by ũw).

In all other cases (u is a C-, D-, E- or F -vertex), either uv or uw is a reflex edge.

Assume without loss of generality that uv is reflex. Then, ũv ∩ D sees all of D ∩ P
(refer again to Figure 2.1).

The boundaries of D and C intersect at a circle of radius ρ > 0. Let y be the

center of that circle. By the above reasoning, there is a point z on ũv ∩ D or on
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ũw ∩D that sees y, and hence the entire open segment ũz sees y. Pick a point t on

ũz such that ||ut|| < ρ. Then t sees x, hence x is guarded.

A similar argument holds for the visibility region of the other endpoint, v, of uv.

Figure 3.2: Matching ratio in Theorem 3.4. Notice that the same example also
solves the corresponding problem for 2-dimensional polygons.

To see that 3 is the best achievable ratio between the number of open and closed

edge guards, consider the polygon in Figure 3.2 and extrude it to an orthogonal

prism. Each large dot in the figure represents a distinguished point located in the

interior of the prism. The only (closed) edges that can see more than two selected

points are the highlighted edges (located on the lower or upper base of the prism).

Picking those edges as guards yields the minimum guarding set. On the other hand,

the relative interior of any edge can see at most one distinguished point. Therefore,

at least as many open edge guards as there are distinguished points are necessary.

Note that the above analysis does not hold in the case of closed polyhedra, since

we can no longer argue that a single closed edge guard is locally dominated by three

open edge guards.



34 CHAPTER 3. GUARDS

Planar open edge guards

The open guard model that we introduced was later studied, in the case of open

edge guards in 2-dimensional polygons, by Tóth, Toussaint and Winslow in [50], and

subsequently by Cannon, Souvaine and Winslow in [9].

Concerning planar open edge guards, we present a result that will serve as a

lemma for a theorem in Chapter 9. We want to guard a polygon P with open edge

guards and, for technical reasons (see the proof of Theorem 9.4), we also want to

force the selection of a specific edge.

Lemma 3.5. Any polygon with r reflex vertices, h holes and a distinguished edge e

is guardable by at most r − h+ 1 open edge guards, one of which lies on e.

Proof. Let P be a polygon, select any reflex vertex v and draw the bisector of the

corresponding internal angle, until it again hits the boundary of P . If the ray hits

another vertex, slightly rotate it about v, so that it instead hits the interior of an

edge. Two situations can occur: either P gets partitioned in two parts, with r − 1

total reflex vertices and h total holes, or two connected components of the boundary

are joined, so that P loses both a hole and a reflex vertex.

(a)

e

(b)

ee

Figure 3.3: Example of the construction in Lemma 3.5. In (a) the first step is shown,
where the dashed line acts as a degenerate edge of the resulting polygon. In (b) the
final partition is shown, with the selected edges represented as thick lines.

Repeat the process inductively on the resulting polygons, until no reflex vertex

remains. Notice that polygonal boundaries may be degenerate in the intermediate

steps of this construction, meaning that a single segment should occasionally be

regarded as two coincident segments (refer to Figure 3.3(a)). P is now partitioned

into convex pieces, which of course have no holes. Thus, during the process, the
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number of holes decreased h times, while the number of pieces in the partition

increased r − h times, resulting in r − h + 1 convex polygons. Additionally, each

polygon has at least one edge lying on P ’s boundary, and conversely every internal

point of each edge of P sees at least one complete region. Place a guard on the

distinguished edge e, thus guarding at least one region of the partition. For each

unguarded (or partially guarded) region, choose an edge of P that completely sees it,

and place a guard on it. As a result, P is completely guarded and at most r−h+ 1

open edge guards have been placed.

Observation 3.6. The previous bound is asymptotically tight (in terms of r), be-

cause polygons with r reflex vertices can be constructed that require r open edge

guards, for every r (e.g., the shutter polygons in Figure 1.3).

3.3 Bounds on point guard numbers

Recall from Chapter 1 that any 2-dimensional polygon can be guarded by vertex

guards, due to the existence of triangulations. In Chapter 2 we showed that triangu-

lations do not generalize to 3-dimensional polyhedra. Actually, there are polyhedra

that are not guardable by vertex guards, such as the octoplex, shown in Figure 2.5.

Indeed, even assigning a guard to each vertex of the octoplex fails to guard some

points around its center.

Orthogonal polyhedra

The class of polyhedra illustrated in Figure 3.4 somewhat generalizes the octoplex.

These simply connected orthogonal polyhedra are called multiplexes in [34] and

Seidel polyhedra in [18, 36].

To construct a multiplex, start from a cube and carve an array of deep cuboidal

dents on three of its faces. The dents do not intersect inside the cube; instead,

they subdivide its interior into smaller empty cubes, with narrow cracks along every

edge. Figure 3.4(b) shows a cross section of a multiplex, with a dot in the center of

each small cube. Around each dot, there are points that are invisible to all vertices.

Therefore, vertex guards are insufficient to guard multiplexes, and the number of

necessary point guards is proportional to the number of small cubes. It easily follows

that Ω(n3/2) point guards are necessary to guard multiplexes, where n is the number
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(a) outer view (b) cross section

Figure 3.4: Multiplex.

of their vertices.

For orthogonal polyhedra, this bound is asymptotically tight, as proved by Pa-

terson and Yao in [42], via Binary Space Partitioning.

Theorem 3.7 (Paterson–Yao). Θ(n3/2) point guards are sufficient and occasion-

ally necessary to guard an orthogonal polyhedron with n vertices.

General polyhedra

For general polyhedra, a quadratic upper bound can be obtained with little effort:

Observation 3.8. For general polyhedra with r reflex edges, an upper bound of

r2

2
+
r

2
+ 1

guards trivially follows from Chazelle’s “revised naive decomposition” (refer to Chap-

ter 2 and [12]). Furthermore, such guards can be chosen on reflex edges.

The general impression is that point guards are too “weak” to guard polyhedra,

in that they do not allow generalizations of any of the results on 2-dimensional

polygons mentioned in Chapter 1. In particular, no linear upper bound on the

number of point guards exists, due to Theorem 3.7.
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3.4 Bounds on edge guard numbers

Motivations

We already discussed the analogy between guarding problems and illumination prob-

lems when introducing open edge guards. Recall from Chapter 1 that another appli-

cation of edge guards, and segment guards in general, is that of modeling patorling

point guards moving back and forth on a line.

The question whether and how edge guards in polyhedra are truly more “pow-

erful” than point guards immediately arises. In the next sections, we will show that

the situation with edge guards is much more appealing, in terms of the number of

guards required to guard a polyhedron.

Here, we merely point out a basic fact that holds even for edge guards in simple

orthogonal polygons, which is another evidence of the intrinsic superiority of edge

guards with respect to point guards.

Figure 3.5: The upper edge guard cannot be replaced by a finite number of its
points.

Observation 3.9. There are simple orthogonal polygons in which an edge guard

cannot be replaced by a finite number of its points. Figure 3.5 illustrates an example:

if a subset G of the upper edge ` is such that V(G) = V(`), then the right endpoint

of ` must be a limit point of G.
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Of course, Observation 3.9 holds for open and closed edge guards, and for open

and closed polygons and polyhedra alike.

Bounds in terms of e

Solvability. First of all, the Art Gallery Problem with edge guards is always

“solvable”, in that assigning guards to every edge is sufficient to guard any polyhe-

dron P . Indeed, given a point x ∈ P , a cross section of P through x is a polygon,

whose vertices lie on P ’s edges. Because a polygon is guarded by its vertex set, x

is guarded. We may even select the cross section so that it contains no vertex of P
(other than x itself, if it coincides with a vertex).

Observation 3.10. Any polyhedron is guardable by its open edge set.

Urrutia’s bounds. More bounds on edge guard numbers were given by Urrutia

in his survey [51, Section 10].

Observation 3.11 (Urrutia). There are polyhedra with e edges that require at

least ⌊e
6

⌋
− 1

(closed) edge guards to be guarded, for arbitrarily large e. Figure 3.6 shows an

example.

Figure 3.6: Polyhedron with 6k + 6 edges that requires k edge guards.
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Urrutia conjectures this lower bound to be tight.

Conjecture 3.12 (Urrutia). Any genus-zero polyhedron with e edges is guardable

by at most
e

6
+O(1)

(closed) edge guards.

For orthogonal polyhedra, the best known lower bound halves:

Observation 3.13 (Urrutia). There are orthogonal polyhedra with e edges that

require at least ⌊ e
12

⌋
− 1

(closed) edge guards to be guarded, for arbitrarily large e. Figure 3.7 shows an

example.

Figure 3.7: Orthogonal polyhedron with 12k+12 edges that requires k edge guards.

Once again, the lower bound is conjectured to be tight.

Conjecture 3.14 (Urrutia). Any orthogonal polyhedron with e edges is guardable

by at most
e

12
+O(1)

(closed) edge guards.

Urrutia also stated the following theorem, without proof. We will improve it in

two directions, in Chapters 4 and 5.
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Theorem 3.15 (Urrutia). Any orthogonal polyhedron with e edges is guardable by

at most ⌊e
6

⌋
(closed) edge guards.

Upper bound for closed edge guards. A recent breakthrough by Cano, Tóth

and Urrutia, appeared in [10], slightly lowered the trivial upper bound of e closed

edge guards in general polyhedra.

Theorem 3.16 (Cano–Tóth–Urrutia). Any polyhedron with e edges is guardable

by at most ⌊
27e

32

⌋
(closed) edge guards.

Bounds in terms of r

Guarding with reflex edges. Remarkably, assigning guards only to reflex edges

is sufficient to guard any polyhedron.

Lemma 3.17. Any open (resp. closed) non-convex polyhedron can be guarded by

assigning an open (resp. closed) edge guard to each reflex edge.

Proof. Let x be a point in a non-convex polyhedron P , and let y be an interior point

of a reflex edge. If y sees x, we are done. Otherwise, consider any shortest path from

x to y in the topological closure of P (because this is a compact set, shortest paths

within it exist, although they are not necessarily unique). Such path is a polygonal

chain whose bending points lie on reflex edges (see [40]). The first bending point z

sees x. If P is closed and edge guards are closed, we are done. Otherwise, if P is an

open polyhedron and z lies on a (non-convex) vertex, then there is a reflex edge `

with an endpoint in z such that a small-enough neighborhood of z in ` sees x (refer

to Proposition 3.2).

If r > 0 is the number of reflex edges, this establishes an upper bound of r edge

guards.
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Lower bound. For general (open) polyhedra, we have a matching lower bound of

r open edge guards.

Theorem 3.18. r open edge guards are sufficient and occasionally necessary to

guard an open polyhedron having r reflex edges.

Proof. Sufficiency follows from Lemma 3.17. To see that r open edge guards may

be necessary, extrude the shutter polygons in Figure 1.3 to obtain “shutter prisms”,

which have r reflex edges and require as many open edge guards.

For orthogonal polyhedra and open edge guards, we can also give a lower bound

in terms of r that we believe to be tight (see our conjectures in Chapters 4 and 5).

Observation 3.19. There are orthogonal polyhedra with r reflex edges that require

at least ⌊r
2

⌋
+ 1

open edge guards, for any r. The “staircase polyhedron” in Figure 3.8 is an example.

Figure 3.8: Orthogonal polyhedron with r reflex edges that requires br/2c+ 1 open
edge guards.

3.5 Bounds on face guard numbers

Motivations

It is rather hard to find concrete applications of face guards. The obvious analogy

with illumination that we mentioned for edge guards suggests that face guards may

be luminous panels or screens.

On the other hand, imagining that a point guard could patrol a whole face of

a polyhedron poses some problems. Recall that, due to Observation 3.9, a point
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guard patroling an edge may not be “locally” replaced by finitely many static point

guards. We can exploit this fact to construct the class of polyhedra sketched in

Figure 3.9.

(a) 3-dimensional view (b) top view

Figure 3.9: Orthogonal polyhedron whose top face cannot be “dominated” by a
subquadratic number of segments lying on it.

We start by cutting long parallel “dents” on opposite faces of a cuboid, in such a

way that the resulting polyhedron looks like an extruded “iteration” of the polygon

illustrated in Figure 3.5. Then we stab this construction with a row of “girders”

running orthogonally with respect to the dents, as Figure 3.9(a) suggests.

Suppose that a point guard has to patrol the top face of this construction, even-

tually seeing every point that is visible to that face. The situation is represented

in Figure 3.9(b), where the light-shaded region is the top face, and the dashed lines

mark the underlying girders. By Observation 3.9, and by the presence of the gird-

ers, each thick vertical segment must be approached by the patroling guard from

the interior of the face.

Suppose that the polyhedron has n dents and n girders. Then, the number of

its vertices, edges, or faces is Θ(n). Now, if the guard moves along a polygonal

chain lying on the top face, such a chain must have at least a vertex on each thick

segment, which amounts to Ω(n2) vertices. Equivalently, if the face guard has to be

substituted with segment guards lying on it, quadratically many guards are needed.

Observation 3.20. For arbitrarily large n, there are simply connected orthogonal
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polyhedra with n edges having face guards that cannot be replaced by o(n2) segment

guards lying on them.

This suggests that face guards may not be the proper “tool” to model point

guards patroling the surface of a polyhedron. Indeed, a face that counts as a sin-

gle guard in this model could represent a point guard with a route of quadratic

“complexity”, or quadratically many patroling guards.

Even if we are allowed to replace a face guard with point guards patroling any

segment in the polyhedron (i.e, not necessarily constrained to move on that face),

a linear number of them may be needed. To see why, consider again the class of

orthogonal polyhedra illustrated in Figure 3.7, and arrange the “chimneys” in such a

way that no straight line intersects more than two of them. If there are n chimneys,

then the complexity of the polyhedron is Θ(n), and a face guard lying on the bottom

face must be replaced by Ω(n) segment guards.

Observation 3.21. For arbitrarily large n, there are simply connected orthogonal

polyhedra with n edges having convex face guards that cannot be replaced by o(n)

segment guards (chosen anywhere).

However, we know from the previous section that just a linear amount of edge

guards is sufficient to guard any polyhedron, let alone “dominate” a face guard.

Nonetheless, as we will show below, a linear amount of face guards may be needed

to guard a polyhedron. Once again, face guards appear to be a needlessly “powerful”

type of guard, and definitely a poor model for patroling guards.

For these reasons, in Parts II and III we will focus primarily on edge guards,

which we think achieve the best tradeoff among pleasant theoretical properties,

efficiency and applicability.

Upper bounds

We provide a very simple upper bound on face guard numbers, which becomes tight

for open face guards in orthogonal polyhedra.

Theorem 3.22. Any open (resp. closed) c-oriented polyhedron with f faces is guard-

able by ⌊
f

2
− f

c

⌋
open (resp. closed) face guards.



44 CHAPTER 3. GUARDS

Proof. Let P be a polyhedron whose faces are orthogonal to c > 3 distinct vectors.

Let fi be the number of faces orthogonal to the i-th vector vi. Without loss of

generality, i < j implies fi > fj. Then,

f1 + f2 >

⌊
2f

c

⌋
.

Assume the direction of the cross product vi × vj to be vertical. Thus, there are at

most

f −
⌊

2f

c

⌋
non-vertical faces. Some of these are facing up, the others are facing down. Without

loss of generality, at most half of them are facing down, and we assign a face guard

to each of them. Therefore, at most ⌊
f

2
− f

c

⌋
face guards have been assigned.

Let x be a point in P . Casting a vertical ray from x directed upward, we

eventually reach a point y on a face F that is assigned a guard. If P is closed and

face guards are closed, then x is guarded by F .

Otherwise, if P and the face guards are open, x may not be guarded by y, as

y may lie on an edge of F . However, because P is open and x lies in its interior,

it can see a neighborhood of y belonging to F (recall Proposition 3.2). Such a

neighborhood contains points in the relative interior of F , which guard x.

For orthogonal polyhedra, the upper bound given in Theorem 3.22 becomes

bf/6c. In this case, if face guards are closed, they also orthogonally guard the

polyhedron.

Our guarding strategy becomes less and less efficient as c grows. If c = f , we

get an upper bound of bf/2c − 1 face guards. The same construction works even

for general polyhedra that are not f -oriented (i.e., even if three distinct face normal

vectors do not form a basis for R3).

Corollary 3.23. Any open (resp. closed) polyhedron with f faces is guardable by⌊
f

2

⌋
− 1
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open (resp. closed) face guards.

Lower bounds

Open face guards. We give a simple lower bound construction for open face

guards in general polyhedra.

Observation 3.24. There are (open) polyhedra with f faces that require at least⌊
f

4

⌋
open face guards, for arbitrarily large f . Figure 3.10 shows an example.

Figure 3.10: Polyhedron with 4k + 3 faces that requires k face guards. Each open
face sees the tip of at most one of the k tetrahedral “spikes”.

For open face guards in orthogonal polyhedra, we have a lower bound that is

also tight.

Theorem 3.25. To guard an open orthogonal polyhedron with f faces,⌊
f

6

⌋
open face guards are sufficient and occasionally necessary.

Proof. Sufficiency follows from Theorem 3.22 with c = 3. Necessity is implied by

Figure 3.11. Indeed, any small L-shaped polyhedron that is attached to the big

cuboid adds six faces to the construction, of which at least one must be selected.

Moreover, no matter how these faces are selected, some portion of the big cuboid

remains unguarded, and needs one more face guard.
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Figure 3.11: Orthogonal polyhedron that needs f/6 open face guards.

Closed face guards. Some special cases of Theorem 3.22 have been recently

obtained by Souvaine, Veroy and Winslow, for closed face guards in closed polyhedra

only (see [48]). For this type of guards, they also gave two lower bounds.

Observation 3.26 (Souvaine–Veroy–Winslow). For arbitrarily large f , there

are polyhedra with f faces that require at least⌊
f

5

⌋
closed face guards, and orthogonal polyhedra that require at least⌊

f

7

⌋
closed face guards.

3.6 Hardness of edge-guarding

Computing optimal edge guard numbers is hard even for simply connected orthogo-

nal polyhedra, and this can be proved in almost the same way as for vertex or edge

guards in polygons.
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NP-hardness. Several variations on the Art Gallery Problem with edge

guards are NP-hard, such as open or closed edge guarding, or reflex edge guard-

ing, or guarding with mutually parallel edge guards. All reductions are obtained by

operating small adjustments on a common pattern (inspired by the 2-dimensional

one, originally given by Lee and Lin in [31]), which we roughly sketch here for reflex

edge guards in simply connected orthogonal polyhedra.

Theorem 3.27. Deciding whether a simply connected orthogonal polyhedron is guard-

able by k (open or closed) reflex edge guards is strongly NP-complete.

Proof. Membership in NP is straightforward. To prove NP-hardness, we reduce

from 3SAT, so let ϕ be a Boolean formula with n variables and m clauses. We will

construct a genus-zero orthogonal prism that is guardable by 3m+3n+1 reflex edge

guards if and only if ϕ is satisfiable.

One side of the construction contains an array of m clause gadgets, sketched in

Figure 3.12, and the opposite side contains an array of n variable gadgets, sketched

in Figure 3.13.

Figure 3.12: Clause gadget for (x ∨ y ∨ ¬z).

Each clause gadget contains three alcoves, corresponding to the three literals

in the clause. Only two reflex edges can guard the bottom of each alcove; one is

colored black, the other is colored white in the figure. These are called literal edges.

In each pair of literal edges, the lower one is colored black if and only if the literal is

positive in ϕ. Thus, at least three literal edges per clause gadget must be selected.

Three are sufficient if and only if at least one of them is the lower one in its pair

(otherwise, if only the three topmost literal edges are selected, the small “cleft” on

the left remains unguarded).
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Figure 3.13: Variable gadget.

Each variable gadget is made of two wells and a small enclosed area on the left,

called nook. Each well contains one dent for each occurrence of the variable in ϕ.

The two bottom reflex edges, marked with a gray dot, are always selected, and they

guard the upper part of each dent. The lower parts of the dents in the left (resp.

right) well are guardable by the edge marked with a black (resp. white) dot (these

two are called variable edges). Moreover, of the two dents corresponding to some

literal ` (one in the left well and one in the right well), the leftmost (resp. rightmost)

dent and the black (resp. white) variable edge are “aligned” with the black (resp.

white) literal edge corresponding to ` (as the dashed lines in Figures 3.12 and 3.13

suggest: the two almost parallel lines coming out of the variable gadget should

converge on one of the black dots in the clause gadget). Every single element of the

construction is properly positioned and stretched, so that the bottom part of each

dent of a variable gadget is completely visible to exactly one literal edge.

Now, if a variable is assigned the value true (resp. false), the white (resp. black)

edge in the corresponding variable gadget is selected. Thus, the dents in the corre-

sponding well are guarded, and the ones in the other dent are to be guarded by the

respective literal edges, which are also selected. A clause is considered satisfied if
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and only if one of the three bottom literal edges has been selected. All the nooks are

also guarded by variable edges, and we observe that the presence of nooks enforces

the selection of at least one variable edge in each variable gadget. It follows that

each variable gadget and each clause gadget can be guarded by exactly three reflex

edge guards if and only if ϕ is satisfiable.

If each gadget is guarded, then the whole construction is guarded, provided that

one additional guard is assigned to the top-left reflex edge of the nook of the leftmost

variable gadget (such edge must be selected anyway, as it is the only one that can

see “behind” the leftmost nook).

Hardness of approximation. Analogous hardness results also hold for the prob-

lem of approximating the minimum size of an edge-guarding set in a given polyhe-

dron. As a general rule, if an Art Gallery Problem is hard for vertex guards in

2-dimensional polygons with holes, then the corresponding problem for edge guards

in simply connected 3-dimensional polyhedra is also hard.

As an example, we show that the VC-dimension of the range spaces associated

to edge-guarding problems in simply connected orthogonal polyhedra may grow

unboundedly.

Observe that a guarding problem may be viewed as an instance of SET COVER,

in which some potential guard locations have to be selected, each of which covers a

subset of the whole environment (refer to [24]).

The concept of VC-dimension, named after Vapnik and Chervonenkis (who de-

fined it in [53]), is associated to the “complexity” of a SET COVER instance, and

is defined as the size of the largest shattered set in that instance.

For guarding problems, a set of points S is shattered by the set of potential

guard positions if, for each subset S ′ ⊆ S, there exists a (potential) guard g such

that S ∩ V(g) = S ′.

It was shown in a series of papers by Blumer, Brönnimann, Kalai and others (refer

to [7, 8, 30]) that any class of instances of SET COVER whose VC-dimension is

bounded by a constant has an O(log OPT)-approximation algorithm.

Later, in [52], Valtr proved that the VC-dimension associated to point guards

in a simple polygon is not more than 23, while polygons with h holes may yield

VC-dimensions of Ω(log h).

With a very similar construction to that found in [52] for polygons with holes,
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we show that simply connected orthogonal polyhedra with e edges may have VC-

dimensions of Ω(log e), implying that an O(log OPT)-approximation algorithm for

the corresponding minimization Art Gallery Problem does not follow from gen-

eral theorems. This provides evidence that approximating minimum edge-guarding

numbers is indeed hard.

Figure 3.14: Set of two black points shattered by the white guards. Darker squares
represent pillars.

Theorem 3.28. There are simply connected orthogonal polyhedra with e edges con-

taining point sets of size Ω(log e) that are shattered by the set of edges.

Proof. The construction is illustrated in Figure 3.14 for a shattered set of two points.

The outer boundary of the polyhedron is extruded to form an orthogonal prism, and

the darker squares become high pillars that start from the “floor” and almost touch

the “ceiling”.

The two black points lie on the floor, so that they are shattered by the white

ones, which mark vertical reflex edges (dashed lines represent lines of sight).

It is easy to add more black points to the construction, and exponentially many

white edges and pillars, so that the black points are shattered by the white edges.

From the construction given in Theorem 3.28, it is clear how our pillars substi-

tute holes in 2-dimensional polygons, thus enabling hardness proofs even for simply

connected polyhedra.



Part II

Guarding polyhedra





Chapter 4

Reflex edge guards in 2-reflex

orthogonal polyhedra

Abstract

We consider the problem of guarding orthogonal polyhedra having reflex

edges in just two directions (as opposed to three), by placing guards on reflex

edges only.

We generalize a classic result by O’Rourke, showing that⌊
r − g

2

⌋
+ 1

reflex edge guards are sufficient, where r is the number of reflex edges in a

given polyhedron and g is its genus. This bound is tight for g = 0.

Then we give a similar upper bound in terms of e, the total number of

edges in the polyhedron. We prove that⌊
e− 4

8

⌋
+ g

reflex edge guards are sufficient, whereas the previous best known bound, due

to Urrutia, was be/6c edge guards (not necessarily reflex).

Ultimately, we show that guard locations achieving the above bounds can

be computed in O(n log n) time.

En route, we also discuss the setting in which guards and polyhedra are

open, proving that the same results hold even in this more challenging case.
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4.1 2-reflex orthogonal polyhedra

Motivations

This is the first of three chapters in which we study edge guards in polyhedra.

