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Many current methods of search using autonomous marine vehicles do not adapt to
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eters. Software modules for the autonomy framework MOOS-IvP are described that
implement this framework. Simulated and experimental results show that it is feasi-
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Chapter 1

Introduction to Autonomous Mine

Countermeasures

1.1 Project Goals

The goal of this project is to design and implement a software system to enable

multiple marine vehicles to search a given area. Specifically, tools are needed to 1)

model sensor performance, 2) maintain and synchronize a map of the area, and 3)

implement a search algorithm.

1.2 Limitations of Current Search Methods

Previous research in the searching domain has focused on “lawnmower” style patterns

of mapping an area [4, 15, 26, 42–44]. However, this process deteriorates as more

vehicles are added. If a vehicle is assigned to a portion of the overall area and then

breaks down, the other vehicles must be manually reconfigured to scan that portion.

Also, this process generally assumes the platforms are identical and does not take

advantage of the capabilities that may be unique to each vehicle (e.g. one may have

side-scan sonar, one forward-looking sonar, another optical or magnetic sensors, etc.).

Finally, this process does not allow for cooperation with other objectives of the vehicle,

such as collision avoidance or periodic surfacing.
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Current search algorithms also generally assume a constant probability of detec-

tion for the targets they seek. This assumption may not be realistic for real-world

environments where the motion of the water and the composition of the sea-bottom

can vary drastically.

Previous research in AUV behavior development has primarily focused on imple-

menting behaviors for a single vehicle [10–12], such as a single AUV taking tempera-

ture readings during ocean trials. With access to larger numbers of autonomous craft,

research is now needed to explore possible ways for these vehicles to interact [6, 34],

especially if the vehicles have different capabilities (such as an autonomous surface

vehicle and an autonomous underwater vehicle, see [47]).

1.3 Background

1.3.1 A Brief Overview of Mine Countermeasures (MCM)

The ultimate goal of mine countermeasures (MCM) is to neutralize mines (called

targets). There are two basic ways to go about this, minesweeping and mine hunt-

ing. Minesweeping refers to the process of neutralizing all mines in an area without

specifically locating them first. This might involve, for example, using a helicopter

to tow a large ferrous sled through mined waters, hoping to activate the mines so

that they no longer pose a threat to area shipping traffic. Mine hunting, on the other

hand, involves locating, detecting, and classifying mines for later neutralization. This

neutralization might be done by the mine hunting vehicle itself, or it might be done

by Navy divers or specialized vehicles. (For a more thorough introduction, see [25].)

Minesweeping is typically done after the conflict is over. Its objective is to clear

an entire area to allow commercial and military shipping to safely move through the

area. Mine hunting, however, might be done in hostile waters, such as clearing the

waters near an enemy beach for an amphibious assault. This means that minehunters

(either vessels or divers) often need to be discrete and difficult to detect.

The earliest iterations of mine hunting involved Navy divers locating underwater
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mines, marking their locations, and setting explosive charges for later detonation.

This process is very accurate with regards to the detected targets but is extremely

time consuming, expensive, and also dangerous for covering large areas.

This process was improved with the invention of sonar which allowed single ships

to map the seafloor. This sonar data was then processed into a graphical form that

a trained operator would look at to mark the mine-like objects (see Figure 1-1). At

this point it is beneficial to explain the terminology for mine hunting. Mine hunting

involves two steps; the first step is detection. For the detection phase, an oil drum,

a large rock, and a mine should all be “detected”. The second step is classification.

Classification is determining which objects are mine-like and which are not. For this

example, the oil drum and mine could both be considered mine-like. These two phases

are defined as mine-hunting. (To complete the description of mine countermeasures:

the third phase, identification, seperates mines (the targets) from non-mines (the

clutter). The first three phases are sometimes referred to as DCI. The fourth phase,

neutralization, eliminates the threat from the mines.) [36]

The maturing of autonomous underwater vehicles (AUVs, or unmanned undersea

vehicles, UUVs) initially automated the data-collection phase of mine hunting. That

is, AUVs were programmed to follow a lawnmower style path over a search region,

record data, and then return home. The AUVs were retreived and the data was

downloaded to a computer where trained operators would look at the images to

detect and classify mine-like objects. This automated data collection allowed a large

search area to be covered efficiently, but still required operators to look over hundreds

of images to identify mine-like objects. This procedure is tiring and demanding on

the human operators.

The next advancement in mine hunting detection and classification was using com-

puter image processing to pre-screen the images, assisting the operator by pointing

out obvious targets. The automated detection and classification of mine-like objects is

called CAD/CAC (computer-aided detection/computer-aided classification). Recent

advances in image processing, combined with space and energy efficient computers

(see Figure 1-2), have now allowed CAD/CAC to be performed onboard the AUV.
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Figure 1-1: MCM operators look for proud mine-like objects in side-scan sonar images.
Detection and classification can be easy in simple terrains like this but increases in
difficulty as the amount of clutter (such as rocks and other large debris) increase.
Image courtesy Bluefin Robotics.

Figure 1-2: This small, power-efficient CAD/CAC module by SeeByte allows for the
onboard detection and classification of mine-like objects on an AUV.
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Currently, the only advantage that onboard CAD/CAC provides is that the AUV

can communicate a “top-ten” list of targets while still searching, allowing vessels to

begin identification and neutralization before the entire area has been scanned. The

AUVs, however, do not use the information they have gained to alter their search

patterns. A active area of research in this field is to try to close the loop and allow

the AUV to autonomously make adjusts to its plan based on the information it is

gathering.

1.3.2 Autonomous Underwater/Surface Vehicles (AUVs/ASV)

Autonomous underwater vehicles come in a variety of sizes, from 9-inch diameter man-

portable units like Hydroid’s REMUS1 all the way up to Bluefin’s 21-inch diameter

BPAUV2 (see Figure 1-3). The larger units are equipped with acoustic modems, more

sophisticated sensors, larger batteries, and the capability of towing acoustic sensors.

The smaller units are generally more energy efficient, but they often lack acoustic

modems for underwater communication. All kinds of AUVs are capable of carrying

some form of sonar for bottom sensing, including mine-like object detection.

Autonomous surface vehicles are now cheap and simple enough to operate that it

is possible for a research group to have three to twelve of these vehicles for testing.

The SCOUT platform (see Figure 1-4) of robotic kayaks cost around $30,000/unit,

are equipped with GPS, a compass, a thruster capable of nearly four knots, and an

off-the-shelf PC for autonomy. [18] Variants of the SCOUT have been fitted with

such equipment as long-wave radios [34], acoustic modems [19] for communicating

with underwater vehicles, and CTDs for taking water sound-velocity measurements.

This inexpensive platform has allowed for the testing of some novel multi-vehicle

experiments in collision avoidance. [10,12]

1http://www.hydroidinc.com/pdfs/remus100web.pdf
2http://www.bluefinrobotics.com/bluefin_21bpauv.htm
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Figure 1-3: Bluefin’s 21-inch diameter AUV is capable of diving exceptionally deep for
long periods of time to take readings near the ocean floor. Advanced autonomy soft-
ware (see Section 1.3.3) makes the independent operation of these vehicles possible.
Image courtesy Matt Grund.
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Figure 1-4: The SCOUT platform of autonomous kayaks are a relatively inexpensive
robotic platform. The low cost and ease-of-use make it possible for research groups
to own and operate several of these vehicles. Image courtesy Mike Benjamin.

1.3.3 Autonomy Software

The autonomy software for this project is a suite of software referred to as “MOOS,”

the Mission Oriented Operating Suite (by Paul Newman [31]), coupled with an

interval-programming-based multi-objective optimization helm called pIvPHelm by

Mike Benjamin [9]. The collective suite is referred to as MOOS-IvP.

