492 research outputs found

    Retinal vessel segmentation using multi-scale textons derived from keypoints

    Get PDF
    This paper presents a retinal vessel segmentation algorithm which uses a texton dictionary to classify vessel/non-vessel pixels. However, in contrast to previous work where filter parameters are learnt from manually labelled image pixels our filter parameters are derived from a smaller set of image features that we call keypoints. A Gabor filter bank, parameterised empirically by ROC analysis, is used to extract keypoints representing significant scale specific vessel features using an approach inspired by the SIFT algorithm. We first determine keypoints using a validation set and then derive seeds from these points to initialise a k-means clustering algorithm which builds a texton dictionary from another training set. During testing we use a simple 1-NN classifier to identify vessel/non-vessel pixels and evaluate our system using the DRIVE database. We achieve average values of sensitivity, specificity and accuracy of 78.12%, 96.68% and 95.05% respectively. We find that clusters of filter responses from keypoints are more robust than those derived from hand-labelled pixels. This, in turn yields textons more representative of vessel/non-vessel classes and mitigates problems arising due to intra and inter-observer variability

    Robust Retinal Vessel Segmentation using ELM and SVM Classifier

    Get PDF
    The diagnosis of retinal blood vessels is of much clinical importance, as they are generally examined to evaluate and monitor both the ophthalmological diseases and the non-retinal diseases. The vascular nature of retinal is very complex and the manual segmentation process is tedious. It requires more time and skill. In this paper, a novel supervised approach using Extreme Learning Machine (ELM) classifier and Support Vector Machine (SVM) classifier is proposed to segment the retinal blood vessel. This approach calculates 7-D feature vector comprises of green channel intensity, Median-Local Binary Pattern (M-LBP), Stroke Width Transform (SWT) response, Weber�s Local Descriptor (WLD) measure, Frangi�s vesselness measure, Laplacian Of Gaussian (LOG) filter response and morphological bottom-hat transform. This 7-D vector is given as input to the ELM classifier to classify each pixel as vessel or non-vessel. The primary vessel map from the ELM classifier is combined with the ridges detected from the enhanced bottom-hat transformed image. Then the high-level features computed from the combined image are used for final classification using SVM. The performance of this technique was evaluated on the publically available databases like DRIVE, STARE and CHASE-DB1. The result demonstrates that the proposed approach is very fast and achieves high accuracy about 96.1% , 94.4% and 94.5% for DRIVE, STARE and CHASE-DB1 respectively

    A ResNet is All You Need? Modeling A Strong Baseline for Detecting Referable Diabetic Retinopathy in Fundus Images

    Full text link
    Deep learning is currently the state-of-the-art for automated detection of referable diabetic retinopathy (DR) from color fundus photographs (CFP). While the general interest is put on improving results through methodological innovations, it is not clear how good these approaches perform compared to standard deep classification models trained with the appropriate settings. In this paper we propose to model a strong baseline for this task based on a simple and standard ResNet-18 architecture. To this end, we built on top of prior art by training the model with a standard preprocessing strategy but using images from several public sources and an empirically calibrated data augmentation setting. To evaluate its performance, we covered multiple clinically relevant perspectives, including image and patient level DR screening, discriminating responses by input quality and DR grade, assessing model uncertainties and analyzing its results in a qualitative manner. With no other methodological innovation than a carefully designed training, our ResNet model achieved an AUC = 0.955 (0.953 - 0.956) on a combined test set of 61007 test images from different public datasets, which is in line or even better than what other more complex deep learning models reported in the literature. Similar AUC values were obtained in 480 images from two separate in-house databases specially prepared for this study, which emphasize its generalization ability. This confirms that standard networks can still be strong baselines for this task if properly trained.Comment: Accepted for publication at the 18th International Symposium on Medical Information Processing and Analysis (SIPAIM 2022

    Using machine learning on the sources of retinal images for diagnosis by proxy of diabetes mellitus and diabetic retinopathy

    Get PDF
    In current research in ophthalmology, images of the vascular system in the human retina are used as exploratory proxies for pathologies affecting different organs. This thesis addresses the analysis, using machine learning and computer vision techniques, of retinal images acquired with different techniques (Fundus retinographies, optical coherence tomography and optical coherence tomography angiography), with the objective of using them to assist diagnostic decision making in diabetes mellitus and diabetic retinopathy. This thesis explores the use of matrix factorization-based source extraction techniques, as the basis to transform the retinal images for classification. The proposed approach consists on preprocessing the images to enable the learning of an unsupervised parts-based representation prior to the classification. As a result of the use of interpretable models, with this approach we unveiled an important bias in the data. After correcting for the bias, promising results were still obtained which merit for further exploration

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods
    • …
    corecore