Here we focus on 2-reflex orthogonal polyhedra, i.e., orthogonal polyhedra whose

reflex edges lie in at most two different directions. This is a case of intermediate

complexity, between the 1-reflex case (i.e., orthogonal prisms) and the full 3-reflex

case (i.e., general orthogonal polyhedra).

Recall from Chapter 1 that simple orthogonal polygons with r reflex vertices

can be guarded by br/2c + 1 guards. This obviously extends to simply connected

orthogonal prisms with r reflex edges. Our main research question is whether the

same bound in terms of r extends to the whole class of orthogonal polyhedra. We

are still unable to fully answer this question, although we have evidence that this

may be the case.

However, we can prove (as we will do in this chapter) that the br/2c + 1 upper

bound holds at least for 2-reflex orthogonal polyhedra. We perceive this as a very

important sub-case, and a necessary step toward a proof for general orthogonal

polyhedra. Indeed, we believe that recursively “cutting away” 2-reflex orthogonal

subpolyhedra from a given orthogonal polyhedron eventually yields a “kernel” that

can be efficiently guarded, due to its structural properties.

Regardless of this theoretical aspect, 2-reflex orthogonal polyhedra have an in-

terest by themselves, as they can already express a rich variety of shapes, which

planar structures cannot attain.

Structure and terminology

Without loss of generality, we stipulate that every 2-reflex orthogonal polyhedron

encountered in this chapter has only horizontal reflex edges, and no vertical ones.

The intersection between a 2-reflex orthogonal polyhedron and a horizontal plane

not containing any of its vertices is a collection of mutually disjoint rectangles. As

the plane is moved upward or downward, the intersection does not change, until a

vertex is reached. Thus, a natural way to partition a 2-reflex orthogonal polyhedron

is into maximal cuboids, any two of which are either disjoint or touch each other at

their top or bottom faces. Each cuboid in the partition is called a brick, and any
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non-empty intersection between two bricks is called their contact rectangle.

Figure 4.1 shows all the possible ways two bricks can touch each other. They are

viewed from above, and the light shaded brick lies on top of the darker one. Thick

lines denote reflex edges, and the dashed ones are those covered by the top brick

(hence hidden to the viewer).

(a) e − e′ = 0
r − r′ = 4

(b) e − e′ = 0
r − r′ = 3

(c) e−e′ = −3
r − r′ = 2

(d) e−e′ = −6
r − r′ = 1

(e) e − e′ = 0
r − r′ = 2

(f) e − e′ = 0
r − r′ = 4

(g) e − e′ = 0
r − r′ = 3

(h) e−e′ = −3
r − r′ = 2

(i) e− e′ = −6
r − r′ = 1

(j) e − e′ = 0
r − r′ = 2

(k) e − e′ = 2
r − r′ = 3

(l) e − e′ = 4
r − r′ = 4

(m) e − e′ = 4
r − r′ = 3

(n) e − e′ = 4
r − r′ = 4

(o) e − e′ = 8
r − r′ = 4

(p) e − e′ = 2
r − r′ = 3

(q) e − e′ = 4
r − r′ = 4

(r) e − e′ = 4
r − r′ = 3

(s) e − e′ = 0
r − r′ = 2

(t) e−e′ = −1
r − r′ = 2

Figure 4.1: Possible contact rectangles of two adjacent bricks, viewed from above.

By “cutting” a 2-reflex orthogonal polyhedron along the contact rectangle of

two adjacent bricks, all the reflex edges bordering the rectangle turn into convex

edges, and several different things may happen to the edge set. A convex edge may

split in two distinct edges, new edges may be created, and several edges may merge
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together.

Figure 4.1 also indicates the number of edges gained or lost during a split, for

each different configuration. e and e′ are the number of edges in the polyhedron

before and after the split, respectively. Similarly, r and r′ are the number of reflex

edges before and after the split, respectively.

In Figure 4.2, a type-(t) contact between two bricks is illustrated, before and

after the cut. The polyhedron in the second picture has e = 23 edges, of which

r = 2 are reflex. The polyhedra in the third picture have e′ = 24 edges in total, of

which r′ = 0 are reflex (cf. Figure 4.1(t)).

Figure 4.2: Type-(t) contact between two bricks, before and after a cut.

Remark 4.1. When cutting a polyhedron of positive genus along a contact rectangle,

we may fail to disconnect it, but just lower its genus. The resulting polyhedron is

degenerate, in that its boundary is self-intersecting. We will occasionally encounter

such degeneracies in intermediate steps of inductive proofs, and we will tolerate them

whenever their presence will not invalidate our reasoning.

Referring again to Figure 4.1, we call each type-(a) or type-(f) contact rectangle a

collar, because its boundary is made of four reflex edges “winding” around a smaller

brick. Singling out collars to treat them as separate cases will often be needed in

our proofs. The (technical) reason is that collars minimize the ratio

e− e′ + 12

r − r′
.

This ratio is 3 for collars, whereas it is at least 4 for any other contact type.

We also want to single out contact types (d) and (i), because they produce just

one reflex edge each, and this will turn out to be the hardest case to handle in
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our later constructions. These two contact types will be called primitive, and a 2-

reflex orthogonal polyhedron having only primitive contact rectangles will be called

a stack.

Observe that each brick of a stack may have up to two bricks attached to each

of its horizontal faces. A stack in which each brick has either zero or two other

bricks attached to its top face is called a castle (Figure 4.3 shows an example). The

bottom brick of a castle is called its base brick. It is straightforward to see that a

castle has an even number of reflex edges, because they all come in parallel pairs.

Figure 4.3: Castle with dashed lines bordering contact rectangles between bricks.

If a castle is turned upside down and its base is attached to another castle’s base

via a primitive contact rectangle, the resulting shape is a stack called double castle

(see Figure 4.4). It follows that a double castle has an odd number of reflex edges.

Castles and double castles will play a fundamental role in the next section.
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Figure 4.4: Double castle.

4.2 Bounds in terms of r

Recall that orthogonal polygons with n vertices and h holes are guardable by⌊
n+ 2h

4

⌋
vertex guards, as established by O’Rourke (see [36, Theorem 5.1]). Because n =

2r− 4h+ 4, where r is the number of reflex vertices in the orthogonal polyhgon (by

a straightforward induction on h), we can express the same upper bound in terms

of r, as ⌊
r − h

2

⌋
+ 1.

Even though O’Rourke does not mention this aspect, a careful analysis of his method

(a decomposition into L-shaped pieces, see [36, Sections 2.5, 2.6]) reveals that, if

r > 0, all the guards can be chosen to lie on reflex vertices.

Naturally, the above extends to orthogonal prisms of arbitrary genus (as opposed

to orthogonal polygons with holes), and reflex edge guards (as opposed to reflex
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vertex guards).

As prevoiusly stated, in this section we are going to further generalize this result

to 2-reflex orthogonal polyhedra, showing that the exact same upper bound in terms

of r holds. It turns out that the central part of O’Rourke’s main argument can be

considerably simplified, and then rephrased and generalized in terms of polyhedra

([36, Lemmas 2.13–2.15] are condensed in our Lemma 4.5), while the other parts of

the proof require more sophisticated constructions and some novel ideas.

Eventually, everything boils down to guarding castles and double castles, so

we will resolve these first, and then use them as building blocks to prove our full

theorem.

We say that an orthogonal polyhedron is monotone if it is a prism and if its

intersection with any vertical line is either empty or a single line segment. In other

terms, a monotone orthogonal polyhedron is constructed by extruding a monotone

orthogonal polygon (refer to [36]).

Lemma 4.2. Any open (resp. closed) monotone orthogonal polyhedron with r > 0

reflex edges is orthogonally guardable by at most⌊r
2

⌋
+ 1 (4.1)

open (resp. closed) reflex edge guards.

Proof. Without loss of generality, suppose that the reflex edges are y-parallel (hence,

all the points in each reflex edge have the same x coordinate). Sort all reflex edges

by increasing x coordinate (breaking ties arbitrarily), and let {ei}16i6r be the sorted

sequence. Now assign a guard to each edge whose index is an odd number, plus a

guard to er (if r is even). Thus, the bound (4.1) is matched.

To show that the polyhedron is guarded, let xi be the x coordinate of ei, for

1 6 i 6 r. Additionally, let x0 and xr+1 be the lowest and the highest x coordinate

of a vertex of the polyhedron, respectively. Then, it is straightforward to see that a

guard lying on ei guards at least the points in the polyhedron whose x coordinate

lies between xi−1 and xi+1, as Figure 4.5 suggests.

Of course, among monotone orthogonal polyhedra there are all 1-reflex castles.

In the next lemma we show that we can actually use one less guard for the remaining

castles.
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Figure 4.5: Guarding a monotone orthogonal polyhedron. Thick reflex edges repre-
sent guards.

Lemma 4.3. Any open (resp. closed) castle with 2r reflex edges that is not a prism

is orthogonally guardable by at most r open (resp. closed) reflex edge guards.

Proof. We prove our claim by well-founded induction on r. So, suppose the claim is

true for all castles that are not prisms and have fewer than 2r reflex edges, and let

a castle C be given, having exactly 2r reflex edges. Assuming that C is not a prism,

it cannot be a cuboid, and hence r is strictly positive and two castles C1 and C2 lie

on top of C. Let e1 (resp. e2) be the reflex edge bordering the contact rectangle

between the base brick of C and the base brick of C1 (resp. C2). Let also 2r1 and 2r2

be the numbers of reflex edges of C1 and C2, respectively. It follows that

r = r1 + r2 + 1.

Three cases arise.

• If neither C1 nor C2 is a prism, they both satisfy the inductive hypothesis and

can be guarded by r1 and r2 reflex edge guards, respectively. It is straightfor-

ward to see that, if guards are placed in this fashion, also the contact rectangles

lying on the base brick of C are guarded, even if guards and polyhedra are open.

Now we just assign a guard to e1 in order to guard the base block of C, and

our upper bound of r guards is matched.



4.2. BOUNDS IN TERMS OF r 61

• If C1 is a prism and C2 is not (the symmetric case is analogous), then the induc-

tion hypothesis applies to C2, and we place r2 reflex edge guards accordingly

(again, guarding both C2 and the contact rectangle shared with the base brick

of C, even if guards and polyhedra are open). Now, because C1 is a prism, its

reflex edges are all parallel, and two sub-cases arise.

– If the reflex edges of C1 are parallel to e1 (or C1 has no reflex edges), then C1
and the base brick of C together form a monotone orthogonal polyhedron

with 2r1 +1 reflex edges in total. By Lemma 4.2, such polyhedron can be

guarded by r1 + 1 guards. Along with the previously assigned r2 guards,

this yields r guards, as desired.

– If the reflex edges of C1 are not parallel to e1, then they are orthogonal

to e1. As a consequence, all of C1 is visible to e1, and so is the base brick

of C, as Figure 4.6 illustrates. It follows that r2 + 1 guards are sufficient

in this case, which is less than r.

e1

C1

Figure 4.6: Edge e1 orthogonally guards all of C1, plus the base brick.

• If both C1 and C2 are prisms, at least one of them (say, C1) must have reflex

edges that are orthogonal to e1, otherwise C would be a prism, too. Therefore

r1 > 1, and C1 is guarded by assigning a guard to e1. Such guard clearly sees

also the contact rectangle to which it belongs. Again, two sub-cases arise.

– If the reflex edges of C2 are parallel to e2, then C2 and the base brick of C
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form a monotone orthogonal polyhedron with 2r2 + 1 reflex edges, which

is guardable by r2 + 1 reflex edge guards, by Lemma 4.2. Overall, we

assigned 1 + r2 + 1 6 r1 + r2 + 1 = r guards, as required.

– If the reflex edges of C2 are orthogonal to e2, then e2 guards C2, along with

the base brick of C. We assigned only two guards, and 2 6 r1 + 1 6 r,

concluding the proof.

The two previous lemmas enable us to prove that our upper bound holds at least

for double castles.

Lemma 4.4. Any open (resp. closed) double castle with r reflex edges is orthogonally

guardable by at most ⌊r
2

⌋
+ 1 (4.2)

open (resp. closed) reflex edge guards.

Proof. Let D be a double castle with r reflex edges, made of two castles C1 and C2
having 2r1 and 2r2 reflex edges, respectively. Let e be the reflex edge lying on the

contact rectangle between the two castles. Because r = 2r1 + 2r2 + 1, (4.2) can be

rewritten as

r1 + r2 + 1. (4.3)

We distinguish three cases.

• If neither C1 nor C2 is a prism, by Lemma 4.3 they can be guarded by at most

r1 and r2 reflex edge guards, respectively. Also the contact rectangle between

C1 and C2 is clearly guarded, even if guards and polyhedra are open, and (4.3)

is then satisfied.

• If C1 is a prism and C2 is not (the symmetric case is analogous), by Lemma 4.3

C2 can be guarded by at most r2 reflex edge guards. Two sub-cases arise.

– If r1 = 0, C1 is a cuboid and can be guarded by e. In total, r2 + 1 guards

have been assigned, which matches (4.3).

– If r1 > 0, C1 can be guarded by r1 + 1 guards, by Lemma 4.2. Together

with the previous r2 guards, these match the upper bound (4.3).
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Again, the contact rectangle between the two castles is clearly guarded.

• If both C1 and C2 are prisms, we have three sub-cases.

– If the reflex edges of C1 and C2 are parallel to e, then D is a monotone

orthogonal polyhedron with 2r1 + 2r2 + 1 reflex edges, and according to

Lemma 4.2 it is guardable by r1 + r2 + 1 reflex edge guards, which agrees

with (4.3). This holds also if r1 = 0 or r2 = 0.

– If the reflex edges of C1 are parallel to e and the reflex edges of C2 are

orthogonal to e (the symmetric case is analogous), then we may assume

that r2 > 1. We assign one guard to e in order to guard C2, and r1 + 1

guards to reflex edges in C1, in accordance with Lemma 4.5. In total, we

assigned r1 + 1 + 1 6 r1 + r2 + 1 guards, thus satisfying (4.3).

– Finally, if the reflex edges of both C1 and C2 are orthogonal to e, then a

guard assigned to e sees all of D, which obviously satisfies (4.3).

Now that we know how to guard double castles, we can move on to more general

shapes, such as stacks. This is the last intermediate step before our main theorem,

and it generalizes [36, Lemmas 2.13–2.15].

Recall that a stack has only primitive contact rectangles. If two neighboring

bricks B and B′ share a type-(d) (resp. type-(i)) contact rectangle (refer to Fig-

ure 4.1), and B lies below (resp. above) B′, then B is a parent of B′, and B′ is a child

of B. It follows that a brick in a stack can have at most two children above and two

children below, and shares exactly one reflex edge with each child (see Figure 4.7).

Moreover, if a brick has one parent above (resp. below), then it has no other neigh-

boring bricks above (resp. below). Finally, if a brick B has exactly one child B′ on

one side (regardless of the number of neighboring bricks on the other side), then the

reflex edge shared by B and B′ is said to be isolated. It follows that the number of

reflex edges in a stack and the number of isolated reflex edges have the same parity.

Lemma 4.5. Any open (resp. closed) stack with r > 0 reflex edges and genus g is

orthogonally guardable by at most ⌊
r − g

2

⌋
+ 1 (4.4)
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Different configurations for the upper children of a brick in a stack.

open (resp. closed) reflex edge guards.

Proof. Our proof is by well-founded induction on r. Following O’Rourke (see [36,

Section 2.5]), we say that a contact rectangle R in a simply connected stack S yields

an odd cut if R partitions S into two stacks S1 and S2, one of which has an odd

number of reflex edges. The presence of odd cuts in a simply connected stack is very

desirable, in that it permits to successfully apply the inductive hypothesis. Indeed,

let 2r1 + 1 and r2 be the number of reflex edges of S1 and S2 (the symmetric case is

analogous). Then r = 2r1 + r2 + 2, because the cut resolves exactly one reflex edge.

Recall that S is simply connected, and so are S1 and S2. Since S1 is non-convex, we

can apply the inductive hypothesis on it, guarding it with at most⌊
2r1 + 1

2

⌋
+ 1 = r1 + 1

reflex edge guards. Similarly, if S2 is non-convex, we can guard it with at most⌊r2
2

⌋
+ 1 (4.5)
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reflex edge guards. On the other hand, if S2 is a cuboid, we can orthogonally guard

it by assigning a guard to the reflex edge lying on R (see Figure 4.7). In this case,

r2 = 0, hence (4.5) still holds. As a result, we have guarded all of S, except perhaps

R itself (if S is open), with at most

r1 + 1 +
⌊r2

2

⌋
+ 1 =

⌊
2r1 + r2 + 2

2

⌋
+ 1 =

⌊r
2

⌋
+ 1

reflex edge guards. If S2 is a cuboid, then we have assigned a guard to the reflex

edge lying on R, and so R is obviously orthogonally guarded. Otherwise, let B1 and

B2 be the bricks of S sharing R, with B1 child of B2. Then, B1’s interior is guarded

by some guards not coplanar to R, which must also see R itself. We stress that it

makes sense to talk about odd cuts only for genus-zero stacks.

Now, let S be a stack with exactly r > 0 reflex edges and genus g, and assume

that the lemma’s claim holds for all non-convex stacks with fewer than r reflex edges.

Four cases arise.

• Let g > 0. Note that each cut along a contact rectangle either disconnects S
or lowers its genus, and each cut resolves exactly one contact rectangle without

creating or modifying other contact rectangles. Because S is partitioned by

contact rectangles into cuboids, whose genus is zero, it follows that there exists

at least one contact rectangle R such that cutting R yields a (degenerate, see

Remark 4.1) stack S ′ with r′ = r−1 reflex edges and genus g′ = g−1. Observe

that S ′ is non-convex, because it is made of at least two bricks, so we can apply

the inductive hypothesis on it and guard it with at most⌊
r′ − g′

2

⌋
+ 1 =

⌊
r − g

2

⌋
+ 1

reflex edge guards. R may still be unguarded, if S is open. We show that this

is not the case, as above: let B1 and B2 be the two bricks sharing R, with B1
child of B2. Then the interior of B1 is guarded in S ′ by some guards that are

not coplanar with R, and hence R is guarded in S by the same guards.

• If g = 0 and r > 0 is even, then any contact rectangle yields an odd cut.

Indeed, cutting S along a contact rectangle resolves exactly one reflex edge

and leaves with two stacks (because S is simply connected). The reflex edge
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numbers in these two stacks must have opposite parity, because their sum

must be odd. Hence, one of them is odd.

• Let g = 0, and let S have a brick B with exactly one neighboring brick above

and exactly one below (Figure 4.8 sketches one possible configuration for B).

We show that one of the two contact rectangles bordering B yields an odd cut.

Let R1 be the upper contact rectangle and R2 be the lower one. If R1 does not

yield an odd cut, the stack above R1 has an even number of reflex edges. But

then, the stack above R2, which additionally includes B and the reflex edge

belonging to R1, has an odd number of reflex edges. It follows that either R1

or R2 yields an odd cut.

even

odd

B

R1

R2

Figure 4.8: Sketch of a brick with one neighbor above and one below.

• If none of the above is satisfied, we show that S must be a double castle, hence

our claim holds by Lemma 4.4. Let then r be odd, so that S has at least one

isolated reflex edge corresponding to a contact rectangle R. Additionally, let

no brick of S have exactly one neighbor above and one neighbor below. We

show that S ′, i.e., the stack above R, is a castle. (By a symmetric argument,

the stack below R will be an upside-down castle, and S will then be a double

castle.) This is straightforward to see (build the castle from bottom to top,

without putting bricks that have only one neighbor below and one above),

however here follows a formal proof.

Let d(B) be the minimum number of bricks one has to traverse to reach brick

B from R (while always staying inside S ′), and let S ′h be the set of bricks B in
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S ′ such that d(B) 6 h. We prove by induction on h that S ′h is a castle whose

base brick contains R.

The claim is true for h = 0, because the brick just above R (let it be B̃) is the

only one in contact with R, and a brick is indeed a castle.

Observe that no brick in S ′ can be attached to the bottom face of B̃, because

the reflex edge of S corresponding to R is isolated. Hence, B̃ must have either

zero or two neighbors in S ′, and both of them are above. It follows that S ′1 is

a castle, as well.

Let now h > 1 and let S ′h be a castle whose base brick B̃ contains R, and let

us show that the same holds for S ′h+1. Any brick B such that d(B) = h + 1

must be attached to some brick B′ of S ′h such that d(B′) = h (see Figure 4.9).

It is straightforward to see that any such B′ has one parent brick below and

no bricks above, in S ′h. Hence, B can only be attached on top of B′. Because

B′ cannot have only one top and one bottom neighbor in S ′, it follows that

B cannot be a parent of B′, but a child. Any other brick B′′ that is attached

on top of B′ in S ′ must also belong to S ′h+1, by definition. As a consequence,

one such brick B′′ must indeed be in S ′h+1, otherwise B′ would once again have

only one top and one bottom neighbor in S ′. No new brick is attached to B̃,

which stays the base of S ′h+1. Thus the base brick of S ′h+1 contains R, proving

our claim and concluding the inductive proof.

B

B′

B′′

B̃
Figure 4.9: Sketch of a brick in a castle.

Since S ′ is connected and contains only a finite number of bricks, for large-

enough h we have S ′ = S ′h, implying that S ′ is a castle.
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Remark 4.6. In the next theorem, we give an upper bound on the number of guards

in terms of r, g and b, where b is the number of collars. The presence of b may look

awkward, but we will actually have to carry this parameter along to the next section,

in order to prove Theorem 4.12. Regardless, the casual reader may happily ignore

this term (as it just contributes to lowering the bound), and read (4.6) simply as⌊
r − g

2

⌋
+ 1.

Theorem 4.7. Any open (resp. closed) 2-reflex orthogonal polyhedron with r > 0

reflex edges, b collars and genus g is guardable by at most⌊
r − g

2

⌋
− b+ 1 (4.6)

open (resp. closed) reflex edge guards.

Proof. Preliminarily, we eliminate all contact rectangles of types (k) to (t) (refer to

Figure 4.1), by transforming them into other types of contacts, without altering the

genus of the polyhedron or the amount of collars and reflex edges.

Let P◦ be the interior of a given 2-reflex polyhedron P (if P is open, P◦ = P),

and let α be a horizontal plane containing at least a contact rectangle of P . We

translate upward by d > 0 every point of P◦ that lies strictly above α. As a result,

the faces lying on α and pointing downward are translated upward, while those

pointing upward do not move. Then we extrude P◦ ∩ α upward by d, hence closing

the “gaps”, and obtaining a new open polyhedron. If P is open, then let P ′ be this

new polyhedron. If P is closed, then let P ′ be the closure of the new polyhedron.

Figure 4.10 shows how this transformation acts on a contact rectangle of type (k).

Observe that the number of reflex edges is preserved.

In general, contact rectangles of type (a) to (e) that lie on α are not altered by

our transformation, whereas those of type (f) to (j) are merely translated upward

by d, but do not change their type. If follows that no collar is lost in the process

(recall that collars are contacts of type (a) and (f)).

On the other hand, contacts of type (k) to (t) lying on α are eliminated, as

detailed below.
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Figure 4.10: Transforming a contact rectangle of type (k) into one of type (i) (above)
and one of type (c) (below), while preserving the number of reflex edges (thick lines).

• Each contact of type (k) is transformed into two contacts of type (i) and (c).

• Each contact of type (l) is transformed into two contacts of type (i) and (b).

• Each contact of type (m) is transformed into two contacts of type (i) and (e).

• Each contact of type (n) is transformed into two contacts of type (h) and (c).

• Each contact of type (o) is transformed into two contacts of type (j) and (e).

• Each contact of type (p) is transformed into two contacts of type (h) and (d).

• Each contact of type (q) is transformed into two contacts of type (g) and (d).

• Each contact of type (r) is transformed into two contacts of type (j) and (d).

• Each contact of type (s) is transformed into two contacts of type (i) and (d).

• Each contact of type (t) is transformed into two contacts of type (i) and (d).

Observe that, if P ′ is guarded by reflex edge guards, then applying the “reverse

transformation” to such guards yields a guarding set for P of equal size. In partic-

ular, referring to Figure 4.10, if the two contact rectangles on the right-hand side

are guarded, it implies that also the contact rectangle on the left-hand side must be

guarded, no matter if P and P ′ are open or closed.
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We can repeat the same procedure for different α’s, until no contacts of type (k)

to (t) are left. It will then suffice to prove our theorem for polyhedra featuring only

contacts of type (a) to (j).

We proceed by induction on the number of non-primitive contact rectangles. The

base case is given by non-convex stacks, for which (4.6) holds due to Lemma 4.5 and

the fact that b = 0.

For the inductive step, let P be a 2-reflex orthogonal polyhedron with r > 0

reflex edges, b collars, genus g, and a non-primitive contact rectangle R. We cut P
along R, thus resolving one non-primitive contact rectangle, and we distinguish two

cases.

