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Abstract

Segmenting vessels from retinal images, like se¢gmtien in many other medical image
domains, is a challenging task, as there is ndaathifvay that can be adopted to extract the
vessels accurately. However, it is the most ciititage in automatic assessment of various
forms of diseases (e.g. Glaucoma, Age-related raadealgeneration, diabetic retinopathy and
cardiovascular diseases etc.). Our research aimsvestigate retinal image segmentation
approaches based on textons as they provide a cbrdpscription of texture that can be
learnt from a training set. This thesis presentsriaf review of those diseases and also
includes their current situations, future trendsl dachniques used for their automatic
diagnosis in routine clinical applications. The mrn@ance of retinal vessel segmentation is
particularly emphasized in such applications. Aneergive review of previous work on
retinal vessel segmentation and salient texturé/sisamethods is presented. Five automatic
retinal vessel segmentation methods are propos#dsirihesis. The first method focuses on
addressing the problem of removing pathologicaln@ales (Drusen, exudates) for retinal
vessel segmentation, which have been identifiecbther researchers as a problem and a
common source of error. The results show that thediied method shows some
improvement compared to a previously published pwthThe second novel supervised
segmentation method employs textons. We proposanafiiter bank (MR11) that includes
bar detectors for vascular feature extraction ahdrdkernels to detect edges and photometric
variations in the image. ThHemeans clustering algorithm is adopted for textenegation
based on the vessel and non-vessel elements wiaadentified by ground truth. The third
improved supervised method is developed based @rs¢bbond one, in which textons are
generated bk-means clustering and texton maps representingehsease derived by back-
projecting pixel clusters onto hand labelled grodndh. A further step is implemented to
ensure that the best combinations of textons @resented in the map and subsequently used
to identify vessels in the test set. The experi@emsults on two benchmark datasets show
that our proposed method performs well compareather published work and the results of
human experts. A further test of our system onmalependent set of optical fundus images
verified its consistent performance. The statisti@aalysis on experimental results also
reveals that it is possible to train unified texddar retinal vessel segmentation. In the fourth
method a novel scheme using Gabor filter bank émsel feature extraction is proposed. The



method is inspired by the human visual system. Mueaclearning is used to optimize the
Gabor filter parameters. The experimental resudtmahstrate that our method significantly
enhances the true positive rate while maintainiteyal of specificity that is comparable with
other approaches. Finally, we proposed a new umgigpd texton based retinal vessel
segmentation method using derivative of SIFT andtiracale Gabor filers. The lack of
sufficient quantities of hand labelled ground tratid the high level of variability in ground
truth labels amongst experts provides the motiwdfioo this approach. The evaluation results
reveal that our unsupervised segmentation methodomparable with the best other

supervised methods and other best state-of-thaettods.
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CHAPTER 1

1. Introduction

1.1 Overview

In recent decades, the assessment of retinal integebecome increasingly important in
early medical diagnosis of several diseases sudmbstes, hypertension and cardiovascular
disease etc. [2]. Images of the ocular fundus aw moutinely captured during retinal
examinations as they allow pathological changesethal vasculatures such as diameter,
length, and branching angle to be measured as fhatges, together with other anomalies
enable clinical experts to diagnose and assesprigession of a range of diseases [2].
Because of this, the routine screening of thesga®ias viewed as particularly important but
human assessment of retinal vessels and the deteofi anomalies is a skilled time
consuming task [1]. For instance, diabetic retinbpaDR) is a serious eye disease that
affects the vision of patients with diabetes andnegauses adult blindness by affecting and
damaging the retinal vasculature structures infideesye. However, it's hard to detect DR in
its early stage until vision loss occurs. Imagimgl @nalysing the optic fundus of patients at
regular intervals, is one solution that could preévilais by detecting the changes of retinal
vessels and treating the disease at an early s@meputer based assessment of retinal
vessels is seen as an important tool in undertakpogulation-based diagnoses of DR and
this has motivated research into automatic asseggewhniques.

Many automatic assessment procedures initiallyireghe segmentation of the vessels
from the background and this task plays a very mambd role in the success of the
subsequent computer assisted diagnosis stages.altcrucial stage which produces basic
material that can be analysed and assessed. Theleteness and accuracy of vessel
segmentation determines the practicality of autechaetection of relative diseases (see sub-
section 1.2.4). However, in practice, automaticusaie retinal vessel segmentation is still a

great challenge because of the complex naturerafulsl images and effects such as noise,



low contrast between vessels (capillaries) and dpackhd, some abnormal regions
(pathologies), illumination (vessel reflection)ethariety of vessel structures (different width,
length, cross) etc. All of these factors may infloe the accuracy of segmentation. For
instance, low contrast between the capillariestaedoackground could result in a failure to
detect smaller capillaries or some abnormal noselesbjects (exudates) to be segmented as

vessels.

Our research aims to design and develop accuratalrgessel automatic segmentation
approaches based upon investigating texture asatgshniques. The motivation of our
research focuses on structural texture analysisiiqaes using textons as we have found this
approach to be under represented in the retingkeVesgmentation methods published within
this research specialism. Work elsewhere in compwision has demonstrated the
advantages of using texture in providing significarformation to distinguish the various
patterns that present different visual features. &mample, texture based segmentation
methods in natural image segmentation and featoadysis has been widely studied and
researchers have achieved some successes on psobletontent based image retrieval.
With this in mind, we believe that this researchkesaa significant contribution in filling a
gap in the retinal vessel segmentation researdth g investigating structure based texture
analysis techniques (textons) to achieve accurgieal vessel segmentation. This thesis
particularly focuses on investigating texton-baapgroaches which have been a significant
branch of texture analysis process since the textonwas introduced by Julesz in the
1980’s [3].

In the following sections, we introduce the backgrd relating to retinal vessel
segmentation and include knowledge of the opticaldéis image and descriptions of
elements in retinal images relevant to vessel nétvwegmentation. We also describe the
diagnosis of common diseases using analysis ohaletiundus images followed by
corresponding reviews of automated disease detettichniques using fundus images in
recent years emphasizing the importance of retiredsel segmentation in automated
computer aided diagnosis system. Finally the cpoeding contributions of the research are

summarized and the overall outline of the thesdeiscribed.



1.2 Retinal images

1.2.1 Eye Anatomy

This thesis focuses on the retina. Firstly, we desceye anatomy related background
knowledge. Figure 1.1 illustrates a brief reviewegé structure. The visible parts of eye have
a number of components which include cornea, sciesa pupil, lens, vitreous body, retina,
optic nerve and choroid. The cornea looks likeeaclvindow at the front of the eye which
allows light to transmit into the eye. The sclesanormally known as the ‘white of the eye’
and forms a part of the supporting wall of the eyl he iris is a colored circular muscle. It
regulates the amount of light that is allowed tteethe eye by controlling the size of pupil,

depending on the intensity of incoming light.

Figure 1.1 Cross sectional illustration of eye ctinees.[4]

The lens is a transparent structure that conveagdgocuses light waves onto the retina.
The vitreous body fills the middle of eye betweée tens and retina. It is filled with a
viscous substance. The retina is the nerve layatr lthes the back of eye. Here, light
impulses are sensed and changed into electriaalsighat are sent though the optic nerve to
the brain. In the center of the retina, there 8rall and highly light-sensitive yellow spot,
which is known as the macula. It's a critical paftretina responsible for transforming the
light into a nerve signal. The fovea is locatedrritba center of the macula and responsible
for detailed central and high resolution visioneTdptic nerve transfers the electrical signals

generated by the retina to the visual cortex ofttfan. All of these components form three



different layers: the external layer is formed hg sclera and cornea, the intermediate layer

is formed by the iris, ciliary body and choroidetimternal layer is the retina [5].