MOOS is a platform-independent software suite that facilitates communication

between processes that are typically written by different users. Each process gets

information by talking only with the central MOOS database, MOOSDB (see Fig-

ure 1-5). The independence of each process from every other process prevents prob-

lems with one process from taking down the whole system. To share information,

processes publish data to the MOOSDB in a (Name, Value) pair. Other processes

that are interested in this data subscribe to the (Name) variable and are informed

of updates to this variable by the MOOSDB. The modularity of this system en-

forces firm, clear interfaces between processes that desire to communicate with one

another. For instance, the GPS software might publish variables called GPS LAT and

GPS LON containing the latitude and longitude of the vehicle respectively and an in-
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Figure 1-5: The Mission Oriented Operating Suite (MOOS) by Paul Newman is a
middle-ware software suite that facilitates communication between different processes
in a publish-subscribe architecture. Image courtesy Mike Benjamin.

ternal compass might publish COMPASS HEADING. The navigation software (e.g., pNav)

would subscribe to these variables and publish NAV X and NAV Y, its best estimate as

to the location of the vehicle. Other software could subscribe to this navigation data

and publish a desired heading and speed, while rudder and thruster control software

could subscribe to the desired heading and speed data and actually interface with

those physical controls.

MOOS, as robot middleware, does not provide much in the way of vehicle au-

tonomy. The MOOS software distribution does provide a simple helm process called

pHelm. Multi-objective optimization between behaviors is implemented in another

MOOS process called pHelmIvP a.k.a. the IvP Helm. [8] In the MOOS publish-

subscribe architecture, pHelmIvP subscribes to variables such as NAV X, NAV Y,

NAV HEADING, NAV SPEED, and others (such as the position, heading, and speed of other

vehicles) and typically publishes DESIRED HEADING and DESIRED SPEED.

pHelmIvP produces the desired heading and speed for a vehicle by efficiently

weighing and optimizing the combination of objective functions produced by individ-

ual behaviors (see Figure 1-6). As a simple example, suppose a waypoint behavior

produces an objective function that desires a course that would take the vehicle to a

desired waypoint at a specified speed (see Figure 1-7). Also suppose there is a behav-

ior that desires to limit the rate of turn of a vehicle to prevent kinking a tow cable.

In some architectures, the helm would choose one behavior over another to control
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the vehicle. In our example this would either cause the vehicle never to reach the

waypoint, or the vehicle to turn so sharp it kinks the cable. Other architectures would

simply combine the single-decision output of each behavior. In our example this could

violate the turn limit. pHelmIvP solves this multi-objective optimization problem by

efficiently searching over the entire decision space (all discrete headings and speeds)

and choosing the heading and speed that maximizes the combined objective funtions.

IvPSolver

behavior

behavior

behavior

MOOSDB

5
4

IvPFunction

IvPFunction

IvPFunction

3

HelmEngine

Action

6 1

2
info_buffer

IvP Helm

Figure 1-6: pHelmIvP uses the interval programming method to solve the competing
objectives of different behaviors. Image courtesy Mike Benjamin.

90

180

270

135

0

Figure 1-7: In this visualization of an objective for a waypoint behavior, the behavior
would like to procede to a point at heading 135 degrees, but it is willing to take
courses that take it near the point too. Image courtesy Mike Benjamin.

1.3.4 A Note on Coverage

In many applications of multiple vehicle problems, the goal is to “cover” an area with

some kind of sensor. This includes such applications as mine deployment and mine

hunting, robotic automobile painting [15], automated cleaning robots [30], and others.

It is important to distinguish the different types of coverage that can be achieved. [20]
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There are three basic types of coverage:

1. Blanket or Field Coverage is a static way of arranging your search elements

such that you minimize the probability of a target appearing undetected inside

the search area.

2. Barrier Coverage is a static arrangement of search elements that attempts to

minimize the probability that a target passes undetected through the barrier.

3. Sweep Coverage is a dynamic arrangement of search elements that moves

through the search area, attempting to both maximize the number of detections

per time and to minimize the number of missed detections.

It is also important to recognize the capabilities of the targets when designing

a coverage program. For static targets, any patterns that cover the entire area are

essentially equivalent detection-wise. Moving targets, however, could conceivably do

something like follow behind the searcher, preventing their detection even if the entire

area is “covered” by the moving search elements. For adversarial moving targets like

these, some form of moving barrier coverage is desired.

1.3.5 Relevance of Cooperative, Autonomous, Adaptive Search

The applications of this research are valuable for both military and civilian purposes.

The Navy is currently funding research initiatives for cooperative search platforms

that can search large (100-km by 100-km) areas. [32] There are also combined Navy

and civilian efforts, such as PLUSNet, that are attempting to expand the communi-

cation capabilities of underwater vehicles. [24,40]

1.4 A Novel Approach to Adaptive Autonomous

Search

Current algorithms for mine hunting assume two features of the search vessel:
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1. Mine hunting is the only task the vehicle is trying to complete, allowing the

search algorithm to completely determine the actions of the vehicle.

2. The sensor’s detection ability is constant for all regions of the search area and

does not depend on environmental conditions or vehicle state (these parameters

are referred to as the sensor’s A and B values, see Section 2.1).

These two assumptions preclude using an adaptive algorithm for mine hunting. By

violating these assumptions I propose a novel solution of decomposing the search area

into smaller cells that allows for adaptive autonomous mine hunting. In particular,

the algorithm is adaptive to changes in:

1. The mission, by allowing multiple objectives to be completed simultaneously,

and

2. The environment, by adjusting the sensor’s A and B parameters.

1.5 Criteria for Success

Defining success for search tasks is not easy and various papers use different definitions

of success. [39] The elements that comprise an “efficient” search algorithm greatly

depend on the objectives of the searcher. For example, efficiency might be defined

based on the time of search, the search platform’s cost or effectiveness, the number

of missed and/or detected targets, or some other objective, such as finding a cleared

path between two points.

That being said, success for this project will be defined as:

1. Creating a set of tools that enable a user to plan, simulate, and conduct a search

operation over a specified area.

2. Conducting a series of simulations and experiments to show that these tools

allow users to evaluation the effectiveness of their own search efforts.
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1.6 Chapter Summary

In this chapter we have described the problem that current search algorithms face

as being non-adaptive to real-world parameters such as the environment or mission

objectives. We have also described mine countermeasures (MCM) in terms of detec-

tion, classification, identification, and neutralization phases. Several real autonomous

vehicles and their capabilities were examined and some of the autonomy software that

runs on them was described. The thesis of this work is that because current search

algorithms assume that mine hunting is the only vehicle task and that the sensor

parameters are constant, those algorithms are unable to adapt to changing environ-

mental and mission parameters. To remove those assumptions, we use a cellular-

decomposition method to create a framework that allows environmental and mission

adaptation.

The next section describes mine countermeasure theory and how it applies to the

cellular decomposition.
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Chapter 2

Theory

2.1 Mine Countermeasure Theory

Planning for mine countermeasures (MCM) operations takes on a probability-based

framework that trades the risk of missing targets for the time spent to cover the

search area. [21, 36] The current objective of this planning operation is to determine

the number of search tracks, N , across the search area of channel width C to attain the

desired clearance level P (average probability of neutralizing mines) (see Figure 2-1).

Figure 2-1: When planning for a mine countermeasures operation, the mission com-
mander specifies a desired clearance level P , for the search area. The result of the
planning is N , the number of search tracks to cover the entire channel width, C.
Image courtesy Rafael Rodriguez.

The probability that at any instant a given searcher detects a given target de-
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pends on the relative locations of the searcher and target, the physical capabilities of

the sensor, the physical characteristics of the target, and the environment. Because

the probability of detection is very low for long distances between the searcher and

target, it is possible to calculate the probability of detection for a target at a given

lateral range (distance between a target the straight line trajectory of a searcher) by

integrating the instantaneous probability of detection from −∞ to∞. See Figure 2-2.

X

P(X)

1.0

Imperfect Sensor

X

P(X)

Lateral Range Curve

1.0

Sensor Track
Y

Lateral Range X

Target
a.

c.

X

P(X)

1.0

Definite Range Law

b.

d.

Figure 2-2: In a., the sensor passes along a target at lateral range X. Integrat-
ing the instantaneous detection probability (a function of X and sensor and target
characteristics), we obtain a fictional b., the lateral range curve. This curve goes
to 0 for large X and may not be symmetric, depending on the sensor configuration.
Approximations for b. include c., which assumes that all targets within a fixed dis-
tance are detected (cookie cutter), and d., which more accurately models the sensor’s
performance (imperfect sensor). Image originally appears in [21].

For our purposes then, a sensor can be completely described by its nominal de-

tection probability, B, and its nominal range (width), A. See Figure 2-3.