• If the cut does not disconnect P , then it lowers its genus by 1. Let P ′ be the

resulting polyhedron (which is degenerate, see Remark 4.1), and let g′ = g− 1

be its genus. By inductive hypothesis, P ′ is guardable by⌊
r′ − g′

2

⌋
− b′ + 1 (4.7)

guards, where r′ and b′ are, respectively, the number of reflex edges and collars

of P ′. Two sub-cases arise.

– If R is a collar, then r′ = r − 4 and b′ = b− 1. By plugging these values

into (4.7), we obtain that P \R is guardable by⌊
r − 4− g + 1

2

⌋
− b+ 1 + 1 6

⌊
r − g

2

⌋
− b+ 1

reflex edge guards.

– If R is not a collar, then b′ = b. Because R is not primitive, r′ 6 r − 2

(refer to Figure 4.1). Hence, P \R is guardable by at most⌊
r − 2− g + 1

2

⌋
− b+ 1 6

⌊
r − g

2

⌋
− b+ 1

reflex edge guards.

• If the cut disconnects P into P1 and P2, then g1 + g2 = g, where g1 (resp. g2)

is the genus of P1 (resp. P2). Let r1 and b1 (resp. r2 and b2) be, respectively,

the number of reflex edges and collars of P1 (resp. P2). Two sub-cases arise.
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– If R is a collar, then r1 + r2 = r − 4 and b1 + b2 = b− 1. If r1 > 0, then

we can apply the inductive hypothesis on P1 and guard it with at most⌊
r1 − g1

2

⌋
− b1 + 1 (4.8)

guards. Otherwise, P1 is a cuboid, and we can guard it by assigning a

guard to any edge of R (they are all reflex). In this case, r1 = g1 = b1 = 0,

and (4.8) is still satisfied. We proceed similarly with P2, and thus we have

assigned a combined number of guards that is at most⌊
r1 − g1

2

⌋
+

⌊
r2 − g2

2

⌋
−b1−b2+2 6

⌊
r − 4− g

2

⌋
−b+3 =

⌊
r − g

2

⌋
−b+1.

This many guards are then sufficient to guard P \R.

– If R is not a collar, then b1 +b2 = b. Because R is not primitive, r1 +r2 6

r − 2 (refer to Figure 4.1). Once again, if r1 > 0, then we can apply the

inductive hypothesis on P1 and guard it with a number of guards that

is bounded by (4.8). Otherwise, P1 is a cuboid, and we can guard it by

assigning a guard to any reflex edge of R (there is at least one). In this

case, r1 = g1 = b1 = 0, and (4.8) is still satisfied. Again, we do the same

with P2, and thus we have assigned a combined number of guards that is

at most⌊
r1 − g1

2

⌋
+

⌊
r2 − g2

2

⌋
−b1−b2+2 6

⌊
r − 2− g

2

⌋
−b+2 =

⌊
r − g

2

⌋
−b+1,

and P \R is guarded.

It remains to show that, in all the cases above, also R is guarded. For closed

polyhedra, this is trivial, because P ′, P1 and P2 (as defined above) all contain R.

For open polyhedra, the claim follows from the fact that we eliminated all contact

rectangles of type (k) to (t) beforehand. Indeed, if R is of type (a) to (j), then it

separates two bricks B1 and B2, such that the vertical projection of B1 is entirely

contained in the vertical projection of B2 (refer to Figure 4.1). Therefore, the guards

that guard the interior of B1 in P ′, P1, or P2 either lie on the boundary of R (if P1

or P2 is a cuboid), or do not lie on the same plane or R. In either case, R is guarded

in P , even if P is open.
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Observation 4.8. Theorem 4.7 holds more generally for 2-reflex 3-oriented poly-

hedra. Indeed, each 3-oriented polyhedron is mapped in an orthogonal polyhedron by

a suitable affine transformation, which preserves visibility.

Note that we cannot say “orthogonally guardable” in the statement of Theo-

rem 4.7, due to the following.

Observation 4.9. Not every 2-reflex orthogonal polyhedron can be orthogonally

guarded by reflex edge guards, as Figure 4.11 shows. Indeed, even if guards are

placed on both reflex edges, a large cuboid remains orthogonally unguarded.

Figure 4.11: 2-reflex orthogonal polyhedron that is not orthogonally guardable by
reflex edge guards.

For g = 0, the upper bound given in Theorem 4.7 is tight, as Figure 4.12 implies

(cf. Observation 3.19). In contrast, for arbitrary genus, the situation is still un-

clear, and even the analogous 2-dimensional problem is open (i.e., optimally vertex-

guarding orthogonal polygons with holes, see [36, 51]).

Figure 4.12: 2-reflex orthogonal polyhedron needing br/2c+ 1 reflex edge guards.
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We believe that the bound given in Theorem 4.7 holds also for general (i.e.,

3-reflex) orthogonal polyhedra.

Conjecture 4.10. Any open (resp. closed) orthogonal polyhedron with r > 0 reflex

edges and genus g is guardable by at most⌊
r − g

2

⌋
+ 1

open (resp. closed) reflex edge guards.

4.3 Bounds in terms of e

In this section we bound the number of reflex edge guards required to guard a 2-

reflex orthogonal polyhedron in terms of e, as opposed to r. Rather than providing

a radically new upper bound construction, we bound e in terms of r, and then apply

Theorem 4.7.

Note that a straightforward application of this method would not improve on

Urrutia’s upper bound of be/6c given in Theorem 3.15. Indeed, the sharpest possible

inequality between e and r (involving also the genus g) is

e > 3r − 12g + 12, (4.9)

which still yields an upper bound of

e

6
+O(g)

guards when applied to Theorem 4.7.

To get around this, we will refine (4.9) by introducing the number of collars as

an additional parameter.

Lemma 4.11. In every 2-reflex orthogonal polyhedron, the number of edges e, the

number of reflex edges r, the number of collars b and the genus g satisfy the inequality

e > 4r − 12g − 4b+ 12.

Proof. We will prove that, for any collection of k (mutually internally disjoint) 2-
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reflex orthogonal polyhedra,

e > 4r − 12g − 4b+ 12k (4.10)

holds. Here, e (resp. r, g, b) is the sum of the edges (resp. reflex edges, genera,

collars) of the k polyhedra. Then, by plugging k = 1, we will obtain our claim.

Our proof proceeds by induction on r. For r = 0 we have a collection of k

cuboids, each of which has 12 edges, so e = 12k, g = b = 0, and (4.10) holds as

desired.

If r > 0, there is at least one (horizontal) reflex edge, which is a side of the

contact rectangle of two adjacent bricks, both belonging to the same polyhedron

P of the collection. We can resolve this reflex edge (and up to three others) by

separating the two bricks with a horizontal cut along the contact rectangle. As

a consequence, either P gets partitioned in two polyhedra (in which case the new

number of polyhedra is k′ = k+ 1), or the genus of P decreases by 1 (in which case

the new total genus is g′ = g − 1). Either way,

k′ − g′ = k − g + 1. (4.11)

By inductive hypothesis,

e′ > 4r′ − 12g′ − 4b′ + 12k′, (4.12)

where e′ (resp. r′, b′) is the new number of edges (resp. reflex edges, collars), after

the cut.

Two cases arise. If the cut is along a collar, then b′ = b−1, e′ = e, and r′ = r−4

(see Figure 4.1). Plugging these into (4.12) and combining the result with (4.11)

immediately yields (4.10), as claimed.

Otherwise (i.e., the cut is not along a collar), by inspection of Figure 4.1, it is

clear that

e− e′ > 4(r − r′)− 12. (4.13)

(Recall that cases (a) and (f) must be ignored, because they correspond to a collar.)

By combining (4.11), (4.12), (4.13) and plugging b′ = b, we obtain again (4.10),

concluding the proof.

Theorem 4.12. Any open (resp. closed) non-convex 2-reflex orthogonal polyhedron
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with e edges and genus g is guardable by at most⌊
e− 4

8

⌋
+ g (4.14)

open (resp. closed) reflex edge guards.

Proof. Let r > 0 be the number of reflex edges in the polyhedron. By Lemma 4.11,

r 6
e

4
+ 3g + b− 3, (4.15)

where b is the number of collars. Applying (4.15) to Theorem 4.7, we obtain that

the number of guards is bounded by⌊
r − g

2

⌋
−b+1 6

⌊
e

8
+

3

2
g +

b

2
− 3

2
− g

2

⌋
−b+1 =

⌊
e− 4

8
− b

2

⌋
+g 6

⌊
e− 4

8

⌋
+g.

Observation 4.13. Once again, Theorem 4.7 holds more generally for 2-reflex 3-

oriented polyhedra (cf. Observation 4.8).

We remark that our Theorem 4.12 is an improvement upon the previous state of

the art, in that it lowers the upper bound provided by Urrutia’s Theorem 3.15 by

roughly 25% (for g = 0), and also shows how guards can be chosen to lie on reflex

edges, rather than on arbitrary edges.

We are unable to raise the lower bound of be/12c + 1 guards given in Observa-

tion 3.13, even if just reflex edge guards are to be employed. On the other hand,

our upper bound in terms of e seems far from optimal: indeed, we could treat sepa-

rately other contact configurations between bricks, rather than just collars, and this

could be enough to improve Lemma 4.11 and lower the bound in (4.14). Therefore,

we formulate a stronger version of Urrutia’s Conjecture 3.14 (cf. Conjecture 4.10,

Observation 4.9).

Conjecture 4.14. Any non-convex orthogonal polyhedron with e edges is guardable

by at most
e

12
+O(1)

reflex edge guards.
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We already know this claim holds for simply connected prisms, and Lemma 4.5

implies that it holds more generally for simply connected stacks. Specifically, we

have the following.

Theorem 4.15. Any open (resp. closed) non-convex stack with e edges and genus

g is guardable by at most ⌊ e
12

+
g

2

⌋
(4.16)

open (resp. closed) reflex edge guards.

Proof. A straightforward induction on the number of reflex edges r, based on Fig-

ure 4.1, reveals that

e = 6r − 12g + 12.

(Recall that stacks only have type-(d) and type-(i) contact rectangles.) Solving for

r and substituting in (4.4) immediately yields (4.16).

4.4 Time complexity

To conclude the chapter, we show how to efficiently compute guard positions match-

ing the upper bounds given in Theorems 4.7 and 4.12. Notice that both bounds refer

to the very same construction, described in Section 4.2. In the present section, we

will merely translate such construction into an algorithm that runs in O(n log n)

time (see the discussion on representing polyhedra in Chapter 2).

O’Rourke’s algorithm for simple orthogonal polygons, detailed in [36, Section 2.6],

also runs in O(n log n) time. As observed by Urrutia in [51], it could be optimized

to run in O(n) time, if Chazelle’s linear time triangulation algorithm were used

(see [13]). Unfortunately, Urrutia’s speedup is only applicable to orthogonal poly-

gons without holes.

In principle, we could rephrase O’Rourke’s algorithm in terms of 2-reflex orthog-

onal polyhedra, and obtain a new O(n log n) algorithm. However, four issues arise

that require additional care:

1. O’Rourke’s algorithm works on simply connected polygons, while our algo-

rithm should be applied to polyhedra of any genus.

2. O’Rourke’s algorithm may assign guards to convex vertices, whereas we insist

on having guards only on reflex edges.
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3. O’Rourke’s method to find horizontal cuts in polygons does not trivially extend

to polyhedra.

4. O’Rourke’s algorithm relies on guarding double histograms, whereas we need

guard double castles.

We will now give a very crude sketch of our modified algorithm, showing that

each of the above issues has a relatively simple solution.

Our algorithm takes as input a 2-reflex orthogonal polyhedron P , and outputs

the set of reflex edges to which guards are assigned.

Preprocessing: O(n log n)

First of all, regardless of the data structures we use to represent orthogonal poly-

hedra, we do some preprocessing on P to construct adjacency tables of faces, edges

and vertices. We also store every face’s boundary as a sorted list of its vertices and

edges. (This typically takes O(n) time, but can take Θ(n log n) time if our initial

data are severely unstructured.) These tables allow us to efficiently navigate the

polyhedron’s boundary. We mark each edge as reflex or convex and, if needed, we

turn P by 90◦ so that it contains no vertical reflex edges.

Finding contact lines: O(n log n)

We first compute a structure that is very similar to the horizontal visibility map

(also known as trapezoidalization) of each vertical face of P . This is a well-studied

2-dimensional problem that consists in partitioning a polygon into trapezoids by

drawing horizontal lines at vertices. In our case, faces are orthogonal polygons

(perhaps with holes), trapezoids are actually rectangles, and cut lines are drawn at

reflex vertices only.

Let Fi be a vertical face of P with ni vertices. We sort all the vertical edges of

Fi by the z coordinate of their upper vertex (in O(ni log ni) time), and we “scan”

Fi from top to bottom with a sweep line. We maintain a horizontally sorted list of

all the vertical edges of Fi pierced by the sweep line, in which insertion and deletion

take O(log ni) time. Every time our sweep line hits a new reflex vertex v belonging

to a reflex edge of P , we draw a contact line from v to the next (or previous) edge

in the list, we add a fake vertex there (if needed), and we proceed with our sweep.
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This process takes O(ni log ni) time and, letting n =
∑

i ni, finding contact lines

on every vertical face of P takes O(n log n) in total, because∑
i

ni log ni 6
∑
i

ni log n = n log n.

Every time we find a new contact line, we also update the face, edge, and vertex

data we computed in the preprocessing step. That is, as soon as a new contact

line is found, the corresponding face gets a new edge and is perhaps partitioned in

two coplanar faces (this step takes constant time). Moreover, as soon as a new fake

vertex v is found, it is added to the other face sharing it (say, Fj). If we still have to

process Fj, we consider v as a reflex vertex and draw a contact line at v in Fj when

we process it. Otherwise, Fj is now a rectangle, and we just draw an additional

contact line in it at v, in constant time.

Finding bricks and contact rectangles: O(n)

Notice that contact lines are exactly the boundaries of the contact rectangles of P .

Indeed, in the previous step, we did not draw contact lines only at the reflex vertices

of each face, but also at convex vertices that lie on reflex edges of P .

It is easy now to identify all the contact rectangles and all the bricks, navigating

the boundary of P using our precomputed data structures. While we do it, we also

build a brick graph G, having a node for each brick and an arc connecting each pair

of bricks sharing a contact rectangle.

Observe that issue (3) above is now solved.

Resolving non-primitive contact rectangles: O(n)

Non-primitive contact rectangles are those that are surrounded by more than one

reflex edge of P and, as such, are easy to find. As proven in Theorem 4.7, it is

safe to cut P at a non-primitive contact rectangle and place guards in the resulting

polyhedra (or polyhedron).

Instead of actually cutting P and updating all the data structures, we merely

delete the arcs of G corresponding to the non-primitive contact rectangles.
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Forcing simple connectedness: O(n)

By this point, P has been partitioned into several, possibly not simply connected,

stacks. As proven in Theorem 4.5, it is safe to further cut the stacks until they

all become simply connected. To do so, we again process only G, turning it into a

forest. Such a task is accomplished by a straightforward traversal, starting at each

connected component and deleting arcs leading to already visited nodes. Recall

that bricks in stacks have at most four neighbors, hence the time complexity of this

traversal is indeed linear.

Observe that this step also solves issue (1) above.

Adjusting brick parity: O(n)

For reasons that will be clear shortly, we insist on having only stacks with an even

number of bricks. O’Rourke solves this by adding an extra “chip” to the polygon,

in case he wants to change the parity of its reflex vertices. Then he applies his

algorithm to the new polygon, and later removes the chip. If the chip happens to

hold a guard, then that guard is reassigned to the nearest convex vertex, after the

chip is removed. Notice how this choice causes issue (2) above.

In order to avoid placing guards on convex edges, we proceed as follows. We

compute the size of each connected component of G by a simple traversal. Then,

in each component with an odd number of nodes, we find one leaf (recall that G is

a forest) and delete the arc attached to it (if one exists). Finally, we collect each

isolated node, remove it from G, find its corresponding brick B in P , find a contact

rectangle bordering B (one must exist), find one reflex edge e on it and assign it a

guard. Referring to Figure 4.7, it is obvious that e orthogonally sees all of B.

The correctness of this step follows from the remarks contained in the proof of

Lemma 4.5, that every contact rectangle in a stack with an odd number of bricks

yields an odd cut, and that it is always safe to make odd cuts.

Identifying odd cuts: O(n)

We are left with stacks having an even number of bricks, and we want to further

partition them with odd cuts. In order to identify odd cuts, we pick each connected

component of G and we do a depth-first traversal, rooted anywhere. During the
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traversal, we compute, at each arc, the parity of the nodes in the dangling subtree.

Such parity is even if and only if that arc corresponds to an odd cut.

Now, it is straightforward to notice that cutting a stack having an even number

of bricks at an odd cut yields two stacks that again have an even number of bricks.

Additionally, this operation does not change the parity of the cuts in the two result-

ing stacks. Hence, there is no need to re-identify odd cuts after a cut is made. In

contrast, stacks with an odd number of bricks do not have such property, and this

motivates our previous step.

It follows that we may remove from G all the arcs corresponding to odd cuts,

without worrying about side effects.

Guarding double castles: O(n)

At this point, only non-convex stacks without odd cuts are left. As a consequence

of the observations in Lemma 4.5, these are all double castles, which we now have

to guard in linear time. (In contrast, O’Rourke’s algorithm was left at this point

with double histograms, giving rise to issue (4) above.)

Our algorithm is loosely based on the proofs of Lemmas 4.2, 4.3, and 4.4, which

naturally yield a procedure that cuts along certain contact rectangles and selects

guards in monotone orthogonal polyhedra.

The only non-trivial aspect is that, occasionally in the procedure, we need know

if some castle (or upside-down castle) is a prism, and what the orientation of its

reflex edges is. To efficiently answer this question, we precompute this information

for every “sub-castle” of each double castle that we have. We identify the two castles

constituting each double castle (in linear time), then we do a depth-first traversal of

the subgraphs of G corresponding to those castles, starting from their base bricks.

When we reach an internal node v, we recursively check if the subtrees dangling

from its two children correspond to prisms, and if their reflex edges are oriented in

the same direction. Then, after inspecting also the brick corresponding to v, we

know if its dangling subtree corresponds to a prism and, if so, the direction of its

reflex edges. Leaves are trivial to handle, in that they always correspond to prisms

with no reflex edges.

Summarizing, and recalling the upper bound given in Theorem 4.7, we have the

following.
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Theorem 4.16. Given a 2-reflex orthogonal polyhedron with r > 0 reflex edges and

genus g, a guarding set of at most ⌊
r − g

2

⌋
+ 1

reflex edge guards can be computed in O(n log n) time.

Of course, the same algorithm also achieves the upper bound in terms of e given

in Theorem 4.12: ⌊
e− 4

8

⌋
+ g.

Observe that the only superlinear step is the vertical sweep that finds the contact

lines in every vertical face of the polyhedron, plus perhaps the preprocessing step.

Whether a more efficient algorithm exists remains an open problem.
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Chapter 5

Mutually parallel edge guards in

orthogonal polyhedra

Abstract

We consider the problem of edge-guarding orthogonal polyhedra, with the

additional constraint that our guards must be all parallel.

We show that any orthogonal polyhedron with e edges, of which r are

reflex, is guardable by at most ⌊
e + r

12

⌋
mutually parallel open edge guards, regardless of its genus. If the guards are

closed, then the polyhedron is orthogonally guardable by the same number of

parallel guards.

On the other hand, asymptotically (e+ r)/14 parallel guards may be nec-

essary, as r tends to infinity. Further lower bounds are e/12 and r/2.

We also establish tight inequalities relating e with r, by virtue of which we

obtain other upper bounds on the number of parallel edge guards, in terms of

e and r only (and the genus g):⌊
11e

72
− g

6

⌋
− 1 and

⌊
7r

12

⌋
− g + 1.

In particular, we slightly improve upon the previous best upper bound of

be/6c edge guards, due to Urrutia.



84 CHAPTER 5. MUTUALLY PARALLEL EDGE GUARDS

5.1 Orthogonal polyhedra

We start by giving tight inequalities relating the number of edges in an orthogonal

polyhedron with the number of reflex edges. In the next section, we will use these

inequalities to obtain upper bounds on parallel edge guard numbers.

Recall from Chapter 2 that orthogonal polyhedra have six types of vertices,

shown in Figure 5.1.

A

B

C

D

E F

Figure 5.1: Vertex types.

Let us denote by A the number of A-vertices in a given orthogonal polyhedron,

and so on, for each vertex class.
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Lemma 5.1. In any orthogonal polyhedron with r > 0 reflex edges, 3A+D > 28.

Proof. Consider the bounding cuboid of the polyhedron and the set of orthogonal

polygons (perhaps with holes, without degeneracies), formed by intersection of the

faces of the cuboid and the polyhedron. The vertices of those polygons are either A-

vertices or D-vertices of the polyhedron (convex vertices yield A-vertices, and reflex

vertices yield D-vertices). Our strategy is to only look at the vertices belonging to

the bounding faces and ensure that there is a sufficient number of them. Namely,

we only need show that there are at least

(a) ten A-vertices, or

(b) nine A-vertices and one D-vertex, or

(c) eight A-vertices and four D-vertices.

v′

u′

v

u

f
f ′

f ′′

Figure 5.2: Illustration of the proof of Lemma 5.1.

Suppose each face of the bounding cuboid contains exactly one rectangle. If all

the vertices of these rectangles coincide with the corners of the bounding cuboid,

then the polyhedron is convex, contradicting the assumptions. Hence, there is a

vertex v that is not a corner of the bounding cuboid. Let f be a face of the bounding

cuboid containing v. At least one of the vertices, denoted by u, adjacent to v in the
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rectangle contained in f is such that the relative interior of uv does not lie on an

edge of the bounding cuboid. Let f ′ be the bounding face opposite to f , and f ′′ be

the bounding face chosen as shown in Figure 5.2: out of the four faces surrounding

f , f ′′ is the one that lies on the “side” of uv. f and f ′ contain two disjoint rectangles,

and thus exactly eight distinct A-vertices. Additionally, f ′′ has two extra A-vertices,

lying on an edge u′v′ parallel to uv (refer to Figure 5.2). Collectively, f , f ′ and f ′′

contain at least ten A-vertices, so (a) holds.

On the other hand, if there exists a bounding face f whose intersection with the

polyhedron is not a single rectangle, then we need analyze the following three cases.

Let once again f ′ be the bounding face opposite to f .

• If f contains at least two polygons (those polygons’ boundaries must be disjoint

because f is a bounding face), then collectively f and f ′ contain at least 12

distinct A-vertices, so (a) holds. Indeed, every orthogonal polygon has at least

four convex vertices.

• If f contains a polygon with at least one hole, then the polygon’s external

boundary contains at least four convex vertices (i.e., A-vertices), and the hole

has at least four reflex vertices (D-vertices). f ′ also contains at least four

convex vertices (A-vertices). Together f and f ′ contain at least eight A-vertices

and four D-vertices, so (c) holds.

• If f contains just one polygon, which is not convex, then such a polygon has

at least five convex vertices and one reflex vertex. Together with f ′, there are

at least nine A-vertices and one D-vertex, so (b) holds.

Theorem 5.2. For every orthogonal polyhedron with e total edges, r > 0 reflex

edges and genus g > 0,

e

6
+ 2g − 2 6 r 6

5e

6
− 2g − 12

holds. Both inequalities are tight for every g.

Proof. Let c = e − r be the number of convex edges. Let A be the number of A-

vertices, etc. Double counting the pairs (edge, endpoint) yields (refer to Figure 5.1)

2c = 3A+ C + 2D + 3E + 2F, (5.1)
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2r = 3B + 2C +D + 3E + 2F. (5.2)

The curvature of A- and B-vertices is π/2, the curvature of C- and D-vertices is

−π/2, the curvature of E- and F-vertices is −π. Hence, by the polyhedral Gauss–

Bonnet theorem (Theorem 2.8),

A+B − C −D − 2E − 2F = 8− 8g. (5.3)

Finally, since all the variables involved are non-negative,

9B + 3C + 3E + F > 0. (5.4)

Subtracting 3 times (5.3) from 2 times (5.4) yields

−3A+ 15B + 9C + 3D + 12E + 8F > 24g − 24.

Further subtracting (5.1) and adding 5 times (5.2) to the last inequality yields

2c− 10r + 24g − 24 6 0,

which is equivalent to
e

6
+ 2g − 2 6 r.

To see that the left-hand side inequality is tight for every r and g, consider the

staircase-like polyhedron with holes depicted in Figure 5.3. If the staircase has k

“segments” and g holes, then it has a total of 6k + 12g + 6 edges and k + 4g − 1

reflex edges.