The process of vision is described as follows. tighves enter the eye first through the
cornea (external layer), the light then focus tigtothe pupil, the size of it is controlled by
the iris (intermediate layer). The light is diredtby the pupil to the lens, which focuses the
light and projects it on the retina (internal Igyehe retina forms the light into electrical

signals sent to cortex of the brain though thecopgirve.

Many prevalent diseases can be studied by analymatigplogical information extracted
from the internal layer (retina), such as diabetimbetic retinopathy, glaucoma, and
cardiovascular disease [2]. Hence visualisatiothefretina has attracted great interest for a
long time. Due to the availability of digital funsl cameras retinal imaging techniques have
developed rapidly during the past several decades.

1.2.2 Fundus imaging

Since the appearance of features on the retinaslttetection of diseases that may cause
visual loss, such as diabetic retinopathy, and umzaecords of their structural change over
time provides objective evidence on the progressiahe disease and response to treatment
techniques for capturing and analysing images ef rigtina fundus have attracted great
interest amongst scientists and researches duhegpast years. Today, techniques for
imaging the eye are based upon the achievementltftand who first developed the fundus
camera in 1910 [7]. The concept of fundus photdgyap still used to guide development of
recent fundus imaging techniques. Fundus imagingh& procedure for capturing the
components (such as retina, optic disc, maculad®t.al.) on the internal surface of eyeball
[8]. Technically speaking, fundus imaging is theqass whereby the 3D internal surface of
eyeball is represented as a 2D object projected thr& imaging plane using reflected light
[9]. Because of its cost-efficiency, fundus imagimg now commonly adopted in
ophthalmology departments as a primary method thakimaging [10]. The following
modes or techniques are representative categdriaadus imaging.

« Fundus photography. Images are obtained by a fundus camera whichugpped with a
specialized low power microscope and an attachewm[22]. The basis of using fundus

camera is that the imaging light and the correspunceflectance of the retina can pass



through the pupil in both directions, thus an imag#he inside of the eye can be obtained.
Images captured by fundus cameras depend on tloalogtgle of acceptance of the lens.
The normal angle of view is 30° which results in anage magnification of
approximately 2.5 times. For wider optical anglesaeen 45°-140° the magnification is
less [22]. Traditionally, fundus cameras were usgdmydriatic photography, so-called
because the patient’s pupil needs to be dilatethusiydriatic eye drops before the retina
is photographed. But recently, non-mydriatic fundaseras have been developed. These
cameras enable high quality images to be obtainddage particularly useful for imaging

some diabetic patients whose pupils cannot be #iled using mydriatic eye drops.

(@) (b)
Figure 1.2 Fundus photographs of normal eyes. (a) A red-nedds image (left eye)
[12]; (b) A colour fundus image (right eye) [11].

Two modalities of fundus photography denoted colaod grey modes (also known as
red free) are available. Conventional, red-freedfismphotography uses 35 mm film which is
subject to special colour filter operations to ioy& contrast between vessels and other
structures. Recently, superior digital images carobtained using a charge-coupled device
(CCD) as the imaging sensor. Colour fundus phofggrasenses three channels; red, green
and blue (R G B) of reflected light which are detared by the spectral sensitivity of the
sensor [9]. Figure 1.2 (a) illustrates a red-freedius image of a normal left eye, (b) is an
example of a colour fundus image of the right epamed from a healthy 25-year old male

volunteer.



Stereo fundus photography stereo-imaging techniques use two or more images
captured at different angles to generate depthrnmdtion of the object’'s surface,
represented using 3-dimensional coordinates (x).yThe images can either be captured
simultaneously using a specialised fundus cameara@an be collected sequentially by
using a standard retinal fundus camera [13]. Stkredus imaging is particularly useful
for diagnosing and monitoring the pathology of glama (see section 1.2.4). Its clinical
use has been guided by both the European Glaucometyand the American Academy
of ophthalmology [14]. Figure 1.3 illustrates anaemple stereo fundus image. Both
images (left and right) were captured at differengles simultaneously by NAVIS-Lite
[15].

Figure 1.3 Stereo Optic Nerve Head (ONH) image [15]

Fluorescein angiography/Indocyanine green angiograpy: Fluorescein angiography is
an important invention for examining vascular stiwes on the retina. The principle was
first proposed by Maclean and Maumenee [16] aret @Bveloped by Novotny and Alvis
[17]. The technique is based upon the characterddtifluorescein which is capable of
absorbing light in the blue wavelengths and engtttrin the green wavelengths. Initially,
fluorescein dye is injected into vessels and teifsiskes into the surrounding tissue. Then
a fundus camera equipped with excitation and lafitters is used to capture an image
that registers the amount of injected fluorescsia temaining within the retinal blood
flow. The excitation filter allows a blue light tme projected into the eye, thus a green
light is emitted from fluorescein. The barrierdilt(yellow) blocks any reflected blue light
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but allows green light through. A range of differgrathologies can be diagnosed by
analysing a sequence of images captured durindubeescein angiography procedure.
Figure 1.4 illustrates a fluorescein angiogram ienafja normal eye in which we can see

that the contrast between vessel and backgrouhdr(structures) is enhanced.

Figure 1.4 Normal Fluorescein Angiogram [18]

A similar technique known as Indocyanine green @ggiphy uses indocyanine green
dye (a tricarbocyanine dye) which is sensitivertvared rays. Consequently the fundus

camera is equipped with different filters.

The utilities of Fluorescein angiography/Indocyangreen angiography are common
in recent clinical applications because they prevégnificantly functional information

about the retinal circulation.

Scanning laser ophthalmoscopy (SLO)SLO is a confocal optical system used to obtain
a three-dimensional image having plane coordin@tesxis, y-axis) that are vertical to
the optic axis (the z-axis is along the optic axignlike conventional photography, SLO
uses a laser beam instead of a bright light to se&h point across the fundus, then the
reflections of light at each point are capturedimaging plane (e.g. CCD) through a
narrow aperture (a confocal pinhole). The confgeahole can minimize image blur and
hence a more clearly defined image can be obtd2@d Recently, Heidelberg Retinal
tomography Il (HRT 1) [19] has been used in a iclah application for diagnosis and

monitoring of glaucomatous optic neuropathy andhattimaging [10]. Figure 1.5 (a)
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presents an image of the optical nerve head ometitgal nerve fibre layer, obtained by
HRT II. The latest version, the Heidelberg Retiamograph Il (Figure 1.5 b) is more
compact [21], the software has been upgraded toeaddan issue within the previous
application that required the clinician to manualligntify the optic disc resulting in

variability of disc outline. Moreover, it is capabbf providing a glaucoma probability

score (GPS) based on automatic analysis of theressaf the disc [21].

(b)

Figure 1.5 (a) Image at the retinal nerve fibreefagbtained by Heidelberg Retinal
Tomogroph 1l (b) The Heidelberg Retinal Tomogrofh |

Many fundus imaging techniques have been designdddaveloped for screening the
internal retina and much effort has been made twone the accessibility of the equipment.
This overcomes the issue that traditional funduagimg needs to be operated by experienced
ophthalmic photographers. The most common andgsitrdorward solution for improving
accessibility is the adoption of a digital sensng(a charge-coupled device (CCD)) to record
reflected light instead of using the traditiondirfibased imaging plane. This trend has
resulted in widespread use of digital fundus casdom routine clinical applications in
ophthalmology departments. Moreover, the adoptiodigital fundus cameras is consistent
with technologies such as the Picture Archiving &ummunication Systems (PACS) [23]
which provides an economical storage solution féfective management, convenient

distribution and presentation of medical images rapid image retrieval etc.



