
Coverage & cooperation:
Completing complex tasks as quickly

as possible using teams of robots

Isaac Vandermeulen

Automatic Control and Systems Engineering

University of Sheffield

A thesis submitted for the degree of

Doctor of Philosophy

September 2019

Abstract

As the robotics industry grows and robots enter our homes and public spaces,

they are increasingly expected to work in cooperation with each other. My thesis

focuses on multirobot planning, specifically in the context of coverage robots, such

as robotic lawnmowers and vacuum cleaners.

Two problems unique to multirobot teams are task allocation and search. I

present a task allocation algorithm which balances the workload amongst all robots

in the team with the objective of minimizing the overall mission time. I also

present a search algorithm which robots can use to find lost teammates. It uses a

probabilistic belief of a target robot’s position to create a planning tree and then

searches by following the best path in the tree.

For robust multirobot coverage, I use both the task allocation and search al-

gorithms. First the coverage region is divided into a set of small coverage tasks

which minimize the number of turns the robots will need to take. These tasks

are then allocated to individual robots. During the mission, robots replan with

nearby robots to rebalance the workload and, once a robot has finished its tasks,

it searches for teammates to help them finish their tasks faster.

i

Preface

It was January 2016. I was living in Kingston, tired of another Canadian winter

that only seemed to get worse with climate change and frustrated that I was still

in Chemical Engineering. I was nearing the end of my masters—my third degree

at this school—and was very ready for a new program in a new department in a

new country.

This change had been a long time coming. I was a third year student majoring

in engineering chemistry—a hybrid of chemistry and chemical engineering—excited

to finally take the infamous quantum chemistry class. Despite its challenging

reputation, I longed to get deep into the mathematics of atoms and molecules. It

turned out that this course would shatter my entire understanding of electrons,

of atoms, of chemistry itself! Electrons aren’t simple point-like particles, but

rather this kind of spread-out cloud called electron density. Without being able

to concretely describe individual electrons as being located in a single location,

the concepts of chemical bonds and molecules make little sense. The entire field

of chemistry was built on wrong assumptions! No wonder every “rule” in organic

chemistry seems to have more exceptions than examples that actually follow the

rule. Although nobody else seemed to mind, at this moment I lost all respect for

the subject.

Over the next year and a half, I struggled to be engaged in any chemistry

courses. I picked up sloppy lab techniques, eyeballing things instead of measuring

and sometimes being so careless as to throw the wrong solution down the sink.

iii

Ideally, after that quantum course, I would have switched my major from engi-

neering chemistry to chemical engineering, essentially replacing all of my chemistry

courses with electives. If only I had been allowed to switch. Two years earlier I

had enrolled in a dual degree program and was concurrently taking additional

math courses towards a separate math degree. Academic regulations prevented

me from switching my engineering major while continuing with the math degree,

so I decided to grit my teeth and finish the engineering chemistry degree.

Meanwhile, I loved the math courses. They had the level of rigour that I craved

and couldn’t get from chemistry. An afternoon of group theory, partial differential

equations, or cryptography would completely make up for a morning stuck in a

chemical lab. I knew that whatever work I did in the future would have to be

more mathematical.

At this point it was 2014. The price of oil was high. All of my friends were mov-

ing out west—mostly to Alberta—to go work in Canada’s booming oil industry. I

was tempted by the lucrative salaries and a two-weeks-on-two-weeks-off schedule

that would afford plenty of opportunity for travel and adventure but ultimately I

was still drawn to the idea of grad school.

Robotics had long been in the back of my mind as a field I’d like to switch to.

I kept hearing more and more about it in the media and it seemed full of interest-

ing yet practical math problems. But I didn’t have a background in mechanical

engineering or computer science and what good would a chemical engineer be in

robotics?

Without the confidence to move directly to robotics, I decided to use my mas-

ters a stepping stone in that direction. Control theory—the only real branch

of mathematics used heavily by chemical engineers—was the obvious choice, and

luckily for me, I already knew two chemical engineering professors working on con-

trol theory. After two years working with Drs. Jim McLellan and Martin Guay

on extremum seeking control, writing lots of MATLAB code, and taking a few

iv

additional math and robotics courses, I hoped I had a strong enough background

that someone would let me start a PhD in robotics.

Robotics was a largely foreign domain to me. My friends were mostly class-

mates from chemical engineering, people I played sports with, and other writers,

cartoonists, and graphic designers from the satire newspaper I volunteered at.

None of them did robotics. I knew lots of professors, but most of them were

chemical engineers, mathematicians, or chemists. The vast majority of their con-

tacts were also involved in the chemical industry that I was trying to get away

from. Without any real contacts to the robotics community, I had to find a school,

advisor, and topic on my own.

It was intimidating! I didn’t really know what I wanted to do beyond just

“robotics” and that’s way too broad of a topic for a PhD. First, I narrowed down

where I wanted to go. It would have been easy to stay in Canada, but I wanted

the experience of living in another country with a different culture, where I would

hopefully meet lots of interesting people different from myself and expand my

perspective on life.

My girlfriend, now wife, had started her PhD in Manchester, UK while I was

finishing the last year of my masters so naturally I began thinking of doing my

PhD in the UK as well. However, after visiting the UK for the first, I realized the

country is much grayer, wetter, and less friendly than Canada, and I had serious

second thoughts about moving there. For a few months, I searched for PhDs

elsewhere, and found a potential advisor in Australia who looked like a good fit

for me. Australia is in the southern hemisphere though and like its seasons, its

academic calendar is offset by 6 months. Not wanting to wait 6 months between

degrees, I decided that I would apply in Europe after all. And if I was going to be

in Europe, I might as well be near my girlfriend.

So I searched online for robotics programs in the UK. I quickly discovered

that the University of Sheffield has an entire department of Automatic Control

v

& Systems Engineering and Sheffield is only an hour by train from Manchester

where my girlfriend was! It seemed like the perfect place to go. I still didn’t really

know what exactly I wanted to do within robotics, but it was easy enough to

read the biographies of the professors in Sheffield and see whose research sounded

interesting.

Of all the professors, one in particular stood out: Dr. Andreas Kolling. Just

like me he had done his undergrad in mathematics and switched to robotics during

grad school. He was also working on multirobot systems, which I was interested in

because I had worked on network control systems in during masters and already

knew a few things about graph theory and consensus algorithms. So I sent him an

email explaining my background and research interests and attached my transcripts

and CV. He responded quickly and wanted to set up a video call.

I still remember that first call I had with Andreas. We discussed a shortest path

planning algorithm on a graph. Having never encountered this problem before, I

reasoned that this problem’s difficulty probably scaled exponentially with the size

of the graph. After all, the number of paths scales exponentially, so it must require

a similar effort to find the shortest one, right? Any roboticist would say “Of course

not!” as Dijkstra’s algorithm and A∗ can both solve it in at most quadratic time.

Andreas explained this fact, which at the time was quite incredible to me! As

much as I was embarrassed at not figuring out the solution on my own, Andreas

didn’t seem to mind and somehow I had made a good enough impression on him

that he agreed to advise me and help with my scholarship application.

Part of the scholarship application was a research proposal. I had written

some research proposals before as a masters student, but they were all based on

previous proposals that my advisors had written. This time, I had no starting

point; Andreas wanted me to write it on my own. I took the easy way out and

based the first draft heavily on a few paragraphs from his webpage about planning

in unstructured environments. I think I only spent two hours writing it and the

vi

main citation was to a video on Kiva systems—a system of autonomous robots

which reconfigures shelves in Amazon’s warehouses navigating using a system of

lines on the floor. I sent Andreas the draft, and he gave me the harsh criticism that

I ultimately needed. My proposal was crap and I needed to put a lot more effort

in if I wanted to get a scholarship. I spent the next week researching and writing

a proper proposal with a variety of citations. A proposal that I could actually be

proud of. That proposal ended up earning me the scholarship I needed to be able

to go to Sheffield.

After accepting the scholarship and starting my UK visa application, I got

some news from Andreas. He was leaving the University. He had accepted a full

time position at iRobot in Pasadena, California and would be leaving the UK a

month before I was to arrive. I was pissed. How could this happen to me? I

had my PhD all sorted out, but now it wasn’t going to work out. Not without

an advisor. Maybe I should turn down the scholarship, wait 6 months, and go to

Australia after all.

A day later, I had calmed down. Further down in Andreas’ email telling me

about his new job, he said “I will still advise you over Skype, or in person when I’m

in Europe or you’re in California”. But I had no plans to be in California. Was he

suggesting that I could go work with him in California? Maybe this could actually

be a good thing for me. Then I looked up up iRobot, the company he was leaving

Sheffield for. I read things like “world’s largest robotics company”, “makers of the

Roomba robotic vacuum”, and “over $600 million in revenue”. This was definitely

starting to look like a good thing for me. I decided to the PhD anyways, and I

was right about going to work with Andreas in California. I ended up going there

as intern 3 times during my PhD and spent about 1/3 of my PhD at iRobot. These

internships complemented my work at the University really well, exposing me to

the robotics industry and a real robotic platform, while still allowing me to return

to the UK and academia to focus on research.

vii

Acknowledgments

I would first like to thank my advisor, Andreas Kolling. When I first met him, I

had no experience in robotics, yet he was eager to work with me and help me make

the transition into the field. He left academia shortly before I started my PhD,

yet he honoured his commitment to advising me, and was able to get me three

internships at iRobot which have proved invaluable for me, both academically

and professionally. Over the years, Andreas and I have had many interesting and

productive conversations about robotics, mathematics, and life in general.

Secondly, I’d like to thank my other advisor, Roderich Groß who stepped up

when Andreas left and became my advisor at the university. He has welcomed me

into his research group and met me with me regularly to work out the details of

my research. His skills have complemented Andreas’ very well and he has provided

me lots of valuable perspectives on my work.

In addition to my advisors, I would also like to thank Dr. Paul Trodden and

Dr. Francesco Amigoni for taking the time to thoroughly read this thesis and

provide me with valuable feedback for improving it.

In the UK, my colleagues at the University of Sheffield have made the PhD

experience more enjoyable, with many interesting discussions in the office, at group

meetings, at lunch, and outside of the university in the evenings. In particular, I

would like to thank Buket Sonbas and Leonardo Stella for their friendship and the

many good times I’ve shared with them over the years.

On the other side of the Atlantic, I am grateful the opportunity to intern

ix

at iRobot where I learned to work in a large code base, and use Ubuntu, vim,

git, C++, and python which have made me much more efficient as a software

developer and robotics researcher. In addition to Andreas, I’d like to thank Vazgen

Karapetyan, Dhiraj Goel, Darren Earl, Manju Narayana, and Martin Llofriu for

helping me learn to develop on real robots, navigate iRobot’s code base, and use

their software tools. Their help and patience helped me go from a clueless intern

to someone who is confident and can contribute. Lastly I’d like to thank the many

other interns for all the times we’ve enjoyed together, trying new restaurants in

Pasadena, playing soccer, drinking maté, rock climbing, and learning about each

other’s culture.

Prior to my PhD, many people have encouraged and challenged me, ultimately

giving me the skills and confidence needed to approach a robotics PhD. From a

young age, my parents have always praised my curiosity, encouraged my interests

in math and science, and given me the resources I needed to succeed. In high

school, Jim Chapman and Rick Guetter devoted many hours to enrichment math

classes which helped me prepare for math contests and be excited about the sub-

ject. At Queen’s University, many professors across the Mathematics, Chemical

Engineering, and Chemistry departments—Bahman Gharesifard, Andrew Lewis,

Mike Roth, Noriko Yui, Xiang Li, Michael Cunningham, Scott Parent, Aris Do-

coslis, Dave Mody, Bill Newstead, and Nick Mosey—taught me the beauty of

mathematics and the natural world and inspired me to continue on in academia.

My two masters advisors, Martin Guay and Jim McLellan, in particular, spent

countless hours teaching me to be an effective researcher and be excited about

applied mathematics.

Finally, I would like to thank my wife, Hattie Xu, for her unwavering love and

support despite the many months of long distance. She has helped me stay focused

as we both write our PhDs and is a daily source of joy.

x

Contents

Abstract . i

Preface . iii

Acknowledgments . ix

Contents . xi

List of Tables . xv

List of Figures .xvii

List of Algorithms . xxi

List of Abbreviations .xxiii

List of Symbols .xxv

Chapter 1: Introduction . 1
1.1 The value of planning . 1
1.2 Planning for a team . 3
1.3 Robotic coverage . 4
1.4 Coverage for humans . 7
1.5 Objectives & contributions . 11
1.6 Overview of thesis . 12

Chapter 2: Background . 17
2.1 Computational complexity . 18

2.1.1 Big-O notation . 19
2.1.2 NP-hardness . 20

2.2 Path planning . 23
2.2.1 Navigating to one location 24
2.2.2 The travelling salesperson problem 26
2.2.3 The multiple TSP . 30

2.3 Robot-to-robot communication . 33
2.3.1 Realistic communication models 34
2.3.2 Maintaining connectivity . 36
2.3.3 Occasional connectivity . 38

xi

2.3.4 Robotic search . 39
2.4 Coverage . 40

2.4.1 Decompositions . 42
2.4.2 Turn-minimization . 45

Chapter 3: Balanced task allocation in multirobot teams 47
3.1 Related work . 48
3.2 Task allocation and the m-TSP . 52
3.3 A proxy for minimum cycle length 55

3.3.1 Is Cavg a good proxy for Cmin? 56
3.3.2 Hardness of the APP . 64

3.4 A task allocation heuristic based on the APP 67
3.4.1 Improvement through transfers and swaps 68
3.4.2 Transfer of outliers . 75
3.4.3 Overall partition algorithm 79

3.5 From a partition to cycles . 80
3.6 Heterogeneous robots . 84
3.7 Decentralization . 85
3.8 Paths with depots . 88
3.9 Results . 90

3.9.1 Problems with multiple depots 91
3.9.2 Problems with one depot . 92
3.9.3 Runtime analysis . 94

3.10 Conclusions . 95

Chapter 4: Turn-minimizing coverage 97
4.1 Related work . 100
4.2 Partitioning the environment . 104

4.2.1 Perimeter following . 106
4.2.2 A rectilinear contraction . 108
4.2.3 A coarse checkerboard partition 110
4.2.4 Orienting the rectangles . 112
4.2.5 The final rank partition . 120
4.2.6 Generalizations to other spaces 122

4.3 Connecting ranks into paths . 122
4.4 Results . 128
4.5 Conclusions . 130

Chapter 5: Coordinated multirobot search 135
5.1 Related work . 138
5.2 Communication in crowded environments 141

5.2.1 Known robot locations . 141
5.2.2 Uncertain target location . 142
5.2.3 Environment decomposition 143

5.3 Tracking an unseen target . 145
5.3.1 Basic Markov motion model 146

xii

5.3.2 What about momentum? . 147
5.3.3 Variable speed target . 151
5.3.4 A model built from historic data 154

5.4 Effects of observations . 157
5.4.1 Positive observations . 158
5.4.2 Negative observations . 160

5.5 Combining beliefs . 162
5.5.1 Searchers with a shared model 162
5.5.2 Searchers with incompatible models 164

5.6 Evaluating search paths . 167
5.6.1 Reward of finite length paths 169
5.6.2 Comparison through bounds 172

5.7 Sampling based planner . 174
5.7.1 Growing the tree . 176
5.7.2 Pruning the tree . 181
5.7.3 Re-rooting the tree . 184
5.7.4 Planning trees for multiple searchers 187

5.8 Results . 188
5.8.1 Comparison with other approaches 192
5.8.2 Effect of discount factor . 197

5.9 Conclusions . 200

Chapter 6: Robust multirobot coverage 203
6.1 Related work . 204
6.2 Sources of unpredictability . 207

6.2.1 Mapping and localization errors 208
6.2.2 Environment changes . 208
6.2.3 Interactions with humans 209
6.2.4 Battery or capacity constraints 210
6.2.5 Damaged robot . 210
6.2.6 Velocity . 211
6.2.7 Changes in team size . 211

6.3 Semantic commands . 212
6.3.1 Go-to commands . 214
6.3.2 Coverage commands . 217

6.4 Processing maps for coverage . 221
6.4.1 Classifying the unknown . 222
6.4.2 Removing small obstacles 223
6.4.3 Straightening walls . 226

6.5 Replanning . 228
6.5.1 A new location . 230
6.5.2 Map changes . 233

6.6 Single robot robust coverage . 235
6.6.1 Results . 238

6.7 Communication during coverage . 240
6.7.1 Multirobot coverage without communication 244

xiii

6.8 Search and coverage . 246
6.8.1 Path states . 248
6.8.2 Stationary states . 249
6.8.3 Overall layered HMM for search 250

6.9 Robust multirobot coverage . 252
6.9.1 Results . 253

6.10 Conclusions . 257

Chapter 7: Conclusion . 261
7.1 Future work . 267

Bibliography . 269

Chapter A: Visibility graphs . 285
A.1 Näıve algorithm . 285
A.2 Welzl’s algorithm . 287

Appendix B: Shortest path planning 295
B.1 Dijkstra’s algorithm . 295
B.2 The A∗ algorithm . 298
B.3 The Floyd-Warshall algorithm . 300

Appendix C: Minimum spanning trees 305
C.1 Kruskal’s algorithm . 306
C.2 Prim’s algorithm . 307

Appendix D: Travelling salesperson algorithms 311
D.1 Christofides’ algorithm . 311
D.2 2-opt . 316
D.3 Lin–Kernighan heuristic . 317

xiv

List of Tables

3.1 Task allocation comparisons with multiple unique depots 91
3.2 Task allocation comparisons with one shared depot 93

4.1 Comparison of cells of coverage decompositions 101
4.2 Comparison of paths of coverage decompositions 102
4.3 Comparison of multirobot coverage strategies 130
4.4 Effects of turn-minimization in different environments 131

5.1 Search time deciles for three different search algorithms 195
5.2 Mean search times for searchers with different discount factors . . . 199

xv

List of Figures

1.1 Examples of commercially available coverage robots 5
1.2 Spiral and bounce behaviors of a robotic vacuum cleaner 5
1.3 Robotic lawnmower coverage using a guide wire 6
1.4 Heuristic for planning running routes 9
1.5 Efficient route to run through a neighborhood 10

2.1 Polynomial reduction . 22
2.2 Shortest path in a 2D environment 24
2.3 Rapidly-exploring random tree . 27
2.4 The travelling salesperson problem 28
2.5 Minsum vs minmax multiple travelling salesperson problem 31
2.6 Effects of distance and line-of-sight on communication 35
2.7 Connectivity in a team of robots . 36
2.8 Region covered by a robot’s tool during coverage 41
2.9 Contour- and direction-parallel coverage 41
2.10 Exact and approximate decompositions used in coverage 42
2.11 Morse and boustrephedon decompositions 44
2.12 Coverage paths using approximate decompositions 44
2.13 Turn-minimization for convex cells 46

3.1 Minmax m-TSP as a partitioning problem 49
3.2 Comparison of MPP and APP cost functions 57
3.3 Minimum vs average cycle lengths for subgraphs of the same graph 59
3.4 Proof of Lemma 3.1 . 62
3.5 Proof of Theorem 3.1 . 63
3.6 Example of a reduction of the NPP to the APP 66
3.7 Updating subgraph sizes after transferring a vertex 70
3.8 Improvement of a random partition by Algorithm 3.1 73
3.9 Transfer of outliers in a partition by Algorithm 3.2 77
3.10 Improving a partition after transferring outliers 81
3.11 Shortest cycles on a partition produced by Algorithm 3.3 82
3.12 Improvements of m-TSP paths by transferring vertices 84
3.13 Decentralized task allocation . 86
3.14 Categories of depot constraints . 89
3.15 Different depot configurations for the same problem 90
3.16 Best solution for 5000 tasks and 10 robots 92
3.17 Best solutions for pcb1173with 3 and 5 robots 94
3.18 Runtime analysis of Algorithm 3.4 95

xvii

4.1 Regions covered by various coverage tools 98
4.2 Equal length coverage paths with different numbers of turns 99
4.3 Types of ranks used in coverage . 100
4.4 Typical paths of approximate and exact decompositions 103
4.5 Fine coverage decompositions from cutting at concave corners . . . 104
4.6 Improved coverage using perimeter 106
4.7 Length of perimeter ranks near corners 107
4.8 Obtaining a rectilinear contraction from an overlayed grid 108
4.9 Extending interior ranks to prevent missed regions 109
4.10 Optimal rank partition for rectangles 110
4.11 Coarse, fine, and ideal (checkerboard) partitions 112
4.12 Checkerboard partition by cutting at concave vertices 113
4.13 Merging a cell’s ranks with its neighbors 114
4.14 Locally optimal orientations in a checkerboard partition 115
4.15 Using case (c) to escape a local minimum 117
4.16 Equal-cost orientations with different biases 119
4.17 Iterating Algorithm 4.4 to find a better assignment 119
4.18 Interior ranks and final rank partition 121
4.19 Four paths between two ranks . 124
4.20 Infeasible coverage path using unconstrained TSP 125
4.21 Vertices and required edges of the graph used in coverage 126
4.22 Single- and multirobot coverage strategies 127
4.23 Example coverage strategies with and without turn-minimization . . 132
4.24 Runtime analysis of coverage planning 133

5.1 Constant, periodic, and intermittent connectity 136
5.2 Graphs of exact and approximate decompositions 144
5.3 Triangular, square, and hexagonal lattices 145
5.4 Belief as a probability distribution on a discretized environment . . 146
5.5 Possible neighbors for lattice cells 148
5.6 Graph of a second-order Markov model implemented as an HMM . 150
5.7 Transit vertices to treat semi-Markov model as an HMM 152
5.8 Search graph with direction and transit states 153
5.9 Arbitrary pose as a convex combination of direction states 156
5.10 Comparison of historic paths and resulting HMM 157
5.11 Belief update using HMM and negative observation 162
5.12 Merging beliefs using the geometric mean 165
5.13 Strategies for growing a search path planning tree 179
5.14 Effect of heuristic when adding one vertex per sample 181
5.15 Relationship between reward bounds for planning tree vertices . . . 182
5.16 Effect of heuristic when adding one vertex per layer 182
5.17 Reduction in size of planning tree by pruning 183
5.18 Using an existing planning tree by re-rooting 185
5.19 Planning tree for two cooperative searchers 189
5.20 Example paths for a wandering robot 190
5.21 Communication model and base station in search simulations 191

xviii

5.22 Stationary distribution of the HMM for the wandering robot 192
5.23 Time-to-find distributions for three different search algorithms . . . 194
5.24 Time-to-find percentiles for three different search algorithms 195
5.25 Effect of discount factor on time-to-find distributions 198
5.26 Effect of discount factor on time-to-find percentiles 199

6.1 Effect of localization errors on ability to perform coverage 208
6.2 Changes to a robot’s map when a door closes 209
6.3 Conversion of a coverage path into semantic behaviors 213
6.4 Semantic command and behavior to go to a corner 215
6.5 Coverage and wheel base width for different robots 216
6.6 Semantic command and behavior to go to next rank 217
6.7 Planned versus actual interior coverage paths 218
6.8 Number of ranks used in interior coverage 219
6.9 Semantic command and behavior for interior coverage 219
6.10 Semantic command and behavior for perimeter coverage 221
6.11 Seed pixels for classifying unknown regions of map 224
6.12 Classification of rows of unknown pixels 225
6.13 Effect of classifying unknown pixels in a real map 225
6.14 Behavior of coverage robot near differently sized obstacles 226
6.15 Map simplification by removing small obstacles 227
6.16 Using perimeter ranks to straighten map boundary 228
6.17 Map simplification by straightening walls 229
6.18 Coverage region after a robot gets kidnapped 230
6.19 Replanning after kidnapping . 232
6.20 Replanning after low battery . 232
6.21 Effect of finishing interior coverage in the opposite corner 233
6.22 Replanning after finding an open door 234
6.23 Construction of perimeter ranks during replanning 236
6.24 Rectilinear contraction during replanning 236
6.25 Path comparison of coverage strategies for the iRobot Roomba . . . 240
6.26 Time comparison of coverage strategies for the iRobot Roomba . . . 241
6.27 Transferring coverage tasks to a teammate due to a low battery . . 243
6.28 Transferring coverage tasks to a teammate to balance workload . . 244
6.29 Paths of two iRobot Roombas during simultaneous coverage 246
6.30 Effect of collisions between two coverage robots 247
6.31 Path states of an HMM . 248
6.32 Stationary states of an HMM . 250
6.33 The three layers of the overall HMM 251
6.34 Original paths for simulated coverage robots 255
6.35 Search tree for simulated coverage robots 255
6.36 Replanned paths for simulated coverage robots 256
6.37 Multirobot coverage times for basic and robust strategies 257

A.1 Visibility graphs for planning and communication 286
A.2 Welzl’s algorithm idea . 288

xix

A.3 Cases for Welzl’s algorithm . 291
A.4 Convention for labelling edges in Welzl’s algorithm 294

B.1 Dijkstra’s algorithm . 296
B.2 The A∗ algorithm . 299
B.3 Floyd-Warshall algorithm idea . 301
B.4 Floyd-Warshall algorithm example 302

C.1 Spanning trees . 305
C.2 Kruskal’s algorithm . 306
C.3 Prim’s algorithm . 308

D.1 Shortcutting an even spanning graph 313
D.2 Christofides’ algorithm . 314
D.3 Ways of closing up a cycle during 2-opt 316
D.4 Improving a cycle using 2-opt . 317
D.5 Ways of closing up a cycle during 2-opt 318
D.6 Lin–Kernighan sequential edge exchange 319
D.7 Karapetyan’s interpretation of the Lin–Kernighan heuristic 320
D.8 Difficult-to-implement edge exchanges 321
D.9 Symmetric 3-opt as a sequential exchange 322
D.10 Double bridge 4-opt as a sequential exchange 323

xx

List of Algorithms

3.1 Improve partition . 71
3.2 Transfer outliers . 78
3.3 Average partition algorithm (APA) 79
3.4 m-TSP path algorithm (MPA) . 83

4.1 Perimeter ranks . 107
4.2 Rectilinear contraction . 109
4.3 Checkerboard partition . 113
4.4 Orient rectangles . 118
4.5 Interior ranks . 120
4.6 Rank Partition . 121
4.7 Plan coverage paths . 123

5.1 Historic transition probabilities . 155
5.2 Search tree . 175
5.3 Create root vertex . 175
5.4 Grow tree . 177
5.5 Create child vertex . 177
5.6 Prune tree . 184
5.7 Re-root vertex . 186
5.8 Re-root tree . 187

6.1 Go to corner . 215
6.2 Go to next rank . 217
6.3 Interior coverage . 220
6.4 Perimeter coverage . 221
6.5 Process map . 222
6.6 Classify unknown pixels . 224
6.7 Replan after kidnap . 231
6.8 Replan after map change . 235
6.9 Cover real environment . 238
6.10 Replan with subteam . 242
6.11 Robust multirobot coverage . 253

A.1 Näıve visibility graph . 286
A.2 Welzl’s algorithm . 289
A.3 Sorted vertex pairs . 290
A.4 Welzl sort order . 290

xxi

A.5 Initial view . 290

B.1 Dijkstra’s algorithm . 297
B.2 Construct path (Dijkstra) . 297
B.3 A∗ algorithm . 300
B.4 Floyd-Warshall algorithm . 303
B.5 Construct path (Floyd-Warshall) . 304

C.1 Kruskal’s algorithm . 307
C.2 Prim’s algorithm . 309

D.1 Shortcutting . 312
D.2 Christofides’ algorithm . 314
D.3 2-opt heuristic . 318
D.4 Lin–Kernighan recursion . 325
D.5 Lin–Kernighan algorithm . 326

xxii

List of Abbreviations

Autonomous Agents and Multi-Agent Systems AAMAS
Average Partition Algorithm . APA
Average Partition Problem . APP
EXPonential time . EXP
Global Positioning System . GPS
Hidden Markov Model . HMM
Hierarchical Market-based Solution . HMS
Interntational Conference on Robotics and Automation ICRA
Integer Linear Programming . ILP
Internation conference on Intelligent RObots and Systems IROS
Invasive Weed Optimization . IWO
Lin–Kernighan (heuristic for the TSP) . LK
Lin–Kernighan-Helsgaun (TSP solver) LKH
Memetic Algorithm . MA
Minimum Perfect Matching . MPM
Minimum Partition Algorithm . MPA
Minimum Partition Problem . MPP
Minimum Spanning Tree . MST
multiple Travelling Salesperson Problem m-TSP
Non-deterministic Polynomial time . NP
Number Partition Problem . NPP
Printed CircuitBoard with 1173 vertices (TSP problem) pcb1173

Polynomial time . P
Probabilistic Road Maps . PRM
Rapidly-exploring Random Tree . RRT
Rapidly-exploring Random Tree (asymptotically optimal variant) . . . RRT∗

Simultaneous Localization And Mapping SLAM
Travelling Salesperson Problem . TSP
Travelling Salesperson Problem LIBrary TSPLIB
Unmanned Aerial Vehicle . UAV
3-SATisfiability problem . 3-SAT

xxiii

List of Symbols

Probability . P[·]
Real numbers . R
Circle . S1

Set of cycles or paths . C
Edge set . E
Graph (weighted and undirected) . G
Checkerboard partition (set of rectangles) . H
Information known by robot i . Ii
Set of start/endpoint pairs . L
Complexity Class . O
Partition of a graph into subgraphs . P
Environment . Q
Set of coverage ranks . R
Search path planning tree . T
Set of outlier vertices . U
Vertex set . V
Set of hidden states (in an HMM) . X
Cellular decomposition of environment . Y

Markov transition matrix . A
Communication matrix . C
Identity matrix . I
Projection matrix from state- to cell-belief P
Transformation matrix between cellular decompositions 0 and 1 T 1

0

Covector of transition probabilities to cell yj aj
Belief vector . b
Communication covector associated with cell yj cj
Projection covector associate with cell yj pj
Hidden state belief vector . w
Hidden state belief vector (not normalized) ŵ
Observation vector . z

Vector of ones . 1

Area . A

xxv

Confidence limit at significance level α B−α , B
+
α

Communication strength between two locations C(·, ·)
Cost of a partition or m-TSP solution . C
Decile . D
Search reward function . J
Size of a subgraph . S
Path length . T
Sum of edge weights of a graph . W (·)
Sum of edge weights between a graph and vertex ∆W (·, ·)

Transition probability from cell yi to cell yj aij
Belief that robot is in cell yi . bi
Cycle (closed path) . c
Distance . d
Edge of a graph or polygon . e
Monotonically increasing function . f
Rectangle in a checkerboard partition . h
Index . i
Alternate index . j
Constant . k
Length . `
Number of robots . m
Number of vertices, elements in set, etc... n
Path . p
Probability that robot in state xi is in cell yj pij
Location in the robot’s environment . q
Rank . r
Velocity . s
Similarity between cells i and j of different decompositions tji
Time . t
Time step . ∆t
Vertex of a graph or polygon . v
Edge weight function for a graph . w
Belief that target is in hidden state xi . wi
Hidden state of HMM . xi
Cell of decomposition . yi
Probability of observation if target is in cell yj zj

Significance level (typically 2.5%) . α
Discount factor for search reward . β
Convex coefficient . γ
Small strictly positive number . δ
Small angle . ε
Normalization factor . η
Angle, direction, or orientation . θ
Probability measure . µ

xxvi

Zero-mean noise . ν
Discrete time index . τ
Marginal search probability . ∆φ
Total search probability . φ
Boolean check variable for transfers or swaps χi,j
Threshold for transferring outliers . ω

Difference . ∆
Set of possible orientations . Θ

Boundary . ∂
Elementwise product . �
Vector of ones . 1

xxvii

Chapter 1

Introduction

Robots are becoming ubiquitous in society. Many industries—manufacturing, agri-

culture, mining, and logistics—depend heavily on the automation of various tasks

performed by specialized robots. Consumer robotics is taking off too as robotic

vacuums, mops, and lawnmowers are quickly being integrated into the smart home.

Autonomous vehicles will be the next wave of consumer robots and when these

highly anticipated robots arrive in the next few years, they will revolutionize trans-

portation industries. Through these technologies, billions of people will be inter-

acting with robots on a daily basis all over the world.

As the world is rapidly roboticized, many robots will be operating in the same

spaces and will often need to work together towards some common objective. They

will need to form cooperative teams and efficiently divide and complete tasks. In

the dynamic, unpredictable environment of the real world, robots also must be

able to communicate with their teammates to coordinate behavior and share new

information. The needs to communicate and divide tasks amongst the team are

unique challenges for multirobot systems which do not exist for a single robot

working alone.

1.1 The value of planning

Initial forms of automation—large machines used in manufacturing—perform the

exact same task thousands of times. For such repetitive tasks, the machine’s

1

1.1. The value of planning

behavior only needs to be planned once. This single behavior can then be hard-

coded and the machine will behave in an identical way every single time. This

approach has been wildly successful and manufacturing plants around the world

are now full of machines important for everything from chopping vegetables, to

sewing clothing, to making automobiles. Despite its success, using a fixed plan is

inflexible. Machines used in industrial automation are unable to adapt to changes

in their surroundings and they can only be used in one specific environment which

was designed for that machine and typically does not contain humans.

As robots become more ubiquitous, they are no longer constrained to special-

ized factories and humans are increasingly welcoming them onto our roads and into

our houses. In these environments, dynamic planning is essential. Two identical

robots sold to different consumers can operate in two very different environments

as everyone’s home is unique. Even from day-to-day, a single robot’s environment

can change drastically, such as when people rearrange furniture, close and lock a

door, or simply make a mess. As the same robot is expected to work in different

environments, it cannot simply use one plan and must instead plan based on its

current environment.

Planning in a dynamic or unknown environment cannot be done in advance.

Robots must instead do their own planning as they are operating. Fortunately,

hardware costs have steadily decreased as robots have become more common.

Many consumer robots now have enough computing power to do some online

planning using various planning algorithms. For simple tasks, such as navigating

between two points, the robotics community has already developed adequate al-

gorithms. For more complex tasks, where robots must go to many locations and

respond to external stimuli, planning problems remain unsolved.

2

I. Vandermeulen

1.2 Planning for a team

Planning is also closely related to coordination of a team. As robots become

cheaper and more readily available, consumers will expect the robots to be able

to coordinate with each other in the same way that we expect any new electronic

device to be compatible with our old devices. The main aspect of planning—

planning how a single robot will complete a specific task—is identical whether

there is only one robot or multiple robots completing separate tasks simultaneously.

However, there are additionally two aspects of planning related to the fact that

there are multiple robots:

1. Planning which tasks each robot is responsible for; and

2. Planning how the robots will communicate when they need to replan or share

information.

These problems of task allocation and communication are unique to multirobot

systems.

Communication is particularly important for teams of robots, as robots can

only coordinate their behavior if they can communicate. Many consumer robots

use inexpensive parts and cannot communicate reliably over large distance or

through walls. These communication constraints force them to spend time search-

ing for each other or travelling to a planned rendezvous, creating a fundamental

trade-off for teams of robots. Communication helps them share information and

make plans together, but it can also slow the team down if they spend too much

time communicating instead of working on their actual objective. How much the

robots end up communicating depends heavily on how much effort it takes for

them to communicate, what other objectives they have, and how much reality

differs from the model they used when planning. By communicating just the right

amount, the team can complete complex tasks much faster than a single robot,

3

1.3. Robotic coverage

despite poor knowledge of their environment and limitations in their ability to

communicate.

1.3 Robotic coverage

Consumer robotics has become a large market in recent years and the most success-

ful category of consumer robots are coverage robots, such as vacuum cleaners and

lawnmowers (Figure 1.1). These robots perform cleaning or mowing tasks where

the robot has to cover a large environment, such as a room or a yard, by passing

its cleaning or cutting tool over every square inch of the environment. Despite

differences in their tools and environments, all of these robots have essentially the

same behavior and the same planning algorithm could easily be used for many

different kinds of coverage robots. Due to their reasonable price points and effec-

tiveness at performing repetitive chores, the market for coverage robots has grown

steadily and now accounts for over $6.3 billion dollars in revenue, approximately

60% of the entire consumer robotics industry [164].

Planning helps make coverage robots more efficient, however, it often comes as

an afterthought and in some cases, a robot doesn’t plan at all! The first robotic

vacuum cleaners had very limited processing power and could not plan coverage

paths. Instead, they would follow simple preprogrammed behaviors such as spi-

raling or random bouncing [91] (Figure 1.2). These fixed behaviors are not very

robust and the vacuum cleaner can take a long time to fully clean a simple, square

room and may never reach certain parts of a more complex environment. Robotic

lawnmowers, on the other hand, typically require a boundary wire or a sequence of

boundary posts, and the robot’s behavior is based on the location of these mark-

ers [152] (Figure 1.3). This method can work well for simple environments like

lawns, but it requires a technician to physically modify the robot’s environment

by installing the boundary markers. The newest models of coverage robots have

4

I. Vandermeulen

Figure 1.1: Examples of five commercially available coverage robots: iRobot
Roomba s9 vacuum cleaner [89] (top left); Robomow RS635 lawn
mower [160] (top right); Maytronics Dolphin S300i pool cleaner [132]
(bottom left); Ecovacs winbot X window cleaner [56] (bottom center);
and iRobot Braava m6 mop [88] (bottom right).

Figure 1.2: Two basic coverage behaviors for a robotic vacuum cleaner are spiraling
(left) and randomly bouncing (right).

the processing power and mapping capability needed to plan efficient coverage

plans without needing to modify the environment to suit the robot, yet many still

use inefficient coverage methods based on ad-hoc short-term planning [70].

The behavior of today’s most popular coverage robots can be drastically im-

proved with more intelligent coverage planning. Improved planning includes the

5

1.3. Robotic coverage

Figure 1.3: Coverage strategy for a robotic lawnmower using a back-and-forth mo-
tion based on a guide wire which is installed in advance.

obvious—making the path as short as possible with minimal repeat coverage—

but must also result in a robot which is reliable and adaptable to all the possible

environments it may be required to cover. Minimizing the number of turns has

numerous benefits in coverage even if it requires the robot to follow a slightly

longer coverage path. Turns take time so a longer path with fewer turns is faster

than a shorter path with more turns. Robots are also much more likely to get

stuck or damaged when turning—turns usually occur near walls or obstacles—so

minimizing turns minimizes these risks, making the robot more reliable. In many

applications, turns also result in worse performance. A painting robot deposits

paint in a more uniform layer when travelling straight than when turning; dis-

tance data recorded by a mapping robotic boat or UAV’s lidar sensor is not useful

if the robot tilts during a turn; a robotic lawnmower may occasionally damage

flowers in a garden near the edge of the lawn when it turns. Qualitatively bet-

ter coverage, due to straighter paths with fewer turns, is also achieved by more

intelligent coverage planning.

6

I. Vandermeulen

Reliability and adaptability also both depend on the quality of the map used

by the coverage planner. An intelligent planner should be aware of the capabilities

of the robot—how close it can get to the wall, what kinds of objects it can easily

navigate around, how much space it needs to turn—and use its knowledge of these

behaviors to filter the map based on the coverage behavior. Effective replanning to

adapt to changes in the environment without repeating previous coverage is also

essential to the kind of reliable coverage tomorrow’s consumers will expect from

their robots.

1.4 Coverage for humans

In early 2015, before I considered working in robotics, I decided I wanted to become

a runner. But when I started running, I couldn’t stand it. It was boring and

exhausting. For a few months, I was very inconsistent, running approximately

once a week and making excuses every day I didn’t go for a run. I needed a better

way to motivate myself. My big idea: I wanted to run on every street in Kingston,

the city I was living in at the time. This challenge would give me a real goal when

running, and would also help me get to know the city that I had been living in for

several years better.

As a first step, I went to a local gas station and bought a map. A paper

map. When I went home, I marked off the route that I ran the last time I went

running. Then, every day after I went running, I would mark off where I ran. I

quickly discovered that I was only filling up certain parts of the map. Within a

few weeks I had been on every major street, all the streets at the university, and

a few parks near my house, but hadn’t visited most residential streets, industrial

areas, the nearby military base, or any places more than 3 km away. I realized

that if I wanted to finish this project, I would have to plan where I would run.

I now had an interesting challenge which gave me something to think about

7

1.4. Coverage for humans

when I was running: How do I maximize the number of new streets I run on while

minimizing the time I spend getting to those streets?

This project was my first introduction to coverage planning. I had a coverage

region—the streets of Kingston—and I needed to plan several paths that visited

every location. This problem also had two main constraints:

1. Every path must start and end at my house; and

2. The paths must be at least 5 km long, so I would get enough exercise for the

day, but shouldn’t be so long that I would get too exhausted to run all the

way back home.

Although I had no experience in path planning, I quickly developed a system.

Before my run, I would choose a target region on the map where I wanted to run.

Usually there would be lots of unvisited streets in this region and a few on the

way to it. Initially, I would take a route to my target region along many unvisited

streets, even if it was longer than the direct route. However, I soon realized that

the direct route is better. Unvisited streets on the way to the target region were

always closer to my house than unvisited streets in the target region. Since I can

only run so far before getting tired and far away streets take longer to get to,

the further away a street is, the more valuable it is. Although this rule holds in

general, there is one place where it doesn’t: main streets. Regardless of where I

was going, there were a few streets that were usually part of the shortest route

to my target region. I had already run on the main streets near my house dozens

of times, but there were plenty of streets further away that I hadn’t been to yet,

but I knew I would eventually run on when going somewhere even further away.

Since I’d be running on them many times eventually, they provide less value than

the other nearby streets. My resulting mental heuristic (Figure 1.4) provided me

a useful way to evaluate various running routes based on their value in helping me

achieve my goal of running on every street. Before going out for a run, I could

8

I. Vandermeulen

Low

Mid

High

H
eu
ri
st
ic

va
lu
e

Figure 1.4: Heuristic values of streets in Kingston, Ontario used when planning
running routes. The heuristic value increases with distance from my
house (orange dot), but main streets have lower value than other streets
nearby.

quickly glance at my map of where I’d already been and find a set of unvisited

streets which maximize the heuristic value based on the length of run I wanted

that day.

When I arrived at my target region, I had to plan the best coverage path for

that region, often a small neighborhood in the suburbs. Canadian suburbs are

often designed using a large grid for major roads, with lots of curved roads and

cul-de-sacs making up the residential area in between. Finding the shortest path

that goes on all of the roads of one of these subdivisions is not trivial! Fortunately,

I had lots of time to think while running, so I could mentally plan the best path

to lots of unvisited streets (Figure 1.5). The two criteria I would use to decide

between possible paths were:

1. Only running on the same street twice when absolutely necessary; and

9

1.4. Coverage for humans

Figure 1.5: Efficient route to run through a neighborhood. As I had run on a
few streets (left), this route covers most of the remaining streets while
trying to avoid running on the same street twice or turning 180◦.

2. Preferring 90◦ turns and avoiding 180◦ turns which require me to stop and

lose all my momentum.

Usually by the time I arrived at my target region, I had mentally planned a good

path with minimal repeat coverage and with few sharp turns. The more I ran and

planned efficient routes, the more my intuition improved and I could easily plan a

near-optimal route even though I did not use a real algorithm.

Little did I know, but this project ended up being really similar to my PhD

work. I was using heuristics to plan good paths. Constraints of running a similar

distance each day is remarkably similar to multirobot planning where each robot

does the same amount of work. I even cared about minimizing turns long before

I thought about doing that for a robot!

10

I. Vandermeulen

1.5 Objectives & contributions

The main objective of my thesis is:

To develop a theoretical understanding of planning problems faced

for multirobot teams in realistic environments—both in general and

while performing coverage—and design practical algorithms to solve

these multirobot problems.

The main problems considered in this thesis are task allocation and search, which

are general problems unique to multirobot teams, as well as coverage planning, a

specific problem faced by today’s largest category of consumer robots. Although

the work that I present is largely theoretical, the problems are based on the chal-

lenges faced by real robots in real environments and thus depends on the robot’s

hardware and the many uncertainties related to working in different environments

shared by humans.

The contributions towards this main objective include: a novel relationship

between two different cost functions which is exploited to develop an efficient mul-

tirobot task allocation algorithms (Chapter 3); a new coverage planning approach

based on a one-dimensional rank decomposition (Chapter 4) which is computation-

ally efficient and minimizes the number of turns made by the robot, in contrast

with existing approximate (zero-dimensional) and exact (two-dimensional) decom-

positions; an extension of the successful rapidly-exploring random trees (RRT) al-

gorithm to a multirobot search problem based on maximizing an infinite-horizon

reward function (Chapter 5) instead of minimizing path length; and a descrip-

tion of many of the practical problems I encountered and solved while working

to implement multirobot coverage on real coverage robots, the iRobot Roomba

(Chapter 6). These contributions have been published in the following publica-

tions:

11

1.6. Overview of thesis

• [186] I. Vandermeulen, R. Groß, and A. Kolling, “Re-establishing communi-

cation in teams of mobile robots,” in International Conference on Intelligent

Robots and Systems (IROS), pp. 7947–7954, 2018.

• [187] I. Vandermeulen, R. Groß, and A. Kolling, “Balanced task alloca-

tion by partitioning the multiple traveling salesperson problem,” in Inter-

national Conference on Autonomous Agents and Multiagent Systems (AA-

MAS). IFAAMAS, 2019, pp. 1479–1487.

• [188] I. Vandermeulen, R. Groß, and A. Kolling, “Turn-minimizing multi-

robot coverage,” in International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 1014–1020.

• [108] A. Kolling and I. Vandermeulen, “Turn-minimizing or turn-reducing

robot coverage,” Mar. 19 2020, US Patent App. 16/565,721.

• [189] I. Vandermeulen, R. Groß, and A. Kolling, “Sampling based search

for a semi-cooperative target,” under review for publication in International

Conference on Intelligent Robots and Systems (IROS), 2020.

1.6 Overview of thesis

The remainder of my thesis consists of six additional chapters:

• Chapter 2 contains the relevant background information, including the

state-of-the-art related work. I begin with a brief discussion of computational

complexity (Section 2.1) which is essential to the analysis of the numerous

algorithms presented in this thesis. Next, I discuss basic planning prob-

lems (Section 2.2) which my algorithms often rely on. Existing algorithms

for solving navigation-to-a-point problems are presented in Appendix B and

rely on visibility graph algorithms from Appendix A. Existing travelling

12

I. Vandermeulen

salesperson algorithms are shown in Appendix D and are based on minimum

spanning tree algorithms in Appendix C. The background chapter continues

with a discussion of communication for multirobot teams (Section 2.3). This

discussion includes realistic models of wireless communication and explana-

tions of various communication strategies that can be used by multirobot

teams. I conclude the chapter with a description of existing robotic coverage

algorithms (Section 2.4).

• Chapter 3 focuses on the problem of dividing tasks within a team of robots

which is central to cooperation within a team of robots. Although differ-

ent robots can fill many different roles in society, and their behaviour is

equally varied, their work can often be broken down into a set of smaller

tasks. A team of robots must divide these tasks amongst individual robots,

based on the locations of the tasks, the time needed to complete each task,

and the robot’s abilities. The goal of task allocation should be balancing

the workload so that the team finishes as quickly as possible and no robot

sits idly while other robots still have several tasks left to complete. This

problem (Problem 3.1) is equivalent to the minmax multiple travelling sales-

person problem (Problem 3.2), which combines task allocation and routing.

Although this problem is NP-hard, its cost function has an approximately

monotonic relationship with another cost function that is easier to evaluate

(Subsection 3.3.1). By exploiting this relationship, I developed a heuristic

algorithm (Algorithm 3.3) which partitions the set of tasks, approximately

solving the task allocation problem. The solution to the combined routing

and allocation problem (Algorithm 3.4) is based on solving the travelling

salesperson problem on each set of tasks produced by the allocation algo-

rithm. This heuristic runs quickly, can be decentralized (Section 3.7), is

13

1.6. Overview of thesis

compatible with constraints on where the robots must start or end (Sec-

tion 3.8), and has produced better quality solutions than other state-of-the-

art approaches (Section 3.9).

• Chapter 4 contains my turn-minimizing coverage algorithm. Coverage is

an example of a complex robotics problem which can be divided into smaller

tasks. It is typically solved by dividing a coverage region into small grid cells,

equal in size to the robot’s footprint, or large regions, akin to the rooms of

a house. My coverage strategy, on the other hand, first divides the coverage

region into ranks which are long thin rectangles as wide as the robot but

much longer than it (Section 4.2). These ranks are constructed to minimize

the number of turns the robot will need to make. Ranks are suitable compo-

nent tasks for dividing the coverage mission amongst a team of robots—small

enough to divide evenly amongst many robots, yet large enough that assign-

ing them takes relatively little computational effort. These tasks are then

assigned to robots and converted into coverage paths using my algorithm

from Chapter 3 with a few modifications to account for the fact that the

robot will start and end each task in different locations (Section 4.3). I val-

idated this strategy by computing coverage plans for 25 test environments

that had been mapped experimentally by an iRobot RoombaTM robotic vac-

uum (Section 4.4). Based on these plans, I found that my approach reduced

the average number of turns required by approximately 7% and resulted in

coverage time decreasing by a factor of approximately 1/m when m robots

are used instead of 1 robot.

• Chapter 5 presents a method for tracking and searching for teammates

that a robot cannot communicate with. Reducing the cost of robots of-

ten involves using inexpensive communication devices and so robots cannot

necessarily communicate over long distances or through walls. As teams are

14

I. Vandermeulen

often most productive when the robots spread out to complete different tasks

simultaneously, it is then impossible for robots to be constantly connected.

Search is a flexible way to re-establish communication when a team gets

separated because it does not require prior planning. In cooperative search,

robots often have lots of information on how their target—another robot in

the same team—is likely to behave. My search strategy uses information,

such as historic data of target behavior, to maintain a probabilistic belief

of the locations of all the robots in the team that it cannot communicate

with (Section 5.3). The belief also incorporates both positive and negative

observations of the target robot (Section 5.4) and can be combined with an-

other searcher’s belief of the same target (Section 5.5). Using the belief, a

target can evaluate various potential search paths using a discounted reward

function which rewards paths which find the target quickly (Section 5.6). I

designed a planner which constructs a tree of possible search paths by adding

new vertices based on random samples and uses reward bounds to remove

old vertices that are guaranteed to not be part of the best path (Section 5.7).

This planner proved to be quite effective, finding the target slightly quicker

on average than two baseline strategies, while drastically decreasing the time

needed to find the target in the most difficult 30% of searches (Section 5.8).

• Chapter 6 covers some of the practical details of implementing single and

multirobot coverage on real robots. Much of this work is based on my experi-

ence interning at iRobot, the makers of the commercially successful Roomba

robotic vacuum cleaner. As many things can go wrong during a coverage

mission—human interference, damage to a robot’s tool, needing to recharge,

or differences between the robot’s map and the real environment—real cov-

erage requires robots to adapt to these circumstances in real time. Three

main ways of making coverage more robust are through semantic commands,

15

1.6. Overview of thesis

replanning, and search. Semantic commands (Section 6.3) are used to ensure

robots actually achieves a meaningful outcome rather than simply trying to

follow a precise description of how to achieve that outcome. Replanning

(Section 6.5) enables the robot to plan partial coverage paths when a robot’s

location changes suddenly (a human moved it) or its map changes (a door

was opened) while not repeating coverage of places the robot already covered.

Search (Section 6.8) is vital for coordinating robots after they get separated,

which is especially useful near the end of a mission to help rebalance the

workload. I tested my ideas on robust coverage using a combination of sim-

ulation and real world experiments using the iRobot Roomba (Subsections

6.6.1, 6.7.1, and 6.9.1). The results of these experiments showed that robust

strategies using on the planned coverage paths from Chapter 4 and search

strategy from Chapter 5 consistently perform better than basic strategies

which use less planning.

• Chapter 7 concludes my thesis with some highlights of the main ideas and

results of the previous chapters.

16

Chapter 2

Background

Robots are machines which can think and move. Their mobility sets them apart

from other computers and lets them change the very environment they inhabit.

Their intelligence sets them apart from many other machines which rely on human

operators: robots can operate autonomously, planning their actions and respond-

ing to external stimuli. Although robots perform computations in much the same

way that all computers do, there is a fundamental difference in the types of prob-

lems solved by robots. Robotic problems involve interactions between the robot’s

hardware and its environment, and in some way are related to the robot’s motion.

In this chapter, I will briefly introduce some basic problems in robotics. The

background material presented in this chapter are directly related to the main

objectives of this thesis (Section 1.5) which include theoretical descriptions of and

algorithms to solve planning and coverage problems. Computational complexity

theory (Section 2.1) is a tool used to analyze problems and algorithms and provide

a theoretical understanding an analysis of them. Path planning (Section 2.2) is the

main kind of problem considered in my thesis and basic planning problems, such as

navigating efficiently between two points, are the building blocks of more complex

planning algorithms presented in my thesis. Although not all robotic planning

problems involve path planning, I have focused on it as my research involves mobile

robots most planning problems can be cast as path planning problems. Indeed,

the seemingly unrelated problem of task allocation (Chapter 3) is equivalent to the

multiple traveling salesperson problem (Subsection 2.2.3) which is a path planning

17

2.1. Computational complexity

problem. In addition to path planning, communication (Section 2.3) is essential

for multirobot cooperation but is often limited due to the robot’s hardware or

environment and search algorithms (Chapter 5) must understand these limitations

in order to make up for them. Finally, coverage (Section 2.4) is a common task for

consumer robots which involves some unique planning problems that are covered

in this thesis (Chapter 4). The three main objectives of this chapter are thus:

1. Introduce several important planning problems in robotics;

2. Present some foundational algorithms which solve basic problems and are

building blocks of solutions to larger problems; and

3. Survey of the literature on more complex problems—primarily coverage and

search—which do not necessarily have a single solution that works for any

scenario.

The material in this chapter closely reflects my own learning throughout my PhD.

As someone coming from a different academic background, all of this material was

necessary background information that I had to learn as a PhD student before I

could really start doing novel work in robotics.

2.1 Computational complexity

As robots are increasingly being integrated into society, two important changes

are happening:

1. Robots are getting cheaper, often relying on inexpensive processors and sen-

sors without a lot of computing power; and

2. Robots are operating in larger, more complex, less predictable, and increas-

ingly dynamic environments.

18

I. Vandermeulen

These two trends mean that robots are doing more with less. How are they getting

out of this apparent paradox? Better, more scalable algorithms.

Computational complexity theory is a basic tool of computer science used to

quantify the effort required by an algorithm. It classifies algorithms by how the

computational effort scales with the size of the problem, making it extremely useful

for comparing different algorithms that solve the same problem. If two algorithms

solve the same problem, the better algorithm is the less complex one. In many

cases, an algorithm that gives an approximate solution might even be more useful

than a more complex algorithm that solves the problem exactly!

2.1.1 Big-O notation

At their most basic level, algorithms are ways to perform large computations by

combining many small operations. A simple example is the long division algorithm

taught to elementary school children. When performing this algorithm, the child

repeatedly performs multiplications and subtractions to determine each digit of

the result. Multiplications and subtractions are considered easy because students

have typically already memorized addition and multiplication tables and so they

can perform these computations instantaneously by recalling the product or sum

from the table. As students do not usually memorize “division tables”, division is

considered more difficult. The long division algorithm enables students to compute

a quotient, which would otherwise be difficult, by performing a series of easy

computations.

Just as addition and multiplication are easy for children, there are certain

operations which are easy for computers to compute. Alan Turing’s computing

machine [185] had five basic operations: read a symbol, write a symbol, erase a

symbol, move left, and move right. Modern silicon-based computers contain several

hard-coded electronic circuits for addition, multiplication, subtraction, and bitwise

operations. These basic circuits are themselves created from a fixed number of logic

19

2.1. Computational complexity

gates, made of transistors and diodes, which carry out the basic operations of a

computer. Every more complex task performed by a computer can be reduced to

a number of basic operations performed by these individual logic gates.

The complexity of an operation is defined by the number of basic opera-

tions needed to perform it. For example, computing the inner product of two

n-dimensional vectors requires n multiplications and n − 1 additions. Similarly,

computing the product of two n × n matrices requires the computation of n2

inner products—one for each element of the product matrix—and thus requires

n2(2n− 1) basic operations.

Big-O notation is a way to describe the complexity of performing an operation.

Suppose an operation with input size n requires at most kf(n) operations for

some constant k ∈ R>0 and function f(n). Then we can say that the operation is

O(f(n)). For example, computing inner products is O(n) as it requires 2n−1 ≤ 2n

operations. Similarly, matrix multiplication isO(n3) as it requires n2(2n−1) ≤ 2n3

operations. In both examples, we used simple functions for f(n). Some common

orders of complexity ranked from simplest to most complex are:

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(exp(n)) ⊆ O(n!)

Algorithms with complexity closer to the left side of this hierarchy are more useful

for solving large problems on inexpensive hardware, as is commonly required in

robotics.

2.1.2 NP-hardness

We’re often interested in finding the least complex algorithm which solves a given

problem. Most problems can only be solved by algorithms with at least a certain

order of complexity. This idea leads us to classify problems based on what classes

of algorithms are required to solve them.

20

I. Vandermeulen

Three common complexity classes are [100]:

1. P, the set of all problems that can be solved in polynomial time;

2. NP, the set of all problems whose solutions can be checked in polynomial

time; and

3. EXP, the set of all problems that can be solved in exponential time.

Determining which class a given problem belongs in is not always easy. If we

know an algorithm that solves a problem, then we might be inclined to classify the

problem based on the complexity of that algorithm, but what if there is a better

algorithm? And what if we don’t have an algorithm for solving the problem?

A clever way to analyze problems that we don’t have an algorithm for is using

polynomial reductions (Figure 2.1). A polynomial reduction is any algorithm which

can, in polynomial time, convert any instance of one problem into another problem.

We can then solve the original problem by reducing it to the second problem and

then solving the second problem. Using this process, we have effectively found an

algorithm for solving the original problem by way of the second problem. It leads

us to two useful observations:

1. If the transformed problem is in P, then the original problem is also in P;

and

2. If the original problem is not in P, then the transformed problem also must

not be in P. Otherwise we could solve the original problem in polynomial

time by reducing it to the transformed problem.

The second observation is the contrapositive of the first. In informal terms, these

observations tell us that the original problem is no more difficult than the trans-

formed problem.

The class NP can be defined in two equivalent ways. Previously, I defined

it as the set of all problems whose solutions can be checked in polynomial time.

21

2.1. Computational complexity

Original
problem

Transformed
problem Solution

Solution

Polynomial
reduction

Known algorithm

Unknown algorithm

Equivalent
solutions

Figure 2.1: A polynomial reduction transforms one problem into another problem.
If we can solve the transformed problem, then we can solve the original
problem by transforming it and solving the transformed problem.

Alternatively, it is the set of all problems that can be solved by a non-deterministic

Turing machine in polynomial time. The non-deterministic Turing machine is

similar to an ordinary Turing machine, but it can choose between several possible

behaviors in any situation and is assumed to choose the best one (i.e. the one that

leads to a solution as quickly as possible). These definitions of NP are equivalent

because the non-deterministic Turing machine could use a known solution as a

“cheat sheet” when deciding which of its possible behaviors to choose and therefore

solve the problem as quickly as a deterministic Turing machine checks the solution.

Another important class of problems is the NP-hard problems. A problem is

NP-hard if every problem in NP can be reduced to it [107]. This definition seems

like an impossible task! How could someone possibly find a reduction from every

NP-hard problem? We don’t even have a list of all NP-hard problems.

It turns out, that we only need to check a single problem: 3-SAT. An instance

of 3-SAT consists of several logical clauses of the form (x ∨ y ∨ z)—dependent on

boolean variables x, y, and z—which may share variables or their negations with

other logical clauses of 3 variables. 3-SAT then asks: is there a value for each

22

I. Vandermeulen

variable which makes all clauses simultaneously true? In 1971, Stephen Cook [41]

proved that the very behavior of any non-deterministic Turing machine can be

encoded as an instance of 3-SAT. Any problem in NP can be solved by the opera-

tion of a non-deterministic Turing machine which can be reduced to an instance of

3-SAT, and so his result proves that every NP problem can be reduced to 3-SAT,

which is therefore NP-hard. After Cook proved this now-famous result, many

other problems have been proven to be NP-hard [66], usually by reducing them to

3-SAT. Lots of these problems have practical value to robotics.