According to Lemma 5.1, 3A+D > 28, unless the polyhedron is a cuboid. Then

9A+ 3D + 3E + F > 84. (5.5)

Subtract 3 times (5.3) from 2 times (5.5):

15A− 3B + 3C + 9D + 12E + 8F > 24g + 144.

Subtract (5.2) and add 5 times (5.1):

2r − 10c+ 24g + 144 > 0,
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Figure 5.3: Polyhedron that achieves the tight left-hand side bound in Theorem 5.2.

which is equivalent to

r 6
5e

6
− 2g − 12.

To see that the right-hand side inequality is also tight, consider the polyhedron

represented in Figure 5.4: a cuboid with a staircase-like well carved in it, and

a number of cuboidal “poles” carved out from the surface of the well (i.e., the

“negative” version of Figure 5.3). If the staircase has k “segments” and g poles,

then the polyhedron has a total of 6k + 12g + 18 edges and 5k + 8g + 3 reflex

edges.

Observation 5.3. The statement of Theorem 5.2 does not hold if we change the

definition of orthogonal polyhedron by dropping the condition of connectedness of the

boundary. Indeed, consider a cube and remove several smaller disjoint cubic regions

from its interior. The resulting shape has unboundedly many reflex edges and just

12 convex edges.

5.2 Parallel edge guarding

Motivations

Now we consider the problem of guarding a given orthogonal polyhedron with mu-

tually parallel edge guards. Recall that Urrutia gave an upper bound on the number
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Figure 5.4: Polyhedron that achieves the tight right-hand side bound in Theorem 5.2.

of edge guards of be/6c, where e is the total number of edges (Theorem 3.15). Here

we improve that upper bound to show that, asymptotically, 11e/72 (open or closed)

edge guards suffice, or, in terms of r, that 7r/12 guards suffice.

One of the most obvious ways to treat guarding problems in polyhedra is to

consider cross sections and try to apply known techniques and theorems to the

resulting planar polygons. In the case of edge-guarding orthogonal polyhedra, one

could for instance consider all the horizontal cross sections, and solve the Art

Gallery Problem with vertex guards in each section. Such vertex guards become

edge guards when extended to the whole polyhedron. Of course, the challenge is to

“consistently” select vertex guards in neighboring cross sections, so that the overall

amount of edge guards is minimized. This suggests how the problem of orthogonally

guarding with mutually parallel edge guards naturally emerges.

Nonetheless, this guarding mode has notable applications in point location, track-

ing, and navigation. Imagine that a polyhedron is orthogonally guarded by vertical

edge guards. Then, if each guard represents an array of sensors, each of which scans

a horizontal area, we can immediately determine the altitude of any object in the

polyhedron, based on which sensor detects the object. We can also monitor the

object’s movements, and guide it along a path, without ever “losing track” of it. In

some applications, employing parallel edge guards may even be a necessity derived

by environmental constraints.
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Guarding strategy

Theorem 5.4. Any open (resp. closed) orthogonal polyhedron with e edges, of which

r are reflex, is guardable (resp. orthogonally guardable) by at most⌊
e+ r

12

⌋
mutually parallel open (resp. closed) edge guards. Guard locations can be computed

in linear time.

Proof. Let ex and rx be the number of x-parallel edges and x-parallel reflex edges,

respectively; ey, ez, ry, rz are similarly defined. Without loss of generality, assume

x is the direction that minimizes the sum ex + rx, so that

ex + rx 6
e+ r

3
.

Of course, a guard on every x-parallel edge suffices to cover all of P , but we can do

much better with a selected subset of these edges. We argue below that selecting

the three types of x-parallel edges circled in Figure 5.5 suffices (as do three other

symmetric configurations). Let the number of x-edges of each of the eight types be

α, · · · , δ′ as labeled in Figure 5.5.

α β

γδ

α′ β′

γ′δ′

Figure 5.5: Possible configurations of x-edges. The x axis is directed toward the
reader. The circled configurations are those selected in the proof of Theorem 5.4.

Hence we could place α + β′ + δ′ guards, or (symmetrically) γ + β′ + δ′ guards,

or β + α′ + γ′ guards, or δ + α′ + γ′ guards.
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By choosing the minimum of these four sums, we place at most

(α + β + γ + δ + 2α′ + 2β′ + 2γ′ + 2δ′) /4

=
ex + rx

4
6

e+ r

12

guards.

Next we prove that our guard placement works.

We consider any point p in P and show that p is guarded by the edges selected

in Figure 5.5. Let ω be the x-orthogonal plane containing p and let Q be the

intersection of the (open) polyhedron P with ω. To prove that p is guarded, we first

cast an axis-parallel ray from p. For our choice of guarding edges, the ray is directed

upward. Let q be the intersection point of the ray and the boundary of Q that is

nearest to p. Next, grow leftwards a rectangle whose right side is pq until it hits a

vertex v of Q. If it hits several vertices simultaneously, let v be the topmost. There

are three possible configurations for v, shown in Figure 5.6, and each corresponds

to a selected configuration in our placement of guards (Figure 5.5).

If guards are closed, then p is orthogonally guarded. Otherwise, if guards are

open and v lies in the interior of the guarding edge, then p is (orthogonally) guarded.

If guards are open and v is an endpoint of the guarding edge, then we show that p is

guarded by a sufficiently small neighborhood of v that belongs to that edge. Every

face of P that does not intersect ω has a positive distance from ω. Let d be the

smallest such distance. Then, the points of the guarding edge at distance strictly

less than d from v see p. Hence p is guarded.

If a different triplet of guarding edges is chosen, the above construction is suitably

rotated by a multiple of 90◦.

Computing guard locations merely involves counting edges of each type, which

can be done in linear time.

We remark that our placement of guards in the single slices resembles a con-

struction given in [1], in a slightly different model.

Observation 5.5. Due to Observation 5.3, our methods do not improve on Urru-

tia’s be/6c upper bound when applied to orthogonal shapes with disconnected bound-

ary. Indeed, in this case the b(e+ r)/12c bound given by Theorem 5.4 still holds,

but the r to e ratio can be arbitrarily close to 1.
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p p p

v

v v

q q q

Figure 5.6: Illustration of the proof of Theorem 5.4.

By combining the results of Theorem 5.4 with those of Theorem 5.2, we imme-

diately obtain two corollaries.

Corollary 5.6. Any open (resp. closed) orthogonal polyhedron with e edges and

genus g is guardable (resp. orthogonally guardable) by at most⌊
11e

72
− g

6

⌋
− 1

mutually parallel open (resp. closed) edge guards.

Corollary 5.7. Any open (resp. closed) orthogonal polyhedron with r reflex edges

and genus g is guardable (resp. orthogonally guardable) by at most⌊
7r

12

⌋
− g + 1

mutually parallel open (resp. closed) edge guards.

Observe that the lower bounds on the number of edge guards given in Chapter 3

in terms of e and r also hold for mutually parallel edge guards. Moreover, in terms

of both e and r, we have a combined lower bound of (e+ r)/14 (refer to Figure 3.8).

We conjecture that these bounds are also tight.

Conjecture 5.8. Any open (resp. closed) orthogonal polyhedron with e edges, of

which r are reflex, is guardable (resp. orthogonally guardable) by at most

e+ r

14
+O(1),

e

12
+O(1),

r

2
+O(1)

mutually parallel open (resp. closed) edge guards.
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Observation 5.9. Due to Theorem 5.2, guardability by e/12 +O(1) guards implies

guardability by r/2 +O(1) guards.
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Chapter 6

Edge guards in 4-oriented

polyhedra

Abstract

We study the problem of edge-guarding polyhedra whose faces are ori-

ented in four possible directions, any three of which are linearly independent

(orthogonal polyhedra come as a subclass).

We prove that any such 4-oriented polyhedron with e edges, of which r

are reflex, can be guarded by at most⌊
e + r

6

⌋
edge guards, regardless of its genus. This bound is obtained in two different

ways, via independent constructions that can be computed in linear time.

On the other hand, for unboundedly large values of e and r, we exhibit

4-oriented polyhedra that require⌊e
6

⌋
− 1 =

⌊ e

12
+

r

6

⌋
(reflex) edge guards.

All our results hold both in the open and in the closed guard model.
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6.1 4-oriented polyhedra

Motivations

Recall that a polyhedron is 4-oriented if each of its faces is orthogonal to one of four

possible vectors (denoted from now on by x, y, z, w), no three of which are linearly

dependent. Orthogonal polyhedra, being 3-oriented, come as a proper subset of this

class. In the present chapter we aim at guarding 4-oriented polyhedra with (open

and closed) edge guards, and we give bounds on the number of guards that are

required in each polyhedron, in terms of e, the total number of edges, and r, the

number of reflex edges.

The problem of guarding c-oriented polyhedra naturally arises when trying to

generalize the guarding technique employed in Chapter 5 for orthogonal polyhedra.

We still want to reduce our 3-dimensional problem to a set of planar problems, by

cutting our polyhedra with parallel planes, and placing point guards in each plane.

Of course, for every constant c, the number of different configurations we have to

consider is finite, and the technique can conceivably be generalized.

However, as c grows, the complexity of the possible configurations blows up, and

the results become weaker. As c tends to infinity, our technique will place guards

on almost every edge, making our approach pointless. Nonetheless, for c = 4, the

complexity is still manageable, and the results obtained are still remarkable.

Once again, we have the same application that we mentioned for parallel edge

guards in orthogonal polyhedra: instead of having, say, vertical edge guards, now we

have non-horizontal edge guards. These can be interpreted again as arrays of sensors

that scan the area horizontally, detecting any object in the environment, providing

its altitude, and having the ability to monitor its movements and navigate it through

space.

Structure

An example of a 4-oriented polyhedron is given in Figure 6.1, made by gluing to-

gether two regular tetrahedra.

Note that, in general, each pair of orientation classes for faces gives rise to a

differently oriented edge. For instance, two adjacent faces orthogonal to x and y,

respectively, meet at an edge parallel to the cross product x× y. In total, we have
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Figure 6.1: Example of a 4-oriented polyhedron.

(
4
2

)
= 6 possible orientation classes for edges. Furthermore, each such orientation

class includes edges of eight different types, depending on the dihedral angle (internal

with respect to the polyhedron) formed by the two adjacent faces. Figure 6.2 shows

the eight possible ways two faces of a 4-oriented polyedron may meet to form an

edge of a given orientation class.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: The same edge may be formed in eight possible ways.

Each plane parallel to a face of a 4-oriented polyhedron is also parallel to three

edge classes. Therefore, if such plane is devoid of vertices of the polyehdron, it

may intersect only edges from the three remaining classes. For instance, a plane
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orthogonal to x is also parallel to x×y, x×z and x×w, and is not parallel to y×z,

y × w and z × w.

In fact, the intersection of any such plane with a 4-oriented polyhedron is a

collection of 3-oriented polygons, possibly with holes, whose vertices may be of 24

species, because there are eight different edge types in each edge class. The 24

species are listed in Figure 6.3, each paired with its complement.

Figure 6.3: Different types of vertices found in a section.

Observe that there are six smaller and six bigger differently oriented convex

angles, and as many reflex angles, which are their complements.

Note that the terms “smaller” and “bigger” are not necessarily rigorous, depend-

ing on the orientations of y, z and w with respect to x: for example, vectors y × z,

y × w and z × w, when projected onto a plane orthogonal to x, may induce on

it a partition into six angles measuring 120◦, 30◦, 30◦, 120◦, 30◦, and 30◦, in this

order. These would be our “smaller” angles, while the “bigger” angles would be

those formed by pairs of adjacent smaller ones, and would measure 150◦, 60◦, 150◦,
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150◦, 60◦, and 150◦. Hence, despite the names, some smaller angles would be twice

as large as some bigger angles.

6.2 Guarding strategy

Much like we did in Chapter 5 with orthogonal polyhedra, we cut 4-oriented poly-

hedra with parallel planes, and make sure that each planar section is guarded.

Let a 4-oriented polyhedron P be given, and let us pick planes orthogonal to x,

not passing through any vertex of the polyhedron. As previously noted, each such

plane intersects only edges of three different types (i.e., orientations), giving rise to

the 24 species of vertices illustrated in Figure 6.3. Our strategy consists in placing

edge guards just on the species listed in Figure 6.4

Figure 6.4: Edge types that are assigned a guard.

Now, let a point p ∈ P be given, lying in an x-orthogonal section S devoid of

vertices of P , and let us show that p is guarded.

Cast a ray from p, parallel to x × y, and extend it until it first encounters the

boundary of S, in q. Because the ray is parallel to x × y, q must lie on an edge of
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S that is parallel to either x× z or x× w.

Suppose q lies on an edge parallel to x × z. We consider the segment pq, open

at p and closed at q, and we continuously translate it parallel to x × z. Of the

two possible directions of translation (leftward and rightward), we pick the one that

forms the smaller angle with the ray from p to q. We keep translating pq until it

first hits a vertex v of S. If several vertices are encountered simultaneously, then v

is the topmost one.

Figure 6.5 shows the possible configurations for vertex v. If v is one endpoint of

the edge containing q, it belongs to one of the first four types, from (a) to (d). On

the other hand, if v is encountered before such endpoint is reached, then it must

belong to one of the last three types, from (e) to (g). Observe that all seven vertex

types have been listed in Figure 6.4, and so the corresponding edges of P contain a

guard. It follows that p is guarded.

p

q

v

(a)

p

q

v

(b)

p

q

v

(c)

p

q

v

(d)

p

q

v

(e)

p

q
v

(f)

p

q

v

(g)

Figure 6.5: p is necessarily guarded.

If, instead, q lies on an edge parallel to x× w, we repeat the same construction

on the other side of pq, in a vertically symmetric fashion. It is straightforward to

observe that the vertically symmetric counterparts of the seven vertex types shown

in Figure 6.5 are also listed in Figure 6.4. Hence, p is guarded in this case, as well.
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Based on these preliminary observations, we are now ready to prove the main

result of this chapter.

Theorem 6.1. Any open (resp. closed) 4-oriented polyhedron with e edges, of which

r are reflex, is guardable by at most ⌊
e+ r

6

⌋
open (resp. closed) edge guards. Guard locations can be computed in linear time.

Proof. By placing guards as described above, we can guard the entire polyhedron

P , except perhaps its x-orthogonal sections containing vertices.

Now, if P and our guards are closed, we can guard the missing sections in exactly

the same way as the other sections. Notice that our construction works even if p is

on the boundary of S.

If P and the guards are open, let S be one such section, repeat our construction

above, and let p be guarded by a vertex v of S that is also a vertex of P . Then there

must exist an edge ` of P hosting a guard, such that v is an endpoint of `. By the

same argument used in Theorem 5.4, there exists a point t in the relative interior of

`, close enough to v, that sees p. Indeed, because the faces of P are finitely many,

there exists a minimum positive distance d between the plane containing S and a

face of P not touching (the boundary of) S. If the distance between v and t is

smaller than d, then t sees p. Hence, even in the open guard model, P is completely

guarded.

Recall that we placed guards only on edges of P that are not orthogonal to x.

In particular, referring to Figure 6.5, we picked:

• two smaller convex angles,

• one bigger convex angle,

• four smaller reflex angles, and

• four bigger reflex angles.

We can repeat the same construction, rotated by different angles about x. In-

stead of casting a ray from p parallel to x × y, obtaining a point q = p + λ(x × y)

with λ > 0, we could pick a negative lambda and rotate the entire construction by
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180◦, thus putting our guards on different edges. We could also pick x× z or x×w
instead of x× y, giving rise to four more different sets of guarding edges.

Because these six constructions correspond to all the six possible orientations of

our species of angles, if we add up all the edges that we picked in every construction,

we obtain:

• all smaller convex angles, twice;

• all bigger convex angles, once;

• all smaller reflex angles, four times;

• all bigger reflex angles, four times.

Let ex and rx be the number of edges and reflex edges of P , respectively, that

are not parallel to x (and similarly we define ey, ry, etc.). Then, the total number

of edges listed above is not greater than 2ex + 2rx. Indeed, this is the sum we get if

we further add one copy of each bigger convex edge.

If we pick the least numerous of all the six choices, we place not more than⌊
2ex + 2rx

6

⌋
=

⌊
ex + rx

3

⌋
edge guards.

By the same reasoning, if we section P with planes orthogonal to y instead of x,

we obtain the upper bound ⌊
ey + ry

3

⌋
,

and similarly for z and w.

Among these four constructions, each edge type was considered exactly twice.

For instance, the edges parallel to x×y can be assigned guards only when we section

P with planes orthogonal to z or to w. As a consequence, the smallest guarding set

among these four contains at most⌊
ex + ey + ez + ew + rx + ry + rz + rw

12

⌋
=

⌊
2e+ 2r

12

⌋
=

⌊
e+ r

6

⌋
edge guards.
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In order to place guards as described, it is sufficient to count the amount of edges

of each of the 48 species, and then do a constant amount of sums and comparisons.

This can be easily carried our in linear time.

Corollary 6.2. Any open (resp. closed) 4-oriented polyhedron with e edges is guard-

able by at most ⌊e
3

⌋
open (resp. closed) edge guards. Guard locations can be computed in linear time.

Proof. Immediate by Theorem 6.1 and the fact that r 6 e.

6.3 Alternative construction

In this section we prove Theorem 6.1 again, using a slightly different construction.

Each of the two constructions performs better than the other on certain polyhedra,

although they perform equally well in the respective worst case scenarios, in terms

of e and r combined.

We start as in the previous section but, instead of choosing the edges correspond-

ing to the 11 angles in Figure 6.4, we choose those listed in Figure 6.6.

Now, using the same notation of the previous section, when we cast a ray from

p parallel to x × y, two cases arise. If we find q on an edge of S parallel to x × z,

we argue as before. If, instead, the edge containing q is parallel to x×w, we do not

repeat our argument on the other side of pq, but we stay on the same side. Referring

to Figure 6.7, we translate pq (open at p and closed at q) until we hit a vertex v. If v

is found on the edge of S containing q, then we are in one of the first four cases, from

(a) to (d). Otherwise, v is hit by the interior of pq as it translates, and the possible

cases are those from (e) to (g). All the edges corresponding to these configurations

have been selected to host a guard (see Figure 6.6), hence p is guarded.

From this point on, we proceed as in the previous section. Note that this time

we chose:

• two smaller convex angles,

• two bigger convex angles,

• four smaller reflex angles, and
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Figure 6.6: Alternative choice of guards.

• three bigger reflex angles.

By adding up the contributions of the six possible orientations of our construction

around x, we obtain:

• all smaller convex angles, twice;

• all bigger convex angles, twice;

• all smaller reflex angles, four times;

• all bigger reflex angles, three times.

Now, if we add one more copy of each bigger reflex angle to this sum, we get

2ex + 2rx, as before. Hence, averaging this sum over the 24 possible orientations of

our construction, we reach once again the bound given in Theorem 6.1, of⌊
e+ r

6

⌋
edge guards.
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p

q

v

(a)

p

q

v

(b)

p

q
v

(c)

p

q
v

(d)

p

q

v

(e)

p

q

v

(f)

p

q

v

(g)

Figure 6.7: p is necessarily guarded.

We remark that, in our first construction, we had to add some extra bigger

convex angles to our sums, in order to obtain a “clean” upper bound formula. In

our second construction, we added extra bigger reflex angles, instead. This leads to

the following:

Observation 6.3. Despite having the same worst-case upper bound in terms of e

and r, our first construction is expected to outperform the second one if and only if

the amount of “bigger” convex edges exceeds the amount of “bigger” reflex edges.

6.4 Lower bounds

Now we give some lower bounds on the number of edge guards required to guard a

4-oriented polyhedron, in terms of e and r.

Of course, our lower bound of ⌊r
2

⌋
+ 1

guards, which holds for orthogonal polyhedra due to Figure 4.12, also holds for

4-oriented polyhedra.

But in this more general scenario, we can provide better lower bounds in terms
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of e, and also in terms of e and r combined, as Figure 6.8 implies (cf. Figure 3.6).

Observation 6.4. There are 4-oriented polyhedra with e edges, of which r are reflex,

that require at least ⌊e
6

⌋
− 1 =

⌊ e
12

+
r

6

⌋
(reflex) edge guards, for unboundedly large values of e and r.

Figure 6.8: 4-oriented polyhedron with e = 6k+9 and r = 3k that requires k (reflex)
edge guards.

We believe that such lower bounds are asymptotically tight, and that guards

may always be chosen to lie on reflex edges.

Conjecture 6.5. Any 4-oriented polyhedron with e edges can be guarded by at most

e

6
+O(1)

reflex edge guards. If r is the number of reflex edges, the same polyhedron can be

also guarded by at most
e

12
+
r

6
+O(1)

reflex edge guards.



Part III

Searching polyhedra





Chapter 7

Model definition

Abstract

We give a thorough definition of the 3-dimensional Searchlight Schedul-

ing Problem. In our model, guards are 1-dimensional segments that rotate

a half-plane with one degree of freedom. We motivate our model choice with

observations and examples, also discussing some alternative models.

Notably, we introduce the notion of filling guard, which will be central in

the next chapter.

7.1 Guards and searchplanes

We start by defining our notion of guard for the 3-dimensional Searchlight

Scheduling Problem. Later, we will motivate our choice and discuss some al-

ternative models. In the terminology of Chapter 3, we will employ open segment

guards, not necessarily lying on an edge.

Definition 7.1 (guard). A guard in a closed polyhedron P is a positive-length

straight line segment minus its endpoints, lying in P. A boundary guard is a guard

that lies entirely on P’s boundary. An edge guard is a guard that coincides with the

relative interior of an edge of P.

Remark 7.2. For the 3-dimensional Searchlight Scheduling Problem, we

consider only closed polyhedra and open guards. If we take open polyhedra instead,

then some of our results do not hold anymore, notably the one-way sweep strategy
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of Chapter 8. In order to obtain similar results with open polyhedra, we would have

to model intruders as balls with positive radius, as opposed to dimensionless points.

Throughout Part III, we will be concerned mainly with boundary guards. Unlike

the situation in the planar Searchlight Scheduling Problem, boundary guards

already yield a rich and diverse theory.

In Definition 7.1, we exclude endpoints because we do not want guards to see

beyond reflex edges or non-convex vertices, as the next definitions will clarify.

Recall that V(`),the visibility region of a guard `, is the set of points that are

visible to ` (see Definition 3.1).

Definition 7.3 (searchplane). A searchplane of a guard ` is the intersection be-

tween V(`) and any (topologically closed) half-plane whose bounding line contains `.

Consequently, every guard has a searchplane for every possible direction of the

half-plane generating it, and the union of a guard’s searchplanes coincides with its

visibility region.

Figure 7.1: Edge guard with one of its searchplanes, depicted as a thick line and a
dark surface, respectively.

Remark 7.4. Throughout Part III, we will always use the term “searchplane”

with the meaning of Definition 7.3, i.e., a static planar area visible to some guard.

Nonetheless, we will keep using the term “searchlight” informally, referring to the

tool that guards use to scan the environment. Thus, guards can turn searchlights
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around, but cannot turn searchplanes. While a searchplane is a well-defined mathe-

matical object, a searchlight is not, in our terminology (in contrast with the standard

terminology of 2-dimensional SSP).

Blind directions. If a searchplane is just a line segment, it is said to be trivial,

and the corresponding direction is said to be blind for its guard. A guard has blind

directions if and only if it is a boundary guard. We arbitrarily define a left and right

side for each boundary guard, and we call leftmost position the leftmost non-blind

direction, for each boundary guard. Similarly, we define the rightmost position of

every boundary guard. Observe that the leftmost and rightmost positions are well-

defined, because the polyhedron is a closed set, and every direction aiming straight

at its exterior is blind for a boundary guard, even if the endpoints of (the topological

closure of) the guard lie on reflex edges or vertices. This is because we did not include

endpoints in Definition 7.1, a choice motivated also by Theorem 8.4. Conversely,

every other direction is not blind, because the corresponding searchplanes must

contain a plane neighborhood of some point.

7.2 Search schedules

Definition 7.5 (schedule). A schedule for a guard ` is a continuous function

f` : [0, T ]→ S1, where T ∈ R+ and S1 is the unit circle.

Intuitively, f`(t) expresses the orientation of the guard at time t ∈ [0, T ], which

is the angle at which ` is aiming its searchlight. In other words, ` is able to emit

a half-plane of light in any desired direction, and to rotate it continuously about

the axis defined by ` itself. We will say that, at time t, ` is aiming its searchlight

at point x if the orientation expressed by f`(t) corresponds to a searchplane of `

containing x (assuming that one exists).

For the following definitions, we stipulate that a polyhedron P is given, along

with a finite multiset of guards, each of which is provided with a schedule.

Remark 7.6. The reason why we use multisets rather than sets is that some guards

may be coincident, yet distinct. This is the same as providing guards with unique

identifiers, and also naturally models an analogous of the k-searcher of [57], i.e., a

guard carrying k independent searchlights. However, we will need multisets of guards
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only to prove Theorem 9.3 and Corollary 9.9, which are of independent interest and

may be safely disregarded without invalidating any other result in Part III.