The mission commander for an MCM operation specifies a desired clearance level,

P , which gives the probability that any particular mine has not been neutralized. For
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1.0

P(X)

B

A

Figure 2-3: This model completely describes the sensor using its detection probabil-
ity, B, and its range, A.

example, if the mission commander desires 96% clearance, that allows a 4% chance

each mine has not been neutralized. In a field of 100 mines, it would be acceptable

for four of them not to be neutralized.

With a perfect sensor (B = 1), the clearance level is just equal to the portion of

the search area covered by the sensor (see Equation 2.1). For an imperfect sensor, the

probability of missing any particular mine is inversely proportional to the number of

times the entire area has been scanned.

P =

 max(N ∗ A/C, 1) B = 1

1− (1−B)N∗A/C B < 1
(2.1)

Further complicating clearance operations is that the probability of identification

Pid < 1, the probability of neutralization Pn < 1, and there are some mines that

cannot be detected, µ. (See Figure 2-4) If the commander desires an overall clearance

D&C ID DetectableNeut. P

P’

Figure 2-4: Modifications need to be made to P to account for limits in Pid, Pn, and
µ. That is to say, if the commander desires 90% clearance and the product of Pid,
Pn, and 1 − µ is 97%, we can set the desired clearance level of our algorithm, P ′ to
90%/97% = 92.7% to satisfy the commander’s goal.
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level of P , we can correct for these factors by increasing the coverage to

P ′ = P/(Pid ∗ Pn ∗ (1− µ)) (2.2)

Because we can correct for these factors by increasing P , we will ignore any compli-

cations caused by these factors. In the case where P > (Pid ∗Pn ∗ (1−µ)), no number

of paths can satisfy the desired clearance level and a later minesweeping effort will

have to be conducted.

2.2 Applications to Small Cells

The previous discussion applies to a large search area where it makes sense to talk

about the number of paths that cover the search area. It is possible to apply this

reasoning to small cells, which is at the heart of what we are trying to do.

Recall that the clearance level, P , is an average of 1−(the probability that an

undetected target is present). Also recall that B is the probability that the sensor

will detect a given target as it passes by the target. Importantly, it is assumed that

detection events are independent for each target and for each pass of the sensor over

the target. However, this assumption might not hold for some targets or environ-

ments. For example, some targets have a strong directionality which makes them

easily detectable from one direction but not from another. Applying this to a small

cell, every time a cell comes into view and then leaves, we must update the clearance

level of that cell. Assuming detection independence, the equation for updating a cell

that has been sensed is in Equation 2.3.

new prob. missed = (prob. prev. missed) ∗ (prob. missed this time)

1− Pnew = (1− Pold)(1−B)

Pnew = 1− (1− Pold)(1−B) (2.3)

Figure 2-5 shows a graphical procession of what happens when a sensor is passed
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over a cell multiple times.

(a) (b) (c)

(d) (e) (f)

Figure 2-5: In this figure, a sensor is passed over a single cell. As the sensor enters
the cell (b), nothing is changed. When the sensor has completely passed the center
of the cell (c), its clearance is updated according to Equation 2.3. Here, the cell has
changed from 0 clearance (blue), to .5 clearance (teal). On the second pass, (d)-(f),
the cell is updated from .5 to .75 (orange); which is two passes of a .5 sensor. These
updates are communicated to other searchers to adjust their own internal grids.

The average clearance for a group of cells is the average of each cell’s clearance

weighted by its relative area. For equal-sized cells, this is equivalent to summing the

clearances and dividing by the number of cells.

Average Clearance P =
PN

i=1 Pi

N

2.3 Signal Detection Scoring Metrics

The scoring metric used to evaluate a potential search algorithm greatly influences the

design of that algorithm. For instance, with a metric that greatly punishes missing

targets and only lightly penalizes incorrectly declaring a target, the algorithm may
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decide to declare many of the objects it sees as targets. In addition to the standard

signal detection theory scoring (see Table 2.3), the score might be affected by factors

such as the time of search (penalizing long search times), the clearance level, the

number of search vessels used, amount of energy expended, or the completion of

certain objectives, such as finding a lane [33] from one side of the area to the other.

While not explored in this research, it would be beneficial to try to create a scoring

metric that uses classic signal detection theory but that also incorporates each cell’s

clearance level, P , when assigning points. For example, if a cell has a high clearance

level, meaning that not many targets should be missed there, the penalty for misses

would be increased.

Table 2.1: Basic signal detection theory terminology. Here, there are two states for
each cell, either there are targets present or there are no targets present. There are
also two possible outputs of the search effort, declaring a target present or not present.

Target Present Target Not-Present
Declare Target Hit False Positive

Declare No Target Miss Correct Rejection

To simplify the calculation of scores, we will use classic signal detection scoring.

We will hold the other possible scoring variables (such as time or clearance level)

constant to compare search algorithms. The actual scoring tool/metric is discussed

in Appendix B.3.

2.4 Chapter Summary

In this chapter we have given an overview of the current state of mine countermeasure

theory, including the current goal of operations planning of calculating N , the number

of paths to use when covering a channel of width C. The clearance level, P , is a

measure of how likely it is that a target has not been neutralized. This clearance

level can be calculated for an entire search area (which is currently done), or it can

be applied to a cellular decomposition of the search area (this research). Finally, the
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scoring metric used to evaluate a search algorithm greatly influences the design of

that algorithm. For this research, we use classic signal detection theory while holding

other variables (such as time or clearance level) constant.

In the next chapter we describe the software modules that implement this cellular

decomposition framework and the search algorithms.
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Chapter 3

Software Framework and Modules

The principle development work for this project is the creation of three software

modules: pSensorSim, pArtifactMapper, and bhv SearchArtifact. These software

modules form a chain that starts with simulated targets and ends with desired heading

and speed commands for the vehicle. pSensorSim loads the artifacts to simulate and

publishes the artifacts that it detects. pArtifactMapper subscribes to these artifact

updates and forms a clearance map of the area of interest. The search behavior then

subscribes to this clearance map and makes decisions about where the vehicle should

go next. See Figure 3-1 for a diagram of the relationship. Any of the modules can

be replaced with components that follow the same interface. For example, the sensor

model could be replaced with the actual sensor hardware, and the search behavior

could be replaced with any other search algorithm. Configuration information for all

of the software is in Appendix B.

3.1 pSensorSim

pSensorSim is a MOOS process that simulates the output of a fictional sensor given

a “threat laydown,” which is a list of targets to simulate.

The algorithm for sensing is shown in Algorithm 1. The basic process is to main-

tain a list of artifacts that can currently be “seen” by the sensor and store it. On

the next iteration, for each new artifact, pick a random number [0, 1). If the random
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pArtifactMapper

bhv_SearchArtifact

pSensorSim
artificial data mock sensor output

sensor data

map of artifact field

heading, speed

objective function

Figure 3-1: This diagram displays the flow of data between the three parts of the
search toolchain. pSensorSim models a simple sensor and outputs the artifacts that
it detects. pArtifactMapper remembers this output and also keeps track of which
cells the vehicle has covered. This artifact map is used by the search behavior
(bhv SearchArtifact) to produce an objective function for the helm to solve.

number is less than B (the sensor detection capability), emit the artifact as a detected

artifact for processing by other modules. Now store the list of all seen artifacts for

the next iteration.

Another essential function of pSensorSim is to simulate variations in the sensor’s

A and B values. Recall that A is the effective width of the sensor while B is the

probability that the sensor will detect any given target. pSensorSim uses a simple

two-value sensor B parameter that changes the sensor’s normal value to a reduced

value for a short period of time. For example, the sensor might have a B value of .8

for 60 seconds and then drop to .25 for 10 seconds before repeating the cycle. There

is plenty of room for further work in modeling a sensor’s B value given the state of

the vehicle and the bottom environment. See Chapter 5.2.

3.2 pArtifactMapper

pArtifactMapper’s role is to maintain two data structures: 1) a list of all the detected

artifacts, and 2) a clearance level associated with each cell of the search grid.
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input : threat laydown
output: detected artifacts

load(threat laydown);
locArtifacts ← Detect(currx, curry, currhdg);
while true do

newArtifacts ← Detect(currx, curry, currhdg);
foreach artifact in newArtifacts and not in locArtifacts do

x← Rand([0, 1));
if x < B then

Publish(artifact);
end

end
locArtifacts ← newArtifacts;
/* Publish the sensor values so pArtifactMapper can adjust its

internal values */

Publish(Sensor A);
Publish(Sensor B);

end

Algorithm 1: Algorithm for pSensorSim. See Section 3.1 for a full description.