Since not all NP-hard problems are themselves in NP, we also define the class of

NP-complete problems which are both NP and NP-hard. NP-complete problems

are interesting because they are in some sense the “hardest” NP problems. If a

single NP-complete problem could be solved in polynomial time, we could use it

to solve all the NP problems in polynomial time. Such a result would imply that

P = NP, a proposition which has been asked for decades [16], and although widely

believed to be false, has never been proven. Assuming that P 6= NP, then any NP-

complete problem is not in P and so it is a futile effort to search for a polynomial

time algorithm to solve it.

Most problems encountered in robotics, and indeed in my thesis, are either in P

or are NP-hard. Problems in P are usually solved using a known polynomial time

algorithm that produces the problem’s exact solutions. For NP-hard problems, on

the other hand, any known algorithm requires more than polynomial time. These

exact algorithms are rarely practical, and so NP-hard problems are typically solved

using heuristics which produce approximate solutions in polynomial time.

2.2 Path planning

Motion is critical to everything that robots do. Mobile ground robots drive or walk

in cluttered two dimensional environments. Underwater and aerial robots propel

23

2.2. Path planning

Figure 2.2: The shortest path between two points in a 2D environment (left). All
of its edges are part of the visibility graph with the two points and all
the concave corners as vertices (right).

themselves in three dimensional space. Often these motions also involve two or

three dimensional rotations. Robotic arms, like human arms, typically have 7

degrees of freedom. Then if you add in the robot’s dynamic constraints, and any

obstacles in its environment, path planning can become quite a difficult task!

2.2.1 Navigating to one location

The simplest planning problem is navigating from A to B. Ignoring rotations, and

dynamic constraints, this problem is quite easy. In an open environment, the robot

can move directly from its current location to its target destination. When there

are obstacles in the environment, the shortest path is via concave corners of the

environment (Figure 2.2).

This planning problem is in P. It can be solved by computing a visibility

graph (see Appendix A) and then finding the shortest path on that graph (see

Appendix B). The visibility graph can be computed using Welzl’s algorithm in

24

I. Vandermeulen

O(n2) [197] and the shortest path on this graph can be computed in O(n2) using

Dijkstra’s algorithm [48] or the slightly more efficient A∗ algorithm [73]. If a robot

is spends a long time in the same environment and will need to compute many

shortest paths, it may be more efficient to compute all the paths ahead of time

using the Floyd-Warshall algorithm which is O(n3) but computes O(n2) paths [60].

For computing a single path in a large environment, Missura’s minimum construct

algorithm can drastically improve performance by only computing a small portion

of the visibility graph [137]. Although the shortest path is often used for planning,

real robots may have kinodynamic constraints preventing them from following

arbitrary paths. As detailed kinodynamic planning is computationally expensive,

a robot can estimate transit times along feasible paths using simplified dynamics

when deciding between many target locations, and only plan a detailed trajectory

to the one selected location [26].

Visibility-graph-based planning algorithms are quick and deterministic. They

are primarily useful for high-level planning for planar robots. If the robot is not

able to follow an arbitrary path due to constraints that couple its translation and

rotation, these simple visibility-graph-based algorithms do not necessarily result

in plans that the robot can actually follow. For more complex robots, such as

7 degree-of-freedom arms, the robot’s configuration space looks nothing like the

plane and visibility-graph-based approaches don’t even make sense! These more

complex planning problems are typically solved using sampling-based algorithms.

Rapidly-exploring random trees (RRTs) are a powerful sampling-based tool for

path planning [116]. These trees are constructed by randomly sampling the robot’s

configuration space and connecting the sampled point to an existing vertex in the

tree (Figure 2.3). Starting with a single vertex representing the robot’s initial

configuration, additional vertices are added to the tree as follows:

1. Select a random point q in the configuration space

25

2.2. Path planning

2. For each existing vertex in the tree, compute a path from the vertex to q

3. Select the vertex v which minimizes the length of the path to q

4. Follow the path from v to q a distance of 1 to find the point v′

5. Add v′ to the tree with edge (v, v′)

This approach is quite powerful as the random sampling results in the tree quickly

expanding to fill the configuration space. The construction of the path from v to

q ensures that v′ is a valid configuration with a feasible transition from v to v′.

Paths are planned by growing the tree from the start configuration until a vertex

is located in a desired set of end configurations. While the paths produced are

not necessarily optimal, they are always feasible and are usually fairly short. An

asymptotically optimal variant, RRT∗ also exists [96] which rewires the tree when

a new vertex is added so that previously-added vertices can use the new vertex

if it results in a shorter path. A similar technique, probabilistic road maps [101]

creates a general graph—not a tree—which is typically precomputed and can then

be reused when planning many paths in the same environment.

2.2.2 The travelling salesperson problem

Complex tasks usually require a robot to visit multiple different locations. Delivery

robots have to deliver multiple packages to different homes around a city. A

packing robot in a warehouse has to collect all the items a customer has ordered

from different shelves around the warehouse and put them all in the same box for

shipping. Autonomous taxis have to drive to a passenger and then take them to

their destination. A robotic plow must plow every location in a field. In all of

these examples, the robot must go to multiple locations to complete some larger

task.

When planning paths to multiple locations, the order that the locations are

visited is very important. The shortest path to a destination depends on where

26

I. Vandermeulen

Figure 2.3: An RRT is incrementally grown by sampling a random point, choosing
the nearest vertex in the tree, and then adding a new vertex connected
to this nearest vertex in the direction of the sampled point (left). Once
the vertex reaches the target destination, the algorithm terminates,
resulting in a path from the initial location to the target destination
which is guaranteed to be feasible (right).

the robot starts, and so a robot will typically take different paths to the same

destination depending on which location it went to directly before. Multiple-

destination tasks can be classified in one of two ways:

1. Tasks where the locations have to be visited in a specific order. For example,

the autonomous taxi has to drop off its current passenger before picking up

the next passenger.

2. Tasks where the robot must also choose the order of the locations. For ex-

ample, the packing robot can typically collect the items for a single customer

in any order.

Both scenarios rely on point-to-point planning algorithms. If the order is fixed,

it is trivial to compute a plan that visits all the locations in the correct order by

just finding the shortest path between each pair of consecutive locations. When

27

2.2. Path planning

Figure 2.4: Complete graph with vertices representing tasks and edges represent-
ing distance between tasks (left). The shortest cycle on this graph
(right) solves the travelling salesperson problem.

the order is not fixed, the robot will have to compute the best order based on the

lengths of the shortest paths between each pair of locations. The best order can

then be found by solving the travelling salesperson problem.

The travelling salesperson problem (TSP) is perhaps the most famous example

of an NP-hard problem. The problem asks “given a list of cities and the times

needed to travel between them, what is the fastest route for a salesperson to visit

every single city?” (Figure 2.4). It has two main forms: in the tour-TSP the

salesperson starts and ends in the same city; in the path-TSP, the salesperson

starts and ends in different cities. In 1977, Papadimitriou proved that these two

variants are polynomial reducible to each other and that each problem is NP-

hard [150]. While the brute force approach to solving the TSP is O(n!), many

polynomial time heuristics have been developed for this classic problem. I will

focus on two variants. In the single travelling salesperson problem (1-TSP), there

is one salesperson; in the multiple travelling salesperson problem (m-TSP), there

are multiple salespeople.

An instance of the 1-TSP can be formulated in terms of a complete weighted

28

I. Vandermeulen

graph G with vertices V , edges E , and weights, w. For every pair of vertices in the

graph there is an edge with a weight which indicates the distance between those

cities. If the graph is not complete (i.e. some edges are missing), the missing

edges can be filled in either with infinite weight, or with the length of the shortest

path between the two vertices. The lengths of the shortest paths can be found

in polynomial time using algorithms such as Dijkstra’s algorithm and the Floyd-

Warshall algorithm (Appendix B). Once we have a complete graph, the problem

of the 1-TSP is to find the shortest path or shortest cycle which visits every vertex.

Such a cycle is called an spanning cycle or Hamiltonian cycle.

The simplest heuristics for the 1-TSP are the nearest neighbor, greedy, and

insertion heuristics [131]. The nearest neighbor heuristic is based on growing a

path by choosing the shortest edge possible in each iteration. A random start

vertex is chosen and then vertices are added to the path by choosing the closest

vertex to an endpoint of the path which is not already part of the path. The greedy

heuristic is based on adding the shortest edges possible without necessarily having

a continuous path at all times. The edges are ordered based on length and the

shortest edges are iteratively added. Once two edges have been added that both

connect to the same vertex, all other edges connected to that vertex can no longer

be chosen. Insertion is based on iteratively growing a cycle. First, the shortest

cycle of three vertices is chosen. Then vertices are iteratively added to minimize

the increase in cycle length when increasing the cycle size by one. All of these

heuristics are simple to implement, fast to compute, and are often used as initial

cycles that will then be improved to obtain a superior solution.

The TSP is closely related to the problem of finding a minimum spanning tree

(MST) which is the smallest tree which contains every vertex of a graph. The

MST is guaranteed to be shorter than the TSP solution and can be computed in

O(|E| log(|V|)) by Kruskal’s algorithm [112] (Section C.1) or in O(|E|+|V| log(|V|))

by Prim’s algorithm [154] (Section C.2). Christofides’ algorithm is an elegant

29

2.2. Path planning

heuristic which constructs a TSP using an MST and guarantees a solution which

is at most one-and-a-half times the optimal cycle’s length [39] (Section D.1). The

MST is also used to define the Held-Karp lower bound, which is equal to the length

of the minimum one-tree (an MST with one additional shortest edge added) of a

transformed graph [75]. This transformed graph is also used to generate candidate

edge sets in the Lin–Kernighan–Helsgaun heuristic [77].

As the TSP is a combinatorial optimization problem, potential TSP solutions

can be improved using one of several heuristics which make incremental modifica-

tions. The simplest of these heuristics is 2-opt [44] where cycles are repeatedly im-

proved by replacing two edges with two shorter edges (Section D.2). This idea can

be generalized to k-opt where up to k edges are replaced simultaneously. Larger

values of k are better at finding good solutions but the number of possible ex-

changes is O(|V|k) so it quickly becomes infeasible for large k. Lin and Kernighan’s

heuristic [122] is a variable k-opt—the value of k is determined by the algorithm.

It limits the number of k-opt moves it needs to check by sequentially choosing pairs

of edges to swap and only continuing to add pairs of edges to a potential move if

the partial move would have a positive effect (Section D.3). This heuristic has been

expanded by numerous authors, most notably in the Lin–Kernighan–Helsgaun al-

gorithm [77] and chained Lin–Kernighan [12]. These variants are the bases of the

two very effective open source solvers—LKH [76] and Concorde [42]—which have

both solved the 110 standard test problems on TSPLIB [155] to optimality. Other

generic combinatorial optimization techniques, such as simulated annealing and

tabu search [130], have been applied to the TSP with good results.

2.2.3 The multiple TSP

The multiple travelling salesperson problem is similar to the 1-TSP except there

are multiple salespeople. There are two common objectives for the m-TSP (Fig-

ure 2.5). In the minsum m-TSP, the objective is to minimize the sum of the

30

I. Vandermeulen

107.2

124.9

228.6
166.8

145.3

165.8

Figure 2.5: The multiple travelling salesperson problem has two main forms. In
the minsum m-TSP (left), the sum of the cycle lengths is minimized;
whereas in the minmax m-TSP (right), the length of the longest cycle
is minimized.

distance travelled by individual salespeople. In the minmax m-TSP, the objective

is to minimize the time taken by the slowest salesperson. These objectives are

usually conflicting even for small problems [158]. The minsum objective tends to

result in some salespeople visiting many cities while others visit few. The min-

max objective balances the workload so that all the salespeople take a similar

amount of time and therefore usually visit similar numbers of cities. However,

a minsum objective with a constraint on agents’ path lengths can have a similar

result [190, 193].

Unlike the 1-TSP, the locations where the salespeople start is important in

the m-TSP. If they all start in distinct locations, each of these locations must be

included in exactly one tour in the solution; if they start in the same location, that

location will have to be part of all m tours. Additionally, each salesperson’s path

could be a path or a cycle, resulting in even more variants of the m-TSP!

Most m-TSP algorithms are based on a modification of the 1-TSP [25]. There

31

2.2. Path planning

are several different ways to convert the m-TSP graph into a slightly different 1-

TSP graph, however they are all intended for the minsum m-TSP. If all salespeople

must start and end in the same place, that vertex can be repeated once for each

salesperson and then, by chopping up the 1-TSP solution whenever it reaches one

of those vertices, we obtain an m-TSP solution [72, 181]. As all the repeated

vertices are equivalent, this approach results in many equivalent solutions which

can make the 1-TSP difficult to solve. These equivalent solutions can be avoided

by making each duplicated vertex only accessible from a few other vertices by

giving some edges infinite weight [92]. Rather than duplicate the shared vertex,

it can be removed, and then after chopping up the solution to the smaller 1-TSP,

each partial path can be connected back to the home vertex to get an m-TSP

solution [24, 138]. When performing k-opt on a 1-TSP solution that will eventually

get split into multiple pieces, the requirement that the improved solution must be

a single cycle can be relaxed [153]. These approaches allow any 1-TSP heuristic

to be used for the m-TSP but they can only be used for the minsum and not for

the minmax.

The minmax m-TSP is generally much more difficult as the cost function only

depends on one salesperson’s path at a time and is non-linear. Some changes to

the solution may result in a change in which salesperson has the longest path

while others may have no effect on the minmax cost even though the change re-

duces the length of a salesperson’s paths. Most m-TSP heuristics use a common

approach of cycle generation, improvement, and recombination. Initial sets of cy-

cles can be generated by a modified version of Christofides’ algorithm [30, 62],

k-means clustering [103, 144], k-centers clustering [143], nearest neighbor, greedy,

or random heuristics. These cycles can be improved by tabu search [149], sim-

ulated annealing [172], compressed annealing [125], or general variable neighbor-

hood search [176]. If many solutions are generated, they can be recombined using

32

I. Vandermeulen

evolutionary methods [6], ant colony optimization [123], invasive weed optimiza-

tion [191], or a memetic algorithm [194]. These algorithms are all based on generic

combinatorial optimization techniques and do not use any intuition about the ac-

tual structure of the minmax m-TSP. In Chapter 3, I present a combinatorial

algorithm developed specifically for the minmax m-TSP which partitions a graph

based on a minmax criterion, then solves the 1-TSP on each subgraph of the par-

tition, and then improves these paths, again using a minmax criterion. In addition

to being more intuitive, this algorithm has outperformed the state-of-the-art m-

TSP algorithms [103, 194] in terms of solution quality and computation time on

several large scale test problems.

2.3 Robot-to-robot communication

As robots become more common in society, there will be more opportunities for

robots to interact and cooperate with each other. When humans cooperate, we can

achieve things that wouldn’t be possible for a single person, and we can work much

faster than if we worked alone. Similarly, robot teams can cooperate to work faster

and accomplish more complex tasks. How effectively they can cooperate depends

on two things:

1. How effectively they can communicate to share information and make plans

for the team; and

2. Whether or not they have algorithms that can take advantage of their ability

to communicate.

How well they can communicate depends on the robots’ hardware, whereas their

ability to exploit communication depends on their software. Although my thesis

focuses on how robots can use communication to their advantage, any algorithm

for coordinating robots is only effective if the robots can actually communicate as

well as the algorithm expects.

33

2.3. Robot-to-robot communication

2.3.1 Realistic communication models

Most robots communicate through some form of wireless communication, such as

light, sound, or radio waves. These wireless signals do not have infinite range. They

are often blocked, attenuated, or reflected by various solid obstacles commonly

encountered in typical indoor or outdoor environments. Wireless communication

depends on signal strength which is affected by three phenomena [140]:

1. Path loss is a linear decrease in strength due to distance from the signal

source. The decrease in signal strength depends on the environment and type

of signal, however, it has experimentally been measured to approximately

follow an inverse square or inverse cube law [141].

2. Shadowing is loss in signal strength due to obstacles between the source and

receiver. Although some obstacles do not fully block certain types of signal,

we will treat it as a binary effect where signals can only be transmitted if

there is a direct line-of-sight between the source and receiver.

3. Multipath fading is caused by destructive interference when a signal re-

flects off of different surfaces and multiple signals are all received with dif-

ferent phase shifts. Its effect tends to be small and stochastic.

Based on these phenomena, the two main factors that determine how well two

robots can communicate are distance and line-of-sight.

The effects of distance and line-of-sight can be combined to create several

different communication models (Figure 2.6). Depending on the type of signal and

properties of obstacles, line-of-sight may have little to no effect (e.g. using visible

light to communicate in an environment with glass walls) or may completely block

signals. Distance always decreases signal strength, however this decrease in signal

strength may have different effects on whether or not communication is possible.

Above a certain signal strength, communication is always possible. If the signals

34

I. Vandermeulen

Figure 2.6: Communication between robots can depend on distance, line-of-sight,
or both. Distance can have no effect (left), a binary effect (center),
or a gradual effect (right). If communication signals can pass through
obstacles (top), only distance has an effect; if obstacles block signals
(right), line-of-sight and distance both effect communication.

are strong and the environment is small, the strength will always be above this

threshold and distance has no effect. For weaker signals or larger environments,

if the distance is large enough, the strength will drop below this threshold and

either reduce the probability of communication or prevent communication entirely.

Rather than use a predetermined communication model, it is also possible to

construct a communication map online using data obtained by a team of robots

as they move through their environment [119].

Sometimes robots communication via some intermediate device (e.g. using a

Wi-Fi network). In these cases, distance and line-of-sight still effect communica-

tion. However the strength is not based on the robots’ positions relative to each

other, but instead to their position relative to the intermediate devices on the net-

work. Often, a communication network provides strong enough signals everywhere

that the robots can always communicate.

35

2.3. Robot-to-robot communication

Figure 2.7: For a team of robots to be connected, we don’t necessarily need all pairs
of robots to be directly connected (left). Similarly, it is not sufficient
to simply check that each robot is connected to another robot (center).
Instead, we need to check that there is at least one, potentially indirect
path between any two robots (right).

2.3.2 Maintaining connectivity

An easy way to enable coordination in a team of robots is to constrain their motion

so that the entire team is always connected. What does connectivity mean for a

team? For two robots, the team is connected if the two robots can communicate

directly. For teams of m > 2 robots, we don’t need all the robots to be able to

communicate directly. Instead, we simply require each robot to be connected to

every other robot by some chain of connected robots (Figure 2.7).

In mathematical terms, we require the communication graph to be connected.

At a first glance, it is not obvious how to check that a graph is connected. A suffi-

cient, but not necessary, condition is that every pair of robots is directly connected.

A necessary, but not sufficient condition is that every robot is connected to another

robot. We need some in between criterion condition which is both necessary and

sufficient. It turns out that we can determine a graph’s connectivity by examin-

ing its Fiedler eigenvalue, the second smallest eigenvalue of the graph’s Laplacian

matrix [59]. If this eigenvalue is zero, the graph is disconnected; if it is strictly

positive, the graph is connected. The Laplacian matrix can be computed directly

36

I. Vandermeulen

from the adjacency matrix and eigenvalues can be computed in cubic time, so we

can test whether or not a team of robots is connected in O(m3). Larger values of

the Fiedler eigenvalue indicate a larger average number of communication routes

between pairs of robots (or better average strength if the Laplacian is weighted by

signal strength).

Algorithms that maintain connectivity often use the Fiedler eigenvalue. Weight-

ing the Laplacian by signal strength results in a Laplacian that changes contin-

uously as robots move and so a gradient ascent can be used to find directions

which maintain or improve connectivity of the network [179]. A direction of mo-

tion which causes the Fiedler eigenvalue to increase can be combined with other

directions related to the robot’s task to enable the team to accomplish their task

without losing connectivity [163]. The relationship between a robot’s position and

the team’s Fiedler eigenvalue can also be used to construct potential fields that

can be added to potential fields for collision avoidance to maintain connectivity

and prevent collisions, both between robots and with obstacles [46, 205]. These

approaches to maintaining connectivity always assume that the network topology

is constant as changing topology results in discontinuities in the Fiedler eigenvalue.

An alternative way to enforce connectivity is to use it as an explicit constraint

when robots plan their paths. This constraint can significantly reduce where robots

can move, especially when limited by line-of-sight. As a result, it is often only use-

ful when there are large numbers of robots and several of the robots just behave

as routers forming chains of communication between far apart robots that are per-

forming other tasks [151]. Alternatively, the team can split into two smaller teams

provided they plan a time and place to rendezvous and each robot is constrained

to stay connected to the other robots in its smaller team [156].

37

2.3. Robot-to-robot communication

2.3.3 Occasional connectivity

Communication constraints can be restrictive especially for robots and environ-

ments with poor communication channels. Connectivity generally requires the

robots to be near each other and coordinate their motion, whereas many other

tasks, such as exploration [7], benefit from robots spreading out without necessar-

ily maintaining connectivity. Since these objectives are competing, in many cases

it may be more efficient for the team to only communicate occasionally.

There are several ways to coordinate robotic behavior without always having a

connected network. If the connectivity of the graph varies over time, the network

can be described by a time-varying graph. There are many different notions of con-

nectivity for time-varying graphs [32], but as long as the communication graph is

recurrently connected, information can flow throughout the graph even if it is never

fully connected at any instance. Periodic connectivity is a more restrictive form of

time-vary connectivity where robots’ communication network must be connected

at periodic intervals but doesn’t need to be connected in between. This form of

connectivity is relatively easy to implement and fairly flexible, as individual robots

only have their paths constrained at certain times and can plan independently be-

tween these meetings [80, 94]. This approach allows the robots to meet in different

locations at different times and does not require them to be constantly connected.

Recurrent connectivity is a less restrictive requirement because the entire network

doesn’t have to ever be connected simultaneously. If there are sufficiently many

robots in an environment, it is likely that the network will be recurrently connected

even if the robots do not consider connectivity when planning their paths and just

opportunistically communicate with robots who happen to be nearby [199]. In

Chapter 5, I present a form of recurrent connectivity where robots normally do

not consider communication when planning and only plan based on communica-

tion requirements when they have a need to share information or coordinate with

38

I. Vandermeulen

a disconnected robot.

2.3.4 Robotic search

Sometimes, a team of robots gets separated. The two subteams (possibly a single

robot team) cannot communicate when separated so they cannot plan where to

meet and will instead need to search for each other. In robotics, search problems

can be broadly classified based on the behavior of the target robot [4, 40, 159].

• Rendezvous is when the target is cooperative. This situation is symmetric

as both robots are both simultaneously trying to find each other.

• Pursuit-evasion is when the target is actively avoiding the searcher. Often,

the target is assumed to move infinitely fast, and the searcher uses a path

that traps the target in a corner.

• Search is when the target is indifferent to the searcher. This target could

be stationary or mobile. If it is mobile, its motion does not depend at all on

what the searcher is doing.

In a cooperative team, the target is another robot in the team and is therefore never

adversarial. The target may be actively searching for the searcher, resulting in a

rendezvous problem, or it may be performing some other task, resulting in a search

problem. This rendezvous-search problem—central to my coordination approach

(Chapter 5)—can be formalized similarly to the rendezvous-evasion problem [5]

where the searcher uses a mixed strategy dependent on the probability that its

target is friendly.

Searching for a stationary target is as simple as finding a path that can see the

entire environment, which can be achieved by solving a version of the TSP [114]

or the related Chinese postperson problem [93]. A moving target is more difficult

to find because the searcher may have to visit the same location multiple times

39

2.4. Coverage

before finding the target. Typically, moving targets are modelled using a Markov

model, or similar probabilistic model, and this model is used to maintain a belief

about the target’s position. Then the searcher can plan a path by solving an NP-

hard optimization problem using a technique such as branch-and-bound [115] or

by solving a partially observed Markov decision process [81].

When two robots are attempting to rendezvous, they both use the same strat-

egy to search for each other. A simple strategy is to have one robot remain in

one place while the other robot searches for it [8]. Since the robots cannot com-

municate, they have no way to choose which robot should search so each robot

will randomly decide whether to search or wait for a period of time and hope

that its teammate chooses the other behavior. To avoid the one quarter chance

that both robots choose to wait, they can use a different approach where both

robots always search by travelling between the most distinctive several locations

in the environment [52]. As long as both robots have equivalent ways of measuring

distinctiveness, they will both have a common set of locations despite not commu-

nicating and will be more likely to rendezvous faster than if both robots searched

every part of the environment [33].

2.4 Coverage

Robotic coverage is task where a robot must travel over every point in an environ-

ment. Lawn mowing, painting, milling, vacuuming, plowing, and surveillance are

all coverage problems. In each application, the robot’s tool (e.g. rotating blade,

paint brush, or camera) traces out a two dimensional region as it moves (Fig-

ure 2.8). Coverage planning refers to the problem of finding a path for the robot

which results in its tool covering the required area. Ideally, the planned coverage

path minimizes some criterion such as the time needed to follow that path.

Coverage is closely related to the TSP (Subsection 2.2.2) and is also NP-hard

40

I. Vandermeulen

Figure 2.8: When a robot moves through its environment, its tool sweeps out a
2-dimensional region along its path. The task of coverage is to find a
short path so that this region covers the whole space.

Figure 2.9: Coverage of a trapezoid using two strategies. Contour-parallel paths
(left) follow the region’s perimeter; direction-parallel paths (right)
move back in forth in straight lines.

[14]. Both problems involve travelling to many different locations in an order

that must be chosen to complete the task as efficiently as possible. In the TSP,

the salesperson must travel to cities which are predefined locations. In coverage,

the robot does not have predefined locations. Instead, it can choose any set of

regions—each of which can be covered by simple motion—so that when the robot

visits and covers all of them, it will cover the whole environment. This set of regions

is a partition of the entire space called a decomposition. Typically, the regions are

small and have simple geometry so they can be covered by simple strategies such

as contour-parallel or direction-parallel paths [74] (Figure 2.9). The order that

cells are covered is determined by solving the TSP to get a full coverage plan.

41

2.4. Coverage

Figure 2.10: Geometric decompositions used in coverage are typically classified as
either exact or approximate. Exact decompositions (left) consist of
large cells of varying shapes and sizes. Approximate decompositions
(right) consist of many small identically shaped cells. Here, we only
show the portion of cells near the boundary which are inside the
environment.

2.4.1 Decompositions

Many coverage algorithms are based on a geometric decomposition of the envi-

ronment [37, 65]. Basic coverage strategies like the contour- and direction-parallel

strategies only work well in simple convex environments. For non-convex environ-

ments, a decomposition divides the environment into several small convex regions

called cells so that these strategies can still be applied. As there are many ways to

divide a polygon into several smaller pieces, there are many different kinds of de-

compositions used in coverage. They are broadly classified as exact or approximate

(Figure 2.10).

Exact decompositions divide the environment into several cells that vary in

size but whose union is exactly equal to the original environment. The cells are

typically large and have simple geometries but can be generated by several dif-

ferent methods. The boustrophedon decomposition slices the environment using

parallel vertical lines which are drawn at any x value where the topology of the

environment changes [38]. A Morse decomposition slices the environment based

42

I. Vandermeulen

on the topology of level sets of a special function called a Morse function [1] (Fig-

ure 2.11). This approach can be particularly beneficial on uneven terrain, where

the elevation is used as a Morse function, and the resulting coverage paths limit

the amount the robot must drive up or downhill [64]. In the special case where the

Morse function is linear, the resulting decomposition is a boustrophedon decom-

position [109]! These kinds of decompositions are particularly useful as a robot

can cover each cell by moving along level set curves, which for the boustrophedon

decomposition results in direction-parallel paths. The name boustrophedon means

“the way of the ox” describing this back-and-forth method of covering a cell. Since

the boustrophedon decomposition is based on changes in topology along straight

lines, it can be generated in an unknown environment by two robots which travel

along parallel paths and can detect obstacles between them via occlusion [156].

Approximate decompositions use small cells that are all the same shape and

size—usually smaller than the footprint of the robot’s tool. The idea is that if the

robot’s tool passes over every cell of such a decomposition, then it has effectively

covered the entire space (Figure 2.12). Although these decompositions are typically

assumed to be square grids, hexagonal or triangular grids could work equally

well. Once the decomposition has been computed, the shortest path on it can be

found by solving the TSP on the set of grid cells, or using a fast heuristic [206].

Alternatively, if a larger grid—twice the size of the robot’s tool—is used, then the

robot can simply follow around both sides of the MST and avoid having to solve

the TSP [2]. These approximate approaches often do not work well in practice

as the decomposition results in a large number of cells, which is computationally

expensive, and the restriction to a grid can cause the robot to miss spots near the

walls.

My coverage algorithm (Chapter 4) uses a decomposition which is neither grid-

based or exact. Instead, each cell of the decomposition is a unit width rectangle

called a rank. These ranks can be any length and have any orientation. They

43

2.4. Coverage

Figure 2.11: The Morse decomposition (left) is defined using the level sets of a
Morse function (here, the distance from a central point) as bound-
aries between cells are defined at level sets where the topology of the
environment changes. The boustrophedon decomposition (right) is a
special case where the Morse function is linear. Coverage paths for
each decomposition can be obtained by connecting the simple paths
for each cell (bottom).

Figure 2.12: Approximate decompositions can be used by solving the TSP on a
fine grid (left) or by following the perimeter of the MST on a coarser
grid (right).

44

I. Vandermeulen

completely cover the environment (except possibly some small parts in corners

that are too narrow for the robot) but there is usually some overlap between ranks

to guarantee full coverage as robots can miss small pieces when turning.

2.4.2 Turn-minimization

A lot of coverage algorithms only care about finding the shortest coverage path.

They don’t care about the quality of this path. In general, paths with many

turns are bad. Most robots are able to move efficiently in straight lines, but have

difficulties making precise turns. Furthermore, robots performing specific tasks

might be unable to do that task effectively while turning. When a painting robot

turns, it will leave more paint on the inside part of the turn than the outside,

resulting in an inconsistent thickness of paint [11]. When a UAV with a fixed

camera turns, its camera does not point at the ground so it is less effective at

scanning or surveilling during a turn [15]. Turns also take time—the robot likely

needs to come to a stop or at least decelerate—so the time it takes a robot to

follow a path is not directly proportional to its length.

All of these factors make turn-minimization an important criterion in coverage

planning in addition to distance minimization. For a convex polygon, turns are

minimized by using a direction-parallel strategy whose ranks are perpendicular

to the direction that minimizes the height of the polygon [85] (Figure 2.13). For

non-convex polygons, simply minimizing the number of turns on each convex cell

of a decomposition does not mean that we have minimized turns for the entire

polygon. The total number of turns will depend on which decomposition is used.

The ranks generated by my coverage algorithm (Chapter 4) are designed to be

as long as possible to minimize the total number of ranks which is equivalent to

minimizing the number of turns.

45

2.4. Coverage

Figure 2.13: A convex cell can be covered using a minimal number of turns using a
direction-parallel strategy with the ranks parallel to one of the cell’s
edges. The minimizing direction (second from right) is perpendicular
to the direction that minimizes the height of the polygon.

46

Chapter 3

Balanced task allocation in

multirobot teams

Collaboration between robots involves sharing work. The work can usually be

broken down into a set of small tasks, which each must be performed by a single

robot. A team of delivery robots has to complete many individual deliveries that

are each a single task. For monitoring robots, individual tasks could be taking a

photograph or measuring some data at a specific location. When robotic snow-

plows clear snow from city streets, their basic tasks are clearing the snow from

a single road or short section of a road. In all of these examples, all the tasks

only require one robot and in theory, the entire job could be performed by a single

robot. However, it is often much more efficient to use multiple robots as n robots

can complete all the necessary tasks in approximately 1/nth of the time it would

take a single robot.

Teams of robots can share work by assigning different tasks to each robot.

The entire point of using multiple robots is to have the team finish the mission as

quickly as possible. Therefore, the tasks must be assigned to minimize

Time taken by team = max
robot∈team

{Time taken by robot} .

When a robot is assigned a task associated with a physical location, it must travel

to that location before completing the task. The total time taken to complete its

47

3.1. Related work

assigned tasks is the time spent performing each task plus the time spent travelling

between tasks. As the time needed to travel to any task depends on where the robot

is coming from, the travel time depends on which task was previous. Therefore the

order of tasks affects how quickly each robot completes its assignment and must

be considered when fairly assigning tasks among robots.

This task allocation problem is equivalent to the minmax multiple travelling

salesperson problem (m-TSP). In this chapter, I present a new combinatorial ap-

proach to solving the minmax m-TSP. My approach is based on the perspective

of the m-TSP as a partition problem instead of a routing problem (Figure 3.1)

and exploits a near-monotonic relationship between average and minimum span-

ning cycle lengths (Subsection 3.3.1). This near-monotonicity results in a novel

transformation between two optimization problems whose cost functions are not

proportional. My task allocation solves the transformed optimization problem,

which uses the average spanning cycle length, which is easier to compute, as a

cost function. The algorithm consists of partitioning (Section 3.4) and routing

(Section 3.5) phases, can be decentralized (Section 3.7), and can incorporate con-

straints on the robots’ start and end locations (Section 3.8). Some comparisons

with existing minmax m-TSP algorithms are presented in Section 3.9. This chap-

ter is an expanded version of my paper “Balanced task allocation by partitioning

the minmax multiple travelling salesperson problem” [187].

3.1 Related work

One way to formulate task allocation problems is with the central objective of max-

imizing the utility of the tasks allocated to each robot [68, 111]. For heterogeneous

teams, different robots have different abilities so the utility of each task depends on

which robot it is assigned to [67]; for homogeneous teams, all robots are identical

so the utility depends only on the task [134]. Utility can be defined as a sum over

48

I. Vandermeulen

166.8

145.3

165.8
166.8

145.3

165.8

Figure 3.1: The minmax m-TSP is often defined as a routing problem (left) where
the objective is to find several cycles on the same graph. Alternatively,
it can be viewed as a partition problem (right) where the objective is
to divide the graph into several subgraphs. By measuring a subgraph’s
size as the length of its shortest size, the two perspectives are equiva-
lent.

subsets of tasks and is not necessarily the linear sum of the utilities of individual

tasks [146, 168]. The objective of task allocation is to maximize either the sum of

utilities, or the utility of the robot with the smallest utility [207]. Maximizing the

smallest utility—equivalent to minimizing the maximum time required—results in

a balanced allocation of tasks, which I believe is much more useful for most robotic

applications.

Economic methods, such as auctions [36, 67, 145], markets [47, 207], or to-

ken exchange [57] are often used to assign tasks. These methods are distributed:

tasks are sequentially assigned to individual robots but can be transferred be-

tween robots when necessary. Alternatively, the same task can be assigned to

multiple robots who then compete to complete tasks and achieve a reward—called

a bounty—after completing a task [198]. Task assignment and path finding are

often combined into a single problem to find optimal assignments while planning

collision free paths [84, 127, 134]. For robots in constrained environments where

49

3.1. Related work

kindodynamic constraints are important, task assignment and kinodynamic plan-

ning can be decoupled by estimating transit times using simplified dynamics to

compute feasible trajectories between every pair of tasks, with a single detailed

trajectory planned for each robot after task allocation [26].

For mobile robots, the combined task allocation and routing problem is closely

related to the m-TSP [13, 102, 166, 184, 202]. The m-TSP asks: “What is the

quickest way for m salespeople to visit a set of n cities?” and is a generalization

of the classic 1-TSP, which is well-known NP-hard routing problem [150]. While

task assignment is primarily a partition problem, the m-TSP is primarily a routing

problem.

The m-TSP (Subsection 2.2.3) has two variants with different objectives:

• The objective of the minsum m-TSP is to minimize the total distance trav-

elled by the team,

dtotal =
∑

robot∈team

drobot,

without any requirement that each robot does a similar amount of work. One

robot may perform the majority of the tasks—especially if a lot of them are

located near each other—travelling much further and finishing much later

than its teammates who only do a few tasks each.

• The objective of the minmax m-TSP is to minimize the mission time,

tmission = max
robot∈team

{
drobot

srobot

}
,

even if it results in the team travelling a longer total distance. Under this

objective, if some robot were to finish while another robot still has several

tasks left, a better assignment would have some of the slowest robot’s tasks

transferred to a faster robot. The resulting assignment would have all robots

finishing at approximately the same, balancing the workload.

50

I. Vandermeulen

Of these two conflicting objectives, the minmax objective results in a team of n

robots completing a mission in approximately 1/nth of the time needed by a sin-

gle robot, whereas the minsum objective does not drastically improve the total

distance travelled by the team as more robots are added. My task allocation algo-

rithm uses a minmax objective as it takes advantage of coordination to complete

the mission faster.

Both variants of the m-TSP are NP-hard as they are generalization of the NP-

hard 1-TSP [150] and so these problems are usually solved by heuristics which run

in polynomial time but are not guaranteed to find the optimal solution. As the

minmax m-TSP is non-linear in the individual robots’ path lengths, heuristics for

the minsum m-TSP [24, 25, 72, 92, 138, 153, 181]—which is linear in the individual

robots’ path lengths—are not easily generalizable to the minmax m-TSP. Existing

successful heuristics for the minmax m-TSP have used many different techniques

such as:

• Tabu search [149]

• Simulated annealing [143, 172]

• Compressed annealing [125]

• Markets [103]

• Ant colony optimization [123, 125]

• Invasive weed optimization [191]

• Variable neighborhood search [176]

• Evolutionary algorithms [6, 30, 194]

Many of these techniques use solutions to the 1-TSP. There are several efficient

techniques for solving the 1-TSP, most notably the open-source LKH [76] and

Concorde [42] solvers which are both based on the Lin–Kernighan heuristic [122]

(Section D.3).

51

3.2. Task allocation and the m-TSP

3.2 Task allocation and the m-TSP

The combined task allocation and routing problem can be defined on a complete

graph G = (V , E) with vertices V representing tasks and edge set E = V × V

representing transit between two tasks. Task completion times are represented by a

function, wvertex : V → R≥0, and transit times are represented by wedge : E → R≥0.

I will denote the number of tasks by n and the number of robots by m.

Suppose robot i is assigned a set of tasks, Vi ⊂ V with ni = |Vi|. The time

needed to complete these tasks depends on the order they are completed. This

order can be represented as a cycle c = (e0, . . . , eni) which visits each vertex of Vi
once. For a set of tasks, Vi, and route, c, the completion time is

ttotal(Vi, c) =
∑

v∈Vi
wvertex(v) +

∑

e∈c
wedge(e). (3.1)

Each vertex is incident to exactly two edges of the cycle, so we can define an overall

weight function w : E → R≥0 by

w(e) =
1

2

(
wvertex(v0) + wvertex(v1)

)
+ wedge(e)

where v0 and v1 are the two edges of e. Rather than use the vertex weights, wvertex,

and edge weights wedge, we can use this overall weight and simply rewrite (3.1) as

ttotal(Vi, c) =
∑

e∈c
w(e).

The resulting task allocation problem which depends only on w is equivalent to

the original problem depending on wvertex and wedge. For the remainder of this

chapter, I will simplify notation by using the overall weight, w, instead of wvertex

and wedge.

A subset of vertices, Vi ⊂ V , induces a subgraph, Gi of G. This subgraph

52

I. Vandermeulen

contains all edges of G between two vertices of Vi and is therefore precisely Gi =

(Vi,Vi × Vi). A spanning cycle on Gi is any cycle which visits each vertex of Vi
exactly once. Let c∗(Gi) be the shortest spanning cycle on Gi. Robot i can complete

its assigned tasks as quickly as possible by following c∗(Gi) and so we define the

size of the subgraph, Gi, by

Smin(Gi) =
∑

e∈c∗(Gi)
w(e). (3.2)

Computing Smin is difficult because finding the shortest spanning cycle is equiva-

lent to solving the 1-TSP which is NP-hard [150]. In Subsection 3.3.1 we define

an alternate size of subgraphs which can be computed in polynomial time and

provide relationship between it and Smin. As far as I am aware, this proxy has not

previously been studied in the literature.

A partition, P = {G1, . . . ,Gm}, of G is a set of subgraphs with each vertex of G

contained in at least one (usually exactly one) subgraph, Gi. I will define the cost

of a partition as the size of that partition’s largest subgraph,

Cmin(P) = max
Gi∈P
{Smin(Gi)} . (3.3)

A subgraph’s size equals the minimum amount of time needed for a robot to

complete all of the tasks in that subgraph, so the cost of a partition equals the

team’s total mission time if tasks are assigned according to P . Using this cost

function, the task assignment problem is equivalent to finding the partition, P∗,

of G with the smallest cost, Cmin. I will call this partition problem the Minimum

Partition Problem (MPP).

Problem 3.1 (MPP). Let G = (V , E , w) be a complete weighted graph. For a

given m ≥ 2, find a partition, P = {G1, . . . ,Gm}, of G which minimizes Cmin as

defined in (3.3).

53

3.2. Task allocation and the m-TSP

The MPP is closely related to the minmax multiple travelling salesperson

problem (m-TSP). A solution to the m-TSP is a set of m disjoint cycles, C =

{c1, . . . , cm}, such that each v ∈ V is in at least one (usually exactly one) cycle of

C. The cost of a candidate solution is the length of its longest cycle:

C(C) = max
c∈C

{∑

e∈c
w(e)

}
. (3.4)

The objective of the m-TSP is to find the set of cycles, C∗, on G with the smallest

cost, C.

Problem 3.2 (m-TSP). Let G = (V , E , w) be a complete weighted graph. For a

given m ≥ 2, find a set of cycles, C = {c1, . . . , cm}, on G which minimizes C as

defined in (3.4).

The MPP and m-TSP are equivalent problems. A solution to the MPP can be

converted to a solution to the m-TSP by solving the 1-TSP on each subgraph of

the partition. A solution to the m-TSP can be converted to a solution to the MPP

by defining each subgraph by the vertices of a single cycle of the m-TSP solution.

For the remainder of the chapter, all cycles are spanning (on their subgraph) and

I will therefore refer to spanning cycles simply as cycles.

Implicit in the definitions I’ve given for both problems is that the robots’ paths

are all cycles. Having a cyclic path means that the robot starts and ends at the

same task (although it only performs the task once). This assumption is not very

realistic! In most situations robots have to start and end in the specific locations—

usually starting at its current location and ending at some sort of depot or charging

station. In many cases, all robots start and end at the same depot, and so a single

“task” has to be part of each robot’s path, which is the only case where a single

task should assigned to more than one robot. Although the difference between a

cycle and a path with fixed endpoints may seem significant, it is actually very easy

to modify the solver based on these kinds of constraints. To simplify explanations,

54

I. Vandermeulen

I will initially explain my approach using cyclic paths with each task assigned

to exactly one robot. Then in Section 3.8, I will describe the few modifications

necessary to extend the approach to these more realistic depot situations.

3.3 A proxy for minimum cycle length

My plan is to solve the task allocation problem by solving the MPP. This problem

is NP-hard, so I will have to use a heuristic to solve it. A typical heuristic would

look something like:

1. Choose a random partition, P .

2. Apply a local transformation (e.g. moving one task from one subgraph to

another subgraph) to P to get a similar partition, P ′.

3. If Cmin(P ′) < Cmin(P), set P = P ′.

4. Repeat steps 2–3 until the transformation can no longer improve P .

Although this type of heuristic gets used for all kinds of combinatorial problems,

there is a fatal flaw here. In step 3, we need to compare Cmin(P) with Cmin(P ′)

but computing Cmin involves solving the 1-TSP which is NP-hard!

Right away, this whole idea of solving the task allocation problem as a partition

problem (the MPP) instead of a routing problem (the m-TSP) seems like a bad

idea. Originally, we had an NP-hard problem, but now my idea for a heuristic

involves solving multiple NP-hard problems in every single round of the heuristic!

The way out of this problem is to solve a slightly different problem instead of

Problem 3.1. Instead of using the NP-hard Cmin as the cost function, we’ll use a

different cost function which is easier to compute.

Problem 3.3 (Average Partition Problem (APP)). Let G = (V , E) be a complete

weighted graph. For a given m ≥ 2, find a partition, P = {G1, . . . ,Gm}, of G which

55

3.3. A proxy for minimum cycle length

minimizes

Cavg(P) = max
Gi∈P
{Savg(Gi)} (3.5)

where Savg(Gi) is the average length of a cycle on the subgraph, Gi.

The only difference between the APP and MPP is that the APP uses the

average cycle length in its cost function instead of the minimum cycle length

(Figure 3.2). The average cycle length can be computed in quadratic time. Since

Gi is a complete subgraph, each of its edges is equally likely to appear in a cycle.

There are |Ei| = ni(ni−1)
2

edges in Gi and ni edges in a cycle so

Savg(Gi) = ni
∑

e∈Ei

2

ni(ni − 1)
w(e) =

2

ni − 1

∑

e∈Ei
w(e). (3.6)

Using this formula, Savg(Gi) can be computed in O(n2
i). Computing Cavg(P) re-

quires computation of Savg(Gi) for all m subgraphs of P . As
∑m

i=1 n
2
i < n2, it can

be computed in O(n2).

The average size of a subgraph as defined in (3.6) is quite similar to the utility

functions defined as sums of utilities of subsets of tasks which are used in other

task allocation approaches [146]. The cost of a set of tasks, Vi, is simply the sum

of costs over pairs of tasks with the cost of a pair of tasks equal to 2
ni−1

w((v0, v1)).

In contrast, the minimum size in (3.2) cannot be expressed as the sum of costs of

subsets of tasks as it only depends on the cost of some pairs of tasks and not on

all pairs of tasks.

3.3.1 Is Cavg a good proxy for Cmin?

The idea is to use the solution to Problem 3.3 as if it is a solution to Problem 3.1.

This idea uses the average cycle length as a proxy for the minimum cycle length.

At first, it may seem that the average length is a terrible proxy for the minimum

length. The average cycle is much longer than the shortest cycle, and these lengths

56

I. Vandermeulen

Cmin(P) = 166.8

166.8

145.3

165.8

Cavg(P) = 341.0

266.1

219.3

341.0

Figure 3.2: The MPP and APP use different cost functions for the same partition.
Both problems define the cost of the partition as the size of the largest
subgraph, but the size is defined differently. The MPP’s size function
uses the length of the shortest cycle on the subgraph which only de-
pends on some edges of the graph. The APP’s size function uses the
average length of all cycles on the subgraph which gives equal weight
to every edge of the graph.

are definitely not proportional. For the three subgraphs in Figure 3.2, the ratios

of Savg

Smin
are 1.51, 1.60, and 2.06.

Ultimately, it doesn’t matter if the two lengths are equal or proportional at all,

as long as they can both be used to get similar solutions to the partition problems.

In step 3 of my original idea for a heuristic for the MPP, we have to check whether

C(P ′) < C(P) but the actual values of these costs don’t matter. Therefore any

cost function which would order the same partitions the same way is equally good.

This property is just monotonicity! If Cavg is related to Cmin by some monotonically

increasing function, then the heuristic would behave identically with either cost so

it is a good proxy.

The reason why we only need to worry about monotonicity, is because mono-

tonically increasing functions distribute over the min{·} operator. If f : R→ R is

57

3.3. A proxy for minimum cycle length

monotonically increasing then

f (min{x0, . . . , xn}) = min{f(x0), . . . , f(xn)}.

Similarly, monotonically increasing functions distribute over the max operator,

which relates the cost of a partition to the sizes of its subgraphs. Therefore, if the

relationship between Savg and Smin is monotonic, this property will transfer to the

relationship between Cavg and Cmin. Therefore we need to check that if Gi and Gj
are two subgraphs of G then Savg(Gi) < Savg(Gj) if and only if Smin(Gi) < Smin(Gj).

In general, the average and minimum sizes are not related by a strictly mono-

tonically increasing function. However, for many different types of graphs (Fig-

ure 3.3) the two measurements are approximately monotonic as their relationship

can be expressed by

Smin(Gi) = f(Savg(Gi)) + ν (3.7)

where f : R≥0 → R≥0 is a monotonically increasing function and ν is zero-mean

noise. For any α ∈ (0, 0.5), let B−α , B
+
α ∈ R>0 be defined such that

P
[
ν ≥ −B−α

]
= P

[
ν ≤ +B+

α

]
= 1− α.

For α = 0.025, [−B−α , B+
α] is the 95% confidence interval for ν. I will use these

quantiles to establish that solutions to the APP are good solutions for the MPP.

Lemma 3.1 establishes a relationship between Cmin and Cavg for partitions which

is equivalent to the relationship (3.7) for subgraphs. Finally, I use this relationship

between the costs of partitions to prove that the partition that minimizes Cmin,

and hence solves the APP, tends to have a low Cavg and is thus a good solution

for the MPP (Theorem 3.1 and Figure 3.5). Although these probabilistic results

are complex, the analogous result when ν = 0 (Corollary 3.2) is very simple.

58

I. Vandermeulen

Savg

S
m
in

Savg

S
m
in

Savg

S
m
in

Savg

S
m
in

Figure 3.3: Minimum vs average cycle lengths of randomly sampled subgraphs of
a 2D Euclidean graph (top left), a 3D Euclidean graph (top right),
an Erdős-Rényi random graph with weights from an exponential dis-
tribution with parameter 1 (bottom left), and the graph of the lower
48 US capitals (bottom right). Dots represents the average and esti-
mated minimum cycle lengths (approximated using Concorde [42]) of
a randomly sampled subgraph, the solid line is the mean relationship
between Savg and Smin, and the dashed lines are the 2.5% and 97.5%
quantiles.

59

3.3. A proxy for minimum cycle length

Lemma 3.1. Suppose that G is such that (3.7) holds, then

P
[
Cmin(P) ≥ f(Cavg(P))−B−α

]
≥ 1− α

P
[
Cmin(P) ≤ f(Cavg(P)) +B+

α

]
≥ 1− α

for any partition P of G.

Proof. Some of the quantities used in this proof are colored according to Figure 3.4

to aid understanding. Let G∗min,G∗avg ∈ P be the subgraphs which maximize Smin

and Savg, respectively. By the definitions of Cmin and Cavg, we have Cmin(P) =

Smin(G∗min) and Cavg(P) = Savg(G∗avg) so

P
[
Cmin(P) ≤ f(Cavg(P)) +B+

α

]
= P

[
Smin(G∗min) ≤ f(Savg(G∗avg)) +B+

α

]
.

Since G∗avg maximizes Savg, it is always true that Savg(G∗min) ≤ Savg(G∗avg) = Cavg(P).

The monotonicity of f preserves the inequality so f(Savg(G∗min)) ≤ f(Cavg(P)) and

therefore f(Savg(G∗min)) +B+
α ≤ f(Cavg(P)) +B+

α . If Smin(G∗min) ≤ f(Savg(G∗min)) +B+
α

then Smin(G∗min) ≤ f(Savg(G∗avg)) +B+
α and therefore

P
[
Cmin(P) ≤ f(Cavg(P)) +B+

α

]
≥ P

[
Smin(G∗min) ≤ f(Savg(G∗min)) +B+

α

]
.

Since (3.7) holds the right hand side of this equation is at least 1−α which proves

the second inequality.

The first inequality can be proven similarly due to the symmetry of the problem

with respect to B−α and B+
α . Using the definitions of G∗min and G∗avg, we have

P
[
Cmin(P) ≥ f(Cavg(P))−B−α

]
= P

[
Smin(G∗min) ≥ f(Savg(G∗avg))−B−α

]
.

Since G∗min maximizes Smin, it is always true that Smin(G∗min) ≥ Smin(G∗avg). If

60

I. Vandermeulen

Smin(G∗avg) ≥ f(Savg(G∗avg))−B−α then Smin(G∗min) ≥ f(Savg(G∗avg))−B−α and there-

fore

P
[
Cmin(P) ≥ f(Cavg(P))−B−α

]
≥ P

[
Smin(G∗avg) ≥ f(Savg(G∗avg))−B−α

]
.

Since (3.7) holds the right hand side of this equation is at least 1−α which proves

the first inequality.

Corollary 3.1. Suppose there exists a graph, G, and monotonically increasing

function, f : R≥0 → R≥0, such that Smin(Gi) = f(Savg(Gi)) for every subgraph, Gi,

of G (i.e. (3.7) holds with ν = 0). Then Cmin(P) = f(Cavg(P)) for every partition,

P, of G.

Theorem 3.1. Suppose that G is such that (3.7) holds, then

P
[
Cmin(P∗avg) ≤ Cmin(P∗min) +B−α +B+

α

]
≥ (1− α)2

where P∗avg and P∗min are the partitions that minimize Cavg and Cmin as defined in

(3.5) and (3.3).

Proof. Some quantities used in this proof are colored according to Figure 3.5 to

aid understanding. First, we define the events:

A : Cmin(P∗avg) ≤ Cmin(P∗min) +B−α +B+
α

B : Cmin(P∗avg) ≤ f(Cavg(P∗avg)) +B+
α

C : Cmin(P∗min) ≥ f(Cavg(P∗min))−B−α .

Since P∗avg minimizes Cavg, it is always true that Cavg(P∗avg) ≤ Cavg(P∗min). The

monotonicity of f preserves the inequality so f(Cavg(P∗avg)) ≤ f(Cavg(P∗min)). If B

61

3.3. A proxy for minimum cycle length

Savg(G∗min) Cavg(P) = Savg(G∗avg)

f(Savg(G∗min))−B−
α

f(Cavg(P))−B−
α

Smin(G∗avg)

f(Savg(G∗min))

f(Cavg(P))
Cmin(P) = Smin(G∗min)

f(Savg(G∗min)) +B+
α

f(Cavg(P)) +B+
α

Figure 3.4: Magnified section of the bottom right graph of Figure 3.3 showing
quantities involved in the proof of Lemma 3.1. Light gray dots repre-
sent (Savg(Gi), Smin(Gi)) for subgraphs of att48, the graph of the lower
48 US capitals. The green and red dots represent two subgraphs which
together form a partition P = {G∗avg,G∗min} of G. The large black dot
represents (Cavg(P), Cmin(P)) for this partition.

holds then

Cmin(P∗avg) ≤ f(Cavg(P∗avg)) +B+
α ≤ f(Cavg(P∗min)) +B+

α .

If C also holds, then

Cmin(P∗avg) ≤ f(Cavg(P∗min))−B−α +B−α +B+
α

≤ Cmin(P∗min) +B−α +B+
α

= Cmin(P∗min) +B−α +B+
α .

62

I. Vandermeulen

Cavg(P∗
avg) Cavg(P∗

min)

f(Cavg(P∗
avg))−B−

α

f(Cavg(P∗
min))−B−

α

Cmin(P∗
min)

f(Cavg(P∗
avg))

f(Cavg(P∗
min))

Cmin(P∗
avg)

f(Cavg(P∗
avg)) +B+

α

f(Cavg(P∗
min)) +B+

α

Cmin(P∗
min) +B−

α +B+
α

Figure 3.5: Magnified section of the bottom right graph of Figure 3.3 showing
quantities involved in the proof of Theorem 3.1. Light gray dots rep-
resent (Savg(Gi), Smin(Gi)) for subgraphs G. Dark gray dots represent
(Cavg(P), Cmin(P)) for partitions of G into two subgraphs. The red
and green dots represent the partitions which minimize Cavg and Cmin.

Therefore B∩C⇒ A so P [A] ≥ P [B ∩ C]. As B and C depend on different variables

(P∗avg and P∗min), they are independent so P [A] ≥ P [B]×P [C]. By Lemma 3.1, the

probabilities of B and C are both at least (1−α) and therefore P [A] ≥ (1−α)2.

Corollary 3.2. Suppose there exists a graph, G, and monotonically increasing

function, f : R≥0 → R≥0, such that Smin(Gi) = f(Savg(Gi)) for every subgraph, Gi,

of G (i.e. (3.7) holds with ν = 0). Then P∗avg = P∗min and so the solution to the

APP also solves the MPP.

Theorem 3.1 establishes that Cavg is a good proxy for Cmin when (3.7) holds.

Experimental evidence suggests (3.7) holds for many common graphs (Figure 3.3).

63

3.3. A proxy for minimum cycle length

This result motivates us to use a solution to the APP as a proxy for the solutions

to the MPP when developing a task allocation heuristic. As the APP can itself be

viewed as a heuristic approximation of the MPP, this approach enables us to find

good solutions to the MPP by solving the APP, avoiding the problem of evaluating

the MPP’s cost function which is NP-hard.

Although I have applied a monotonic proxy to the MPP, it is a general tech-

nique that could be applied to other optimization problems. Since monotonically

increasing functions commute with the max{} and min{} operators, the minimizer

of an arbitrary cost function J(·) is also the minimizer of f(J(·)) for any mono-

tonically increasing f . This relationship even holds true if the exact form of f

is not known! For other optimization problems where J(·) is difficult to compute

but f(J(·)) is easy to compute, a similar proxy could be very useful. This type of

proxy is especially useful for minmax (or maxmin) problems since the monotonic

function commutes with both max{} and min{}.

3.3.2 Hardness of the APP

My task allocation heuristic relies on solutions to the APP. Although the APP’s

cost function can be computed in polynomial time, the overall problem is still

NP-hard so we will develop a heuristic for the APP instead of solving it exactly.

Theorem 3.2. The APP is NP-hard.

Proof. I will prove that the APP is NP-hard by reducing the known NP-hard

number partition problem (NPP) [66] to it. The NPP asks “Given a multiset of

positive integers Z with even sum K, does there exist a partition {Z1,Z2} where

Z1 and Z2 both sum to K
2

?” I will reduce this problem to a decision version of the

APP which asks “Given a complete graph, G, with positive weights, does there

exist a partition, {G1,G2}, such that the average cycle length on each subgraph is

equal to L?”

64

I. Vandermeulen

For any instance (Z, K) of the NPP, we can construct an instance, (G, L), of

the APP (Figure 3.6). Let L = K, n = |Z|, and G = (V , E , w) be a complete

weighted graph with |V| = n. Each vi ∈ V corresponds to a zi ∈ Z. The weight of

an edge e = (vi, vj) is defined as w(e) = zi + zj. This reduction can be performed

in quadratic time and can be applied to any instance of the NPP.

Next, we show that the NPP defined by (Z, K) is true if and only if the decision

version of the APP defined by (G, L) is true. Let J1 be a subset of {1, . . . , n}. It

corresponds to a multiset of integers, Z1, and a set of vertices, V1, defined by

Z1 = {zj ∈ Z | j ∈ J1},

V1 = {vj ∈ V | j ∈ J1}.

It also corresponds to G1, a subgraph of G induced by V1. Using this definition,

every subgraph of G corresponds to a unique subset of Z and vice versa.

Every cycle, p, on G1 corresponds to a permutation, (j1, . . . , jn1), of J . This

permutation corresponds to cycle vertices, vj1 , vj2 , . . . , vjn1 , vj1 , and edges, eji =

(vji , vji+1
), where we define jn1+1 = j1. The length of this cycle is

`(p) =

n1∑

i=1

w(eji) =

n1∑

i=1

(zji + zji+1
) =

n1∑

i=1

zji +

n1+1∑

i=2

zji .

Since ji+1 = j1, the two sums are equal so

`(p) = 2

n1∑

i=1

zji = 2
∑

z∈Z1

z.

The length of the cycle does not depend on the order of the vertices, so all cycles

have the same length and so the average cycle length is

Savg(G1) = 2
∑

z∈Z1

z.

65

3.3. A proxy for minimum cycle length

41

49

56

59

61

73

61

64

46

51

57 60

72

50

48

52

58

71
49

53

69

19

22

27

29 30

31

42

41

59

73

51

48

52

58
49

69

19

22

27

29 30

31

42

Figure 3.6: Example of a reduction of the NPP with Z = {19, 22, 27, 29, 30, 31, 42}
and K = 200 to an instance of the APP (left). The solution of the
APP (right) consists of two subgraphs which both have Savg(Gi) = 200.
This solution corresponds to the solution Z1 = {19, 22, 29, 30} and
Z2 = {27, 31, 42} which both sum to K

2
= 100.