Definition 7.7 (illuminated point). A point is illuminated at a given time if

some guard is aiming its searchlight at it.

Definition 7.8 (contaminated point, clear point). A point x is contaminated

at time t, with respect to a given schedule, if there exists a continuous function

h : [0, t] → P such that h(t) = x and there is no time t′ ∈ [0, t] at which h(t′) is

illuminated. A point that is not contaminated is said to be clear.

It follows that, at any time in a schedule, a maximal connected region of P
without illuminated points is either all clear or all contaminated.

Definition 7.9 (search schedule). A set of schedules of the form f` : [0, T ]→ S1,

where ` ranges over a finite guard multiset in a polyhedron P, is a search schedule

if every point in P is clear at time T .

Next we define the 3-dimensional Searchlight Scheduling Problem

(3SSP).

Definition 7.10 (3SSP). 3SSP is the problem of deciding if a given multiset of

guards in a given polyhedron has a search schedule.

An instance of 3SSP is said to be searchable or unsearchable, depending on

the existence of a search schedule for its guards. Since an instance is trivially

unsearchable if its guards cannot see the whole polyhedron, it is worth singling out

those instances.

Definition 7.11 (guard-visible instance). An instance of 3SSP is guard-visible

if every point of the polyhedron belongs to the visibility region of at least one guard.

7.3 Filling guards

Finally, a relevant role is played by a special type of (boundary) guard.

Definition 7.12 (filling searchplane). A searchplane of a guard in a polyhedron

P is filling if it is a closed set whose relative boundary lies entirely on P’s boundary.
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Consider a guard ` with a non-trivial searchplane S, and let α be the plane con-

taining S. Then S is filling if and only if it coincides with the connected component

of α ∩ P containing `.

Notice that the searchplane depicted in Figure 7.1 is not filling, because one of

its edges lies in the interior of the polyhedron (let us call this edge e). In addition,

this searchplane is not even a closed set: recall that guards have no endpoints, so

edge e is not actually part of the searchplane (except for one endpoint).

Definition 7.13 (filling guard). A guard is filling if all its searchplanes are filling.

Because searchplanes are induced by half-planes, it follows that only boundary

guards can be filling. Intuitively, a filling guard is similar to a traditional boundary

guard from SSP in simple polygons, in that its searchlight provides at any time

an effective barrier which cannot be crossed by the intruder just by walking past

its borders. The importance of such guards in developing search algorithms will be

elucidated in Chapter 8.

7.4 Motivations and alternative models

Now that we have given a complete definition of our 3-dimensional searchlight model,

we can discuss some of its basic features, and compare it with other plausible models.

First of all, it is obvious that no finite set of 1-dimensional searchlights can ever

capture a dimensionless intruder in a polyhedron. Hence, our searchlights must be

at least 2-dimensional to make any sense theoretically. Moreover, our model should

achieve a good tradeoff among realism, theoretical appeal, and ease of manipulation.

We can imagine each of our guards (as previously defined in this chapter) to be an

array of sensors arranged on a support that is able to rotate, say, horizontally. Each

sensor is a laser beam that casts a ray and continuously turns it up and down at high

speed. As a result, the support can reorient itself to aim at any desired searchplane,

and the sensors can detect any intruder lying in that searchplane, provided that

they turn fast enough. Implementing such a structure is in general quite demanding.

However, note that it is also very scalable: depending on the application and the

size of the intruder, fewer sensors can be placed on a single rotating support.

On the theoretical side, we want our model to be as close as possible to the

classic 2-dimensional one, so that it can hopefully provide some insights also on
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planar SSP. At the very least, we want SSP to be a proper subproblem of 3SSP,

and trivially so. This is indeed the case:

Proposition 7.14. SSP �L 3SSP.

Proof. Any polygon can be extruded to a prism, while each point guard can be

transformed into a segment guard by stretching it parallel to the prism’s sides. The

resulting construction has a search schedule if and only if the original one does.

The above proof is enabled by the fact that our searchlights rotate with only

one degree of freedom, which, incidentally, also makes for a simple description and

analysis of their schedules.

Because of this, any hardness result for SSP also holds for 3SSP, and any

algorithm that works for 3SSP also works for SSP. On the other hand, a hardness

result for 3SSP can perhaps serve as an intermediate step for an analogous hardness

result for SSP. Indeed, the expressiveness of polyhedral structures may give us

enough freedom to let us focus on the “big picture” of the reduction, which can later

be refined and perhaps embedded in the plane. An example is found in Chapter 11,

where we will deal with the complexity of the Partial Searchlight Scheduling

Problem, first proving that the 3-dimensional version is PSPACE-hard, and then

modifying our construction to work also for the 2-dimensional version of the problem.

Likewise, some algorithms or techniques that work for SSP may have very nat-

ural generalizations in 3SSP, and once again the simple reduction given in Propo-

sition 7.14 may make their discovery easier. In the next chapter we will give some

concrete examples of this general principle.

We point out that not for every reasonable model of searchlights the reduction

from SSP to 3SSP is immediate. As an example, consider a point guard carrying

a flashlight that can be rotated with two degrees of freedom. The flashlight emits a

cone of light of constant width. This is a very realistic model, whose 2-dimensional

version has been proposed and studied by Obermayer et al. in [39]. However, while

the planar model still resembles the original one, and actually generalizes it (1-

dimensional searchlights are flashlights whose cone of light has null width), this is

not the case for the 3-dimensional model. In fact, the relationship between searching

polyhedra with 3-dimensional flashlights and searching polygons with 1-dimensional

searchlights is not clear at all, and the first problem may even be computationally

easier than the second one.
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Furthermore, one could consider a “hybrid” model, in which guards rotate di-

hedral angles about an axis, as opposed to half-planes of light. In other terms, we

could add another parameter to our model, which is the width of the beam of light

emanating from each searchlight. To our understanding, such a modification shifts

the problem from the “topological side” to the “metric side”. Recall that the main

results for classic SSP were all expressed in terms of visibility graphs among guards,

and the presence of bounday guards. In a sense, these are all topological aspects

of the problem. In contrast, as hinted in [39] for the planar case, the model with

positive-width searchlights becomes very sensitive to the actual distances between

elements, such as the width of certain “bottlenecks” in the polygon, etc. We think

this addition, despite making the model more general, deprives it of much of its

appeal from the theoretical point of view. For our research, we prefer to keep our

model simple and our results more dependent on the topology of the problem.

7.5 Counterexamples

The most noteworthy aspect of our guard model is that searchplanes of boundary

guards, as opposed to searchlight rays emanating from boundary guards in SSP,

may fail to disconnect a polyhedron when aimed at its interior, regardless of its

genus. As it turns out, this is the main reason why 3SSP seems harder than SSP,

in that exploiting such a property will enable the relatively simple NP-hardness

proofs in Chapter 10, as well as the construction of several counterexamples to

positive statements about SSP.

Figure 7.2: Searchable instance of 3SSP with no sequential search schedule. Thick
lines mark guards.

For example, the reduction of the search space to sequential schedules (i.e., sched-
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ules in which the guards sweep in turns) given by Obermeyer et al. in [39] is no longer

possible. Figure 7.2 shows an instance of 3SSP whose two guards are forced to turn

their searchlights simultaneously, or else they would create gaps in the illuminated

surface which would result in the recontamination of the whole polyhedron.

Moreover, in spite of the searchability of all simply connected SSP instances

whose guards lie on the boundary and collectively see the whole polygon (see [49]),

it is easy to construct simply connected guard-visible but unsearchable instances of

3SSP with only boundary guards, such as those in Figure 7.3.

Figure 7.3: Two unsearchable guard-visible simply connected instances of 3SSP
whose guards lie on the boundary.

Indeed, whenever the two guards attempt to clear the center (in either of these

two instances), they fail to disconnect the polyhedron, since their searchplanes are

not coplanar, which results in the recontamination of the entire instance. In Chap-

ter 10 we will provide more sophisticated unsearchable but guard-visible instances

of 3SSP with only boundary guards.



Chapter 8

Searching with filling guards

Abstract

We investigate the properties of filling guards, as introduced in the previ-

ous chapter.

We point out how filling guards act as boundary guards in the planar

Searchlight Scheduling Problem, in that both the one-way sweep strat-

egy and the sequentiability of search schedules generalize to 3-dimensional

problem instances with only this type of guards.

Moreover, we characterize the searchable polyhedra containing just one

guard, showing that such guard must be filling.

Finally, we sketch a polynomial time algorithm to determine whether a

guard is filling, implying that the hypotheses of our previous theorems are

practically checkable.

8.1 Filling guards

Notice that all the counterexamples described in Section 7.5 employ boundary guards

that are not filling. Conversely, it comes as no surprise that employing only filling

guards yields positive results. To see why, let us give a characterization of the dif-

ferent shapes a searchplane can take with respect to the surrounding polyhedral

environment. The topological closure of a searchplane is always a polygon, per-

haps with holes, perhaps with some additional segments sticking out radially, and

the whole searchplane is visible to some line segment lying on its external boundary,
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which would be the guard generating it (refer to Figure 8.1). There may be intersec-

tions between a searchplane’s relative interior and the polyhedral boundary, which

could be collections of polygons, straight line segments, and isolated points (recall

that polyhedra in our model are closed sets). But what is central for our purposes

is the searchplane’s relative boundary, which may entirely lie on the polyhedron’s

boundary, or may not. If it does, and the searchplane is a closed set, then the only

way an intruder could travel from one side of the searchplane to the other, without

crossing the light and being caught, would be to take a detour through a suitable

handle of the polyhedron. In particular, in genus-zero polyhedra, that would be

impossible. In other words, any searchplane emanating from a guard aiming its

searchlight at the interior of a genus-zero polyhedron disconnects the polyhedron if

and only if the searchplane is filling. Thus, any filling guard aiming its searchlight

at the interior of a genus-zero polyhedron always disconnects it.

(a) (b)

Figure 8.1: Two sections of polyhedra, with searchplanes represented as dark regions.
The searchplane in (a) has two dangling segments, while the searchplane in (b) is
filling but not simply connected.

On the other hand, if a guard ` ⊂ P is filling, the topological closure of V(`)

is always a polyhedron, perhaps with some dangling polygons (which may originate

from dangling segments of single searchplanes, such as those in Figure 8.1(a)). Of

course, the boundary of V(`) may contain polygons that do not lie on P ’s boundary.
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But, because ` is filling, every such polygon is entirely contained in some searchplane

of `.

Definition 8.1 (critical searchplane, critical position). A searchplane S of a

filling guard ` is critical if it shares a polygon with the boundary of V(`) that does

not lie on P’s boundary. Whenever ` is aimed at S, it is in a critical position.

Every filling guard ` has only a finite number of critical searchplanes, because

V(`)’s surface is made of finitely many polygons. Equivalently, ` has a finite number

of critical positions.

Now, as a filling guard ` in a genus-zero polyhedron starts turning from its

leftmost position toward the right, every point that it illuminates will remain clear

forever, unless the illuminated searchplane becomes tangent to some region of the

polyhedron that is not in V(`) and that would be responsible for recontamination,

once the tangency is crossed by the searchlight. This happens exactly when ` reaches

a critical position.

8.2 One-way sweeping

We now have the tools required to generalize the one-way sweep strategy for guards

in simple polygons (outlined by Sugihara et al. in [49], and in Chapter 1) to work

with filling guards in simply connected polyhedra.

Theorem 8.2. Every guard-visible genus-zero instance of the 3-dimensional Search-

light Scheduling Problem is searchable if its guards are filling.

Proof. We first sketch a search schedule before detailing it further. Select any guard

` and start turning it rightward from its leftmost position. As soon as it reaches

a critical position, it means that some subpolyhedron R ⊂ P has been encountered

that is invisible to `. So stop turning ` and select another guard to continue the job.

Proceed recursively until R is clear, then turn ` rightward again, stopping at every

critical position, until the entire polyhedron is clear.

At any time, there is a clear region of P that is steadily growing, and a semiconvex

subpolyhedron R supported by a set of guards L that is being cleared by some guard

not in L, while the guards in L hold their searchlights fixed. Intuitively, the term

“semiconvex” is used because the only points of non-convexity of such a polyhedron
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lie on P ’s boundary. For a formal definition of semiconvex subpolygon and support,

refer to [38] or [49]. Extending these definitions to polyhedra is straightforward,

since we are considering only filling guards in genus-zero polyhedra. Thus, part

of the boundary of R coincides with P ’s boundary, while the remaining part is

determined by the searchplanes of the guards in L. Moreover, all the guards in L

are in a critical position, waiting for R (or some larger semiconvex subpolyhedron

of P , supported by a subset of L) to be cleared. It follows that none of the guards

in L can see any point in the interior of R.

Hence, there must be some guards not in L that can see an internal portion of R,

otherwise the problem instance would not be guard-visible. We select one of them,

say `′, and start sweeping R from left to right (according to `′’s notion of left and

right). Notice that a searchplane bounding R could have holes, and thus R itself

could have strictly positive genus. But that does not affect our invariants, because

every searchplane of `′ passing through R’s interior still disconnects it, or it would

not even disconnect P . As a consequence, the points in R that are illuminated by

`′ never get recontaminated as `′ continues its sweep.

Again, whenever `′ reaches a critical position, it stops there until the semiconvex

subpolyhedron R′ ⊂ R supported by L∪{`′} has been cleared by some other guard,

and so on recursively. Since every guard has only a finite number of critical positions,

eventually P gets cleared.

Remarkably enough, the core argument supporting the planar one-way sweep

strategy of Sugihara et al. (see [49]) applies also to our polyhedral model, where

there is no well-defined global concept of clockwise rotation.

8.3 Sequentiality

In addition to this, a version of the main result of Obermeyer et al. (see [39]) also

extends to instances of 3SSP with filling guards. Assuming that all the guards are

filling, we say that a search schedule is critical and sequential if at most one guard

is turning at any given time, and guards stop or change direction only at critical

positions, or at their leftmost or rightmost positions.

Corollary 8.3. Every searchable genus-zero instance of the 3-dimensional Search-

light Scheduling Problem whose guards are filling has a critical and sequential

search schedule.
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Proof. Since the instance is searchable, it must be guard-visible. Thus, the search

schedule detailed in the proof of Theorem 8.2 applies, which is indeed critical and

sequential.

8.4 Searching with one guard

As a further application of the concept of filling guard, we characterize the searchable

instances of 3SSP having just one guard. We include polyhedra of any genus, not

just zero.

Theorem 8.4. An instance of the 3-dimensional Searchlight Scheduling

Problem (of any genus) with just one guard is searchable if and only if it is guard-

visible and the only guard is a boundary guard.

Proof. Both conditions are clearly necessary, for the same reasons why they are

necessary in 2-dimensional SSP (see [49] and Chapter 1). Specifically, if the guard

has a point that does not lie on the polyhedron’s boundary, then no small-enough

ball centered at that point can ever be cleared.

Conversely, since the instance is guard-visible, the visibility region of its only

guard ` coincides with the whole polyhedron P . Let `′ be the maximal straight line

segment contained in P and containing `. Then `′ entirely belongs to the boundary

of P . Indeed, if a point x ∈ `′ lay strictly in the interior of P , then also some

neighborhood of x would. Recall that ` has a range of blind directions past its

leftmost and rightmost position, where all its searchplanes degenerate to the single

line `′. In all those directions, part of the neighborhood of x would lie outside V(`),

contradicting the guard-visibility of the instance.

Consider a searchplane S, lying on a half-plane α whose bounding line contains

` (refer to Figure 8.2). If a point x ∈ α ∩ P lay outside S, then x would necessarily

be covered by another searchplane, because V(`) = P . But the only points in α that

could lie on a searchplane different from S would be those in `′, because any two

searchplanes of ` intersect just on `′. Nonetheless, `′ belongs to S too, which yields

a contradiction. Hence S = α ∩ P and also `′ lies on the boundary of P , implying

that ` is a filling guard with no critical positions. Moreover, S disconnects P if it

intersects its interior. Suppose by contradiction that an intruder could walk from

one side of S to the other side. Since S = α ∩ P , the intruder would necessarily
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l j

α

x

` `′

S

Figure 8.2: Illustration of the proof of Theorem 8.4.

have to take the long route around `′ (i.e., opposite to α, see Figure 8.2), and by

doing so it would cross all the half-planes in the blind directions of `. But the only

points of P that belong to such half-planes are those in `′, so the intruder would be

caught in any case.

It follows that turning ` from its leftmost position to its rightmost position

produces a search schedule.

Notice that, had we included endpoints in Definition 7.1, the statement of The-

orem 8.4 would have been false. Indeed, the guard-visibility assumption would have

been satisfied by more 3SSP instances, including unsearchable ones. For example,

consider a cube with a “pyramidal well” pointing inside, and an edge guard on a

reflex edge. The entire polyhedron is visible to the pyramid’s vertex, which is an

endpoint of the guard. However, the guard cannot search the polyhedron, because

no searchplane disconnects it, in either guard model—with or without endpoints.

8.5 Checking for fillingness

We conclude this chapter by sketching an argument supporting the claim that the

conditions of Theorem 8.2 are practically checkable.

Proposition 8.5. Whether a guard ` ⊂ P is filling can be decided in time polyno-

mial in the size of P.

Proof. First of all, if ` is not a boundary guard, then it cannot be filling and may

be discarded.
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Then, observe that the fillingness of a searchplane S generated by a half-plane α

can be efficiently checked by computing the polygonal section P = α ∩P , and then

computing the boundary of S by drawing lines through every pair of vertices of P .

Once the boundary of S is known, its fillingness can be checked easily.

Now, determining if ` is filling can be carried out by inspecting just a polynomial

number of its searchplanes. For every face F ⊂ P and every edge e ⊂ P that is not

parallel to F , we call the point of intersection between the plane containing F and

the line containing e a critical point (not to be confused with “critical position”, see

Definition 8.1). In particular, every vertex of P is a critical point. Imagine turning

the searchlight of ` from its leftmost position to the rightmost: it is straightforward

to see that the fillingness of the illuminated searchplane can change only when the

searchlight crosses a critical point. Hence, it suffices to check the fillingness of every

searchplane corresponding to a critical point, plus one searchplane for each interval

between two consecutive critical points. The number of searchplanes to check is

thus polynomial.

Making the above proposition into an optimal algorithm goes beyond our scopes.

However, the interested reader can readily see that even a naive implementation

yields a time complexity of O(n4), regardless of the actual data structures used to

represent polyhedra.
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Chapter 9

Guard placing strategies

Abstract

We tackle the problem of efficiently placing boundary guards in a given

polyhedron, in order to make it searchable.

Our strategy for general polyhedra with r > 0 reflex edges employs r2

boundary guards, which we believe to be asymptotically suboptimal. How-

ever, we prove that r reflex edge guards are sufficient for orthogonal polyhedra.

A related goal is to minimize the search time, assuming that each guard’s

angular speed is bounded by some constant. We show that, in our previous

constructions, it is possible to trade guards for search time, to some extent.

9.1 Preliminaries

In this chapter we attempt to place boundary guards in a given polyhedron in order

to make it searchable. We aim at proving the following.

Conjecture 9.1. Any non-convex polyhedron with a guard on each reflex edge is

searchable.

Although we only manage to prove it for orthogonal polyhedra, we also obtain

a quadratic upper bound on the number of guards for general polyhedra.

A complementary goal is to minimize the search time, which is the total time

of a search schedule, assuming that the maximum angular speed of every guard is

2π rad/sec. We will show that our constructions allow to trade guards for search

time, to some extent.
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Remark 9.2. Formally, when considering search time, the set of a guard’s legal

schedules is restricted to Lipschitz continuous functions, whose Lipschitz constant

corresponds to an angular speed of 2π rad/sec.

The problem of minimizing the number of (boundary) guards required to search

a given polyhedron is strongly NP-hard, even for genus-zero orthogonal polyhedra.

The problem is strongly NP-hard also restricted to edge guards, or to edge guards

lying on reflex edges. Indeed, our construction in Theorem 3.27 not only holds for

the Art Gallery Problem, but also for 3SSP, due to the reduction in Proposi-

tion 7.14, and the fact that point guards can search a given simple polygon if and

only if they solve the Art Gallery Problem (see Chapter 1 or [49]).

9.2 Searching general polyhedra

Basic search strategy

To begin with, we argue that r2 + r boundary guards are sufficient to search any

given polyhedron with r > 0 reflex edges. Subsequently, we show how to lower this

bound to r2, at the expense of increasing search time.

Theorem 9.3. Any polyhedron with r > 0 reflex edges can be searched in less than

1 second by at most r2 + r suitably chosen boundary guards.

Proof. Let P be a non-convex polyhedron. We first partition it into convex regions

Ci, showing how this partition is induced by at most r2 boundary guards. Next, we

obtain a superpartition Dj with some better properties that we exploit to obtain a

search schedule, using r new boundary guards (a very similar partition was described

by Chazelle in [12], under the name of “revised naive decomposition”, see Chapter 2).

First partition. Let e be a reflex edge of P , and let αe be a plane through e,

close enough to its angle bisector, but not containing any vertex of P other than e’s

endpoints. Let Qe be the connected component of αe ∩ P containing e. We claim

that Qe is a polygon with at most r− 1 reflex vertices, possibly with holes. Indeed,

e is an edge of Qe, and each reflex vertex of Qe lies on a reflex edge of P . Moreover,

if an endpoint of e is a reflex vertex of Qe, then it belongs at least to another reflex

edge of P , different from e. But αe intersects every edge of P other than e in at
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most one point (otherwise it would contain its endpoints, as well), hence there are

at most r − 1 reflex vertices of Qe, i.e., one for every reflex edge of P other than e.

By Lemma 3.5, Qe can be guarded by at most r open edge guards, one of which

lies on e. Equivalently, Qe can be completely illuminated by at most r suitably

placed boundary guards (with searchlights), lying on αe and aimed parallel to it,

one of which is an edge guard lying on e. By repeating the same construction

with every other reflex edge, at most r2 boundary guards are placed, and P is

partitioned by illuminated searchplanes into convex polyhedra Ci. We remark that,

during our construction, previously placed searchplanes are not considered as part

of P ’s boundary. Hence, every Qek is indeed bounded by P . This is because we

need place guards on the boundary of P , and not in its interior.

A coarser partition. Consider now a slightly different partition: proceed as

above by drawing angle bisectors through reflex edges, but this time every previously

drawn splitting polygon acts as a boundary. In other words, as soon as P splits into

several subpolyhedra, we partition them recursively one by one, confining each split

to just one subpolyhedron. So, if we consider some intermediate subpolyhedron

P ′ ⊆ P and select a reflex edge e′ ⊂ P ′, we look at the reflex edge e of P that

contains e′, and let Re′ be the connected component of αe ∩ P ′ (as opposed to

αe ∩ P) containing e′. As a result, P is again partitioned into convex polyhedra

Dj, in such a way that every Ci is contained in some Dj (i.e., {Ci} is a refinement

of {Dj}). Notice that, even though two different splitting polygons Re′ and Re′′

may correspond to the same reflex edge e of P (because e itself has been split by a

previous cut), they are nonetheless coplanar, as they both belong to the same plane

αe.

Search schedule. The point of having this coarser partition is that every Dj
contains a subsegment of a reflex edge of P (see Figure 9.1). This property can be

checked by a straightforward induction on the construction steps.

Now we add a new edge guard on each reflex edge, and we turn these additional

guards simultaneously, from their leftmost position to the rightmost. While this

happens, the r2 previously placed guards are never moved, so that the partition

{Dj} is always preserved. Because each Dj is completely visible to some reflex edge,

at the end of the schedule every Dj is successfully cleared.
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(a) {Ci} (b) {Dj}

Figure 9.1: Comparison between partitions {Ci} and {Dj} in a section of a polyhe-
dron. For simplicity, only the splitting planes corresponding to visible reflex edges
are shown.

Since every guard turns by less than 2π rad, the search time is less than one

second.

Improved search strategy

We can slightly lower the number of guards used in the previous theorem, at the cost

of increasing the search time. Next we show how to use only r2 boundary guards,

although the search time of our schedule could be quadratic in r, as well.

Theorem 9.4. Any polyhedron with r > 0 reflex edges can be searched by at most

r2 suitably chosen boundary guards.

Proof. As in the proof of Theorem 9.3, we partition the polyhedron P into convex

regions Dj by placing at most r2 boundary guards. Next we show that some of these

guards can be turned in a certain order to clear every piece of the partition.

In the following, we use the same notation as in the proof of Theorem 9.3.