Although new techniques such as tomographic imagiathods (SLO) can provide more
detailed and specific images, there is still a foleconventional fundus photography. The
safety, cost-effectiveness and accessibility ofdiggal fundus camera, and the acceptance of
fundus photography as the primary fundus imagirdhnigjue for various ophthalmologic

applications, drives research in retinal imageessing and analysis .
1.2.3 Landmarks of fundus photography

Fundus photography (producing fundus images) has Employed in routine clinical
therapy for a very long time. Many ophthalmologidapartments of hospitals in the UK are
equipped with fundus cameras. Due to its relatively cost, clinical diagnosis via fundus
image analysis is still the most prevalent way étedt ophthalmic disease or assess some
systemic diseases (these diseases are furthertaesor section 1.2.4). The potential utilities
of CAD offer an ability to analyse large numberduwidus images and report corresponding
diagnoses automatically. Consequently, accuratgndstic reporting depends on reliable
techniques for landmark identification and investign.

A fundus photograph contains several important el@siwhich could be used in various
clinical applications. Primarily, these elementsliule the macula, optic disc (OD) also

known as the optic nerve head (ONH), vessels aokignaund structures.

Figure 1.6 illustrates an example retinal imagedusea routine ophthalmic application.
The image is captured from the left eye. The lefghi circle is the optic disc and its cross-
sectional view is illustrated in figure 1.1. It'®merally called the physiological blind spot
because it allows optic nerves to pass though eartsfers the signal to the brain. This
component is extremely important in clinical apgtions involving the diagnosis of
glaucoma. The dark area located near the centiteeamage is the macula which aggregates
visual pigments. Much research focuses on detettsngathology (e.g. macular degeneration)
as this influences vision. The vascular systemhefaye which supplies blood to the retina

includes invisible parts (e.g. choroid) and visiéssels which lie on the surface of retina.

Normally, retinal blood vessels emerge from the OBRH radiate over the interior
surface of the retina in various directions. Thegecific characteristics can be described as

follows.



Vessels

Optic Disc

Macula

Figure 1.6An example retinal image (fundus photography) singvanatomic structures.

Anatomically speaking, the retinal blood vessets$rean split into different types: arteries,
veins, arterioles, venules and capillaries, whiehcharacterized by their diameters. Usually
the arteries and veins are characterised by laigdires and the arterioles and veinules are
smaller. In fact, the arterioles and venules arequfal width during childhood. However, for
an adult, the calibre of the arterioles is narrowat diameters of venules are enlarged,
because of fibrosis of tissue caused by the phlygidae of the circulation system [24]. The
capillaries are the small branches at the endeof/éissel tree. Some of them just appear as 2-
4 pixels wide in a retinal image. Many diseases canse pathological changes of these
vascular structures and this in turn influencesirthesual appearance. For example,
hypertension results in leakage of the vasculaodlalso known as haemorrhage due to
rising blood pressure. The leakage of plasma anddbthat permeates the surface of the
retina will influence visual function. Retinopathstich as venous changes, (e.g. distortion
and dilatation of the retinal vein) and breaks apiltaries can be found in diabetics. The
pathological changes in capillaries may resuleeskhge which may extend to the fovea area
leading to loss of vision. In section 1.2.4 we vdéscribe specific diseases which can be
analysed and studied using retinal images. In n@dinical cases, it is extremely important
and significant to isolate and study retinal bleedsels for diagnosis and treatment of related

diseases.

There are several specific characteristics that lmanused in retinal vessel studies.

However, some of them may hinder distinguishingvissels from other organs.
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» The vessels are treelike and tubular structuresh Eructure is supposed to be

connected.

» Vessels appear in low contrast against the backgrolihe appearance of blood
vessels is dimmer than the background in colouddisnphotography. The colour of
vessels normally is dark red, and the backgroundose to orange. In a grey level
image, their appearance is close to the other eltsmia the background (e.g. the
macula). The appearance of capillaries may b siemilar to that of the background.

* Because of the illumination, the vessels may canspecular effects located on the
centre of vessel objects.

* In grey level images, the grey level of vesselgasatinuous and does not change
abruptly.

* The vessel is a piecewise linear shape. The curtieeocoutline is relatively smooth

without abrupt changes of orientation.

* Vessels are not all the same size. The width okssel covers a wide range of

diameters and they can be extended along theitHextigany orientations.
» Vessel cross-sectional intensity profile approxesat Gaussian shape [85].

» Some specific shapes may characterise specificevgsghologies. For instance,
nipping of the arteriovenous crossing [24] may bespnted in a fundus image of a
hypertensive patient and spot shapes (microaneg)yi@8] may be found around the

vessels in a diabetic patient’s fundus image.
1.2.4 Review of common diseases using analysis of retifahdus images

Because many pathological abnormities in the ret@mifest some systemic diseases and
some ophthalmic diseases are caused by patholofjibe retina, the diagnosis of disease,
either systemic or ophthalmic, based upon obser@myjdocumenting changes of eye tissues
in fundus images has become particularly prevalararder to further discuss the important
utilization of fundus images in clinical applicatiove summarise the most common diseases
which have been studied based on the analysisnofuiimages. The following provides a

brief overview.
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* GLAUCOMA

Glaucoma is a significant disease that leads to &R%verall blind registrations in the UK,
it's been diagnosed particularly in the elderlg. ithose in the 65 plus age group. Studies
have reported glaucoma to be a common problem taffe©.5% of the total population
including 1% in the over 45s and 6.6% in the oves [25]. Glaucoma is the third leading
cause of blindness in the U.S. [26]. It is a priynaptic neuropathy that manifests the loss of
nerve fibres which may associate with raised irduéer pressure. Visually, the hallmark of
this optic neuropathy is a characteristic changeénoptic nerve head known as cupping of
the optic disc (Figure 1.7). The pressure on theenbead may reduce the blood supply to
the rim. As a result the axons of the retina maylamaged. This process will appear as an

enlargement of the central cup or as defects ohdénee fibre layer in the focal area.

In routine practice, there are three charactemsgasurements that can be tested for
diagnosis of glaucoma. Firstly, raised intraocylegssure (IOP); Secondly, a characteristic
pattern of visual field loss and thirdly patholaglichanges (cupping) of the optic nerve head
[27]. The accurate diagnosis of glaucoma dependtaking all these inter-related features
into account, as raised IOP alone may give falsgtipes and testing of the visual field is
time-consuming and requires specific equipment.[A8turate assessment of cupping of the
ONH depends on accurate analysis of the optic [#8¢ The use of fundus images for
analysis of the optic disc has been employed teatletarly cases of the glaucoma before
deterioration of the visual field develops usingeltteristic features of the disc and signs of

vascular changes.

Figure 1.7 A fundus image of glaucoma patient. Daagic: focal nerve fibre 10ss.[27]
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An important indicator for assessing the cup is abp/disc ratio which is measured by
judging the cup’s vertical height against the wattiheight of the optic disc. In normal eyes
the cup/disc ratio is generally below 0.5 exceptsmme special cases that represent
congenitally enlarged disc with a large cup. D#fece in the cup/disc ratio between both
eyes of 0.2 or more is a risk indicator for glaueomoreover, a vertical cup/disc ratio larger
than the horizontal ratio combined with an OD thakes not have an increased vertical
diameter is a sign of neural rim damage. Besidessafng the pathological changes of the
OD, a fundus image based glaucoma analysis proeedeeds to assess the vascular changes
around the OD, so that the progression of glaucoarabe recorded and measured. For
example, evidence of vascular haemorrhage on arndrahe optical disc is a common
clinical sign in patients with progressive glaucomia advanced glaucoma, other
morphological features of vessels may be detestath as a narrowing in the appearance of
the retinal arterioles. Abnormal distortion of valse shape (e.g. the appearance of so-called

z bend also known as bayoneting) may signify lecatsion of the neural rim [28].