From J1, we can define J2 = {1, . . . , n} \ J1 and the corresponding Z2 and G2.

{Z1,Z2} is a partition of Z and {G1,G2} is a partition of G. As J2 is also a subset

of {1, . . . , n}, it is also true that Savg(G2) equals the sum of Z2.

Suppose the NPP is true. Then there exists a partition, {Z1,Z2}, of Z which

both sum to K
2

. This partition corresponds to a partition, {G1,G2}, of G. Both

Savg(G1) and Savg(G2) are equal to the twice sums of Z1 and Z2 which equals

L = 2K
2

so the APP is true. Similarly, if the APP is true, then there exists a par-

tition, {G1,G2}, of G with Savg(G1) and Savg(G2) equal to L so in the corresponding

{Z1,Z2}, both subsets sum to K
2

= L
2

and the NPP is true. Therefore the NPP

can be reduced to the APP and since the NPP is NP-hard, the APP must also be

NP-hard.

Corollary 3.3. The MPP is NP-hard.

Proof. We can prove this theorem using the same reduction from the NPP that

66

I. Vandermeulen

was used in the proof of Theorem 3.2. By the construction of w, all cycles on

G1 were shown to have the same length so Smin(G1) = Savg(G1). This equivalence

makes the APP and MPP equivalent on the graphs defined in the reduction, so

the reduction is valid for either problem. This result establishes that the MPP

would be NP-hard even if Smin(G1) could be computed in polynomial time.

3.4 A task allocation heuristic based on the APP

As the APP is NP-hard, I designed a novel heuristic for solving it (Algorithm 3.3).

It consists of two alternating phases—improvement (Algorithm 3.1) and transfer-

ring outliers (Algorithm 3.2)—which modify an initial partition and create a near

optimal solution to the APP. This solution is then used as a proxy for a solution to

the MPP. My partitioning heuristic is explicitly based on a minmax criterion and

only depends on the value of the edge weight function. Unlike other approaches,

such as k-means clustering [144], it can be used on non-Euclidean graphs which

are important in real-world problems where travel times are not proportional to

as-the-crow-flies distances.

The two phases of my algorithm are used to find and escape local minima.

The improvement phase (Subsection 3.4.1) performs a sequence of local moves

(transfers and swaps) which each reduce the minmax cost for a pair of subgraphs.

The result of this phase is a partition which is a local minimum of the minmax cost

function with respect to the transfer and swap moves. For a given problem, there

may be many partitions that are local minima. The local minimum computed by

Algorithm 3.1 depends heavily on the initial random partition and the random

order that we check possible transfers and swaps.

Rather than simply return the first local minimum we find, we use the outlier

transfer phase (Subsection 3.4.2) to search for other nearby local minima. In

this phase we identify some outliers which have a high individual contribution to

67

3.4. A task allocation heuristic based on the APP

their subgraph’s size relative to other vertices in that subgraph. These outliers

get transferred to another subgraph despite increasing the minmax cost of the

partition. This transfer results in a different partition which is not a local minimum

any may be in the region of attraction of a different local minimum. We can then

perform Algorithm 3.1 again to find this new local minimum. Transferring outliers

is guaranteed to reduce the minsum cost, which is correlated with the minmax cost,

so this new local minimum may have a better minmax cost than the previous local

minimum. The combination of these two phases finds multiple local minimum

and terminates when it finds a local minimum whose cost is the same, or worse,

than the previous local minimum. Although the initial local minimum found by a

single iteration of Algorithm 3.1 is quite sensitive to the initial random partition,

the overall algorithm finds multiple local minima and is much less sensitive to the

initial partition.

3.4.1 Improvement through transfers and swaps

The improvement phase (Algorithm 3.1) transfers and swaps vertices between pairs

of subgraphs to decrease their maximum size. This algorithm improves a partition

until it is a local minimizer of Cavg with respect to the transfer and swap operations.

Algorithm 3.1 requires computation of Savg(Gi) for many graphs which, if computed

from its definition (3.6), would takeO(n2
i). However, if we want to compute Savg for

Gi with one vertex added or removed, we can use Savg(Gi) to speed up computation.

This quick update of Savg uses the total edge weight, W (Gi), and the marginal edge

weight, ∆W (Gi, v), which are defined by

W (Gi) =
∑

e∈Ei
w(e) (3.8)

∆W (Gi, v) =
∑

v′∈Vi
w((v, v′)). (3.9)

68

I. Vandermeulen

Combining (3.6) and (3.8), a subgraph’s size can be written as

Savg(Gi) =
2

ni − 1
W (Gi). (3.10)

The marginal edge weights will be used to efficiently update W (Gi) and Savg(Gi)

when a vertex is added or removed from the graph.

Transfers are the simplest modification of a partition. A transfer consists of a

single vertex v ∈ Vi moving from Gi to Gj. After a transfer (Figure 3.7), the new

subgraphs G ′i and G ′j have sizes

Savg(G ′i) =
2

ni − 2

(
W (Gi)−∆W (Gi, v)

)
(3.11)

Savg(G ′j) =
2

nj − 0

(
W (Gj) + ∆W (Gj, v)

)
. (3.12)

If, for a given partition, we have precomputed ∆W (·, ·) for all pairs for subgraphs

and vertices, then these equations let us compute Savg(G ′i) and Savg(G ′j) in O(1).

As there are n vertices which could be transferred, it is possible to check how

every single potential transfer would affect the sizes of subgraphs in O(n). After

checking all potential transfers, we can choose the best one (if one causes the

maximum subgraph size to decrease) and implement it. After performing the

transfer, Gi and Gj change so ∆W (Gi, v′) and ∆W (Gj, v′) must be updated for

every vertex v′ ∈ V . After transferring v from Gi to Gj, the updated marginal edge

weights are

∆W (G ′i, v′) = ∆W (Gi, v′)− w
(
(v, v′)

)
(3.13)

∆W (G ′j, v′) = ∆W (Gj, v′) + w
(
(v, v′)

)
(3.14)

for all v′ ∈ V . Using these equations, each marginal weight is updated in O(1) and

all the marginal weights are updated in O(n). By storing the nm marginal sizes,

69

3.4. A task allocation heuristic based on the APP

−∆W (Gi, v)

+∆W (Gj, v)

Figure 3.7: When transferring a vertex, v from Gi to Gj, the sizes of both sub-
graphs change. The size of Gi decreases (left) according to (3.11) by
subtracting ∆W (Gi, v), the weight of all edges between v and vertices
of Gi, from W (Gi), the weight of all edges of Gi. Similarly, the size of Gj
increases (right) according to (3.12) by adding ∆W (Gj, v) to W (Gj).

we can both find the best transfer and implement it in O(n). As the marginal edge

weights are always positive, a transfer is guaranteed to reduce Savg(Gi)—usually

by a large amount—while increasing Savg(Gj). As they increase Savg(Gj), transfers

are the most useful when Savg(Gi)� Savg(Gj).

When Savg(Gi) and Savg(Gj) are nearly equal, there are often no good transfers

because Savg(Gj) will increase too much. In this situation, we can offset the increase

in Savg(Gj) by simultaneously moving v′ ∈ Vj from Gj to Gi. After swapping v and

v′, we could update the subgraphs’ sizes by applying (3.11)–(3.12). Using this

approach, we would need to update some ∆W ’s in between the two updates.

Instead, it is more efficient to compute the new sizes in a single step using the

formulas

Savg(G ′i) =
2

ni − 1

(
W (Gi)−∆W (Gi, v) + ∆W (Gi, v′)− w

(
(v, v′)

))
(3.15)

Savg(G ′j) =
2

nj − 1

(
W (Gj) + ∆W (Gj, v)−∆W (Gj, v′)− w

(
(v, v′)

))
. (3.16)

There are ni potential swaps and ninj potential swaps so finding the best swap

70

I. Vandermeulen

takes is O(ninj) ⊂ O(n2). After performing a swap, (3.14)–(3.13) can be applied

twice for every vertex to update all the marginal edge weights in O(n). Swaps can

improve a partition more than transfers can; however they are more complex moves

because there are ninj potential swaps but only ni potential transfers between a

pair of subgraphs. A partition which cannot be improved by any transfer or

swap is a local minimum of Cavg with respect to these two operations. We could

define operations where more than two vertices move simultaneously to reduce the

number of local minima; however, the number of possible moves is exponential in

the number of vertices.

Algorithm 3.1: Improve partition

Input: Partition, P = {G1, . . . ,Gm}
Output: Partition, P ′, with Cavg(P ′) ≤ Cavg(P)
1 while there are unchecked pairs do
2 (G1,G2)← pair of subgraphs with unchecked transfers
3 if (G1,G2) exists then
4 v∗ ← best vertex to transfer from G1 to G2

5 if v∗ exists then
6 Transfer v∗ from G1 to G2 /* (3.11)--(3.12) */

7 else
8 (G1,G2)← pair of subgraphs with unchecked swaps
9 if (G1,G2) exists then

10 (v∗1, v
∗
2)← best pair of vertices to swap between G1,G2

11 if (v∗1, v
∗
2) exists then

12 Swap v∗1 and v∗2 /* (3.15)--(3.16) */

13 Update subgraph sizes and checked pairs /* (3.13)--(3.14) */

14 return P ′ = {G1, . . . ,Gm}

My improvement heuristic (Algorithm 3.1) repeatedly searches for transfers or

swaps of vertices between pairs of subgraphs. In each iteration of the main loop

(lines 1–13), it considers either transfers (lines 2–6) or swaps (lines 8–12) between

a single pair of subgraphs. There are fewer potential transfers than swaps, so

the heuristic prioritizes searching for transfers. We keep track of which pairs

of subgraphs have been checked (line 13) and only recheck a pair if one of the

71

3.4. A task allocation heuristic based on the APP

subgraphs has changed. We keep track of which pairs of subgraphs have had

transfers and swaps checked using two binary variables, χtran
i,j and χswap

i,j , per pair

of subgraphs, (Gi,Gj). Initially, all of these variables are set to false because no

pairs have been checked for transfers or swaps. At the end of an iteration of the

loop, these variables are updated (line 13). If a vertex was transferred or swapped,

Gi and Gj have changed so every χtran
k,` and χswap

k,` with either k or ` equal to i or j

is set to false. If no beneficial transfer was found between Gi and Gj, it sets χtran
i,j

to true; if no beneficial swap was found between Gi and Gj, it sets χswap
i,j to true.

The main loop of Algorithm 3.1 starts by selecting an unchecked pair of sub-

graphs to check for transfers (line 2) or swaps (line 8) between. Although the

transfers could be checked before swaps with equivalent performance, we check

swaps first because the search space is smaller. Next, it searches for a transfer

(line 4) or swap (line 10) which reduces max{Savg(Gi), Savg(Gj)} for this pair. We

can compute the effect of a potential move on Savg(Gi) and Savg(Gj) in constant

time using (3.10)–(3.16). If a move which reduces max{Savg(Gi), Savg(Gj)} is found,

the vertex is transferred (line 6) or the pair of vertices is swapped (line 12) and

Savg(Gi) and Savg(Gj) are updated (line 13). Once transfers and swaps have been

checked for all pairs, the main loop terminates and the current partition, which is

a local minimum, is returned (line 14). This local minimum (Figure 3.8) is guar-

anteed to have a lower (or equal) cost than the original partition and also tends

to balance the sizes of the subgraphs.

We are able to check the size of subgraphs after a potential transfer or swap

using (3.11)–(3.16) if the marginal weights, ∆W (Gi, v), are known for all Gi ∈ P

and v ∈ V . Each of these variables can be initially be computed inO(ni) using (3.9)

and should be included with P when Algorithm 3.1 is called. As the subgraphs

collectively contain
∑m

i=1 ni = n vertices, we can initially compute ∆W (Gi, v) for a

single v ∈ V and all Gi ∈ P in O(n). As there are n vertices total, we can initialize

all of the ∆W (Gi, v) in O(n2). After a swap or transfer is performed, all the

72

I. Vandermeulen

1789.1

1721.5

1334.3

1018.9

1019.3

1015.9

Figure 3.8: Random initial partition of a graph (left) and the partition of after
improvements using Algorithm 3.1 (right). The improved partition
has much lower cost and more balanced subgraph sizes.

marginal weights are updated in O(n) via (3.13)–(3.14) in line 13 of Algorithm 3.1.

By storing the nm marginal sizes, we can compute the subgraph sizes after a

potential move in O(1) instead of O(n) and find the best move in O(n2) instead

of O(n3).

Theorem 3.3. For a partition, P0, let Pk represent the modified partition after

k iterations of Algorithm 3.1. Then Cavg(Pk) ≤ Cavg(Pk−1).

Proof. Let Pk = {Gk1 , . . . ,Gkm}. We can assume without loss of generality that

Savg(Gk−1
j) ≤ Savg(Gk−1

i). In each iteration of Algorithm 3.1, a move is only per-

formed if max{Savg(Gki), Savg(Gkj)} < Savg(Gk−1
i). Since only these two subgraphs

change, the size of all other subgraphs remains constant. Therefore for every

Gki ∈ Pk, there exists Gk−1
i′ ∈ Pk−1 such that

Savg(Gki) ≤ Savg(Gk−1
i′) ≤ Cavg(Pk−1).

Therefore every subgraph of Pk is at most as large as the largest subgraph of Pk−1

so Cavg(Pk) ≤ Cavg(Pk−1).

Theorem 3.4. The sequence P0,P1, . . . as defined in Theorem 3.3 is finite and

73

3.4. A task allocation heuristic based on the APP

its length is O(nm−1m2).

Proof. In each round of Algorithm 3.1, either a move is performed to improve a

pair of subgraphs or a check variable, χi,j, is set to true. If all check variables

are simultaneously true, the algorithm terminates. Since the check variables are

only reset to false in rounds where a move is performed, the number of rounds

without any improvements equals the number of check variables. For a partition

with m subgraphs, there are m(m − 1) check variables, so improvements must

occur at least every O(m2) rounds. When an improvement occurs, the size of the

larger subgraph (in the pair) strictly decreases and, as there are a finite number

of possible subgraphs, there a finite number of subgraph sizes and the amount it

decreases by is lower bounded by some δ > 0.

Although these improvements strictly reduce the maximum size of a pair of

subgraphs, the cost of partition only decreases if the pair includes the largest

subgraph of the partition. For m = 2 the pair always includes the largest subgraph.

It has at most n vertices and its average edge length is at most wmax—the length

of the longest edge of G—so its initial size is at most nwmax. As its size is always

positive and it decreases by at least δ each round, the maximum number of times

it can decrease in size is nwmax

δ
∈ O(n). It decreases at least every O(m2) rounds so

there can be at most O(nm2) rounds before the algorithm terminates when m = 2.

Now, I will prove the theorem by induction on m, having already proven the

base case, m = 2. By the induction hypothesis, assume the theorem holds form−1.

We are interested in determining the maximum rounds without any improvement

to the cost of the partition. Since the cost of the partition improves whenever the

size of the largest subgraphs improve, this question is equivalent to determining the

maximum number of rounds where only the smallest m− 1 subgraphs improve. If

we consider the graph without its largest subgraph as a separate partition problem,

by the induction hypothesis, we know that after at most O(n(m−1)−1(m − 1)2) =

O(nm−2m2) rounds the algorithm would terminate when running on this smaller

74

I. Vandermeulen

problem. Therefore, on the full problem, the largest subgraph’s size, and thus the

cost of the partition, must decrease at least every O(nm−2m2) rounds. As the cost

of the partition can decrease by at most nwmax before the algorithm terminates

and it must decrease by at least δ, it can decrease at most O(n) times. Combining

these two facts, there can be at most O(n)O(nm−2m2) = O(nm−1m2) rounds of

Algorithm 3.1.

Theorem 3.5. Each round of Algorithm 3.1 takes O(n2).

Proof. Each iteration of Algorithm 3.1 involves a search for a pair of subgraphs

(line 2 or 8), a search for a transfer or swap (line 4 or 10), the transfer or swap (line

6 or 12), and an update of subgraph and marginal sizes (line 13). Searching for

unchecked subgraphs requires m(m−1)
2

checks of binary variables and so is O(m2).

Searching for transfers or swaps is a search over ni < n or ninj < n2 possible

transfers or swaps and computing Savg(Gi) and Gj after each potential operation

takes constant size so these steps are O(n2). Performing a transfer or swap takes

constant time. Updating each W or ∆W after an operation takes constant time

but as there are 2n versions of ∆W that must be updated, this step takes O(n).

Combining these steps, each iteration takes O(m2 + n2) ⊂ O(n2).

3.4.2 Transfer of outliers

The partition produced by Algorithm 3.1 is a local minimum with respect to the

transfer and swap moves. It cannot be improved further using any combination of

these local moves. If we want to further improve this partition, we can instead try

to find a new local minimum with a lower cost. We could simply start with a new

random partition and apply Algorithm 3.1 to find a new local minimum, hopefully

with a lower cost. This approach would be fairly computationally expensive be-

cause we have to compute a new local minimum from scratch, and it is no more

likely to be better than the previous local minimum than it is likely to be worse.

75

3.4. A task allocation heuristic based on the APP

Rather than use this näıve approach, we instead modify the existing local

minimum by transferring several outlier vertices to get a new partition which is

not a local minimum and may be in the region of attraction for some different local

minimum. Since this partition is based on a local minimum, it is already mostly

optimized and will not take many rounds of Algorithm 3.1 to reach a new local

minimum. Transferring outliers does not usually improve the minmax cost (the

size of the largest subgraph) but is guaranteed to reduce the minsum cost (the sum

of all subgraph sizes). Since partitions with lower minsum costs tend have lower

minmax costs, if transferring outliers moves the partition into a different region of

attraction, the new local minimum is more likely to have a lower minmax cost as

well.

The definitions (3.8) and (3.9) can be rearranged as

W (Gi) =
1

2

∑

v∈Vi
∆W (Gi, v).

This identity tells us that ∆W (Gi, v) is proportional to vertex v’s contribution

to Savg(Gi). An effective way to escape local minima, therefore, is to search for

vertices, v ∈ Vi, with a large ∆W (Gi, v) but a small ∆W (Gj, v) for some other

subgraph, Gj. Such a vertex is out-of-place because it would have a smaller con-

tribution to the size of Gj than it is currently having to the size of Gi.

Although Algorithm 3.1 tends to move out-of-place vertices to more appro-

priate subgraphs, it only performs moves which decrease max{Savg(Gi), Savg(Gj)}.

When two subgraphs already have a similar size, transferring an out-of-place ver-

tex would often violate this constraint. These out-of-place vertices could be moved

to more suitable subgraphs if we allowed 2 or more vertices to be transferred back

in exchange; however, such a move would have a larger—at least cubic—search

space. Rather than use this larger search space, we simply transfer the outliers

and then rerun Algorithm 3.1.

76

I. Vandermeulen

1018.9

1019.3

1015.9

958.9

866.7

1093.3

Figure 3.9: Partition of a graph before (left) and after (right) transferring outliers
(circled) using Algorithm 3.2 with ω = 1.5 (right). After the transfer,
the obvious outlier vertex in the top left corner has been transferred
to a more suitable subgraph; however the total cost of the partition
has increased.

In the second phase of the heuristic (Algorithm 3.2) we allow some violation of

the constraint that max{Savg(Gi), Savg(Gj)} when moving outlier vertices to better

subgraphs. A vertex v ∈ Vi is an outlier if ∆W (Gi, v) > ∆W (Gj, v) for some Gj
and

∆W (Gi, v) > ω
∑

v′∈Vi

1

ni
∆W (Gi, v′) = ω

2

ni
W (Gi).

This second criterion is that v contributes more to Savg(Gi) than an average vertex

of Gi. The outlier detection threshold, ω ≥ 1, is used to control the number outliers

detected which decreases as ω increases. I found that ω = 1.5 gave good results.

After transferring outliers (Figure 3.9), every vertex will be in a more suitable

subgraph, but the largest subgraph may have grown even larger.

Algorithm 3.2 begins by identifying all outliers (lines 2–9). For each subgraph,

it checks if each vertex’s contribution is above the detection threshold (line 4) and

if it is, checks if the vertex is an outlier (line 5). Every outlier, along with its

current subgraph and the subgraph it fits best in, is added to a set (lines 7–9).

After identifying all outliers, they are transferred to the subgraphs they fit best in

77

3.4. A task allocation heuristic based on the APP

(line 11) and W (Gi) and ∆W (Gi, v) are updated to reflect this transfer (lines 12–

14). All outliers are identified before they are transferred because transferring out-

liers changes W (Gi) and ∆W (Gi, v) which could affect which vertices are classified

as outliers. After transferring outliers, some vertices which were not considered

outliers may now meet the definition of an outlier using the updated partition.

These new outliers could be transferred by running Algorithm 3.2 another time.

This process of transferring outliers followed by swapping and transferring to reach

a new local minimum can be repeated several times until the new local minimum

is the same as the previous one.

Algorithm 3.2: Transfer outliers

Input: Partition, P ; and threshold, ω ≥ 1
Output: Partition, P ′, with outliers transferred
1 U ← {} /* Set of outliers */

2 for subgraph Gi ∈ P do
3 for vertex v ∈ Gi do
4 if ∆W (Gi, v) > 2ω

ni
W (Gi) then /* Is potential outlier */

5 Gj ← subgraph of P which minimizes ∆W (G ′i, v)
6 if Gj 6= Gi then /* Is outlier */

7 U ← U ∪ {v}
8 Gold(v)← Gi
9 Gnew(v)← Gj

10 for outlier v ∈ U do
11 Transfer v from Gold(v) to Gnew(v)
12 Update W (Gold(v)) and W (Gnew(v)) /* (3.8) */

13 for vertex v′ ∈ V do
14 Update ∆W (Gold(v), v′) and ∆W (Gnew(v), v′) /* (3.9) */

15 return P ′ = {G1, . . . ,Gm}

Theorem 3.6. Algorithm 3.2 terminates in O(n2).

Proof. Algorithm 3.2 consists of an identification loop (lines 2–9) and a transfer

loop (lines 10–14). There are
∑m

i=1 ni = n iterations of the identification loop.

Each iteration involves finding Gj which requires m comparisons, and potentially

saving v, Gi, and Gj which requires constant time. Therefore identifying outliers

78

I. Vandermeulen

takes O(mn). The transfer loop involves at most n transfers. Each transfer takes

constant time and is accompanied by an update of W and ∆W for Gold, Gnew, and

all v′ ∈ V which takes O(n). As there are at most n outliers, transferring them all

takes O(n2) and since m < n, the overall algorithm terminates in O(n2).

3.4.3 Overall partition algorithm

Transferring outliers using Algorithm 3.2 and the transfers and swaps of Algo-

rithm 3.1 are two effective ways to improve a partition. Alternating between these

two algorithms is the basis of my main heuristic for the APP (Algorithm 3.3).

Algorithm 3.3: Average partition algorithm (APA)

Input: Complete graph, G = (V , E , w); and number of robots, m
Output: Partition, P∗, nearly minimizing the average cost Cavg

1 P ← random partition of G
2 Compute W (Gi), ∆W (Gi, v), for all Gi ∈ P and v ∈ V /* (3.8)--(3.9) */

3 Improve P by transfers and swaps /* Algorithm 3.1 */

4 C∗avg ←∞ /* Cost of best partition */

5 while Cavg(P) < C∗avg do /* Improvements possible */

6 C∗avg ← Cavg(P)

7 P∗ ← P /* Best partition */

8 Transfer outliers of P /* Algorithm 3.2 */

9 Improve P by transfers and swaps /* Algorithm 3.1 */

10 return P∗

Algorithm 3.3 starts with a randomly generated partition (line 1) and im-

proves it by alternating between Algorithms 3.1 and 3.2. It computes W (Gi) and

∆W (Gi, v) for this partition (line 2) using their definitions (3.8) and (3.9) and then

improves the partition as much as possible using transfers and swaps (line 3). In

each round of the main loop (lines 5–9), outliers are transferred (line 8) and the

resulting partition is improved (line 9). When outliers are transferred, ∆W (Gi, v)

changes if v has been transferred or Gi has had at least one vertex transferred

to/from it. This phase (line 8) is therefore not guaranteed to improve Cavg(P) so

it is always followed immediately by a partition improvement phase (line 9). If

79

3.5. From a partition to cycles

these two phases improve the partition, the algorithm continues and keeps the im-

proved partition (line 5); otherwise, the algorithm returns the partition from before

the outliers were transferred (line 10). In this way, Algorithm 3.3 never returns a

worse partition as a result of transferring outliers. After an improvement phase,

the improved partition is a local minimizer of Cavg with respect to the transfer

and swap operations of Algorithm 3.1. Transferring outliers is used to escape local

minima but usually increases Cavg(P). After transferring these outliers, another

improvement phase creates another partition that is a local minimizer and may

have a higher or lower Cavg than before. As transferring and improving does not

always increase Cavg, we make a copy of P called P ′ (line 7) and transfer outliers

and improve this copy. If the modified P ′ has a lower cost than the original P ,

we assign P ′ to P and perform another round of the main loop (line 5). If the

modified P ′ has a higher cost, we exit the loop and return the best partition found,

P (line 10).

The partition produced by Algorithm 3.3 is a local minimum of the APP with

respect to transfers and swaps and it is our final solution to the APP. Further-

more, by transferring outliers it effectively finds a nearby local minimum and

continues improving the solution if a nearby local minimum is better. As a result,

Algorithm 3.3 is guaranteed to produce partitions which are at least as good the

partitions produced by the improvement phase (Figure 3.10) on its own, and usu-

ally produces better solutions. On our example graph (Figure 3.10), the cost of the

final partition is Cavg(P) = 983.4 which is a 3.6% improvement on the original cost

of 1019.3 obtained by improving the partition without transferring any outliers.

3.5 From a partition to cycles

Earlier, I had proposed using the APP as a proxy for the MPP so that we can

use the solution to the APP as if it were a solution to the MPP. In Section 3.4,

80

I. Vandermeulen

1789.1

1721.5

1334.3

1018.9

1019.3

1015.9

958.9

866.7

1093.3

959.9

983.4

978.2

Figure 3.10: Starting with a random partition (top left), Algorithm 3.3 alternates
between Algorithm 3.1 to improve the partition (top right) and Al-
gorithm 3.2 to transfer outliers (bottom left). Alternating between
these two algorithms to produce a final partition (bottom right) which
is a better solution to the APP than would be obtained by either al-
gorithm on their own.

81

3.5. From a partition to cycles

959.9

983.4

978.2

271.3

284.0

287.8

Figure 3.11: Partition of a graph based on minimizing the average cycle length
of the largest subgraph (left) and shortest cycles on each of these
subgraphs (right). The shortest cycles are 28.26%, 28.88%, and
29.42% the length of their subgraph’s size, indicating that average
cycle length is a good proxy for shortest cycle length. The shortest
paths were approximated using the Concorde 1-TSP solver [42].

I presented a heuristic for the APP which partitions a graph into m subgraphs

which is a local minimum of the average cost, (3.5), with respect to transfers

and swaps. By Corollary 3.2, if Smin and Savg are related by a monotonically

increasing function, then this solution is also a local minimum of the minimum cost,

(3.3). In reality, the relationship between Savg and Smin is not perfectly monotonic

(Figure 3.3), so the optimal partitions for the APP and MPP differ slightly. The

solution to the APP is still useful as an initial partition for an improved m-TSP

algorithm (Algorithm 3.4). The initial m-TSP solution is obtained by solving the

1-TSP on each subgraph of the partition (Figure 3.11). This solution is improved

by transferring vertices between cycles to reduce its minmax cost. The best transfer

can be found in O(n2) by checking all pairs of vertices in the longer cycles and

locations for insertion in the shorter cycle. The algorithm alternates between

transferring vertices between cycles and solving the 1-TSP for each cycle until no

more improvements can be made.

Algorithm 3.4 involves solving m instances of the 1-TSP. Although the 1-TSP is

82

I. Vandermeulen

NP-hard [150], several open-source solvers [42, 76] have very good performance and

runtimes. Furthermore, we are solving m instances of the 1-TSP with n1, . . . , nm

vertices each (n1 + · · · + nm = n) instead of a single instance with n vertices.

Solving these m smaller instances is faster than solving the single large instance

because the runtime of TSP solvers is slower than linear in the number of vertices.

Although Algorithm 3.4 alternates between solving the individual 1-TSPs and

transferring vertices between cycles, the additional solutions of the 1-TSPs often

return the exact same cycle. A slightly faster algorithm—one which solves the

1-TSP exactly m times—could therefore be obtained by only using one iteration

of the inner loop of Algorithm 3.4 (lines 4–8).

Algorithm 3.4: m-TSP path algorithm (MPA)

Input: Complete graph, G; and number of robots, m
Output: Set of m cycles, C, solving the minmax m-TSP
1 P ← solution of APP for G with m robots /* Algorithm 3.3 */

2 C ← solutions to 1-TSP on each subgraph of P
3 C∗ ←∞ /* Cost of best set of cycles */

4 while C(C) < C∗ do /* Improvements possible */

5 C∗ ← C(C)
6 Improve C by transferring vertices between cycles
7 P ← partition induced by C
8 C ← solutions to 1-TSP on each subgraph of P
9 return C

The initial cycles could alternatively be improved by a more sophisticated

search heuristic such as tabu search or simulated annealing. Despite using a rel-

atively simple improvement heuristic, I was able to solve large minmax m-TSP

problems and obtain better solutions than other approaches. As the average cy-

cle length is a good proxy for the shortest cycle length, Algorithm 3.4 usually

only needs to transfer a few vertices. In our example (Figure 3.12), only three

transfers—decreasing the solution’s cost by 0.15%—were needed before reaching

the final solution. The success of this approach demonstrates that a good initial

partition can offset the need for a good cycle improvement heuristic.

83

3.6. Heterogeneous robots

271.3

284.0

287.8

283.7

278.4

283.3

Figure 3.12: The paths produced by solving the 1-TSP on each subgraph of a parti-
tion from Algorithm 3.3 (left) can be further improved by transferring
individual vertices between paths. The resulting paths after transfer-
ring vertices (right) are slightly shorter and thus a better solution to
the MPP and m-TSP.

3.6 Heterogeneous robots

Robots may be required to work in heterogeneous teams where different robots

have different abilities. These teams may consist of physically different robots

where only some robots can complete certain tasks, or may be teams of robots

which appear identical but one robot is a bit slower because it is older, has a

lower battery, or has something stuck in its wheel. When allocating tasks to

a heterogeneous team, a balanced allocation is one where each robots’ assigned

tasks will take a similar amount of time based on its abilities so that the team

finishes as quickly as possible.

To assign tasks in a heterogeneous team, we need to use separate weight func-

tions, w1, . . . , wm, for each robot in the team. Each wi : E → R≥0 is for the same

graph, but has different weights based on that robots’ ability. If robot i is com-

pletely unable to do a certain task, then wi(e) =∞ for any edge incident to that

task’s vertex. Otherwise, wi(e) equals the full time needed for robot i to travel be-

tween the two tasks plus half the time needed to complete the tasks. Then, when

84

I. Vandermeulen

computing the partition via Algorithm 3.3, W (Gi) and all of the ∆W (Gi, v)’s are

defined using the wi for that robot. Additionally, the initial partition should be

chosen so that every task is initially assigned to robot that can actually complete

it. With these two changes, Algorithm 3.3 will produce a balanced partition or as

close to one as possible if some robots are much slower or have fewer abilities than

others. Once the partition has been computed, each 1-TSP must be solved with

the correct weight function for that robot, and the correct weight functions must

be used when transferring vertices between paths.

3.7 Decentralization

The version of my task allocation and routing heuristic that I’ve presented so far

(Algorithm 3.4) is centralized. However, as the majority of the computation is

based on exchanges of vertices between pairs of robots, the algorithms can easily

be converted to a decentralized form where each robot manages its own list of

tasks. We assume that that all robots are able to communicate with each other to

share the m(m−1) binary check variables, χswap
i,j and χtran

i,j , and to share the initial

random partition. The decentralized algorithm (Figure 3.13) is divided into two

phases—a partition phase equivalent to Algorithm 3.3 and a cycle phase equivalent

to Algorithm 3.4—which consist of exchanges happening between pairs of robots.

Algorithm 3.1 consists of exchanges (transfers in lines 4–6 or swaps in lines

10–12) of vertices between pairs of subgraphs. As these exchanges only involve

2 robots’ graphs, multiple pairs of robots can compute exchanges simultaneously

resulting in a decentralized version of Algorithm 3.1. In this decentralized version,

robot i maintains Gi, W (Gi), and ∆W (Gi, v) for all v ∈ V . In its default idle state,

it examines the check variables to find a robot j that it has unchecked transfers or

swaps with and attempts to connect with robot j. If robot j is busy computing an

exchange with some robot k, robot i will not be able to connect to robot j and will

85

3.7. Decentralization

Partition
phase

Cycle
phase

Random
Partition

Update check

variables

Idle

Connect to
agent j

Find transfer
or swap

Transfer
or swap

Unchecked

transfer or swap

with agent j

Agent j

is busy

Agent j

is available

Transfer or

swap found

No transfer

or swap found

Solve
1-TSP

All transfers and

swaps checked

Update check

variables

Idle

Connect to
agent j

Find
transfer

Transfer and
solve 1-TSP

Unchecked

transfer

with agent j

Agent j

is busy

Agent j

is available

Transfer

found

No transfer

found

Solve
1-TSP

All transfers

checked

G,m P∗ C∗ C∗

Figure 3.13: Decentralized task allocation algorithm from the perspective of robot
i. P∗ is the partition produced by Algorithm 3.3; C is the set of cycles
obtained by each robot solving the 1-TSP on its own set of tasks. C∗
is the final solution produced by Algorithm 3.4.

instead search for another robot that it needs to check transfers or swaps with. If

robot j is available, then robots i and j share their subgraphs and marginal edge

weights with each other to search for the best transfer or swap. If they find a move

which reduces the maximum size of subgraphs i and j, they implement this move

and update the relevant check variables that are shared by all robots. This process

continues until all pairs of robots have searched for transfers or swaps between

their subgraphs without finding any improvements. As this algorithm continually

improves pairs of subgraphs, it has the same overall behavior as Algorithm 3.1

despite no robot knowing the overall partition. Overall the decentralized version

may be faster than the centralized one as multiple pairs of robots can search

for transfers and swaps simultaneously, effectively parallelizing the main loop of

Algorithm 3.1.

Once the robots have all finished transferring and swapping tasks as much as

possible, they use a similar approach to search for and transfer outliers between

pairs of robots. Algorithm 3.2 consists of a search for outliers in each graph which

86

I. Vandermeulen

doesn’t modify any of the graphs (lines 2–9) and then a transfer of these outliers

after they have all been identified (lines 10–14). It can be decentralized by having

each robot identify outliers in its own graph followed by pairwise communication

with other robots to transfer the outliers that were identified. By alternating be-

tween transferring or swapping based on maximum subgraph size and transferring

outliers, the team of robots will obtain the same partition as would be produced

by Algorithm 3.3. This decentralized version also requires some synchronization

so all the robots know which kind of transfers to check at any time and when the

partition is complete.

The remainder of Algorithm 3.4 consists solution of the 1-TSP on each sub-

graph (line 8) and transfers of vertices between pairs of cycles (line 6). After the

partition phase is complete, each robot solves the 1-TSP on its partition to get

a cycle. As the solution of the 1-TSP on Gi does not depend on any other Gj,

the robots can each compute their own cycle. Finally, the robots transfer vertices

between their initial cycles. This process is quite similar to Algorithm 3.1 and

can be decentralized in essentially the same way with robots using shared check

variables to determine which robots to search for transfers with. Since the robots

are now exchanging vertices between cycles, they must optimize over which vertex

to transfer and the location in the shorter cycle to transfer it to. Therefore, they

only consider transfers and not swaps. When two robots transfer a vertex, each

robot can optionally recompute its own 1-TSP cycle based on its new tasks in case

their is a better route. Once all pairs of robots have searched for transfers without

finding any improvements, the algorithm is complete. The resulting set of cycles,

C∗, equivalent to the optimal solution computed by Algorithm 3.4.

87

3.8. Paths with depots

3.8 Paths with depots

Most robots have some constraints about where they must start and end a mission.

Delivery robots must start and end their deliveries at the warehouse or postal depot

where undelivered packages are stored at. Robotic vacuum cleaners start and end

cleaning missions at their charging station. If there is a team of delivery robots,

they all have the same warehouse, whereas each robotic vacuum cleaner has its own

charging station. A robotic arm performing a repetitive motion, such as drilling

holes in circuit boards, can start and end its path in any location. If it needs to

return to the same location to perform that motion again, the start and end points

must be the same. However, if it can do every other motion in reverse, the start

and end points can be different. Robots that replan during a mission need to use

their current location, wherever it may be, as their start point while keeping the

same end location.

As different robotic applications can require many different start and end con-

straints, I will consider general forms of start and end constraints. I will use the

term depot to refer to any location where a robot must start or end its path. An

individual robot’s path can be classified in one of five categories (Figure 3.14)

depending on its depot constraints:

1. Cycle with 0 depots: vstart = vend

2. Cycle with 1 depot: vstart = vend = vdepot

3. Open path with 0 depots: No constraints

4. Open path with 1 depot: vstart = vdepot

5. Open path with 2 depots: vstart = vdepot 6= v′depot = vend

Within a team of robots, different robots’ paths may fit in different categories. If

multiple robots have depots, they may be distinct or unique physical locations.

88

I. Vandermeulen

145.3 145.3

115.0 121.6 125.5

Figure 3.14: A robot’s depot constraints can be classified in 5 different ways de-
pending on whether it has a cyclic or open path and how many depots
it has. In general, open paths are shorter than cycles and additional
depots result in longer paths.

Problems with different depot constraints can be solved using Algorithm 3.4

with slight modifications to Algorithms 3.1–3.4. In the initial partition, each sub-

graph must contain its robot’s depots and these depots cannot be transferred or

swapped in Algorithms 3.1 or 3.2. If multiple robots share a depot, additional

copies of this vertex should be added so that there is a unique depot vertex per

robot. For open paths, (3.6) should be modified to become

Savg(Gi) =
2

ni

∑

e∈Ei
w(e)

as open paths only contain ni − 1 edges. Once a partition is found, the 1-TSP is

solved with the relevant depot constraint. When the paths are being improved by

Algorithm 3.4, the depots again cannot be transferred. This approach can be used

to generate solutions to the various categories of depot constraints (Figure 3.15).

This flexibility of depot configurations makes my approach novel as existing ap-

proaches require either a single shared depot [6, 24, 30, 62, 72, 123, 125, 144, 149,

172, 176, 191, 194] or one unique depot per robot [103, 143]. My algorithm works

for unique or shared depots, open paths or cycles, and 0, 1, or 2 required depots

89

3.9. Results

271.6

263.3

272.3

258.1

222.7

224.4

223.8

223.0

225.3

228.4226.9

227.6

226.8

223.2 215.0

222.3

Figure 3.15: Solutions for the same task allocation problem when the robots have
cyclic paths with a shared depot (top left), cyclic paths with unique
depots (top right), open paths with a shared depot (bottom left), and
open paths with two unique depots each (bottom right).

per robot. Furthermore, there is no requirement that each robot has the same

kind of depot constraints.

3.9 Results

I compared my algorithm against two state-of-the-art algorithms for problems with

50 ≤ n ≤ 5000 and 3 ≤ m ≤ 100 and different depot configurations. My algorithm

was implemented in Python and solutions were computed with ω = 1.5 using a

90

I. Vandermeulen

Table 3.1: Comparison of cost, C, and runtimes, t, achieved by HMS [103] with
MPA (Algorithm 3.4). Results for HMS are from the single solutions
computed in [103] for 5000 vertices uniformly distributed on [0, 100]×
[0, 100] with 10 or 100 robots. Results for MPA are based on 20 solutions
with different random seeds.

HMS MPA

n m C t Cmin
min Cavg

min tavg

5000 10 577 12000 513.66 516.56 6199.36
5000 100 64.738 76477 55.65 56.73 4786.58

Linux desktop computer with a 3.40 GHz processor and 8 GB of memory. For

each comparison, I computed 20 different solutions to the same problem using

Algorithm 3.3 with different random seeds. The costs reported are Cmin
min , the

minimum Cmin across these 20 solutions, and Cavg
min, the average Cmin across these

20 solutions. (These are the same summary statistics reported by Wang et al.

[194].)

3.9.1 Problems with multiple depots

I compared my algorithm with the hierarchical market-based solution (HMS) from

Kivelevitch et al. [103] for cycles with unique depots for each robot. They consid-

ered n = 5000 vertices on the square [0, 100]× [0, 100] with m ∈ {10, 100} robots.

As they did not publish the exact locations of the vertices in their instances, I

randomly generated a new set of 5000 vertices from the same distribution for each

of the 20 tests. My results show an average improvement of approximately 10%

and had a worst case with lower cost than their result for both 10 and 100 robots

(Table 3.1). Furthermore, my solutions required less computation time. The best

solutions I found for 10 robots is shown in Figure 3.16.

91

3.9. Results

513.11

513.00

513.66

512.95

512.45

513.27

513.27

512.48

513.39

513.42

Figure 3.16: The best solution found for 5000 uniformly distributed vertices with
10 robots and 10 depots.

3.9.2 Problems with one depot

For the minmax m-TSP with one shared depot, I compared my approach with

the best results found by any of the 6 heuristics that Wang et al. [194] compared

(Table 3.2). They computed cyclic solutions for several problems from TSPLIB

[155] using the first vertex in the dataset as a shared depot for all robots. As

the number of solutions for the minmax m-TSP increases exponentially with both

n and m, a heuristic’s performance can be best evaluated by its performance on

large problems. For the largest problem, with n = 1173, my heuristic produced

better solutions with lower minmax costs for both the best solution found and

92

I. Vandermeulen

Table 3.2: Comparison of costs for solutions to several TSPLIB [155] problems
obtained using invasive weed optimization (IWO) and a memetic algo-
rithm (MA) [194] with MPA. Results are based on 20 solutions with
different random seeds.

IWO MA MPA

n m Cmin
min Cavg

min Cmin
min Cavg

min Cmin
min Cavg

min

318 3 16200.2 16340.3 16206.3 16477.9 16804.8 17265.1
318 5 11730.0 11908.2 11752.4 11896.7 12159.8 12673.3
318 10 9845.4 9955.4 9731.2 9818.8 9826.8 9971.9
318 20 9731.2 9731.2 9731.2 9731.2 9731.2 9731.2

532 3 32989.0 33687.3 32403.1 33424.8 34376.6 35171.6
532 5 23519.7 24029.6 22619.6 23079.3 24763.1 25697.2
532 10 19136.5 19439.5 18390.4 18515.7 18579.5 18958.1
532 20 17850.8 18051.0 17641.1 17662.1 17642.7 17680.1

783 3 3458.0 3497.6 3279.1 3336.6 3377.2 3414.7
783 5 2273.8 2303.1 2092.7 2134.0 2220.5 2286.5
783 10 1542.1 1564.7 1432.3 1452.7 1475.0 1515.9
783 20 1311.3 1333.1 1260.9 1270.3 1240.9 1249.1

1173 3 24008.5 24300.3 22443.2 22781.6 20733.3 20999.2
1173 5 16057.2 16274.6 14557.3 14861.4 13876.3 14179.2
1173 10 16057.2 10668.0 9222.9 9352.6 8698.4 8871.3
1173 20 8063.2 8207.9 7063.2 7276.7 6595.9 6670.2

average solution cost for 3, 5, 10, and 20 robots. The best solutions I found

for the largest problem, pcb1173, are shown in Figure 3.17. For smaller problems

(n ∈ {318, 532, 783}), my algorithm performs better or similarly (within 1%) when

m = 20 but has worse performance for smaller m. As smaller m results in a

problem more similar to the 1-TSP, this decreased performance may be a result of

using an pre-existing 1-TSP solver and not heavily optimizing the routing portion

of the algorithm.

My algorithm had average runtimes ranging from less than 1 s to 426 s. For

the largest problem (n = 1173), my algorithm took between 146 s and 426 s which

is the same order of magnitude as the 236 s used by Wang et al. [194]. However,

as the problems were run on different computers, I cannot make more detailed

comparisons.

93

3.9. Results

20729.49

20733.32

20700.94

13876.29 13870.79

13873.56

13868.30

13867.91

Figure 3.17: Best solutions found for pcb1173with 3 (left), 5 (right) robots.

3.9.3 Runtime analysis

I analyzed average runtimes for 31 test problems from TSPLIB [155]. These prob-

lems have n ∈ {51, 100, 150, 200, 318, 532, 783, 1173} and m ∈ {2, 3, 10, 20}. The

problems with n ∈ {318, 532, 783, 1173} are the same problems as in Table 3.2.

The runtimes are averaged over 40 trials of each problem. I assumed the runtime

follows a monomial model

tavg = k0n
k1mk2 exp(ν) (3.17)

where k0, k1, and k2 are parameters to be estimated and ν is zero-mean noise.

I estimated k1 and k2 by taking the logarithm of both sides of (3.17) and the

performed linear regression to obtain the model

t̂avg = (3.1944× 10−5 s)n2.111m0.325.

94

I. Vandermeulen

100 1000

1

10

100

n

t
(s
)

10

1

10

100

3 5 20
m

t
(s
)

Figure 3.18: Actual average runtimes (dots) and predicted average runtimes (lines)
for Algorithm 3.4. On the left, trendlines are for fixed m ∈
{3, 5, 10, 20} and varying n. On the right, trendlines are for fixed
n ∈ {51, 100, 150, 200, 318, 532, 783, 1173} and varying m.

The estimates produced using this overall model (Figure 3.18) are close to the

actual average runtimes.

3.10 Conclusions

Task assignment and routing are coupled problems for teams of mobile robots. I

formulated these combined problems as a partition problem, the MPP, which is

equivalent to the minmax m-TSP. Solutions to the MPP are similar to the APP—

whose cost function is easier to evaluate—because their cost functions are nearly

related by a monotonic function.

As these problems are NP-hard, I developed a heuristic algorithm, MPA, for

the combined task assignment and routing problem. It exploits the relationship

between the MPP and APP to partition a graph using a minmax criterion based

on the APP’s cost function. Despite the simplicity of the APP’s cost function,

there is a close relationship between the solutions of the two problems. MPA uses

a solution to the APP and computes routes by solving the 1-TSP. The routes are

improved slightly by transferring vertices between them resulting in a set of cycles

95

3.10. Conclusions

which minimizes the length of the longest cycle. These cycles solve the combined

task allocation and routing problems.

Using this approach, I solved large task allocation problems and obtained better

solutions than have previously been reported using a variety of algorithms. These

problems had up to 5000 tasks and 100 robots and included problems with a

single shared depot and one unique depot per robot. For n tasks and m robots,

the algorithm’s runtime was proportional to n2.111m0.325.

96

Chapter 4

Turn-minimizing coverage

Coverage is an example of a common but complex robotic task (Section 2.4). A

robot performing coverage must travel over—or move its tool over—every point in

a large region. Examples of coverage problems include:

• A farming robot harvesting a field of crops must pass its harvesting tool over

an entire field of crops while staying within the region enclosed by nearby

fences;

• An autonomous boat mapping a seafloor with a laser scanner needs to follow

a path so that every part of the seafloor gets scanned at least once;

• A robotic arm painting a car door must cover the entire door with a uniform

layer of paint by passing its spray nozzle over the unpainted door;

• An autonomous snowplow has to plow every street of the city without stray-

ing onto the sidewalk; and

• A robotic vacuum cleaner cleans the entire house by passing its vacuum head

over every part of the floor.

All of these problems are characterized by a coverage region, a coverage tool, and a

reachable region. The robot’s objective is to move its coverage tool over the entire

coverage region while staying within the reachable region. Although the reachable

region may be larger than the coverage region (e.g. a spray painting robotic arm

97

Figure 4.1: Regions covered by robots with circular, square, irregular, and straight
line tools when moving along a straight path.

can usually move beyond the extent of the object it is painting), I will assume

that the reachable and coverage regions are identical. The exact region traced out

by a given robot depends on the footprint of its coverage tool (Figure 4.1). These

coverage paths are all identical except for some small irregular regions at the start

and end of the path.

The most common objective of coverage planning is to find the shortest cover-

age path. For most applications, this objective is flawed. An idealized robot—one

that moves at a constant speed and can follow any path exactly—can cover a re-

gion most efficiently by following the shortest path. However, real robots cannot

travel at constant speeds and cannot follow arbitrary paths. Most robots can ac-

curately follow straight paths but have difficulty following a winding path exactly.

If a robot tries to follow a winding coverage path but doesn’t follow it exactly,

it will miss spots. Additionally, real robots typically rely on a finite set of pre-

programmed behaviors which make them more efficient at travelling along straight

than along curved paths. These discrete behaviors generally mean that it is not

possible to treat coverage planning as a kinodynamic planning problem where the

goal is to minimize the coverage time. Instead, coverage planning is based on

finding a polygonal path which minimizes how much the robot turns in addition

to the length of its path. Since for many environments, many different paths all

minimize length (Figure 4.2), it is important to also minimize turns.

In many applications, fewer turns also benefits the quality of coverage. A boat

scanning the seafloor often cannot use any data obtained while turning as its laser

98

I. Vandermeulen

Figure 4.2: A coverage path with a single orientation (left) requires more turns
than one with two orientations (right). Both paths have the same
length.

scanner is angled. A spray paint nozzle does not leave a uniform layer of paint

while following a curved path. An autonomous snowplow can control where the

plowed snow ends up better when moving straight, and may end up piling some

snow on the road if it turns with a lot of snow collected in front of its plow. As

robotic vacuum cleaners tend to turn after bumping into an obstacle and often get

stuck under obstacles that they bump into, minimizing turns means the robot is

less likely to get stuck. These qualitative problems also motivate the need for a

coverage plan with fewer turns.

In this chapter, I present a new coverage planning algorithm that explicitly con-

siders turn-minimization and works for any polygonal environment. It minimizes

turns using a novel asymptotically optimal partitioning heuristic which divides

the environment into a minimal number of ranks that completely cover the envi-

ronment. These ranks are long straight rectangles which are classified as either

perimeter, horizontal, or vertical ranks (Figure 4.3). This rank partition is con-

verted into a coverage path by solving a constrained version of the TSP using an

existing solver. This approach can also be used for multirobot coverage using the

exact same rank partition and then solving a constrained version of the minmax

99

4.1. Related work

Figure 4.3: My coverage algorithm uses perimeter ranks (left) and interior ranks
which are either horizontal (center) or vertical (right).

m-TSP using the algorithm from Chapter 3. My heuristic’s computational run-

time scales quadratically with the number of vertices in the polygon and is able to

solve problems an order of magnitude larger than those solved by the most similar

approach [29]. Furthermore, I have successfully used it to create coverage plans

for teams of 1–5 robots in real environments that were mapped experimentally.

This chapter is an expanded version of my paper “Turn-minimizing multirobot

coverage” [188].

4.1 Related work

Two basic coverage strategies are the contour-parallel and direction-parallel paths

[74] (Figure 2.9). In these strategies, the path either follows the environment’s

perimeter or moves back and forth in straight lines called ranks. For non-convex

polygons, these strategies can be applied by first decomposing the environment

into convex regions using a method such as the boustrophedon decomposition [38].

The order that the cells are covered by contour- or direction-parallel motion is

determined by solving the travelling salesperson problem (TSP). Like the TSP,

the problems of finding the shortest and time-minimal coverage paths are NP-

hard [14].

Geometric decompositions form the basis of other coverage approaches [37, 65].

A decomposition consists of a set of smaller, simpler regions called cells and de-

compositions can be classified as exact or approximate based on the properties of

100

I. Vandermeulen

Table 4.1: Comparison of the cells of the two common types of coverage decom-
positions with the one used in this chapter.

Decomposition Shape of cell Size of cell Number of cells Dimension

Approximate Square Small Many 0
Exact Irregular Large Few 2
Ranks Long rectangle Medium Medium 1

these cells (Table 4.1). Exact decompositions, such as the boustrophedon decom-

position and its variants [1, 201], have a small number of large cells with irregular

shapes. Approximate decompositions, such as Agmon et al. ’s minimum spanning

tree (MST) approach [2], use many small cells in a (usually square) grid. Ap-

proximate decompositions can be thought of having “zero-dimensional” cells as

each cell can be contained in the footprint of a robot at a point. Exact decom-

positions, on the other hand, have “two-dimensional” cells as their cells are larger

than the robot’s footprint along both dimensions. My coverage algorithm uses a

rank decomposition which does not fit neatly into these categories of exact and

approximate decompositions. Its cells are long thin rectangles which are narrower

than the robot’s footprint along one direction, but longer than its footprint in

the other direction and can thus be thought of as “one-dimensional” cells. As its

dimension is intermediate between the exact and approximate decompositions, its

cells are intermediate in size and the total number of cells is also intermediate.

These three types of decompositions also result in qualitatively different cov-

erage paths (Table 4.2). Paths for an approximate decomposition are obtained by

solving the TSP on the set of grid cells. As there are many small cells, the TSP

will consider a very large number of possible paths—resulting in a high compu-

tational burden—and the best path will be minimal in repeat length, but usually

has a large number of turns as it resembles a space filling curve. When using an

exact decomposition, the path is obtained by connecting direction-parallel paths

101

4.1. Related work

Table 4.2: Comparison of the paths of the two common types of coverage decom-
positions with the one used in this chapter.

Decomposition Length Number of turns Computational burden

Approximate Minimal Many High
Exact Slightly longer Medium Low
Ranks Slightly longer Minimal Medium

on each cell by solving the TSP. The direction-parallel paths force the robot to fol-

low an exact path for many parts of the environment giving the TSP less freedom,

which results in a slightly longer path but a lower computational burden. These

paths also tend to have fewer turns because the direction-parallel paths on each

cell do not require as many turns as the winding paths typical of approximate

decomposition approaches (Figure 4.4). My rank decomposition is constructed

with the explicit objective of minimizing turns so the resulting path has fewer

turns than either existing type of decomposition. As it minimizes turns, the paths

are slightly longer than approximate decomposition paths; however, as the ranks

are still connected by solving the TSP, the paths are typically not much longer.

The computational burden—proportional to the number of cells—is intermediate.

Furthermore, in a multirobot setting, the rank decomposition is computed before

assigning ranks to robots so it also minimizes the team’s total number of turns in

multirobot coverage.

Existing coverage planners which attempt to minimize turns are based on ex-

act decompositions. The two-dimensional cells of an exact decomposition can be

covered in many different ways by using parallel ranks aligned with different direc-

tions. The turns needed to cover any cell can be minimized by using ranks parallel

to the direction which minimizes the altitude of that cell [85] (Figure 2.13). For the

correct decomposition, minimizing turns on each cell would result in minimizing

turns for the whole environment; however, for most decompositions, this property

would not be true. One way to find a decomposition with this property is to merge

102

I. Vandermeulen

Figure 4.4: Approximate decompositions often result in winding paths (left) espe-
cially when travelling along a corridor whose width is an even multiple
of the robot’s width. In the same corridor, an exact decomposition’s
path (right) would use straight paths but have to make one additional
redundant pass to get to the correct side of the corridor.

neighboring cells of a “sufficiently fine” decomposition into a coarser decomposi-

tion suitable for turn-minimization [85, 170]. The sufficiently fine decomposition

can be obtained by extending all edges next to concave corners until they reach

another edge (Figure 4.5 left). Cutting the polygon in this way creates an expo-

nential number of cells with respect to the number of concave corners, and the

optimization procedures for merging them require exponential time to compute. If

instead of making two cuts at each concave vertex, a single cut is made somewhere

in between the two edges [29, 49], a turn-minimizing exact decomposition can be

found somewhat faster. Turn-minimizing coverage has been applied successfully

to UAV applications [15, 120, 133] where turn-minimization is important because

UAVs with fixed sensors cannot take useful measurements while turning.

Coverage time can be decreased by using more robots. If the environment is

first divided up into regions with equal area, each robot can plan its coverage

independently [22, 78]. This approach can be made more robust by replanning

during the coverage mission to account for variable speeds [3] or changes in the

environment [109, 156]. Alternatively, the robots can plan cooperatively using a

modified boustrophedon decomposition [99] or MST-based strategy [95]. I am not

aware of any existing multirobot coverage strategies for non-convex polygons that

103

4.2. Partitioning the environment

Figure 4.5: A fine decomposition—whose cells will be merged to obtain a turn-
minimizing decomposition—can be obtained by cutting each vertex
along lines extended from each edge adjacent to a concave corner (left).
Making a single cut at each corner, between the two extended edges,
can also produce a turn-minimizing decomposition (right).

use turn-minimization.

4.2 Partitioning the environment

The total time a robot takes to follow a path, including the time needed to slow

down for turns, can be approximated by

ttotal =
`path

srobot

+ nturntturn,

where `path is the path length, srobot is the robot’s linear velocity, nturn is the number

of turns on the path, and tturn is the time needed to make one turn including the

time wasted decelerating and accelerating before and after it. A turn is considered

any motion between two long straight segments of a robot’s path, which usually

are by an angle of 180◦ but may be other angles. Although turning time varies

somewhat with the angle of the turn, we approximate the problem by using a

fixed turning time because most of the turning time is spent accelerating and

decelerating.

Since the covered area is equal to the tool width times the path length, a

104

I. Vandermeulen

complete coverage path’s length is bounded by the environment’s area divided by

the robot’s tool’s width.

`path ≥ `min =
Aenvironment

wtool

where Aenvironment is the environment’s area and wtool is the robot’s tool’s width.

This path length is achieved by any path which covers each point of the robot’s

environment, Q ⊂ R2, exactly once. Any paths with no redundant coverage

have the same path lengths but can vary drastically in their number of turns

(Figure 4.2). Many robots cannot make precise turns quickly so tturn can be quite

large and it is also important to minimize the number of turns.

On a coverage path, the number of turns is equal to the path’s number of

straight line segments. Each straight line segment results in the coverage of a long

thin rectangle called a rank. My goal, therefore, is to partition the environment

into a minimum number of ranks which cover the entire space.

Problem 4.1. For a polygonal environment, Q ⊂ R2, find a set of unit width

rectangles, R, such that ∪r∈Rr = Q while minimizing |R|.

In Problem 4.1, the robot’s environment is represented by a polygon with holes,

Q ⊂ R2. The problem is scaled so that the robot’s tool has unit width tool and

the coverage ranks are represented by unit width rectangles which may be rotated.

Problem 4.1 is continuous-space version of the set cover problem [100] where Q

is the set to be covered and covering set contains all unit width rectangles, of any

length or angle, which are contained within Q. If the rectangles are not allowed

to overlap, then Problem 4.1 is a continuous-space version of the set partition

problem. Both of these problems are NP-hard [100] when defined for finite sets.

On the other hand Problem 4.1 involves an uncountable set of all unit width

rectangles contained within Q so we will use a custom heuristic, which uses the

105

4.2. Partitioning the environment

Figure 4.6: If a robot can travel outside of the boundary of the coverage region, it
can guarantee complete coverage by turning outside of the coverage re-
gion (left). In many applications, the boundary of the coverage region
is a physical barrier, so the robot must turn inside the coverage re-
gion and will miss some small regions near the boundary (center). By
including perimeter ranks, the robot achieves near-complete coverage
while turning within the coverage region (right).

topology of Q ⊂ R2, when solving it.

4.2.1 Perimeter following

An environment’s perimeter is difficult to cover because the robot needs to turn

around when it reaches the perimeter. If the robot can travel outside the perime-

ter, it can achieve complete coverage by turning around outside the environment

(Figure 4.6). If it is constrained to the environment, it must follow ranks along the

perimeter to achieve near perfect coverage. Due to the shape and size of the robot,

some small regions in the corners cannot be covered by any path. Although the

precise geometry of these corner regions depends on the physical size and shape of

the robot and its tool, these unreachable regions are always small. We therefore

assume that the polygon, Q, in Problem 4.1 has had these small unreachable areas

removed.