Partition tree. During the splitting process of P that culminates in the partition

{Dj}, we build a tree whose nodes represent the intermediate subpolyhedra, and

whose arcs are marked by the splitting polygons Re (see Figure 9.2). Thus, the root

of the tree is P and its leaves are the Dj’s. Every time we draw a splitting polygon

Re for a subpolyhedron P ′ corresponding to some node v of the tree, we could either

decrease the genus of P ′, or we could partition it into two subpolyhedra P ′1 and P ′2,
one for each side of Re. In the first case we just attach to v an arc labeled Re with
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a child node labeled as the new polyhedron, say P ′′. In the second case we attach to

v two arcs labeled Re, with two children nodes labeled P ′1 and P ′2. This structure

is somewhat reminiscent of a Binary Space Partitioning tree. Again, as in the proof

of Lemma 3.5, we have to slightly extend the notion of polyhedron, to include those

with internal polygons acting as faces, resulting from non-disconnecting splits.

...

k

P

P1 P2

P ′1 P ′2 P ′′2

D1 D2 D3

Re1 Re1

Re2 Re3 Re3

Figure 9.2: Sketch of a partition tree.

Search schedule. Next we describe a search schedule for the r2 boundary guards

we placed. Recall that each Dj contains a subsegment of a reflex edge of P , and

that on each such reflex edge lies one edge guard. We turn only some of these r

guards, one by one, while all the other guards stay still. The order of activation of

the guards is determined by the above partition tree, and the same guard could be

activated more than once. The subpolyhedra of P are cleared recursively, following

a depth-first walk of the partition tree, starting from the root. Every time a leaf is

reached through an arc labeled Re, its corresponding Dj is swept by the edge guard

lying on e. This is feasible because e lies on the boundary of Dj, which is convex.

When Dj is clear, the guard moves back to its initial position and the depth-first

walk proceeds.

Correctness. It remains to show that no significant recontamination can occur

among the Dj’s while their bounding searchlights are rotated. Suppose the depth-

first walk of the partition tree reaches a leaf labeled Dj, and let `e be the edge guard



130 CHAPTER 9. GUARD PLACING STRATEGIES

whose duty is to clear Dj. Perhaps the corresponding edge e of P is divided several

times by the partition, so let E be the set of subsegments of e whose corresponding

splitting planes actually appear as labels of the edges of the partition tree. Let

e′ ∈ E be the subsegment of e that is also an edge of Dj. On the other side of Re′

lies a subpolyhedron P ′, such that Dj and P ′ are represented by sibling nodes in the

partition tree. In order to clear Dj, `e turns its searchlight fromRe′ to sweep over Dj,
and then back to Re′ . Since the restriction of `e to Dj is filling, no recontamination

occurs between Dj and P ′ during this back-and-forth sweep (see Figure 9.3).

`e

Re′Dj
P ′

Figure 9.3: P ′ is not recontaminated while `e sweeps Dj.

Nonetheless, recontamination could still occur between other subpolyhedra bounded

by αe. Let {e1, e2} ⊆ E, and let the subpolyhedra P1 and P2 be partitioned by Re1 ,

and Re2 , respectively (observe that the relative interiors of e1 and e2 must be dis-

joint, by construction). Obviously, no recontamination between P1 and P2 is possible

while `e sweeps, because αe is not a common boundary (refer to Figure 9.4). How-

ever, recontamination could occur within P1 (or within P2), provided that e1 6= e′.

As it turns out, this type of recontamination is irrelevant, because it would imply

that the node labeled P1 (call it p) has not been reached yet by the depth-first walk

in the partition tree. We set up an induction argument on the partition tree, as-

suming that all the subpolyhedra corresponding to previously visited leaves are still

clear before `e sweeps. By construction, p cannot be an ancestor of the node labeled

Dj, otherwise Dj would be a subpolyhedron of P1, while in fact their interiors are

disjoint. So, had the depth-first walk reached p, it would have also visited its entire

dangling subtree and, by inductive assumption, P1 would still be all clear. More-

over, since P1 is not bounded by αe, it cannot get recontaminated while `e sweeps.
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On the other hand, if the walk has not reached p yet, then perhaps some portions

of P1 have been accidentally cleared, but can safely be recontaminated, because the

systematic clearing process of P1 has yet to start.

p

αe

Re1

Re2

Re′

e
e1

e2

e′
P1

P2

P ′

Dj

Figure 9.4: Sketch of a splitting plane.

Remark 9.5. A bonus feature of this improved construction, apart from using fewer

guards, is that no two guards are coincident: indeed, if two guards end up coin-

ciding, we can slightly perturb their respective planes αe. Observe that practically

implementing two coincident guards (equivalently, one guard with two independent

searchlights) may conceivably be unfeasible in some applications.

9.3 Searching orthogonal polyhedra

The previous results can be greatly improved if the polyhedron is orthogonal.

Erecting fences

We first obtain a partition of a given orthogonal polyhedron P into cuboids by

constructing vertical fences in a 3-step process (recall the terminology for orthogonal

polyhedra introduced in Chapter 2). Then we will argue that these fences may be

regarded as (parts of) searchplanes of suitably oriented edge guards lying on the
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reflex edges of P . Finally, after pointing out some basic properties of our partition,

we will show that rotating all the searchlights one by one clears every cuboid.

The term “fence” is borrowed from [14], where Chazelle and Palios describe

a partition of general polyhedra into prisms that somewhat resembles that of our

Step 1 (see also Chapter 2).

1. Each horizontal reflex edge r of P has a horizontal adjacent face and a vertical

adjacent face F , going upwards or downwards. From every point on r, cast a

vertical ray in the direction opposite to F , until it again reaches the boundary

of P . Repeat the process with every horizontal reflex edge, so that each

generates a vertical fence, either upwards or downwards. It is easy to see that

P is partitioned by fences into orthogonal prisms (i.e., extruded polygons)

with horizontal bases.

2. Consider any vertical reflex edge r of P with an internal point lying on a

lateral face (i.e., an x-orthogonal face) of a prism Q generated in Step 1. By

construction, r must lie entirely on the boundary of Q. Extend r to a maximal

segment r′ contained in the boundary of Q. If possible, cast a horizontal

ray from every point of r′, going through the interior of Q in the left-right

direction, until it reaches Q’s boundary, as shown in Figure 9.5. The rectangle

so formed is again called a fence. Repeating the same construction with every

other vertical reflex edge of P lying on a lateral face of some prism, we obtain

a refinement of the initial partition by these new fences. Clearly, to every such

reflex edge corresponds just one fence, which in turn goes through the interior

of just one prism.

3. The pieces resulting from Step 2 are once again prisms, perhaps containing

some additional vertical fences that are not faces. Indeed, some fences con-

structed in Step 2 split a prism in two subprisms, while others just lower a

prism’s genus and act as degenerate faces (which will become legitimate faces

of cuboids shortly). By construction, each reflex edge of such a prism is verti-

cal, with no edges of P lying on it. Repeat the procedure in Step 2 also with

these reflex edges, casting horizontal rays, and thus building vertical fences

that extend laterally the front faces of the prisms, as shown in Figure 9.6. As

a result, P gets partitioned into cuboids.

Observe that all the fences generated in Steps 2 and 3 are y-orthogonal rectangles.
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r

r′

Q

Figure 9.5: Fence generated by r during Step 2. Fences are shown as darker regions.

The reason why we distinguish three steps is that the respective fences need be

treated differently in the proofs to come.

Placing guards

Now place an edge guard on each reflex edge of P . Aim horizontal guards vertically

and aim vertical guards in the left-right direction, in such a way that every guard

aims at the interior of P . We first want to prove that the fences in our 3-step

construction are coherent with searchlights.

Lemma 9.6. Every fence is contained in some illuminated searchplane.

Proof. The claim is obvious for fences constructed in Step 1 and Step 2. As for fences

constructed in Step 3, consider an edge r generating one of them (see Figure 9.6).

Recall that r is a reflex edge of a prism, let it be Q, in the partition obtained

in Step 1. By the construction in Step 2, r contains no reflex edge of P . Hence

its adjacent front face F ⊂ Q has no intersection with the boundary of P , in a

thin-enough neighborhood of r. But both bases of Q belong to the boundary of

P , because no horizontal fences were constructed (recall that the top face and the

bottom face of a prism are both called “bases”). Then, at least a subsegment of

a horizontal edge of F , sharing an endpoint with r, belongs to a reflex edge of P ,

and hence belongs to a guard `. As a consequence, ` illuminates the whole fence

generated by r in Step 3.
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`

F
F ′

r

x

C

C ′

Figure 9.6: Fence generated by r during Step 3. Fences are shown as darker regions.
The labels comes from Lemmas 9.6 and 9.7.

Thus, every fence belongs to one guard. We could also incorporate each fence

built in Step 3 into its adjacent vertical fence built in Step 1 that belongs to the

same guard (e.g., in Figure 9.6, the two fences that are coplanar with face F are

“merged” and belong to guard `). As a result, every guard generates at most one

fence.

Lemma 9.7. Every cuboid in the partition belongs entirely to the visibility region

of any guard whose fence bounds it.

Proof. If a fence built in Step 1 bounds a cuboid, then it belongs to a guard `

located, at least partially, on its border. Indeed, fences are vertical and the upper

and lower faces of a cuboid belong to faces of P , and therefore ` cannot lie entirely

outside the cuboid. It follows that ` sees the whole cuboid.

Fences built in Step 2 bound exactly two cuboids each, because the fences built in

Step 3 are all parallel to them. Again, any guard generating one such fence belongs

to a common edge of the cuboids that it bounds, which of course are entirely visible

to the guard.

Also fences built in Step 3 bound exactly two cuboids each. With the same

notation as in the proof of Lemma 9.6, the fence generated by r bounds a cuboid

C that is also bounded by F , and therefore contains, at least partially, guard ` on



9.3. SEARCHING ORTHOGONAL POLYHEDRA 135

one of the horizontal edges of C (again, ` is defined as in the proof of Lemma 9.6). `

also shares one endpoint with r. Moreover, the other cuboid C ′ is bounded also by

a lateral face F ′ ⊂ Q adjacent to r. The interior of F ′ has no intersection with the

boundary of P . Indeed, if the two had any intersection, then there would be also a

vertical reflex edge of P lying in the interior of F ′, or on r. But this disagrees with

the construction in Step 2, which eliminates all such reflex edges. Let x be a point

in ` that is close enough to r (e.g., whose distance to r is lower than the minimum

positive difference between any two coordinates of vertices of P (such minimum

exists due to the finiteness of P ’s vertices). Of course, x completely sees C, because

it lies on its boundary. But x also sees every point in C ′, through the fence F ′ (see

Figure 9.6). Indeed, by our choice of x, the pyramid determined by F ′ and x is

completely contained in P .

Search strategy

Theorem 9.8. Any non-convex orthogonal polyhedron with an edge guard on each

reflex edge is searchable.

Proof. Aim the guards as described above, in such a way that every fence is illumi-

nated by some guard, by Lemma 9.6. Clearly, illuminated searchplanes induce the

same partition of P into cuboids (perhaps even a finer partition). Now pick a guard

` generating a fence F , and let Q be the union of the cuboids bounded by F . Since

F is connected and has cuboids on both sides, it follows that Q is connected as well,

and therefore it is a polyhedron. Moreover, by Lemma 9.7, Q entirely belongs to

V(`). Hence, by Theorem 8.4, Q can be cleared by ` while all the other guards keep

their searchlights fixed. Turn ` to clear Q, put ` back in its original position, and

repeat the procedure for all the other guards, one at a time. Notice that every turn-

ing guard clears all the cuboids that it bounds, while the other cuboids cannot be

recontaminated, because their boundaries remain fixed. Since P is both connected

and non-convex, every cuboid is bounded by at least one fence, which in turn is

generated by some guard. Thus, after the last guard has finished sweeping, P is

completely clear.
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Improving search time

The search time of the schedule given by Theorem 9.8 is linear in the number of

reflex edges of P , but once again we can achieve constant search time by doubling

the number of guards.

Corollary 9.9. Any non-convex orthogonal polyhedron with two (coincident) edge

guards on each reflex edge is searchable in 3/4 seconds.

Proof. Half of the guards are positioned as in the proof of Theorem 9.8 and never

move, thus preserving the partition into cuboids. The other guards simultaneously

sweep their visibility region by turning from their leftmost position to the rightmost.

Since every guard lies on a reflex edge, they all have to turn by an angle of 3/2 π rad,

which can be done in 3/4 seconds.



Chapter 10

Complexity of full searching

Abstract

We consider the computational complexity of deciding if a given instance

of the 3-dimensional Searchlight Scheduling Problem is searchable.

First we show that the problem is strongly NP-hard for general polyhedra

and boundary guards. Then we prove that, even if we are given a searchable

orthogonal polyhedron, approximating the minimum search time within a

certain constant factor is NP-hard. As a consequence, no PTAS exists for

this problem, unless P = NP.

No analogous result is known for the planar Searchlight Scheduling

Problem.

10.1 NP-hardness of searchability

Recall from Chapter 1 that the computational complexity of 2-dimensional SSP is

still unknown, and left as an open question by Obermeyer et al. in [39].

Next we prove that 3SSP is strongly NP-hard by a reduction from 3SAT, thus

converting a formula ϕ in 3-conjunctive normal form into an instance of 3SSP that

is searchable if and only if ϕ is satisfiable.

Building blocks

A variable gadget is a cuboid with a guard lying on one edge. The two faces adjacent

to the guard are called A-side and B-side, respectively, as shown in Figure 10.1(a).
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The guard itself is called variable guard.

A B

(a) variable gadget (b) link

Figure 10.1: Two building blocks of the reduction.

A clause gadget is made of several parts, shown in Figure 10.2. The first part

is a prism, shaped like a wide cuboid with three cavities on one side. On its top

there is a nook shaped as a triangular prism lying on a side face, with a long guard

on the upper edge. The guard is called separator, because its searchplanes partition

the clause gadget in two regions. One of the two regions contains none of the three

cavities, and its top face is called A-side. On the other hand, the back face of each

cavity is a B-side, and a literal guard lies on the top edge of each B-side. When any

literal guard is aiming at the A-side of its clause gadget, it also completely closes the

nook containing the separator. We define the leftmost position of the separator to be

the one that is closer to the A-side. All three cavities are then pairwise connected

by V-shaped prisms with vertical bases. When two literal guards from the same

clause gadget are both aiming at their B-sides, their searchplanes intersect in an

area around the bottom of the V: such area is called C-side. Thus, every clause

gadget has three B-sides and three C-sides, all coplanar.

The A-sides, B-sides and C-sides of all the gadgets are collectively referred as

distinguished sides.

To connect together all the different gadgets we use structures called links. A

link is a very thin prism with its two bases removed, and with a short link guard

lying in the middle of an edge (see Figure 10.1(b)). In the following, whenever we

wish to connect two gadgets, we will cut a hole in their surfaces (where indicated

from time to time), and place a link stretching from one hole to the other. The angle

of incidence does not matter, as long as no guard, other than its link guard, can see

inside a link. Conversely, we will arrange the links in such a way that every link
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A

B

B

B

C

C

C

Figure 10.2: Clause gadget.

guard’s searchlight will not interfere with the gadget guards. So, in every gadget

there will be a thin illuminated polygon jutting from each of its links, which will

be easily avoidable by the intruder. As a consequence, a link can be cleared by its

guard only while both its bases are capped by some guards lying in the adjacent

gadgets.

Given a Boolean formula ϕ in 3-conjunctive normal form, we construct a row

of variable gadgets, one for every variable of ϕ, and a row of clause gadgets, one

for every clause of ϕ. We arrange the variable gadgets so that all the A-sides are

coplanar, and all the B-sides are coplanar. We arrange the clause gadgets similarly,

and we place the two rows of gadgets in such a way that every distinguished side of

every variable gadget can see every distinguished side of every clause gadget. We also

associate the i-th B-side of a clause gadget to the i-th literal in the corresponding

clause of ϕ, for 1 6 i 6 3.

Finally we add a bridge, whose purpose is to prevent variable gadgets from being

cleared if the corresponding literal guards do not behave “coherently”, as explained

later in the proof of Theorem 10.1. The bridge is constructed like a variable gadget,

but it is not associated to any variable of ϕ. It is shaped as a long, thin pole,

whose guard lies on one of the long edges, and it is arranged in such a way that its



140 CHAPTER 10. COMPLEXITY OF FULL SEARCHING

distinguished sides can see the B-side of every clause gadget.

Connections

Then we connect the distinguished sides of our gadgets by placing links. The exact

points of connection and angles of incidence do not matter, as long as guards are

non-interfering, as specified earlier, when introducing links. Mutual intersections of

links will be resolved later.

Referring to Figures 10.3 and 10.4, we make the following connections.

• Connect the A-side of every clause gadget to both the A-side and the B-side

of every variable gadget.

• Connect all the B-sides of every clause gadget to both the A-side and the

B-side of the bridge.

• Connect all the C-sides of every clause gadget to both the A-side and the

B-side of every variable gadget.

• Connect each B-side of each clause gadget to the A-side (resp. B-side) of the

variable gadget corresponding to its associated literal, if that literal is negative

(resp. positive) in ϕ.

A

B

variables

clauses

bridge
A

B

A

B

C

Figure 10.3: Relative positions of the gadgets and the bridge, with their links.

We can easily position the bridge so that it is not accidentally hit by any link

running between a variable gadget and a clause gadget, such as in Figure 10.3.
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We also want links to be pairwise disjoint. To achieve this, we consider any pair

of intersecting links, and shrink them while translating them slightly, until their

intersection vanishes. This can be accomplished without creating new intersections

with other links, for example by making sure that the “new version” of each link is

always strictly contained in its “previous version”.

Acl

Bcl

(9)

(8)

(1|5) (5) (7) (1|5) (5) (7) (1|5) (5) (7)

(4)

(1|3) (3|1)

Avar Bvar

...

A|Bvar Abr Bbr A|Bvar Abr Bbr A|Bvar Abr Bbr

(a) clause gadget, top view

Ccl

...

(8) (8)

(1|3) (3|1)

Avar Bvar

(b) clause gadget, C-side

(2)

...

...

Acl CclBcl

Acl

Bcl

Ccl

(1|3) (1|3)(1|5)

(3|1)

(5|1)

(3|1)

Avar

Bvar

(c) variable gadget

(6)

...

...

Bcl

(5)

(7)

Abr

Bbr

Bcl

(d) bridge

Figure 10.4: Connections among gadgets, and their clearing order given in Theo-
rem 10.1. The abbreviation “Acl” stands for “A-side of a clause gadget”, etc.

Reduction

Theorem 10.1. The 3-dimensional Searchlight Scheduling Problem is

strongly NP-hard.
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Proof. Given an instance ϕ of 3SAT, we construct the instance of 3SSP described

above. It is indeed a polyhedron, because the bridge and all the variable gadgets are

connected to all the clause gadgets. Moreover, the number of links is quadratic in the

size of ϕ, and we may also assume that the coordinates of every vertex are rationals,

with a number of digits that is polynomial in the size of ϕ. Removing the intersec-

tions between links takes polynomial time as well, hence the whole construction is

computable in P.

Positive instances. If ϕ is satisfiable, we choose a satisfying assignment for its

variables and give a search schedule that clears our polyhedron. Initially we aim

each variable guard at its A-side (resp. B-side) if the corresponding variable is true

(resp. false) in the chosen assignment. By assumption there is at least a true literal

in every clause of ϕ. For each clause, we pick exactly one true literal, and aim

the corresponding literal guard at the A-side of its clause gadget. We aim all the

other literal guards at their respective B-sides. As a result, the A-side and the three

C-sides of every clause gadget have the corresponding links capped by the literal

guards. Finally, we aim the bridge guard at its A-side and put every separator in

its leftmost position.

From this starting configuration, we specify a search schedule in nine steps (refer

to Figure 10.4).

1. Clear all the links that are capped by some variable guard. This is possible

because, by construction, the other end of every such link is capped by some

literal guard as well.

2. Clear every variable gadget by turning its guard. While this happens, the

literal guards retain caps on their own side of the links cleared during Step 1,

thus preventing recontamination.

3. Clear the remaining links connected to the A-side or to a C-side of a clause

gadget. This is now possible because all the variable guards switched side in

Step 2.

4. Aim at its B-side every literal guard that is currently aiming at its A-side.

One half of each clause gadget gets cleared as a result, while the separator

prevents the still uncapped links on the B-side from recontaminating the clear

links on the A-side.
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5. Clear the remaining links connected to a variable gadget, and clear the links

capped by the bridge guard.

6. Clear the bridge by turning its guard to the B-side.

7. Clear the remaining links that connect the bridge with the clause gadgets.

8. Turn all the literal guards simultaneously, thus clearing the last half of each

clause gadget, and capping the upper nooks. Since the three literal guards of

a clause gadget are collinear, when they move together they act as a single

filling guard.

9. Clear every nook by turning the separators.

When this is done, the whole polyhedron is clear, which proves that the instance of

3SSP is searchable.

Negative instances. Conversely, assuming that ϕ is not satisfiable, we claim

that the variable gadgets can never be all simultaneously clear, no matter what the

guards do.

Recall that every A-side of every clause gadget is linked to both sides of every

variable gadget. Hence, as soon as the A-side of any clause gadget is not covered by

at least one literal guard, all the variable gadgets get immediately recontaminated,

unless they were all clear in the first place. For the same reason, no variable gadget

can ever be cleared while the A-side of some clause gadget is uncovered. Similarly, if

a C-side of any clause gadget is not covered by at least one literal guard, all variable

gadgets get recontaminated, and none of them can be cleared.

It follows that, in order for a schedule to start clearing any variable gadget,

it must ensure that each clause gadget has exactly one literal guard covering the

A-side and exactly two literal guards covering the C-sides. Moreover, the literal

guards that cover the A-sides must be chosen once and for all. Indeed, whenever a

schedule attempts to “switch gears” in some clause gadget and cover the A-side with

a different literal guard, all the variable gadgets become immediately contaminated,

and the search must start over.

Suppose that a schedule selects exactly one literal guard for each clause gadget,

to cover its A-side. Since ϕ is not satisfiable, there exist two selected literal guards

`1 and `2 whose corresponding literals in ϕ are a positive occurrence and a negative
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occurrence of the same variable x. Otherwise, if all selected literals were coherent,

setting them to true would yield a satisfying assignment for the variables of ϕ, which

is a contradiction.

But in this case, it turns out that the variable gadget corresponding to variable

x is impossible to clear. Indeed, there is a non-illuminated path connecting its A-

side with its B-side, passing through the B-side of `1, the bridge, and the B-side of

`2. Since `1 and `2 correspond to incoherent literals, their B-sides are connected to

opposite sides of the same variable gadget, by construction.

Summarizing, all the variable gadgets are initially contaminated. In order to

clear some of them, a schedule must first select a literal guard from each clause

gadget and put it on its A-side. While that position is maintained, there is at

least one variable gadget that is impossible to clear. As soon as one literal guard is

moved, all the variable gadgets get recontaminated again. It follows that the variable

gadgets can never be all clear at the same time, and in particular the polyhedron is

unsearchable.

We gave a polynomial time reduction from 3SAT to 3SSP whose generated

numerical coordinates are polynomially bounded in size, hence 3SSP is strongly

NP-hard.

Optimization problems

Obviously, the previous theorem implies that the problems of minimizing search

time and minimizing total angular movement are both NP-hard to approximate

(where “unsearchable” translates to “infinite search time and angular movement”).

As we will show in the next section, the problem of minimizing search time stays

NP-hard even when restricted to searchable instances. On the other hand, similar

results can be obtained also for the problem of minimizing total angular movement.

There are several ways to rearrange the links in the construction employed in The-

orem 10.1, so that the unsatisfiable Boolean formulas are mapped into polyhedra

that are indeed searchable, but only with very demanding schedules.

10.2 Inapproximability of search time

Let the 3-dimensional Timed Searchlight Scheduling Problem (3TSSP)

be the optimization problem of minimizing search time in a given instance of 3SSP.
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Next we show a reduction from 3SAT to 3TSSP. Our construction will trans-

form a formula ϕ in 3-conjunctive normal form into an orthogonal polyhedron P and

a set of guards lying on P ’s edges, each with maximum angular speed of 90◦/ sec,

such that P can be searched within three seconds if and only if ϕ is satisfiable. More-

over, even if ϕ is not satisfiable, P is still searchable. As a consequence, 3TSSP

stays hard even under the promise that the instance is searchable.

Remark 10.2. In contrast with Chapter 9, where guards turned their searchlights at

2π rad/sec, here our guards are slower. This has the only purpose of yielding more

“pleasant” numeric values, but has no influence on the substance of our results.

Building blocks

We use the same type of link depicted in Figure 10.1(b), i.e., a thin “uncapped”

cuboid, with a short guard in the middle. Clearing a link requires one second, and

it is possible if and only if both ends remain capped by some external searchplanes.

A room is a cube with a guard lying on some edge, much like a variable gadget

in our previous construction. Rooms and links can be attached together to form

a chain, in such a way that the guard in each room has links on both its adjacent

faces, as depicted in Figure 10.5.

Figure 10.5: Odd chain made of rooms and links.