» Age-related macular degeneration (AMD)

Age-related macular degeneration (AMD) is a commagea disease that causes irreversible
vision loss (such as blurred vision or slight distm) in adults older than 50 years of age. In
AMD, the macula (see Figure 1.6) degenerates vgéhaad this results in vision blur or more
severely loss of central vision. According to an®k¢port, up to 500,000 people are affected
by some form of AMD in the UK [30]. It is also reped to be the most common optical
disease causing visual loss in the U.S. Approximate&00,000 Americans have some form
of AMD [31]. Patients with AMD suffer no pain inghearly stages of the disease, hence it is
difficult for patients to perceive symptoms untiey get the blurred vision or loss of central
vision, (i.e. they cannot see objects in fronttieém clearly) [29]. Normally, AMD is
classified as being one of two forms: early stagd¢DA Dry macular degeneration (DMD)
and advanced stage-Wet macular degeneration (WBMP usually manifests itself by the
appearance of drusens (small yellowish-white blolvk)ch are the deposits of epithelial cell
waste located beneath the retina. WMD also knowrctemoidal neovascularization is
indicative of abnormal growth of the choroidal valsc structure into or around the macula.
These new vessels are weak and easily bleed [32isen are present in both forms of AMD
and are classified as two types, hard and softu(Eid.8). Hard drusen (Figure.1.8-a) are

characterised by a clear boundary that can beyedsiined. Hard drusen are generally less

13



harmful than soft drusen (Figure.1.8 -b). Thesesgme a fuzzy boundary, which may be
accompanied by other abnormalities such as newtgrofathe vascular structure.

(b)

Figure 1.8 Two forms of age-related macular deggimn (AMD). The bright spots in

(a) are hard drusen; (b) is wet AMD with soft dmuise

The dursen can be gradually formed into any shaps and number during the
development of AMD, hence identification of dursentharacteristics are used by
ophthalmologists to assess the progress of AMDasients can receive appropriate treatment
without delay. It is extremely significant to detéard drusen in the early stage of AMD so
that one is able to stabilize the pathogenic coomit

Currently, routine clinical identification and euation of drusen is implemented with the
aid of fundus colour images which provide importaigns for diagnosis. Many efforts in
computer-assisted analysis of AMD have been madectoeve large population-based
diagnoses of patients. In particular those studiegh concern automated drusen detection
and assessment based upon fundus images have dmmted in much of the literature
[34][35][36][371[38][39].

+ Vascular disorders

The blood supply of the retina is through the citband retinal vessels which lie on the top
of the retina. The retinal vessel is the only Jisipart of the blood circulation system.
Observing the changes of the vascular charactexistin give information about the health of
vessels, moreover pathological features of retimessels can manifest the risk of

cardiovascular disease, such as hypertension oattierosis and retinal vein/artery occlusion.
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Figure 1.9 Manifestations of hypertensive retinbgah fundus images. (a) Becrease A/
ratio; (b) nipping characteristic; (c) example tdnfie haemorrhages; (d) pale cotigoel
spots[42].

Vascular disorders can affect the eye by varioum$ofor instance, new vessel formation
in the OD and the macular, and acute ischemia, lwhause cotton wool spots and the
appearance of flame haemorrhage on the surfadeeafetina, etc. [24]. Some features that
appear in fundus images of hypertensive patiemsrethect the seriousness of hypertension
thereby indicating whether the patient demands idiate treatment. In the early stage, the
nipping or nicking of the arteriovenous crossingo$sing points of arteries and veins) is
defined as early evidence of hypertension (Figugeb), whilst the appearance of scattered
flame haemorrhages (Figure.1.9-c) is a classicatdin of hypertension [24][25][41]. The
narrowing of the arteries and the dilation of veare symptomatic of patients at risk of
subsequent development of hypertension [40]. Figuea illustrates the appearance of mild
narrowing and sclerosis of retinal arteries resglin a decreased overall A/V ratio [42]. In
practice, a decreased ratio between diametersaies to those of veins also known as the
A/V ratio is used to assess the risk of hypertendi@r those patients who have hypertension,
the appearance of pale cotton-wool spots (FigurdlLifi the fundus image suggests urgent
treatment is needed [25][41][42].

Retinal vein or arterial occlusion is a complicatiassociated with hypertension or
diabetes. The former is more common, however omlusf retinal arteries is more severe as
it is irretrievable. In a pathological fundus imagggns of retinal vein occlusion are

characterised by dilated and tortuous veins, whicdy be accompanied by massive

15



haemorrhage. The range of these haemorrhages dependhe type of retinal venous
occlusion, which is classified as either centrabmanch. The central retinal vein occlusion
presents global haemorrhages, whilst the haemashaf branch retinal venous occlusion
occur in the local area of the fundus image. Rean@rial occlusion is characterised by the
appearance of pale embolus around the area attdrg branch. Patients suffering from this
condition are at risk of a retinal stroke which magck the blood flow to the retina and

therefore result in retinal death.

 DIABETIC RETINOPATHY

Currently, the diagnostic criteria for diabetesdefined by the world health organization
(WHO) to be a patient who has a fasting levellama glucose 7.0mmol/l (126mg/dl) or
2—hour plasma glucose 11.1mmol/l (200mg/dl) [43]. Approximately 171 nh people in
the world were diagnosed with diabetes in the y2@00. This number is estimated to
increase in the next decades, and is predictechdrease to 366 million by 2030 [44].
Approximately 3.5% of the UK population are affettby diabetes [10] and the U.S.
Department of health and human services (DHHS)rtegahat 9% of adults (aged 18 and
over) had been diagnosed with diabetes [45]. Désbmanifests as a rise in blood glucose
which many cause damage to vascular walls. Consdgueit results in diabetic
complications known as diabetic retinopathy whiclayntause loss of vision. Diabetic
retinopathy is the leading causes of blindnessisuaV loss within the working age group
[46]. According to a clinical study report [47], England and Wales, approximately 7.6% of
patients who registered as vision impaired duriegryl999-2000 are affected by diabetic
retinopathy, resulting in 6.3% blindness for thatient group. A report presented by ‘prevent
blindness America’ [48], indicates that diabetitrepathy affects approximately 7.7 million
U.S. people aged 40 and older in 2010. Routineesang for diabetic retinopathy and early
detection of sight-threatening changes can be wsedrly diagnosis. A laser treatment called

photocoagulation, can be prescribed to preventdinsequent loss of vision [25][49][50][51].

The prevalent forms of diabetic retinopathy cartyped as mild or severe depending on
whether the pathological abnormalities are assediatith damage to the macula or fovea. It
can also be classified as non-proliferative retatbp or proliferative retinopathy by
considering how the abnormalities and pathologatelnges present new growth of tissue
(vessels). The progress or deterioration of diabettinopathy is a gradual procedure.