For problems where the robot is constrained to the environment, we always

include one perimeter rank per edge of the perimeter (Figure 4.7, Algorithm 4.1).

If the angle the edge makes with the next edge is between 90–180◦, the adjacent

106

I. Vandermeulen

Figure 4.7: Perimeter ranks adjacent to corners with angle less than 90◦ are short-
ened to remain inside the coverage region (left). Perimeter ranks adja-
cent to corners with angles greater than 180◦ are lengthened to ensure
complete coverage near the corner (center). These perimeter ranks re-
sult in near perfect coverage of all locations within a distance of one
robot width from the boundary (right).

ranks end exactly at the corner. If the angle is less than 90◦, the rank is shortened

to be contained within the environment. If the angle is greater than 180◦, the rank

is extended by the width of the robot to prevent missed coverage near the corner.

Algorithm 4.1: Perimeter ranks

Input: Polygonal region, Q ⊂ R2

Output: Set of perimeter ranks, Rper

1 Rper ← {} /* Set of perimeter ranks */

2 for edge e ∈ ∂Q do
3 r ← unit width rectangle adjacent to e
4 for vertex v ∈ endpoints(e) do
5 θ ← angle between edges of ∂Q incident to v
6 if θ > 180◦ then
7 Extend the end of r near v by one unit length
8 else if θ < 90◦ then
9 Shorten the end of r near v so that r ⊂ ∂Q

10 Rper ← Rper ∪ r
11 return Rper

107

4.2. Partitioning the environment

Figure 4.8: Overlayed grid (left) used to define the rectilinear contraction (right).
Orange cells are part of the polygon under both definitions; red cells
are part of the polygon only under one of the definitions; blue cells are
never part of the contraction.

4.2.2 A rectilinear contraction

Regions of Q not covered by perimeter ranks need to be covered by interior ranks.

If Rper is the set of perimeter ranks, then the region that remains be covered is

Qint = Q \ ∪r∈Rperr. Coverage can be achieved by covering any region Qrect with

Qint ⊆ Qrect ⊆ Q. We will choose Qrect to be a rectilinear polygon with integer

side lengths. For an integer rectilinear polygon, Problem 4.1 always has a disjoint

solution consisting of some vertical ranks and some horizontal ranks. Most indoor

environments are roughly rectilinear anyways so they can be efficiently covered by

these two directions. Although some environments, such as the agricultural fields

in [148] are highly non-rectilinear or even curved, if a robot is not able to precisely

follow curved paths or make irregular turns, a rectilinear coverage approach may

still be more appropriate for these problems.

The rectilinear contraction, Qrect, can be obtained by overlaying a unit width

grid on top of Q and Qint. This grid should be rotated to maximize the length

of perimeter that aligns with the grid axes. Once a grid has been chosen, the

contracted rectilinear polygon can be computed in one of two ways (Figure 4.8):

1. The largest possible Qrect ⊆ Q is the union of all grid cells fully contained

108

I. Vandermeulen

Figure 4.9: If the interior ranks all have integer lengths, there may be some small
regions that are not covered by perimeter or interior ranks (left). By
extending the interior ranks until the wall, we guarantee that every-
thing gets covered (right).

in Q; or

2. The smallest possible Qrect with Qint ⊆ Qrect, is the union of all grid cells

fully or partially contained in Qint.

If a cell is partially contained in Qint but not fully contained in Q (red cell in

Figure 4.8), these two definitions will be different. I will use the first definition so

that the region covered by interior ranks is fully contained in the coverage region,

in case its boundary represents a physical barrier. As this choice may result in

small missed regions near the problematic cells, the interior ranks will later be

extended to reach the boundary of the environment (Figure 4.9). Extending the

interior ranks guarantees no missed coverage between perimeter and interior ranks.

Algorithm 4.2: Rectilinear contraction

Input: Polygonal region, Q ⊂ R2

Output: Rectilinear interior region, Qrect

1 Qrect ← {} /* Rectilinear interior region */

2 Compute bounding box of Q with integer coordinates
3 for unit square in bounding box do
4 if unit square is fully contained in Q then
5 Qrect ← Qrect∪ unit square

6 return Qrect

109

4.2. Partitioning the environment

Figure 4.10: Covering a rectangle with two directions of ranks (left) always re-
quires more ranks than covering with a single direction. Coverage
parallel to the rectangle’s short edge (right) requires more ranks than
the minimal rank partition which only uses ranks parallel to the rect-
angle’s long edge (right).

4.2.3 A coarse checkerboard partition

It is not obvious how an arbitrary rectilinear polygon—potentially with holes—

can be partitioned into a minimal set of ranks. As we are interested in an exact

disjoint partition, we cannot use diagonal ranks and all the ranks will have to be

either horizontal or vertical. For the simpler case of a rectangle (the only kind

of convex rectilinear polygon), finding the minimal rank partition is trivial. It

should be covered by a single direction of ranks which are parallel to its longest

side (Figure 4.10). In the special case of a square, both directions of coverage

result in the same number of ranks. For any other rectangle, the length and width

are different so there is a unique minimal rank partition.

Based on the simplicity of partitioning rectangles into ranks, an obvious way

to partition a rectilinear polygon to first partition it into rectangles. How well this

procedure will work depends on how the rectilinear polygon is partitioned into

rectangles. There are many possible rectangle partitions so I will use the following

method of partitioning an arbitrary rectilinear polygon into ranks:

1. Partition the rectilinear polygon into a set of disjoint rectangles.

2. Choose a direction of coverage for each rectangle in the partition. This direc-

tion may depend on the directions of nearby rectangles and is not necessarily

the optimal direction for the same rectangle in isolation.

110

I. Vandermeulen

3. Merge adjacent rectangles with the same direction into one larger rectangle

requiring fewer ranks.

4. Cover each of the large rectangles with a single direction of ranks.

How well this method works depends on the initial rectangle partition (Figure 4.11).

If this partition is too coarse, it may not be possible to obtain an optimal set of

ranks by assigning a single direction to each rectangle. On the other hand, a

very fine partition, such as the unit grid can be used to find an optimal partition,

however it has a high computational burden as it has many rectangles. The ideal

initial partition is somewhere in between these two extremes—fine enough that

only one direction per rectangle is needed to find an optimal set of ranks, but

coarse enough that the computational burden is low.

A coarse partition may need multiple directions on a single rectangle if some

but not all of that rectangle’s ranks can be merged with the neighbors’ ranks. This

situation occurs when the two rectangles do not share a full edge. In general, if all of

a rectangle’s neighbors share an entire edge with it, the optimal rank decomposition

has a single orientation on that rectangle. This observation motivates us to use

a checkerboard partition where every rectangle has the same width as its vertical

neighbors and same height as its horizontal neighbors.

Checkerboard partitions are closely related to the polygon’s concave vertices.

In any checkerboard partition, each edge of a rectangle extends until it intersects

with an orthogonal edge of the rectilinear polygon’s boundary. As the edges of the

rectilinear polygon are guaranteed to be edges of some rectangle in the partition,

edges incident to concave vertices must be extended in any checkerboard partition.

The coarsest checkerboard partition can be obtained by using only these edges

(Figure 4.12, Algorithm 4.3). We will use this partition when computing the rank

decomposition. The number of rectangles in this partition is proportional to the

square of the number of convex vertices and is usually much smaller than a grid

111

4.2. Partitioning the environment

Figure 4.11: Three different partitions of a rectilinear polygon into rectangles. If
the partition is too coarse (left), it is not necessarily possible to find
the optimal rank partition by assigning one orientation to each rect-
angle. If the partition is too fine (center), finding the optimal rank
partition will take too long. The checkerboard partition (right) is the
coarsest partition which is guaranteed to only need a single orienta-
tion per rectangle when computing the optimal rank partition.

partition whose number of rectangles equals the area of the rectilinear polygon.

4.2.4 Orienting the rectangles

Assigning an orientation—whether the direction of coverage is horizontal or vertical—

to each rectangle of the checkerboard partition defines a rank partition. The ob-

jective is to assign orientations to minimize the number of ranks and solve Prob-

lem 4.1. For a checkerboard partition with n rectangles, there are 2n possible

assignments so it is not feasible to check them all. Instead, I use a heuristic which

creates a locally optimal assignment.

Local optimality means that the number of ranks from the assignment cannot

be improved by changing the orientation of a single rectangle. Rectangles in a

112

I. Vandermeulen

Figure 4.12: Concave vertices (left) define the coarsest checkerboard partition
(right). The partition is obtained by extending each edge incident
to a concave vertex until it intersects with another edge of the poly-
gon’s boundary.

Algorithm 4.3: Checkerboard partition

Input: Rectilinear polygon, Qrect ⊂ R2

Output: Set of rectangles, H, which are a disjoint partition of Qrect

1 H ← Qrect /* Checkerboard partition */

2 for vertex v ∈ corners(∂Q) do
3 if angle at v is greater than 180◦ then
4 v0, v1 ← corners of ∂Q adjacent to v
5 for vertex vi ∈ {v0, v1} do
6 θ ← direction from v to vi
7 v′ ← intersection of ray leaving v in direction −θ with ∂Qrect

8 e← edge from v to v′

9 for rectilinear polygon h ∈ H do
10 if e bisects h then
11 h1, h2 ← polygons obtained by cutting h along e
12 H ← H∪ {h1, h2} \ {h}

13 return H

113

4.2. Partitioning the environment

Figure 4.13: A horizontally oriented cell can merge its ranks with its left- and
right- neighbors if they are also oriented horizontally (left). If one
of these neighbors is oriented vertically, it is incompatible for merg-
ing, and from the perspective of the central rectangle, the situation
is equivalent to one where only compatible neighbors exist (center).
Based on which compatible neighbors a rectangle has, there may be
a different orientation which is locally optimal (right).

checkerboard partition can have up to 4 neighbors and their ranks can be merged

with the ranks of compatible neighbors (Figure 4.13). Two neighboring rectangles

are compatible if the direction between the rectangles equals both rectangles’ rank

directions. Treating a given rectangle’s neighbor orientations as fixed, the locally

optimal orientation for the given rectangle is the orientation which minimizes the

total number of ranks needed to cover it and its neighbors. In a locally optimal

assignment, the orientations of all the cells are simultaneously locally optimal.

The locally optimal orientation maximizes the number of ranks merged minus

the number of new ranks added. Up to symmetry, there are six possible cases of

how many compatible neighbors a cell has (Figure 4.14):

(a) No compatible neighbors: The optimal orientation is aligned with the

longest edge to minimize new ranks added.

114

I. Vandermeulen

(a)

Long
edge

(b) (c)

Either

(d) (e) (f)

Short
edge

Figure 4.14: Possible cases for a rectangle’s four neighbors and their orientations.
Blue represents horizontal ranks; green represents vertical ranks. If
the central rectangle has more compatible neighbors in one direction
than the other (cases (b), (d), and (f)) it should be oriented along that
direction. If it has the same number of compatible neighbors in both
directions (cases (a), (c), and (f)), it may be oriented horizontally or
vertically depending on its dimensions.

(b) One compatible neighbor: The optimal orientation is aligned with that

neighbor so no new ranks are added.

(c) Two compatible neighbors in different directions: Both orientations

are optimal and neither would add new ranks.

(d) Two compatible neighbors in the same direction: The optimal orien-

tation is aligned with both neighbors to reduce the total number of ranks.

(e) Three compatible neighbors: The optimal orientation is aligned with the

direction in which it has two neighbors to reduce the total number of ranks.

(f) Four compatible neighbors: The optimal orientation is aligned with the

shorter edge to maximize the number of ranks merged.

The criteria for local optimality can also be used to convert any assignment into

115

4.2. Partitioning the environment

a locally optimal one by repeatedly flipping the orientations of rectangles whose ori-

entations are not locally optimal. Flipping the orientation causes a strict decrease

in the cost by the difference in number of ranks needed for each orientation—an in-

teger. As the cost is bounded below by the cost of the globally optimal assignment,

this procedure is guaranteed to terminate after a finite number of steps.

In case (c), where a cell has one compatible neighbor in each direction, both

orientations are equivalent. With either orientation, all of the rectangle’s ranks

will be merged with the same number of ranks in a neighboring rectangle resulting

in no change in the total number of ranks due to this rectangle. At first, I thought

this case was very uninteresting, and assumed that nothing needed to be done

for these rectangles. After all, changing its orientation doesn’t affect the total

number of ranks needed. What I initially overlooked is that flipping this rectangle’s

orientation changes which rectangles it is a compatible neighbor for. Both of its

neighbors will now be a different one of the six cases and one of them may be able

to then change it’s orientation in a way that actually improves the total number

of ranks! Case (c) essentially lets us escape one local minimum and find a better

local minimum by first making some neutral moves (Figure 4.15). As rectangles

are more likely to merge if they have the same orientation, the best way to exploit

this trick is to always make case (c) rectangles have the same orientation, called

the bias. Once we find a local minimum where all the case (c) rectangles have

the same bias, we can change the bias and potentially get an even better local

minimum. We can also treat squares in case (a) or (f) as if they are case (c)

as the optimal orientations for these cases depends on the side lengths and both

orientations are optimal when the sides have the same length.

These two procedures are the basis of a heuristic (Algorithm 4.4) for generating

locally optimal solutions to Problem 4.1. First, it chooses a random orientation for

each rectangle (line 1). In each round of the algorithm (lines 3–20), the orientations

of rectangles are repeatedly flipped if not locally optimal or set to the bias if there

116

I. Vandermeulen

(c)

(c)

⇐
⇒

(c)

(e)

⇐
⇒

⇐
⇒

Figure 4.15: A locally optimal assignment cannot be improved by changing the
orientation of any single cell (left). However, if any cell has case (c),
its orientation can be flipped to obtain a different assignment with
the same number of ranks (center). Flipping a case (c) rectangle can
change the case of other rectangles, and so this new assignment is not
necessarily a local minimum. From this new assignment, it may be
possible to change the orientation of another rectangle and find an
assignment with fewer ranks (right).

are two locally optimal orientations. The bias (line 2) is fixed in each round

and is used for case (c) and for cases (a) and (f) if the rectangle is square as

both orientations are optimal (line 9). By using a bias we change rectangles’

orientations without changing the cost which may enable a different cell to flip

later to decrease the cost. In each round, we keep track of which rectangles have

already been checked (line 16) and uncheck rectangles if their neighbor flips (lines

10 and 13). Once all rectangles have been checked, the bias is flipped (line 18)

and a new round begins if any improvements were made in the previous round.

Improvements are defined as flips which decrease the cost of the assignment (line

15). The algorithm terminates after a round where no improvements were made

117

4.2. Partitioning the environment

(line 20).

Algorithm 4.4: Orient rectangles

Input: Checkerboard partition, H
Output: Checkerboard partition, H, with optimized orientations of rectangle
1 Θ← {horizontal, vertical} /* Possible orientations */

2 for rectangle h ∈ H do
3 θ(h)← random orientation in Θ

4 bias← random orientation in Θ
5 improved← true

6 while improved do
7 Set rectangles in H to unchecked
8 improved← false

9 while there are unchecked rectangles do
10 h← random unchecked rectangle in H
11 Θ∗(h)← locally optimal orientations for h
12 if θ(h) 6∈ Θ∗(h) then /* Orientation is not optimal */

13 Flip θ(h)
14 Set h’s neighbors to unchecked
15 improved← true

16 else if (|Θ∗(h)| = 2) and (θ(h) 6= bias) then
17 Flip θ(h)
18 Set h’s neighbors to unchecked

19 Set h to checked

20 if improved then
21 Flip bias

22 return H

If a different bias is used in the last round of Algorithm 4.4, different locally

optimal assignments with the same cost may be returned (Figure 4.16). Algo-

rithm 4.4 is guaranteed to reach a local optimum, but not the global optimum. As

each iteration of the innermost loop (lines 7 to 17) can be performed in constant

time, the algorithm runs very fast and can be repeated multiple times to increase

the probability of finding the global optimum (Figure 4.17).

118

I. Vandermeulen

Figure 4.16: Optimal orientations for the rectangles (blue is horizontal; green is
vertical) in a checkerboard partition which were obtained using Al-
gorithm 4.4. Both solutions result in the same number of ranks. The
left solution was optimized with a horizontal bias in the final round
of Algorithm 4.4; the right solution finished with a vertical bias.

0 50 100
20

30

40

Iterations

N
u
m
b
er

of
ra
n
k
s

0 50 100

300

350

400

450

Iterations

N
u
m
b
er

of
ra
n
k
s

Figure 4.17: Improvement in solution quality when iterating Algorithm 4.4 for the
example environment in Figure 4.7 (left) and the real environment in
Figure 4.23 (right). Points represent the number of ranks returned
in each round of the algorithm and the solid line represents the best
number of ranks found so far.

119

4.2. Partitioning the environment

Algorithm 4.5: Interior ranks

Input: Coverage region, Q; interior region, Qrect; and checkerboard partition,
H

Output: Minimal set of interior ranks, Rint

1 Hhor ← rectangles of H with oriented horizontally
2 Hver ← rectangles of H with oriented vertically
3 Merge rectangles in Hhor which share a left or right edge
4 Merge rectangles in Hver which share a top or bottom edge
5 Rint ← {} /* Set of interior ranks */

6 for horizontal rectangle h ∈ Hhor do
7 Rhor ← ranks obtained by slicing h horizontally
8 for horizontal rank r ∈ Rhor do
9 if left edge(r) touches ∂Qrect then

10 Extend r left to ∂Q
11 if right edge(r) touches ∂Qrect then
12 Extend r right to ∂Q

13 Rint ← Rint ∪Rhor

14 for vertical rectangle h ∈ Hver do
15 Rver ← ranks obtained by slicing h vertically
16 for vertical rank r ∈ Rver do
17 if top edge(r) touches ∂Qrect then
18 Extend r up to ∂Q
19 if bottom edge(r) touches ∂Qrect then
20 Extend r down to ∂Q

21 Rint ← Rint ∪Rver

22 return Rint

4.2.5 The final rank partition

The locally optimal assignment of orientations for the checkerboard partition can

be converted into a rank partition which solves Problem 4.1 for Qrect. First, ad-

jacent compatible neighbors are merged into larger rectangles. These rectangles

are sliced along their long axes into unit width rectangles which are the ranks of

the partition which solves Problem 4.1 for Qrect (Figure 4.18 left). These ranks

are extended to the perimeter of Q to get the interior ranks that, together with

the perimeter ranks from Subsection 4.2.1, solve Problem 4.1 on Q (Figure 4.18

right). Extending the interior ranks guarantees that the combination of perimeter

120

I. Vandermeulen

Figure 4.18: The interior ranks cover the rectilinear polygon (left) and the com-
bination of perimeter and extended interior ranks cover the whole
environment (right).

and interior ranks covers the entirety of Q (assuming every portion is reachable

given the robot’s shape and size). The overall algorithm (Algorithm 4.6) therefore

produces a locally optimal feasible solution to Problem 4.1. By using different ini-

tial orientations in the inner loop (lines 5–10), after many iterations the algorithm

finds a global optimum almost surely and it is therefore asymptotically optimal.

Algorithm 4.6: Rank Partition

Input: Polygonal region, Q ⊂ R2; and number of iterations, niteration

Output: Minimal set of ranks, R which cover Q
1 Rper ← set of perimeter ranks of Q /* Algorithm 4.1 */

2 Qrect ← rectilinear contraction of Q /* Algorithm 4.2 */

3 H ← checkerboard partition of Qrect /* Algorithm 4.3 */

4 n∗rank ←∞ /* Best number of ranks */

5 for iteration i ∈ {1, . . . , niteration} do
6 Optimize orientations for H /* Algorithm 4.4 */

7 Rint ← interior ranks corresponding to H /* Algorithm 4.5 */

8 if |Rint|+ |Rper| < n∗rank then
9 n∗rank ← |Rint|+ |Rper|

10 R ← Rint ∪Rper

11 return R

121

4.3. Connecting ranks into paths

4.2.6 Generalizations to other spaces

Both Problem 4.1 and Algorithm 4.6 have been developed for coverage of two-

dimensional Euclidean space. For other applications, such as painting curved au-

tomotive parts [11], a robot may be required to cover some curved two dimensional

space. These spaces can be described as non-Euclidean two-dimensional manifolds

embedded in three-dimensional space. Using an appropriate atlas, such a manifold

can be locally transformed to a subset of R and Algorithm 4.6 could be applied on

this transformed space and the solution transformed back to the manifold. How-

ever, as the charts of an atlas do not, in general preserve distance, points that

are within a unit width rectangle in the transformed Euclidean space may not be

within a unit width region on the original manifold. For this reason, planning will

work better using charts which do not heavily distort distances, and may benefit

from using a narrow tool width to ensure that adjacent rectangles indeed overlap

on the manifold.

In other applications, a robot may be required to cover three-dimensional Eu-

clidean space. This problem is much harder because the region covered by the

robot travelling in a straight line is a prism with a base whose shape depends

on the geometry of the robot’s tool. A circular tool would result in cylindrical

coverage regions; a square tool would result in a cuboid coverage region; and an

irregular tool would result in a very complex coverage region. These differences

mean that a three dimensional version of Algorithm 4.6 based on a rectilinear

polyhedron would not necessarily work since the robot does not necessarily cover

cuboids while following straight paths.

4.3 Connecting ranks into paths

The ranks produced by Algorithm 4.6 are a set of simple coverage tasks—just

moving along a straight path. If a robot, or team of robots performs all of these

122

I. Vandermeulen

tasks they will cover the whole environment. The best order for a single robot to

complete these coverage tasks as quickly as possible can be determined by solving

the 1-TSP. Similarly, the best strategy for a team of m robots to complete these

tasks can be determined by solving the m-TSP. By solving the appropriate version

of the TSP, we obtain a set of coverage paths (Algorithm 4.7) which minimizes

total coverage time for the team, including the time needed to turn. Typically,

these paths are computed based on a set, L = {(q1, q
′
1), . . . (qm, q

′
m)}, of fixed start

and end points for each robot. The start point, qi ∈ Q, is the robot’s current

position and the end point, q′i ∈ Q, is the location of a charging station or depot

where the robot typically stays in between coverage missions.

Algorithm 4.7: Plan coverage paths

Input: Polygonal region, Q ⊂ R2; and start/end locations,
L = {(q1, q

′
1), . . . , (qm, q

′
m)}

Output: Set of coverage paths, C
1 R ← set of turn-minimizing ranks covering Q /* Algorithm 4.6 */

2 V ← {} /* vertices of m-TSP graph */

3 Ereq ← {} /* required edges */

4 for rank r in R do
5 v0, v1 ← endpoints of r
6 V ← V ∪ {v0, v1}
7 E ← E ∪ {(v0, v1)}
8 for endpoint pair (qi, q

′
i) ∈ L do

9 V ← V ∪ {qi, q′i}
10 w ← symmetric weight function from V × V to R≥0

11 for vertex pair (v, v′) in V × V do
12 w(v, v′)← length of shortest path from v to v′

13 G ← complete weighted graph (V ,V × V , w)
14 C ← solution to m-TSP on G with Ereq,L /* Algorithm 3.4 */

15 return C

In my formulation of the m-TSP (Chapter 3), each task is represented by

a single vertex and the edge between two vertices is the time needed to travel

between these two tasks. This formulation is too simplistic for coverage. During

a single coverage task—travelling from one end of a rank to the other—the robot

123

4.3. Connecting ranks into paths

Figure 4.19: As all ranks can be covered in one of two directions, there are four
possible ways to cover any pair of ranks sequentially. In general, these
four paths all have different lengths.

performing the task moves. As any rank could be travelled in each direction, there

are four possible paths between any pair of ranks (Figure 4.19).

Rather than arbitrarily choose one of these paths to use for the distance be-

tween the two tasks’ vertices, we will use two vertices per rank so that the graph

has 4 edges between the vertices of these two ranks. The length of each of these

edges is the minimum time needed for the robot to travel between the correspond-

ing ends of the ranks. This minimum time is the time needed to travel along the

shortest path, which includes turning times. The shortest path can be computed

by Dijkstra’s algorithm (Section B.1) or the A∗ algorithm (Section B.2) on a visi-

bility graph (Appendix A). As shortest paths will be needed between all pairs of

rank endpoints, they can all be computed simultaneously using the Floyd-Warshall

algorithm (Section B.3) which is slightly more efficient than computing each path

individually.

Solving the m-TSP on the graph of rank endpoints with shortest travel times as

edge weights does not guarantee a solution where both endpoints of a rank appear

consecutively resulting in coverage of the rank (Figure 4.20). Rank partitions often

consist of several blocks of many parallel ranks that are approximately the same

length. For a block of horizontal ranks, the fastest path would visit all the left

ends of the ranks before travelling horizontally to visit the right ends of the ranks.

124

I. Vandermeulen

Figure 4.20: The graph used to compute a coverage path by solving the TSP has
one vertex for each end of every rank (left). Solving the TSP on
this graph usually results in a path which does not properly cover
the environment (center). Constraining the path to include all edges
between all vertices of the same rank results in the TSP producing
the shortest coverage path (right).

Such a path would not cover the region, as it does not actually involve going along

most of the individual ranks.

To achieve coverage, we need to constrain the solution of the TSP so that it

includes the entire set, Ereq, of edges between endpoints of the same rank (Fig-

ure 4.21). Ordinary TSP solvers such as the LK heuristic (Section D.3) are uncon-

strained. However as they are based on local exchanges of edges, the constraints

can be enforced by making two small changes:

1. The initial cycle must contain all rank edges; and

2. Any exchange of edges can only break non-rank edges.

These two changes ensure that the initial cycle and every transformed cycle satisfy

the rank constraint. Similarly, my m-TSP heuristic (Chapter 3) can be modified

to enforce the rank constraint by making four small changes:

1. Both vertices of the same rank are added to an initial partition simultane-

ously;

2. Transfers and swaps are based on pairs of vertices belonging to the same

rank instead of individual vertices;

125

4.3. Connecting ranks into paths

Figure 4.21: Endpoints of interior ranks (left) and perimeter ranks (right) which
are vertices in the graph used by the TSP solver to generate the
coverage path. The edges shown in these figures are the rank edges
and they all must be included in any valid coverage path.

3. The 1-TSP solver satisfies the rank constraint; and

4. Transfers between different robots’ cycles include both vertices of a rank

instead of a single vertex.

Solving the TSP on the complete weighted graph consisting of all rank endpoints—

with the constraint that all edges in Ereq must be included—gives a time-minimizing

path on the graph (Figure 4.22 left). For multirobot coverage, we can find paths

for each robot by solving the minmax m-TSP (Chapter 3) on the same graph to

minimize the time taken by the slowest robot (Figure 4.22 right). As my m-TSP

solver can be used with various depot constraints, it can also be used for coverage

planning with constraints, L = {(q1, q
′
1), . . . , (qm, q

′
m)}, on where the robots start

and end their paths.

A minmax m-TSP solver can also be used for planning under energy con-

straints. Many coverage robots have limited batteries and may need to recharge

after only covering part of the coverage region [196]. This battery constraint re-

quires a planned coverage path which visits the charger multiple time throughout

the mission so that the parts of the path between visits to the charger are all

shorter than the maximum distance the robot can travel on a single charge. This

126

I. Vandermeulen

Figure 4.22: Turn-minimizing coverage strategies for one robot with no depot (left)
and two robots with one depot each (right).

constraint can be incorporated by iteratively solving the coverage problems for in-

creasing values of m—with each “robot” sharing the same depot—until the length

of the longest path is shorter than the maximum coverage distance for a single

charge. Then, the resulting coverage paths are each performed consecutively by

the same robot, which charges in between, instead of by multiple robots consecu-

tively.

The path created by the TSP solution on the set of ranks results in four types

of distinctive behavior for the robot. It can

1. Follow closely around the perimeter of a wall or obstacle;

2. Move in consecutive long straight parallel ranks in the interior of the envi-

ronment;

3. Move in consecutive long straight parallel ranks in a direction orthogonal to

the direction of the first set of ranks; or

4. Travel in an efficient path from the end of one rank to the start of a different

rank via critical points near concave corners.

Using these four types of motion the robot is able to minimize the number of turns

it makes and hence minimize the coverage time.

127

4.4. Results

4.4 Results

During my PhD, I had the opportunity to travel to Pasadena, California and

intern with iRobot, the makers of the RoombaTM robotic vacuum cleaners. As of

2019, robotic vacuum cleaners are one of the most commercially successful kinds of

consumer robots, and they perform coverage. The current coverage strategy used

by Roombas is a modified boustrophedon strategy which simultaneously explores

and covers the environment [70]. While I was at iRobot, they were developing

their latest version of the Roomba, the i7+TM. One of the most exciting features

of this robot is that it makes a map of its environment and saves this map so

that the next time it cleans, it can use that map to plan a more efficient coverage

strategy. This feature makes the i7+TM a perfect test platform for my coverage

strategy.

Implementing my strategy on the real robot would require lots of additional

effort to ensure the robot actually performs the strategy as intended despite map-

ping errors, poor localization, possibilities that the robot might get stuck or run

out of battery, and other practical problems (Chapter 6). Before working on this

implementation (see Chapter 6), I decided to simply test the strategy on maps

made by the robot without actually getting the robot to perform the resulting

strategy. During the robot’s development, the team of engineers used the robot

to experimentally map 25 real indoor test environments using a simultaneous lo-

calization and mapping (SLAM) system [19, 53]. These test environments are

furnished home and office environments with areas ranging from 10 m2 to 107 m2.

The combined area of the 25 environments is 1285 m2. The maps are built by the

robot’s SLAM system—combining sensor data from the robot’s camera, bumper,

and wheel odometry—and are stored as occupancy grids where a pixel in the grid

is marked as either free, occupied, or unknown [124]. Finally, the occupancy grid

is processed into a smoothed polygonal map with straighter walls and fewer small

128

I. Vandermeulen

obstacles that could be easily driven around (see Section 6.4).

For these maps, I computed coverage plans using two strategies: the turn-

minimizing strategy with two rank orientations presented in this chapter and a

similar strategy with only one rank orientation. The single orientation effectively

behaves as a boustrophedon strategy with perimeter following. The two strategies

were compared on the basis of total path length, total number of turns, and ex-

pected mission time when all 25 environments are covered by teams of 1–5 robots

(Table 4.3). Sample paths for a team of two robots in the largest of the 25 en-

vironments using both strategies are shown in Figure 4.23. The two approaches

have nearly identical path lengths; however, my turn-minimization approach re-

duced turns by 6.7% resulting in a 3.8% reduction in total mission time. When

m robots are used, the total path length and number of turns remain similar but

the expected mission time, decreases by a factor of approximately 1/m because the

robots are covering the environment simultaneously.

The improvements due to turn-minimization can vary significantly depending

on the geometry of the environment (Table 4.4). For some environments, partic-

ularly ones which are nearly rectangular or have few narrow regions, the turn-

minimizing strategy only uses one direction of interior ranks and so nothing is

gained by turn-minimization. Other environments with more complex geometries

can gain significantly from turn-minimization, potentially reducing mission time

by more than 10%.

When computing optimal rank partitions, Algorithm 4.4 ran 50 times with

different random initial conditions and I recorded the number of iterations of the

inner loop (lines 6–16) and computation time needed to reach the local mini-

mum. The number of iterations scaled linearly with the number of rectangles in

the checkerboard partition and the computational runtime scaled proportional to

n1.59
vertex where nvertex is the number of vertices in ∂Q (Figure 4.24) and only required

15 ms of computing time for the largest real environment.

129

4.5. Conclusions

Table 4.3: Cumulative path lengths, numbers of turns, and expected mission times
when 25 test environments are covered by teams of 1–5 robots using two
different strategies. The 25 environments have a combined coverable
area of 1285 m2 and the robots have a tool width of 10 cm. The expected
mission times are for robots which travel at 30 cm/s and take 5 s per
turn.

m Strategy ` (km) nturn t (hh:mm:ss)

1 orientation 15.260 12414 31:22:06
1 2 orientations 15.337 11542 30:13:18

Improvement -0.50% 7.02% 3.66%

1 orientation 15.326 12260 15:35:14
2 2 orientations 15.303 11380 14:58:10

Improvement 0.15% 7.18% 3.96%

1 orientation 15.479 12335 10:28:36
3 2 orientations 15.461 11533 10:05:51

Improvement 0.12% 6.50% 3.62%

1 orientation 15.637 12410 7:55:05
4 2 orientations 15.564 11586 7:35:49

Improvement 0.46% 6.64% 4.05%

1 orientation 15.757 12485 6:22:53
5 2 orientations 15.715 11663 6:08:37

Improvement 0.27% 6.58% 3.72%

4.5 Conclusions

Many robots are slow at turning so the time needed to follow a path depends

on the path’s length and the number of turns. I presented a multirobot cover-

age strategy which explicitly considers the number of turns when planning short

coverage paths. Turns are minimized by partitioning the environment into long

unit-width rectangles called ranks. Perimeter ranks are parallel to the perimeter of

the environment; interior ranks are oriented horizontally or vertically. The interior

ranks are constructed using a novel heuristic which minimizes the number of ranks

needed to cover the interior of the environment. The overall coverage strategy

consists of one path per robot. Coverage paths are generated for m robots by

130

I. Vandermeulen

Table 4.4: Cumulative path lengths, number of turns, and expected mission times
for single robot coverage in each of the 25 test environments. The turn-
minimizing strategy decreases turns by up to 16.67% and mission time
by up to 10.33%.

1 orientation 2 orientations Improvement
Environment nturn t nturn t nturn t

0 1015 2:35:54 962 2:32:07 5.22% 2.43%
1 427 1:16:44 371 1:12:26 13.11% 5.60%
2 661 1:40:24 568 1:33:15 14.07% 7.12%
3 333 0:49:42 300 0:46:59 9.91% 5.47%
4 542 1:28:07 492 1:23:50 9.23% 4.86%

5 707 1:44:39 602 1:35:50 14.85% 8.42%
6 409 0:58:25 409 0:58:25 0 % 0 %
7 388 1:05:26 363 1:03:18 6.44% 3.26%
8 733 1:41:08 653 1:34:37 10.91% 6.44%
9 359 0:55:36 356 0:55:29 0.84% 0.21%

10 798 2:11:09 771 2:09:22 3.38% 1.36%
11 780 2:04:36 770 2:03:55 1.28% 0.55%
12 221 0:37:44 221 0:37:44 0 % 0 %
13 125 0:17:24 125 0:17:24 0 % 0 %
14 510 1:10:01 425 1:02:47 16.67% 10.33%

15 549 1:16:32 510 1:13:32 7.10% 3.92%
16 664 1:33:11 646 1:32:17 2.71% 0.97%
17 259 0:43:34 256 0:43:22 1.16% 0.46%
18 387 0:57:20 360 0:55:21 6.98% 3.46%
19 382 0:56:32 382 0:56:32 0 % 0 %

20 418 1:01:15 395 0:59:22 5.50% 3.07%
21 378 0:57:28 361 0:56:21 4.50% 1.94%
22 386 0:55:28 338 0:51:32 12.44% 7.09%
23 572 1:25:08 526 1:21:14 8.04% 4.58%
24 411 0:58:39 380 0:56:17 7.54% 4.04%

Total 12414 31:22:06 11542 30:13:18 7.02% 3.66%

131

4.5. Conclusions

Figure 4.23: Comparison of robot coverage plans for a team of two robots in a
107 m2 test environment using one orientation based on the environ-
ment’s bounding box (left) and two orientations obtained by Algo-
rithm 4.6 (right). For the 1 orientation strategy, the robots have
expected coverage times of 1:21:39 (blue) and 1:21:36 (orange). The
2 orientation strategy’s mission time is 13.0% faster with expected
coverage times of 1:11:01 (blue) and 1:10:58 (orange).

solving a constrained version of the minmax m-TSP presented in Chapter 3.

I compared this strategy with one which does not minimize the number of turns

on 25 real indoor environments with a combined area of 1285 m2 mapped by the

iRobot Roomba i7+TM. For coverage with 1–5 robots, this strategy reduced turns

by 6.7% and the coverage time by 3.8% on average. For real robots, minimizing

turns also has the added benefit of reducing the likelihood of the robot getting

stuck or having localization errors, both of which are more common when turning.

132

I. Vandermeulen

0 400 800
0

1

2

3

4

Rectangles

It
er
at
io
n
s
(×

10
00
)

0 100 200
0

5

10

15

Vertices

T
im

e
(m

s)

Figure 4.24: Regression results showing linear relationship (ŷ = 4.53x + 26.24)
between number of iterations of the inner loop of Algorithm 4.4 and
the number of rectangles in a checkerboard partition (left); and rela-
tionship of ŷ = 0.002826x1.59 between the computational runtime of
Algorithm 4.4 and the number of vertices in a polygon. Computa-
tions were performed in C++ on a standard consumer laptop running
Ubuntu.

133

Chapter 5

Coordinated multirobot search

Communication is essential for the successful completion of most tasks performed

by teams of mobile robots. In real environments, robots often communicate over

inexpensive ad-hoc networks which have limited connectivity that is affected by

distance and line of sight [141]. The robots may lose connectivity as they move

throughout their environment. There are several possible solutions to this problem

(Figure 5.1).

• Constant connectivity [46, 151, 163, 179, 205] is when the robots’ motion

is restricted to maintain connectivity. Although this constraint enables con-

stant communicate, it forces the team of robots to remain near each other

making them less effective at other tasks that benefit from spreading out.

• Periodic connectivity [80, 94, 156] is when the team is allowed to sepa-

rate temporarily if it has a plan of where they will meet back up. Regular or

preplanned meetings give robots some flexibility to separate, but are incon-

venient when tasks take unpredictable lengths of time, as some robots will

be forced to wait for others. Even worse, if one robot gets stuck or cannot

reach the meeting point, the team will never get reconnected.

• Intermittent connectivity [186] is when the team can separate without

a plan for when they will reconnect. This approach is the most robust to

unexpected circumstances but requires the robots to search for each other

when they want to communicate.

135

Figure 5.1: Three communication strategies for teams of robots are constant con-
nectivity (left) where the team never separates, periodic connectivity
(center) where the team can separate with a planned meeting, and
intermittent connectivity (right) where the team can separate without
a planned meeting.

Although constant and periodic connectivity are useful in some applications, in-

termittent connectivity is the most flexible. The best approach for real robots

depends on a range of factors, including the size of the environment and how

predictably the robots behave. For predictable robots in a large environment, a

conservative strategy with preplanned meetings may be best. However, for real

robots which rarely follow plans exactly and often work in unpredictable environ-

ments, intermittent connectivity is likely the best approach.

When robots communicate intermittently, they do not have a prearranged

meeting and therefore have to find each other without sharing any common in-

formation. This problem can be described in one of three ways depending on the

target robot’s behavior. Its behavior can be a) cooperative, b) adversarial, or

c) neutral. These problems are commonly known as rendezvous, pursuit-evasion,

and search. In practice, a searcher often does not know whether its target is co-

operative, adversarial, or neutral and should use a strategy which can be effective

regardless of its target’s objectives.

In this chapter, I present a flexible communication strategy that can be used

when completing a cooperative task. This strategy allows for varying degrees

136

I. Vandermeulen

of communication so that robots can benefit from cooperation without wasting

excessive energy to communicate. As my method does not require constant or

periodic communication, the team will in general be disconnected. If a robot

wants to communicate with a disconnected robot, it searches for that target robot

using its belief of the target’s position. This belief is estimated using a probabilistic

model of the target’s motion and the communication structure of the environment

is explicitly considered when planning search paths. Reconnection is successful if

two robots are within communication range, which depends on the environment’s

and robots’ properties. The robots do not need to be in the exact same location

to successfully reconnect.

I originally described a similar communication strategy in my paper “Re-

establishing communication in teams of mobile robots” [186]. Although this chap-

ter is loosely based on that paper, it has been updated, with three major changes:

1. I have replaced the semi-Markov model with a more general hidden Markov

model (HMM). Similar to semi-Markov models, an HMM can describe the

variable speed of a robot and possibility that it might get stuck or stop

moving. Additionally, the HMM is able to model the momentum of the robot

and historic or simulated paths can be used to compute realistic transition

probabilities.

2. I have chosen to describe the HMM using matrix instead of tensor notation.

Although tensors are an elegant way to describe semi-Markov models, they

are less suited for the HMM used in this chapter as the set of possible states

cannot be decomposed using a Cartesian product (i.e. not all states have ve-

locity or direction information attached). Therefore, I have opted for matrix

notation which is more accessible to most readers.

3. I have added a sampling-based method for planning search paths. This

method is generally superior to the branch-and-bound method I used in my

137

5.1. Related work

previous paper as it has lower computational complexity and is not con-

strained to paths on a grid.

The results of these changes is a more accurate model of the target robot’s behavior,

which results in improved beliefs and more effective search paths. An abridged

version of this chapter is currently under review for publication as “Sampling

based search for a semi-cooperative target” [189].

5.1 Related work

Search theory dates back to the 1940s motivated by the US Navy’s antisubmarine

missions during World War II [110]. Although most early efforts [28, 79, 177] were

focused on searching for stationary targets, some authors also considered targets

which moved randomly between finite sets of cells, indifferent to the searcher [31,

55, 195]. This problem, known as one-sided search, has more recently been studied

by the robotics community [40, 159]. The typical approach to search involves a

belief of a target’s location, updated using a motion model, and then planning

a path which maximizes the probability of finding the target over some horizon.

Different authors have used different techniques for both belief estimation and

path planning.

A belief is a probabilistic description of where a target robot might be based

on information available to a searcher. Beliefs change over time as the searcher

expects its target to move. Three main methods of describing and maintaining

beliefs are:

1. Markov models represent the random motion of a target on a graph—

corresponding to a discretization of the environment—using transition prob-

abilities which only depend on the robot’s current state and stores the belief

as a probability vector over the graph’s vertices [21, 81, 115]. Variants of

Markov models, such as second-order Markov models [203], semi-Markov

138

I. Vandermeulen

models [186], and hidden Markov models [23] provide more realistic descrip-

tions of the target’s motion within the same framework.

2. Particle filtering algorithms use a finite set of particles which each move

in continuous space according to the target’s dynamics, using different val-

ues for each particle’s control inputs [35, 69, 157]. Each particle represents

one possible behavior of the target, and with an appropriate distribution of

control inputs, the entire set of particles approximates the distribution of

target locations. A probability hypothesis density filter extends this method

by using Gaussian distributions instead of point-like particles [45, 180].

3. Historical data can also be used to build a model, if enough data is available

or can be simulated [162]. A model based on historic paths can take into

account previous locations along a path, and so is more realistic than a

memoryless Markov model.

Any of these techniques can provide a searcher with a belief which it can use to pri-

oritize where it searches for its target. In this chapter, I will use a hidden Markov

model which combines a second-order Markov model with a semi-Markov model

and can model a target robot’s momentum and the variability of its speed. Addi-

tionally, if historic or simulated date are available, they can be used to determine

the transition probabilities of the HMM.

Using its belief, the searcher can plan its search strategy. This strategy is often

a path which minimizes the expected time to find the target [135, 167] or which

maximizes:

(a) The probability of finding the target over a finite horizon [69, 115, 162, 186,

203];

(b) The probability of finding the target per unit time [157];

(c) A discounted reward which values finding the target quickly [18, 81, 173]; or

139

5.1. Related work

(d) A fairness-based reward which values regularly observing multiple different

targets [21].

As the problem of finding the optimal path is NP-hard, methods such as branch-

and-bound [81, 115, 203], mixed integer linear programming [162], inverse rein-

forcement learning [173], multi-level optimization [167], and depth-first search [69]

are used to plan near-optimal paths quickly. A fast alternative to planning an

entire path is to simply move to the single location which has the highest proba-

bility of finding the target [23, 71]. My search algorithm uses a discounted reward

function, which behaves well with the sampling-based planner that I use.

As search involves multiple robots, it is natural to also consider search algo-

rithms for multiple searchers. If two searchers have different beliefs, they can com-

bine their beliefs by taking the element-wise minimum value of two probabilistic

belief vectors and renormalizing [83]. As combinatorial path planning algorithms

scale exponentially with the number of robots if all of their paths are planned simul-

taneously, individual robots’ paths are often planned sequentially [81, 157, 203]. A

variant of Lloyd’s algorithm, weighted based on the target belief can also be used

to spread out searchers looking for a common target [45].

My approach to re-establishing connection between robots uses a sampling-

based planner. Sampling-based path planners have been popular in robotics since

the development of probabilistic roadmaps (PRM) [101] and rapidly-exploring ran-

dom trees (RRT) [116] in the late 1990s. Both techniques involve randomly sam-

pling the configuration space to incrementally construct a graph that fills the space

and whose edges represent feasible paths between nearby configurations. The ma-

jor difference is that RRT constructs a tree making it fast for planning individual

paths, whereas PRM constructs a graph with cycles making it more efficient for

repeatedly planning paths. An improved version of RRT, called RRT∗, rewires the

tree as more vertices are added, resulting in an asymptotically optimal planner [96].

These planners can often be made more effective using non-uniform sampling [117]

140

I. Vandermeulen

based on historic data of the robot moving in a desirable way [87, 113] . Although

originally used to minimize distance, RRT has also been used to:

• Minimize localization error [86];

• Minimize mechanical work when traversing uneven terrain [90];

• Minimize probability of capture in a pursuit-evasion game [97];

• Minimize or distance from a moving target with known location [174]; and

• Maximize information gain along a path [82].

My sampling-based planner finds a path which maximizes a discounted reward

function based on finding the target robot as quickly as possible.

5.2 Communication in crowded environments

Robots often communicate directly with other robots forming ad-hoc wireless net-

works. The strength of this network’s signals determines the probability that two

robots will communicate successfully [7]. The two main factors influencing the

wireless signal strength between two robots trying to communicate are distance

and line of sight [140] (Section 2.3). These two factors can result in a variety of

different communication models (Figure 2.6) ranging from full communication ev-

erywhere to communication that is blocked by any obstacle and decreases quickly

with distance.

5.2.1 Known robot locations

Suppose there are two robots located at positions q0, q1 in some environment Q.

The probability that these two robots can communicate is C(q0, q1) ∈ [0, 1]. This

probability depends on many factors including the properties of the environment,

141

5.2. Communication in crowded environments

the type of wireless signals, and whether they can communicate through inter-

mediate devices. Assuming that obstacles completely block communication, the

communication probability is

C(q0, q1) =

0 if q0 is not visible from q1

Cvis(‖q0, q1‖) if q0 is visible from q1

where Cvis : R≥0 → [0, 1] is a monotonically decreasing function which describes the

effect of distance on communication probability. Signal strength tends to decrease

with distance according to an inverse square law [141]. I will assume that when

the signal strength is above a certain threshold, communication is guaranteed

and below this threshold the communication probability is proportional to the

signal strength. Under this assumption, the effect of distance on communication

probability is

Cvis(d) =

1 if d ≤ dthreshold

1
1+kdecay(d−dthreshold)2

if d > dthreshold

where kdecay ∈ R>0 and dthreshold ∈ R≥0 are parameters that exactly how the

probability decreases with distance. These parameters can be estimated experi-

mentally [141]. Alternatively, C(·, ·) can be modelled through some other method

such as using Gaussian processes to fit experimental signal strength data [119].

For the remainder of this chapter, I will assume that C(·, ·) is known—or at least

can be estimated—but its exact form is not particularly important.

5.2.2 Uncertain target location

When planning a search path, the searching robot needs to answer the question

“If I go over there, what is the probability that I will be able to communicate with

my target?” Suppose that the searcher has a belief of the target’s location which

142

I. Vandermeulen

can be described by the probability measure µ : Σ→ [0, 1] where Σ is a σ-algebra

on Q. Based on this belief, the probability that the two robots could communicate

if the searcher was at qsea is

P(Communication is possible at qsea) =

∫

Q
C(qsea, qtar)dµ(qtar). (5.1)

Although this expression quite elegantly expresses the communication probability,

it is useless for robotic purposes as it is defined over continuous space. Instead it

will be approximated.

How (5.1) gets approximated, depends on what model the searcher uses for

the target belief, and what communication model it has. In this chapter, I will

use an HMM for maintaining a belief and the resulting belief, btar : Y → [0, 1],

is a probability vector (Section 5.3). The belief is based on a discretization of

the environment into a finite set of cells, Y , and the ith element of btar is the

belief that the target is in cell yi. We can also express qsea as a probability vector

bsea : Y → [0, 1] where all of its elements are non-zero except for the element

corresponding to the cell that contains qsea. Using Y as a discrete approximation

of Q, the integral in (5.1) becomes a sum, which can be expressed in matrix

notation as

P(communication) = b>seaCbtar (5.2)

where C is the communication matrix. The (i, j)th element of C is the probability

that a robot at the centroid of cell yi can communicate with a robot at the centroid

cell yj.

5.2.3 Environment decomposition

The probability of communication between robots in two cells varies depending on

their exact locations in the cells, but the discrete approximation in (5.2) only uses

the probabilities at the centroids of the cells. Its accuracy therefore depends on

143

5.2. Communication in crowded environments

Figure 5.2: Exact (left) and approximate (right) cellular decompositions can both
be used to convert a continuous environment into a graph. This graph
is a simplified model that is used to define the belief vector which is
used in search.

how much the communication probability varies within a cell. We therefore need to

choose a decomposition Y which has little variance in communication probability

within each cell.

As in coverage planning (Subsection 2.4.1), the two main kinds of decomposi-

tions are exact and approximate [37] (Figure 5.2). As probability of communica-

tion changes with distance, (5.2) is a better approximation if Y has small compact

cells than for large or oblong cells. Exact decompositions have large, irregular

shaped cells; whereas approximate decompositions have the desired small compact

cells. Therefore we will use an approximate decomposition based on a polygonal

lattice—either triangular, square, or hexagonal (Figure 5.3). A lattice with smaller

cells has a higher resolutions and will approximate the belief and communication

probability better at the expense of increased computational effort. The best lat-

tice which balances of speed and resolution depends on the exact behavior of the

robots and how much computing power is available.

144

I. Vandermeulen

Figure 5.3: Examples of four regular polygonal lattices. All polygonal lattices are
based on triangular, square, or hexagonal cells; however the number
of neighbors each cell has can vary depending on whether or cells are
only connected across shared edges or also along shared corners.

5.3 Tracking an unseen target

A robot searches for a disconnected teammate by following the path which max-

imizes the probability of finding it. This probability is computed from the belief

of the target robot’s position which is based on a model of its motion. The belief

is a probability distribution over a discretization of the environment based on a

polygonal lattice (Figure 5.4). Computationally, this belief is stored as a vector

b ∈ R|Y| where each element is

bi = P (qtar ∈ yi | information known by searcher) (5.3)

145

5.3. Tracking an unseen target

Figure 5.4: A searcher (blue) defines its beliefs using a discretization of the en-
vironment (left). The belief of each target’s location is a probability
distribution over this discretization.

If the target and searcher can communicate, then this vector is simply

bi =

1 if qtar ∈ yi

0 otherwise

Once the target and searcher get disconnected, the belief must be updated and

without full information, b will have many non-zero entries.

5.3.1 Basic Markov motion model

A Markov model is a simple way to update a belief vector. It is based on the

somewhat unrealistic assumption that the target’s behavior only depends on its

current location. In any time step, the robot can move directly to a neighbor cell

and the probability that it moves to this cell is known. Under this assumption,

146

I. Vandermeulen

the probability that a robot will be in cell yj at time τ is

P(q[τ] ∈ yj) =
∑

yi∈Y
P(q[τ] ∈ yj | q[τ − 1] ∈ yi)P(q[τ − 1] ∈ yi)

=
∑

yi∈Y
aijP(q[τ − 1] ∈ yi) (5.4)

where aij = P(q[τ] ∈ yj | q[τ − 1] ∈ yi) is the probability that a robot in cell yi will

move to cell yj in the next time step. The assumption of a Markov model is that

the behavior of the target is completely determined by aij which does not depend

on time or any additional information. Depending on the shape of the lattice,

and whether corner-neighbors or only edge-neighbors are allowed, a cell can have

between 3–12 neighbors (Figure 5.5). Using (5.3) and (5.4), we can update the

belief by

bj[τ] =
∑

yi∈Y
aijbi[τ − 1] = ajb[τ − 1]

where aj ∈ (Rn)∗ is the covector obtained by combining all aij into a single row

vector. By aggregating this expression for all bj, the overall update rule is simply

b[τ] = Ab[τ − 1] (5.5)

where A : Rn → Rn is the Markov transition matrix whose rows are the aj’s. A is

the adjacency matrix of a weighted directed graph Glat = (Y , E , w) which contains

the edge (yi, yj) if the two cells are neighbors in the lattice. As the probability, aij,

is only non-zero if yi and yj are neighboring cells, A is sparse.

5.3.2 What about momentum?

One of the most unrealistic features of the basic Markov model, (5.5), is that it

assumes a robot is equally likely to move back to the cell it just came from as it is

to move on to a third cell. Real robots, like all mechanical systems, have second

147

5.3. Tracking an unseen target

Figure 5.5: The number of possible neighbors in a lattice depends on whether
corner-neighbors or only edge-neighbors are allowed. Triangular cells
can have 3, 9, or 12 neighbors (left); square cells can have 4 or 8
neighbors (center); hexagonal cells can have 6 or 12 neighbors (right).
For triangular latices, some corner neighbors are farther away than
others so both 9- and 12-connected lattices are possible.

order dynamics so its momentum affects where it will go next. Indeed, the vast

majority of robotic tasks—exploration, coverage, search, delivery—all involve the

robot moving in a straight line much more often than it goes back-and-forth over

the same location.

Ordinary Markov models simply cannot account for this tendency of robots to

move in straight lines. If we relax the requirement that the transition probabilities

only depend on the previous location, we could use the previous two locations to

update the belief

P(q[τ] ∈ yj) =
∑

yi∈Y

∑

yk∈Y
ai,kj P(q[τ − 1] ∈ yi)P(q[τ − 2] ∈ yk) (5.6)

where the new second-order transition probabilities are

ai,kj = P(q[τ] ∈ yj | q[τ − 1] ∈ yi and q[τ − 2] ∈ yk)

Although (5.6) could be used to update beliefs using the current and previous

location, it cannot be converted into a matrix equation (it could be converted into

a (1, 2)-tensor, however) which makes it somewhat more complicated, conceptually.

148

I. Vandermeulen

Rather than express the second-order Markov model update using a tensor

product, I will instead express it as a hidden Markov model (HMM). An HMM

augments the cells, Y , of the basic Markov model with an additional, larger, set

of states, X . The states of X are “hidden” in the sense that they can repre-

sent some internal states of the target robot—its current plan, its heading, or

its velocity—and not just its position which could be measured from a snapshot

taken by an observer. The HMM is formulated quite similarly to a Markov model.

The transitions between its states are Markov and can be represented by matrix

multiplication

w[τ] = Aw[τ − 1] (5.7)

where w ∈ R|X | is a vector describing the searcher’s belief about the target’s state.

Its elements are

wi[τ] = P(x[τ] = xi | information known by searcher)

where x[τ] ∈ X is the target’s true state and xi ∈ X is one of the possible states.

Similar to (5.5), the state at time τ only depends on the state at τ . The actual

observable location, which corresponds to the belief vector, is related to the full

state by a projection operation

b[τ] = Pw[τ] (5.8)

where P : R|X | → R|Y| is a projection matrix that converts high-dimensional state

beliefs to lower-dimensional location beliefs.

We can convert a second-order Markov model into an HMM by using states

that contain information about the current and previous state. There are two ways

to encode this information:

1. Use pairs of cells, (yi, yk), as states; or

149

5.3. Tracking an unseen target

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

Figure 5.6: State transition graph of a second-order Markov model on a 4-
connected square grid. Edges are between states of neighboring grid
cells with a compatible direction of the end state.

2. Use a cell and orientation pair, (yi, θ) as states. The set of possible orienta-

tions, Θ, only contains the directions of edges of Glat.

These two approaches are equivalent; however, I think the second approach is

slightly more intuitive. If we were to use pairs of cells, we’d have to check which

pairs are infeasible as it only makes sense to include (yi, yk) if yi and yk are neigh-

bors. Using a single cell and orientation, we don’t need to check for feasibility, as

the robot can have any orientation in any cell.

Similar to the Markov model, the state transition matrix A in (5.7) is the

adjacency matrix of a graph with X as its vertices (Figure 5.6). This graph

contains the directed edge from (yi, θi) to (yj, θj) if and only if yj is a neighbor of

yi and θj is the direction from yi to yj. Note that this definition does not depend

on θi which means that every edge from states of yi have out-edges to the same

state of yj.

The projection matrix, P , is used to convert a state-belief, w, to a cell-belief,

150

I. Vandermeulen

b. It is a sparse matrix whose elements are

pij =

1 if state xi is in cell yj

0 otherwise.

(5.9)

This definition results in P being a left-stochastic matrix with a single 1 in each

column.

5.3.3 Variable speed target

The models I’ve described so far also make the unrealistic assumption that the

robot is always able to move by one cell per time step. This assumption is wrong.

On a 9- or 12-connected triangular grid, 8-connected square grid, or 12-connected

hexagonal grid, some of the edges have different lengths, so it should take longer

for the robot to travel between those neighboring cells. When using a second-order

graph, we should also expect it to take longer for a robot to travel between two

cells if it needs to turn around to get to the destination cell than if it is already

facing the correct direction. Furthermore, most robots do not reliably move at a

constant speed. All of these facts mean that a realistic model of a robot’s motion

should allow for variable speed transitions.

Semi-Markov models are an extension of the basic Markov model to the scenario

where the state transitions do not necessarily happen at regular intervals. In a

semi-Markov model, there is a time distribution associated with each state and the

process remains in that state for a duration determined by this distribution before

transitioning to a new state. When the process transitions, the next state only

depends on the previous state. A hidden semi-Markov model [204] is a variant of

an HMM where the semi-Markov process is hidden and related to an observable

state by a projection matrix like in (5.8).

151

5.3. Tracking an unseen target

Start Endxtra
1 xtra

2 xtra
3 xtra

4 xtra
5 xtra

6 xtra
7

P

t

Figure 5.7: A semi-Markov model with a discrete time distribution can be ex-
pressed as an HMM by adding a chain of transit states. The prob-
ability of the transition from each transit state to the end state is
determined by the time distribution of the semi-Markov model.

In its most general form a semi-Markov model’s time distributions are contin-

uous. For computational purposes, it is much more convenient to use a discrete

approximation of the time distribution. In this case, we can add a chain of transit

states between two states of the original Markov model (Figure 5.7). The length

of this chain is equal to the number of time steps in the time distribution. Each

transit state can either transition to the next transit state in the chain or to the

end state of the original Markov model. The probability of transitioning to the

end state is

P(x[τ] = end | x[τ − 1] = xtra
i) =

P(transition takes (i+ 1)∆t)

P(transition takes longer than (i+ 1)∆t)

If the transition can happen in a single time step, we add an edge directly from

the start vertex to the end vertex. An HMM with transit vertices with these

probabilities has identical behaviour to a semi-Markov model with the discrete

time distribution.

Chains of transit states can also be added along the edges of any existing

HMM. In particular, we can add them between the HMM with direction states

152

I. Vandermeulen

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

Figure 5.8: The overall search graph has direction states in each cell and chains of
transit states connecting direction states in neighboring cells.

from Subsection 5.3.2. The resulting HMM (Figure 5.8) is equivalent to a second-

order semi-Markov model. The transit states model the distribution of times that

it actually takes to move between two different states of the second-order Markov

model, including the time needed to turn. The time distributions therefore depend

on the distance and angle between the start and end states as well as the target

robot’s linear and turning speeds.

When we add transit states to the HMM, the projection matrix, P , will also

need to contain one additional column per transit state. Suppose xtra is a transit

state between xi = (yi, θi) and xj = (yj, θj). As the transit state represents motion

in between cells yi and yj, its physical location could be in either of these cells.

Therefore the column of P corresponding to xtra should have non-zero entries

in the ith and jth positions and be zero everywhere else. Transit vertices at the

beginning of the chain should have a larger ith value; whereas transit vertices at

the end of the chain should have a larger jth. In this way, if the state moves along

153

5.3. Tracking an unseen target

the chain, the cell will transition monotonically from yi to yj.