If a schedule is going to clear a chain in three seconds, it has to turn all the guards’
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searchlights in every room during second 2, while during seconds 1 and 3 they have

to remain on their sides, in order to cap the surrounding links. As a consequence,

the links in a chain must be cleared at second 1 and second 3, alternately. A chain

is called even chain or odd chain, depending on the number of its rooms. Chains

will connect variable gadgets with the corresponding clause gadgets, described next.

(Note that we are referring to our “new” variable and clause gadget constructions,

not the ones used in the previous section.)

To represent a Boolean variable x, we use a pair of rooms Cx and C ′x, each with

a fake link on its left side, as Figure 10.6 suggests. The far end of each fake link is

capped, as they are required for synchronization purposes only. For each occurrence

of x in ϕ, we attach an even chain to the right side of Cx, and an even chain (resp. odd

chain) to the right side of C ′x if the occurrence of x is positive (resp. negative). Both

chains will be connected to the same valve of the proper clause gadget, as described

later. We will say that variable x is assigned the value true if and only if both its

guards turn their searchlights in the same direction (clockwise or counterclockwise)

during second 2. Notice that the truth value of a variable gadget is well-defined in

every schedule that clears it in three seconds.

even

even
even

odd

fake

fake x
¬x

x
¬xCx

C ′x

Figure 10.6: Boolean variable with two occurrences: one positive and one negative.

For each clause in ϕ, we construct a clause gadget, consisting of a 3-input OR

gate and three valves attached to it. Each valve corresponds to an occurrence of a

variable, and is then attached to the proper chain pair coming from that variable.

An OR gate is a cube with three small holes and two guards, such that the guards

can simultaneously close at most two holes with their searchlights (see Figure 10.7).

Its clearing time is one second, provided that recontamination through holes is
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avoided, via external searchplanes.

to valve 1

to valve 2 to
 v

alv
e 3

Figure 10.7: 3-input OR gate.

Each hole in an OR gate directly connects to a small valve, shown in Figure 10.8.

Guard `1 is able to cap the chain pair and close the hole leading to the OR gate

but, in order to do both, it has to spend one second switching position. Guard `2

must cap the auxiliary fake links, one at a time, during seconds 1 and 3. Hence it

must switch position during second 2, incidentally sweeping the whole valve (and

possibly clearing it).

Reduction

Theorem 10.3. It is strongly NP-hard to compute the optimum search time in the

3-dimensional Timed Searchlight Scheduling Problem, even restricted to

searchable orthogonal instances.

Proof. We use the construction described above, and prove that it yields the ex-

pected reduction.

Notice that building a chain with the correct parity and direction is never an

issue, because three rooms and three links can be added to extend a chain without

changing the direction of its end links. Moreover, if the chains are thin enough, the

number of their bends can be bounded by a constant, while keeping them pairwise
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fake

fake

to variable

to OR gadget
1ℓ

2ℓ

Figure 10.8: Valve.

disjoint and with rational vertices. Hence the size of the whole construction is indeed

polynomial in the size of ϕ.

Positive instances. Suppose now that ϕ is satisfiable, and let us show that our

construction can be cleared in three seconds. For each variable x, the guard in

Cx starts with its searchlight aiming at its right, while the guard in C ′x starts with

its searchlight aiming at its left (resp. right) if x is false (resp. true) in the chosen

satisfying assignment. Consider now an occurrence of x, and its corresponding

valve. If the occurrence is satisfied, both links attached to the valve can be cleared

at second 1. So guard `1 caps the links during second 1, waits for `2 to move during

second 2 (thus protecting the chains from the contaminated fake link still uncapped

by `2), and finally moves to close the valve during second 3. On the other hand,

if the occurrence of x is not satisfied, `1 keeps capping the links and never moves

(since they have to be cleared during seconds 1 and 3, respectively), while `2 moves

during second 2. Thus, by assumption, at the end of second 3, each OR gate will

have at least one hole closed by the corresponding valve. The guards in the OR gate

keep the remaining two holes closed throughout seconds 1 and 2, and finally the

proper guard turns to clear the OR gate during second 3. If a valve’s hole is initially

closed by the OR gate, then the valve itself is successfully cleared by guard `2 during

second 2, hence the OR gate cannot be contaminated by the valve during second 3.
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If a valve is initially open, then a small portion of it (the “niche” with the fake links)

is cleared by `2 at second 2, while the rest is cleared by `1 at second 3. Notice also

that no recontamination can ever occur between an OR gate and some auxiliary

fake link in one of its valves, because guard `1’s searchlight always separates the two

regions.

Negative instances. Conversely, let us assume by contradiction that ϕ is not

satisfiable, and some search schedule clears our construction within three seconds.

As already noted, every variable gadget must be cleared at second 2, while each link

must be cleared at second 1 or 3. By assumption, in at least one clause gadget every

valve is attached to a link that is cleared during second 1 and to a link that is cleared

during second 3. While links are being cleared, guard `1 has to cap them, and it

is too slow to approach the valve’s hole and come back in place within second 2.

Therefore, the region around the hole must be cleared by guard `2, which is allowed

to move only during second 2, because of the fake links it has to cap at seconds 1

and 3. To avoid recontamination while `2 sweeps the hole, some guard in the OR

gate must keep it closed for ε > 0 seconds. But since there are only two such guards

for three holes, one guard has to close two holes in strictly less than one second,

which is impossible.

By further inspecting the construction given above, it is clear that 3TSSP does

not even have a PTAS, unless P = NP. Indeed, satisfiable Boolean formulas are

transformed into polyhedra searchable in three seconds, while the unsatisfiable ones

are transformed into polyhedra that are unsearchable in less than 3 + ε seconds, for

a suitable small-enough ε > 0.

Corollary 10.4. The 3-dimensional Timed Searchlight Scheduling Prob-

lem does not have a PTAS (unless P = NP), even when restricted to searchable

orthogonal instances.

Determining approximating algorithms for 3TSSP is left as an open problem

(as it is even for 2-dimensional SSP).
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Chapter 11

Complexity of partial searching

Abstract

We introduce the Partial Searchlight Scheduling Problem, in

which just a given subregion of the environment has to be cleared, either

by catching the intruder or by confining it outside. Note that the traditional

Searchlight Scheduling Problem comes as a subproblem, in which the

entire environment must be cleared.

In the 3-dimensional case, we show that the decision version of the Par-

tial Searchlight Scheduling Problem is strongly PSPACE-hard, even

restricted to orthogonal polyhedra and boundary guards.

Then we improve our construction, to show that the problem is strongly

PSPACE-complete also in the 2-dimensional case, restricted to orthogonal

polygons and a rectangular region to be searched. Our last result stands as

the first characterization of the computational complexity of a Searchlight

Scheduling Problem.

11.1 Partial searching

Here we introduce a slightly generalized problem: suppose the guards have to clear

only a given subregion of the environment, while the rest may remain contaminated.

In particular, for 3-dimensional polyhedra, we stipulate that the target area that

need be cleared is expressed as a ball, whose center and radius are given as input

along with the polyhedron and the multiset of guards. We call the resulting problem

3-dimensional Partial Searchlight Scheduling Problem (3PSSP).
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Definition 11.1 (3PSSP). 3PSSP is the problem of deciding if the guards of a

given instance of 3SSP have a schedule that clears a ball with given center and

radius.

The terminology defined in Chapter 7 for 3SSP extends straightforwardly to

3PSSP.

In the 2-dimensional case, we are less restrictive, and we allow any subpolygon

to be the target area.

Definition 11.2 (PSSP). PSSP is the problem of deciding if the guards of a given

instance of SSP have a schedule that clears a given subpolygon.

11.2 PSPACE-hardness for polyhedra

Next we are going to prove that 3PSSP is strongly PSPACE-hard, even for or-

thogonal polyhedra. To do so, we give a reduction from the edge-to-edge problem

for AND/OR networks in the nondeterministic constraint model (see [27]).

Nondeterministic constraint logic machines

Consider an undirected 3-connected 3-regular planar graph, whose vertices can be of

two types: AND vertices and OR vertices. Of the three edges incident to an AND

vertex, one is called its output edge, and the other two are its input edges. Such

a graph is (a special case of) a nondeterministic constraint logic machine (NCL

machine). A legal configuration of an NCL machine is an orientation (direction) of

its edges, such that:

• for each AND vertex, either its output edge is directed inward, or both its

input edges are directed inward;

• for each OR vertex, at least one of its three incident edges is directed inward.

A legal move from a legal configuration to another configuration is the reversal of

a single edge, in such a way that the above constraints remain satisfied (i.e., such

that the resulting configuration is again legal).

Given an NCL machine with two distinguished edges ea and eb, and a target

orientation for each, we consider the problem of deciding if there are legal config-

urations A and B such that ea has its target orientation in A, eb has its target
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orientation in B, and there is a sequence of legal moves from A to B. In a sequence

of moves, the same edge may be reversed arbitrarily many times. We call this prob-

lem Edge-to-Edge for Nondeterministic Constraint Logic machines

(EE-NCL).

A proof that EE-NCL is PSPACE-complete is given in [27], by a reduction

from True Quantified Boolean Formula. Based on that reduction, we may

further restrict the set of EE-NCL instances on which we will be working. Namely,

we may assume that ea 6= eb, and that in no legal configuration both ea and eb have

their target orientation.

Asynchrony

For our main reduction, it is more convenient to employ an asynchronous version

of EE-NCL. Intuitively, instead of “instantaneously” reversing one edge at a time,

we allow any edge to start reversing at any given time, and the reversal phase of an

edge is not “atomic” and instantaneous, but may take any strictly positive amount of

time. It is understood that several edges may be in a reversal phase simultaneously.

While an edge is reversing, its orientation is undefined, hence it is not directed toward

any vertex. During the whole process, at any time, both the above constraints on

AND and OR vertices must be satisfied. We also stipulate that no edge is reversed

infinitely many times in a bounded timespan, or else its orientation will not be

well-defined in the end. With these extended notions of configuration and move,

and with the introduction of “continuous time”, EE-NCL is now called Edge-to-

Edge for Asynchronous Nondeterministic Constraint Logic machines

(EE-ANCL).

Despite its asynchrony, such new model of NCL machine has precisely the same

power of its traditional synchronous counterpart.

Proposition 11.3. EE-NCL = EE-ANCL.

Proof. Obviously EE-NCL ⊆ EE-ANCL, because any sequence of moves in the

synchronous model trivially translates into an equivalent sequence for the asyn-

chronous model.

For the opposite inclusion, we show how to “serialize” a legal sequence of moves

for an asynchronous NCL machine going from a legal configuration A to configu-

ration B in a bounded timespan, in order to make it suitable for the synchronous



154 CHAPTER 11. COMPLEXITY OF PARTIAL SEARCHING

model. An asynchronous sequence is represented by a set

S = {(em, sm, tm) | m ∈M},

where M is a set of “edge reversal events”, em is an edge with a reversal phase

starting at time sm and terminating at time tm > sm. For consistency, no two

reversal phases of the same edge may overlap.

Because no edge can be reversed infinitely many times, S must be finite. Hence

we may assume that M = {1, · · · , n}, and that the moves are sorted according to

the (weakly increasing) values of sm, i.e., 1 6 m < m′ 6 n =⇒ sm 6 sm′ . Then we

consider the serialized sequence

S ′ = {(em,m,m) | m ∈M},

and we claim that it is valid for the synchronous model, and that it is equivalent to

S.

Indeed, each move of S ′ is instantaneous and atomic, no two edges reverse si-

multaneously, and every edge is reversed as many times as in S, hence the final

configuration is again B (provided that the starting configuration is A). We still

have to show that every move in S ′ is legal. Let us do the first m edge reversals in S ′,

for some m ∈ M , starting from configuration A, and reaching configuration C. To

prove that C is also legal, consider the configuration C ′ reached in the asynchronous

model at time sm, according to S, right when em starts its reversal phase (possibly

simultaneously with other edges). By construction of S ′, every edge whose direction

is well-defined in C ′ (i.e., every edge that is not in a reversal phase) has the same

orientation as in C. It follows that, for each vertex, its inward edges in C are a

superset of its inward edges in C ′. By assumption on S, C ′ satisfies all the vertex

constraints, then so does C, a fortiori.

Corollary 11.4. EE-ANCL is PSPACE-complete.

Proof. Recall from [27] that EE-NCL is PSPACE-complete, and that EE-NCL =

EE-ANCL by Proposition 11.3.
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Building blocks

We realize a given NCL machine in terms of an orthogonal polyhedron consisting

of three levels, called basement, floor and attic, respectively. The floor contains the

actual AND/OR network, arranged as an orthogonal plane graph, and is completely

unsearchable. The attic is reachable from the floor through two stairs, and contains

the target ball that has to be cleared. The basement level is just a network of pipes

connecting different parts of the floor to the stairs, whose purpose is to recontaminate

the stairs and the attic unless the floor guards actually “simulate” a legal sequence

of moves of the edges of an asynchronous NCL machine.

It is well-known that any 3-regular planar graph can be embedded in the plane

as an orthogonal drawing. For instance, we can employ the algorithm given in [44],

which works with 3-connected 3-regular planar graphs, such as the networks of our

NCL machines. The resulting drawing is orthogonal, in the sense that every edge is a

sequence of horizontal and vertical line segments, which will be called subedges. For

our construction, we turn every subedge into a thin-enough cuboid, then we place

a subedge guard in the middle of each cuboid, on the bottom face, as depicted in

Figure 11.1. The dashed squares between consecutive subedges are called trapdoors,

and denote areas that will be attached to pipes and connected to other regions, as

described later.

Figure 11.1: Edge made of three orthogonal subedges.

Next we model OR vertices like in Figure 11.2. The three incoming cuboids

carrying guards are subedges constructed previously. Again, the dashed square in

the middle is a trapdoor that will be attached to pipes. Notice that the trapdoor

completely belongs to the visibility region of each of the three guards, as the dashed

lines suggest. Moreover, the two subedges coming from opposite directions are

displaced, so they do not interfere with each other, in the sense that none of their
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two guards can see the opposite subedge through the end.

Figure 11.2: OR vertex.

We model the AND vertices as shown in Figure 11.3. The output edge is the

one whose guard sees both trapdoors, while the guards in the two input edges can

see only one trapdoor each. We can always arrange the drawing of our graph by

further bending its edges, in such a way that this construction is feasible (i.e., the

output edge is located “between” the input edges), as suggested in Figure 11.4.

out

in

in

Figure 11.3: AND vertex.

Recall that an instance of EE-ANCL comes with two distinguished edges ea and

eb, each of which is embedded in our construction as a sequence of cuboidal subedges.

We select an internal subedge sa of ea (i.e., not the first, nor the last subedge of

ea) and an internal subedge sb of eb, such that sa and sb run in two orthogonal

directions. If no such subedges exist in our construction, we can further subdivide

ea and eb into more small-enough “redundant” subedges, in order to obtain internal
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(a)

A

B
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(b)

Figure 11.4: Rearranging the edges of an orthogonal drawing.

ones running in the desired directions. Recall also that both ea and eb come in EE-

ANCL with a target orientation, which we want them to reach in order to solve the

problem instance. Such target orientation is therefore naturally “inherited” by sa

and sb, too.

H V

`a

α

α

Figure 11.5: Stair.

Let `a and `b be the two subedge guards lying in sa and sb, respectively. We

add two stairs going up to the attic, one for `a and one for `b. Figure 11.5 shows

a close-up of one end of `a, where we have attached a stair (the two “incomplete”

rectangles represent faces of sa). Observe that, besides adding the polyhedral model

of the stair to sa, we also extend `a to the stair itself. The arrow attached to `a

indicates the target orientation of sa, inherited from the instance of EE-ANCL.

There are two trapdoors, depicted as horizontal and vertical dashed squares. The
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horizontal trapdoor (labeled H in the picture) lies on the bottom face of an enclosed

cuboidal region that we call alcove, whose opening is indicated by a darker vertical

square. The alcove completely belongs to V(`a), and it can also be capped by the

long vertical guard showed in the picture, called stair guard. While the stair guard

caps the alcove, it also covers the vertical trapdoor (labeled V). On the other hand,

`a is able to cover the horizontal trapdoor. The top cuboid with dashed edges

belongs to the attic, and is not considered part of the stair. The darker horizontal

square that separates the attic from the stair is called attic entrance.

A similar construction is then repeated for `b, and analogous remarks hold.

Figure 11.6: Attic.

The whole attic is illustrated in Figure 11.6, where the darker squares denote the

two attic entrances mentioned above, and the underlying cuboids with dashed edges

belong to the stairs. A long L-shaped corridor, made of two orthogonal branches,

connects the two entrances, and each entrance can be covered by an attic guard

located at one end of the corridor. The small dot in the picture, in the middle of

the corridor, denotes the target ball that has to be cleared by the guards. There is

also a widening on one side of the corridor, which is not fully visible to the guards,

and hence is a perpetual source of recontamination.

To make sure that the floor is really unsearchable, we add a groove all around

an end of each subedge guard, including `a and `b, like in Figure 11.7. Every groove

is always a source of recontamination, because some parts of it can never be seen

by any guard, and cannot be isolated from the rest of the floor, either.
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Figure 11.7: Close-up of a subedge guard, with its groove.

Finally, at the basement level, we add pipes, i.e., twisted chains of very thin

cuboids, to connect pairs of trapdoors. We connect each trapdoor in each stair

to every trapdoor in the floor (i.e., the trapdoors in the AND/OR vertices and the

trapdoors between subedges). Since there are two different types of trapdoors in the

stairs (horizontal and vertical), while the trapdoors in the floor are all horizontal, we

need two types of pipes, as Figure 11.8 suggests. The end of a pipe that is labeled

A goes into a stair trapdoor, whereas the end labeled B goes into a floor trapdoor.

Observe that a pipe shaped like in Figure 11.8(b) can always connect a vertical stair

trapdoor with any floor trapdoor, except when the latter lies exactly “behind” the

former, and the lower part of the stair gets in the way. This can be easily prevented,

for example by constructing a “thinner” version of the stair itself, such that no floor

trapdoor lies completely behind the lower part of the stair (i.e., the part with the

vertical trapdoor). In general, all pipes lie below the floor level, and their mutual

intersections can be resolved by shrinking them, as already discussed in Chapter 10

for links.

Notice that two very small extra cuboids are attached to each pipe: these are

called pits. Pits are unsearchable regions, but each pit can indeed be capped by a

pipe guard. Such guards are also responsible for clearing the rest of the pipe, when

both its ends A and B are capped by external searchplanes (belonging to a stair

guard and to a subedge guard, respectively). Thus, by clearing a pipe we will mean

clearing its chain of four bigger cuboids connecting A with B, disregarding the two

pits.
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A
B

b

(a)

A

B

(b)

`1 `2

`1

`2

Figure 11.8: Two pipes. The pipe in (a) connects two horizontal trapdoors, the pipe
in (b) connects a vertical and a horizontal trapdoor.

Lemma 11.5. While both its A and B ends are completely illuminated by external

guards, a pipe can be cleared.

Proof. A similar schedule works for both types of pipe. Referring to Figure 11.8,

guard `1 covers the darker square, allowing `2 to clear two of the four cuboids. Then

`2 keeps capping its pit, while `1 sweeps the remaining two cuboids, and caps the

other pit.

On the other hand, an uncapped pipe acts as a “one-way recontaminator” from

B to A.

Lemma 11.6. If neither A nor B is illuminated by external guards, then A is

(partly) contaminated.

Proof. If `1 does not cap its pit, then the pit contaminates A. If `1 caps its pit but

`2 does not, then the second pit contaminates A. If both guards cap their respec-

tive pits, then B and A are connected by a non-illuminated path. Because of the

unsearchable grooves around all subedge guards, B must be (partly) contaminated,

and so is A.

Reduction

Theorem 11.7. 3PSSP is strongly PSPACE-hard, even for orthogonal polyhedra.
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Proof. We give a reduction from EE-ANCL to 3PSSP, by proving that the target

ball in the above construction is clearable if and only if the two distinguished edges

ea and eb can be oriented in their target directions one after the other, by a legal

sequence of asynchronous moves. Observe that our construction is obviously a poly-

hedron (it is indeed connected) whose vertices’ numerical coordinates may be chosen

to be polynomially bounded in size, with respect to the size of the NCL network.

Moreover, the orthogonal drawing of the network can be obtained in linear time, for

instance as shown in [44].

Positive instances. Suppose that the given instance of EE-ANCL is solvable.

Then there exists a legal sequence S of asynchronous moves that, starting from a

configuration A in which ea is in its target direction, ends in a configuration B in

which eb is in its target direction. By the assumptions we made on NCL networks,

ea 6= eb and both ea and eb are reversed by S at least once.

We start by “replicating” configuration A on the subedge guards in our construc-

tion: if an edge has an orientation in A, then all its subedges in the drawing inherit

its orientation, and all the corresponding subedge guards are oriented accordingly.

As a result, every trapdoor in the floor (not the four trapdoors in the stairs) is

covered by a guard, since A is a legal configuration. Indeed, the structure of the

AND/OR vertices that we built implies that the NCL constraints on a vertex are

satisfied if and only if all the trapdoors in its polyhedral model are covered. Also

the trapdoors between subedges happen to be covered, because all the guards in

a subedge chain are oriented in the same “direction”. Incidentally, `a covers the

horizontal trapdoor in its corresponding stair, as well. Next we cover the vertical

trapdoors in both stairs with the stair guards, thus incidentally also capping both

alcoves. Finally, we cover both attic entrances with the two attic guards.

In order to clear the target ball in the attic, our schedule proceeds as follows.

1. Clear the pipes that are attached to the stair trapdoors corresponding to sa.

This is feasible by Lemma 11.5, because both ends of such pipes are capped.

2. Replicate all the moves of S, with the correct timing. If a move reverses

edge {u, v} by turning it from vertex u toward vertex v, we first reverse the

guard corresponding to the subedge incident to u, then we reverse all the

other subedge guards one by one in order, until we reverse the last guard in

the chain, whose subedge is incident to v. By doing so, no trapdoor is ever
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uncovered, hence no pipe is recontaminated. Moreover, both `a and `b reverse

during the process, incidentally clearing both alcoves, which are still capped

by the stair guards.

3. Clear the pipes attached to the stair trapdoors corresponding to sb, again by

Lemma 11.5. Indeed, after Step 2, these pipes are all capped.

4. Clear the regions underlying the two attic entrances, by turning both stair

guards by α (refer to Figure 11.5). Angle α is such that, in the end, both attic

entrances are separated from the contaminated floor by the searchlights of the

stair guards. No contamination is possible through the stair trapdoors either,

because all the pipes are still clear (their B ends are still capped).

5. Turn the two attic guards in concert, until they clear the target ball. No recon-

tamination may occur through the attic entrances, whose underlying regions

have effectively been cleared in Step 4, whereas the contaminated widening

of the corridor is always separated from the portion of corridor that has been

swept.

Negative instances. Conversely, suppose that no legal sequence of asynchronous

moves solves the given instance of EE-ANCL, and let us prove that the target ball

in the attic is unclearable.

In order to clear the target ball, both attic guards have to turn in concert, away

from the attic entrances. Indeed, just one guard is insufficient to clear anything. On

the other hand, the attic guards cannot sweep toward the entrances, because of the

unavoidable recontaminations from the widening in the corridor.

Therefore, while the attic guards operate, recontamination has to be avoided

from the attic entrances. It follows that both stair guards must keep the attic

separated from the unsearchable floor. Referring to Figure 11.5, each stair guard’s

angle has to be at least α.

When in that position, the stair guards cannot cover the vertical trapdoors,

nor cap the alcoves. This means that all the pipes attached to a vertical trapdoor

and both alcoves have to be simultaneously clear at some time t. According to

Lemma 11.6, since the stair guards are not capping the A ends of those pipes, then

their B ends have to be capped. In other words, all the trapdoors in the floor (not in

the stairs) have to be covered. Equivalently, the subedge guards’ orientations must
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correspond to a legal configuration of an asynchronous NCL machine operating in the

given network. If the orientations of the subedge guards in the chain corresponding

to a same edge do not agree with each other, then that edge is considered in a

reversal phase.

Recall that, in any legal configuration of the NCL network, at least one of the

two distinguished edges must be oriented strictly opposite to its target direction

(i.e., it is not even in a reversal phase), hence at least one horizontal trapdoor in a

stair (say, the stair attached to sa, without loss of generality) must be uncovered at

time t. However, its alcove and attached pipes must indeed be clear, which means

that `a has capped the pipes for some time, allowing them to clear themselves, and

then has left the alcove for the last time at t′, with t′ < t. Between time t′ and

time t, the orientation of the subedge guards must always correspond to a legal

configuration of the NCL network, otherwise the alcove just cleared by `a would be

recontaminated by its pipes, again by Lemma 11.6.

Observe that, since at time t′ guard `a is not oriented strictly opposite to its

(inherited) target direction, then `b must be. But, at time t, also the alcove corre-

sponding to sb must be clear, hence there must be some time t′′, with t′′ < t, when

`b last touched that alcove. Once again, between time t′′ and time t, all the subedge

guards must be oriented according to some legal configuration of the contraint graph.