Normally, background retinopathy (Figure 1.10-aj dze detected at an early stage of
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diabetes and it is less harmful. It is charactdribg the appearance of microaneurysms,
scattered haemorrhages and retinal exudates. Mieoogsms are a specific sign of diabetes
and manifest themselves as small red dots, ocguinnareas around the macula. The
haemorrhages are caused by leakage within smalk wessels (capillaries) that can be
observed from retinal fundus images as flame bliotsearly stages of retinopathy, these
haemorrhages normally appear as a few isolated @oemps, distant from macula or fovea
rather than the mass of haemorrhages indicativeewére retinopathy (Figure 1.10-c). The
leakage of fat and protein from weak vessels maw fgellow white blots in the retina called
retinal exudates or hard exudates (Figure 1.10tsy are characterised by a clear identified
boundary, appearing as brighter blots than backgtohut these do not affect the macula or
fovea. However, in some severe cases of retinopé&mbetic maculopathy), normally
occurring in type Il diabetes, there are increas@ubers of exudates with an enlarged size,
spreading towards macula or in some cases evemegajgd on the macula Figure.1.10-b
( so-called macular exudate). Consequently thetdelegical changes may be accompanied
by macular oedema, which has been reported as tis¢ common cause of virtual loss in
diabetics [9][25].

Retinal ischemia is an important factor causingesewiabetic retinopathy. Characteristic
features such as a mass of haemorrhages, ventwssity and dilatation, cotton-wool spots,
intra-retinal microvascular abnormality (IRMA), amloliferation can be detected in such
fundus images. The size and number of these hakag®ms rapidly increase. The veins are
dilated and tortuous because of hypoxia. The ce#toal spots appear as white patches,
fluffy in density with a fuzzy boundary on the rel nerve fibre layer. This results from
accumulations of swelling axon terminals which eaased by stimulation of retinal ischemia

[52]. IRMA is characterised by abnormalities of tlapies (dilation and tortuosity).

One or more of these features appearing in a fumdage indicates that retinopathy has
deteriorated into the pre-proliferative stage (Fégud.10-c). This also signifies that the
proliferation of IRMA is more likely [24]. Howeverarly detection and treatment in this
stage can prevent the further deterioration toptioéiferative retinopathy stage (Figure 1.10-
d). Although this is not common it is very sevengl aesults in blindness. The characteristics
of proliferative retinopathy are the appearancee# growth of blood vessels on the retina
or OD. Because of severe hypoxia, the new vessels gther sources of oxygen by growing
in any direction and this may lead to vessel gromrlthe OD and the area between the lens
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and vitreous body. Consequently, this may resuliireous hemorrhage when blood and
other liquids contaminate the vitreous body. Ttaghplogical change may even progress and
in severe cases may detach the retina. Therettgejery important to give laser treatment

before vitreous hemorrhage occurs to prevent bésdn

(d)

Figure 1.10 Different stages of diabetic retinogath(a) background retinopathy; (b) macular

exudates; (c) pre-proliferative retinopathy andgd)liferative retinopathy.

1.3 Automated detection of retinal disease using funduisnages

A traditional but prevalent way of retinal diseadmgnosis is manual screening and
reviewing the images by ophthalmologists in routohaical diagnosis. However, with the
popularized utilities of new optical examinatiorchaiques and equipment, an abundance of
images have been generated to assist the diagib&sguantity of images already exceeds
the limit of the clinicians’ ability to fully utize it. Not only because manual diagnosis is a
time-consuming procedure and the huge number aérgat demand prompt diagnosis by a
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limited number of ophthalmologists before they caceive appropriate treatment. But also
the manual diagnosis is experience dependent ajid duality clinical detection relies on
rich experience. For example, in some cases, ckanghe pathology (e.g. the new growth
of tinny vessels or microaneurysms in proliferatreéinopathy) are difficult to observe and
distinguish and therefore decisions are prone tier iand intra-observer variability. This in
turn may result in patients missing the best tiroe tfeatment. An effective scheme to
achieve population-based diagnosis relies on dpirelo automated screening tools or
computer-assisted diagnostic (CAD) systems thatl@mmodern advanced computing
techniques (image processing and analysis, compuigon techniques, distributed
computing etc.). In the past few decades, numestess have been undertaken to achieve
more accurate automated diagnosis using digitaldanmages. A brief review of the latest
techniques and their relevance to the specific adise described in section 1.2.4 is

summarized in the following sub-sections.
1.3.1 Automated detection of Glaucoma

Automated classifications of normal or glaucomatpasents need to rely on evaluating the
features extracted from the patients’ fundus imageroutine clinical glaucoma detection,
such features may include cupping of the ONH, nditwe layer defects, and peripapillary
atrophy etc.. Among those features, cupping of @H is the most important sign of
glaucoma. As we described in section 1.2.4, thbgbagical changes of Glaucoma in the
optic nerve head (ONH) area which can be obsemaed & retinal fundus image are primary
indicators but they are not limited to this areaindérous methods have been proposed to
automatically detect and combine one or more addtabnormities in the optic disc followed
by analysis to determine if they belong to corresidag progressive stages of the disease
using a diagnostic criterion (e.g. C/D ratio ettJpder normal circumstances, to calculate
this ratio, the optic nerve head and optic cup nieetle detected and extracted. In [55],
Nayak et al. proposed an automated glaucoma datectiethod which employs three
features: the C/D ratio, the distance between apsic centre and the ONH, and the ratio of
the total area of the blood vessels in the infeaiimat superior side of the ONH to the total area
of the blood vessels in the nasal and temporal. dveaphological closing and opening
operations followed by a thresholding method arep&etl for segmentation of the ONH.
Vascular tree segmentation is implemented usingobtmhat filtering combined with

thresholding. Finally, classification is performéyg an artificial neural network (ANN)
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classifier. In another article [56], the displacemseof blood vessels within the OD are
measured. The distances between centroids of teelein the superior, inferior and nasal
areas to a reference point in the temporal sidbefetina is proposed to distinguish normal
or glaucomatous subjects. The performance of theshod achieved 93.02% sensitivity,

91.66% specificity, and 91.34% accuracy. Furthatesbf-the-art methods for automated
extraction of anatomical features from retinal imsdor early diagnosis of glaucoma are
presented in the survey [57]. Bock et al. [53] @sgd a system for automated glaucoma
detection using colour retinal fundus images andeaxed 80% accuracy. Pre-processing is
implemented to address inhomogeneity in the illation. Vessels localized on the ONH are
removed by applying retinal vessel segmentatiotovia@d by inpainting of the detected

vessel tree. Then three features are generatedffieyedt generic image representations,
which are used to generate a glaucoma risk indeRI)(GFinally, a stand-alone SVM

classification scheme combines the GRI to generaiagnosis. Noronha et al. [54] proposed
an automated glaucoma diagnosis system that ctabsdliree states of glaucoma (normal,
mild and severe) using a support vector machiMSand Naive Bayesian (NB) classifiers

based on features derived from higher order sp€Ef©S) cumulants extracted from a radon
transform of the digital fundus images. The perfance of their system reaches 92.65%

accuracy.
1.3.2 Automated detection of AMD

Age-related macular degeneration (AMD) is the nooshmon cause of gradual loss of vision
in the aged 50 and over group in the UK and U.Be dritical risk of AMD is that it can’t be
perceived until vision is impaired. Early detectohAMD may reduce this risk and laser
treatments can be used to stop progression ofileagk. Five computer-assisted diagnostic
systems for detecting and manually grading AMD Whicave been used in clinical
applications are summarized by Zarbin and Chu [38kse systems have potential to be
improved by replacing the manual grading stage waitrautomatic grading module, thereby
allowing the system to meet the demands of an emasmumber of patients. During recent
years, many efforts have been devoted to studyirtgnaated diagnosis of AMD using
different features extracted from components intaigolour fundus images of the retina.
The methods initially detect abnormalities in ratifiundus image then classify cases as
normal or AMD via quantification of those featurdsany modern digital image processing

and analysis techniques can be employed, e.g. im@g@ression, image enhancement and
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image segmentation etc. The most important partthef process is the automated

segmentation of drusen, as they are the charaatesign of AMD.