First, some terminology. The search area is the physical region of interest, defined

by a convex polygon. The convex polygon requirement is not a function of anything

that pArtifactMapper can perform, but rather because the search behavior, which

shares the map, currently only functions with convex polygons. This requirement

could be relaxed with a reworked behavior.

3.2.1 Discretization Method

The search area polygon is completely tiled with equal-sized, square elements, forming

a search grid. The total area of the search grid fully includes the area of the search

area. See Figure 3-2. The size of the cells is specified by the user. For most of this

work we have been using 5-m squares. This number seems to be small enough that

it is within the error bounds of a sensor (approximately 8-m [41]), but large enough

that the number of cells is manageble.

Other constraints might limit the maximum number of cells that can be described.

For instance, if an AUV allocates 10-bits to describe the cell index number, the

number of cells is limited to 1024 (210), regardless of an optimal size for the cell.
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(a) A search area defined by a convex polygon. (b) The search grid that completely covers the
search area.

Figure 3-2: The search area, defined by a convex polygon (a), can be broken into
discrete, equal-sized, square elements that completely cover the area (b)

Also, square cells might not be the best shape for the elements. Some discretiza-

tion methods use hexagonal cells because of their close-packing ability and because

it removes ambiguity as to which cells are considered neighbors. [42]

3.2.2 Grid Updates

When pArtifactMapper receives a detected artifact notice from pSensorSim, it stores

the artifact in the cell location that corresponds to the artifact’s X and Y values.

Using the theory developed in Section 2.2, for all cells that have entered the

sensor’s effective area and then left (i.e., those cells have been scanned), those cells

have their clearances updated.

Pnew = 1− (1− Pold)(1−B)

Pnew = Pold +B(1− Pold)

After updating a cell, this information needs to be communicated to other searchers
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as a grid update. Grid updates take the form of index, prev clearance, new clearance.

The previous clearance is included in the update in case platforms want to try to

reconstruct a sequence of grid updates. To communicate these updates to other vehi-

cles, other MOOS processes deliver the message in whatever form is appropriate. For

communication over TCP/IP channels, pMOOSBridge forms a connection to both

MOOSDBs and pushes updates in one direction. Underwater, acoustic modems are

used to communicate data at slow rates. Figure 3-3 shows how one community might

be passing these updates.

pHelmIvP

MOOSDB

Kayak 2

pSensorSim
pArtifactMapper

MOOSDB

Kayak 1
pSensorSim

pHelmIvP

pArtifactMapper

pMOOSBridge3

pArtifactMapperpSensorSim

pMOOSBridge1

pMOOSBridge2

MOOSDB

AUV 1

pHelmIvP

pAComms

pAComms

GRID_UPDATE_LOCAL

GRID_UPDATE_LOCAL

GRID_UPDATE_LOCAL

Wi−Fi Links

GRID_UPDATE

GRID_UPDATE

GRID_UPDATE

Acoustic Modem

Figure 3-3: This diagram displays one possible way for grid updates (and other MOOS
variables) to be communicated between vehicles. For the two surface vehicles with
Wi-Fi connections, pMOOSBridge maintains a TCP/IP connection to both databases
and is able to publish updates from one MOOSDB to another. In this example, one
of the kayaks is outfitted with an acoustic modem to communicate with the AUV
underwater. A different set of MOOS processes would be responsible for formatting
the updates and ensuring delivery (summarized as pAComms). Our simulations and
experiments were conducted with kayaks equipped with Wi-Fi so pMOOSBridge was
used to communicate between vehicles.

The algorithm for pArtifactMapper is summarized in Algorithm 2.
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input : detected artifacts, Sensor A, Sensor B, grid configuration
output: clearance map

P ← 0;
locCells ← SeeCells(currx, curry, currhdg, Sensor A);
while true do

if detectedartifact then
cell.add(artifact);

end
newCells ← SeeCells(currx, curry, currhdg, Sensor A);
foreach cell in locCells and not in newCells do

Pold ← cell.Clearance();
Pnew ← 1− (1− Pold)(1− Sensor B);
cell.Clearance()← Pnew;
Publish (index, Pold, Pnew);

end
locCells ← newCells;

end

Algorithm 2: Algorithm for pArtifactMapper. See Section 3.2 for a full de-
scription.

3.3 Search Behaviors

The search algorithm is arguably the most important component of an adaptive search

platform. For example, certain sensors, such as side-scan sonar, require the vehicle

to travel in a fairly straight line in order to get good data. Other sensors, such as

magnetic field gradiometers, have little dependency on turn rate. A search algorithm

that tries to turn frequently would result in poor data from the side-scan sonar but

would not affect the magnetic field gradiometer. Conveniently, in this framework the

search algorithm is also the most replaceable component.

Because of the prevalance of side-scan sonar for mine hunting tasks, we will assume

that turns are to be avoided to minimize lost data collection opportunities.

Our example will utilize two vehicles, one that mimics an AUV and performs

a simple lawnmower behavior (bhv Lawnmower), and a second vehicle that mimics

a surface craft (ASC). This scenario is plausible because when an ASC and AUV

opperate in cooperation, both vehicles benefit. The AUV gets accurate location

updates from the ASC without wasting time and energy to surface, while the surface
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craft is able to act as a relay for reliable, fast, efficient communications with the AUV.

Our vision for how these vehicles would cooperate is to have the AUV perform

a standard lawnmower pattern over the search area while the ASC tries to perform

two objectives. First, it needs to stay close to the AUV for reliable communications

and location updates. Second, because it knows something about the patches that

the AUV is “missing,” or cells that still have low clearance levels, the ASC can try

to go out of its way to cover those cells.

pHelmIvP’s interval programming architecture allows us to easily find a solution

for these competing objectives. See Figures 3-4 and 3-5 for an example.

3.3.1 bhv SearchArtifact

bhv SearchArtifact is a simple greedy algorithm that chooses the desired heading and

speed based on which choice gives the most delta in coverage.

We start with what the delta for an individual cell is:

∆P = 1− ((1− P )(1−B))− P

= 1− (1− P −B − PB)− P

= B −BP

∆P = B(1− P ) (3.1)

Intuitively, this makes sense, because ∆P is just the effect of passing a B-grade sensor

over an area that has a (1 − P ) probability of having something undetected in that

cell.

Now for any given speed and heading, we can calculate which cells will be covered

within a time horizon. We then add the ∆P values for each cell in that set to get the

utility of travelling in that heading at that speed.

This algorithm is summarized in Algorithm 3.
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Figure 3-4: This is an example setup that demonstrates how multiple objectives can
be satisfied simultaneously by the interval programming method of pHelmIvP. The
satellite underlay is from the MIT Sailing Pavilion (the structure in the upper left).
The faint, light-blue dots are artifacts published by pSensorSim in the threat laydown.
Lines in the image are the boundaries between cells of the search grid. The color of
each cell represents its clearance level, dark blue is 0 clearance, dark red is nearly
100% clearance. The dark blue trails behind the vehicles represents the path that
vehicle has travelled. The yellow vehicle (near the bottom) is running a lawnmower
behavior. The red vehicle (near the middle) is running both a search behavior and a
cut range behavior to the other vehicle. See Figure 3-5 for the objective functions in
play.
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(a) bhv SearchArtifact (b) bhv CutRange (c) Collective Function

Figure 3-5: In this figure, two behaviors are active in the setup of Figure 3-4. The
plots represent objective functions produced by each behavior. The plots are de-
fined over heading and speed with higher speeds further out radially from the center.
Colors represent the utility with red representing high utility and blue lower. (a)
is bhv SearchArtifact. It is expressing desired headings and speeds that cover the
unexplored cells. (b) is a Cut Range behavior that is expressing desired headings
and speeds that take the vehicle closer to the target vehicle. The influence of this
behavior (weight) increases with increasing distance, making it more important when
the vehicle is far from the target. (c) is the weighted sum of the other two functions.
The helm efficiently finds the peak of this collective function. In this case, the desired
behavior is to travel at top speed (1.0 m/s) at heading 156.0 (0 is due North, 90 is
due East, etc.).
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input : grid configuration, grid updates
output: heading, speed objective function for pIvPHelm decision

/* Reduce decision space from n cells to smaller range */

locCells ← Cells within TopSpeed ∗ TimeHorizon;

/* Compute one-time costs for each cell */

foreach cell in locCells do
Compute(∆P , range, cell heading)

end

/* Pre-compute which cells are intersected at each heading */

foreach Heading do
foreach cell in locCells do

if cell is within coverage at TopSpeed then
HdgVector.add(cell)

end

end

end

/* Compute utility for each Heading and Speed */

foreach Heading and Speed do
Util ← 0;
foreach cell in HdgVector do

if cell is within coverage at Speed then
Util += ∆P

end

end
return Util

end

/* Scale range so the maximum is 100 and the minimum is 0 */

ScaleUtilities(0, 100);
return Utilities;

Algorithm 3: Algorithm for bhv SearchArtifact. See Section 3.3.1 for a full
description.
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3.3.2 The bhv Lawnmower Behavior

The bhv Lawnmower behavior is a component of the IvP helm that implements the

lawnmower pattern generation algorithm described in Appendix B.1. It is basically

a waypoint following behavior that takes as inputs the parameters of the pattern

(search area, path radius, path heading, etc.) instead of a list of waypoints.