5.3.4 A model built from historic data

A robot’s target usually behaves in a somewhat repetitive and therefore predictable

way. For example, the target may have certain locations that it visits regularly—

such as a charging station—and other locations that it rarely visits. The searcher

can use this information about the target’s behavior to make a more accurate

HMM. Ideally, the searcher will have access to historic data of the target’s actual

paths. However, if it only has a description of what the target is doing or how it

behaves, it can simulate the target’s behavior and use simulated path data in lieu

of historic data.

Target paths can be used to determine the transition probabilities between

adjacent direction states by simply counting the number of times each transition

happens in the path data (Algorithm 5.1). As historic paths are continuous curves,

they should first be discretized into a polygonal path consisting of a finite set of

poses. The discretization interval should be similar to the size of the lattice cells

so that adjacent points on the path are in adjacent lattice cells. Each pose along

a discretized path consists of a location in Q and direction in S1. Each direction

state also consists of a location and direction; however their values are chosen from

the finite sets of lattice points and lattice directions. If the poses corresponded

exactly to direction states in X , we would increase the value of the corresponding

element of A by 1. In reality, the poses are not necessarily located at lattice points

and do not necessarily have lattice directions, so we first convert each pose to a

convex combination of nearby direction states (Figure 5.9). For each pose of the

path, we compute a convex coefficient γi ∈ (0, 1] for each nearby direction state,

xi. For two consecutive poses (q0, θ0) and (q1, θ1), we use the convex coefficients

for both poses and increase several elements of A by the product of two convex

coefficients—one relating to the start pose and another to the end pose. After

154

I. Vandermeulen

modifying A for every pair of poses in the historic paths, we need to normalize

A so that it is left-stochastic and can be used as a transition matrix. If only

a few historic paths are known, we can add the transition matrix obtained from

the historic data with one based on generic, random motion so that there is some

small probability of transitions not represented in the data that are nevertheless

still physically possible.

Algorithm 5.1: Historic transition probabilities

Input: Set of historic paths, Chist; and set of direction states X
Output: Transition matrix, A
1 A← square zero matrix with dimension |X |
2 for historic path p ∈ Chist do
3 pdisc← discretized version of p
4 for consecutive poses (q0, θ0), (q1, θ1) of pdisc do
5 X0 ← nearby direction states of (q0, θ0)
6 X1 ← nearby direction states of (q1, θ1)
7 for direction state xi ∈ X0 do
8 γi ← convex coefficient relating (q0, θ0) and xi
9 for direction state xj ∈ X1 do

10 γj ← convex coefficient relating (q1, θ1) and xj
11 aij ← aij + γiγj /* (i, j)th element of A */

12 Normalize A so each column sums to 1
13 return A

To verify a model based on historic data, we can compare the density of his-

toric paths to the stationary distribution of the HMM based on those paths (Fig-

ure 5.10). A stationary distribution is a distribution which does not change when

updated using the transition matrix [147]. A Markov model has a stationary dis-

tribution if it is

• Irreducible: any state can be reached from any other state;

• Positive recurrent: the expected time to return to any state after leaving

it is finite; and

• Aperiodic: For any state, the greatest common divisor of the possible times

155

5.3. Tracking an unseen target

ww�

×

×

ww�

=

=

ww�

Figure 5.9: An arbitrary location can be converted into a convex combination of
nearby lattice cells (left). The maximum number of cells needed in this
combination is 3 for a hexagonal lattice, 4 for a square lattice, and 6
for a triangular lattice. Similarly, an arbitrary direction is a convex
combination of at most 2 lattice directions (center). As poses are
Cartesian products of locations and directions, a convex representation
of any pose can be obtained from the Cartesian products of the convex
representations of its location and direction (right).

it takes to return to that state is 1.

Except for specially constructed pathological environments, these properties will

all hold for the HMMs that I consider. For an HMM with a unique stationary state

distribution, it can be computed by iteratively applying the transition matrix to

any initial state distribution, or by computing the eigenvectors of the transition

matrix. The stationary cell distribution can be computed by multiplying the

stationary state distribution by the projection matrix. If we use a large amount

of accurate historic or simulated data, the stationary cell distribution will closely

reflect the density of paths through each cell, indicating that the HMM accurately

156

I. Vandermeulen

Figure 5.10: Simulated paths for a robot that moves from one fixed location to
a random location in the environment and then returns to the fixed
location (left). The stationary distribution of an HMM based on
these paths (right) closely resembles the density of paths through
each lattice cell.

captures the target’s behavior.

5.4 Effects of observations

When searching, a robot can use an HMM model, (5.7)–(5.8), to predict how its

target is behaving and where its target will be. However, it also has another useful

source of information: its own observations. These observations fall under two

categories:

• Positive observations where the searcher either communicates with the

target or senses it in its field of view; and

• Negative observations where the searcher observes some part of the envi-

ronment but does not see or establish communication with its target.

Both kinds of observations can be used by the searcher—albeit in slightly different

ways—to get a more precise belief.

The general problem of using a sequence of observations to update a belief is

called Bayes filtering [183] and its many forms are important throughout robotics.

Using all available information—current as well as any older observations—the

157

5.4. Effects of observations

belief that the target is in state xi ∈ X is

wi[τ] = P(x[τ] = xi | current observation, older observations).

Applying Bayes’ law, the belief equals

wi[τ] =
P(current | x[τ] = xi, older)P(x[τ] = xi | older)

P(current | older)

The term in the denominator does not depend on i so it will be constant for

every state xi ∈ X and is simply a normalization factor. In the first term in

the numerator, the current observation only depends on the current state, and

is independent of the older information. The second term in the numerator is

the probability that the state is xi given older information, not including the

recent observation. We already have a formula for computing that as (5.7) uses all

the older information to predict the current state from the previous state belief.

Therefore this second term is simply the jth element of (5.7) which is ajw[τ − 1],

the inner product of A’s jth row with the previous belief. Using these three

simplifications, the belief can be updated by the Bayes filter

wi[τ] ∝ P(current observation | x[τ] = xi)
(
aiw[τ − 1]

)
. (5.10)

This equation can be used to update a belief using any kind of observation; however

the first term will be computed differently for different kinds of observations.

5.4.1 Positive observations

For cooperative robots, a positive observation often means that the two robots are

close enough to each other that they can communicate. These robots can share

lots of information, including their current location and immediate plans. With

this information, the searcher knows its target’s state exactly. When these two

158

I. Vandermeulen

robots inevitably separate again, they will again need to maintain a belief of the

other’s state. This belief will be updated using a new HMM whose path states are

created from the target’s most recent plan.

It is also possible that the searcher observes its target but isn’t able to commu-

nicate with it. In this scenario, the searcher now has an observation z[τ] ∈ R|Y|

of the target’s physical location. Depending on the quality of the searcher’s sen-

sors, this observation may be very precise, resulting in z only containing a single

non-zero element corresponding to the target’s actual location and heading, or it

may have several non-zero elements corresponding to several nearby cells. The

elements of this vector are

zj[τ] ∝ P(observation | y[τ] = yj).

These elements are not the probability that the target is located in cell yj—the

target is only located in a single location. Instead, they are the probabilities that

the searcher would make its current observation (a set of signals recorded by its

sensors) if the target was in cell yj. For positive observations, we can express (5.10)

as

wi[τ] ∝

∑

yj∈Y
P(observation | y[τ] = yj)P(y[τ] = yj|x[τ] = xi)

(aiw[τ − 1]

)

The two terms inside the sum are both things we’ve already seen! The first term

is the zj[τ] I just described; the second term corresponds to an element, pij of the

projection matrix, P , as defined in (5.9). The sum is therefore the inner product

of z[τ] with the ith column of P and so the belief is

wi[τ] ∝
(
(pi)>z[τ]

)(
aiw[τ − 1]

)
.

159

5.4. Effects of observations

Aggregating this expression for all i, we get the update rule for the entire vector,

w[τ] ∝
(
P>z[τ]

)
�
(
Aw[τ − 1]

)
(5.11)

where � : R|X |×R|X | → R|X | denotes the elementwise product of two vectors. We

need to use the elementwise product as each element of w is the product of two

scalar expressions (which each aggregate to become a vector). This belief update

rule, (5.11), takes the update rule without an observation, (5.7), and then multi-

plies each element by a corresponding element of P>z[τ] which is the probability

of making the observation if the target is in each state.

5.4.2 Negative observations

A negative observation is when the searcher is not able to communicate with its

target. Although negative observations contain relatively little information—the

target could be anywhere that the searcher can’t see—they still help improve the

searcher’s belief. By incorporating its negative observations into a belief, the

searcher essentially records where it has already searched so that it is less likely

to plan a search path that rechecks recently checked locations. To use a negative

observation, the searcher must be aware of its own location, qsea, and which cell

of Y that location corresponds to. We assume that each robot is equipped with

a localization system that provides a sufficiently accurate estimate of qsea at any

time. The robot can then use this estimate to compute its current cell. Since Y

is a lattice, it can check if a given point is in a given cell in constant time and

compute its current cell in O(|Y|) using a brute force approach.

When a negative observation is made, (5.10), is equivalent to

wi[τ] ∝ P(no communication | x[τ] = xi)
(
aiw[τ − 1]

)
(5.12)

160

I. Vandermeulen

The first term can be expressed as a sum over all the cells as

P(no communication | x[τ] = xi)

=
∑

yj∈Y
P(no communication | y[τ] = yj)P(y[τ] = yj | x[τ] = xi)

= 1−
∑

yj∈Y
P(communication | y[τ] = yj)P(y[τ] = yj | x[τ] = xi) (5.13)

In Section 5.2, I defined the communication matrix, C, which is used to compute

the probability of communication via (5.2). If the target is in cell yj, this proba-

bility is simply cjbsea where cj is the row of c corresponding to cell yj. With this

equation and the fact that the second term in its sum is pij, we can write (5.13) as

P(no communication | x[τ] = xi) = 1−
∑

yj∈Y
pijcjbsea = 1− (pi)>Cbsea

Substituting this expression back into (5.12), we obtain

wi[τ] ∝
(
1− (pi)>Cbsea

)(
aiw[τ − 1]

)

Aggregating this expression for all i, we get the update rule for the entire vector,

w[τ] ∝
(
1− P>Cbsea[τ]

)
�
(
Aw[τ − 1]

)
(5.14)

where 1 ∈ R|X | is the vector consisting of all ones.

The overall update rule for negative observations, (5.14), is quite similar to

the update rules for no observation, (5.7), and positive observations, (5.11). The

difference is that it multiplies the belief from the HMM, Aw[τ − 1] by a commu-

nication term. Each element of this term is the probability that a target in that

state can communicate with the searcher. All the states in cells near the searcher

will have their probabilities set to 0 resulting in a more precise belief (Figure 5.11).

161

5.5. Combining beliefs

Figure 5.11: When two robots disconnect, the searcher (blue) maintains a belief
of where the target (green) is located. It updates this belief using
an HMM that is biased towards the targets planned path but also
includes a small probability that the target will abandon its path.
The searcher also incorporates negative observations into the belief
by setting the probability of anywhere it can see equal to zero.

5.5 Combining beliefs

When two robots connect, they can combine their belief of a third robot’s state.

As this merged belief is based on observations made by both robots it will be more

accurate than either robots’ individual belief. The main factor which determines

how the searchers merge their beliefs is whether or not they are using the same

HMM for the target. In an ideal situation, cooperative searchers have a common

map of the environment and can share all the parameters used to construct the

HMM. However, in reality, the searchers may have never met before so they could

have different maps of the environment and may be updating their beliefs with

very different HMMs.

5.5.1 Searchers with a shared model

Suppose both searchers have a shared HMM. In this case, their beliefs are defined

over a common set of states, X , and so their belief vectors w0,w1 ∈ R|X | consist

of elements corresponding to equivalent probabilities:

w0
i = P(x = xi | robot 0’s observations)

162

I. Vandermeulen

w1
i = P(x = xi | robot 1’s observations).

The goal of merging beliefs is to compute

w0,1
i = P(x = xi | both robots’ observations) (5.15)

which is an element of the merged belief w0,1. A conservative method of combining

multiple distributions into a more accurate one is to elementwise minimum of the

distributions [83]. This method sets w0,1
i equal to min{w0

i , w
1
i } which is not strictly

correct because min{w0
i , w

1
i } only depends on one robot’s observations but w0,1

i

should depend on both robots’ observations. To determine a better method for

merging beliefs, we apply Bayes’ law to (5.15):

w0,1
i = P(x = xi | I0, I1) (5.16)

=
P(I1 | x = xi, I0)P(x = xi | I0)

P(I1 | I0)
(5.17)

=
P(I0 | x = xi, I1)P(x = xi | I1)

P(I0 | I1)
(5.18)

where I0 and I1 refer to all the observations made by robots 0 and 1, respectively.

Multiplying (5.17) by (5.18) and taking the square root yields an expression that

is symmetric in I0, I1:

w0,1
i = ηi

√
P(x = xi | I0)P(x = xi | I1) = ηi

√
w0
iw

1
i (5.19)

where the normalization term is

ηi =

√
P(I1 | x = xi, I0)P(I0 | x = xi, I1)

P(I1 | I0)P(I0 | I1)
.

The denominator of ηi is a normalization term because it does not depend on

i. The terms in the numerator of ηi are the probabilities that one robot would

163

5.5. Combining beliefs

make its observations if the target is in state xi and the other robot’s made its

observations. We will assume that these probabilities are similar for different states

(i.e. regardless of where the target is, both searchers are likely to make similar

observations) and so ηi is approximately constant for any i. Under this assumption,

we can use (5.19) with the same η for any element of w0,1 and therefore the merged

distribution is

w0,1 ∝
√
w0w1 (5.20)

which is simply the geometric mean of the two distributions (Figure 5.12). This

operation can be generalized to merging m ≥ 2 beliefs by multiplying them all

together elementwise and then taking the mth root.

The geometric mean has two properties that make it an attractive method of

merging beliefs:

1. If any robot knows that the target cannot be in state xi (i.e. w0
i = 0), then

the merged belief will also have w0,1
i = 0; and

2. If two robots have the exact same belief, merging them will not change the

belief.

Although using the geometric mean is an approximation—ηi does depend some-

what on i—it satisfies both these two properties making it a reasonable approx-

imation. Merging by taking the minimum of the two beliefs [83] also satisfies

both properties, however it does not use information from all the robots or have a

statistical justification like the geometric mean has.

5.5.2 Searchers with incompatible models

A searcher’s belief about a target is based on its model of the environment and the

target’s behavior. The robot’s map—its model of the environment—is typically

constructed from that robot’s (and possibly its teammates’) noisy observations.

164

I. Vandermeulen

and

Figure 5.12: When two robots meet, they can merge their beliefs about a third
robot by taking the geometric mean of their individual beliefs. The
merged belief will be a narrow distribution which combines observa-
tions made by both robots.

Two robots who have never met will usually have similar, but not identical, maps.

Different maps result in different lattices, and different states in the HMMs. Fur-

thermore, they may have different models of a common target’s behavior if they

have different beliefs about the target’s velocity, or different historic data about

its past behavior.

These differences between the searchers’ models mean that their HMMs use

different sets of states, X0 and X1. Their belief vectors w0 ∈ R|X0| and w1 ∈ R|X1|

are elements of different spaces and so it does not make any sense to try merging

them by taking their geometric mean as was done in (5.20). To exploit information

from the other searcher, they can either

(a) Treat the other robot’s knowledge as an observation and continue to use

different HMMs; or

(b) Combine their models into a single model and initialize an HMM based on

that model with a state belief that combines information from both robots.

Although either approach could be used the first is much simpler as the robots do

not need to merge their maps or change all their beliefs to different HMMs.

When a searcher treats another searcher’s belief as an observation, it can use

165

5.5. Combining beliefs

it to update its own state belief in an equation similar to (5.11). Suppose robot 0

receives the cell belief z1 ∈ R|Y1| from robot 1. As the robots have different maps,

their lattices, Y0 and Y1 are not necessarily the same. Instead they can be related

by a transformation matrix T 1
0 : R|Y1| → R|Y0| where the (i, j)th element is

tji =
Area of overlap between yi ∈ Y0 and the yj ∈ Y1

Area of overlap between all cells of Y0 and yj ∈ Y1

To compute tji , the robots must share their lattices, Y0 and Y1, with each other.

Once these lattices have been shared, both robots can compute T 1
0 ins O(|Y0||Y1|)

since the area of overlap of two lattice cells can be computed in constant time. If

a cell of Y1 overlaps with any cell of Y0, its corresponding column of T 1
0 will sum

to 1, and so T 1
0 is left-stochastic if every cell of Y1 overlaps with one or more cell

of Y0. Furthermore, if Y1 and Y0 cover the exact same region and have the same

number of cells then T 1
0 is doubly-stochastic and

(
T 1

0

)>
= T 0

1. This transformation

converts a belief over Y1 to a belief over Y0 by

z̃0 = T 1
0z1.

The resulting belief is only an approximation as some information is lost when

representing a belief over a specific lattice and T 1
0T

0
1 6= I unless the two lattices

are identical. Treating the transformed version of robot 1’s cell belief as a new

observation, robot 0 can update its own state belief by

w0,1
0 [τ] =

(
P>0 T

1
0z1[τ]

)
�w0[τ]

which is analogous to the effect of the observation in (5.11). By updating their be-

liefs in this way, the two robots can share information without needing to combine

their maps and HMMs. However, the resulting merged beliefs are not as precise

as would be obtained by merging compatible beliefs using (5.20).

166

I. Vandermeulen

5.6 Evaluating search paths

When a robot decides it needs to find another robot, it can use its belief vector, b,

to plan a path for reconnection. Although we would like to minimize the expected

time required to find the target, this objective is only feasible if we can guarantee

that the target is found eventually. For stationary targets in a finite environment,

it is possible to guarantee success in finite time so this objective is used [135, 167].

However, for mobile targets, it is not in general possible to guarantee success in

a finite time, and the problem of determining the number of searchers needed to

guarantee success is NP-hard [136]. As there will usually be a small chance of

search for a moving target failing, the expected time to success is not necessarily

well-defined and is therefore not a useful optimization criterion.

Instead of trying to minimize the expected time until success, we could try to

maximize the probability of success [69, 115, 162, 203]. Although this criterion will

result in paths that are very likely to be successful, it does not distinguish between

paths that find the target quickly versus paths that find it slowly. To prioritize

paths based on how soon the target is found, we use a discounted reward function

[81]. For an infinitely long discrete path, p = (q[0], q[1], . . .), the discounted reward

is

Jinf(p) =
∞∑

τ=1

βτ−1∆φ[τ] (5.21)

where β ∈ [0, 1] is the discount factor and ∆φ[τ] is the probability of finding the

target for the first time at time step τ when following p given some initial target

belief w[0]. This reward function uses the discount factor β to scale the reward

so that there is a lower reward for finding the target slowly. Choosing β close to 0

results in greedy behavior that prioritizes a high probability of finding the target

soon. Choosing β close to 1 results in a more conservative search that prefers

paths that have a high probability of finding the target eventually.

167

5.6. Evaluating search paths

The reward of an infinite length path is based on the probabilities of finding

the target for the first time at each time step. These probabilities are

∆φ[τ] = P (First connected to the target at time τ)

= P (Connected by time τ)− P (Connected by time τ − 1)

= φ[τ]− φ[τ − 1] (5.22)

where φ[τ] is the probability that the two robots have been connected at least once

by time τ . By using φ, we can compute ∆φ for the first several locations along

the path iteratively by keeping track of the cumulative probability of having found

the target so far. To compute φ[τ], we will define a new vector ŵ[τ] ∈ R|X | whose

elements are the probability that the target is in each state and has never been

connected to the searcher between steps 0 and τ . This vector is defined so that

φ[τ] = 1− 1>ŵ[τ]. (5.23)

As the searcher and target are never connected at time 0, ŵ[0] = w[0], the initial

belief for the search problem. When computing the state update law (5.14), the

normalization factor is the inverse of the probability that the robots were not

connected in the previous time step. The state belief at time step τ could be

computed from w[0] by applying (5.14) τ times which would involve τ of these

normalization factors. The product of all of these normalization factors is the

inverse of the probability that the robots were not connected between time steps

0 and τ . Therefore we can update ŵ[τ] by simply applying (5.14) without the

normalization factor:

ŵ[τ] =
(
1− P>Cbsea[τ]

)
�
(
Aŵ[τ − 1]

)
(5.24)

Once w[τ] has been computed, we can compute ∆φ[τ] using (5.22)–(5.23). As

168

I. Vandermeulen

these computations only rely on ŵ[τ] and φ[τ], it is possible to compute the cost

of a path by iterating through the path’s locations and using the data about the

previous location to compute the data at the next location. For the first location,

we use the initial condition φ[0] = 0 and for all subsequent locations, φ[τ − 1] will

have been computed at the previous location.

5.6.1 Reward of finite length paths

When planning a search path, we will plan finite length paths by adding one

location at a time to existing paths which results in a planning tree. As (5.21) is

for infinite length paths, we must use a slightly different reward function to evaluate

the paths that we will plan. The obvious modification is to simply truncate the

sum of (5.21) to obtain a finite path reward

Jmin(p) =
T∑

τ=1

βτ−1∆φ[τ] (5.25)

where T is the length of the path p. This reward is a lower bound for the reward,

Jinf , of any infinite length path which starts with p and continues after reaching

the end of p. Unfortunately, this näıve approach is not particularly useful as it

tends to give higher rewards to longer paths as there are more non-negative terms

in the sum. To avoid a bias towards long paths, I will use the reward function

J(p) = max
p′∈{paths starting with p}

{Jinf(p
′)} (5.26)

which rewards short paths for the potential future value of the path that the robot

could follow after reaching the end of the path. This reward function results in

paths which satisfy Bellman’s principal of optimality: “An optimal policy has the

property that whatever the initial state and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from

169

5.6. Evaluating search paths

the first decisions.” [27]. This property is very useful as it means that the searcher

can plan a single path and follow it to its end without needing to replan every

time it reaches a new location.

Lemma 5.1. For some finite length path p, let p′ be the infinite length path which

maximizes Jinf subject to the constraint of starting with p. Then p maximizes J if

and only p′ maximizes Jinf among all possible infinite length paths.

Proof. By the definition of p′, we have that J(p) = Jinf(p
′). First, suppose p′

maximizes Jinf . For any p̂, let p̂′ be such that J(p̂) = Jinf(p̂
′). Then since p′

maximizes Jinf , it is also true that

J(p̂) = Jinf(p̂
′) ≤ Jinf(p

′) = J(p).

This expression holds for any p̂ and so p maximizes J .

Now suppose that p maximizes J . Let p̂′ be some other infinite length path and

p̂ be a path consisting of the first several locations of p̂′. Then by the definition

of J , Jinf(p̂
′) ≤ J(p̂) and since p maximizes J , J(p̂) ≤ J(p). Combining these

inequalities with the fact that J(p) = Jinf(p
′), we have

Jinf(p̂
′) ≤ J(p̂) ≤ J(p) = Jinf(p

′)

This expression is true for any p̂′ and so p′ maximizes Jinf .

Theorem 5.1. Let p∗ = (q[0], q[1], . . . , q[T]) be the optimal path when the searcher

starts at q[0] with target belief w[0]. Then p̃∗ = (q[1], . . . , q[T]) is the optimal

path when the searcher starts at q[1] with target belief w[1], the belief obtained by

updating w[0] using (5.14) with a negative observation at q[1].

Proof. We will refer to the rewards for paths starting at q[0] with belief w[0] by

J and Jinf and the rewards for paths starting at q[1] with belief w[1] by J̃ and

170

I. Vandermeulen

J̃inf . Let p′ = (q[0], q[1], . . .) be some infinite length path and p̃′ = (q[1], . . .) be

the same path starting at q[1] instead of q[0]. We will relate these two paths’

respective rewards. By relabelling (5.21), the reward for p̃ is equal to

J̃inf(p̃
′) =

∞∑

τ=2

βτ−2∆φ̃[τ]

where ∆φ̃ is the probability of finding the target for the first time at a certain

time step given that it was not found at time step 1. It can be computed from

φ̃, the cumulative probability of finding it by that time step given that it was not

found at time step 1. This cumulative probability is related to the cumulative

probability φ (without the condition of not finding it at time step 1) by

φ̃[τ] = P (Connected by τ | Not connected by 1)

=
P (Connected by τ and not connected by 1)

P (Not connected by τ)

=
φ[τ]− φ[1]

1− φ[1]
.

Similarly, using this relationship, we can relate the marginal probabilities by

∆φ̃[τ] = φ̃[τ]− φ̃[τ − 1] =
φ[τ]− φ[τ − 1]

1− φ[1]
=

∆φ[τ]

1− φ[1]

and the infinite rewards are related by

J̃inf(p̃
′) =

1

β

∞∑

τ=2

βτ−1 ∆φ[τ]

1− φ[1]

=
1

β(1− φ[1])

∞∑

τ=2

βτ−1∆φ[τ]

=
1

β(1− φ[1])

(
−∆φ[1] +

∞∑

τ=1

βτ−1∆φ[τ]

)

=
1

β(1− φ[1])
(Jinf(p

′)−∆φ[1])

171

5.6. Evaluating search paths

This transformation consists of adding a constant term, −∆φ[1], and multiplying

by a positive term, 1
β(1−φ[1])

. As both of these operations preserve inequalities,

if some path maximizes Jinf then the same path with the first location removed

maximizes J̃inf .

As stated in the theorem, p∗ is a finite length path which maximizes J so by

Lemma 5.1, there exists an infinite length path starting with p∗ which maximizes

Jinf . Then this path, with its first vertex removed is an infinite length path which

maximizes J̃inf . Applying the other direction of Lemma 5.1, any finite truncation

of that path also maximizes its corresponding finite length reward function. Trun-

cating to paths with T − 1 vertices, the path (q[1], . . . , q[T]) = p̃∗ must maximize

J̃inf .

5.6.2 Comparison through bounds

To compare two paths, we would ideally compare the true reward J(p) of each path,

which is based on the best path starting with p. As this reward does not depend

on a path’s length it can be used to fairly compare paths of different lengths. If

J(p0) > J(p1) then the best path starting with p0 is better than the best path

starting with p1. Although, J is conceptually quite simple, it is impractical to

compute a maximum over a set of infinite length paths. Fortunately, it is easy to

bound J as all of the ∆φ[τ] in (5.26) are non-negative and they sum to 1. We

already saw a lower bound for J in (5.25). (This bound is met for an infinite length

path which never has any chance of finding the target after reaching the end of

p.) When extending a path by adding an additional vertex, we can express this

lower bound recursively. Let p1 = (q[0], . . . , q[T], q[T + 1]) be a path that begins

with p0 = (q[0], . . . , q[T]) and has one additional location. Its minimum possible

reward is

Jmin(p1) =
T+1∑

τ=1

βτ−1∆φ[τ]

172

I. Vandermeulen

=
T∑

τ=1

βτ−1∆φ[τ] + βT∆φ[T + 1]

= Jmin(p0) + βT∆φ[T + 1]. (5.27)

This expression can be used to quickly update Jmin when extending a path by a

single location in constant time.

On the other hand, the maximum possible value for J occurs along a path

which is guaranteed to find the target in the time step immediately after the end

of p. We call the reward of this hypothetical path Jmax(p), and as any other infinite

length path starting with p is guaranteed to have a lower cost,

J(p) ≤ Jmax(p) = Jmin(p) + βT (1− φ[τ]) . (5.28)

As this expression is based on Jmin(p), which will typically already be computed

for an existing path, we can also compute Jmax(p) in constant time.

Using (5.27)–(5.28), we can compute an upper and lower bound for any path

p, and we can update the lower bound whenever we consider a new path which

begins with p. To compare two paths, p0 and p1, we would like to compare their

rewards J(p0), and J(p1), which we don’t actually know. However, we do know

that J(pi) ∈ [Jmin(pi), Jmax(pi)] where upper and lower bounds are known for

any paths we are considering. If Jmin(p0) > Jmax(p1), then it is guaranteed that

J(p0) > J(p1) and so we can be sure that p0 is a better path even though we

don’t know the true reward of either path. On the other hand, if the two paths’

reward ranges overlap, then we cannot say conclusively which path is better. In

Algorithm 5.6, this criterion will be used to remove vertices—representing paths

which are guaranteed to be sub-optimal—from a planning tree to reduce its size

and decrease the computational burden of planning a search path.

173

5.7. Sampling based planner

5.7 Sampling based planner

Potential search paths can be compared using their reward bounds, Jmin(p) and

Jmax(p), which are based on ∆φ[τ] for each location along a path. These marginal

probabilities are computed recursively, with ∆φ[T] based on φ[T] and ∆φ[T − 1].

Due to this recursive relationship between the reward bounds, an effective way of

constructing several candidate paths and evaluating their rewards is to iteratively

add single vertices to existing candidate paths. Each vertex has a predecessor

vertex—the former last vertex of the path it was added to—so the set of all these

vertices naturally form a tree.

The planner (Algorithm 5.2) constructs a tree in a manner similar to LaValle’s

rapidly-exploring random trees (RRT) [116]. Each vertex of the tree corresponds

to a finite length path, and it consists of a

• Location, q

• Belief, ŵ

• Total probability, φ

• Marginal probability, ∆φ

• Minimum reward, Jmin

• Maximum reward, Jmax

The location is the final location of the path and the other data are based on

the unique path from the root vertex to the vertex. The root vertex is located at

the searcher’s current location and has the searcher’s current belief of the target’s

state, but the remainder of its properties are initialized with default values (Al-

gorithm 5.3). In each round of the algorithm, one or more vertices are added to

the tree. Each new vertex is a child of an existing vertex and its properties are

computed via (5.22)–(5.24), (5.27)–(5.28) using its location and its parent’s prop-

erties. Similar to RRT, locations of new vertices are determined by travelling in

the direction of randomly sampled locations. This sampling approach is biased to

points far away from the existing tree, which allows it to grow towards unexplored

174

I. Vandermeulen

areas and quickly find a high quality search path. Once the algorithm reaches a

stopping criterion—the number of vertices, number of rounds of the algorithm, or

reward of the best path—the algorithm returns the tree.

Algorithm 5.2: Search tree

Input: Environment, Q ⊂ R2; searcher’s location q0 ∈ Q; and belief, ŵ[0]
Output: Search tree, T
1 v0 ← root vertex at q0 with belief ŵ[0] /* Algorithm 5.3 */

2 T ← planning tree consisting of v0

3 v∗(T)← v0 /* Best vertex in tree */

4 while stopping criterion is not met do
5 q ← random location in Q
6 Grow T by adding new vertices based on q /* Algorithm 5.4 */

7 if v∗(T) has been updated then
8 Prune T to remove low quality vertices

9 return T

Algorithm 5.3: Create root vertex

Input: Location q0; and target belief, ŵ[0]
Output: Root vertex, v0

1 q(v0)← q0 /* Location */

2 τ(v0)← 0 /* Depth in tree */

3 ŵ(v0)← ŵ[0] /* Belief vector (not normalized) */

4 φ(v0)← 0 /* Total probability of success */

5 ∆φ(v0)← 0 /* Marginal probability of success */

6 Jmin(v0)← 0 /* Reward lower bound */

7 Jmax(v0)← 1 /* Reward upper bound */

8 return v0

The best path is obtained from the planning tree by following the unique path

from the root vertex to the best vertex, v∗. The best vertex is defined as the

vertex which maximizes Jmin, the guaranteed reward when following that path not

including potential future rewards. Throughout Algorithm 5.2, the planner keeps

track of the best vertex—initially the root vertex. When new vertices are added,

if a new vertex has a better Jmin than the existing best vertex, the best vertex is

updated. When the best vertex changes, Jmin(v∗) increases and the planner prunes

175

5.7. Sampling based planner

the tree by removing any vertices which are guaranteed to have worse rewards than

this new Jmin(v∗).

5.7.1 Growing the tree

In each round of Algorithm 5.2, the planning tree grows as new vertices are added

to it (Algorithm 5.4). Ideally the best vertex would be selected using the actual

reward J , but as it is not computable, one of the bounds, Jmin or Jmax, or a

convex combination of them is used instead. For each existing vertex in the tree,

the algorithm generates a candidate vertex vnew which is a child of that existing

vertex. The location of vnew is located along the shortest path from its parent to

a randomly sampled location. As in RRT, the same randomly sampled location

is used to generate every candidate vertex in a given round. I chose to use the

shortest path fully contained in the environment instead of the shortest direct

path. This choice biases the directions examined by the planner based on the

topology of the environment and prevents the planner from considering paths that

would cause a collision with an obstacle. This bias is beneficial as the planner

is more likely to consider directions which are highly connected topologically and

these directions tend to be the most useful for search.

The new candidate vertex is a child of an existing vertex in the tree and its

properties are based on this vertex and its location along the path to the sampled

location (Algorithm 5.5). The child’s belief is obtained by (5.24) which advances

its parent’s belief by one time step with a negative observation made at the child’s

location. This belief is not normalized, so its sum equals the probability of not

finding the target when travelling from the root to the new child vertex. This

fact is used to compute the total probability, φ, and the marginal probability is

the difference between the child and parent’s total probability. Once the total

and marginal probabilities have been computed, they can be used to compute the

reward bounds, Jmin and Jmax using inductive versions of (5.28)–(5.25).

176

I. Vandermeulen

Algorithm 5.4: Grow tree

Input: Environment, Q ⊂ R2; planning tree, T ; and sampled location, q ∈ Q
Output: Planning tree, T , with additional vertices added
1 Vnew ← {} /* Set of vertices to add */

2 for existing vertex v ∈ T do
3 p← shortest path from v to q within Q
4 qnew ← location reached by following p for one time step
5 vnew ← vertex at qnew with parent v /* Algorithm 5.5 */

6 if Jmax(vnew) ≥ Jmin(v∗(T)) then
7 if only adding one vertex then
8 vold ← only vertex in Vnew

9 if (vold does not exist) or (J(vnew) > J(vold)) then
10 Vnew ← {vnew}
11 else if adding one vertex at each depth then
12 vold ← only vertex in Vnew with τ(v) = τ(vnew)
13 if (vold does not exist) or (J(vnew) > J(vold)) then
14 Vnew ← Vnew ∪ {vnew} \ {vold}
15 else if adding as many vertices as possible then
16 Vnew ← Vnew ∪ vnew

17 for new vertex vnew ∈ Vnew do
18 Add vnew to T
19 if Jmin(vnew) > Jmin(v∗(T)) then
20 v∗(T)← vnew

21 return T

Algorithm 5.5: Create child vertex

Input: Location q1; and parent vertex, v0

Output: Vertex, v1

1 q(v1)← q1 /* Location */

2 parent(v1)← v0

3 τ(v1)← τ(v0) + 1 /* Depth in tree */

4 ŵ(v1)←
(
1− P>Cb(q1)

)
� (Aŵ(v0)) /* Belief (not normalized) */

5 φ(v1)← 1− 1>ŵ(v) /* Total probability of success */

6 ∆φ(v1)← φ(v1)− φ(v0) /* Marginal probability of success */

7 Jmin(v1)← Jmin(v0) + βτ(v1)−1∆φ(v1) /* Reward lower bound */

8 Jmax(v1)← Jmin(v1) + βτ(v1)(1− φ(v1)) /* Reward upper bound */

9 return v1

177

5.7. Sampling based planner

The new candidate vertex can be compared to other candidate vertices based

on their reward bounds, Jmin and Jmax, to determine which candidate vertices will

be added to the tree. The total number of candidate vertices which will be added

depends on the growth strategy used. I considered three growth strategies which

determine how many vertices are added to the tree in each round (Figure 5.13):

1. One new vertex per round. The best vertex is the one which maximizes

Jmin, Jmax, or some linear combination of them. After n rounds the tree

contains O(n) vertices.

2. One new vertex per layer. Each vertex of the tree has a depth which is

its distance from the root and a layer of the tree is a set of vertices which

all have the same depth. The best new vertex in each layer is again chosen

as the one that maximizes some combination of Jmin and Jmax. As the tree

contains n + 1 layers after n rounds, the number of vertices added in each

round is O(n) and the total number of vertices after round n is O(n2).

3. One new vertex per existing vertex. In this brute force strategy, all

candidate vertices are added. As the number of vertices after round n is

O(exp(n)), this strategy is only used to validate the quality of paths produced

by the other strategies.

While Algorithm 5.4 considers each candidate vertex, it stores the best candidate

vertices it has considered so far in a set, Vnew. When a new candidate vertex is

considered, the algorithm adds it to Vnew depending on the growth strategy and

how it compares to other candidate vertices already in Vnew. For the strategies

which do not add all vertices, when new vertices are added to Vnew, they often

replace existing ones. Once all candidate vertices (one for each existing vertex)

have been considered, every vertex in Vnew gets added to the tree.

Which vertices get added in a given round depends heavily on which reward

bound is used to rank candidate vertices. By the definitions of the two bounds, if

178

I. Vandermeulen

Figure 5.13: In each round of Algorithm 5.2, a randomly sampled location is used
to add one or more vertices to the planning tree. This location is
connected to each existing vertex of the tree by the shortest paths to
it (top left) and new vertices are added by following these paths by
a fixed distance. The three strategies for deciding which vertices to
add to the tree are: adding a single vertex per sampled location (top
right); adding one vertex at each depth of the tree (bottom left); or
adding one vertex for every existing vertex in the tree (bottom right).

vchild is the child of vparent, then it is always true that

Jmax(vchild) ≤ Jmax(vparent)

Jmin(vchild) ≥ Jmin(vparent).

These inequalities show that Jmin is higher for vertices deep in the tree, where as

Jmax is higher for vertices close to the root. As a result, when adding a single

vertex per round, if the best vertex is chosen based on Jmin, the algorithm will

favor adding vertices to the longest branch. On the other hand, if the best vertex

is the one that maximizes Jmax, the algorithm will add many vertices adjacent to

179

5.7. Sampling based planner

the root. To avoid either of these biases, we use the heuristic reward

Jheur(v) = (1− γ)Jmin(v) + γJmax(v) (5.29)

which is a convex combination with convex coefficient γ ∈ [0, 1]. Varying γ re-

sults in drastically different planning trees when only adding one vertex per round

(Figure 5.14). Smaller values of γ give higher weight to Jmin, resulting in a tree

that grows too quickly and does not explore multiple branches A larger γ gives

higher weight to Jmax, resulting in a tree that branches too often and remains

clustered around the root. An intermediate value of γ can better balance growth

and branching, resulting in a small tree whose best search path is optimal with re-

spect to random samples used to grow the tree. Unfortunately, the possible range

for γ which balances both behaviors is quite narrow, and can change for different

environments or target beliefs.

When comparing different vertices at the same depth of the tree, there is a

strong positive correlation between Jmin and Jmax (Figure 5.15). As this correlation

is positive, for vertices, v0 and v1, at the same depth, it is usually true that

Jmin(v0) > Jmin(v1) ⇐⇒ Jmax(v0) > Jmax(v1)

and so the vertex which maximizes one reward likely maximizes the other. There-

fore, within a layer, the optimal vertex is not very sensitive to the value of γ. As a

result, the one-vertex-per-layer growth strategy produces similar planning trees for

any heuristic reward, and in many cases, the same search path is returned for any

heuristic reward (Figure 5.16). This insensitivity to γ makes adding one vertex per

layer much more effective in practice than adding one vertex per sample despite

its higher computational complexity.

180

I. Vandermeulen

β = 0.5
γ = 0.07

β = 0.5
γ = 0.03

β = 0.5
γ = 0.05

β = 0.5

Figure 5.14: Different planning trees are obtained from the same set of sampled
locations when different criteria are used to determine which vertices
get added to the tree. When only a single vertex is added per sampled
location, the vertex added is the one that maximizes the heuristic re-
ward, (5.29). If γ is too small (top left), the heuristic favors adding
vertices deep in the tree, resulting in a tree that expands away from
the start location as fast as possible. If γ is too large (top right), the
heuristic favors adding vertices shallow in the tree, and the tree re-
mains clustered around the start location. For an intermediate value
of γ (bottom left), these two tendencies are balanced. In this scenario,
the optimal path in the tree is the same as the path obtained by a
brute-force search (bottom right) where every round of Algorithm 5.2
adds one new vertex for each existing vertex.

5.7.2 Pruning the tree

When adding new vertices to the tree, one candidate vertex is considered for

each candidate vertex in the tree. Therefore, the computational complexity of

Algorithm 5.4 is directly proportional to the number of vertices in the tree, and so

the planner can be made more efficient by keeping the number of vertices as small

as possible. Rather than adding fewer vertices in each round, we can prune the

181

5.7. Sampling based planner

0 0.01 0.02 0.03
0

0.1

0.2

0.3

Jmin

J
m
a
x

1

3

5

7

9

11

D
ep
th

Figure 5.15: Upper and lower reward bounds for each candidate vertex considered
when building the planning trees in Figure 5.14. At each depth of the
tree, there is a strong positive correlation between the two rewards.

β = 0.5
γ = 0

β = 0.5
γ = 1

Figure 5.16: When each round of Algorithm 5.2 adds one vertex to each layer of
the tree, the resulting tree is not very sensitive to γ. In this scenario,
candidate vertices are only compared with other candidate vertices
at the same depth and the rankings of candidate vertices in the same
layer are similar if based on Jmin or on Jmax. The tree obtained using
γ = 0 which corresponds to Jheur = Jmin (left) is almost identical
to the tree obtained using γ = 1 which corresponds to Jheur = Jmax

(right).

182

I. Vandermeulen

|T | = 165 |T | = 95

Figure 5.17: After several rounds of adding vertices, the tree (left) may be some
vertices with Jmax(v) < Jmin(v∗) for some other vertex v∗. Any
path through these vertices is guaranteed to be worse than any path
through v∗ and so they can be removed from the tree. After remov-
ing these vertices, the pruned tree (right) is much smaller than the
original tree. In this figure, the color of the top half of each vertex
represents its Jmax and the color of the bottom half represents its
Jmin.

tree to remove poor quality vertices which were added in previous rounds. The

two reward bounds, Jmin(v) and Jmax(v), of v are defined such that every path that

begins by following the tree from its root to v has its reward between these two

bounds. If a second vertex, v′, has Jmax(v′) < Jmin(v) then every path through

v′ must be worse than any path through v. In this case, there is no point in

considering paths through v′—none of them could possibly be the best path—so

we might as well remove v from the tree. By pruning the tree to remove all such

vertices, we can often remove close to half of the tree’s vertices (Figure 5.17) which

will make every future round of Algorithm 5.4 more efficient.

Pruning should be performed as often as necessary, but does not need to be

performed every time a new vertex is added to the tree. In particular, it only needs

to be performed when v∗—the vertex which maximizes Jmin—changes. When new

vertices are added in Algorithm 5.4, they are compared with the existing v∗ and

it is updated if necessary. After a round of Algorithm 5.4, if v∗ has been updated,

then Algorithm 5.2 prunes the tree based on the new Jmin(v∗). The actual process

of pruning (Algorithm 5.6) is extremely simple. As every vertex of the tree has

183

5.7. Sampling based planner

Jmin ≤ Jmin(v∗), the algorithm simply compares each vertex with Jmin(v∗) and

removes every vertex whose reward is guaranteed to be less than this value.

Algorithm 5.6: Prune tree

Input: Planning tree, T
Output: Planning tree, T , with some vertices removed
1 for vertex v ∈ T do
2 if Jmax(v) < Jmin(v∗(T)) then
3 Remove v from T

4 return T

5.7.3 Re-rooting the tree

As the tree grows, different numbers of vertices are considered at different depths.

Algorithm 5.2 can only increase the maximum depth of the tree by 1 in each round,

so it begins considering vertices at depth τ during the τ th round. Therefore, at

shallow depths, it will consider many different candidate vertices and so the first

several vertices of the path are well optimized. The deep vertices, on the other

hand, are not usually very optimized as fewer candidates are considered and the

exponential decay of βτ results in deep vertices contributing relatively little to the

overall reward. As a result, the searcher’s best strategy is to follow the optimized

front of best path—from the search tree’s root to v∗—and then replan instead of

following the back of the best path, which is often not fully optimized.

Suppose the path from the root vertex, v0, to the vertex with the highest

reward, v∗ is p∗ = (v0, v1, . . . , v
∗) and the searcher has now moved from its original

original location, q(v0), to the first vertex, q(v1). At this point, if the searcher

wants to replan, it could grow a new tree at q(v1) with initial belief equal to

a normalized version of ŵ(v1). However, many vertices of the original tree are

already children of v1 and so it is more efficient to use these existing vertices in the

new tree as they are still valid due to the recursive nature of the reward function

J . The process of converting the existing tree into a new tree rooted at v1 is called

184

I. Vandermeulen

|T | = 95 |T | = 51

Figure 5.18: After a searcher has followed its search path to the first vertex of
the tree, part of the original tree (left) can be used as a starting tree
for planning a search path from the searcher’s new location. This
re-rooted tree (right) has the robot’s new location as its root and
contains all vertices of the original tree which are descendants of this
new root vertex.

re-rooting. It can often be used to initialize a new tree with more than half of

the original vertices (Figure 5.18). As any stopping criterion for Algorithm 5.2 is

related to the number of vertices in the tree, this process can significant reduce

the computation needed when replanning.

Each vertex’s location and parent remains the same; however all their statistical

properties will change as they must now conditioned on the fact that the searcher

did not find the target when travelling from the old root, v0, to the new root, v′0.

With this new condition, the vertex’s cumulative probability becomes

φ(v′) = P (Connected by v | Not connected by v′0)

=
P (Connected by v and not connected by v′0)

P (Not connected by v′0)

=
φ(v)− φ(v′0)

1− φ(v′0)

where the v′ denotes the vertex with properties computed for the re-rooted tree.

Combining this transformation with (5.22), (5.25), and (5.28), the other statistical

185

5.7. Sampling based planner

properties get transformed according to

∆φ(v′) =
∆φ(v)

1− φ(v′0)

Jmin(v′) =
Jmin(v)− φ(v′0)

βτ(v′0)(1− φ(v′0)

Jmax(v′) =
Jmax(v)− φ(v′0)

βτ(v′0)(1− φ(v′0)
.

Additionally, the vertex’s new depth is τ(v′) = τ(v) − τ(v′0) and its belief should

be renormalized so that it sums to 1 − φ(v′) instead of 1 − φ(v). Using these

rules, a vertex’s properties can all be updated in constant time when the tree gets

re-rooted (Algorithm 5.7).

Algorithm 5.7: Re-root vertex

Input: Vertex, v; and new root vertex, v′0, for planning tree
Output: Vertex, v′, with properties updated for re-rooted tree
1 τ(v′)← τ(v)− τ(v′0) /* Depth in tree */

2 φ(v′)← φ(v)−φ(v′0)

1−φ(v′0)
/* Total probability of success */

3 ∆φ(v′)← ∆φ(v)
1−φ(v′0)

/* Marginal probability of success */

4 Jmin(v′)← Jmin(v)−φ(v′0)

βτ(v
′
0)(1−φ(v′0)

/* Reward lower bound */

5 Jmax(v′)← Jmax(v)−φ(v′0)

βτ(v
′
0)(1−φ(v′0)

/* Reward upper bound */

6 ŵ(v′)← 1−φ(v)

1>ŵ(v)
ŵ(v) /* Belief (not normalized) */

7 return v′

When constructing the re-rooted tree (Algorithm 5.8), we first sort the vertices

of the old tree by depth. By sorting them, every vertex is considered after its

parent, so we can simply check if a vertex’s parent is already in the re-rooted

tree to determine if that vertex should be added. The new root vertex is always

added first, and then the sorting guarantees that all of its descendants will also be

added. When a vertex is added to the re-rooted tree, its properties are immediately

updated to be correct based on the condition that the target was not found while

travelling to the new root vertex. After every vertex has been added, the re-rooted

tree resembles a tree that would be built by several rounds of Algorithm 5.4 without

186

I. Vandermeulen

needing to perform any difficult calculations.

Algorithm 5.8: Re-root tree

Input: Planning tree, T ; and new root vertex, v′0, already in T
Output: Planning tree, T ′ rooted at v′0
1 Create new tree T ′ with v′0 as root vertex /* Algorithm 5.3 */

2 Sort vertices of T by depth
3 for vertex v ∈ T do
4 if re-rooted version of parent(v) ∈ T ′ then
5 v′ ← re-rooted version of v with v0 as root /* Algorithm 5.7 */

6 Add v′ to T ′

7 return T ′

5.7.4 Planning trees for multiple searchers

Multiple searchers can improve their chances of finding a common target by coor-

dinating their search paths. Typically this coordination requires the searchers to

plan their paths so that they remain connected to each other at all times. Plan-

ning coordinated paths for multiple robots is challenging as the size of the search

space scales exponentially with the number of robots. Sampling-based planning

algorithms, however, are not hindered by this high dimensionality and are able to

effectively plan coordinated paths [58].

Multiple coordinated search paths can also be planned using a search tree;

however this tree’s vertices consists of m locations—one for each searcher (Fig-

ure 5.19). In each round of adding candidate vertices, we sample one random

location for each searcher and connect each of these m samples to the correspond-

ing searcher’s locations for each existing vertex of the tree. A new candidate vertex

is obtained from one of the existing vertices by following the shortest paths from

all of that vertex’s locations towards their respective samples. This set of locations

is a valid candidate vertex if they satisfy a communication constraint—either con-

nectivity of the ad-hoc network formed by a team of searchers at those locations

187

5.8. Results

or a sufficiently high probability of connectivity. The connectivity can be mea-

sured algebraically using the network’s Fiedler eigenvalue—the second smallest

eigenvalue of its Laplacian matrix—whose value is related to the overall strength

of the possibly indirect communication between each pair of locations [59]. For

an environment with a binary communication model, the network is connected if

this eigenvalue is strictly positive; for a stochastic communication model, it has a

high enough probability of connectivity if this eigenvalue is greater than a given

threshold. Aside from vertices containing m locations which must satisfy this con-

nectivity constraint, adding vertices works in exactly the same way as for a single

searcher. Each vertex has a single value of φ which equals the probability that any

of the searcher’s will find the target when travelling from its root position to its

position in that vertex. The single values of φ are used to define single values for

Jmin and Jmax which are used when deciding which vertices to add to the tree.

Once sufficiently many vertices have been added to the tree, the best vertex is

used to find the path from the root to the best vertex. This path maximizes the

team’s reward and is defined in terms of vertices of the tree which each consist

of m locations. It can be converted into a set of m paths by connecting the

corresponding locations in adjacent vertices of the planning tree. These paths

are the optimal coordinated search strategy. They maximize the team’s reward

and ensure that the team of searchers maintains a connected network during the

entire search. In general, the connectivity constraint forces the team to stay close

together which limits the overall number of paths considered by the planner and

reduces the burden of the high dimensional planning space.

5.8 Results

The search algorithm described in this chapter can be used to reconnect teams of

robots who are performing a variety of tasks, such as search, coverage, surveillance,

188

I. Vandermeulen

Figure 5.19: A planning tree for two cooperative searchers consists of pairs of con-
nected searcher locations (top left). New candidate pairs are obtained
by sampling the environment twice and connecting each location to
all of one searcher’s existing locations via shortest paths (top right).
If the two locations of a candidate pair cannot communicate, or have
too low of a communication probability, the pair cannot be added to
the tree (bottom left). If the two locations of the pair can communi-
cate, the pair can be added to the tree if it has a high enough reward
(bottom right).

or delivery. The approach can be used in any application as long as the searcher

has some knowledge—typically in the form of historic or simulated path data—of

how its target behaves. To illustrate the effectiveness of this search algorithm, I

applied it to a simple relay scenario consisting of two robots. These two robots in

these simulations have different roles and thus different behavior.

The first robot is a wandering robot which travels throughout the environment

by selecting a random target location and then following the shortest path from

its current location to that location (Figure 5.20). Once it reaches its target

location, it selects a new random target location and takes the shortest path to

189

5.8. Results

Figure 5.20: Example of a single simulated path for the wandering robot (dark
green). It is overlayed on 2000 simulated paths (light green) which
are semi-transparent to show which regions have high densities of
paths and which regions have low densities.

it. Although this example may seem somewhat contrived, this type of behavior

is actually quite common for a robot that has to perform many simple, spatially

distributed tasks. If the tasks take relatively little time, such as in monitoring or

delivery applications, the robot spends majority of its time travelling and likely

takes the shortest route to its next task. The result of this kind of behaviour is that

the robot is more likely to be found in some locations than others, even though the

distribution of target locations is uniform. Depending on the environment, certain

regions, such as hallways, will be part of many paths whereas remote locations,

such as the corners of rooms, will only be visited rarely as the only paths through

that location are paths starting or ending there.

The second robot serves as a relay between the wandering robot and a base

station which does not move. Its main objective is to find the wandering robot so

that it can receive some information from it. Once it receives this information, it

190

I. Vandermeulen

Figure 5.21: The search simulations are set in an environment where the searcher
(blue) is guaranteed to find the wandering robot (green) if they are
less 2 apart and have a clear line-of-sight. At distances between 2
and 3, their probability of communication decreases linearly from 1
to 0. The base station (orange) is located in a remote location which
is rarely visited by the wandering robot.

travels back to the base station to transmit this information, after which it searches

for the wandering robot again. Search for the wandering robot is successful when

the two robots are within communication range. However when returning to the

base station, the searcher is required to physically touch it before beginning a

new search. For these simulations, I chose to put the base station in a remote

location which the wandering robot rarely visits. This choice reduces the number

of times that the search is trivial due to the wandering robot being visible from

the base location. The communication model used in these simulations requires

a line of sight. The probability of communication is 1 within a distance of 2 and

then decreases linearly from 1 to 0 between the distances of 2 and 3. The location

of the base station and communication range are shown in Figure 5.21.

As this scenario is cooperative, the searcher knows the other robot’s general

191

5.8. Results

Figure 5.22: Stationary distribution of a HMM modeling the behavior of the wan-
dering robot. Its transition probabilities were computed using 2000
simulated paths. The probability of each cell closely resembles the
density of paths through that cell in Figure 5.20.

behavior—that it continually travels to randomly selected locations—however as

the locations are selected randomly, it never knows the other robot’s current target

location. Using this knowledge, the searcher is able to simulate the target’s behav-

ior and use the simulated paths determine the transition probabilities in the HMM

it uses to update its belief. The stationary distribution of this HMM (Figure 5.22)

is quite similar to the actual density of target paths.

5.8.1 Comparison with other approaches

I compared my sampling-based search path planner with two reasonable baseline

algorithms:

• Random searcher: This searcher chooses a random location and follows

the shortest path to it. If it finds the target when following this path, search

is successful; if not, it chooses a new random location and repeats until it

192

I. Vandermeulen

happens to find the target.

• Go-to-mode searcher: This searcher behaves greedily by following the

shortest path from its current location to the location with the highest be-

lief. As it takes very little effort to plan a path to the mode of the belief

distribution, the searcher can replan its search path every time step.

For my algorithm and both of these benchmark algorithms, I ran a simulation

where the searcher must find the target robot 500 times. The environment used

for these simulations and its communication range and base station location are

shown in Figure 5.21. The searcher and target both move at the same speed in

all simulations. For each simulation, I recorded the number of time steps needed

for the searcher to find the target after it leaves the base station and used these

data to construct time-to-find distributions for each algorithm (Figure 5.23). My

search algorithm had a mean time-to-find of 33.9 which was faster than both the

go-to-mode (42.6) and random (48.1) searchers. I performed a Welch’s t-test and

found that the difference between all three means was statistically significant at

the 95% confidence level.

Although the mean times-to-find indicate my algorithm performs better than

either of the benchmarks, I noticed that the distributions are definitely not normal,

so I decided to check some other statistics as well. I first checked the medians:

29 for my sampling-based searcher, 31.5 for the go-to-mode searcher and 33 for

the random searcher. To my surprise, the medians were very close! Intrigued,

I decided to check some other deciles and discovered that the first 4 deciles of

all three algorithms are similar and my algorithm is only better for the higher

deciles (Table 5.1). The same result can be observed in the percentile plots for

each distribution (Figure 5.24) which show no significance between the algorithms

below approximately the 45th percentile with my algorithm being significantly

better at higher percentiles.

193

5.8. Results

0 50 100 150 200 250 300

Time steps

P
ro

b
ab

il
it

y
d
en

si
ty

Sampling-based searcher
Go-to-mode searcher
Wandering search
Mean with 95% confidence interval

Figure 5.23: Time-to-find distributions for three search algorithms. Each distri-
bution is based on 500 successful searches for a wandering robot in
the environment shown in Figure 5.21 which moves at the same speed
as the searcher. The smoothed distributions were obtained by ker-
nel density estimation using a Gaussian kernel with bandwidth 0.4.
The 95% confidence interval for the means of each distribution were
computed by bootstrapping with 1000 resamplings of the data.

What can we conclude based on these quantiles? Is my algorithm actually

better than the two simple benchmarks if the difference between them is not always

significant? I was tempted to only report the distributions’ means as they indicate

my algorithm is better; however, doing so would be somewhat dishonest as the

medians do not show nearly as significant of a difference and I had no justification

as to why the mean would be a better statistic than the median for comparing

the algorithms. After some reflection, I realized that the seemingly contradictory

information displayed by the quantiles can be explained by dividing the data into

194

I. Vandermeulen

Table 5.1: Deciles, Di, for the distributions shown in Figure 5.23. The probabilities
are the p-values for a two-sided t-test that two different searcher’s deciles
are equal.

Sampling-based Go-to-mode Random
i Dsb

i Dgtm
i P(Dsb

i = Dgtm
i) Drand

i P(Dsb
i = Drand

i)

1 8.47 7.19 0.418 7.41 0.457
2 15.46 14.26 0.542 13.68 0.172
3 20.14 21.31 0.468 17.68 0.061

4 25.20 27.56 0.334 26.09 0.688
5 29.74 37.34 0.001 33.42 0.047
6 34.12 48.18 0.000 43.14 0.005

7 41.34 56.35 0.000 56.33 0.000
8 48.56 66.69 0.000 72.37 0.000
9 63.54 78.26 0.000 107.32 0.000

0 25 50 75 100
0

50

100

150

200

Percentile

T
im

e
st
ep
s

Sampling-based searcher
Go-to-mode searcher
Wandering search

Figure 5.24: 95% confidence bands for the percentiles of the distributions shown
in Figure 5.23. The percentiles and their confidence limits were com-
puted by bootstrapping with 1000 resamplings of the data.

195

5.8. Results

two categories:

• Easy searches: In these cases, the target robot happens to be relatively

close to the base station. When the target is nearby, any searcher leaving

the base station is likely to find it quite quickly, regardless of which path it

takes, and so all searchers are likely to find the target in a similar amount

of time.

• Difficult searches: In these cases, the target robot is far away from the base

station. The searcher would need to follow a relatively long path, involving

many turns, to reach the target even if it knew exactly where the target

was and where it was going. As the searchers do not know where the target

is (the belief is not necessarily accurate), there are many chances for the

searcher to make a wrong turn increasing the time needed to find the target.

To make matters worse, the longer it has been since the searcher last found

the target, the less precise its belief is, making search more difficult.

Every individual search therefore has a difficulty which depends on the location

of the target, the communication range of the searcher, and topology of the en-

vironment. For the environment used in these simulations, approximately 40% of

the searches are easy. In any easy situation, any search algorithm can be used to

quickly find the target and so we do not see a significant difference between any

of the algorithms at the 4th decile or below. The remaining 60% of searches are

more difficult and these searches are really the scenarios that should be used when

assessing a search algorithm. The fact that the 5th and higher deciles are smaller

for my algorithm means that it is indeed outperforming the other algorithms in

difficult searches. The high percentiles can also be used as a statistical perfor-

mance guarantee: there is a 95% chance that my algorithm will find the target

within 77 time steps, whereas the go-to-mode and random searchers require 85 and

123 time steps to make the same guarantee. These results illustrate that the high

196

I. Vandermeulen

quantiles are actually better statistics for comparing search algorithms, and they

show my sampling-based search algorithm performing significantly better than the

other two algorithms.