To some extent, the performance of a system fanaatied diagnosis of AMD relies on
adopting a successful method of segmentation. Bimugt al. [59] proposed a method for the
detection and quantification of drusen for earljedgon of AMD. Initially, a vessel tree and
background mask is generated to exclude the veaseldbackground related interference.
Then drusen are detected using the combined lotehsity distribution and adaptive
intensity threholding. A first order Gaussian dative filter is employed which works with
the mask to generate a magnitude image withouelessl background pixels. This is used
to identify edge information of drusen. The sewerdf early AMD is evaluated by
guantifying the drusen occurring in the area oftiecula. Their proposed method achieved
100% accuracy of drusen detection in 50 image®ctatl by them. Rapantzikos et al. [60]
employed multilevel histogram equalization (MLE)sbd on sequential applications of
histogram equalization to enhance image contrédistifed by histogram-based adaptive local
thresholding (HALT) for detection of drusen. Th#vantage of utilizing HALT is that it is
capable of extracting features of interest withmiluencing other components [60] (e.g.
haemorrhage, vessel and optical disc). The methedepted in paper [61] focuses on
automated detection of advanced AMD by detectiothefwet drusen and patches indicative
of haemorrhage. Three regions of interest: (bloesisels trees and haemorrhages, OD and
macula, background) are segmented using kimeeans clustering algorithm, of which
haemorrhages and drusen are related to the filssaoond regions. The vascular trees are
removed by implementing erosion and dilation usicglular neural network (CNN)
templates. Boundaries corresponding to regionsarest (ROI) are found using a Sobel
operator and these are used for monitoring therpssgon of the conditionKose et al. [62]
proposed a method which allows ophthalmologistset@luate if treatment for
degeneration is effective or not by automaticallyonitoring changes in the
degeneration. Instead of detecting abnormalitiesctly, their method first extracts
health components from the area containing the laaasing a region growing
method. Then the vessels are segmented and heathponents in the ROI are
eliminated. The final segmented image is obtaimethfinversing segmented images.
Finally, the quantitative results can be generdbgdcomparing the segmented

pathological structures (degenerated areas) ardiif time periods. For the purpose
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of automated diagnosis, if the detected degenerated exceeds a clinical safe
threshold value, the diagnosis is positive. A siatdature generated from drusen
based information extracted from intensity, coloamd gradient information is
proposed by Burlina et al. [63]. This is produceg dUsing a hybrid parametric
constant false alarm rate (CFAR) detector combiwd&ti a non-parametric CFAR

detector based on a support vector machine (SVM).
1.3.3 Automated measurement of vascular disorders

Pathological changes of vascular structure caugededualical conditions such as hypertension
may lead to retinopathy and therefore affects wisidbnormalities on the retina also are
significant signs of the progression of cardiovdmcudisease (see section 1.2.4).
Morphological characteristics of vascular treeshsa atrophy, dilation and tortuosity can be
expressed by the A/V ratio and other mathematieains. These terms are extremely
important for automated measurement of the vasdrdarand these features can be used in
early diagnosis to prevent heart attack, brainkstretc. Hence automated measurement of

vascular structure has attracted a lot of intdrgsesearchers.

Narasimhan et al. [64] proposed a method for diagnof hypertensive retinopathy by
estimating the A/V radio. Features derived fromygievel moments, intensity and colour
information were employed for vessel tree segmamtatVessels are classified by
measurement of geometrical widths and the A/V raticalculated. This is used as a marker
to grade the severity of hypertensive retinopaghgimilar method of A/V ratio measurement
is proposed by Niemeijer et al. [65]. In their nathvessel segmentation is implemented by
a k-NN classifier. Then the centreline of each gessskeletonized from segmented vessels.
The local vessel width is measured by finding te& and right vessel edges from the
centreline and calculating the distance betweemthehe A/V radio is calculated by an
iterative process. Ortiz et al. [66], implementsedsenhancement by using a Gabor wavelet
combined with a Hessian matrix and the resultingges then are binarized using a threshold
method (Niblack) to obtain the vessel segmentafldve vascular widths are obtained using
the Parr-Hubbar formulas, which is a relative mecneasurement. The tortuosity of the
vessels is a significant property especially foryedetection of retinopathy, and important
because it allows early diagnosis to be given shahpatients may receive timely treatment.

The commonest way to measure the retinal vesdebtity is the ratio between curve length
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and chord length which is defined as the distanetvéen the curve end points [67].
Chandrinos et al. [68] proposed a mean angle meased on changes in the local direction
of the vessel. Grisan et al. [69] proposed a neasktular tortuosity measurement method
which simulates the procedure of clinical evaluatioof tortuosity applied by

ophthalmologists. Vessels are decomposed into afsebnsecutive segments of constant-

sign curvature and each is evaluated by integratilep segments.
1.3.4 Automated detection of DR

With the increasing number of diabetics, there wgent demands for a computer assisted
clinical tool to detect diabetic retinopathy. Suam application would enable those patients
suffering from diabetes and any complications aibétic retinopathy to receive timely
treatment. In clinical practice, the early detettiof diabetic retinopathy via population
screening have been shown to prevent vision lodsbéindness [49][50][51]. Towards this
direction, international and national guidelinexairage all diabetic patients to have an
annual fundus examination. In England and Walestenal fundus screening program has
been recommended by the National screening conemifieke same guidelines have been
issued by the Haute Autorité de santé (HAS) in €ea70]. In the Netherland, over 30000
diabetics were screened since 2001 [9]. In se&rsbpean countries, systemic programs for
early detection of diabetic retinopathy via an ekpeanually reviewing using digital fundus
photography have been integrated into existing theahre systems. In an effective
application of telemedicine, the fundus image guared from the patient by remote imaging
and then reviewed by ophthalmologists to assesgrade. However, there are concerns
regarding the cost of manual workload, particulégause of projected increases in the size
of the diabetic population. In the next few yeatdss estimated that the time required to
implement the programme will exceed the limit ofritoads. This situation stimulates
intense research towards an automated populatisedbBR detection and grading system.
Research effort over the past ten years has caatediton designing automated detection of
abnormalities (such as microaneurysms, exudateégnewool spots, etc.) on the retina to
diagnose and grade DR. Numerous approaches hawepb@gosed to pursue more reliable
schemes for automated detection of DR, since tisene completely independent automated
DR program that can be applied in clinical practiGenerally, the research areas for
automated DR detection using fundus photography leandivided into three primary

categories. The first category is focused on désggaystematic DR systems, the second for
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developing segmentation and detection of those rataddies, and the third for measuring

the segmented abnormalities relating to differéagess of DR.

Dupas et al. [70] measured microaneurysms, haéages, and exudates based on a
suite of algorithms for automated detection prodos®y Sinthanayothin [71]. These
algorithms were incorporated into a computer-asgistiagnostic (CAD) system for grading
different stages of DR. The system performs dedeabif four classes of components (vessel
tree, microaneurysms and haemorrhages, maculegxamhtes), thus the combination of all
four results can be used to assess the severiDRoby referring to specific grading rules.
Their evaluation of the system show that for DRed&bn, the sensitivity and specificity of
the algorithm were 83.9% and 72.7%. More spegifimtocols for clinical DR grading are
presented elsewhere in the literature [72]. Yualef73] proposed a DR grading system to
classify samples into one of four groups (normabderate non-proliferative diabetic
retinopathy (NPDR), severe non-proliferative diabettinopathy (SNPDR) and proliferative
diabetic retinopathy (PDR)). The perimeter and sirefablood vessels and relative defects
along the vessels are used as features for ctzdsfn. The classification was achieved by
employing a three-layer feedforward neural netw®tk) classifier. They reported results in
terms of accuracy, sensitivity, specificity of 849d,.7%, 100% respectively. Larsen et al.
also present work for automated diagnosis to dlagsitients in two classes normal or DR
[74]. The performance of their system can be adfudly a so-called visibility threshold
parameter (either set to a default value or sugdieuser). They achieved 93.1% sensitivity
and 71.6% specificity with the parameter set ahlsgnsitivity and 76.4% sensitivity and
96.6% specificity with the parameter set at higacscity. Usher [75] et al. developed a tool
for diagnosing patients as normal or DR. Theirtetyg initially extracts normal components
(e.g. OD, vessels) and then excludes these stasctiging recursive region growing (RRG)
combined with an adaptive intensity thresholdindT(Aapproach to extract lesions (bright
exudates). To extract those dark lesions (e.g. bedages, microaneurysms), they adopted
an edge enhancement operator they call a ‘moaatgetechnique. The classification was
implemented by an artificial neural network basedtloe features generated from lesions.