3.4 Auxillary Tools

pLawnmower is a helper utility that can generate lawnmower patterns for other

MOOS processes that would like to use them. It takes as input a polygon to gen-

erate the lawnmower pattern in and some parameters such as the starting point,

initial heading and turn direction, and path radius. The algorithm is described in

Appendix B.1.

The artifact field generator (artfieldgen) takes a polygon and number of targets

and generates a uniform random distribution of targets within the polygon. We

use this to create our threat laydowns prior to mission execution. The algorithm is

described in Appendix B.2.

scoreartfield takes in a file dump from pArtifactMapper (containing clearances

and detected artifacts), a threat laydown or actual target location list, and a scoring

metric (points for each hit, miss, false alarm, and correct rejection) and outputs the

score. The scoring utility using classic signal detection theory and is described in

Appendix B.3.

3.5 Chapter Summary

In this chapter we have described the three major tools produced in this work: pSen-

sorSim, pArtifactMapper, and bhv SearchArtifact. pSensorSim simulates a fictional

sensor by publishing the artifacts that it detects. pArtifactMapper subscribes to this

data and creates a clearance map of the search grid. bhv SearchArtifact subscribes

to this map and produces a desired heading and speed for the vehicle that greedily
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tries to explore low-clearance cells in the search grid.

In the next chapter we will test the functionality of these tools by simulating some

multi-vehicle scenarios and experimentally validating them.
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Chapter 4

Simulated and Experimental

Mission Validation

For our experimental vehicles we used three kayaks of the SCOUT platform [18].

The kayaks are equipped with Garmin 5 Hz GPS sensors for location information.

Because these particular vehicles lacked compasses, the heading data was taken from

the GPS unit which uses an unknown but probably difference between the last two

measurements algorithm for computing the heading. This turned out to be a big dis-

advantage because the GPS heading data only becomes reliable at speeds greater than

approximately 1 m/s. The effects of noisy heading data are described in section 4.1.

For all of the missions below, the scoring metrics in Table 4.1 were used. Because

our sensor does not produce actual false alarms,1 the overall score for an algorithm is

directly proportional to the average clearance level. We also used a constant threat-

laydown of 30 uniform-randomly placed targets in a polygon of 15,100 m2.

In all, seven mission simulations and nine experimental missions were analyzed.

We divided the missions into five scenarios. The results are summarized in Table 4.2.

Detailed analysis for each mission type is presented in the sections.

1The false alarms listed in the mission results are from situations where a target exactly on the
boundary between two cells is considered to be “in” both cells by pSensorSim but only in one of the
cells by the scoring utility.
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Table 4.1: The scoring metrics used for evaluating the performance of the algorithms
are listed here. Misses are heavily penalized (reflecting a high cost of not knowing
about targets) while false alarms are mildly penalized (reflecting the relative ease of
re-evaluating targets).

HitPoint: 10
MissPoint: -1000

FalseAlarmPoint: -10
CorrRejPoint: 10
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Table 4.2: Summary of Simulations and Experiments: This table summarizes the re-
sults gathered from both simulated and experimental testing of different parameters
for cooperative, autonomous searching. In the time column, faster is better. Simu-
lations were typically faster because the vehicles have a more difficult time turning
on the water. In the score column, higher is better. Because our scoring metric gave
-1000 points for each missed target, missing a few targets quickly put some scores
into negative values. The first four scenarios all used the same vehicle and sensor
parameters. In the two missions of the fifth scenario, one sensor was made to be
wider and the other sensor was made more accurate.

Scenario, Page No.; Summary Time
[Min:Sec]

Score

4.1, pg. 51; A fast-moving search kayak follows a
slow-moving AUV. Both vehicles have a 20-m, .5
B sensor with drops to .25 B for 10 seconds out
of 30. We discover that slew-rate limiting does
not function properly during experiments because
of the noisy heading data.

Sim: 16:42
Exp: 21:20

Sim: -1090
Exp: -1820

4.2, pg. 53; We repeat scenario 4.1 but we turn off
the slew-rate limit. This allows us to collect data,
but experiments overstate the ability of the sen-
sor by over-scanning cells because of noisy heading
data.

Sim: 16:11
Exp: 22:00

Sim: 1940
Exp: 3960

4.3, pg. 55; We remove adaptivity from the vehicles
by having both perform lawnmower patterns over
the search grid. This holds time constant to allow
us to compare clearance levels.

Sim: 17:11
Exp: 24:00

Sim: -2060
Exp: 3980

4.4, pg. 59; We again remove adaptivity from the
vehicles but this time each vehicle runs a pattern
over half of the search area.

Sim: 11:00
Exp1: 14:00
Exp2: 12:00

Sim: -2100
Exp1: -2100
Exp2: -6120

4.5.1, pg. 63; The lead AUV performs a lawnmower
pattern with a 40-m wide, .5 B sensor while the
kayak follows behind with a 20-m wide .8 B sensor.

Sim: 10:48
Exp1: 12:52
Exp2: 12:45

Sim: 1980
Exp1: 3010
Exp2: 930

4.5.2, pg. 65; We reverse the previous experiment
and have the kayak lead with a wide sensor while
the slower AUV follows with the more accurate
sensor. Experiment 1 used a 10-m swath for the
lawnmower pattern while Experiment 2 used a 20-
m swath.

Sim1: 14:09
Exp1: 16:52
Sim2: 7:37
Exp2: 10:07

Sim1: 970
Exp1: 5980
Sim2: -2100
Exp2: -40
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4.1 Scenario 1: An AUV with a Kayak Tender

In this scenario we model an AUV being followed by an ASC tender (in this case, an

autonomous kayak). As described in Section 3.3, this scenario is plausible because

it allows the kayak to provide reliable, fast communications between mission control

and the AUV.

Both vehicles have 20-m wide, .5 B sensors with drops to .25 B for 10 seconds

every 30 seconds. Importantly, the slew-rate limit feature of pSensorSim and pArti-

factMapper is set at 10 degrees/sec. The sensor and mapper return no results when

the vehicle is turning beyond this limit. Slew-rate is defined as the difference in head-

ing data points divided by the time difference between those two points. For noisy

data collected at a fairly fast rate (5 Hz GPS sensor), the noise quickly overwhelms

the slew-rate.

Vehicle 1, the AUV, travels at 1.0-m/s and is setup to perform a lawnmower

pattern with a 10-m radius (half the sensor width).

Vehicle 2, the kayak, travels at 1.5-m/s and runs both bhv SearchArtifact and

bhv CutRange to the AUV.

Figure 4-1 shows the results of both a simulated run (a) and the experimental run

(b).

As can be seen in the figure, noisy heading data cause the vehicle to believe that it

was turning much more than it actually was. The sensor and mapper both interpreted

this as turning too fast and did not provide regular data.