5.8.2 Effect of discount factor

I also compared the effect of discount factors on the performance of a searcher using

my algorithm. Recall that the discount factor, β ∈ [0, 1], determines the relative

reward of finding the target after different lengths of time according to (5.25).

A small value of β prioritizes paths which have a high probability of finding the

target immediately even if it is unlikely to find the target later on the path. A

large value of β prioritizes paths which have a high probability of finding the target

eventually but does not distinguish between paths which find it quickly and paths

which find it slowly.

Intuitively, I expected some intermediate value of β—rewarding paths which

have a high probability of finding the target eventually but are also likely to find it

quickly—would give the best performance, measured based on the distributions of

times needed to find the target. To test this hypothesis, and determine which value

of β performs best, I ran simulations for 7 evenly spaced values of β ranging from 0

to 1 where the searcher was required to find the target 500 times (Figure 5.25). To

my surprise, I found that the choice of β had very little effect on the distributions

of search times! When comparing the means of these distributions, representing

the average time needed to find the target, I found no significant difference between

the means when β ∈ [1/3, 1] at the 95% confidence level (Table 5.2). For β < 1/3,

there was a statistically significant increase in the mean search time as β decreased,

with the β = 1/6 searcher’s performance similar to the go-to-mode searcher and

the extreme case of the β = 0 searcher similar to the random searcher.

I also compared the quantiles of the search time distributions for different values

of β (Figure 5.26). The quantiles show that the searcher with β = 0 performs

197

5.8. Results

0 50 100 150 200

Time steps

P
ro
b
ab

il
it
y
d
en
si
ty

0/6

1/6

2/6

3/6

4/6

5/6

6/6

D
is
co
u
n
t
fa
ct
or

(β
)

Figure 5.25: Time-to-find distributions for the sampling-based search algorithm
with 7 different values of the discount factor, β. Each distribution is
based on 500 successful searches for a wandering robot in the envi-
ronment shown in Figure 5.21 which moves at the same speed as the
searcher. The smoothed distributions were obtained by kernel den-
sity estimation using a Gaussian kernel with bandwidth 0.4. The 95%
confidence interval for the means of each distribution were computed
by bootstrapping with 1000 resamplings of the data.

much worse than the other searchers, whereas the performance of the searchers

with β ∈ [1/2, 1] are statistically indistinguishable as none of their quantiles are

significantly different. This lack of sensitivity to the exact value of β indicates

that this search algorithm will be quite easy to use in practice as any value of

β ≥ 1/2 gives essentially the same performance: they are all significantly better

than the alternatives of the go-to-mode and random searchers.

For the simulations in this chapter, the simulated robots had average velocities

198

I. Vandermeulen

Table 5.2: Effect of the discount factor, β, on the means of the time-to-find distri-
butions in Figure 5.25 for sampling-based searchers. These mean times,
τ sb
β , are compared with the mean times for the go-to-mode searcher,

τ gtm, and random searcher, τ rand. The p-values were computed using a
two-sided t-test for the hypothesis that the mean is equal to the mean
for one of the searchers in Figure 5.23.

β τ sb
β P(τ sb

β = τ sb
5/6) P(τ sb

β = τ gtm) P(τ sb
β = τ rand)

1 34.170 0.777 0.000 0.000
5/6 33.860 1.000 0.000 0.000
4/6 36.046 0.158 0.000 0.000
3/6 34.592 0.636 0.000 0.000
2/6 36.216 0.115 0.001 0.000
1/6 39.192 0.002 0.071 0.000
0 47.089 0.000 0.042 0.712

0 25 50 75 100
0

25

50

75

100

125

150

Percentile

T
im

e
st
ep
s

0/6

1/6

2/6

3/6

4/6

5/6

6/6

D
is
co
u
n
t
fa
ct
or

(β
)

Figure 5.26: 95% confidence bands for the percentiles of the distributions shown
in Figure 5.25. The percentiles and their confidence limits were com-
puted by bootstrapping with 1000 resamplings of the data.

199

5.9. Conclusions

of 1 m/s and average turning speeds of 45 ◦/s. The environment had a length

of 44 m and width of 26 m. The total time needed for the searcher to find the

target and return to the base station 500 times ranged from 6.8 h to 8.1 h. The

simulations were performed in C++ using a standard laptop computer running

Linux and took between 2.4 h to 3.5 h to perform. As the simulation times, which

include the time needed to plan the search paths, were lower than the real time

the robot would require to follow the planned search paths, my sampling-based

search planner could be used in real time on a robot with hardware comparable

to a standard laptop computer.

5.9 Conclusions

When robots cannot communicate over long ranges, a team of robots may need

to split up into multiple smaller disconnected teams while completing their tasks.

If the tasks take variable lengths of time, it can be difficult to plan a rendezvous

time and place when they separate. Instead, they can simply search for each other

when they have information to share and need to communicate. In this chapter, I

presented an algorithm that disconnected robots can use to find each other without

making an explicit plan for reconnection. This algorithm is based on a belief of

the target’s behavior and location and paths are planned using an sampling-based

planner which maximizes a discounted reward function.

Each robot maintains a probabilistic belief about all of the disconnected robots

in the team. This belief is updated using a hidden Markov model, which is built

using historic or simulated data about the teammate’s behavior. This HMM is

based on a polygonal lattice that covers the environment. Its observable states are

the cells of the lattice; its hidden states include:

• Direction states which represent a 2-dimensional pose consisting of a lattice

cell and lattice direction; and

200

I. Vandermeulen

• Transit states which model the variable transit times between direction

states due to the different turning angles and linear direction between states

as well as the inherent variability in the target robot’s velocity.

The searcher uses both positive and negative observations alongside the HMM to

update its belief of the target’s state and physical location.

Using the belief, the searcher plans a path which maximizes a discounted reward

function. This discounted reward uses a discount factor β ∈ [0, 1] to give higher

weight to finding the target quickly while also rewarding paths that find the target

eventually. Search paths are obtained by building a tree of possible search paths.

New vertices are added to this tree by sampling a random point in the environment

and adding one new vertex at each layer of the tree in the direction of this randomly

sampled point. Old vertices are removed from the tree whenever the upper bound

on its reward is lower than the lower bound on the reward of a recently added

vertex, which guarantees that the best path cannot be through that vertex. The

searcher follows the first several vertices of the highest reward path in this tree to

search for the target. If it does not find the target, it can re-root the search tree so

that its current location is the root of the tree and any existing vertices of the tree

which are descendants of this new root are maintained to reduce the computation

needed to build a new planning tree.

I compared this sampling-based search algorithm with two benchmark algo-

rithms: one where the searcher follows the shortest path to the mode of its belief

distribution, and a second where the searcher follows the shortest path to a random

location. My approach had the best mean search time after completing 500 search

attempts. The quantiles of the search time distributions indicated that the three

algorithms had equivalent performance for the fastest 40% of the searches, which

occur when the target starts near the searcher and is easy to find. In the remaining

60% of searches, the target is more difficult to find as it is initially further away

and in these scenarios my algorithm is significantly faster than both benchmarks.

201

5.9. Conclusions

I also evaluated the effect of the discount factor on the performance of the searcher

and found the best performance when β ∈ [0.5, 1], however the performance is not

very sensitive to the discount factor. All of my simulations were performed faster

than real-time indicating that this search algorithm could be implemented on a

real robot.

202

Chapter 6

Robust multirobot coverage

Coverage in real environments is much more difficult than in the idealized setting

I presented in Chapter 4. Robots don’t always behave as expected, maps may be

incorrect, and humans or animals may interfere with the robot. These challenges

can prevent a robot from executing its plans as expected or may mean that the

plan is insufficient for properly completing the coverage task. This chapter focuses

on several ways to make coverage more robust—primarily through semantic com-

mands, replanning, and searching for teammates—in both single- and multirobot

settings.

The methods in this chapter all use feedback to reduce uncertainty, albeit

often in an indirect way. The feedback comes in the from of data from the robot’s

sensors—often including cameras, lidar, wheel encoders, and contact sensors—

and potentially information shared by another cooperative robot over a wireless

network. The robot uses these data in a simultaneous localization and mapping

(SLAM) system to follow a planned path without usually needing to provide direct

feedback to the high level planner while executing plans. It also uses these data

to determine when to replan because a previous plan is no longer valid, and to

determine when to change between different modes of behavior such as coverage

and search. Due to the many processes running simultaneously on a robot—

SLAM, low-level path following, high-level coverage planning, belief estimation,

communication—the high level planning components typically respond indirectly

to feedback via information received from other concurrent processes.

203

6.1. Related work

6.1 Related work

Coverage robots have been the most successful consumer robots, representing ap-

proximately 60% of that market [164]. Their success has been largely due to their

ability to work adequately in a wide variety of environments, despite usually being

inefficient. This robustness has generally been achieved through a lack of planning.

Rather than follow an exact path, the robots simply follow pre-programmed behav-

iors and change their behavior in response to interactions with the environment,

such as bumping into an obstacle. The simplicity of these behaviors has enabled

them to operate in new environments without even requiring a map. However, it

also makes it difficult to guarantee complete coverage and often results in lots of

duplicate coverage [161].

Common behaviors used by commercially available coverage robots include:

• Random bounce: the robot travels in a straight line and turns at a random

angle when it bumps into an obstacle. This behavior was used by the early

versions of the iRobot Roomba [91] and can potentially achieve full coverage,

given enough time, in any environment.

• Spiral: the robot follows a spiral path with a larger radius on each pass. The

iRobot Roomba’s spot-cleaning mode spirals around a point [91], whereas the

John Deere robotic mower spirals around landmarks and switches to a new

spiral when it bumps into obstacles [9].

• Parallel ranks: the robot follows series of parallel straight lines—called

ranks—turning when it reaches an obstacle. This behavior, also called ser-

pentine, is used by many robots including vacuum cleaners [70, 182], lawn-

mowers [152], and mops [200].

• Object following: the robot follows the perimeter of an obstacle, using its

sensors to ensure that it remains close to the obstacle as it moves around it.

204

I. Vandermeulen

Many different coverage robots [17, 91, 182, 200] use this behavior as it is

necessary to ensure good quality coverage near the edges of environments.

Additionally, some robots have escape behaviors which are not intended for cover-

age but are nevertheless used during a coverage mission [121, 192]. These behaviors

help the robot escape a dangerous situation such as getting stuck on some rough

terrain or near the edge of a cliff

The built-in behaviors of robots are additionally specific to that robot’s me-

chanical constraints. One large robotic lawnmower uses a variant of the parallel

rank behavior where it follows offset parallel loops to accommodate its large turn-

ing radius [165]. A robotic mop moves back-and-forth along short curved paths

on either side a straight line while spraying water or a cleaning solution to ensure

that it properly cleans on both sides of the line [50]. A triangular robotic vacuum

cleaner has specialized behavior in concave corners, enabling it to clean right into

the corner [171].

Robot lawnmowers cannot typically rely on bumping into obstacles because

many edges of lawns do not consist of physical obstacles, but instead are simply

a transition from grass to a garden. Some lawnmowers instead require the instal-

lation of a boundary wire or series of posts which emit a signal to tell the robot

when it has reached the boundary [152]. Other lawnmowers use a GPS system for

localization and require user input through a mobile device to demarcate the edge

of mowing region [17].

Many coverage robots are now able to create a map of their environment as

they perform coverage using onboard cameras and sensors [142]. These maps are

often used simply to determine when coverage is complete [182] and for providing

information to a user [10]. They have additionally been used in a limited capacity

in planning to enable room-by-room coverage [106]. At the start of a mission,

the previously constructed map is partitioned into smaller components via a wa-

tershed algorithm [105] which each represent one room of a house. The robot

205

6.1. Related work

then covers each room via its pre-programmed behaviors before moving onto the

next room. Although this strategy makes the robot appear more intelligent, it

still relies on its original simplistic behaviors—not an optimal plan—to cover each

room. One difficulty of using maps for planning is that robot maps are noisy and

are constructed of several small local maps which must be aligned to create the

global map [124]. If these local maps are slightly misaligned or too noisy, a robot

following a path planned using the incorrect map may end up trying to travel

through a wall! Additionally, robots have difficulty following an exact path due

to wheel slip or uneven terrain and must rely on landmarks recognized by their

camera to improve localization and return to the desired path [175]. As a result of

this fragility of exact plans, even the most successful high-end robots do not use

exact coverage plans.

Currently, cooperative multirobot coverage does not exist yet in any consumer

product. The only case I am aware of coordinated coverage robots is the teaming of

iRobot’s vacuum and mopping robots [61]. In this situation, the robots share a map

but the work is divided based on floor type—the mopping robot cleans tiled floor

and the vacuum cleans carpeted floor—and the robots clean consecutively rather

than concurrently. As consumer coverage robots are generally considered part of

the smart home, they will likely be coordinated via the cloud [63] which requires a

strong wireless connection and ensures constant communication at all times. The

cloud also provides the benefit of more powerful computing resources than would

be available onboard a robot, making coordinated planning more feasible. In

situations where robots do not have constant communication, mobile robots may

be used as communication relays between teammates [20, 126]. This role could

be filled by lower cost robots without the capability of coverage, or by a coverage

robot that can no longer cover—due to a damaged tool, or full dustbin—but is

nevertheless still valuable to the team.

206

I. Vandermeulen

6.2 Sources of unpredictability

Contrary to the idealized scenarios regularly considered by academics, such as the

one in Chapter 4, the real world is dynamic and has many sources of unpredictabil-

ity. Both the environment and the robots may differ from the simplified models

used for planning. These differences may make the plan difficult to execute as it

does not match up with reality, but a successful robust coverage strategy must be

able to respond to any of these sources of unpredictability.

Certain forms of feedback can be used to limit the effects of uncertainty without

needing to explicitly identify the source of this uncertainty or its exact magnitude.

In robotics, low level control systems typically use feedback in this manner. For

example, a controller adjusting the voltage to a motor in response to measurements

made by a wheel encoder, doesn’t need to know how the terrain type, mass carried

by the robot, or other factors affect its velocity to effectively make the robot travel

forwards at a desired velocity.

Higher level robotics tasks, such as coverage or search, typically depend on

many different processes which are affected differently by different sources of un-

predictability. Therefore, it is helpful to use data from multiple sensors to distin-

guish between different sources of uncertainty and respond differently depending

on the source. For example, suppose a robot was trying to enter a room when it

bumped into something near the doorway. It would be helpful to use the robot’s

camera to determine if the door is closed and the robot needs to replan or if the

robot bumped into the wall beside the door and just needs to relocalize. Simply

using direct feedback, the high level process would not treat these situations dif-

ferently. Instead, it can be more effective at its overall mission by understanding

different sources of unpredictability and responding differently to each one.

207

6.2. Sources of unpredictability

Figure 6.1: Localization errors occur when a robot’s belief of its position (blue) is
different from its true position (orange). When a robot plans based on
its incorrect belief (left), its real path is a shifted and rotated version
of its planned path which often results in collisions with obstacles
preventing the robot from completing its planned path (right).

6.2.1 Mapping and localization errors

Consumers expect their robots to work immediately out of the box without any

setup, but each robot operates in a different environment—no two homes or cities

are identical. Instead of giving robots maps, which would require significant setup,

coverage robots are equipped with simultaneous localization and mapping (SLAM)

systems. They use these systems to create their own maps using a combination of

sensor data from sensors such as wheel encoders, bumpers, cameras, and lidar [54].

These maps tend to be noisy and localization within them is difficult, especially

if the lighting conditions are different from when the map was made [104]. Small

errors in localization, especially with respect to the robot’s heading, can result in

coverage plans that tell the robot to travel through obstacles (Figure 6.1).

6.2.2 Environment changes

Aside from small errors due to the SLAM system, there can be large systematic

errors in the map due to changes in the real environment. If a door was opened

when the robot made its map but is closed when the robot is using the map, the

208

I. Vandermeulen

Figure 6.2: A robot’s map depends on whether or not doors are open (left) or
closed (right). Closing doors can make some portions of the map in-
accessible or can change the topology of the free space.the free space.

robot may be unable to enter a large portion of its former environment, or the

topology of the environment may change (Figure 6.2). Similarly, if furniture gets

rearranged, the accessible floor in a room can change drastically. A robot must be

able to distinguish these actual changes in the environment from small mapping

errors and adapt its behavior to the current environment.

6.2.3 Interactions with humans

The most successful coverage robots are consumer robots, and they will naturally

come into contact with consumers (or their pets). Humans commonly interact

with coverage robots when either

1. The robot bumps into the human; or

2. The human picks up the robot and carries it to some other location

In the first case, the human essentially behaves as an obstacle which the robot

can treat similarly to another new obstacle. The second case, commonly called

kidnapping, is a problem which happens quite often for robotic vacuum cleaners

[104]. Often humans kidnap their robots when the robot is cleaning a part of the

209

6.2. Sources of unpredictability

house that the human doesn’t want cleaned. After its release, the robot must be

able to relocalize and modify its behavior so that it doesn’t annoy the human by

returning to the same spot they just took it away from.

6.2.4 Battery or capacity constraints

The batteries that power most robots have limited capacities. Ideally, the robot

would always start its mission with a full battery and the battery’s capacity would

be enough to complete the entire mission. In reality, robots are sold at the lowest

price point possible so batteries are often small and the robot may need to recharge

mid-mission.

An equivalent problem can happen with the robot’s storage capacity. Robotic

vacuums collect dust and debris in a bin which has a limited capacity; robotic

mops have a limited capacity of cleaning solution to spray on the floor. When

the vacuum’s bin is full or the mop’s cleaning solution is empty, they can no

longer cover. Although human action is typically required in these cases, some

robotic vacuums now have an evacuation station combined with their charging

station [139]. For these robots, a fully bin is essentially the same as a low battery—

the robot must return to a specific location to empty the bin before it can continue

coverage.

6.2.5 Damaged robot

Hazards in the environment can damage a robot. Sticks get caught in the wheels

of robotic lawnmowers and rocks can damage their blades. Wires and tissues

laying on consumers’ floors regularly get caught in the roller brushes or wheels of

robotic vacuum cleaners [104]. It is also quite common for a robot to get itself

wedged under a low overhang and be unable to free itself even when using escape

behaviors. These, and other, hazards can prevent a robot from moving or can

prevent its tool from working properly. For a single robot working independently,

210

I. Vandermeulen

both problems will prevent the robot from finishing its mission, requiring human

intervention before it can continue. For robots operating within a team, however,

the robot can still be productive member of the team, as a communication relay,

whether mobile with a damaged tool or stationary.

6.2.6 Velocity

A robot’s velocity is unpredictable. Robots are regularly required to cover re-

gions with different terrains which impact their velocity—robotic lawnmowers take

longer to mow longer grass. Velocity can also be affected by other hazards such as

a cat sitting on top of a robot or something getting stuck in a wheel. For single

robots, the robot’s velocity does not actually affect its optimal coverage strategy,

even if the robot is faster in some regions than in others (assuming velocity does

not depend on direction of coverage).

For teams of robots, on the other hand, velocity is important. The minmax

objective in multirobot coverage results in each robot having balanced workloads

in terms of time. If one robot is faster than expected, this robot will finish before

the others and the workloads will no longer be balanced. Similarly, if part of the

environment has terrain that slows robots down, the robot assigned that region

will take longer than expected and the workloads will not be balanced.

6.2.7 Changes in team size

The size of a robotic team can change mid-mission. If a robot’s battery runs out

or it gets stuck, it can no longer perform coverage and the team shrinks by one

member. The other robots will need to redistribute the workload of this robot so

that the team still covers everywhere. If this robot later has finished recharging or a

human has freed it, it can resuming covering and the team will need to redistribute

work again to take advantage of this “new” team member.

211

6.3. Semantic commands

6.3 Semantic commands

Localization errors make it difficult to tell a robot to go to a precise coordinate. If

this coordinate is near an obstacle, a small localization error may cause the robot

to try penetrating the obstacle in an attempt to reach the coordinate. As many

coverage plans regularly involve coordinates along walls—or worse, in corners—this

problem makes it impossible to accurately execute a full coverage plan whenever

there are localization errors. Instead, the robot should be issued a semantic com-

mand which is a high-level specification of what the robot should do, rather than

a coordinate-by-coordinate description.

Room-by-room coverage is an example of a sequence of semantic commands.

In this scenario, the map is first partitioned into a set of smaller regions repre-

senting the rooms of house. This partition can be obtained manually, via user

interaction with a smartphone app, or could be computed automatically using a

watershed algorithm [106]. Once the coverage region has been partitioned into

rooms, the robot is given semantic commands like “clean the kitchen” or “clean

the bathroom”. Lower level behaviors are responsible for executing these semantic

commands, potentially using simpler semantic commands like “go to the kitchen”

and “clean the kitchen’s perimeter” which may themselves consist of several still

simpler semantic commands. Each command is successfully completed once all

of its component commands have been successfully completed using the corre-

sponding behavior. Completion of the simplest semantic commands is determined

directly from sensor data: the command “drive straight until you bump into an

obstacle” is complete when the bumper gets pressed in by an obstacle. Using the

semantic commands of room-by-room coverage not only makes the robot’s behav-

ior much more robust, but also makes the robot appear more intelligent to the

user, especially as the current semantic behavior of the robot can be displayed in

a smartphone app [91].

212

I. Vandermeulen

Figure 6.3: Conversion of a coverage path (left) into a sequence of semantic be-
haviors (right). The robot performs coverage by completing the go-to
(blue), interior coverage (green), and perimeter coverage (orange) com-
mands but is not required to follow the original coverage path exactly.

The coverage strategy of Chapter 4 consists of three kinds of behavior:

1. Coverage along the perimeter by following a sequence of consecutive perime-

ter ranks;

2. Coverage of an interior region by a sequence of adjacent antiparallel interior

ranks; and

3. Efficient motion from the end of one coverage region to the start of another

coverage region.

The plans produced by the coverage planner are paths which consist of a sequence

of waypoints describing the exact locations the robot must visit, assuming no

sources of uncertainty. This path can instead be converted into a sequence of

semantic commands alternating between go-to commands and coverage commands

(Figure 6.3), telling the robot what to do without specifying exactly how. The

how of each semantic command is determined in real time by the robot’s behaviors

which rely on real-time sensor data in addition to the description of the command.

213

6.3. Semantic commands

6.3.1 Go-to commands

The simplest semantic commands are the go-to commands. These commands are

used when the robot moves to the start of a new coverage region. The start

locations of perimeter coverage regions are always either along a wall or in a

corner. The start locations of interior coverage regions are often along a edges

or corners of obstacle, but may also be at edges or corners defined by previously

covered regions. As these points are near obstacles, localization errors often result

in the target point being slightly inside the obstacle and thus inaccessible. If the

localization error is in the opposite direction, the target point may be a small

distance away from the obstacle. Regardless of the direction of localization error,

the correct target point should be wherever the wall or corner is, not at the exact

coordinate. Therefore the robot receives a semantic command of “go to the corner

near q” or “go to the edge of the previously covered region near q” and uses its

sensors to determine when it is in the correct location.

When told to “go to the corner near q”, the robot is successful when it is (a)

near the target point and (b) in a corner (Figure 6.4). To satisfy both objectives,

the robot uses a simple behavior (Algorithm 6.1). First, it follows a safe path—

far enough from obstacles to avoid collisions despite localization errors—from its

current position to the target location using its current map. This path also

continues past the target point so that the robot will bump into a wall even if the

target point is further from the wall than expected. By following this path, the

robot is guaranteed to bump into one of the two walls forming the corner near the

target point. Once it bumps into the first wall, it makes a shallow turn and follows

along the wall. This direction will lead it to the second wall of the corner. Once

it collides with this wall, it is guaranteed to be in a corner and be near the target

point, completing the semantic command.

Similar behaviors can be used for semantic commands for sending the robot to

214

I. Vandermeulen

Figure 6.4: Behavior for executing a semantic command to go to corner near a
specified point (orange). The robot heads in the direction of the point,
potentially past the point, until it bumps into an obstacle. It then
follows the obstacle in the approximate direction of the point until it
bumps into the obstacle again.

Algorithm 6.1: Go to corner

Input: Map of environment, Q ⊂ R2; and target point, q ∈ R2

Output: success or failure
1 while not near q do
2 p← shortest path in Q from current position to q
3 Extend last segment of p past q
4 Follow p until collision or end of path
5 if reached end of p without collision then
6 return failure

7 p← path along wall in approximate direction of q
8 Follow p until collision or end of path
9 if had collision near q then

10 return success

11 else
12 return failure

a location near a wall or a location near the boundary of regions which have and

have not already been covered. If the robot only needs to be along the wall and not

in a corner, then it should travel along the wall near the point until the direction

to the target point is orthogonal to the wall. When told to go to the edge of a

previously covered region, its localization errors make it impossible to determine

exactly when it is at this boundary. Instead, it should travel slightly past where

it thinks the boundary is to guarantee that there will be at least a small amount

215

6.3. Semantic commands

Figure 6.5: A coverage robot’s coverage width is not necessarily equal to the robot
width. For robotic vacuums (left), the coverage width is usually nar-
rower; for robotic mops (right), the coverage width is often wider.

of overlap between its next rank and the previously covered region.

In coverage, a particularly important go-to semantic command is the command

to go to the next rank. This command depends on the physical dimensions of the

robot which can be described by two widths (Figure 6.5). The robot width is

the physical width of the robot’s body along its main wheel axis. This width

determines how close it can get to an obstacle while turning. The coverage width

is the width of the robot’s coverage tool, which is typically less than the robot

width. It determines the rank width which is slightly smaller to allow for some

overlap between ranks.

When told to go to the next rank, the robot must turn 180◦ with a radius

equal to the rank width (Algorithm 6.2). This maneuver sets the robot up to

begin the next, antiparallel rank with a small overlap between consecutive ranks.

If the robot is near an obstacle when told to go to the next rank, it cannot simply

turn as the obstacle is in the way (Figure 6.6). Instead it must back up far enough

to be able to complete the turn. The minimum distance to prevent colliding with

the obstacle during the turn is the rank width plus half the robot width. If the

obstacle is straight and orthogonal to the rank direction, backing up this distance

216

I. Vandermeulen

Figure 6.6: Behavior for executing a semantic command to go to the next rank
after colliding with an obstacle. The robot had previously travelled
forward and bumped into an obstacle. To go to the next rank, it backs
up a short distance in preparation to turn. Then, it follows a tight
curved path to turn around so it can begin coverage of its next rank.

guarantees the robot can complete the turn. For differently shaped obstacles, the

robot may need to back up slightly farther.

Algorithm 6.2: Go to next rank

Input: Direction between ranks, θ
Output: success or failure
1 if near obstacle then
2 Back up so that obstacle is rank width plus half the robot width away

3 if θ is clockwise from robot’s heading then
4 Turn 180◦ clockwise with radius equal to the rank width
5 else
6 Turn 180◦ counter clockwise rank width

7 return success

6.3.2 Coverage commands

A large coverage mission gets executed using a sequence of semantic coverage

commands. Prior to performing each coverage behavior, the robot first navigates

to the start point of the coverage command using a go-to behavior. It then covers

an interior or perimeter region with the appropriate coverage behavior.

An interior coverage command consists of a polygonal coverage region, a start

217

6.3. Semantic commands

Figure 6.7: A robot’s planned interior coverage path (left) is difficult to follow ex-
actly due to localization errors and wheel. Instead, it is given a interior
coverage semantic command (center). As long as there is some overlap
between the regions covered by each rank, the actual path (right) will
still fully cover the region despite it not matching the planned path
exactly.

point in the coverage region, and two directions—one for ranking and one for

turning. This command consists of significantly less information than the full

planned path, enabling the robot to cover the region quickly despite its actual path

differing from the planned path due to localization errors or wheel slip (Figure 6.7).

The small overlap due to the difference between the rank and coverage widths

ensures full coverage despite the inconsistencies between the planned and actual

paths. The semantic command also does not prescribe the exact number of ranks,

as small turning errors may result in the robot taking one rank more or less than

expected (Figure 6.8). As long as the entire region gets covered, it does not matter

how many ranks the robot used.

The actual interior coverage behavior alternates between travelling forwards

in the rank direction (or its opposite) and turning 180◦ in the turning direction

(Figure 6.9, Algorithm 6.3). As this behavior is always initiated after a go-to

behavior, the robot always starts in the start point. It then rotates to the rank

direction and moves forward until it either reaches the end of the rank—determined

218

I. Vandermeulen

Figure 6.8: If the robot’s turning radius is slightly smaller (left) or larger (right)
than expected (center), the number of ranks needed to cover an interior
region may be more or less than expected.

Figure 6.9: Behavior for executing a semantic command to cover an interior region
(dotted). The robot heads in a straight line in the initial direction, cov-
ering the first rank, until it either collides with an obstacle or reaches
the edge of the coverage region. It then turns in the secondary di-
rection, positioning itself to start the next rank. This process repeats
until the entire region has been covered.

by either leaving the end of the coverage region or bumping into an obstacle. If it

encounters a small obstacle in the middle of the rank, it travels around the obstacle

without disrupting its rank. Once it reaches the end of its rank, it turns 180◦ in

the turning direction to start the next rank. The robot continues these behaviors

until it leaves the side of the coverage region after making a turn at which point

it has successfully completed the command.

219

6.3. Semantic commands

Algorithm 6.3: Interior coverage

Input: Coverage region, Qcov ⊂ R2; start point, q ∈ Qcov; initial rank
direction, θ0; and direction between ranks, θ1

Output: success or failure
1 if not at q then
2 Go to q /* Algorithm 6.1 or similar */

3 Turn to direction θ0

4 while in Qcov do
5 while (in Qcov) and (has not collided with obstacle) do
6 Go forward

7 if has collided with small interior obstacle then
8 Travel around obstacle
9 else if has collided with large interior obstacle then

10 return failure

11 else
12 Go to next rank in direction θ1 /* Algorithm 6.2 */

13 if has covered most of coverage region then
14 return success

15 else
16 return failure

Perimeter coverage is also performed using a behavior in response to a semantic

command (Figure 6.10, Algorithm 6.4). The perimeter coverage command consists

of start and end points along the perimeter and a start direction along one of the

walls at the start point. The robot first navigates to the start point using a go-

to command which is modified slightly so the robot is more likely to be facing

the correct direction when it reaches the start point. Once the robot is at start

point, it covers the perimeter by following along the perimeter, using its sensors to

remain as close as possible to the wall or obstacle. If the robot bumps into a wall,

it turns and continues perimeter coverage. The robot successfully completes the

command when it arrives at the end point. If it returns to the start point before

reaching the end point (assuming the two points are different), the behavior fails

because the command contained start and end points which are not part of the

same perimeter.

220

I. Vandermeulen

Figure 6.10: Behavior for executing a semantic command for perimeter coverage.
First the robot navigates to the start point of the perimeter coverage
command. It then rotates to the start direction and follows along the
wall, turning when it reaches a corner, until it is near the end point
of the command.

Algorithm 6.4: Perimeter coverage

Input: Start point, q; end point, q′; and direction, θ
Output: success or failure
1 if not at q then
2 Go to q /* Algorithm 6.1 or similar */

3 Turn to direction θ
4 while not near q′ do
5 while has not collided with new wall do
6 Go forward while remaining close to wall
7 if has returned to q 6= q′ then
8 return failure

9 Turn to direction of new wall

10 return success

6.4 Processing maps for coverage

A map of the robot’s environment is essential to its ability to create a coverage

plan. A robot’s map is not a perfect description of its environment, but is instead

filtered through the robot’s sensors. As this map is representative of the robot’s

SLAM system, it is well suited for localization but not necessarily coverage. For

example, a robot with a laser scanner may produce a very high resolution map,

whereas coverage benefits from a lower resolution map which only shows features

221

6.4. Processing maps for coverage

larger than the robot width. Additionally, it may be stored in the wrong format,

such as an occupancy grid, instead of the two dimensional polygonal map used

by the coverage planner from Chapter 4. Therefore, before planning, we first

process the robot’s map to create a behavior-based map which reflects the robot’s

known coverage behaviors and is as simple as possible while still containing all

the details necessary to create a coverage plan. The basic procedure of processing

a map (Algorithm 6.5) involves classifying all parts of the map as either free or

occupied, ensuring the entire free section is connected, removing small obstacles,

and straightening walls.

Algorithm 6.5: Process map

Input: Occupancy grid of free, occupied, and unknown pixels
Output: Simplified polygonal environment, Q̂
1 Classify unknown pixels as either free or occupied /* Algorithm 6.6 */

2 if free pixels do not form a connected component then
3 for pairs of connected region of free pixels do
4 connecting pixels← occupied pixels between free regions
5 if there are only a few pixels in connecting pixels then
6 Mark connecting pixelsas free

7 Mark any remaining disconnected free regions as occupied

8 ∂Q ← traced boundary of occupancy grid
9 Remove small inner polygons of ∂Q

10 ∂Q̂ ← simplified version of ∂Q
11 Q̂ ← region bounded by ∂Q̂
12 return Q̂

6.4.1 Classifying the unknown

All maps consist of several regions which are labelled as either free, occupied, or

unknown (possibly including probability of being free). If the robot has been mak-

ing the map for a long time, it may be entirely known; however in most cases, there

will be unknown regions. Large unknown regions correspond to areas where the

robot has not explored; small unknown regions are usually mapping errors. Before

planning, we first classify all unknown regions as either free or occupied based

222

I. Vandermeulen

on what regions are nearby. Although any classification algorithm will regularly

make mistakes, misclassifications are not a big problem. The robot will continue

mapping as it is covering and will generally discover its mistakes before it arrives

at the misclassified region and can therefore replan (see Section 6.5) accordingly.

The classification algorithm depends on the map format and the methods used

to create the map—different sensors tend to have different kinds of mapping errors.

One of the robots used in my research used occupancy grid maps. These maps

consist of an array of pixels which are each labelled as either free, occupied, or

unknown. I classified unknown pixels using a simple idea: an unknown region

surrounded by mostly free pixels is likely to be free (Algorithm 6.6). The algorithm

first identifies seed pixels which are unknown pixels with at least two free neighbors

and no occupied neighbors (Figure 6.11). The region grows out from the seed pixel,

either horizontally or vertically becoming a one-dimensional row of unknown pixels

capped by either a known pixel or the edge of the map. If this row is mostly

bounded by free pixels—three of its four sides consist entirely of free pixels—then

entire unknown row is labelled as free (Figure 6.12). The algorithm continues this

process, iteratively creating rows of unknown pixels from seed pixels. Once all

seed pixels have been checked, all remaining unknown pixels are labelled occupied

(Figure 6.13). This algorithm tends to fill in small unknown regions but classifies

most unknown pixels as occupied.

6.4.2 Removing small obstacles

The interior coverage behavior described by Algorithm 6.3 includes behavior where

the robot goes around a small obstacle and continues its current rank. For obstacles

entirely within the robot’s rank, the robot can circle the obstacle and continue the

rank; for obstacles straddling two ranks, the robot simply diverts the ranks to

either side of the obstacle (Figure 6.14). Larger obstacles would require more

complicate maneuvers disrupting the interior coverage behavior.

223

6.4. Processing maps for coverage

Algorithm 6.6: Classify unknown pixels

Input: Occupancy grid of free, occupied, and unknown pixels
Output: Occupancy grid of free and occupied pixels
1 while not all pixels have been checked do
2 for unchecked unknown pixel in grid do
3 if pixel has 2 free neighbors but no occupied neighbors then
4 Use this pixel as seed pixel
5 break for

6 else
7 Pixel has been checked

8 for direction θ in {horizontal, vertical} do
9 Initialize row of pixels containing only the seed pixel

10 while pixel adjacent to row in direction θ is unknown do
11 Extend row by one pixel in direction θ

12 while pixel adjacent to row in direction −θ is unknown do
13 Extend row by one pixel in direction −θ
14 if all of the row’s neighbors on three of its sides are free then
15 Set all pixels in the row to free
16 Reset unknown pixels to be unchecked

17 Set all remaining unknown pixels to occupied
18 return occupancy grid

Figure 6.11: Example of an occupancy grid with free (white), occupied (blue),
unknown (orange) pixels (left). When classifying unknown regions,
we use seed pixels (red) which are unknown pixels adjacent to two or
more free pixels and no occupied pixels (right).

224

I. Vandermeulen

Figure 6.12: Each seed pixel can be extended both horizontally and vertically to
create two different rows of unknown pixels (left). A row is likely
free (yellow) if three of the row’s sides are completely covered by free
pixels (right).

Figure 6.13: An occupancy grid map containing free (white), occupied (blue), and
unknown (orange) pixels produced by an iRobot Roomba in a test
environment features (left). The unknown pixels can be classified as
likely free (yellow) or likely occupied (purple) using Algorithm 6.6 to
obtain a map of only free and occupied pixels (right).

225

6.4. Processing maps for coverage

Figure 6.14: When a coverage robot encounters an obstacle narrower than a rank
(left) or between one and two ranks in width (center), it can cover
around the obstacle without significantly altering its ranks, so the
obstacle can be removed from the map. For larger obstacles (right),
the robot would have to travel more than a rank-width to get around
the obstacle so it should remain in the map.

As the small obstacles do not affect the robot’s coverage behavior, they are

not included in the map used for coverage planning. Similarly, obstacles with

very small gaps between them are combined into one larger obstacle. The map

with small obstacles removed is always simpler than the original occupancy grid

(Figure 6.15). The amount that the map gets simplified depends on the physical

properties of the robot because the threshold for removing obstacles depends on

the size of the robot. In this way, the map reflects not only the actual environment,

but also the behavior of the robot. Typically, this simplification procedure also

removes small regions of free space that are disconnected from the main free region

and assumed to be mapping errors.

6.4.3 Straightening walls

When performing perimeter coverage via Algorithm 6.4, the robot uses its sensors

to follow along the exact perimeter whether or not it is straight. Similarly, when

226

I. Vandermeulen

Figure 6.15: The raw binary occupancy grid map (left) contains many small ob-
stacles and clustered obstacles. As a coverage robot can go around
small obstacles without disrupting coverage and cannot go between
the clustered obstacles, the small obstacles are removed and the clus-
tered obstacles are connected in the simplified map (right).

performing interior coverage via Algorithm 6.3, the robot turns once it has reached

the perimeter, regardless of whether or not its rank was the same length as the pre-

vious one. Both of these behaviors mean that it does not matter if the perimeter is

actually straight. Coverage of two regions—one with an uneven perimeter and one

with a straight perimeter—require the exact same semantic coverage commands

(Figure 6.16).

Coverage planning is somewhat simpler for a map with straight edges than

curved ones because the polygon describing the perimeter has fewer vertices.

Therefore, we simplify the map’s boundary before using it for coverage planning.

If the map is an occupancy grid, its boundary can be obtained via one of many

simple boundary tracing algorithms [169]. When simplifying the boundary, we

want to approximate the original, detailed boundary by one with long straight

walls whenever possible. Due to the robot’s perimeter coverage behavior, if the

227

6.5. Replanning

Figure 6.16: Perimeter ranks (orange) along an uneven perimeter (left) and along
a straight perimeter (right) often require the same interior ranks
(green). In these cases, the uneven perimeter can be straightened
on the map.

actual boundary is up to half a rank width away from the boundary of the map, it

has no effect on the resulting coverage plan. Therefore the simplification problem

is to find a polygon with a minimal number of edges such that all vertices of the

original polygon are at most half a rank width away from this new polygon. This

problem can be solved in O(n2) [34] although it is often approximated using the

Douglas-Peucker heuristic which runs in O(n log(n)) [51].

6.5 Replanning

A robot will attempt to cover the entire region using its planned sequence of

coverage behaviors. If it gets interrupted and does not complete the entire plan,

or discovers an error in its plan, it will need to replan to ensure that it completes

the entire mission. A robot needs to replan whenever:

228

I. Vandermeulen

Figure 6.17: A processed occupancy grid map (left) can be converted into a polyg-
onal map by tracing the boundary between free and occupied pixels.
This boundary can be straightened using the Douglas-Peucker algo-
rithm [51] to obtain a simplified polygonal map that is useful for
coverage planning (right).

1. It runs out of battery and needs to recharge before resuming coverage;

2. A human kidnaps the robot and moves it to a different location;

3. The robot finishes coverage of an interior region at the opposite corner of

where it expected to finish; or

4. Its map changes.

Multirobot teams additionally need to replan whenever:

5. One robot in the team gets damaged or stuck;

6. A new robot joins the team; or

7. Robots covered at different speeds and they need to rebalance the workload.

229

6.5. Replanning

Figure 6.18: When a human kidnaps a robot (left), the robot gets moved away
from its coverage plan (blue) and is carried to some random location
(red). The remaining interior (green) and perimeter (orange) regions
that the robot still needs to cover (right) are smaller than at the start
of the mission.

When any of these events happens, the robot or team of connected robots replans

based on their current positions, current map, and knowledge of where they have

already covered. The new plan can also be based on the previous plan to reduce

the computational burden of replanning.

6.5.1 A new location

For consumer robots, kidnapping is the common scenario where a human picks up

their robot and carries it to a new location [104]. After a kidnapping, the robot

only needs to cover the regions that it hasn’t already covered (Figure 6.18). It

could simply resume its existing plan by travelling back to the location where it

got kidnapped, and following its original path. This approach is generally not the

most efficient as it may spend quite a bit of time returning to that location and it

might get kidnapped again if the human wants the robot to avoid that location.

Instead, it should plan a new coverage path based on its new location.

When replanning (Algorithm 6.7), the robot can use some of its former plan.

Its original plan consists of a set of semantic commands which each correspond

to a set of ideal ranks. Depending on if the command was issued and if it was

230

I. Vandermeulen

completed, the new plan will include all, some, or none of these ranks. Completed

commands do not need any of their ranks in the new plan. The command the

robot was working on when the kidnapping will have some of its ranks included.

The commands that were not issued will have all of their ranks included. The

resulting set of ranks for the new plan (Figure 6.19) fully covers the regions that

were not covered before. The robot then plans its new coverage path by solving

the TSP on this set of ranks with its new location as the path’s start point, and

its original end location—likely its charging station—as the end point. As the set

of ranks is not necessarily connected, the robot still needs to know the geometry

of the full environment so that it can, if necessary, use already covered free space

to plan short paths between rank endpoints.

Algorithm 6.7: Replan after kidnap

Input: Old coverage path, p; and new start location, q′

Output: New coverage path p′

1 R ← {} /* Set of uncovered ranks */

2 for semantic command of p do
3 if command was not completed then
4 Rrem ← ranks that would have been covered by plan
5 R ← R∪Rrem

6 p′ ← shortest path starting at q′ covering R /* Algorithm 3.4 */

7 return p

A similar situation happens when the robot runs out of battery before com-

pleting its mission (Figure 6.20). If the robot detects its battery is running low,

it plans a path to its charging station from wherever it happens to be. This event

can be treated the same as a kidnapping as the robot now has to plan a new path

to cover the remaining space starting from a new location: its charging station. If

this path is quite short, it may resume coverage before fully recharging as long as

it has enough power to finish the planned path. Alternatively, if the robot knows

that it won’t be able to cover the entire environment on a single charge, it can plan

two coverage paths by pretending that there are two robots which both start and

231

6.5. Replanning

Figure 6.19: When replanning after a kidnapping, the robot can use the same rank
partition as it originally used, except with some of the ranks removed
(left). The new coverage path (right) covers all of these paths and the
order of ranks is optimized for starting at the robot’s new location
after kidnapping.

Figure 6.20: When a robot’s battery is low, it returns to its charging station with-
out completing the mission (left). After recharging, it plans a new
path (red) which covers the remaining uncovered region.

end at the same charging station. Instead of these robots covering their respective

coverage paths simultaneously, the same robot covers both paths consecutively

and charges in between.

A third replanning scenario occurs when the robot finishes an interior coverage

command in a different location than expected (Figure 6.21). Covering the same

interior region with an even or an odd number of ranks will result in the robot

finishing in different corners of the region. As the robot’s ranks may be slightly

narrow or wider than expected, it may take one more or one fewer rank and end

232

I. Vandermeulen

Figure 6.21: Depending on the number of ranks needed to cover an interior region,
the robot may end up in one of two different corners. When planning
(left), the robot expected the first region to take an even number of
ranks so it would finish in the bottom right corner. In reality (right),
the first region ended up taking an odd number of ranks so it ended
up in the opposite corner. From this position the robot replans its
coverage of the next region to start in the closest corner to where it
actually finished.

up in the other corner. It can then replan the route to its remaining ranks to make

coverage slightly more efficient.

6.5.2 Map changes

Differences between the robot’s map and the actual geometry of the environment

can also require replanning. The robot’s semantic behaviors mean that small

differences—a wall being further away than expected, or a new small obstacle in

the middle of the room—do not affect plan so no replanning is necessary. Larger

differences which drastically change the size or topology of the coverage region

require replanning. In indoor environments, large differences most often occur

when a door has recently been opened or closed (Figure 6.22). An open door

either makes a new room accessible or adds an additional path to a room that was

already accessible. A closed door has the opposite effect, reducing the number of

233

6.5. Replanning

Figure 6.22: During a coverage mission, a robot may find an open door which it
thought was closed (left). When it finds such a door, it replans its
coverage path for the remaining region including the newly accessible
part of the map behind the door (right).

ways the robot can get to certain places.

When it discovers a large change in the map, the robot replans a new coverage

path that covers all the uncovered regions of the new map (Algorithm 6.8). It first

computes the remaining coverage region, Qrem, by subtracting the already covered

region, Qcov, from the current map, Q. The perimeter ranks are constructed

similar to Algorithm 4.1 with two changes (Figure 6.23):

1. Perimeter ranks are only added for edges of Qrem that are also edges of Q

and not for edges which are boundaries between Qrem and Qcov; and

2. Perimeter ranks which cross a boundary between Qrem and Qcov are only

extend one rank width into Qcov to minimize redundant coverage while guar-

anteeing no missed coverage due to turning.

Similarly, Algorithm 4.2 is modified slightly when performing the rectilinear con-

traction used to construct perimeter ranks (Figure 6.24):

3. The contraction includes every grid cell fully contained in the environment

234

I. Vandermeulen

which has not already been fully covered.

With this definition, the rectilinear contraction may actually expand Qrem to in-

clude cells that have only been partially covered by the robot’s previous path.

Aside from these three changes, the remainder of Algorithm 4.6 is unchanged

when computing the rank partition during replanning. The new coverage path

is obtained by solving the TSP for this rank partition with the robot’s current

location as the start point.

Algorithm 6.8: Replan after map change

Input: Environment, Q ⊂ R2; and covered region, Qcov ⊂ Q
Output: New coverage path, p
1 Qrem ← Q \Qcov

2 R ← {} /* Set of uncovered ranks */

3 Rper ← perimeter ranks of Q /* Algorithm 4.1 */

4 for perimeter rank r in Rper do
5 if r is fully contained in Qrem then
6 R ← R∪ {r}
7 else if r is partially contained in Qrem then
8 Shorten r until it only extends one rank width into Qrem

9 R ← R∪ {r}

10 Qrect ← rectilinear polygon covering Qrem /* Algorithm 4.2 */

11 Rint ← optimized interior ranks for Qrect /* Algorithm 4.5 */

12 R ← R∪Rint

13 p← shortest path covering R /* Algorithm 3.4 */

14 return p

6.6 Single robot robust coverage

While interning at iRobot, I implemented a version of my coverage strategy on the

iRobot Roomba i7 robotic vacuum cleaner. The Roomba’s previously published

coverage strategy is not based on a map [70, 178]. The coverage strategy is based

on a system of frontiers and rectangular coverage regions. The robot iteratively

identifies a frontier—the boundary between known and unknown grid cells—and

tries to cover a rectangular region near that frontier via a ranking behavior. When

235

6.6. Single robot robust coverage

Figure 6.23: When a robot discovers a new region of the map (left) it replans using
the uncovered part of the old map (blue) and this new region (green).
Perimeter ranks (orange) are only added for edges of this coverage
region adjacent to boundaries (right). These edges are extended at
convex corners and at boundaries with the already covered region to
prevent missed coverage due to turning.

Figure 6.24: When replanning, the robot must cover all of the partially or fully
uncovered covered grid cells (left). These cells can either be classified
as interior (blue) or perimeter (orange) depending on whether or not
they are fully contained in the interior of the new environment. The
rectilinear contraction includes any interior cells that have not been
fully covered (right).

236

I. Vandermeulen

it collides with obstacles, it has specific rules to determine whether or not continue

ranking and where the new frontiers are. After completing interior coverage via this

strategy, it finishes its mission by following the perimeter of the recently covered

region. Despite the relative simplicity of the strategy, it has been effective in a

wide variety of homes—the product has been a huge commercial success—and is

therefore a good comparison for my strategy. The robot’s existing map can also

be used in a limited capacity for room-by-room coverage where the map is first

partitioned into rooms which are covered consecutively using the same coverage

strategy [106].

The implementation of my coverage strategy (Algorithm 6.9) uses the Roomba’s

map for planning and the same low-level behaviors as the comparison strategy to

execute the plan. It first simplifies the map, removing small obstacles and straight-

ening walls, and then uses this map to plan a coverage strategy for the remaining

uncovered area. The individual semantic commands of both strategies are exe-

cuted by low-level behaviors which are semantically equivalent to Algorithms 6.3

and Algorithm 6.4. Replanning happens whenever the robot robot is kidnapped,

has a low battery, finishes in the opposite corner, updates its map, or fails to

complete a command. The robot will continue to replan and perform the planned

coverage behaviors until its entire map has been covered (success) or the robot

gets stuck (failure).

To compare my strategy with the Roomba’s previously published strategy, I

needed to run the robot in identical environments using both strategies. Although

I was able to run both strategies on real robots, it was difficult to compare them

in a real environment. The only environment I had access to was the office where

many humans and robots occupy the same space and test robots regularly get

interrupted. As the coverage missions regularly take more than an hour to complete

and their coverage times can be impacted by humans and other robots nearby, it

was difficult and frustrating to try comparing robots fairly. Furthermore, changing

237

6.6. Single robot robust coverage

Algorithm 6.9: Cover real environment

Input: Initial map, Q
Output: success or failure
1 Q̂ ← processed and simplified version of Q /* Algorithm 6.5 */

2 while some of Q still needs to be covered do

3 p← coverage path for uncovered regions of Q̂ /* Algorithm 6.8 */

4 for semantic command of p do
5 Execute command /* Algorithms 6.3 or 6.4 */

6 if map changed then
7 Q ← updated map from robot’s mapping module

8 Q̂ ← processed and simplified version of Q
9 else if low battery then

10 Go to charging station
11 else if stuck then
12 return failure

13 if command not completed successfully then
14 break for

15 return success

lighting conditions throughout the day often have a significant impact on the

robot’s localization making it even more difficult to isolate the actual effect of the

different coverage strategy.

Rather than use a real environment, I resorted to using iRobot’s simulator

which is intended to help developers quickly test changes to robots without need-

ing to construct custom physical environments or worry about human interference

or varying lighting conditions. This simulator uses a simulated indoor environment

built-in Gazebo and the simulated Roomba runs the exact same code as the de-

velopment robots. Furthermore, it faithfully reproduces the wheel slip and SLAM

errors of a real robot.

6.6.1 Results

I created a simulated indoor environment consisting of two rooms—one rectangular

and one L-shaped—which were covered by the simulated Roomba using both my

coverage strategy and the comparison strategy in a room-by-room coverage mode

238

I. Vandermeulen

(Figure 6.25). Although, the actual paths followed by the robot when using the

two strategies are quite similar, there are a few main differences:

1. My strategy uses two directions of coverage, which is noticeable in the upper

left of the L-shaped room;

2. There are fewer repeated ranks in my strategy, most notable in the middle

of the rectangular room and the right edge of L-shaped room; and

3. The diagonal connecting paths are slightly shorter for my strategy.

All of these differences result in more efficient interior coverage when using my

strategy. Perimeter coverage, on the other hand, is largely unchanged and in both

cases the robot performs some unnecessary back-and-forth motions near doorways.

This behavior is not intended by either planner and is instead a quirk of the

perimeter follow behavior used by both strategies.

In addition to the qualitative analysis of the coverage paths, the strategies can

be compared by their coverage times (Figure 6.26). As the strategies were both

run within a room-by-room framework, I was able to divide the total coverage

times by room and by behavior (interior or perimeter). For both rooms, my

strategy was much faster for interior coverage. This improvement was largest

in the L-shaped room where turn-minimization resulted in a second direction of

coverage. Additionally, coverage of both rooms benefited from improved planning

that reduced repeat ranks. The perimeter coverage times were more similar for

both strategies with the differences primarily due to differences in how long it

took for the robot to make it through the door. Over a large number of missions,

I expect all significant improvements to occur during interior coverage.

239

6.7. Communication during coverage

Figure 6.25: Comparison of coverage paths for different coverage strategies on the
iRobot Roomba. A previously published Roomba strategy [70] (left)
primarily covers in a single direction; my coverage strategy (right)
uses a simplified boundary (black) to compute better coverage direc-
tions resulting in more efficient coverage.

6.7 Communication during coverage

As for single robot coverage, robust multirobot coverage requires robots to replan

in response to unexpected events. In addition to the reasons that single robots

need to replan, robot teams also need to replan whenever:

1. One robot is slower than another and the team wants to rebalance the work-

load;

2. One robot gets stuck or damaged and its tasks must be redistributed to its

teammates; or

3. One robot needs to recharge and another robot can perform some of its tasks

while it recharges.

As all of these scenarios involve multiple robots, the robots must replan together

240

I. Vandermeulen

12:35

9:49

L room
interior

3:21
4:08

L room
perimeter

8:02

7:02

Rectangular
room interior

2:45
2:23

Rectangular
room perimeter

Existing Roomba strategy

Coverage planner

Figure 6.26: Comparison of coverage times for different coverage strategies on the
iRobot Roomba. My coverage strategy (green) outperforms the com-
parison strategy (orange) for interior coverage and has similar cover-
age times for perimeter coverage.

so they must be able to communicate. Ideally, the robots would replan with the

entire team; however, in communication-restricted environments, the team is often

disconnected.

At any time during a mission, the team can be divided into several connected

subteams, which can range in size from a single robot to the entire team. Ev-

ery robot can communicate—potentially via a multi-hop route—with all the other

robots in its subteam and cannot communicate with any robots in other subteams.

As coverage paths are based on efficient coverage and not on communication con-

straints, the structure of these subteams can change regularly and they are often

quite small. When a robot needs to replan, its priority should be to continue cov-

ering as soon as possible. Therefore, robots should replan opportunistically with

their current subteam and only replan with any given robot when they happen to

241

6.7. Communication during coverage

be close.

Multirobot replanning can be performed in essentially the same way as single

robot replanning with two modifications to (Algorithm 6.10). First, the coverage

paths are obtained by solving the m-TSP, where m is the size of the subteam,

instead of the 1-TSP. Second, the coverage region is only the uncovered parts of

the regions previously assigned to robots in the subteam. Any regions assigned to

other disconnected regions are not included in the replanning. As replanning only

redistributes work within the subteam, the workload may be unbalanced across

full team. This lack of balance is especially noticeable when one robot gets stuck

or needs to recharge (Figure 6.27). As soon as it is able to communicate with

some other teammate, all of its remaining work gets transferred to that teammate,

which may end up with twice as much assigned work as the rest of the team.

Algorithm 6.10: Replan with subteam

Input: Subteam’s remaining set of coverage paths, C
Output: New coverage plan, C ′
1 Qcov ← {} /* Remaining coverage region for subteam */

2 for old path p ∈ C do
3 Qrem ← region that would be covered by path p
4 Qcov ← Qcov ∪Qrem

5 if map has changed then
6 Add new regions of map to Qcov

7 Remove parts of Qcov no longer in map

8 R ← set of perimeter and interior ranks for Qcov

9 C ′ ← shortest coverage paths covering R /* Algorithm 3.4 */

10 return C ′

As replanning can only happen within a subteam, it is useful to replan whenever

a new subteam is formed. Before it forms, some of the robots were disconnected

and may have been unable to communicate for a long time. Now that they are able

to communicate again, it is likely that they have unbalanced workloads, either due

to map changes, differing speeds, or changes in the size of the team. The extra

work transferred from a robot needing to recharge will get slowly redistributed

242

I. Vandermeulen

Figure 6.27: In the middle of a coverage mission, one robot (green) is running
low battery and needs to recharge. It can currently communicate
with one of its teammates (blue) but not the other (orange) and so
it only tells this one teammate that it is going to recharge (left). A
few seconds later, the blue robot has taken all of the green robots
remaining coverage tasks while the green robot heads to its charger
(right). The resulting coverage plan for the blue and orange robots
covers the entire environment but is not balanced.

amongst the entire team as tasks get transferred to robots with less assigned work

every time new subteams form (Figure 6.28).

The necessity of communication in multirobot coverage means that stuck, dam-

aged, and recharging robots can still be useful teammates despite not able to per-

form any coverage tasks. Stuck and recharging robots are unable to move but

may nevertheless function as communication relays helping far apart teammates

replan. Additionally, they can be used as a store of information by receiving new

information, such as a change to the map, from one robot and later sending that

243

6.7. Communication during coverage

Figure 6.28: One robot (blue) has more remaining coverage tasks than a team-
mate (orange) because it previously took some coverage tasks from a
third teammate (green) that needed to recharge. When the blue and
orange robots are finally able to communicate (left), they can replan
to rebalance the tasks. A few seconds later, some of the blue tasks
have been reassigned to the orange robot and now the team will finish
at approximately the same time (right).

information to a second robot despite the first and second robot never being si-

multaneously connected to the stuck robot. A damaged robot which can move

but has a broken coverage tool, can function even better in this role by actively

searching for far apart teammates to quickly relay information between them.

6.7.1 Multirobot coverage without communication

While interning at iRobot, I created a simple system for simultaneous multirobot

coverage. At the time, we had the infrastructure to coordinate the robots at the

244

I. Vandermeulen

start of their missions through the cloud, but not for coordinating them mid-

mission. As a result, my approach was simply to assign each robot a coverage

region and then have them cover their regions simultaneously. The coverage regions

were determined by first dividing the environment into a set of rooms using a

watershed algorithm [105] and then assigning the rooms by solving an instance of

the minmax m-TSP (Chapter 3). The graph used for the m-TSP used estimates of

the length of path needed to cover each room (its area divided by the rank width),

the distance between the centers of the rooms, and the distances from the robots’

chargers to the centers of the room.

Using this approach, I ran an experiment where two iRobot Roombas cleaned

a previously mapped test environment simultaneously (Figure 6.29). After the

initial coordination to assign coverage regions, the robots had no communication.

As a result, the two robots could not redistribute their coverage tasks, notify each

other of changes to the map, or avoid collisions with each other. Without the

ability to redistribute tasks, one robot finished covering its region while the other

robot still had quite a bit of work to do. There was also a large region of the

map that was covered by both robots due to the implementation of the robots’

interior coverage behavior (Algorithm 6.3). This implementation only considered

the coverage command to be successful after the robots performed several ranks

past the edge of the coverage region to compensate for potential localization errors.

In this specific experiment, the overlapping coverage region was covered by the

two robots at different times so the robots didn’t collide. However, when initially

testing the system, there were missions where the robots did collide. Unaware

of their teammate, they each treated the collision as if the other robot was an

obstacle and would use a behavior to try to go around it. When both robots

performed this behavior simultaneously, they would continually collide with each

other while moving side-by-side in a direction perpendicular to their planned ranks

(Figure 6.30). Meanwhile, both robots were updating their maps based on this

245

6.8. Search and coverage

Figure 6.29: Results of a simultaneous coverage experiment using two iRobot
Roombas. The test environment is first mapped and divided into
several rooms which are assigned based on proximity to the robots’
chargers with the intention of balancing the workload between robots
(left). The robots covered the environment by simultaneously cov-
ering their individual rooms (right). The lines indicate the actual
paths taken by the robots and the locations of the robots indicate
their actual positions when the faster robot finished coverage of its
rooms.

newly discovered “obstacle”. Soon both robots believed there to be a long wall in

the middle of the environment and were unable to finish their mission because their

maps were wrong. This kind of robot-robot interaction highlights the difficulty of

simultaneous multirobot coverage and the need for constant coordination. This

difficulty is reflected by iRobot’s multirobot technology, ImprintTM Link, where

a robot vacuum and robot mop share a map but clean consecutively instead of

concurrently [61].