They report results of 94.8% sensitivity.

Many efforts have been devoted to automated detedtf various abnormalities (e.g.
microanrurysms, microaneurysms, exudes, vesselmder to improve the stability of CAD
systems. For instance Walter et al. [76] proposedaoaneurysms (MA) detection method
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for use in colour fundus images. Potential MA cdatks are detected by a diameter closing
operator followed by an automatic threshold scheMA. (or non-MA) classification is
implemented by Bayesian risk minimization thateglion kernel density estimation. The
system demonstrates 88.5% sensitivity at an averagder of 2.13 false positives per image.
In the literature [77], Giancardo et al. proposadethod for diabetic macular edema (DME)
detection based on the detection of exudates. Fesatinaracterising exudates are extracted
based on colour information and wavelet decompmsitifhen the generated features are
classified with an SVM classifier to automaticadllipggnose DME. The proposed algorithm is
evaluated by AUC, of which the maximum is 0.94. @z [78] proposed a novel method to
detect hard exudates from fundus images which palda of distinguishing hard exudates
from other bright lesions. The algorithm uses nm@tmodels to dynamically threshold the
images to obtain exudates. Then the extractedagesicare further characterized by edge
shape to distinguish them from other bright lesif@mton wool spots and light reflection of

vessels). The evaluation process demonstrated $@0%ttivity with 90% specificity.

1.4 The thesis contributions

Given the importance of retinal vessels for thegdasis of various forms of diseases, the
segmentation of vessels in fundus images remaigseat challenge. This is due to the
complexity of fundus images and conditions such iagage noise, low contrast between
vessels (capillaries) and background, some abnomegions (pathology), illumination
(vessel reflection), and the variety of vesseldfgient width, length). This topic is discussed
in detail in chapter 2. Our research aims to deaigh develop more accurate retinal vessel
segmentation methods based upon investigatingreexsioalysis techniques. We particularly
focus on texton-based approaches as these builfllten bank schemes that have been
successful in earlier work. The primary contribngmf this thesis include:

* A hybrid retinal vessel segmentation method thathle to exclude the interference
caused by abnormalities in fundus images is prapoSach anomalies (e.g. drusen)
are the primary factor that influences the accuegmentation in this field.

* A novel supervised texton based retinal vessel satation method is proposed
which employs a new spatial filter bank design (MRfor vessel feature extraction.
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This method significantly improves performanceemis of accuracy and efficiency

compared to many other state-of-the-art methods.

* We investigate the effect of different training irags and provide an experimental
basis for training a general textons library fosse& segmentation. Given that the lack
of study materials (ground truth) is an open igaudis research field, we built a new
dataset (using original data supplied from the Nhaster Eye Hospital) that can be
used as a resource for future vessel segmentagwarch. The data set includes 3
sets of ground truth, hand labelled by 3 ophthahmists.

* Building on experience gained during the developnnthe MR11 filter bank a
supervised texton based vessel segmentation meting an optimized Gabor filter
is developed. We show that this approach saves etatignal cost while maintaining
good performance. Finally, a new unsupervised aetiassel segmentation method is
proposed, which achieves a level of performancepeoable with other supervised
state-of-the-art methods. This unsupervised seatient method represents a
significant contribution since it addresses thebpgms that arise due to inconsistent

ground truth labels in the database.

1.5 Organization of thesis

The rest of chapters in this thesis are organizedfadlows: Chapter 2 presents a
comprehensive survey of previous and current tegtes which have been proposed for
retinal vessel segmentation. These methods argaréted into four categories and we

review them by each category. Chapter 3 providéative background information on

textons and texture analysis techniques, in whitlexensive review of prevalent texture
measure techniques for image segmentation is geeke@hapter 4 presents a hybrid retinal
vessel segmentation method which is able to obtassel segmentation that is robust to
anomalies in the image. In Chapter 5, three subsktexperiments are described. A
supervised texton based retinal vessel segmentat&hod is described in the first subset of
experiments. Then the supervised texton based segtiomn method is extended by

optimizing the procedure for generating textonse Third subset of experiments comprises a
comparative study undertaken in order to qualiy tlonsistent performance of the method.
Chapter 6 describes a further texton based segtimntamethod using optimized Gabor

filters and an unsupervised texton based segmentapproach which uses a Derivative of
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the Scale Invariant Feature Transform (DSIFT) andtirscale Gabor filters. Chapter 7

presents conclusions and suggestions for furthek.wo
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CHAPTER 2

2. Review of retinal vessel segmentation and evaluato

The segmentation of retinal blood vessels and #hdnaction from the background in retinal
fundus images is an essential stage for automatathr vessel analysis and can also be a
useful pre-processing step, prior to manual scregenifhe biomedical measurements of
retinal vessels are analyzed and evaluated in alexaartine clinical diagnoses. For example,
it is critical to diagnose, screening, and treatirfen various ophthalmologic diseases, such
as Glaucoma, AMD, diabetic retinopathy (DR) andcuésr disorders etc., as discussed
previously in section 1.2.4, because these charsetpathologic changes that manifest the
progress of various diseases such as hyperterdiaipetes, etc., segmenting retinal blood
vessels and assessing segmented vessels is palyidohportant to detecting or grading
those diseases. For instance, displacements ofl Messels within the OD are measured in
some automated Glaucoma diagnosis systems [55][B6some systems used for diagnosis
of AMD, Glaucoma and DR, retinal blood vesselssgmented and identified as the normal
healthy components and so the system can elimthate vessels from further stages and
related inferences [53][59][61][62][75][78]. The saels also can play a role by providing
reference coordinates to describe the locationstloér elements in the images [73]. The
morphological characteristics of vascular treesuthe atrophy, dilation and tortuosity which
can be expressed as the A/V ratio (see sectiod fo2.more details) and in mathematical
terms of tortuosity. These terms are extremely g for automated measurement of the
vascular tree to prevent diseases such as hesgkalrain stroke etc. [64][65][66]. Moreover,
retinal blood vessel segmentation has more spesijisificance for other applications. For
instance, segmented retinal blood vessels can qeow tool for multimodal image

registration [79].

Currently, vessel networks presented in retinadéimnimages are primarily delineated
manually by experts (ophthalmologists). Subsequentiese components can be used as
signs to assess corresponding diseases based trulparclinical rules in the screening
application or computer-assisted diagnostic systadowever, the manual vessel
segmentation is quite time-consuming and experidrased, whilst the cost of workloads
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(training, labour force) has to be considered. Mafigrts have been devoted in developing
automated vessel segmentation and computer-assisigdosis systems, which we have
summarized in the previous section (1.3). To soxteng, the reliability of those systems
especially considering the accuracy of diagnosigjuge reliant on the performance of
segmentation methods, as every false segmentatimmse-segmentation may affect accurate
measurement of structures. It is commonly accepyedinicians that automated assessment
of vascular structures in the retinal fundus iméga critical stage in the development of a
computer assisted diagnostic system for automaggsttion and grading of various forms of
retinopathy.