The results of these missions are presented in Table 4.3. Notice especially how in

simulation the clearance was a reasonable 78%, but that in the actual water mission

the performance was a miserable 18.7%. This result shows the importance of trying

to experimentally validate results that have been shown in simulation.
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(a) (b)

Figure 4-1: In this figure, the sensor and artifact mapper are configured with a slew-
rate limiter that prevents them from outputting data when the vehicle is turning
faster than 10 degrees/sec. In simulation (a), this works fine. In the experiment on
the water (b), however, the noise in the heading data causes no data to be returned.
For the rest of the missions we were forced to turn off the slew-rate limit. This also
means that the rest of the missions over-state the clearance of cells that pop in and
out of the sensor range because of heading noise. See mission 4.2.

Table 4.3: Simulation and experimental results for mission 4.1

Simulation Experiment

Score: -1090 -1820
Time: 16:42 21:20

Ave. Clearance: 77.9% 18.7%
Actual Clearance: 70.0% 13.0%

Hits: 21 4
Misses: 7 24

False Alarms: 4 1
Correct Rejs: 574 577
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4.2 Scenario 2: An AUV with a Kayak Tender, No

Slew-Rate Limit

In this scenario we repeat the parameters from scenario 4.1 but with the slew-rate

limit turned off. The vehicle now scans cells more easily, especially while turning or

when the noisy heading reading causes cells to “pop” in and out of view of the sensor.

This cell “popping” occurs because when the slew-rate is multiplied by the half-width

of the sensor, the distance that the tip of the sensor moves can be significant. This

moving edge can quickly cover and uncover a cell, causing pArtifactMapper to update

the clearance of that cell multiple times. This effect could be corrected by cleaning the

heading data or using some other metric to determine when a cell has been cleared.

Figure 4-2 shows the effect of turning slew-rate limiting off for both the simulated

mission and the experiment. Table 4.4 summarizes the results.

(a) (b)

Figure 4-2: In this figure, the sensor and artifact mapper are configured without the
slew-rate limiter. (a) shows the simulation results while (b) shows the experimental
results.

Comparing the results for mission 4.1 and 4.2 in Tables 4.3 and 4.4, we see that the

effect of turning off the slew-rate limit is minimal for simulations (77.9% vs. 76.7%)

but significant for experiments (18.7% vs. 87.1%).
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Table 4.4: Simulation and experimental results for mission 4.2

Simulation Experiment

Score: 1940 3960
Time: 16:11 22:00

Ave. Clearance: 76.7% 87.1%
Actual Clearance: 80.0% 86.6%

Hits: 24 26
Misses: 4 2

False Alarms: 4 4
Correct Rejs: 574 574
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4.3 Scenario 3: Two Vehicles with Full Lawnmower

Patterns

In this mission the two vehicles do not do any adaptation to the search grid. Each

vehicle runs a lawnmower pattern, one with paths at 90 degrees, one with paths at

0 degrees. This allows us to hold time constant to see how the clearance level differs

from adaptive missions.

The results are summarized in Table 4.5.

Table 4.5: Simulation and experimental results for mission 4.3

Simulation Experiment

Score: -2060 3980
Time: 17:11 24:00

Ave. Clearance: 70.7% 84.6%
Actual Clearance: 66.7% 86.6%

Hits: 20 26
Misses: 8 2

False Alarms: 2 3
Correct Rejs: 576 575

Figure 4-3 is a plot of the actual vehicle paths overlaid on the lawnmower patterns

that the vehicles tried to run. During the experiment there was a moderate wind

blowing from the east to the west. This is most noticible on HUNTER1’s north-south

trackline, where the vehicle is blown to the west. HUNTER2’s attempts to travel east

into the wind show some buffeting but its downwind runs are stable. This unexpected

result shows the importance of accurate navigation data during search tasks and the

importance of being able to adapt to changing environmental conditions. That is,

after determining that the wind (or current) was coming from a particular direction,

the vehicle could change its behavior to minimize negative consequences.

We can compare the results for mission 4.2 and 4.3 in Tables 4.4 and 4.5 to see

what gain there is in using an adaptive behavior over just regular lawnmower. In

simulation, the adaptive mission produced a clearance of 76.7% in approximately
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Figure 4-3: This plot shows the actual vehicle paths for mission 4.3 overlaid on the
lawnmower patterns that the vehicles tried to run. During the experiment there
was a moderate wind blowing from the east to the west. This is most notici-
ble on HUNTER1’s north-south trackline, where the vehicle is blown to the west.
HUNTER2’s eastern tracklines show that the wind did affect it head-on, but its
western tracklines are fairly straight.
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16:11. The pure lawnmower mission produced a clearance of 70.7% in approximately

17:11. Similarly, on the water the adaptive behavior cleared 87.1% in approximately

22:00 while the pure lawnmower cleared 84.6% in approximately 24:00. In both cases

we experience an incremental gain in both time and the average clearance.
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4.4 Scenario 4: Two Vehicles Partitioning the Search

Area

In the previous mission we held time constant by having both vehicles cover the entire

search grid. In this mission we reduced the time of search by splitting the search grid

in approximately half and having one vehicle lawnmower over each portion. When

each vehicle finished its half, it returned to the dock. Each vehicle had a 20-m wide

sensor with .5 B, dropping to .25 for 10 seconds every 30. Collision avoidance was

also turned on.

The results are summarized in Table 4.6. Ideally, each cell in the grid would be

covered once by a pass of a sensor. This would give us an expected clearance of

.5 ∗ 20/30 + .25 ∗ 10/30 = .41667. The 50% coverage in simulation is probably caused

by overlap from the two vehicles near the center of the search grid and from when

the vehicles turn at the end points. The even higher coverage in the experiments is

caused by the noisy heading data over-scanning cells near the periphery of the sensor.

Table 4.6: Simulation and experimental results for mission 4.4. Experiment 1 and 2
are two different runs of the exact same mission profile. The cause of the much lower
score for run 2 is unknown. The average clearance is reasonably close to that of run
1, but the actual clearance is much lower. Because of the small target set (30 mines)
and the heavy penalty for missing targets (-1000 points), small deviations from the
mean are heavily represented in the score. These two runs could represent relative
extremes from a mean.

Simulation Experiment 1 Experiment 2

Score: -2100 -2100 -6120
Time: 11:00 14:00 12:00

Ave. Clearance: 50.0% 61.5% 57.6%
Actual Clearance: 66.7% 66.7% 53.3%

Hits: 20 20 16
Misses: 8 8 12

False Alarms: 4 4 3
Correct Rejs: 574 574 575

Figure 4-4 shows the subpatterns that were run by the two vehicles and the com-
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pleted grid in simulation.
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(a)

(b)

Figure 4-4: One common approach to using multiple vehicles in search applications is
to divide the search area into nearly equal sized partitions and to assign one vehicle
to each partition. To cover the search area, the two vehicles will run lawnmower
patterns as in (a). The simulation results of the search effort are shown in (b). As
described in Figure 3-4, dark blue represents 0 clearance, light blue .25, teal .5, and
dark red 1.00.
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4.5 Scenario 5: Simulating Different Sensors

Part of the adaptability aspect of this thesis is to provide for cooperation when the

vehicles have different sensors. We now give one of the vehicles a 40-m wide, .5

B sensor (again with 10/30 second drops to .25), but we give the second vehicle a

narrower, more accurate sensor–20-m wide, .8 B with 10/30 seconds drops to .6.

In the first trials, we give the wide sensor to the slower AUV and have it perform

the lawnmower pattern. In the second example we give the faster kayak the wide

sensor and have it perform the lawnmower patterns.

4.5.1 The AUV Leading with a Wide Sensor

In this mission the AUV has a 40-m wide, .5 B sensor (10/30 second drops to .25 B).

It performs a lawnmower pattern with radius 20-m (half the sensor width, so single

coverage on the search area) over the search area at 1.0 m/s. The kayak performs the

cut range and artifact search behaviors with a 20-m wide, .8 B sensor (10/30 drops

to .6 B).

The results are summarized in Table 4.7. We first notice that the difference be-

tween experiment 1 and experiment 2 are minor for the average clearance and time

(the slight difference in actual clearance is probably a statistical anomaly). This

means that adding collision avoidance to the vehicles did not impact mission perfor-

mance but in real applications could prevent the loss of vehicles from collisions.

Figure 4-5 is the clearance map output for the simulation run.
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Table 4.7: Simulation and experimental results for mission 4.5.1. Experiment 1 was
conducted with collision avoidance on for both vehicles. Experiment 2 turned off
the lead vehicle’s collision avoidance so that it would not be disturbed by the chase
vehicle.