6.8 Search and coverage

A robot’s coverage plan does not guarantee it will ever be connected to all of its

teammates, so sometimes robots need to search for each other to replan. If a

246

I. Vandermeulen

Figure 6.30: When two robots’ coverage paths overlap (left) and they try to follow
the paths simultaneously, the robots will collide. Both robots will
view the other as an obstacle and try to go around it. If each robot
tries to go around the other in the same direction, they will end up
following each other, colliding repeatedly (center). The end result is
that both robots believe there is a wall in the middle of the room
(right).

robot still has assigned coverage tasks that it can complete, these tasks should

take priority—after all, it may happen to find one of its teammates while doing

useful coverage. Once it has finished all of its assigned tasks, or its coverage tool

is broken, it should then search for disconnected teammates. By searching, it may

find a teammate which hasn’t completed all of its tasks, either because it was

slower, discovered a new region, got stuck, or needed to recharge. It can then

replan with this newly rediscovered teammate to rebalance the workload and help

the team finish the mission faster. Search is also necessary to ensure that the

entire mission gets completed despite the possibility that a robot may get stuck in

a remote location where it cannot communicate with any other robots.

Robots can search for each other using the methods of Chapter 5 where they

maintain a belief of their teammates’ positions using an HMM and then plan a

search path that is likely to find the teammate quickly given that belief. Since the

robots are cooperative, they know how their targets behave and can use simulated

coverage behavior to create a realistic HMM. Many coverage tasks are repetitive,

so after a few missions, these models can be further improved using real data of

247

6.8. Search and coverage

Figure 6.31: A known target path (left) can be incorporated into an HMM by
adding a chain of path states (right) along the path with each path
state transitioning to the next one along the path.

the robots’ actual paths in previous coverage missions. Additionally, the HMMs

can be augmented with path and stationary states to model even more kinds of

known behaviors.

6.8.1 Path states

Coverage robots plan their paths in advance and they can share these paths with

teammates to help each other search when they get disconnected. A known target

path can be incorporated into an HMM by adding a chain of path states along

that path (Figure 6.31). These path states have two kinds of transitions: a high

probability transition to the next path state and some low probability transitions

to the nearby direction states to represent the probability of a robot replanning

and abandoning its communicated path. These nearby states are determined in

the same way as in Figure 5.9 and the transition probability to that state is the

product of the convex coefficient for that direction state and the fixed probability

of abandoning the path. A chain of transit states can also be added between

adjacent transit states to model the variability in the target robot’s speed.

248

I. Vandermeulen

6.8.2 Stationary states

Real coverage robots, operating in cluttered home environments with low over-

hangs and wires, often get stuck. The probability that a robot gets stuck should

be reflected in the HMM by the addition of a stationary state in each cell of the

lattice (Figure 6.32). Each direction state has a small probability of transitioning

to that stationary state, corresponding to the probability that the robot gets stuck

in that location. However, there are no transitions out of a stationary state be-

cause stuck robots never get unstuck without the help of human (usually after the

mission is already complete). Initially, the transition probabilities to stationary

states are all set at some nominally small value. As the robots continually per-

form missions in the same environment, they can use data of how often the robot

actually gets stuck in each location and update these transition probabilities. In

this way, the robots have higher stuck probabilities for dangerous areas, such as

underneath a low couch, and very low stuck probabilities for safer areas like the

middle of a room.

Stationary states can also be used to model a robot having a low battery. When

the robot has a low battery, it will return to its charging station or the nearest

charging station if there are multiple. There should therefore be one stationary

state per charging station and every direction state should have transitions to the

nearest such stationary state. As the probability of a low battery depends on the

length of the mission and not the robots’ positions, these transition probabilities

should all be the same but they should increase with time. To make the transitions

to charging states more realistic, a chain of path states along the shortest path

from each lattice cell to its nearest charger can be added in between the direction

and charging states. Including these additional path and stationary states model

the reality that after a long mission the target robot is most likely to be found at

a charger.

249

6.8. Search and coverage

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

E W

N

S

Figure 6.32: An HMM can include one stationary state (red) for each lattice cell to
model the fact that a robot can get stuck. These states do not have
any transitions out, representing the fact that a stuck robot never
moves.

6.8.3 Overall layered HMM for search

The most complex form of HMM consists of 4 different kinds of states: path,

direction, transit, and stationary. These states can be arranged into 3 layers with

path states on top, direction states in the middle, and stationary states at the

bottom (Figure 6.33). Chains of transit states can be added between adjacent

path states in the top layer and between adjacent direction states in the middle

layer to model the target’s variable speed. Initially, the belief’s probability is

concentrated in the top layer because the target was seen very recently so the

searcher is quite confident that the target is still following the known path. As path

states can transition to direction states but direction states do not transition to

path states, the probability density will slowly transition to the middle layer. The

middle layer, consisting of direction states, represents a target that is moving, but

has been disconnected for long enough that the searcher doesn’t know its current

250

I. Vandermeulen

Figure 6.33: The overall HMM consists of three layers: path states (orange) in the
top layer, direction states (blue) in the middle layer, and stationary
states (red) in the bottom layer. It additionally contains chains tran-
sit states (not shown) between pairs of path states in the top layer
and between pairs of direction states in the middle layer. As time
progresses, the probability density transitions from the top layer to
the middle layer to the bottom layer.

behavior and instead uses a generic model based on simulated or historic data.

Similarly, the direction states can transition to stationary states but stationary

states cannot transition to any other states. Therefore, after a very long time, all

the probability density will transition to the bottom layer, representing the fact

that a target which has not been seen in a very long time is probably either stuck

or charging.

This kind of model could be further augmented with additional middle layers

if the target’s behavior is likely to change through out the mission. For this prob-

lem, there could be two middle layers: the upper middle layer using transition

probabilities learned from historic coverage paths and the lower middle layer using

251

6.9. Robust multirobot coverage

transition probabilities learned from historic search paths. This additional struc-

ture reflects the fact that the target robot may itself be searching for other robots

near the end of the mission. Similar approaches with multiple layers could be used

for any kind of mission where individual robots have multiple different modes of

behavior with different modes being more common at different times throughout

the mission.

6.9 Robust multirobot coverage

From the perspective of a single robot in a team, a coverage mission is only suc-

cessful once it knows that every part of the environment has been covered by at

least one robot. Regions of a robot’s map can be marked as covered by either:

(a) Covering that region itself; or

(b) Communicating with another robot that has covered that region.

The benefit of multirobot coverage is that missions are completed faster than a

single robot could do alone, so robots must ensure they communicate with each

other by the end of the mission so that every robot knows the mission is complete.

Robust multirobot coverage, therefore consists of individual robots covering

their assigned regions, communicating whenever possible, and searching for each

other near the end of the mission (Algorithm 6.11). If a robot still has uncompleted

coverage tasks assigned to it, it performs a multirobot version of robust coverage

using coverage behaviors to complete its assigned tasks and replans with nearby

robots in the event of a kidnapping, map change, or other unexpected event. Only

after a subteam has completed all of its tasks does it search for the remaining

disconnected robots. Once it finds another robot, it forms a new subteam and can

again replan, splitting any remaining tasks to finish the mission faster. As this

process repeats, the subteams tend to grow larger as previously distant robots all

252

I. Vandermeulen

end up in the same vicinity of the remaining uncovered regions. Eventually all

working robots are aware that all tasks have been completed and they can return

to their charging stations. As long as at least one robot can still cover, this method

guarantees that the mission will get completed.

Algorithm 6.11: Robust multirobot coverage

Input: Environment to be covered, team of robots
Output: Covered environment
1 Plan coverage with connected robots /* Algorithm 4.7 */

2 while coverage mission is not complete do
3 if change in subteam, map, or plan execution then
4 Replan with subteam /* Algorithm 6.10 */

5 else if has remaining assigned coverage tasks then
6 Continue executing tasks /* Algorithms 6.3 or 6.4 */

7 else if there are disconnected robots then
8 Search for disconnected robots /* Algorithm 5.2 */

9 else
10 Mission complete

11 Share current position and plan with connected robots
12 Update beliefs about teammates /* (5.11) or (5.14) */

13 Return to charging station /* Algorithm 6.1 or similar */

6.9.1 Results

To test my approach to robust multirobot coverage, I ran some simulations com-

paring two coverage strategies. In these simulations, two robots cover a large

environment simultaneously. Their initial plans are based on the assumption that

both robots travel at the same speed, however, in reality one robot is much slower

than the other. The robot’s speed is randomly selected between 50% and 95% of

the expected speed representing a systematic mechanical problem such as a weak

motor or excess friction in an axle. As I have previously considered other sources

of uncertainty that affect both single and multirobot coverage (see Section 6.6),

these simulations assume the robots can follow their planned paths perfectly, the

real environment is identical to the map, the robots cannot get stuck, and there are

253

6.9. Robust multirobot coverage

no humans to interfere with the robot. Therefore the only sources of uncertainty

are ones which only apply to multirobot coverage: differences between teammates’

speeds and limited communication ability.

The baseline strategy is for the two robots to both cover their assigned paths

despite the differences in the robots’ speed. Using this strategy, the fast robot

will finish covering its path at the expected time and then will simply wait at its

charger for the slow robot to finish covering its path. The overall mission time will

therefore equal the time it takes for the slower robot to finish its path, which may

be much slower than the fast robot.

When using the robust strategy (Algorithm 6.11), the robots have the same

initial plan, but they are able to communicate during the mission and replan.

When the fast robot finishes its initial plan, the slow robot will inevitably still

have many remaining regions to cover (Figure 6.34). To help the slow robot finish

its remaining tasks, the two robots need to be able to communicate so they can

replan. However, as they need to be near each other and have a line of sight to

communicate, the fast robot will have to search for the slow robot. Using its belief,

based on its knowledge of the slow robot’s plan and where it has seen the slow

robot, the fast robot creates a search tree for planning a search path (Figure 6.35).

It follows the best search path, growing the search tree as necessary, until it finds

the slow robot. Once the two robots are connected, they replan coverage paths

for the remaining uncovered region (Figure 6.36). This new plan is based on their

actual average speeds since the start of the mission (see Section 3.6 for planning

for heterogeneous robots), so the fast robot gets assigned a longer path and the

two robots will finish approximately at the same time.

I ran 300 simulations of the fast and slow coverage robots using both the basic

and the robust coverage strategies (Figure 6.37). In addition to varying the slow

robot’s actual speed from 50% to 95% of the expected speeds, I also varied the

locations of the robots’ chargers—always located side-by-side—between several

254

I. Vandermeulen

Figure 6.34: Progress along planned coverage paths for two simulated robots. One
robot (green) is slower than expected and still has a large part of its
path remaining when the faster robot (orange) has finished.

Figure 6.35: Fast robot’s (orange) belief of its slower teammate’s (green) position
when the robots are in the positions in Figure 6.34. The fast robot
uses this belief to construct a planning tree to plan a search path to
reconnect with the slow robot.

255

6.9. Robust multirobot coverage

Figure 6.36: The fast robot (orange) follows a search path (red) based on the
planning tree in Figure 6.35 to find the slow robot (green). Once the
robots are reconnected, they replan their coverage paths based on
their previous speeds to balance the workload and finish the coverage
mission faster.

different corners of the environment. In almost all cases, the robust strategy was

faster than the basic strategy. When the slow robot is almost as fast as expected,

the difference is relatively small—the robots are behaving similar to expected so

the initial plan is already quite good. When the slow robot is much slower, the

robust plan often results in much better performance, often taking only slightly

longer than the theoretical minimum time (assumes no duplicate coverage and the

robots finish simultaneously). In other cases when it takes the fast robot a long

time to find the slow one, the robust strategy is not much better than the basic

strategy. The HMM used to update the fast robot’s belief of the slow robot’s

position is biased towards locations near the chargers at the end of the mission.

Therefore, the fast robot can easily find the slow robot near the end of the mission

just by staying near the charger, so the robots almost always find each other before

the slow robot finishes or as it is finishing its path. The result is that the robust

256

I. Vandermeulen

50% 60% 70% 80% 90%

1:40

2:00

2:20

2:40

3:00

Slow robot velocity

M
is
si
on

ti
m
e
(h
:m

m
)

Basic strategy
With search and replanning
Theoretical minimum

Figure 6.37: Comparison of multirobot coverage times using basic (orange) and
robust (blue) strategies. Each dot represents one of 300 coverage
mission which each have a randomly selected velocity for the slow
robot (between 50% and 95% of the fast robot’s velocity) and a ran-
domly selected depot location. The theoretical minimum is based on
the required coverage if both robots finish simultaneously and there
is no duplicate coverage.

strategy’s use of search either improves the mission time (if the fast robot finds

the slow one before it finishes), or has no effect (if the fast robot finds the robot as

it is finishing). The improvement in mission time can be especially large in cases

where one robot is much slower than expected.

6.10 Conclusions

Performing coverage on real robots is often much more difficult than simply telling

each robot to follow a planned coverage path. In the real world, robots must deal

with incorrect maps, human interference, localization errors, low batteries, and

hazards that can damage or trap the robot. All of these sources of uncertainty

257

6.10. Conclusions

make it difficult or impossible for the team to complete a coverage mission with

the näıve strategy of simply following a single set of paths produced by a coverage

planner like the one in Chapter 4. Instead, the team uses a robust strategy where

the planned paths are converted into semantic commands, subteams replan when

necessary, and robots search for teammates near the end of the mission.

Semantic commands such as “go to the corner of the room” or “cover the

hallway by ranks” are more meaningful than simply telling the robot to go to

a precise location. These commands are completed by behaviors which use the

robot’s sensors to determine whether it has completed the behavior, even if it

did not reach the exact coordinates expected by the planner. Using semantic

commands and behaviors makes the robot robust to localization errors and offloads

the responsibility for low level tasks—navigating around small obstacles or along

irregularly shaped walls—to the robot’s behaviors. Since these tasks do not affect

coverage planning, the map of the environment is also processed and simplified

based on the robot’s behaviors before it is used for coverage planning.

Replanning is often necessary when the team cannot complete its current cov-

erage plan. There are many reasons for replanning including humans physically

moving a robot, changes in the map when a door opens or closes, and a robot

needing to recharge when it runs out of battery. If the map has not changed,

the robots can replan by simply planning new paths—through solving the m-TSP

(Chapter 3)—to cover the remaining set of uncovered ranks based on where the

available robots are currently located. If, however, the map has changed, the

robots must additionally compute a new rank partition for the uncovered parts of

the current map. As limitations of wireless communication technologies restrict

robots’ abilities to communicate over large distances or through walls, teams of

robots are only able to replan with nearby connected robots. At the end of a

mission, when a robot has no remaining coverage tasks, it can search (Chapter 5)

for lost teammates and replan with them once they reconnect so that the team

258

I. Vandermeulen

finishes the overall mission faster. Similarly, damaged robots which can move but

no longer perform coverage can repeatedly search for different teammates, spread-

ing information throughout the team and serving as a valuable teammate despite

being unable to perform any coverage tasks.

I tested these approaches to robust coverage through several experiments, both

simulated and performed on real robots at iRobot. For single robot coverage, I

found that a robust coverage strategy using a plan produced by my coverage plan-

ner and executed through semantic behaviors outperformed the existing strategy

used by the commercially successful iRobot Roomba robotic vacuum cleaner. For

multirobot coverage, I showed, in a real world experiment, that coverage using a

basic strategy without coordination is generally faster than single robot coverage,

but has two major flaws. The robots are unlikely to finish at the same time so

they overall mission takes longer, and they also can interfere with each other if

they collide when covering within close proximity with each other. Using a robust

strategy, I showed the effectiveness of using search to ensure that all robots finish

at approximately the same time by rebalancing the workload during the mission.

The combination of these results is a multirobot coverage strategy that is robust

to changes in the environment and in the team and will take advantage of every

robot in the team to finish its mission as quickly as possible.

259

Chapter 7

Conclusion

As robots become more common in society, they are increasingly likely to be

working in teams with other robots and within environments designed for and

shared with humans. Just as planning is important for individual robots working

in restricted, specialized environments, it is also vital for coordination of these

robotic teams. The two main differences between multirobot and single robot

planning are:

1. Teams must decide which robot does which task instead of one robot per-

forming all tasks; and

2. Cooperative planning is only possible if robots can communicate so they

must plan how they will communicate.

In real environments, with many sources of uncertainty, planning is not sufficient

to complete some complex mission and the team must adapt and respond to the

unknown to successfully execute their plan, or something similar to it.

In this thesis, I presented several algorithms to solve the multirobot problems

of task allocation (Chapter 3), coverage (Chapter 4), and search (Chapter 5). The

algorithms are analyzed theoretically and evaluated using a combination of simu-

lations and experimental results, including results combining the three problems

(Chapter 6). These algorithms outperform existing algorithms intended to solve

the same problems and can be used for by teams of robots whereas previous al-

gorithms were often limited to a single robot. Furthermore, the algorithms are

261

computationally efficient enough to run on commercially available robots, such

as the iRobot Roomba vacuum cleaner, a platform I used when testing the algo-

rithms. Collectively these algorithms solve important multirobot planning prob-

lems, bringing teams of cooperative robots closer to being a reality in everyday

society.

Coverage is one of the most common tasks performed by robots today. Many

successful consumer robotics—vacuums, pool cleaners, lawnmowers, and window

cleaners—all perform versions of coverage. In coverage, each robot has a tool which

it must pass over every point of its environment. A coverage mission is complex

and can be solved in many different ways depending on which robot covers which

region, how each robot covers its assigned region, and how the team responds

to the unexpected. Despite its complexity, consumers expect coverage robots to

work quickly, reliably, and intelligently in any environment they are placed in.

Its commercial relevance and complexity make coverage an excellent example of a

complex mission which requires multirobot teams to successfully assign tasks and

communicate sufficiently often.

Deciding which robot does what is the problem of task allocation. Solving this

problem first requires some large overall mission to be divided into a set of small

individual tasks which can each be completed relatively quickly by a single robot.

To complete the mission as quickly, these tasks should be assigned to the robots

in a balanced way so that every robot finishes its tasks at approximately the same

time and the slowest robot—which determines the overall team’s speed—finishes

as soon as possible. For robotic tasks, which are spatially distributed, the order

of tasks affects how long it takes each robot to complete its tasks, so the overall

problem is both an allocation and routing problem.

Solving the combined allocation and routing problem is equivalent to solving

262

I. Vandermeulen

the minmax multiple travelling salesperson problem (Chapter 3). Although alloca-

tion and routing are usually seen as highly coupled problems, there is an approxi-

mately monotonic relationship between the best possible time a set of tasks can be

completed in—obtained by solving an NP-hard routing problem—and the average

time needed to complete the same set of tasks (Subsection 3.3.1). The cost func-

tion of the minmax m-TSP uses a maximum function, which behaves well with

monotonic functions as they preserve inequalities. Therefore, the average time,

which is much easier to compute, can be used as a proxy for the minimum time

needed to compute a set of tasks. Then, the set of tasks can be quickly partitioned

(Section 3.4) and the order that each robot performs its tasks can be computed

separately (Section 3.5) with only a few small changes needed to rebalance the as-

signed tasks once the best routes have all been determined. The algorithm based

on this idea was able to outperform two state-of-the-art m-TSP algorithms on

standardized large scale problems involving over 1000 tasks and up to 100 robots

(Section 3.9). Runtimes for this algorithm scale approximately quadratically with

the number of tasks and do not depend heavily on the number of agents, making

it applicable to problems with many tasks and large teams.

For the overall task of multirobot coverage, individual tasks should be defined

based on the robots’ basic behaviors. The simplest behaviors of a coverage robot is

travelling along a rank—either a long straight line in an open area or a curve along

the perimeter of the environment. Coverage of ranks is efficient. Robots can cover

a rank near their maximum speed as they only need to move in a straight line.

Transitioning between ranks, however, is much slower. Robots need to make time

consuming turns and often pass over regions that have already been covered when

travelling from the end of one rank to the start of the next. In addition to ordering

ranks to minimize the lengths of these redundant connecting paths, coverage can

be made more efficient by choosing the directions of ranks to minimize the number

of turns that the robots will have to make.

263

In turn-minimizing coverage (Chapter 4), the environment is first partitioned

into a set of interior and perimeter ranks which are then allocated to individual

robots by solving the m-TSP. The interior ranks can be horizontal or vertical and

are chosen to cover a rectilinear polygon (Subsection 4.2.2), which fully covers the

interior of the environment. This rectilinear polygon is sliced at each of its con-

cave vertices to create a checkerboard partition (Subsection 4.2.3) consisting only

of rectangles which can each be covered by one direction of interior ranks. The

coverage direction for each rectangle is determined using a heuristic which itera-

tively changes the orientations of rectangles based on their neighbors’ orientations

(Subsection 4.2.4). Once the directions of each rectangle has been determined, ad-

jacent rectangles are merged and then sliced into the interior ranks. The entire set

of ranks—including trivially defined perimeter ranks—are then used to obtain cov-

erage plans for each robot by solving a constrained version of the minmax m-TSP.

Using turn-minimization, coverage paths for real indoor environments mapped by

the iRobot Roomba had on average 6.7% fewer turns than optimal paths obtained

with only one direction of interior ranks (Section 4.4). Compared to strategies cur-

rently used by commercial coverage robots, which do not use turn-minimization

or optimize the order of ranks, this optimized strategy is much faster.

Communication constraints can have a great impact on robots’ abilities to func-

tion as a team. Coordinated planning is only possible between robots that can

communicate, but robots equipped with inexpensive wireless communication de-

vices often cannot communicate over large distances or through walls. Unexpected

circumstances which disrupt a robot’s plan and force it to replan can also cause it

to get disconnected from its teammates. Even if the team had previously planned

a rendezvous, in real world environments it is impossible to guarantee that they

will actually be able to reconnect in any specific time and place. Therefore, robots

must be able to search for their teammates when cooperating in real, unpredictable

environments. Search also enables robots to separate as needed to complete some

264

I. Vandermeulen

complex individual tasks and then flexibly reconnect to share information and

replan.

An effective search strategy uses knowledge of a target robot’s likely behavior

and observations of where the robot is not located to maintain a belief of where the

robot might be and then uses this belief to plan a search path (Chapter 5). This

belief is modeled as a hidden Markov model (Section 5.3) which uses a distribution

over a set of hidden states to model the robot’s semantic behavior, momentum,

and variable velocity and can be converted to a distribution over physical space.

Additionally, historic or simulated data about the target’s behaviour can be used

to determine the model’s transition probabilities (Subsection 5.3.4) and additional

states can be added if the target’s plan is known (Subsection 6.8.1) as it often

is in a cooperative mission. The belief is further improved using the searcher’s

observations (Section 5.4) both of when it sees its target and when it doesn’t. Any

robot can maintain a belief of another—even if it is not actively searching for that

robot—and two nearby robots can merge their beliefs about a third robot when

they communicate (Section 5.5). Once a robot decides it needs to search for a lost

teammate, it constructs a tree of possible search paths using randomly sampled

locations (Section 5.7) and evaluates the candidate paths using the probability

of finding the target—based on its belief—after different lengths of time. The

resulting search algorithm is effective for finding disconnected robots, with similar

best-case-scenario search times when compared with two baseline strategies but

much better search times in the worst-case-scenarios (Section 5.8).

Real robots’ behavior must be robust and adaptive (Chapter 6) because real

environments are dynamic and unpredictable. For the task of coverage, robust be-

havior is achieved through semantic commands, replanning, and—for multirobot

coverage—search. Semantic commands (Section 6.3) and the corresponding behav-

iors used to complete them use real-time sensor data to accomplish the objective

of a plan, such as covering a large region of a room, rather than the trying to follow

265

the exact path specified by the plan. Replanning (Section 6.5) is necessary in many

unexpected circumstances—a low battery, human interference, or the discovery of

a new room—to adapt a coverage plan to new information. A coverage strat-

egy planned by the algorithms of Chapter 4 and executed via semantic commands

with replanning when necessary is robust enough to run successfully on the iRobot

Roomba in a realistic environment and the efficiency of planned turn-minimizing

paths results in faster coverage than the Roomba’s current strategy (Section 6.6).

For multirobot coverage, robots which do not coordinate throughout a mission are

unlikely to finish simultaneously (Subsection 6.7.1) resulting in a mission which

takes longer than is necessary. If the faster robots search for slower robots once

they have finished their assigned coverage tasks (Section 6.8), the team can re-

plan and guarantee they all finish at similar times. When search is combined in

a robust multirobot coverage strategy (Subsection 6.9.1), the team compensates

for differing speeds and completes the overall mission almost as fast as possible

despite originally planning based on incorrect information.

Using solutions to multirobot-specific problems, such as search and task alloca-

tion, teams of robots can quickly complete tasks that would normally be performed

slowly by a single robot. Although coverage is an example of one such task, other

tasks, such as delivery, surveillance, and exploration, could also benefit from the

same search and task allocation algorithms. As long as a large task can be divided

into smaller ones, a minmax task allocation algorithm can be used to fairly divide

the small tasks amongst the team. When completing these tasks, inevitable in-

terruptions forcing the team to separate but requiring them to replan are not a

problem as robots can search for teammates whenever necessary. With these co-

ordination methods, the team is able to cooperate effectively despite unexpected

circumstances and teams of robots become truly effective ways of solving problems

in the real world quickly and robustly.

266

I. Vandermeulen

7.1 Future work

Although the algorithms presented in this thesis were presented in a general form

that makes them applicable to a large class of robots, there are some limitations

due to some of the assumptions made about the robots and their environments.

None of the algorithms in this thesis explicitly consider motion constraints and

instead assume that the robots can freely navigate to any location in their en-

vironment. This assumption is generally true for the scenarios encountered by

today’s commercially available coverage robots where a single robot or small team

of robots is operating in a large environment. However, in heavily cluttered envi-

ronments or when many robots share an environment, robots may be blocked by

obstacles or other robots and unable to freely navigate. In these situations, the al-

gorithms presented in this thesis may be significantly less effective. Similarly, they

may be inadequate for robots with nonholonomic constraints which are unable to

freely navigate due to their inherent mechanical constraints. The algorithms in

this thesis were also mainly developed for ground-based robots which only move

in two-dimensions and may not be fully applicable to underwater or aerial robots

which move in three dimensions.

These limitations present opportunities for future research. The more robots

there are in a given environment, the higher the chance of collisions. Therefore an

interesting extension of the search and coverage algorithms presented in this thesis

would be collision-aware planning where the planning algorithms are guaranteed to

result in collision free paths. Such a system would also need to be able to resolve

potential collisions mid mission if two robots are likely to collide because they

were unable to follow their plans exactly. Similarly, another interesting extension

would be to explicitly consider the robot’s kinematics when planning. By actively

considering kinematics the planner could guarantee the path is feasible for the

robot’s actual hardware and could also be used to minimize energy expenditure

267

7.1. Future work

instead of time.

Other interesting directions for future research are semantic planning and the

relationship between planning and mapping. Although semantic commands were

mentioned in Section 6.3, they were treated as a final step in where a polygonal

path gets converted into semantic commands. An alternative approach to planning

would be to generate high level semantic commands directly instead of a polygonal

plan. These commands would then be executed by lower level semantic behaviors

which use feedback between sensors and actuators to ensure the does what it was

instructed to do. Such an approach would likely require a different description of

the robot’s environment—a semantic map. Currently, robots typically use detailed

occupancy grid maps which attempt to describe the local properties of every part of

a robot’s environment. These maps do not however, represent how different parts

of the environment relate to each other and high level concepts that humans think

in terms of—walls, streets, rooms, neighborhoods—are absent from the map. If

the maps will be used for planning, and the plans are represented in terms of high-

level semantics, a map that contains or is entirely based on these same semantics

and the relationships between them would result in better plans. Both semantic

plans and semantic maps would also have the advantage of being easier for humans

to interpret, making it easier for us to interact with these robots, greatly aiding

their adoption into society.

268

Bibliography

[1] E. Acar, H. Choset, A. Rizzi, P. Atkar, and D. Hull, “Morse decompositions
for coverage tasks,” The International Journal of Robotics Research, vol. 21,
no. 4, pp. 331–344, 2002.

[2] N. Agmon, N. Hazon, and G. Kaminka, “The giving tree: Constructing trees
for efficient offline and online multi-robot coverage,” Annals of Mathematics
and Artificial Intelligence, vol. 52, no. 2, pp. 143–168, 2008.

[3] M. Ahmadi and P. Stone, “A multi-robot system for continuous area sweep-
ing tasks,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2006, pp. 1724–1729.

[4] S. Alpern, “Rendezvous search: A personal perspective,” Operations Re-
search, vol. 50, no. 5, pp. 772–795, 2002.

[5] S. Alpern and S. Gal, “Searching for an agent who may or may not want to
be found,” Operations Research, vol. 50, no. 2, pp. 311–323, 2002.

[6] R. Alves and C. Lopes, “Using genetic algorithms to minimize the distance
and balance the routes for the multiple traveling salesman problem,” in
Congress on Evolutionary Computation (CEC). IEEE, 2015, pp. 3171–
3178.

[7] F. Amigoni, J. Banfi, and N. Basilico, “Multirobot exploration of
communication-restricted environments: A survey,” IEEE Intelligent Sys-
tems, vol. 32, no. 6, pp. 48–57, 2017.

[8] E. Anderson and R. Weber, “The rendezvous problem on discrete locations,”
Journal of Applied Probability, vol. 27, no. 4, pp. 839–851, 1990.

[9] N. Anderson, “System and method for area coverage using sector decompo-
sition,” Jul. 17 2012, US Patent 8,224,516.

[10] C. Angle, D. Snelling, M. O’Dea, T. Farlow, S. Duffley, J. Mammen, and
M. Halloran, “Mobile robot providing environmental mapping for household
environmental control,” Jan. 12 2016, US Patent 9,233,472.

269

Bibliography

[11] J. Antonio, R. Ramabhadran, and T. Ling, “A framework for optimal tra-
jectory planning for automated spray coating,” International Journal of
Robotics and Automation, vol. 12, pp. 124–134, 1997.

[12] D. Applegate, W. Cook, and A. Rohe, “Chained Lin–Kernighan for large
traveling salesman problems,” INFORMS Journal on Computing, vol. 15,
no. 1, pp. 82–92, 2003.

[13] M. Arif and S. Haider, “An evolutionary traveling salesman approach for
multi-robot task allocation.” in International Conference on Agents and Ar-
tificial Intelligence (ICAART). IEEE, 2017, pp. 567–574.

[14] E. Arkin, S. Fekete, and J. Mitchell, “Approximation algorithms for lawn
mowing and milling,” Computational Geometry, vol. 17, no. 1-2, pp. 25–50,
2000.

[15] G. Avellar, G. Pereira, L. Pimenta, and P. Iscold, “Multi-UAV routing for
area coverage and remote sensing with minimum time,” Sensors, vol. 15,
no. 11, pp. 27 783–27 803, 2015.

[16] T. Baker, J. Gill, and R. Solovay, “Relativizations of the P=?NP question,”
SIAM Journal on computing, vol. 4, no. 4, pp. 431–442, 1975.

[17] P. Balutis, A. Beaulieu, B. Yamauchi, K. Karlson, and D. Jones, “Robot
lawnmower mapping,” Aug. 23 2016, US Patent 9,420,741.

[18] T. Bandyopadhyay, N. Rong, M. Ang, D. Hsu, and W. Lee, “Motion plan-
ning for people tracking in uncertain and dynamic environments,” in In-
ternational Conference on Robotics and Automation (ICRA), Workshop on
People Detection & Tracking. IEEE, 2009.

[19] N. Banerjee, R. Connolly, D. Lisin, J. Briggs, M. Narayana, and
M. Munich, “View management for lifelong visual maps,” arXiv preprint
arXiv:1908.03605, 2019.

[20] J. Banfi, N. Basilico, and S. Carpin, “Optimal redeployment of multirobot
teams for communication maintenance,” in International Conference on In-
telligent Robots and Systems (IROS). IEEE, 2018, pp. 3757–3764.

[21] J. Banfi, J. Guzzi, A. Giusti, L. Gambardella, and G. Di Caro, “Fair multi-
target tracking in cooperative multi-robot systems,” in International Con-
ference on Robotics and Automation (ICRA). IEEE, 2015, pp. 5411–5418.

[22] H. Bast and S. Hert, “The area partitioning problem,” Canadian Conference
on Computational Geometry (CCCG), 2000.

[23] A. Bayoumi, P. Karkowski, and M. Bennewitz, “Speeding up person finding
using hidden Markov models,” Robotics and Autonomous Systems, vol. 115,
pp. 40–48, 2019.

270

I. Vandermeulen

[24] J. Beasley, “Route first cluster second methods for vehicle routing,” Omega,
vol. 11, no. 4, pp. 403–408, 1983.

[25] T. Bektas, “The multiple traveling salesman problem: An overview of for-
mulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219,
2006.

[26] J. Bellingham, “Coordination and control of UAV fleets using mixed-integer
linear programming,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2002.

[27] R. Bellman, “The theory of dynamic programming,” Rand Corp Santa Mon-
ica CA, Tech. Rep., 1954.

[28] S. Benkoski, M. Monticino, and J. Weisinger, “A survey of the search theory
literature,” Naval Research Logistics (NRL), vol. 38, no. 4, pp. 469–494,
1991.

[29] S. Bochkarev and S. Smith, “On minimizing turns in robot coverage path
planning,” in International Conference on Automation Science and Engi-
neering (CASE). IEEE, 2016, pp. 1237–1242.

[30] R. Bolaños, M. Echeverry, and J. Escobar, “A multiobjective non-dominated
sorting genetic algorithm (NSGA-II) for the multiple traveling salesman
problem,” Decision Science Letters, vol. 4, no. 4, pp. 559–568, 2015.

[31] S. Brown, “Optimal search for a moving target in discrete time and space,”
Operations Research, vol. 28, no. 6, pp. 1275–1289, 1980.

[32] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 27, no. 5, pp. 387–408, 2012.

[33] J. Chalopin, S. Das, and P. Widmayer, “Deterministic symmetric rendezvous
in arbitrary graphs: Overcoming anonymity, failures and uncertainty,” in
Search Theory. Springer, 2013, pp. 175–195.

[34] W. Chan and F. Chin, “Approximation of polygonal curves with minimum
number of line segments or minimum error,” International Journal of Com-
putational Geometry & Applications, vol. 6, no. 1, pp. 59–77, 1996.

[35] B. Charrow, V. Kumar, and N. Michael, “Approximate representations
for multi-robot control policies that maximize mutual information,” Au-
tonomous Robots, vol. 37, no. 4, pp. 383–400, 2014.

[36] H. Choi, L. Brunet, and J. How, “Consensus-based decentralized auctions
for robust task allocation,” IEEE Transactions on Robotics, vol. 25, no. 4,
pp. 912–926, 2009.

271

Bibliography

[37] H. Choset, “Coverage for robotics—a survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126, 2001.

[38] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and service robotics. Springer, 1998, pp.
203–209.

[39] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” DTIC Document, Tech. Rep., 1976.

[40] T. Chung, G. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile
robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316, 2011.

[41] S. Cook, “The complexity of theorem-proving procedures,” in Symposium
on Theory of Computing. ACM, 1971, pp. 151–158.

[42] W. Cook. (2016) Concorde TSP solver. [Online]. Available: http:
//www.math.uwaterloo.ca/tsp/concorde/

[43] W. Cook and A. Rohe, “Computing minimum-weight perfect matchings,”
INFORMS Journal on Computing, vol. 11, no. 2, pp. 138–148, 1999.

[44] G. Croes, “A method for solving traveling-salesman problems,” Operations
Research, vol. 6, no. 6, pp. 791–812, 1958.

[45] P. Dames, “Distributed multi-target search and tracking using the PHD
filter,” in International Symposium on Multi-Robot and Multi-Agent Systems
(MRS). IEEE, 2017, pp. 1–8.

[46] M. De Gennaro and A. Jadbabaie, “Decentralized control of connectivity
for multi-agent systems,” in Conference on Decision and Control (CDC).
IEEE, 2006, pp. 3628–3633.

[47] B. Dias, “TraderBots: A new paradigm for robust and efficient multirobot
coordination in dynamic environments,” Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh, PA, January 2004.

[48] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[49] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “A tool-path generation strategy
for wire and arc additive manufacturing,” The International Journal of Ad-
vanced Manufacturing Technology, vol. 73, no. 1-4, pp. 173–183, 2014.

[50] M. Dooley, J. Case, and N. Romanov, “System and method for autonomous
mopping of a floor surface,” Aug. 1 2019, US Patent App. 16/382,864.

[51] D. Douglas and T. Peucker, “Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature,” Cartographica,
vol. 10, no. 2, pp. 112–122, 1973.

272

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/

I. Vandermeulen

[52] G. Dudek and N. Roy, “Multi-robot rendezvous in unknown environments,
or, what to do when you’re lost at the zoo,” in National Conference on
Artificial Intelligence, Workshop on Online Search. AAAI, 1997.

[53] E. Eade, P. Fong, and M. Munich, “Monocular graph slam with complexity
reduction,” in International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2010, pp. 3017–3024.

[54] E. Eade, M. Munich, and P. Fong, “Systems and methods for VSLAM opti-
mization,” Mar. 15 2016, US Patent 9,286,810.

[55] J. Eagle and J. Yee, “An optimal branch-and-bound procedure for the con-
strained path, moving target search problem,” Operations Research, vol. 38,
no. 1, pp. 110–114, 1990.

[56] Ecovacs. (2019, Oct.) Winbot window cleaning robots. [Online]. Available:
https://www.ecovacs.com/global/winbot-window-cleaning-robot

[57] A. Farinelli, L. Iocchi, D. Nardi, and V. Ziparo, “Assignment of dynamically
perceived tasks by token passing in multirobot systems,” Proceedings of the
IEEE, vol. 94, no. 7, pp. 1271–1288, 2006.

[58] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2006, pp.
1243–1248.

[59] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical
Journal, vol. 23, no. 2, pp. 298–305, 1973.

[60] R. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[61] P. Fong, C. Smith, M. Munich, and S. O’Dea, “Mobile cleaning robot team-
ing and persistent mapping,” Jul. 11 2019, US Patent App. 15/863,681.

[62] G. Frederickson, M. Hecht, and C. Kim, “Approximation algorithms for
some routing problems,” in Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 1976, pp. 216–227.

[63] S. Friedman and H. Moravec, “Distributed multi-robot system,” Jun. 17
2014, US Patent 8,755,936.

[64] E. Galceran, R. Campos, N. Palomeras, D. Ribas, M. Carreras, and P. Ri-
dao, “Coverage path planning with real-time replanning and surface recon-
struction for inspection of three-dimensional underwater structures using
autonomous underwater vehicles,” Journal of Field Robotics, vol. 32, no. 7,
pp. 952–983, 2015.

[65] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276,
2013.

273

https://www.ecovacs.com/global/winbot-window-cleaning-robot

Bibliography

[66] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

[67] B. Gerkey and M. Maja, “Sold!: Auction methods for multirobot coordina-
tion,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.
758–768, 2002.

[68] B. Gerkey and M. Maja, “A formal analysis and taxonomy of task allocation
in multi-robot systems,” The International Journal of Robotics Research,
vol. 23, no. 9, pp. 939–954, 2004.

[69] C. Geyer, “Active target search from UAVs in urban environments,” in In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2008,
pp. 2366–2371.

[70] D. Goel, J. Case, D. Tamino, J. Gutmann, M. Munich, M. Dooley, and
P. Pirjanian, “Systematic floor coverage of unknown environments using rect-
angular regions and localization certainty,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 1–8.

[71] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Searching and
tracking people with cooperative mobile robots,” Autonomous Robots,
vol. 42, no. 4, pp. 739–759, 2018.

[72] S. Gorenstein, “Printing press scheduling for multi-edition periodicals,”
Management Science, vol. 16, no. 6, pp. 373–383, 1970.

[73] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic deter-
mination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[74] M. Held, On the computational geometry of pocket machining. Springer
Science & Business Media, 1991, vol. 500.

[75] M. Held and R. Karp, “The traveling-salesman problem and minimum span-
ning trees: Part II,” Mathematical programming, vol. 1, no. 1, pp. 6–25,
1971.

[76] K. Helsgaun. LKH version 2.0.7. [Online]. Available: http://www.akira.ruc.
dk/∼keld/research/LKH/

[77] K. Helsgaun, “An effective implementation of the Lin–Kernighan traveling
salesman heuristic,” European Journal of Operational Research, vol. 126,
no. 1, pp. 106–130, 2000.

[78] S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-robot
workspace division,” International Journal of Computational Geometry &
Applications, vol. 8, no. 4, pp. 437–466, 1998.

274

http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/

I. Vandermeulen

[79] R. Hohzaki, “Search games: Literature and survey,” Journal of the Opera-
tions Research Society of Japan, vol. 59, no. 1, pp. 1–34, 2016.

[80] G. Hollinger and S. Singh, “Multirobot coordination with periodic connec-
tivity: Theory and experiments,” IEEE Transactions on Robotics, vol. 28,
no. 4, pp. 967–973, 2012.

[81] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-robot
search for a moving target,” The International Journal of Robotics Research,
vol. 28, no. 2, pp. 201–219, 2009.

[82] G. Hollinger and G. Sukhatme, “Sampling-based robotic information gath-
ering algorithms,” The International Journal of Robotics Research, vol. 33,
no. 9, pp. 1271–1287, 2014.

[83] G. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. Sukhatme, “Dis-
tributed data fusion for multirobot search,” IEEE Transactions on Robotics,
vol. 31, no. 1, pp. 55–66, 2015.

[84] W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-based
search with optimal task assignment,” in International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, 2018, pp.
757–765.

[85] W. Huang, “Optimal line-sweep-based decompositions for coverage algo-
rithms,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2001, pp. 27–32.

[86] Y. Huang and K. Gupta, “RRT-SLAM for motion planning with motion
and map uncertainty for robot exploration,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2008, pp. 1077–1082.

[87] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[88] iRobot. (2019, Oct.) Braava m Series. [Online]. Available: https:
//www.irobot.com/braava/m-series

[89] iRobot. (2019, Oct.) Roomba s Series. [Online]. Available: https:
//www.irobot.com/roomba/s-series

[90] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based RRT for path plan-
ning in continuous cost spaces,” in International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2008, pp. 2145–2150.

[91] J. Jones and P. Mass, “Method and system for multi-mode coverage for an
autonomous robot,” Jun. 11 2013, US Patent 8,463,438.

275

https://www.irobot.com/braava/m-series
https://www.irobot.com/braava/m-series
https://www.irobot.com/roomba/s-series
https://www.irobot.com/roomba/s-series

Bibliography

[92] R. Jonker and T. Volgenant, “Technical note—an improved transformation
of the symmetric multiple traveling salesman problem,” Operations Research,
vol. 36, no. 1, pp. 163–167, 1988.

[93] A. Jotshi and R. Batta, “Search for an immobile entity on a network,” Eu-
ropean Journal of Operational Research, vol. 191, no. 2, pp. 347–359, 2008.

[94] Y. Kantaros and M. Zavlanos, “Distributed intermittent connectivity con-
trol of mobile robot networks,” IEEE Transactions on Automatic Control,
vol. 62, no. 7, pp. 3109–3121, 2017.

[95] A. Kapoutsis, S. Chatzichristofis, and E. Kosmatopoulos, “DARP: Divide
areas algorithm for optimal multi-robot coverage path planning,” Journal of
Intelligent & Robotic Systems, vol. 86, no. 3-4, pp. 663–680, 2017.

[96] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” Robotics Science and Systems VI, vol. 104, 2010.

[97] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for a
class of pursuit-evasion games,” in Algorithmic Foundations of Robotics IX.
Springer, 2011, pp. 71–87.

[98] D. Karapetyan and G. Gutin, “Lin–Kernighan heuristic adaptations for the
generalized traveling salesman problem,” European Journal of Operational
Research, vol. 208, no. 3, pp. 221–232, 2011.

[99] N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rekleitis,
“Efficient multi-robot coverage of a known environment,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
1846–1852.

[100] R. Karp, “Reducibility among combinatorial problems,” in Complexity of
Computer Computations. Springer, 1972, pp. 85–103.

[101] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[102] E. Kivelevitch, K. Cohen, and M. Kumar, “Market-based solution to the
allocation of tasks to agents,” Procedia Computer Science, vol. 6, pp. 28–33,
2011.

[103] E. Kivelevitch, B. Sharma, N. Ernest, M. Kumar, and K. Cohen, “A hi-
erarchical market solution to the min-max multiple depots vehicle routing
problem,” Unmanned Systems, vol. 2, pp. 87–100, 2014.

[104] A. Kleiner, “The low-cost evolution of AI in domestic floor cleaning robots,”
AI Magazine, vol. 39, no. 2, pp. 89–91, 2018.

276

I. Vandermeulen

[105] A. Kleiner, R. Baravalle, A. Kolling, P. Pilotti, and M. Munich, “A solution
to room-by-room coverage for autonomous cleaning robots,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
5346–5352.

[106] A. Kleiner and M. Munich, “Systems and methods for configurable opera-
tion of a robot based on area classification,” Jun. 4 2019, US Patent App.
10/310,507.

[107] D. Knuth, “Postscript about NP-hard problems,” ACM SIGACT News,
vol. 6, no. 2, pp. 15–16, 1974.

[108] A. Kolling and I. Vandermeulen, “Turn-minimizing or turn-reducing robot
coverage,” Mar. 19 2020, US Patent App. 16/565,721.

[109] C. Kong, A. New, and I. Rekleitis, “Distributed coverage with multi-robot
system,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2006, pp. 2423–2429.

[110] B. Koopman, “Search and screening,” Center for Naval Analysis, Alexan-
dria, Virginia, 1946.

[111] G. Korsah, A. Stentz, and M. Dias, “A comprehensive taxonomy for multi-
robot task allocation,” The International Journal of Robotics Research,
vol. 32, no. 12, pp. 1495–1512, 2013.

[112] J. Kruskal, “On the shortest spanning subtree of a graph and the travel-
ing salesman problem,” Proceedings of the American Mathematical society,
vol. 7, no. 1, pp. 48–50, 1956.

[113] Y. Kuo, A. Barbu, and B. Katz, “Deep sequential models for sampling-based
planning,” in International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 6490–6497.

[114] H. Lau, S. Huang, and G. Dissanayake, “Optimal search for multiple targets
in a built environment,” in International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2005, pp. 3740–3745.

[115] H. Lau, S. Huang, and G. Dissanayake, “Probabilistic search for a moving
target in an indoor environment,” in International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2006, pp. 3393–3398.

[116] S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”
1998.

[117] S. LaValle, M. Branicky, and S. Lindemann, “On the relationship between
classical grid search and probabilistic roadmaps,” The International Journal
of Robotics Research, vol. 23, no. 7-8, pp. 673–692, 2004.

277

Bibliography

[118] E. Lawler, Combinatorial optimization: networks and matroids. Courier
Corporation, 2001.

[119] A. Li, P. Penumarthi, J. Banfi, N. Basilico, J. OKane, I. Rekleitis, S. Nelaku-
diti, and F. Amigoni, “Multi-robot online sensing strategies for the construc-
tion of communication maps,” Autonomous Robots, pp. 1–21, 2019.

[120] Y. Li, H. Chen, M. Er, and X. Wang, “Coverage path planning for UAVs
based on enhanced exact cellular decomposition method,” Mechatronics,
vol. 21, no. 5, pp. 876–885, 2011.

[121] M. Liggett, I. Kamada, F. Hopke, G. Huat, C. Fiebig, S. Connor, and
A. Alan, “Robotic cleaner,” Mar. 7 2019, US Patent App. 16/100,687.

[122] S. Lin and B. Kernighan, “An effective heuristic algorithm for the traveling-
salesman problem,” Operations Research, vol. 21, no. 2, pp. 498–516, 1973.

[123] W. Liu, S. Li, F. Zhao, and A. Zheng, “An ant colony optimization algorithm
for the multiple traveling salesmen problem,” in Conference on Industrial
Electronics and Applications (ICIEA). IEEE, 2009, pp. 1533–1537.

[124] M. Llofriu, P. Fong, V. Karapetyan, and M. Munich, “Mapping under chang-
ing trajectory estimates,” in International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2017, pp. 1403–1410.

[125] M. López-Ibáñez, C. Blum, J. Ohlmann, and B. Thomas, “The travelling
salesman problem with time windows: Adapting algorithms from travel-
time to makespan optimization,” Applied Soft Computing, vol. 13, no. 9, pp.
3806–3815, 2013.

[126] W. Luo, S. Yi, and K. Sycara, “Behavior mixing with minimum global
and subgroup connectivity maintenance for large-scale multi-robot systems,”
arXiv preprint arXiv:1910.01693, 2019.

[127] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams
of agents,” in International Conference on Autonomous Agents & Multiagent
Systems (AAMAS). IFAAMAS, 2016, pp. 1144–1152.

[128] K. Mak and A. Morton, “A modified Lin–Kernighan traveling-salesman
heuristic,” Operations Research Letters, vol. 13, no. 3, pp. 127–132, 1993.

[129] K. Mak and A. Morton, “Distances between traveling salesman tours,” Dis-
crete Applied Mathematics, vol. 58, no. 3, pp. 281–291, 1995.

[130] M. Malek, M. Guruswamy, M. Pandya, and H. Owens, “Serial and parallel
simulated annealing and tabu search algorithms for the traveling salesman
problem,” Annals of Operations Research, vol. 21, no. 1, pp. 59–84, 1989.

[131] R. Matai, S. Singh, and M. Mittal, “Traveling salesman problem: An
overview of applications, formulations, and solution approaches,” Traveling
Salesman Problem, Theory and Applications, pp. 1–24, 2010.

278

I. Vandermeulen

[132] Maytronics. (2019, Oct.) Dolphin residential pool cleaning robots. [Online].
Available: https://maytronicsus.com/products/residential-pool-cleaning-
robots/

[133] I. Maza and A. Ollero, “Multiple UAV cooperative searching operation using
polygon area decomposition and efficient coverage algorithms,” in Distributed
Autonomous Robotic Systems 6. Springer, 2007, pp. 221–230.

[134] M. McIntire, E. Nunes, and M. Gini, “Iterated multi-robot auctions for
precedence-constrained task scheduling,” in International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, 2016, pp.
1078–1086.

[135] M. Meghjani, S. Manjanna, and G. Dudek, “Multi-target rendezvous search,”
in International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 2596–2603.

[136] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou, “The
complexity of searching a graph,” Journal of the ACM, vol. 35, no. 1, pp.
18–44, 1988.

[137] M. Missura, D. Lee, and M. Bennewitz, “Minimal construct: Efficient short-
est path finding for mobile robots in polygonal maps,” in International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7918–
7923.

[138] R. Mole, D. Johnson, and K. Wells, “Combinatorial analysis for route first-
cluster second vehicle routing,” Omega, vol. 11, no. 5, pp. 507–512, 1983.

[139] R. Morin, F. Bursal, and H. Boeschenstein, “Evacuation station,” Apr. 3
2018, US Patent 9,931,007.

[140] Y. Mostofi, A. Gonzalez-Ruiz, A. Gaffarkhah, and D. Li, “Characterization
and modeling of wireless channels for networked robotic and control systems-
a comprehensive overview,” in International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2009, pp. 4849–4854.

[141] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of commu-
nication signal strength in robotic networks,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2010, pp. 1946–1951.

[142] M. Munich, N. Romanov, D. Goel, and P. Fong, “Systems and methods
for performing simultaneous localization and mapping using machine vision
systems,” Apr. 6 2017, US Patent App. 15/353,368.

[143] B. Na, “Heuristic approaches for no-depot k-traveling salesmen problem with
a minmax objective,” Ph.D. dissertation, Texas A&M University, College
Station, Texas, 2006.

279

https://maytronicsus.com/products/residential-pool-cleaning-robots/
https://maytronicsus.com/products/residential-pool-cleaning-robots/

Bibliography

[144] R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, and P. Parthiban, “Opti-
mization of non-linear multiple traveling salesman problem using k-means
clustering, shrink wrap algorithm and meta-heuristics,” International Jour-
nal of Nonlinear Science, vol. 9, no. 2, pp. 171–177, 2010.

[145] M. Nanjanath and M. Gini, “Repeated auctions for robust task execution
by a robot team,” Robotics and Autonomous Systems, vol. 58, no. 7, pp.
900–909, 2010.

[146] N. Nguyen, T. Nguyen, and J. Rothe, “Approximate solutions to max-min
fair and proportionally fair allocations of indivisible goods,” in International
Conference on Autonomous Agents & Multiagent Systems (AAMAS). IFAA-
MAS, 2017, pp. 262–271.

[147] J. Norris and J. R. Norris, Markov chains. Cambridge University Press,
1998, no. 2.

[148] T. Oksanen and A. Visala, “Coverage path planning algorithms for agricul-
tural field machines,” Journal of Field Robotics, vol. 26, no. 8, pp. 651–668,
2009.

[149] J. Pacheco and R. Mart́ı, “Tabu search for a multi-objective routing prob-
lem,” Journal of the Operational Research Society, vol. 57, no. 1, pp. 29–37,
2006.

[150] C. Papadimitriou, “The Euclidean travelling salesman problem is NP-
complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237–244, 1977.

[151] Y. Pei, M. Mutka, and N. Xi, “Coordinated multi-robot real-time exploration
with connectivity and bandwidth awareness,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2010, pp. 5460–5465.

[152] E. Peless, S. Abramson, R. Friedman, and I. Peleg, “Area coverage with an
autonomous robot,” Jul. 10 2008, US Patent App. 12/054,123.

[153] J. Potvin, G. Lapalme, and J. Rousseau, “A generalized k-opt exchange
procedure for the MTSP,” INFOR: Information Systems and Operational
Research, vol. 27, no. 4, pp. 474–481, 1989.

[154] R. Prim, “Shortest connection networks and some generalizations,” Bell Labs
Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[155] G. Reinelt. (2015) TSPLIB. [Online]. Available: http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/

[156] I. Rekleitis, A. New, E. Rankin, and H. Choset, “Efficient boustrophedon
multi-robot coverage: An algorithmic approach,” Annals of Mathematics
and Artificial Intelligence, vol. 52, no. 2, pp. 109–142, 2008.

280

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/

I. Vandermeulen

[157] J. Riehl, G. Collins, and J. Hespanha, “Cooperative graph-based model pre-
dictive search,” in Conference on Decision and Control (CDC). IEEE, 2007,
pp. 2998–3004.

[158] A. Riva, J. Banfi, C. Fanton, N. Basilico, and F. Amigoni, “A journey among
pairs of vertices: Computing robots’ paths for performing joint measure-
ments,” in International Conference on Autonomous Agents & Multiagent
Systems (AAMAS). IFAAMAS, 2018, pp. 229–237.

[159] C. Robin and S. Lacroix, “Multi-robot target detection and tracking: Tax-
onomy and survey,” Autonomous Robots, vol. 40, no. 4, pp. 729–760, 2016.

[160] Robomow. (2019, Oct.) Meet the Robomow models. [Online]. Available:
https://usa.robomow.com/products/

[161] N. Romanov, C. Johnson, J. Case, D. Goel, S. Gutmann, and M. Dooley,
“Mobile robot for cleaning,” Feb. 24 2015, US Patent 8,961,695.

[162] J. Royset and H. Sato, “Route optimization for multiple searchers,” Naval
Research Logistics (NRL), vol. 57, no. 8, pp. 701–717, 2010.

[163] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed control of
multirobot systems with global connectivity maintenance,” IEEE Transac-
tions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.

[164] M. Sahi. (2016, May) Consumer attitudes about household robots. [Online].
Available: https://www.tractica.com/robotics/consumer-attitudes-about-
household-robots/

[165] P. Sandin, J. Jones, D. Ozick, D. Cohen, D. Lewis, C. Vu, Z. Dubrovsky,
J. Preneta, J. Mammen, D. Gilbert, T. Campbell, and J. Bergman, “Lawn
care robot,” Feb. 10 2015, US Patent 8,954,193.

[166] S. Sariel and T. Balch, “Real time auction based allocation of tasks for
multi-robot exploration problem in dynamic environments,” in Workshop
on Integrating Planning into Scheduling. AAAI, 2005, pp. 27–33.

[167] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson, “An efficient motion
strategy to compute expected-time locally optimal continuous search paths
in known environments,” Advanced Robotics, vol. 23, no. 12-13, pp. 1533–
1560, 2009.

[168] S. Schneckenburger, B. Dorn, and U. Endriss, “The Atkinson inequality in-
dex in multiagent resource allocation,” in International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS). IFAAMAS, 2017, pp.
272–280.

[169] J. Seo, S. Chae, J. Shim, D. Kim, C. Cheong, and T. Han, “Fast contour-
tracing algorithm based on a pixel-following method for image sensors,” Sen-
sors, vol. 16, no. 3, pp. 353–379, 2016.

281

https://usa.robomow.com/products/
https://www.tractica.com/robotics/consumer-attitudes-about-household-robots/
https://www.tractica.com/robotics/consumer-attitudes-about-household-robots/

Bibliography

[170] W. Sheng, N. Xi, H. Chen, Y. Chen, and M. Song, “Surface partitioning
in automated CAD-guided tool planning for additive manufacturing,” in
International Conference on Intelligent Robots and Systems (IROS), vol. 2.
IEEE, 2003, pp. 2072–2077.

[171] M. SHIGETO, K. Watanabe, H. Ogahara, and S. Matsumura, “Autonomous
travel-type cleaner,” Apr. 30 2019, US Patent App. 10/271,705.

[172] V. Shim, K. Tan, and C. Cheong, “A hybrid estimation of distribution algo-
rithm with decomposition for solving the multiobjective multiple traveling
salesman problem,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 42, no. 5, pp. 682–691, 2012.

[173] F. Shkurti, N. Kakodkar, and G. Dudek, “Model-based probabilistic pursuit
via inverse reinforcement learning,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 7804–7811.

[174] A. Sintov and A. Shapiro, “Time-based RRT algorithm for rendezvous plan-
ning of two dynamic systems,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 6745–6750.

[175] J. Song, K. Lee, S. Moon, S. Lee, and J. Ko, “Robot cleaner, robot cleaning
system and method of controlling same,” Jan. 27 2009, US Patent 7,480,958.

[176] B. Soylu, “A general variable neighborhood search heuristic for multiple
traveling salesmen problem,” Computers & Industrial Engineering, vol. 90,
pp. 390–401, 2015.

[177] L. Stone, “OR forum—what’s happened in search theory since the 1975
Lanchester prize?” Operations Research, vol. 37, no. 3, pp. 501–506, 1989.

[178] M. Stout, G. Brisson, E. Di Bernardo, P. Pirjanian, D. Goel, J. P. Case, and
M. Dooley, “Methods and systems for complete coverage of a surface by an
autonomous robot,” Feb. 20 2018, US Patent 9,895,808.

[179] E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management in mo-
bile robot teams,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2008, pp. 1525–1530.

[180] Y. Sung and P. Tokekar, “Algorithm for searching and tracking an unknown
and varying number of mobile targets using a limited FoV sensor,” in Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
6246–6252.

[181] J. Svestka and V. Huckfeldt, “Computational experience with an m-salesman
traveling salesman algorithm,” Management Science, vol. 19, no. 7, pp. 790–
799, 1973.

[182] C. Taylor, A. Parker, S. Lau, E. Blair, A. Heninger, and E. Ng, “Robot
vacuum with internal mapping system,” Sep. 28 2010, US Patent 7,805,220.

282

I. Vandermeulen

[183] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[184] J. Thunberg, D. Anisi, and P. Ögren, “A comparative study of task assign-
ment and path planning methods for multi-UGV missions,” in Optimization
and Cooperative Control Strategies. Springer, 2009, pp. 167–180.