Between time t′ and time t′′ (no matter which comes first), the search schedule

must simulate an asynchronous legal sequence of moves between a configuration in

which ea has its target orientation (more appropriately, ea is in a reversal phase),

and one in which eb does. By hypothesis on the given NCL network, such sequence

of moves does not exist: notice in fact that a sequence of moves from A to B is legal

if and only if its reverse sequence from B to A is legal.

This concludes the reduction. As a result, because EE-ANCL is PSPACE-

complete by Corollary 11.4, 3PSSP is strongly PSPACE-hard.

11.3 PSPACE-completeness for polygons

Here we consider the 2-dimensional Partial Searchlight Scheduling Prob-

lem (PSSP), proving that it is PSPACE-complete, even for orthogonal polygons.

Our reduction is not exactly an improvement on the one given in the previous sec-

tion, in that our target area is not an arbitrarily small ball, but it is a polygon that
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could be fairly large. However, we will also show how this target polygon can be

assumed to be rectangular.

To prove that PSSP belongs to PSPACE, we use the discretization technique

of [39] (see also Chapter 1), and to prove that PSSP is PSPACE-hard we give a

reduction from EE-ANCL.

PSSP is in PSPACE

Lemma 11.8. PSSP ∈ PSPACE.

Proof. As explained in [39] and Chapter 1, a technique known as exact cell decompo-

sition allows to reduce the space of all possible schedules to a finite graph G. Each

searchlight has a linear number of critical angles, which yield an overall partition of

the polygon into a polynomial number of cells. Searchlights take turns moving, and

can stop or change direction only at critical angles. Thus, a vertex of G encodes

the status of each cell (either contaminated or clear) and the critical angle at which

each searchlight is oriented.

As a consequence, G can be navigated nondeterministically by just storing one

vertex at a time, which requires polynomial space. Notice that deciding if two

vertices of G are adjacent can be done in polynomial time: an edge in G represents a

move of a single searchlight between two consecutive critical angles, and the updated

status of each cell can be easily evaluated. Indeed, cells’ vertices are intersections

of lines through input points, hence their coordinates can also be efficiently stored

and handled as rational expressions involving the input coordinates.

Now, in order to verify that a path in G is a witness for SSP, one checks if

the last vertex encodes a status in which every cell is clear. But the very same

cell decomposition works also for PSSP: the analysis in [39] applies even if just a

subregion of the polygon has to be searched, and a path in G is a witness for PSSP

if and only if its last vertex encodes a status in which every cell that has a non-empty

intersection with the target subregion is clear.

Since PSPACE = NPSPACE, due to Savitch’s theorem (see [41]), our claim

follows.

Recalling that SSP is a special case of PSSP, we immediately have the following:

Corollary 11.9. SSP ∈ PSPACE.
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PSSP is PSPACE-hard

For the PSPACE-hardness part, we first give a reduction in which the target region

to be cleared is an orthogonal hexagon. Later, we will explain how we would have

to modify our construction, should we insist on having a rectangular (hence convex)

target region.

Lemma 11.10. EE-ANCL �P PSSP restricted to orthogonal polygons.

Proof. We show how to transform a given asynchronous NCL machine G with two

distinguished edges ea and eb into an instance of PSSP.

Construction. A rough sketch of our construction is presented in Figure 11.9. All

the vertices of G are placed in a row (a), and are connected together by a network of

thin corridors (b), turning at right angles, representing edges of G. Each subsegment

of a corridor is a thin rectangle, containing a subsegment guard in the middle (not

shown in Figure 11.9). Two subsegments from different corridors may indeed cross

each other like in (c), but in such a way that the crossing point is far enough from

the ends of the two subsegments and from the two subsegment guards (so that no

subsegment guard can see all the way through another subsegment). All the vertices

of G and all the joints between consecutive subsegments (i.e., the turning points

of each corridor) are connected via extremely thin pipes (d) to the upper area (e),

which contains the target region (shaded in Figure 11.9).

ANDANDAND OROR

(a)

(b)
(c)

(d)

(e)

(g)(f)

(d)

Figure 11.9: Construction overview.
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Two corridors (f) and (g) also reach the upper area, and they correspond to the

distinguished edges of G, ea and eb, respectively. That is, if ea = {u, v}, and the

target orientation of ea is toward v, then the corridor corresponding to ea connects

vertex u in our construction to the upper area (e), rather than to v. The same holds

for eb. Indeed, observe that we may assume that ea and eb are reversed only once (on

the first and last move, respectively) in a sequence of moves that solves EE-ANCL

on G. As a consequence, contributions to vertex constraints given by distinguished

edges oriented in their target direction may be ignored.

Each pipe bends at most once, and contains one pipe guard in the middle, lying

on the boundary. Notice that straight pipes never intersect corridors, but some

turning pipes do. Figure 11.10 shows a turning pipe, with its pipe guard (a) and

an intersection with a corridor (b) (proportions are inaccurate). The intersection

guards (c) separate the pipe from the corridor with their searchlights (dashed lines

in Figure 11.10), without “disconnecting” the pipe itself. Although a pipe narrows

every time it crosses a corridor, its pipe guard can always see all the way through

it, because it is located in the middle. The small nook (d) is unclearable because no

guard can see its bottom, hence it is a constant source of recontamination for the

target region (e), unless the pipe guard is covering it with its laser. (Each straight

pipe also has a similar nook.)

(a)

(b)

(c)

(d)

(e)

(c)

(c)

(c)

Figure 11.10: Intersection between a pipe and a corridor.

Once again, corridor guards implement edge orientations in G: whenever all

the subsegment guards in a corridor connecting vertices u and v have their search-
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lights oriented in the same “direction” from vertex u to vertex v, it means that the

corresponding edge {u, v} in G is oriented toward v.

Figure 11.11 shows an OR vertex. The three subsegment guards from incoming

corridors (a) can all “cap” pipe (b) with their searchlights, and nook (c) guarantees

that the pipe is recontaminated whenever all three guards turn their searchlights

away.

(a)

(b)
(c)

(a)

(a)

Figure 11.11: OR vertex.

AND vertices are implemented as in Figure 11.12. The two subsegment guards (a)

correspond to input edges, and are able to cap one pipe (e) each, whereas guard (c)

can cover them both simultaneously. But that leaves pipe (d) uncovered, unless it

is capped by guard (b), which belongs to the corridor corresponding to the output

edge. Again, uncovered pipes are recontaminated by the unclearable nooks (f).

(e)

(a)(a)

(e) (d)

(b)

(c)

(f)

(f)

Figure 11.12: AND vertex.

Joints between consecutive subsegments of a corridor may be viewed as OR

vertices with two inputs, shaped like in Figure 11.11, but without the corridor

coming from the left.
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Finally, Figure 11.13 shows the upper area of the construction, reached by the

distinguished edges ea and eb ((a) and (b), respectively), and by all the pipes (c).

The guard in (d) can cap all the pipes, one at a time, and its purpose is to clear the

left part of the target region, while the small rectangle (e) on the right will be cleared

by the guard in (f). The two pipes (g) implement additional OR vertices with two

inputs, and prevent (d) and (f) from acting, unless the respective distinguished edges

are in their target orientations. Nook (h) will contaminate part of the target region,

unless (d) is aiming down. Nooks (i) prevent area (e) from staying clear whenever

guard (f) is not aiming up. The guard in (j) separates the two parts of the target

region with its laser, so that they can be cleared in two different moments.

(a) (b)

(c)(c)

(d) (e)

(f)

(h)

(g) (g)

(j)

(i)

Figure 11.13: Target region.

Positive instances. Suppose G is a solvable instance of EE-ANCL. Then we

can “mimic” the transition from configuration A to configuration B by turning

subsegment guards. Specifically, if edge e = {u, v} in G changes its orientation

from u to v, then all the subsegment guards in the corridor corresponding to e turn

their lasers around, one at a time, starting from the guard closest to u. Before this

process starts, each pipe has one end capped by some subsegment guard, and in

particular pipe (g) on the left of Figure 11.13 is capped by the guard in (a). Hence,

guard (d) is free to turn and cap all the pipes one by one, stopping for a moment to

let each pipe’s internal guard clear the pipe itself (which now has both ends capped)

and cover its nook (see Figure 11.10). As a result, the left part of the target region

can be cleared by rotating (d) clockwise, from right to down. Then the subsegment
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guards start rotating as explained above, until configuration B is reached. If done

properly, this keeps all the pipes capped and clear, thus preventing the left part of

the target region from being recontaminated. When B is reached, guard (f) can turn

up to clear (e) and finally solve our PSSP instance. Notice that each subsegment

guard has to turn in the correct direction (clockwise or counterclockwise) when it

turns away from a pipe, to avoid the formation of “contaminated bubbles” that may

extend to the whole pipe.

Negative instances. Conversely, suppose that G is not solvable. Observe that

rectangle (e) in Figure 11.13 has to be cleared by guard (f) as a last thing, because

it will be recontaminated by nooks (i) as soon as (f) turns away. On the other

hand, as soon as a pipe has both ends uncapped by external guards, some portion

of the target region necessarily gets recontaminated by some nook, regardless of

where the pipe guard is aiming its searchlight. But guard (d) can cap just one pipe

at a time and, while it does so, nook (h) keeps some portion of the target region

contaminated. Thus, the entire process must start from a configuration A in which

all the pipes are simultaneously capped and guard (d) is free to turn right (i.e.,

ea is in its target orientation), then proceed without ever uncapping any pipe (i.e.,

preserving legality), and finally reach a configuration B in which guard (f) is free

to turn up (i.e., eb is in its target orientation). By assumption this is impossible,

hence our PSSP instance is unsolvable.

By putting together Lemma 11.8 and Lemma 11.10, we immediately obtain the

following:

Theorem 11.11. Both the Partial Searchlight Scheduling Problem and

its restriction to orthogonal polygons are strongly PSPACE-complete.

The term “strongly” is implied by the fact that all the vertex coordinates gener-

ated in the PSPACE-hardness reduction of Lemma 11.10 are numbers with poly-

nomially many digits (or can be made so through negligible adjustments).

Convexifying the target region

We can further improve our Theorem 11.11 by making the target region in Lemma 11.10

rectangular.
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Our new target region has the same width as the previous one, and the height of

the small rectangle (e) in Figure 11.13. In order for this to work, we have to make

sure that some portion of the target region is “affected” by each contaminated pipe

that is not capped by guard (d), no matter where all the pipe guards are oriented.

To achieve this, we make pipes reach the upper area of our construction at increasing

heights, from left to right, in a staircase-like fashion.

(a)

(b)

(d)

(c)

Figure 11.14: Rectangular target region.

Assume we already placed pipe (a) as in Figure 11.14, and we need find the

correct height at which it is safe to connect pipe (b). First we find the rightmost

intersection (c) between a searchlight emanating from the pipe guard of (a) and the

lower border of the target region. Then we set the height of pipe (b) so that it is

capped by guard (d) when it aims slightly to the right of (c). This is always feasible,

provided that pipes are thin enough, which is not an issue.

After we have set all pipes’ heights from left to right, the construction is complete

and the proof of Lemma 11.10 can be repeated verbatim, yielding:

Theorem 11.12. Both the Partial Searchlight Scheduling Problem and

its restriction to orthogonal polygons with rectangular target regions are strongly

PSPACE-complete.

Investigating the complexity of PSSP or 3PSSP on simply connected environ-

ments is left as an open problem.

Finally, we conjecture that all the other variants of the Searchlight Schedul-

ing Problem are PSPACE-complete, as well.

Conjecture 11.13. SSP, 3SSP and 3PSSP are PSPACE-complete.
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Summary and research scenario

In this thesis we consider two guarding and searching problems in 3-dimensional

polyhedra: the Art Gallery Problem and the Searchlight Scheduling

Problem. Both are well-studied and understood in planar environments, but very

little research had been done, prior to this thesis, in higher dimensional settings.

One of the reasons why research has eluded these problems so far is arguably the

lack of effective ways to generalize most of the techniques and tools, like triangula-

tions, that are often employed in solving 2-dimensional Computational Geometric

problems.

Our goal is to obtain general results that extend well-known classic planar theo-

rems as naturally as possible. Ideally, non-trivial 2-dimensional facts should come as

special cases of our theorems, and increasing the dimension of our problems should

allow us to look at them under a more insightful perspective.

The first thing to establish in the process of attempting such a generalization

is how to meaningfully model the concept of guard, and in which fashion a guard

should be able to see its surroundings. To this end, in Chapter 3 we elucidate the

main features of point guards, edge guards, and face guards, in relation to their

ability to guard 3-dimensional polyhedra. As it turns out, point guards appear too

“weak” to be effectively employed in polyhedra, in that a superlinear amount of

them may be required to guard even orthogonal polyhedra. On the other hand, face

guards fail to model any common type of agent, and appear too “powerful” to be

realistic. Indeed, a “unit weight” face guard may represent a quadratic number of

patroling point guards, even in orthogonal polyhedra.

In contrast, from preliminary observations, edge guards seem to act as the natural

counterparts of vertex guards in polygons. Both the analogies with fluorescent lights
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and with patroling guards are sound, and a linear amount of edge guards is sufficient

to guard any polyhedron. As edge guards are an excellent candidate to model 3-

dimensional guards, the rest of the thesis is devoted to studying their capabilities.

We further introduce several different guarding modes: orthogonal guarding oc-

curs when visibility rays are orthogonal to guards, while an edge guard can be closed

or open, depending on whether it contains its endpoints. We argue that the open

guard model is more realistic in some scenarios. Surprisingly, a small change such

as depriving edge guards of their endpoints may increase the number of required

guards by a factor of 3.

Art Gallery Problem. For this problem, we mainly aim at finding relatively

simple techniques that make up for the lack of generalized triangulations and convex

quadrilateralizations, in order to obtain strong upper bounds on edge guard numbers

in different settings.

We optimistically conjecture that the tight upper bound of br/2c + 1 vertex

guards for orthogonal polygons with r reflex vertices holds also for orthogonal poly-

hedra and edge guards. We are unable to prove this for all orthogonal polyhedra,

but in Chapter 4 we do it for the 2-reflex ones (i.e, those with reflex edges oriented

in at most two distinct directions, as opposed to three). Further, we show that our

edge guards can be open, and can even be placed on reflex edges.

This result not only incorporates the 2-dimensional one as a special case (i.e.,

when the polyhedron is a prism), but our algorithm partitions each 2-reflex orthog-

onal polyhedron into pieces that look like the polyhedron in Figure 4.6, and does so

in O(n log n) time. When applied to orthogonal prisms, it yields the same partition

into L-shaped pieces that O’Rourke’s algorithm produces in the 2-dimensional case

(see Chapter 1 and[36, 51]).

On the other hand, the class of 2-reflex orthogonal polyhedra, despite not includ-

ing every orthogonal polyhedron, is already quite rich, and can model a wide range

of 3-dimensional shapes. Moreover, we believe our partial result to be a necessary

step toward a proof of the same upper bound for general orthogonal polyhedra.

An alternative technique that we explore is cutting a polyhedron with parallel

planes, in order to reduce a 3-dimensional problem to a set of 2-dimensional ones.

The main challenge here is to make sure that sub-problems belonging to “neigh-

boring” planes are solved in a somewhat similar fashion, in such a way that all the
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2-dimensional solutions can be subsequently merged into an efficient 3-dimensional

one.

In Chapter 5, we successfully apply this concept to the problem of edge-guarding

orthogonal polyhedra. As a by-product, our linear-time algorithm yields guards that

are all parallel and, when applied to orthogonal polygons, it gives the same solution

as the one given by Abello et al. in [1] for a type of guard called “flashlight”.

Applications of mutually parallel edge guards include point location, tracking, and

navigation.

One of the highlights of Chapter 5 are two tight inequalities relating the number

of edges e in an orthogonal polyhedron and the number of reflex edges r. We apply

these inequalities to our previous algorithm to slightly lower the state-of-the-art

upper bound for edge guards in terms of e and to produce a new upper bound in

terms of r.

Cutting with parallel planes proves to be a fruitful technique also for 4-oriented

polyhedra, i.e., polyhedra whose faces are oriented in at most four different direc-

tions. This class greatly extends orthogonal polyhedra, and our technique yields an

upper bound of b(e+ r)/6c open edge guards, which can be found in linear time, as

we show in Chapter 6. However, further “pushing” this strategy by applying it to

broader classes of polyhedra produces results that are less attractive, and becomes

completely pointless for general polyhedra.

Table C.1 summarizes some asymptotic upper and lower bounds on the number

of open edge guards required to solve the Art Gallery Problem in several types

of genus-zero polyhedra, both in terms of the total number of edges e and the number

of reflex edges r.

Table C.1: Bounds on open edge guard numbers in several classes of polyhedra.

e-lower b. e-upper b. r-lower b. r-upper b.

1-reflex e/12 e/12 r/2 r/2
2-reflex e/12 e/8 r/2 r/2
3-reflex e/12 11e/72 r/2 7r/12

4-oriented e/6 e/3 r/2 r

General e/6 e r r

The first three rows refer to orthogonal polyhedra. All lower bounds come from

Chapter 3. The upper bounds in the first row follow directly from the classic theo-
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rems on planar orthogonal polygons, surveyed in Chapter 1. The second, third and

fourth rows summarize some of the results of Chapters 4, 5 and 6, respectively.

Finally, the last row on general polyhedra follows from Chapter 3 (recall that the

27e/32 upper bound stated in Theorem 3.16 was established only for closed edge

guards, hence it does not affect Table C.1).

Searchlight Scheduling Problem. Concerning this problem, our goal is once

again to model searchlights as naturally as possible, yet in such a way that as many

classic 2-dimensional results carry over to our 3-dimensional model. In addition, we

would like our generalization to offer insights that could inspire new approaches to

the 2-dimensional problem, as well.

After considering several plausible variations on the searchlight model, in Chap-

ter 7 we opt for half-planes of light rotating about segment guards. Hence, a guard

can be thought of as an orientable array of sensors, each of which rapidly and con-

tinuously scans a planar region. This model is also quite scalable, in that, depending

on the application, a guard can be approximated by a sparser array of sensors.

Having searchlights that can turn with just one degree of freedom allows for a

trivial reduction from the 2-dimensional Searchlight Scheduling Problem to

the 3-dimensional one. Moreover, we identify a broad class of guards, called filling

guards, that act as a natural generalization of planar guards, and can be identified

in polynomial time. Indeed, as shown in Chapter 8, the one-way sweep strategy

detailed in [49] extends to polyhedral environments with filling guards, along with

all its consequences. Similarly, the sequentiability of search schedules, proved in [39]

for polygons, extends to polyhedra with filling guards, too. Filling guards play a role

also in the characterization of the searchable polyhedra that have only one guard.

Next we pose the problem of efficiently placing boundary guards in a given

polyhedron in order to make it searchable. The corresponding question for polygons

has never been asked in the literature, but it follows from the one-way sweep strategy

that placing a point guard on each reflex vertex of a simple polygon is sufficient. We

conjecture the same to be true for polyhedra (i.e., that placing a guard on each reflex

edge makes any polyhedron searchable), and we manage to prove it in Chapter 9

for orthogonal polyhedra. For general polyhedra, we only provide a quadratic upper

bound on the number of required boundary guards.

Finally, we move on to computational complexity issues. Determining the com-
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plexity of the Searchlight Scheduling Problem (i.e., deciding if a given guard

set can search a given polygon) has been an open problem for decades, and we show

that our 3-dimensional extension is computationally hard. Specifically, in Chap-

ter 10 we prove that deciding if a 3-dimensional instance is searchable is strongly

NP-hard. In addition, even under the promise that the given instance is indeed

searchable, the problem of minimizing search time has no PTAS (unless P = NP).

In Chapter 11, we further generalize our problem, by asking if only a given

subregion of the environment can be searched, regardless of the rest. We prove that

such a Partial Searchlight Scheduling Problem is PSPACE-hard, by a

reduction from Nondeterministic Constraint Logic machines.

Our technique has some impact also on 2-dimensional problems: by adapting

our reduction to polygons, we manage to prove that the 2-dimensional version of

the Partial Searchlight Scheduling Problem is PSPACE-complete, thus

giving the first characterization of the computational complexity of a variation of

the Searchlight Scheduling Problem.

The main computational complexity results of Chapters 10 and 11 are summa-

rized in Table C.2.

Table C.2: Computational complexity of several variations of SSP.

Full Partial
2D PSPACE PSPACE-complete
3D NP-hard PSPACE-hard

In conclusion, we succeeded, to some extent, in elucidating the role of edge

guards in polyhedra, both in relation to the Art Gallery Problem and the

Searchlight Scheduling Problem. We showed that these guards naturally

generalize point guards in polygons, and we illustrated how several planar theorems

carry over to 3-dimensional settings, despite the lack of powerful general theoretical

tools such as triangulations.

We also argued that reasoning about polyhedra could provide a more insight-

ful view of planar problems, by revealing a “bigger picture” that is often hidden

or unclear when confined to the planar case. We demonstrated that tackling 3-

dimensional problems may even suggest novel approaches to their 2-dimensional

versions, as in the case of the Partial Searchlight Scheduling Problem.
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Open problems

Several open problems are left for further research. We name a few:

• Some of the lower and upper bounds in Table C.1 do not match. We believe all

the lower bounds to be tight, as stated in several conjectures in Chapters 3, 4, 5,

and 6.

• The same construction used in Theorem 5.4 could be analyzed more closely

to achieve a better upper bound. In contrast with the fact that the polyhedra

with highest r to e ratio are responsible for the worst cases in our analysis, such

polyhedra are nonetheless intuitively easy to guard by selecting a small fraction

of their reflex edges. Isolating these cases and analyzing them separately may

yield an improved overall bound.

• The technique used in Chapter 5 for orthogonal polyhedra and extended in

Chapter 6 to 4-oriented polyhedra seems to perform poorly on c-oriented poly-

hedra, with c > 5. Indeed, the number of configurations quickly blows up and

our method becomes less effective. A better technique should be designed for

these more complex polyhedra.

• As proved in Theorem 9.8, placing a guard on each reflex edge of an orthogonal

polyhedron makes it searchable. We conjecture this holds also for general

polyhedra, but it turns out to be a surprisingly deep problem. One way to

lower our quadratic bound on the number of guards would be to slightly modify

the partition used in Theorem 9.3. Instead of aiming the guards at the angle

bisectors of the reflex edges, we could aim them in any direction, cut the

polyhedron with the “extended” searchplanes, and still eliminate all the reflex

edges. The advantage would be that, by carefully choosing a plane for each

reflex edge that minimizes the intersections with other reflex edges, the overall

number of intersections could be significantly less than quadratic. Even if it

is still quadratic in the worst case, it is likely much lower on average, with

respect to any reasonable probability measure over polyhedra.

• In the case of orthogonal polyhedra, the upper bound of r guards given by

Theorem 9.8 is also not known to be optimal. In fact, we believe that it can

still be lowered by a constant factor.
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• The search time of the schedules given in Theorems 9.4 and 9.8 could be

dramatically reduced by clearing several regions in parallel. For instance, in

Theorem 9.8 we could turn in concert two guards whose fences do not bound

a same cuboid. Generalizing, we could construct a graph G on the set of reflex

edges, with an edge for every pair of reflex edges whose fences bound a same

cuboid. Then the search time would be proportional to the chromatic number

χ(G), which is likely sublinear, at least on average.

• The complexity of 3SSP could be considered also for a restricted set of in-

stances, such as genus-zero polyhedra or orthogonal polyhedra. Moreover, the

technique used for Theorem 10.1 could perhaps suggest a way to prove the

NP-hardness of SSP. Adding new elements to SSP in order to increase its

expressiveness, while preserving its 2-dimensional nature, could be an interme-

diate step. For example, we could introduce curtains, i.e., line segments that

block visibility but do not block movement, or windows, i.e., line segments

that block movement but not visibility. Then we could attempt to replicate

the construction of Theorem 10.1 for this extension of SSP.

• We may try to modify the constructions used in Chapter 11 to prove the

PSPACE-hardness of the full 3SSP, as well. We observe that such con-

structions are not guard-visible, as per Definition 7.11. As a matter of fact,

incorporating regions that can never be cleared is an effective way to force

the recontamination of other critical regions when certain conditions are met.

However, if we want our constructions to be guard-visible instances of 3SSP,

no such expedient is of any use, and cleverer tools have to be devised.

• Observe that, throughout Part III, we focused primarily on boundary guards

(with the exception of Theorem 8.4, whose statement encompasses also gen-

eral guards). This is certainly a bonus for Theorems 9.3, 9.4, 9.8, 10.1, 10.3

and 11.7, in which restricting to boundary guards yields stronger statements.

On the other hand, extending the concept of filling guard (Definition 7.13) to

guards not lying on the boundary may lead to interesting generalizations of

Theorems 8.2 and 8.3.
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