Simulation Experiment 1 Experiment 2

Score: 1980 3010 930
Time: 10:48 12:52 12:45

Ave. Clearance: 81.0% 82.7% 85.8%
Actual Clearance: 80.0% 83.3% 76.7%

Hits: 24 25 23
Misses: 4 3 5

False Alarms: 2 1 4
Correct Rejs: 576 577 574

Figure 4-5: The clearance map produced during the simulation run of mission 4.5.1.
Dark blue represents 0 clearance, light blue .25 clearance, teal .5 clearance, and dark
red nearly 1.0 clearance. The satellite underlay is of the MIT Sailing Pavilion (white
buildings at upper left). The tiny blue dots represents targets in the threat laydown.
The two vehicles are at the completion of their run in the upper right corner. The
dark blue path behind each vehicle is that vehicle’s path. If a mission commander
was given this clearance map, he or she would know which areas have been heavily
cleared (dark red) and which have not (dark blue). The commander would also have
a map of the detected targets to avoid or identify and neutralize.
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4.5.2 The Kayak Leading with a Wide Sensor

In this mission we give the kayak the wide sensor and make it the lead vehicle that

performs a lawnmower pattern. The AUV has a narrower, more accurate sensor. This

conceivable configuration could result from a single mine hunting surface craft that

might be responsible for one or several AUVs. The AUVs would have to both stay near

the surface ship for tending while simultaneously exploring interesting/less-covered

areas.

The results for this mission are in Table 4.8. In Experiment 1, we used a lawn-

mower radius of only 10-m, for a path-to-path distance of 20-m, half of the lead sensor

width. This means that the lead sensor covered every part of the search area twice,

which is why the clearance level is so high and the time is 70% longer than Experiment

2. Experiment 2 used a radius of 20-m as was used in mission 4.5.1. Comparing the

two missions, we see that with the faster lead vehicle we get the anticipated decrease

in search time but we also see a decrease in coverage. In simulation we increase the

coverage by 11% but increase the time by 41%. Experimentally we see a 4% increase

in coverage (compared to the previous experiment 1) for a 27% increase in time.

Figure 4-6 shows that the AUV spent much of its time trying to catch up to the

lead vehicle. That is, the cut range behavior had significant influence on the vehicle.

Further work needs to be done to see how to balance the cut range behavior and

bhv SearchArtifact in this scenario.
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(a)

(b)

Figure 4-6: When the lead vehicle can travel faster than the following vehicle (mis-
sion 4.5.2), the follower spends much of its time playing catch-up, (a). In this image
the actual vehicle paths are in dark blue. The waypoints for the lead vehicle are
represented by the grey line. The final clearance map for simulation 1 is pictured in
(b). Notice that the gap of least coverage in the bottom-center of the image occurred
where the chasing vehicle was trying to catch up to the lawnmowing vehicle. In the
clearance map, dark red is heavily cleared areas while dark blue, light blue, teal,
yellow, and orange represent increasing levels of clearance.
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Table 4.8: Simulation and experimental results for mission 4.5.2. In this mission the
faster kayak is leading with the wide sensor. Experiment 1 used a 10-m swath radius
(one-quarter of the sensor width, double coverage). Experiment 2 used a 20-m swath
radius for single coverage.

Simulation 1 Experiment 1 Simulation 2 Experiment 2

Score: 970 5980 -2100 -40
Time: 14:09 16:52 7:37 10:07

Ave. Clearance: 85.9% 95.8% 69.3% 78.6%
Actual Clearance: 76.7% 100.0% 66.7% 76.7%

Hits: 23 28 20 22
Misses: 5 0 8 6

False Alarms: 2 4 4 2
Correct Rejs: 576 574 574 576
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Chapter 5

Conclusions and Recommendations

for Further Work

5.1 Conclusions

This project set out to investigate the feasibility of using autonomous marine vehicles

to cooperatively search a given area. To that effect, it has been shown that coop-

erative search is possible, even when it can be difficult to evaluate how effective the

cooperation has been. Evaluation of cooperative search algorithms has always been

difficult because of the number of objectives users might wish to optimize. Time of

search, energy used, number of vehicles, number of targets detected, lane-finding, and

others are all reasonable ways of scoring a search algorithm.

The simple greedy search behavior described here seems to function well when it

cooperates with some other behavior that guides it towards exploring the whole search

area, such as following a lawnmower-based lead vehicle. However, when a vehicle is

in the middle of an unexplored grid and attempts to just run the search behavior,

the vehicle tends to just drive around in circles because every direction seems equally

good. This algorithm assumes that the targets have some kind of uniform distribution

and that the utility in clearing any one cell is the same as any other cell. This means

that the average clearance (based on the cells) is usually close to the actual clearance

(based on the total targets found). This assumption is often used in MCM planning
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because it simplifies some calculations used for analytic solutions. A more intelligent

behavior could be written that attempts to find the patterns that naturally exist in

deployed mine fields, such as lines or clusters of mines. Being able to exploit these

features should vastly decrease search time, allowing the vehicle to finish early or

spend more time scanning difficult areas.

Our sensor model also assumes that the B value of the sensor is uniform along

its fixed width, A. We assumed constant B along the sensor width because we have

no model that suggests another distribution. We believe that by modelling random

sensor dropouts we can begin to get an understanding of how a non-uniform B might

affect the search, but more research into sensors is needed.

Our experimental research was quite hampered by the noisy heading data that

forced us to turn off the slew-rate limiting in pSensorSim and pArtifactMapper. This

feature was designed to penalize rapid turns and by shutting it off our simulations and

experiments overstate the clearance level at the end of the search. A new differential-

GPS unit installed on one of the kayaks should return more accurate heading data

and perhaps allow us to turn the slew-rate limiter back on.

To make the problem more realistic we would like to have data about the perfor-

mance of mine sensors under various conditions of vehicle/sea-state, sea-bottom state,

and mine type. Unsurprisingly, unclassified research data of this type is difficult to

come by. With this data we could modify pSensorSim to look at the vehicle state

(rate of roll, rate of pitch, etc.), the sea-bottom state (sandy, rocky, extremely rocky,

etc.) and the mine type (moored, surface, buried, etc.) to determine a more accurate

probability of detection.

Another major issue with CAD/CAC is the prevalence of false positives. Our

sensor does not emit false positives but it could be set to do so by adding fake

targets to the threat laydown. We did not evaluate the effect of false positives on our

performance.

Our experimental operations were limited to ranges of about 200-m at the MIT

Sailing Pavilion because of Wi-Fi connectivity. Actual search areas can be dozens to

hundreds of kilometers on a side. The performance of the greedy behavior probably
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becomes more inefficient as the search area grows without some structure imposed on

the searcher. Further research is needed to test this.

The next experiment in this line of research should focus on testing how different

parameters affect the search performance. Some suggested parameters include the

relative weights of bhv SearchArtifact and bhv CutRange, the distances at which the

cut range behavior becomes active, and the sizes and shapes of the search areas.

Thinking beyond this experiment, getting access to a vehicle with an actual sensor to

test on would be a valuable experience to determine if this framework and algorithm

function well on actual hardware.

In conclusion, we hope that this research has somehow pushed the boundary of

what is currently being done with autonomous MCM. We came into this field with

little experience in mine countermeasures, both a handicap because our knowledge

of current practices was weak and a benefit because we have no entrenched dogmas

limiting our creativity. There remains much to be done in the field and we look

forward to seeing how our colleagues assimilate our research into their own.

5.2 Recommendations for Further Work

Our work has only skimmed the surface of what is possible with autonomous, coop-

erative, adaptive search. Here are a few ideas for where future work can proceed.

1. Software:

(a) Implement Artifact and ArtVector classes for better processing abilities.

(b) Rethink polygon strings to be more consistent with one another.

(c) Create utilities to take a string into a map (or multi-map) and vice-versa.

(d) Create a behavior file/mission file creation tool, especially for multiple
vehicles.

(e) Modify splug to be recursive, allow #includes with $(data).

(f) Let the helm dynamically decide how many pieces to search, perhaps using
some form of iterative deepening.

(g) Design a more compact, efficient communications packet between searchers.

71



2. Algorithms:

(a) Add slew-rate control to bhv SearchArtifact so that it does not drop out.

(b) Add steady-heading behavior to the mix to get the vehicle to drive straight.