[185] A. Turing, “On computable numbers, with an application to the entschei-
dungsproblem,” Proceedings of the London Mathematical Society, vol. 2,
no. 1, pp. 230–265, 1937.

[186] I. Vandermeulen, R. Groß, and A. Kolling, “Re-establishing communication
in teams of mobile robots,” in International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2018, pp. 7947–7954.

[187] I. Vandermeulen, R. Groß, and A. Kolling, “Balanced task allocation by par-
titioning the multiple traveling salesperson problem,” in International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS). IFAA-
MAS, 2019, pp. 1479–1487.

[188] I. Vandermeulen, R. Groß, and A. Kolling, “Turn-minimizing multirobot
coverage,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 1014–1020.

[189] I. Vandermeulen, R. Groß, and A. Kolling, “Sampling based search for a
semi-cooperative target,” under review for publication in International Con-
ference on Intelligent Robots and Systems (IROS), 2020.

[190] P. Varakantham, H. Mostafa, N. Fu, and H. Lau, “DIRECT: A scalable
approach for route guidance in selfish orienteering problems,” in Interna-
tional Conference on Autonomous Agents & Multiagent Systems (AAMAS).
IFAAMAS, 2015, pp. 483–491.

[191] P. Venkatesh and A. Singh, “Two metaheuristic approaches for the multiple
traveling salesperson problem,” Applied Soft Computing, vol. 26, pp. 74–89,
2015.

[192] J. Vicenti, “Mobile robot area cleaning,” Mar. 29 2018, US Patent App.
15/698,005.

[193] J. Vokř́ınek, A. Komenda, and M. Pěchouček, “Agents towards vehicle rout-
ing problems,” in International Conference on Autonomous Agents & Mul-
tiagent Systems (AAMAS). IFAAMAS, 2010, pp. 773–780.

[194] Y. Wang, Y. Chen, and Y. Lin, “Memetic algorithm based on sequential
variable neighborhood descent for the minmax multiple traveling salesman
problem,” Computers & Industrial Engineering, vol. 106, pp. 105–122, 2017.

[195] A. Washburn, “Search for a moving target: The FAB algorithm,” Operations
Research, vol. 31, no. 4, pp. 739–751, 1983.

283

Bibliography

[196] M. Wei and V. Isler, “Coverage path planning under the energy constraint,”
in International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 368–373.

[197] E. Welzl, “Constructing the visibility graph for n-line segments in O(n2)
time,” Information Processing Letters, vol. 20, no. 4, pp. 167–171, 1985.

[198] D. Wicke, D. Freelan, and S. Luke, “Bounty hunters and multiagent task al-
location,” in International Conference on Autonomous Agents & Multiagent
Systems (AAMAS). IFAAMAS, 2015, pp. 387–394.

[199] A. Winfield, “Distributed sensing and data collection via broken ad hoc
wireless connected networks of mobile robots,” in Distributed Autonomous
Robotic Systems 4. Springer, 2000, pp. 273–282.

[200] B. Wolfe and P. Lu, “Wall following robot,” Mar. 20 2018, US Patent
9,918,605.

[201] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage of a
known arbitrary environment with applications to aerial operations,” Au-
tonomous Robots, vol. 36, no. 4, pp. 365–381, 2014.

[202] S. Yoon and J. Kim, “Efficient multi-agent task allocation for collabora-
tive route planning with multiple unmanned vehicles,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3580–3585, 2017.

[203] H. Yu, R. Beard, M. Argyle, and C. Chamberlain, “Probabilistic path plan-
ning for cooperative target tracking using aerial and ground vehicles,” in
American Control Conference (ACC). IEEE, 2011, pp. 4673–4678.

[204] S. Yu, “Hidden semi-Markov models,” Artificial Intelligence, vol. 174, no. 2,
pp. 215–243, 2010.

[205] M. Zavlanos, H. Tanner, A. Jadbabaie, and G. Pappas, “Hybrid control for
connectivity preserving flocking,” IEEE Transactions on Automatic Control,
vol. 54, no. 12, pp. 2869–2875, 2009.

[206] A. Zelinsky, R. Jarvis, J. Byrne, and S. Yuta, “Planning paths of complete
coverage of an unstructured environment by a mobile robot,” in International
Conference on Advanced Robotics, vol. 13, 1993, pp. 533–538.

[207] R. Zlot and A. Stentz, “Market-based multirobot coordination for complex
tasks,” The International Journal of Robotics Research, vol. 25, no. 1, pp.
73–101, 2006.

284

Appendix A

Visibility graphs

Unobstructed paths are essential in robotics, both for motion planning and for

communication. A visibility graph is a set of straight, unobstructed paths between

a set of key locations in an environment (Figure A.1). They are extremely useful,

both for shortest path planning (Appendix B) and for determining when two robots

will be able to communicate with each other. In this appendix, I will present two

approaches to computing a visibility graph. The graph is computed using a set

of points, V , which are all contained in (or on the boundary of) a polygonal

environment, Q ⊂ R2. The näıve algorithm runs in O(|V|3) but is conceptually

simpler, and thus easier to implement than Welzl’s O(|V|2) algorithm.

A.1 Näıve algorithm

The definition of a visibility graph provides an obvious, albeit inefficient, way of

constructing a graph. In this näıve approach, we simply check for intersections

between each possible edge of the graph with each edge of the environment’s

boundary (Algorithm A.1). An edge is only added to the graph if it does not

intersect with any edge of the boundary. Assuming the boundary consists of one

main outer polygon, and possibly several internal polygon obstacles, we can check

intersections with the boundary by iterating over all edges of the boundary. Overall

285

A.1. Näıve algorithm

Figure A.1: Visibility graph used for path planning (left) and communication
(right). The planning graph is based on a buffered environment since
the center of robot can’t get more than half of its width away from
the wall.

this approach requires us to check O(|V|2) pairs of vertices and each vertex is

compared to O(|∂Q|) edges of the boundary for a total complexity of O(|V|2|∂Q|).

Assuming we treat vertices of the boundary as points of interest, |∂Q| ≤ |V| and

so the complexity is O(|V|3).

Algorithm A.1: Näıve visibility graph

Input: Environment, Q ⊂ R2; and set of locations, V
Output: Set of visible edges, E ⊂ V × V
1 E ← {}
2 for pairs of vertices (v0, v1) ∈ V × V do
3 intersects← false

4 for edge e ∈ ∂Q do
5 if (v0, v1) intersects with e then
6 intersects← true

7 break for

8 if intersects = false then
9 E ← E ∪ {(v0, v1)}

10 return E

286

I. Vandermeulen

A.2 Welzl’s algorithm

The näıve visibility graph algorithm runs in cubic time, which often makes it a

limiting step of algorithms that rely on it. For example, shortest path planning

algorithms (Appendix B) are based on the visibility graph and Dijkstra’s algorithm

(Section B.1). Although Dijkstra’s algorithm is quadratic, the overall planning

algorithm is cubic if we use the näıve visibility graph algorithm. Fortunately,

Welzl’s algorithm [197] is a quadratic visibility graph algorithm! If we use this

algorithm, we can solve shortest path planning algorithms in O(|V|2) after all.

The form of the algorithm that Welzl presented [197] is only valid for sets of

line segments and the vertices of these each segment must not be co-linear with

vertices of any other segment. For most robotics problems, we have a polygonal

boundary and single points as points of interest. I had to modify Welzl’s algorithm

to incorporate points and polygons and colinear vertices.

The basic idea of Welzl’s algorithm is to extended parallel rays out from each

vertex and see which polygon edge or line segment they first encounter (Fig-

ure A.2). During the algorithm, the rays are all rotated simultaneously and we

keep track of which edge each ray hits first. Whenever the edge that is visible from

a given vertex changes, there must be a line of visibility between that vertex and

some other vertex. Therefore, we can compute the visibility graph by rotating the

rays and seeing when the visible edges change. It turns out that the edges which

are hit by the rays only changes when the ray’s direction is equal to the direc-

tion between pairs of vertices (points of interest and vertices of the environment

polygon). Furthermore, for each of these directions, only a single ray’s visibility

changes. Since there are O(|V|2) possible ray directions and we can compute the

change in visibility in constant time, the entire algorithm runs in O(|V|2).

The algorithm (Algorithm A.2) therefore works as follows. We start by sorting

a list of all pairs of vertices (Algorithm A.3). These pairs are defined so that the

287

A.2. Welzl’s algorithm

Figure A.2: Welzl’s algorithm is based on the idea of extending parallel rays from
each vertex (left). These rays are all rotated simultaneously and edges
are added to the visibility graph when the first edge encountered by
a ray changes (right).

angle between the two vertices is between (−90◦, 90◦) and is sorted so based on

the direction of pairs, so that pairs with directions closer to −90◦ come first. If

there are multiple pairs with the same direction, the tiebreaker criteria depend on

how far along the ray the start and end vertices are (Algorithm A.4). This sort

order guarantees the pairs are checked in the correct order so that all the required

edges are added to the visibility graph and the views are updated correctly.

Next, the initial view(·) is computed (Algorithm A.5). The view(v) is the first

edge intersected by the ray leaving v in the current direction. The initial view(·)

uses an initial direction which is greater than −90◦ but less than any direction of

any pair in pairs(V). This choice guarantees that no ray intersects an edge at one

of its endpoints. The initial view(·) is computed in O(|V|2) by comparing each

vertex with each edge to find the closest edge, measured along the initial direction.

If the ray does not intersect any edge, we set view(v) =∞.

At this point, the main loop of the algorithm begins. It iterates over pairs

288

I. Vandermeulen

Algorithm A.2: Welzl’s algorithm

Input: Environment, Q ⊂ R2; and set of locations, V
Output: set of visible edges, E ⊂ V × V
1 pairs← sorted vertex pairs of V /* Algorithm A.3 */

2 view, dist← Initial views and distances /* Algorithm A.5 */

3 for pair of vertices (v0, v1) ∈ pairs do
4 if v1 is not part of any edge in ∂Q then
5 if v1 is in front of view(v0) then
6 E ← E ∪ {(v0, v1)}
7 else if v1 is part of one edge in ∂Q then
8 e← edge in ∂Q with v1 as an endpoint
9 if e = view(v0) then

10 E ← E ∪ {(v0, v1)}
11 view(v0)← view(v1)

12 else if v1 is in front of view(v0) then
13 E ← E ∪ {(v0, v1)}
14 view(v0)← e

15 else if v1 is part of two edges in ∂Q then
16 eCW, eCCW ← edges in ∂Q with v1 as an endpoints
17 if eCW = (v0, v1) then
18 view(v0)← view(v1)
19 else if eCCW = (v0, v1) then
20 view(v0)← eCW

21 else if eCCW = view(v0) then
22 E ← E ∪ {(v0, v1)}
23 if eCW, eCCW are on opposite sides of (v0, v1) then
24 view(v0)← eCW

25 else
26 view(v0)← view(v1)

27 else if v1 is in front of view(v0) then
28 E ← E ∪ {(v0, v1)}
29 view(v0)← eCW

30 for e ∈ E do
31 if e is fully occluded then
32 E ← E \ {e}

33 return E

289

A.2. Welzl’s algorithm

Algorithm A.3: Sorted vertex pairs

Input: Vertices of visibility graph, V
Output: Sorted list of vertex pairs, pairs ∼= V × V
1 pairs← empty list of vertex pairs in V × V
2 for vertex pairs (v0, v1) ∈ V × V do
3 if (v1 is somewhere left of v0) or (directly above v0) then
4 pairs← pairs ∪ {(v1, v0)}
5 else
6 pairs← pairs ∪ {(v0, v1)}

7 Sort pairsusing Welzl sort order /* Algorithm A.4 */

8 return pairs

Algorithm A.4: Welzl sort order

Input: Two vertex pairs, (vi, v
′
i), (vj, v

′
j)

Output: Vertex pair which should be checked first
1 if the pairs have different directions then
2 return pair whose direction is closer to −90◦

3 else if the pairs are part of different rays then
4 return pair to the right when looking in their common direction
5 else if the pairs have different start vertices then
6 return pair whose start vertex is further along the ray
7 else if the pairs have different end vertices then
8 return pair whose end vertex is not as far along the ray

Algorithm A.5: Initial view

Input: Environment, Q ⊂ R2; and set of vertices, V
Output: Initial views, view : V → ∂Q; and distances, dist : V → R≥0

1 θ ← angle in (−90◦, 90◦] smaller than any angle between two vertices of V
2 for vertex v ∈ V do
3 view(v)←∞
4 dist(v)←∞
5 for edge e ∈ ∂Q do
6 if ray from v in direction θ intersects e then
7 d← minimum distance from v to e
8 if d < dist(v) then
9 view(v)← e

10 dist(v)← d

11 return view(·), dist(·)

290

I. Vandermeulen

v0

v1
(0a)

v0

v1
(1a)

v0

v1
(2a)

v0

v1

(0b)

v0

v1

(1b)

v0

v1

(2b)

v0

v1

(1d)

v0

v1

(1c)

v0

v1

(2c)

v0

v1

(2f)

v0

v1

(2e)

v0

v1

(2d)

Figure A.3: Cases used when computing a visibility graph using Welzl’s algorithm.

of vertices, rotating the current direction counter clockwise. When using the pair

(v0, v1) with angle θ, the algorithm decides whether to add (v0, v1) to E and updates

view(v). There are 12 possible cases (Figure A.3) which describe what should

happen. These cases depend on whether v1 is connected to 0, 1, or 2 edges, and

how these edges are related to v0 and its previous view. The previous view is the

edge hit by a ray in direction θ− ε, whereas the updated view is the edge hit by a

ray in the direction θ + ε for some ε > 0. The four cases where v1 is part of a line

segment were described by Welzl [197]. I extended the algorithm to more general

geometries by adding the two point cases and six polygon cases.

291

A.2. Welzl’s algorithm

The simplest case is when v1 is a point (i.e. has no edges connected to it).

These cases are in the blue portion of Figure A.3.

(0a) If v1 is behind view(v0), it is not visible so we do not add anything to E and

we do not change view(v0).

(0b) If v1 is in front of view(v0), it is visible so we add (v0, v1) to E . Since v1 does

not have any edges, the rays at θ − ε and θ + ε point to the same edge so

view(v0) does not change.

The next case is when v1 is part of a line segment (i.e. has exactly one edge). We

use e to denote the edge incident to v1. These cases are in the yellow portion of

the figure and are the same cases as presented by Welzl [197].

(1a) If v1 is behind view(v), we do not change E or view(v0).

(1b) If v1’s neighbor is v0, the edge between them blocks line-of-sight so we do

not add anything to E . Since the e has angle θ, the rays at θ − ε and θ + ε

point to the same edge so view(v0) does not change.

(1c) If view(v0) = e, then v1 is visible from v0 so we add (v0, v1) to E . Since e

only extends to v1 and a ray at θ + ε will not intersect with it. In this case,

the rays emanating from v0 and v1 will intersect with the same edge so we

set view(v0) = view(v1).

(1d) If v1 is in front of view(v0) but view(v0) 6= e, then v1 is visible so we add

(v0, v1) to E . At angle θ+ε, the ray will intersect with e instead of the previous

view(v0) because v1 is closer than view(v0). Therefore we set view(v0) = e.

The most complex case is when v1 is part of a polygon (i.e. has two edges). We

use eCW and eCCW to refer to these edges (Figure A.4). These cases are in the

orange portion of the figure.

(2a) If v1 is behind view(v), we do not change E or view(v0).

292

I. Vandermeulen

(2b) If eCW = (v0, v1) and view(v0) = eCCW, then eCW blocks line-of-sight so we

do not add anything to E . As in case (1c), we set view(v0) = view(v1).

(2c) If eCCW = (v0, v1) then eCCW blocks line-of-sight so we do not add anything

to E . As in case (1d), we set view(v0) = eCW.

(2d) If view(v0) = eCCW and eCW is behind eCCW, then v1 is visible so we add

(v0, v1) to E . As in case (1c), we set view(v0) to view(v1).

(2d) If view(v0) = eCCW and eCW is on the opposite side of the ray, then v1 is

visible so we add (v0, v1) to E . After passing over v1, the ray will intersect

with eCW so we set view(v0) = eCW.

(2f) If v1 is in front of view(v0) but view(v0) 6= eCCW or eCW, then v1 is visible

so we add (v0, v1) to E . Similar to case (1d), the ray will now intersect with

eCW so we set view(v0) = eCW.

By following all of these cases, we can iterate through all of the angles while updat-

ing view(·) and adding edges to the visibility graph. The resulting graph contains

all visible edges but does not distinguish between edges in free space and edges

entirely in obstacles. We will need to remove all of these fully occluded edges.

Since all the points of interest are in the free space, all the fully occluded edges

are between two vertices of the boundary. We can find and remove all of these full

occluded edges by iterating through the list of visible edges and checking the angle

of the edge with the angle of the two edges in and out of the vertex. Assuming the

outer polygon is oriented clockwise and the inner polygons are oriented counter-

clockwise, the fully occluded edges will lay between the in-edge and the out-edge

of the polygon’s vertex when rotating counterclockwise from the in-edge. Check-

ing this criterion takes constant time and so we can then remove all fully occluded

edges in O(|V|2) to get the final visibility graph which contains only edges through

free space. Overall the whole algorithm takes O(|V|2).

293

A.2. Welzl’s algorithm

v0
v1

v0

v1

v0

v1

v0

v1

v0

v1

Figure A.4: Convention for which edge is labelled eCW and which is labelled eCCW.
In most cases, eCW is the first edge encountered when standing at v1

and rotating clockwise from (v1, v0). When one of the edges coincides
with (v1, v0), this definition is ambiguous. In these cases, if the other
edge is in the left half plane, then the other edge is eCCW and so
(v1, v0) = eCW. Similarly, if the other edge is in the right half plane,
then the other edge is eCW and so (v1, v0) = eCCW.

294

Appendix B

Shortest path planning

Shortest path algorithms are an integral component of many robotic planning al-

gorithms. In this appendix, I present three shortest path algorithms on graphs.

Dijkstra’s algorithm [48] and the A∗ algorithm [73] both solve the single-pair short-

est path problem inO(|V|2). The Floyd-Warshall algorithm [60] solves the all-pairs

shortest path problem in O(|V|3). All of these algorithms are guaranteed to find

the exact solution in polynomial time. For robots with higher-dimensional config-

uration spaces or dynamic constraints on their motion, sampling-based methods,

such as rapidly-exploring random trees (RRT) can be used to find short, feasible

paths.

B.1 Dijkstra’s algorithm

Dijkstra’s algorithm computes the shortest paths from one vertex v0 in a graph to

all other vertices in the graph. It constructs a tree starting at v0 and the shortest

path to any vertex is the path along this tree (Figure B.1). Initially, the tree just

contains v0. In each round of the algorithm, a new vertex, vnew, is added to the

tree connected by a single edge. This vertex is the closest vertex, when following

edges of the graph, to v0 which hasn’t been added to the tree yet. When we add

vnew, we connect it to vold, the second-last vertex on the shortest path from vnew

295

B.1. Dijkstra’s algorithm

Figure B.1: Process of adding vertices to a tree during Dijkstra’s algorithm. The
next vertex added to the tree is the neighbor of the vertices of the tree
which is closest to the start vertex when travelling along edges of the
tree.

to vold. This method of adding vertices guarantees that vold is always already part

of the tree when vnew is added to the tree. Computing the shortest path to vnew is

easy because it is just the shortest path to vold with vnew added to the end.

Since the shortest path to vnew is based on the shortest path to vold, it is helpful

to keep track of the shortest paths to each vertex in the tree and their lengths. In

an efficient implementation of Dijkstra’s algorithm (Algorithm B.1), we use two

functions prev : V → V and dist : V → R≥0. The function prev(·) keeps track

296

I. Vandermeulen

of the shortest known path to each vertex using intermediate vertices which are

all part of the tree. The function dist(·) stores the length of the shortest known

path. When we add a new vertex to the tree, we check if there is a shorter path

to each of the new vertex’s neighbors by travelling through the new vertex. After

the algorithm is complete, prev(·) encodes the structure of the tree. The shortest

path from v0 to v1 can be recovered from prev(·) (Algorithm B.2).

Algorithm B.1: Dijkstra’s algorithm

Input: Weighted graph, G = (V , E , w); and start vertex, v0 ∈ V
Output: Shortest path, p, from v0 to v1

1 Vused ← {} /* Set of already checked vertices */

2 for vertex v ∈ V do
3 dist(v)←∞
4 dist(v0)← 0
5 while Vused 6= V do
6 vnew ← vertex in V \ Vused which minimizes dist(v)
7 Vused ← Vused ∪ {vnew}
8 for neighbor vertex v ∈ neighbors(vnew) do
9 if dist(vnew) + w(vnew, v) < dist(v) then

10 dist(v)← dist(vnew) + w(vnew, v)
11 prev(v)← vnew

12 p← path from v0 to v1 following prev(·) /* Algorithm B.2 */

13 return p

Algorithm B.2: Construct path (Dijkstra)

Input: Previous vertices, prev : V → V ; start vertex, v0; and end vertex, v1

Output: Path, p, from v0 to v1

1 p← path containing only v1 /* Constructed backwards */

2 while last vertex of p is not v0 do
3 v ← last vertex of p
4 Append prev(v) to p

5 Reverse p
6 return p

297

B.2. The A∗ algorithm

B.2 The A∗ algorithm

When Dijkstra’s algorithm constructs the shortest path tree, it adds every vertex

to the tree. If we only care about finding the path to v1, we could stop the

algorithm as soon as the tree reaches v1. Ideally, the algorithm would add v1 early

on so that it can be stopped early, but Dijkstra’s algorithm doesn’t actually use

any information about v1. It just adds the vertices in order based on their distance

from v0. If v1 is the furthest away vertex from v0, as was the case in Figure B.1,

we can’t stop the algorithm early.

A∗ is a variant of Dijkstra’s algorithm which uses a heuristic to quickly add

vertices that are likely to be close to v1 so that we don’t have to construct the

whole tree. Instead of just using the distance from v0 to vnew when choosing which

vertex to add to the tree, it uses this distance plus a heuristic estimate of the

distance from vnew to v1. Although many possible heuristics could be used, we

will use the Euclidean distance from vnew to v1 ignoring any obstacles. With this

criterion for selecting each vnew, A∗ ends up prioritizing vertices along what ends

up being the path from v0 to v1 (Figure B.2). Compared with Dijkstra’s algorithm,

A∗ ends up adding v1 sooner and thus needs fewer rounds of the algorithm to find

the shortest path despite having the same theoretical complexity of O(|V|2).

The implementation of A∗ (Algorithm B.3) is quite similar to Dijkstra’s al-

gorithm (Algorithm B.1). The main change is that dist(·) no longer represents

the distance from v0 to v, but instead a heuristic distance which includes the

Euclidean distance from v to v1. To accommodate this change, the comparison

of distances and update of dist(·) both use a new function, heuristic(·). This

heuristic function is precomputed before the algorithm runs, which takes O(|V|).

For small graphs this precomputation may make A∗ marginally slower than Di-

jkstra’s algorithm, but for large graphs, the cost of precomputing heuristic(·)

is worth the decreased number of iterations needed to add v1 to the tree. The

298

I. Vandermeulen

Figure B.2: Process of adding vertices to a tree during the A∗ algorithm. The next
vertex is chosen using a heuristic which is the distance along the tree
to the new vertex plus the straight-line distance from the new vertex
to the end. This heuristic guides the tree towards the goal.

termination criterion for the main loop has also been changed so that it stops as

soon as v1 has been added to the tree instead of continuing until all vertices have

been added. Once Algorithm B.3 has terminated, the shortest path from v0 to v1

can be computed from dist(·) using Algorithm B.2.

299

B.3. The Floyd-Warshall algorithm

Algorithm B.3: A∗ algorithm

Input: Weighted graph, G = (V , E , w); start vertex, v0; and end vertex, v1

Output: Shortest path, p, from v0 to v1

1 Vused ← {} /* Set of already checked vertices */

2 for vertex v ∈ V do
3 dist(v)←∞
4 heuristic(v)← Euclidean distance from v to v1

5 dist(v0)← 0
6 while v1 6∈ Vused do
7 vnew ← vertex in V \ Vused which minimizes dist(v)
8 Vused ← Vused ∪ {vnew}
9 for neighbor vertex v ∈ neighbors(vnew) do

10 if dist(vnew) + w(vnew, v) + heuristic(v) < dist(v) then
11 dist(v)← dist(vnew) + w(vnew, v) + heuristic(v)
12 prev(v)← vnew

13 p← path from v0 to v1 following prev(·) /* Algorithm B.2 */

14 return p

B.3 The Floyd-Warshall algorithm

When a robot is in the same environment for a long time, it will have to find lots

of shortest paths throughout that environment. Suppose there are |V| points of

interest, and the robot may have to navigate between any two of them. Then

there are O(|V|2) possible pairs of points and computing all the shortest paths

using Dijkstra’s algorithm or A∗ would take O(|V|4). Can we do better than this?

Yes! The Floyd-Warshall algorithm can compute all-pairs shortest paths on a

graph in O(|V|3).

The key idea of this algorithm is to combine the best known paths from vi to

vk and from vk to vj if their combination is shorter than the best known path from

vi to vj (Figure B.3). Initially, the shortest paths just consist of all edges of the

graph. Then the algorithm iterates through all vertices of the graph, and for each

vertex it tries to use it as an intermediate vertex on the shortest path between

each pair of vertices (Figure B.4). After rounds 1, . . . , k, any path from vi to vj is

guaranteed to optimal for the subgraph induced by the vertices {vi, vj, v1, . . . , vk}.

300

I. Vandermeulen

k

i

j

k

i

j

Figure B.3: The Floyd-Warshall algorithm is based on checking if the path from
vi to vj via vk is shorter than the previous best known path from vi
to vj. In each round of the algorithm, a new vertex can be used as an
intermediate vertex. Before vk can be used as an intermediate vertex
(left), the path from vi to vj is not optimal but the paths from vi to vk
and from vk to vj are optimal as the necessary intermediate vertices
are already allowed. After vk is allowed as an intermediate vertex
(right), the path from vi to vj is improved by combining the shortest
paths from vi to vj and from vj to vk.

After all the rounds, all of the paths are guaranteed to be optimal on the whole

graph for all pairs of vertices. Overall, the algorithm iterates over all vertices as

intermediate vertices and for each possible intermediate vertex it iterates over all

pairs of vertices, resulting in an algorithm that runs in O(|V|3).

Similar to the implementations of Dijkstra’s algorithm and A∗, we can im-

plement the Floyd-Warshall algorithm (Algorithm B.4) using two data struc-

tures, next : V × V → V and dist : V × V → R≥0. During the algorithm,

dist(vi, vj) stores the length of the best known path from vi to vj. Initially

dist(vi, vj) = w(vi, vj) if there is an edge between vi to vj and is infinite other-

wise. In each round of the main loop, the algorithm compares the best known

path from vi to vj, with the best known paths from vi to vk and from vk to vj.

All of these best known paths only use {v1, . . . , vk−1} as intermediate vertices. If

the path from vi to vk followed by the path from vk to vj is shorter, then their

combination is the shortest path from vi to vj via {v1, . . . , vk} and the distance

is updated accordingly. The structure of the shortest paths is encoded using the

function next(·, ·) which, when of its second arguments is constant, works similar

to prev(·) from Algorithm B.1 or Algorithm B.3. The vertex stored in next(vi, vj)

301

B.3. The Floyd-Warshall algorithm

0

1

2

3

4
5

6

7

8

9

Figure B.4: In each iteration of the Floyd-Warshall algorithm, the shortest paths
are rewired to include an additional vertex as an intermediate vertex
between two pairs of points. In this illustration, we just show the
shortest paths that connect to three of the vertices. As more vertices
are allowed as intermediate vertices, these trees rearrange and become
closer to optimal. When the algorithm finishes, it has produced the
optimal shortest path tree for each vertex in the graph.

302

I. Vandermeulen

is the vertex immediately after vi on the best known path from vi to vj. It is

initially vj if there is an edge between vi and vj and is undefined otherwise. When

two paths are combined, next(vi, vj) is updated to contain the first vertex of the

first of the two paths that are combined. After the Floyd-Warshall algorithm

has finished, the shortest paths between any pair of vertices can be reconstructed

in O(|V|) just using next(·, ·) (Algorithm B.5). Note that I have presented the

Floyd-Warshall algorithm for a symmetric graph, although it is easy to modify for

asymmetric graphs.

Algorithm B.4: Floyd-Warshall algorithm

Input: Weighted graph, G = (V , E , w)
Output: Map used to construct shortest paths, next : V × V → V
1 for pair of vertices (vi, vj) ∈ V × V do
2 dist(vi, vj)←∞
3 for edge (vi, vj) ∈ E do
4 dist(vi, vj)← w(vi, vj)
5 dist(vj, vi)← dist(vj, vi)
6 next(vi, vj)← vj
7 next(vj, vi)← vi

8 for vertex vk ∈ V do
9 for pair of vertices (vi, vj) ∈ V × V do

10 if dist(vi, vk) + dist(vk, vj) < dist(vi, vj) then
11 dist(vi, vj)← dist(vi, vk) + dist(vk, vj)
12 dist(vj, vi)← dist(vj, vi)
13 next(vi, vj)← next(vi, vk)
14 next(vj, vi)← next(vj, vk)

15 return next(·, ·)

303

B.3. The Floyd-Warshall algorithm

Algorithm B.5: Construct path (Floyd-Warshall)

Input: Map used to construct shortest paths, next : V × V → V ; start
vertex, v0; and end vertex, v1

Output: Path, p, from v0 to v1

1 p← path containing only v0 /* Constructed forwards */

2 while last vertex of p is not v1 do
3 v ← last vertex of p
4 Append next(v, v1) to p

5 return p

304

Appendix C

Minimum spanning trees

A spanning tree is a subgraph of a connected graph which is a tree and visits

every vertex of the graph (Figure C.1). A minimum spanning tree (MST) has the

shortest length of any spanning tree for that graph. Although MSTs are not used

directly in path planning, several solutions to the travelling salesperson problem

use MSTs which makes them relevant to path planning. In this appendix, I present

two exact algorithms for computing MSTs: Kruskal’s algorithm [112] which runs

in O(|E| log(|V|)) and Prim’s algorithm [154] which runs in O(|V|2). Kruskal’s

algorithm produces a set of edges sorted from shortest to longest and is faster on

sparse graphs. Prim’s algorithm produces a tree rooted at a specific vertex and is

faster on dense graphs.

Figure C.1: A spanning tree (left) is a subtree which connects every vertex of
a graph. A minimum spanning tree (right) is the shortest length
spanning tree.

305

C.1. Kruskal’s algorithm

Figure C.2: Kruskal’s algorithm builds an MST by adding the shortest edge of the
graph which would not result in a cycle to the set of edges. After each
round, the number of subtrees is reduced by 1.

C.1 Kruskal’s algorithm

An alternate definition of a spanning tree is a collection of |V|−1 edges which does

not contain any cycles. Kruskal’s algorithm (Figure C.2) constructs a spanning

tree by adding edges which would not create a cycle with the edges already added.

At each step of the algorithm, the current set of edges creates a set of subtrees.

Any new edge which is added must have endpoints in different subtrees so that it

does not produce a cycle. When this new edge is added, it merges the two subtrees.

After |V| − 1 merges, all of the subtrees have been merged into a single acyclic

graph which is a spanning tree. By always adding the shortest edge that connects

two subtrees, the set of subtrees at each step is a minimum spanning forest, and

the final spanning tree is an MST.

When implementing Kruskal’s algorithm (Algorithm C.1), the edges must first

306

I. Vandermeulen

be sorted by length and then we can iterate through the sorted list of edges to

add the shortest edges to the MST. Sorting the edges takes O(|E| log(|E|)) =

O(|E| log(|V|)) which uses the most computation of any step of the algorithm.

After the edges have been sorted, the MST is constructed by iterating through

the edges and adding an edge if it connects distinct subtrees. Initially, all vertices

have their own subtree. When a new edge is added, all vertices in one of the edge’s

vertex’s subtree get relabelled so they are in the other vertex’s subtree. In this

way, the two subtrees get merged. Once |V|−1 edges have been added, all subtrees

have been merged and so the main loop can be terminated as no more edges can

be added.

Algorithm C.1: Kruskal’s algorithm

Input: Weighted graph, G = (V , E , w)
Output: Minimum spanning tree edges, EMST ⊂ E
1 for vertex v ∈ V do
2 subtree(v)← v

3 Sort E from shortest to longest
4 EMST ← {} /* Edges of the MST */

5 for edge (vi, vj) ∈ E do
6 if subtree(vi) 6= subtree(vj) then
7 Add e to EMST

8 for vertex v ∈ V \ {vj} do
9 if subtree(v) = subtree(vj) then

10 subtree(v)← subtree(vi)

11 subtree(vj)← subtree(vi)

12 return EMST

C.2 Prim’s algorithm

Another property of a spanning tree is that it contains exactly one path from a root

vertex to any other vertex in the tree. Prim’s algorithm (Figure C.3) constructs a

spanning tree by adding an edge which connects one more vertex to the root vertex

in each iteration. It maintains a single tree and several isolated vertices. When

307

C.2. Prim’s algorithm

Figure C.3: Prim’s algorithm builds an MST by adding the shortest edge which
connects the current non-spanning tree with a vertex outside of this
tree. This construction results in an MST which is stored as a tree
rooted at the initial vertex (yellow vertex).

adding an edge it finds the shortest edge which connects the existing non-spanning

tree with any of the vertices not in the tree. At any time, the tree is the shortest

tree that reaches its current set of vertices. After the final round, the tree spans

the entire graph and is therefore an MST.

When implementing Prim’s algorithm (Algorithm C.2), the tree is stored by

keeping track of the parent of each tree vertex and the shortest distance from each

non-tree vertex to the tree. Initially, the root vertex is added to the tree and the

shortest distances for all the other vertices (all non-tree vertices) is its distance

from the root. In each round, we add the closest vertex to the tree and then update

the shortest distances for all remaining non-tree vertices by checking if they are

closer to the just-added vertex than to the previous closest vertex of the tree.

When updating the shortest distance, we also store the tree vertex minimizing the

308

I. Vandermeulen

distance as the parent of the non-tree vertex. The parent of a non-tree vertex can

therefore change during the algorithm, but once a vertex is added to the tree, its

parent can no longer change. Once all vertices have been added to the tree, each

vertex is connected to the root vertex by a chain of parent vertices and the tree

formed by the vertex-parent edges is the MST.

Algorithm C.2: Prim’s algorithm

Input: Weighted graph, G = (V , E , w)
Output: Minimum spanning tree edges, EMST

1 v0 ← random vertex of V /* Root vertex of MST */

2 Vtree ← {} /* Vertices already in tree */

3 EMST ← {} /* Edges of the MST */

4 for v ∈ V do
5 dist(v)←∞ /* Distance to nearest vertex of Vtree */

6 dist(v0) = 0
7 while Vtree 6= V do
8 vnew ← vertex in V \ Vtree which minimizes dist(v)
9 Vtree ← Vtree ∪ {vnew}

10 if |Vtree| > 1 then
11 EMST ← EMST ∪ {(vnew, parent(vnew))}
12 for v ∈ neighbors(vnew) ∩ V \ Vtree do
13 if w(v, vnew) < dist(v) then
14 dist(v)← w(v, vnew)
15 parent(v)← vnew

16 return EMST

309

Appendix D

Travelling salesperson algorithms

Algorithms that solve the travelling salesperson problem (TSP) are very valuable

in robotics. They provide near optimal plans for many different problems where the

order of a robot’s spatially distributed tasks needs to be determined. In particular,

for my thesis, the TSP is important because I use a constrained version of it to

plan coverage paths. As the TSP is NP-hard [150], there are no known polynomial

time algorithms for solving it exactly and we instead rely on heuristics. In this

appendix, I present three heuristics which, in my opinion are the most important

TSP algorithms. Christofides’ algorithm is a deterministic algorithm which runs

in O(|V|3) and is guaranteed to produce a cycle which is at most one-and-a-half

times longer than the optimal cycle. The other two heuristics, 2-opt [44] and the

Lin–Kernighan (LK) heuristic [122], make incremental changes to improve a cycle

and are randomized so that they can produce many high quality cycles.

D.1 Christofides’ algorithm

The objective of the TSP is to find a spanning cycle—a closed path which visits

every vertex of a graph. A spanning cycle can also be described as a spanning sub-

graph where each vertex has exactly 2 edges. Suppose, instead, we have a spanning

subgraph where each vertex has an even number of edges. We can easily convert

311

D.1. Christofides’ algorithm

such a graph into a spanning cycle by a process called shortcutting (Figure D.1).

In this process, we follow a path which visits every edge of the graph exactly once

and add each vertex to the cycle the first time we encounter it on this path (Algo-

rithm D.1). For a graph which satisfies the triangle inequality, shortcutting always

results in a shorter cycle than the original even spanning subgraph. If we can find

a low-weight even spanning subgraph, then we can use this shortcutting algorithm

to get a short spanning cycle which is an approximate solution to the TSP.

Algorithm D.1: Shortcutting

Input: Spanning subgraph, G = (V , E), with even vertex degrees
Output: Spanning cycle, c
1 v ← random vertex of V
2 c← path containing only v
3 while E 6= {} do
4 e← edge of E with v as endpoint
5 E ← E \ {e}
6 v ← other endpoint of e
7 if v 6∈ c then
8 Append v to c

9 Append first vertex of c to c
10 return c

Christofides algorithm is a deterministic algorithm for the TSP based on the

construction of an even spanning subgraph from an MST (Figure D.2, Algo-

rithm D.2). The MST is already a spanning subgraph, but it is not guaranteed

to have all even-degree vertices (in fact, it always has at least two degree-one ver-

tices). To convert the MST into an even spanning subgraph, one edge must be

added for each odd-degree vertex. Let Vodd be the set of odd-degree vertices in

the MST. This set is guaranteed to contain an even number of vertices, and so

it is possible to pair them up so that exactly one new edge is connected to each

vertex. Such a set of edges is called a perfect matching and the minimum perfect

matching (MPM) can be found in polynomial time. There are several algorithms

for computing MPMs [43], such as Lawler’s algorithm [118] which runs in O(|V|3).

312

I. Vandermeulen

Figure D.1: The final step of Christofides algorithm is a shortcutting procedure
which constructs a tour from a spanning graph whose vertices all
have even degree. Starting at any vertex, it follows unused edges of
the original graph until it reaches an unused vertex. It then replaces
all of the edges needed to travel between those vertices with a direct
edge, effectively reducing the degree of all intermediate vertices by 2.
Once this procedure reaches the original vertex, all vertices will have
degree 2 and the graph is a spanning cycle.

313

D.1. Christofides’ algorithm

Figure D.2: Christofides’ algorithm for solving the TSP uses an MST (top left),
and a MPM (top right) to construct a spanning graph where each
vertex has even degree (bottom left). This spanning graph can be
converted to a cycle by “shortcutting” (Figure D.1) which decreases
the node of a single vertex by 2.

These algorithms are based on linear programming and I am not aware of an in-

tuitive combinatorial explanation for how they work. Combining the MST with

the MPM on Vodd results in an even spanning subgraph which is turned into a

spanning cycle by shortcutting.

Algorithm D.2: Christofides’ algorithm

Input: Complete weighted graph, G = (V , E , w)
Output: Spanning cycle, c
1 EMST ← minimum spanning tree of G /* Algorithm C.1 or C.2 */

2 Vodd ← vertices of G with odd degree in the MST
3 EMPM ← edges of the minimum perfect matching of Vodd

4 c← spanning cycle on G ′ = (V , EMST ∪ EMPM) /* Algorithm D.1 */

5 return c

The result of Christofides’ algorithm is a spanning cycle whose length is guar-

anteed to be at most one-and-a-half times the length of the TSP solution. To

314

I. Vandermeulen

understand this bound, we first bound the MST and MPM. Removing an edge

from the TSP solution results in a spanning tree whose length is less than the

TSP length. The MST is shorter than any other spanning tree, such as the one

obtained by removing an edge from the TSP solution and therefore

`(MST) ≤ `(TSP). (D.1)

For an even subset of vertices, such as Vodd, we can use the TSP solution to get

a spanning cycle on these vertices which is at most the same length as the TSP

solution. This spanning cycle contains an even number of edges and can be split

into two subsets by taking every other edge of the cycle. Both of these subsets

are perfect matchings on Vodd. The shorter of these matchings is half the length

of the TSP solution or shorter and, as the MPM is the shortest perfect matching,

`(MPM) ≤ 1

2
`(TSP). (D.2)

Combining the bounds (D.1)–(D.2), we get the bound for the spanning cycle pro-

duced by Christofides’ algorithm:

`(c) ≤ `(MST) + `(MPM) ≤ `(TSP) +
1

2
`(TSP) =

3

2
`(TSP).

In many cases, `(c) will actually be much closer to the length of the TSP solution.

Overall, the complexity of Christofides’ algorithm is O(|V|3). The MST can

be computed by Prim’s algorithm in O(|V|2) and the MPM by Lawler’s algorithm

in O(|V|3). As these algorithms are performed consecutively, the complexity of

computing the even spanning subgraph is O(|V|3). Shortcutting to get the final

spanning cycle is linear in the number of edges. In this case, there are |V| − 1

edges in the MST and at most 1
2
|V| edges in the MPM and so shortcutting will

take O(|V|) and not change the overall complexity of Christofides’ algorithm.

315

D.2. 2-opt

Figure D.3: In 2-opt, 2 edges of a cycle are removed (left). There are two pos-
sible ways to reconnect the partial paths. One choice results in a
disconnected path (center), whereas the other results in a new cycle
(right).

D.2 2-opt

Combinatorial optimization problems can, in general be described as “from a finite

set of possible solutions, find a feasible solution that minimizes a cost function”.

A basic heuristic method for solving any combinatorial optimization is using a

transformation which can convert a feasible solution into one of several “nearby”

feasible solutions. Starting with an initial feasible solution, we repeatedly apply

the transformation and replace the current solution with the transformed one if

the transformed one has a lower cost. The TSP is a combinatorial optimization

problem where the feasible solutions are spanning cycles and the cost function is

the length of the cycle.

2-opt is a transformation that can be used to convert one spanning cycle into

another spanning cycle by replacing two edges of the cycle with two new edges

(Figure D.3). When the two edges are removed, there are two possible ways to

reconnect the two paths but only one results in a spanning cycle. Therefore each

pair of edges in the spanning cycle results in a unique 2-opt transformation and

so there are O(|V|2) possible transformations from each cycle.

Repeatedly transforming a spanning cycle by 2-opt to reduce its length is a

simple heuristic which can quickly improve a spanning cycle (Figure D.4, Algo-

rithm D.3). In each round a pair of edges is replaced with a shorter pair of edges.

316

I. Vandermeulen

Figure D.4: 2-opt is a heuristic for reducing the length of a spanning cycle by
repeatedly removing 2 edges and replacing them with 2 new edges.
When a pair of edges is removed, there is only one choice of new
edges which results in another spanning cycle (Figure D.4).

Eventually, the algorithm will obtain a cycle which cannot be improved by any of

the 2-opt moves—a local minimum—and it returns this cycle. As the heuristic is

randomized, it can be run multiple times to find different local minima. For small

problems, there are few enough local minima that it can find the global minimum

after a few runs. However, for large problems, there are too many global minima

and 2-opt is unlikely to find the optimal cycle.

D.3 Lin–Kernighan heuristic

In combinatorial optimization, local minima occur whenever a solution is better

than any adjacent solution. What do I mean by adjacent? Two solutions are

adjacent if there is a single step transformation which converts one solution into

the other. For 2-opt, two solutions are adjacent if they differ by exactly 2 edges.

317

D.3. Lin–Kernighan heuristic

Algorithm D.3: 2-opt heuristic

Input: Complete weighted graph, G = (V , E , w)
Output: Spanning cycle, c
1 c← random spanning cycle of G
2 while true do
3 for edges e1, e2 of c do
4 e′1, e

′
2 ← edges obtained by interchanging endpoints of e1 and e2 to

maintain cycle
5 if w(e′1) + w(e′2) < w(e1) + w(e2) then
6 Replace e1, e2 of c with e′1, e

′
2

7 break

8 if c has not been improved then
9 return c

Figure D.5: In 3-opt, 3 edges of a cycle are removed (left). There are four possible
ways to reconnect the partial paths into cycles (right 4).

If I were to use a different transformation to modify spanning cycles, there would

be a different notion of adjacency, and the set of local minima could change.

Ideally, we would use a transformation which results in very few local minima.

Perhaps the easiest way to decrease the number of local minima is to increase the

number of adjacent solutions. 2-opt can be extended to 3-opt, 4-opt, or higher

by allowing more edges to be interchanged simultaneously. If we use 3-opt, the

number of local minima will decrease but in each round, we will have to check

O(|V|3) triples of edges to break. Furthermore, when 3 edges are broken, there are

4 possible ways to reconnect the partial paths into a cycle (Figure D.5). In 4-opt,

the situation is even worse with O(|V|4) possible quadruples of edges to break and

20 different ways to reconnect the partial paths.

318

I. Vandermeulen

1

10

∆` = −9

6
3

∆` = −6

7

2

∆` = −1

Figure D.6: Sequential exchange of edges in the LK algorithm which each result
in a decrease in the total edge length. After each step, the edges do
not necessarily a cycle. The edge exchange is only accepted when the
resulting edges form a cycle.

Lin and Kernighan [122] proposed a simple way around this search space ex-

plosion. When performing k-opt, we swap k pairs of edges (each pair shares a

single vertex) and for each pair, we can compute the difference in their lengths.

In the original LK algorithm, pairs of edges are swapped sequentially—with ad-

jacent pairs of edges sharing a vertex—to obtain a new cycle. The first and last

pair of edges will also always share a vertex and so we can perform the sequence

of exchanges starting with any vertex. If the net result of the k exchanges is a

shorter tour, there will always be a way to order the exchanges so that the effect

of exchanging the first j pairs (for any j between 1 and k) is a set of edges which

is shorter than the original cycle. This result is very useful! We can sequentially

search for pairs of edges to swap and only consider possibilities which result in

a shorter total edge length. When we swap two edges, the resulting set of edges

is not usually a cycle, so we keep swapping edges—as long as the net result is

a shorter total edge length—until the set of edges is a tour (Figure D.6). This

approach effectively lets us find a k-opt move without having to search over all the

O(|V|k) possibilities.

I found that the main difficulty in implementing the LK algorithm is guar-

anteeing that the exchange of edges results in a valid cycle. When I originally

read Lin and Kernighan’s paper, I was very confused about how to implement

the algorithm as there did not seem to be any simple way to check how close we

319

D.3. Lin–Kernighan heuristic

ReconnectRelabel

Figure D.7: In Karapetyan’s interpretation of the LK heuristic, one edge is re-
moved to form a path. Then, edges are sequentially exchanged by
connecting the last vertex of the path to one in the middle. Finally,
the first and last vertices are connected if the resulting cycle is shorter
than the original one.

are at any given time to having a cycle. Then I found Karapetyan and Gutin’s

explanation [98] which clarified my understanding of the algorithm and made it

much easier to make sure we end up with a cycle. Their insight is to first remove

a single edge before swapping pairs of edges (Figure D.7). After removing this

edge, the edges form a linear path. Then each additional exchange is equivalent

to connecting the last vertex of the path to some vertex in the middle of the path

and breaking the edge immediately after that vertex. The result of this exchange

is still a linear path, and so the same technique can be applied again and again to

perform exchanges of more edges. At any point, this path can be converted back

into a cycle by adding a single edge from its start to its end. This move, closing up

the cycle, is performed if the resulting cycle is shorter than the original one (i.e.

before removing an edge to create the path). The edge removed at the beginning

and the edge added at the end can be viewed as the final pair of edges.

Although Karapetyan’s explanation of the LK heuristic is very simple, and thus

easy to understand and implement, it has a fatal flaw: many of the k-opt moves

cannot be built sequentially in this way. For example, the symmetric 3-opt move,

which can be obtained by the original LK heuristic, and the double-bridge 4-opt

move, which cannot be obtained by the LK heuristic, both aren’t possible using

Karapetyan’s version (Figure D.8). Without these moves possible, the method is

not guaranteed to find all beneficial 3-opt or 4-opt moves and might not find the

320

I. Vandermeulen

Figure D.8: Two edge exchanges which are difficult to implement using the LK
heuristic: the symmetric 3-opt exchange (left) and the double-bridge
4-opt exchange (right). Both moves can be performed by certain vari-
ants of the LK heuristic but not others.

locally optimal solution with respect to these moves.

Rearranging the path by connecting the final vertex to some middle vertex is

equivalent to performing 2-opt. If we close the paths before and after rearranging

once, the two cycles differ by exactly two edges. The paths, on the other hand,

differ by a single edge. The additional edges that get swapped when viewing the

path as a cycle are the edges that connect to the start of the path. When we

rearrange the path for a second time, this edge to the start that we just added

gets removed and replaced by a new edge to the start of the path. Therefore by

repeatedly rearranging the end of the path, we are effectively performing multiple

2-opts where each time we remove one of the edges that we had previously just

added. In other words, we can perform k-opt by repeatedly performing 2-opt!

Is there a maximum number of 2-opts needed to perform any k-opt? Yes! It

turns out that at most k 2-opts are needed to perform k-opt [129]. Suppose that

all successive 2-opts each have one edge in common. The first 2-opt adds one 2

edges and each 2-opt after that will just add a single edge. After k 2-opts we’ll

have added k + 1 edges, but k-opt only results in k new edges. What’s going

on here? There must be one edge which got added and later removed. It turns

out this “dummy edge” is essential to actually implementing sequential k-opt.

Whenever all segments of the path between the exchanged edges get traversed in

the same direction in both cycles before and after k-opt, we will need a dummy

edge. The simplest case where we need a dummy edge is the symmetric 3-opt,

321

D.3. Lin–Kernighan heuristic

Figure D.9: By using a dummy edge, which will not be part of the final cycle, it
is possible to perform the symmetric 3-opt as a sequential exchange.
Here each move is simply connecting the last vertex to some middle
vertex.

which previously wasn’t possible. By adding a dummy edge in the first move, and

removing it in the last move, this exchange is now possible (Figure D.9). Notice

that all the operations on the path—including the ones involving the dummy

edge—just involve connecting the current last vertex of the path to some vertex

in the middle of the path.

Even if we use dummy edges to increase the number of possible sequential

exchanges, some are still not possible. In particular, the double-bridge exchange

(Figure D.8 right) is notoriously difficult to implement in the LK heuristic. The

best way that I’ve found is the modified LK heuristic [128] which slightly relaxes

the sequential requirement. Instead of requiring that the next edge added shares

a vertex with the last edge removed, it can share a vertex with any edge that has

been removed. However, each vertex of an edge that has been removed can still

only be shared with one edge added. When the first edge is removed, there are two

possible vertices that a new edge can share. The first edge added will share one of

these vertices and will share a vertex with the next edge removed, resulting in two

possible vertices that the next edge can be added next to. For every edge added,

there will now always be two vertices of removed edges that haven’t been used yet.

The new edge must be adjacent to one of these vertices (or both if closing up the

cycle). With this change, it is finally possible to implement the double-bridge as

a sequential exchange (Figure D.10).

This change is much more intuitive if we use the Karapetyan’s interpretation

322

I. Vandermeulen

Figure D.10: The double-bridge 4-opt can be implemented as a sequential move by
using a dummy vertex and performing some exchanges on the front
of the path and some on the back of the path.

[98] where the partially modified cycle is viewed as a path. First, one edge is

removed from the cycle to create a path. Then this path is rearranged, either

by connecting the last vertex of the path to some vertex in the middle or by

connecting the first vertex of the path to some vertex in the middle. These two

kinds of rearrangement can alternatively be viewed as reversing the first j < n

vertices of path or reversing the last j < n vertices of the path. Up to k successive

rearrangements may be performed. Finally, to re-obtain a cycle, the first vertex is

connected to the last vertex. Since only one dummy edge is needed to obtain any

k-opt, we also add the constraint that we can only remove one previously added

edge in a later round. I think this explanation is the simplest, most intuitive

way to explain the LK heuristic and it is capable of producing any k-opt move

as a sequence of 2-opt moves (including ones described by Lin and Kernighan as

“non-sequential”).

The LK heuristic can be viewed as a branch and bound algorithm. The initial

cycle is the root vertex of a search tree. New branches are added by modifying

this cycle according to three modifications:

1. Removing an edge of a cycle to create a path. This modification only happens

at the first level of the tree as all lower levels contain paths and not cycles.

2. Rearranging a path by reversing its first or last j < n vertices.

3. Connecting the first and last vertices of a path to create a cycle. This move

is forbidden at the second level of the search tree because it would result in

323

D.3. Lin–Kernighan heuristic

the initial cycle. If, at any lower level, it results in an improved cycle, the

search stops.

The key insight of Lin and Kernighan is that this tree can be searched very quickly

by bounding most branches. In their formulation, the bounding criterion is that

the total length is shorter than that of the initial solution. This criterion doesn’t

quite work when we include dummy edges, as the dummy edges could be arbitrarily

long. Therefore, we use a modified branching criterion if we haven’t removed a

previously added edge yet. The modified branching criterion is the total length

minus the longest edge added plus the shortest edge that could still be added. It

may be possible to use a slightly more aggressive bounding criterion which speeds

up the search while still being able to find any beneficial exchange. Usually, the

solutions are also bounded by limiting the maximum depth of the search tree (i.e.

having a maximum value for k).

The number of times that the path gets rearranged is not fixed so the LK

algorithm can be implemented using a recursion (Algorithm D.4). The recursive

function receives a path, and set of recently added edges and tries to rearrange

the path without breaking any of these edges. The set of edges contains all edges

that have been added to the path in all rounds of the recursion except the first.

The edge added in the first round is allowed to be broken as it can serve as the

dummy edge needed to achieve exchanges such as the double bridge. The recursive

function will try to break any of the allowed edges. If breaking an edge results in

a path which is shorter than the original cycle (the algorithm knows this length as

it receives ∆`, the difference in length between the original cycle and the current

path), the path is rearranged by breaking this edge and the rearranged path is

used as the input to the next level of recursion. If at any time the rearranged path

can be closed back into a cycle which is shorter than the original, this path will be

returned all the way through the chain of recursive function calls and will therefore

be returned where the recursion was called for the first time. If no better cycle

324

I. Vandermeulen

can be found (up to a maximum recursion depth) the original path is returned to

the previous level. At this point, the algorithm does not travel up to the initial

function call immediately, but instead tries every rearrangement at the previous

level before returning the original path provided to the level of recursion before

that. Ultimately, if there are no improvements to the original cycle, the original

path will eventually be returned wherever the recursion was first called. Note that

the criterion used here that ∆` + ∆`back < 0 is the criterion used in the original

version of the LK heuristic and does not account for the dummy edge.

Algorithm D.4: Lin–Kernighan recursion

Input: Spanning path, p; cumulative change in length, ∆`; set of new edges,
E ; recursion depth; and max recursion depth

Output: Improved spanning path, pnew

1 if recursion depth ≥ max recursion depth then
2 return p

3 for edge e of p not in E do
4 ∆`back ← change in length from reversing partial path after e
5 if ∆`+ ∆`back < 0 then
6 if recursion depth 6= 1 then
7 enew ← edge connecting end of p to vertex of e
8 Enew ← E ∪ {enew}
9 pnew ← path obtained by reversing partial path after e

10 ∆`close ← change in length by connecting ends of pnew

11 if ∆`+ ∆`back + ∆`close < 0 then
12 return pnew

13 else
14 pnew ← Lin–Kernighan recursion (pnew,∆`+ ∆`back, Enew,
15 recursion depth + 1, max recursion depth)
16 ∆`close ← change in length by connecting ends of pnew

17 if ∆`+ ∆`back + ∆`close < 0 then
18 return pnew

19 repeat the same procedure except reversing the partial path before e

20 return p

This recursive implementation of a single LK move can then be used to imple-

ment the entire algorithm (Algorithm D.5). Starting with an initial random cycle,

the cycle is rearranged by opening it up to a path by removing an edge. This path

325

D.3. Lin–Kernighan heuristic

is then rearranged by calling the recursion which will either return the original

path or one that can be closed into a shorter cycle. If the recursion returns a

different path than it was given, this new path must be better and so it is closed

up into a cycle and the process repeats. If the recursion returns the same path it

was given, the algorithm attempts to rearrange the cycle by breaking a different

edge. Once all of the edges of a cycle have been tried without any rearrangements

resulting in an improvement, the current cycle is returned as it is a local minimum

with respect to the LK transformation.

Algorithm D.5: Lin–Kernighan algorithm

Input: Complete weighted graph, G = (V , E , w)
Output: Spanning path, c
1 c← random spanning cycle on G
2 improved← true

3 while improved do
4 improved← false

5 for edge e of c do
6 p← path obtained by removing e from c
7 p′ ← improved path by rearranging p /* Algorithm D.4 */

8 if p′ 6= p then
9 c← cycle obtained by connecting ends of p′

10 improved← true

11 break for

12 return c

326

	Abstract
	Preface
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Introduction
	The value of planning
	Planning for a team
	Robotic coverage
	Coverage for humans
	Objectives & contributions
	Overview of thesis

	Background
	Computational complexity
	Big-O notation
	NP-hardness

	Path planning
	Navigating to one location
	The travelling salesperson problem
	The multiple TSP

	Robot-to-robot communication
	Realistic communication models
	Maintaining connectivity
	Occasional connectivity
	Robotic search

	Coverage
	Decompositions
	Turn-minimization

	Balanced task allocation in multirobot teams
	Related work
	Task allocation and the m-TSP
	A proxy for minimum cycle length
	Is Cavg a good proxy for Cmin?
	Hardness of the APP

	A task allocation heuristic based on the APP
	Improvement through transfers and swaps
	Transfer of outliers
	Overall partition algorithm

	From a partition to cycles
	Heterogeneous robots
	Decentralization
	Paths with depots
	Results
	Problems with multiple depots
	Problems with one depot
	Runtime analysis

	Conclusions

	Turn-minimizing coverage
	Related work
	Partitioning the environment
	Perimeter following
	A rectilinear contraction
	A coarse checkerboard partition
	Orienting the rectangles
	The final rank partition
	Generalizations to other spaces

	Connecting ranks into paths
	Results
	Conclusions

	Coordinated multirobot search
	Related work
	Communication in crowded environments
	Known robot locations
	Uncertain target location
	Environment decomposition

	Tracking an unseen target
	Basic Markov motion model
	What about momentum?
	Variable speed target
	A model built from historic data

	Effects of observations
	Positive observations
	Negative observations

	Combining beliefs
	Searchers with a shared model
	Searchers with incompatible models

	Evaluating search paths
	Reward of finite length paths
	Comparison through bounds

	Sampling based planner
	Growing the tree
	Pruning the tree
	Re-rooting the tree
	Planning trees for multiple searchers

	Results
	Comparison with other approaches
	Effect of discount factor

	Conclusions

	Robust multirobot coverage
	Related work
	Sources of unpredictability
	Mapping and localization errors
	Environment changes
	Interactions with humans
	Battery or capacity constraints
	Damaged robot
	Velocity
	Changes in team size

	Semantic commands
	Go-to commands
	Coverage commands

	Processing maps for coverage
	Classifying the unknown
	Removing small obstacles
	Straightening walls

	Replanning
	A new location
	Map changes

	Single robot robust coverage
	Results

	Communication during coverage
	Multirobot coverage without communication

	Search and coverage
	Path states
	Stationary states
	Overall layered HMM for search

	Robust multirobot coverage
	Results

	Conclusions

	Conclusion
	Future work

	Bibliography
	Visibility graphs
	Naïve algorithm
	Welzl's algorithm

	Shortest path planning
	Dijkstra's algorithm
	The A* algorithm
	The Floyd-Warshall algorithm

	Minimum spanning trees
	Kruskal's algorithm
	Prim's algorithm

	Travelling salesperson algorithms
	Christofides' algorithm
	2-opt
	Lin–Kernighan heuristic