(c) Decrease the ∆Util of cells that are farther away and in directions not near
the current heading.

(d) Experiment with different threat laydown options instead of uniform ran-
dom.

(e) Create a search algorithm to find a path between two sides of the search
area (lane finding).

3. Variables:

(a) More simulation of behavior performance with different shaped/sized search
areas.

(b) Use larger/smaller cell sizes, and/or try to use hexagon cells.

(c) Change the distance that the follow vehicle tries to stay within.

(d) Change the look-ahead time the search behavior uses.

4. Research:

(a) There is always room for improvement in D&C algorithms, especially with
regards to eliminating false positives.

(b) More work needs to be done to determine how to accurately model a
sensor’s A and B values given the current state of the vehicle and the
state of the environment.
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Appendix A

Configuration Blocks

The configuration blocks in this section are designed to assist other users of the

MOOS-IvP suite in configuring the software modules. Each one of the blocks is

suitable for pasting into a .moos file used for running MOOS programs.

A.1 pSensorSim

//------------------------------------------

// pSensorSim config block

ProcessConfig = pSensorSim

{

AppTick = 4

CommsTick = 4

// Add single artifacts

// Artifact = X=10,Y=5

// Read in an artifact file (looks like above lines)

ArtifactFile = mines.art

// Configure the basic sensor parameters

Sensor_A = 20 // meters

Sensor_B = .5 // between [0, 1]

// Configure the optional sensor parameters

// All must be set to enable dropout simulation

Drop_Period = 30 // How often should it begin
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// drop periods? seconds

Drop_Duration = 10 // How long should the dropout

// last? seconds

Drop_B = .25 // B value during dropouts

// Optional, beyond this slew rate (degrees/sec),

// the sensor does not detect anything

Max_Slew = 10

}

//Messages posted:

//SENSOR_A, Sensor A value

//SENSOR_B, Sensor B value

//DETECTED_ARTIFACT_LOCAL, detected artifact string

//VIEW_POLYGON, displays the sensor

//VIEW_POINT, simulated target points at load

A.2 pArtifactMapper

//------------------------------------------

// pArtifactMapper config block

ProcessConfig = pArtifactMapper

{

AppTick = 4

CommsTick = 4

// The polygon to look at

GridPoly = label,ArtField1:-20,-30:50,10:120,

-20:100,-80:0,-120:-50,-100

// The size of each cell, in meters

GridSize = 5.0

// Optional, beyond this slew rate (degrees/sec),

// the mapper does not update cells

Max_Slew = 10

}

//Messages posted:

//ARTIFACTMAP_REFRESH, t/f posts the entire grid to the MOOSDB

//ARTIFACTMAP_EXPORT, t/f saves the current data to a

file as vehicle_currenttime.map

//GRID_CONFIG, posted for pMV

//GRID_AVG_CLEARANCE, average clearance of the grid
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//ARTIFACTGRID_DELTA_LOCAL, delta to pass to other processes

//GRID_DELTA_LOCAL, delta to pass to pMV

A.3 bhv SearchArtifact

initialize DEPLOY = false

initialize RETURN = false

//----------------------------------------------

Behavior = BHV_SearchArtifact

{

name = bhv_SearchArtifact

pwt = 100

condition = DEPLOY = true

condition = RETURN = false

// Polygon search grid

// USE THE SAME AS pARTIFACTMAPPER OR IT WILL HAVE ODD BEHAVIOR

searchgrid = label,ArtField1:-20,-30:50,10:120,

-20:100,-80:0,-120:-50,-100@5.0,5.0

// Time to look ahead, in seconds

time_horizon = 20

}

//Messages posted:

//TIME_TO_EXIT_GRID_+grid_label, time to leave the grid

//osSPD, ownship speed

//dtg, distance to edge of grid

A.4 bhv Lawnmower

initialize DEPLOY = false

initialize RETURN = false

//----------------------------------------------

Behavior = BHV_Lawnmower

{

name = bhv_lawnmower

pwt = 100

condition = DEPLOY = true

condition = RETURN = false
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// Polygon to patrol, required (can also be called poly)

polygon = -20,-30:50,10:120,-20:100,-80:0,-120:-50,-100

// Angle for pattern, 0 = N, 90 = E

ang = 1 // optional, default = 0

// Radius, half the distance between lines

radius = 10 // required, in meters

// By default, pLawnmower will make a full pattern

// You can also specify a start point to make

// a partial pattern (useful for mid-mission changes

full = true // optional, default = true

//x = 10 // required for full, in meters

//y = -71 // required for full, in meters

//clockwise = // optional, default = true,

// Value to snap segment points to

snap = .25 // optional, in meters

// Options for the waypoint navigating

lead = 15.0 // optional, trackline lead distance, in meters

speed = 3.0 // speed to waypoints, in m/s

waypoint_radius = 2.0 // size of point in meters

nm_radius = 10.0 // radius for capture in meters

updates = LAWNMOWER_UPDATES // update MOOS variable, case sens.

}

//Messages posted:

//VIEW_SEGLIST, seglist that is being traversed

A.5 pLawnmower

//------------------------------------------

// pLawnmower config block

ProcessConfig = pLawnmower

{

AppTick = 4

CommsTick = 4

// No configuration options for pLawnmower

}
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//Messages posted:

//VIEW_POLYGON, polygon asked about

//VIEW_SEGLIST, seglist that corresponds for pMV

//LAWNMOWER_SEGLIST, seglist that for consuming processes
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Appendix B

Utility Descriptions

B.1 pLawnmower

pLawnmower is a helper utility that can generate lawnmower patterns for other

MOOS processes that would like to use them. This algorithm is the same one used

in bhv Lawnmower.

Given the convex polygon, an initial point, and an initial heading, generate a

segment from the start point to the boundary of the polygon.

Push this segment onto the lawnmower pattern.

Copy the previous segment and shift it by distance 2∗radius. If a clockwise initial

turn is specified, shift it at angle initial heading + 90, otherwise, shift it at initial

heading - 90.

Because of the polygon convexity this new segment must intersect the polygon

(that is, at least part of the segment must be contained in the polygon), if it doesn’t,

we are done and can return the current lawnmower pattern.

There are four possible cases with these two possible endpoints:

1) p0, p1 inside polygon

2) p0 inside, p1 outside polygon

3) p0 outside, p1 inside polygon

4) p0, p1 outside polygon

For each of these four cases we can determine which direction we need to project
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the point (p0, p1) to move it so it itersects with the boundary.

Once these two points are generated, the one closest to the last endpoint on the

lawnmower pattern is pushed on first, followed by the second point.

To generate a FULL lawnmower pattern, the center of the polygon can be chosen

to be the initial point and a partial pattern can be generated for each direction (initial

heading and initial heading + 180). By reversing one of these patterns and removing

the center point from both, they can be stitched together to get a full lawnmower

pattern.

B.2 artfieldgenerator

The artifact field generator takes a polygon and generates a uniform random distri-

bution of targets within the polygon.

Given a convex polygon, generate the smallest rectangle that holds the whole

polygon. Choose a random x and random y uniform over the bounds of the rectangle.

Check to see if the chosen point is contained within the polygon. If it is not, choose

x and y again. If it does, check to see if this target has been picked before. The same

target can be created multiple times because the targets are snapped to a discrete

grid.

B.3 scoreartfield

As noted in Section 2.3, our utility uses classic signal detection theory when scoring

the output of pArtifactMapper.

Assume that with small enough cells, if there are m targets and n declares, that

there are min(m,n) hits.

If m > n (more targets than declarations), there are m − n misses. If n > m

(more declarations than targets), there are n−m false alarms.

If there are no targets and no declares in the cell, that is a correct rejection.

Each result (hit, miss, false alarm, correct rejection) is multiplied by its scoring
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value as specified by the user.
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Appendix C

Photographs

The following photos were taken by Mike Benjamin at the MIT Sailing Pavilion on

the Charles River in Cambridge, MA, during water operations May 14, 2008.

Figure C-1: Two kayaks operating on the river. One of the kayaks is acting like an
AUV while the other is simulating a surface craft.
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Figure C-2: The author checks to see if the kayaks are disturbing any other vessels
on the water.
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Figure C-3: Three SCOUT kayaks waiting for deployment commands from mission
control.
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Figure C-4: Three SCOUT kayaks operating on the Charles River.
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