Although automatic segmentation of the blood vessélvorks has been studied widely
and a large number of approaches have been prgpbsedtill a big challenge and retinal
vessel segmentation remains a focus for ongoingarel. The challenges faced in accurate

automatic retinal vessel segmentation include warfactors. We list them as follows.

® \Wide range of vessel widths, from large (12-15@xé&b small (2-5 pixels).
The specific morphological characteristics, suchessels (veins and arteries) may cross
and overlap.
Presence of noise in fundus images.
The low and unstable local intensity contrast betweessels and background.
Presence of pathology elements including haemog;hegudates, and microaneurysms
etc. and the presence of other anatomic componmenite fundus images (such as OD,
macular).

® Different optical features in the fundus image; exsally, those due to illumination
which may result in various artefacts, e.g. ligbflacted from vessels which may

influence the segmentation.

Figure 2.1 illustrates examples of such factorgumdus images which may influence the
accuracy of automatic retinal vessel segmentafibe. wide range of vascular width can be
observed in all the sub-images. In practice, thestndifficult task of retinal vessel
segmentation is to detect the tiny vessels (caj@fiafrom the background. To the best of our
knowledge no approaches have been proposed thablareo completely segment all vessels.
Figure 2.1-b demonstrates the exudates (hard dswsahhaemorrhages) which may result in
an increase of false positives, namely those abalitres that may be segmented as vessels.
The boundary of the OD in Figure 2.1-c exhibitseatremely large intensity gradient change,
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thus it may be mis-segmented as a linear struguessel). The vessel reflections may be
detected as non-vessel, as its colour intensityite different from the normal vessel. Most

of proposed methods utilize pre-processing teclagda handle this issue.

All the factors listed above may more or less ieflce accuracies of segmentation
methods which have been proposed previously. Hant@matic retinal vessel segmentation

remains a focus for current research.

(b)

Figure 2.1 A series of factors influence the autitnaetina vessel segmentatiofa
illustrates the large and tiny vessel width; (bindestrates the exudatelgtboundary of tf
OD in (c) exhibits an extremely large intensity djesnt changevessel cross and ves
reflection are shown in (a) and (c).

A large number of such approaches have been prdpasieg various modern image
processing and analysis techniques. Comprehensiveeys of vessel segmentation
approaches in various modalities of medical ima@es present in the literature [82][83].
Some brief reviews of retinal vessel extractionhnds have been presented in the literature
[9][80][81], some of which may be particularly ugiéd as a tool for automated detection of
pathologies. Fraz et al. present a survey in [B4} particularly focusses on approaches of
retinal vessel segmentation in fundus images. i ¢hapter, prevalent evaluation methods
and the most commonly utilized experimental makeridatasets) are introduced in section
2.1 and 2.2, respectively. We present a reviewreVipus segmentation methods in section

2.3 where numerous approaches are classified adb eategory. The summarized methods
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cover both early state-of-the-art methods and vecgnt published work. In section 2.4, we
summarise the existing approaches, state corresgprmquioblems and discuss the future

trends of retinal vessel segmentation in fundugesa

2.1 Evaluation method

In order to evaluate the performance of retinakeksegmentation methods, two categories
of performance measures methodologies are commaseyg to qualify the segmentation
results. One evaluates the performance in ternaafracy, sensitivity and specificity, and
the other plots a Receiver Operating Characteri@@©C) curve [131] and reports the
segmentation quality by calculating the area urtdercurve (AUC). Either or both of these
evaluation methodologies are used in retinal vesegmentation methods reported in the
previous section to generate comparative resudts dre able to indicate the merits of the
methods. The values of sensitivity, specificitycaacy and AUC can provide numerical
evidence to verify the performance whilst the RO€thnod also produces curves that can be
compared visually to study the performance of déifie segmentation approaches under the

same circumstances. We introduce both evaluatidhads in the next subsections.

2.1.1 Sensitivity, Specificity and Accuracy

To explain the terms (accuracy, sensitivity andcsj#y) clearly, we start by describing
some essential properties of classifiers. Givennarf classifier and a candidate instance,
there are four possible outcomes. Table 2.1 shiweset four outcomes. The real class is
labelled as {T, F}, and we use the labels {P, N} fbe class predictions. If an instance is
positive and it is classified as positive, it isunted as true positive (TP), however if it is
classified as negative, it is counted as false theg@FN). Analogously, if the instance is
negative and it is classified as negative, it isnted as true negative (TN), but if it is
classified as positive, it is counted as falsetp@s{FP). In practice, the real classes are given
by the ground truth, The ground truth is normakypnesented as a binary image in which
pixels belonging to vessels have been manually ll&beby experts. Sensitivity and
specificity are the factors which indicate the ratesuccess of classifying vessel and non-
vessel pixels, respectively. Accuracy, on the otfaard, is an overall measure of the ratio of

total well classified pixels with respect to grounath.
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Table 2-1 The confusion matrix of measures properti

Real class

T F
P True Positives False Positives

Predicted class

N | False Negatives True Negatives

Taking table 2.1 into account, the terms can beesged as

Sensitivity = s
ensitivity = — TEN
Specificity = TNTJIrVFP (2.1)
TP+ TN
Accuracy =

TP+ FP+TN+FN

2.1.2 Receiver operating characteristic (ROC) curves

The receiver operating characteristic (ROC) cusva general tool to assess the performance
of a classifier [203]. In general, a ROC plot igveo-dimensional graph in which false
positive fractions (FPF) is plotted on the x axisl &rue positive fractions (TPF) is plotted on
the y axis. For a binary classifier, the outputngy a class label (e.g. either T or F, either 1 or
0). Each this classifier produces a pair of TPH; EBrresponding to a single point in a ROC
graph. The point plotted closer to the top leftn@wrpresents the better performance of the
classifier. For some other classifiers (e.g. Neoslork, Native Bayes Classifier), normally
the output is an instance probability or score,avhgan be further used with a threshold to
produce a binary classifier, each threshold vaheglyces a different point in ROC. A ROC
curve is then constructed according to those pokliese, a ROC curve plots true positive
fractions (TPF) versus false positive fractions KFmy thresholding the image (e.g. a
probability map) with different values startingnd) up to 1 with a step size of 0.001, where
the TPF is calculated by dividing the number oktpositives by the total number of vessel
pixels in the ground truth and the FPF is the nundbdalse positives divided by the total
number of non-vessel pixels of the ground truthe (sguation 2.2). TPF (true positive
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fractions) is also equal to sensitivity, and FPE&Is@g positive fractions) is equal to (1-
specificity). An ROC curve plotted closer to theptteft corner is indicative of better
performance of the method. Therefore, the incrgagatue of the area under the curve means
better performance, the best value of the AUC & on

TP
TPF = Sensitivity = -

(2.2)
e Fp
FPF = (1 — Specificity) = -

2.2 Available Materials

Standard sets of images make it possible to complaee performance of different
segmentation approaches under the same circumst@oceomparative measures can be
generated. The DRIVE [132] and STARE [133] databasevide such materials as they are
publicly available and have been widely used byastrall of the previous methods. A

summary of these retinal fundus image databage®esented in the following subsections.

2.2.1 DRIVE database

The DRIVE database was collected by Staal et @R2][land is publicly available on the
website: _http://www.isi.uu.nl/Research/DatabasedHR 40 images were captured by a

Canon CRS5 fundus camera at a°4®ld of view, each image was digitized with size

565x584, captured at 8 bits per colour plane amdpcessed, stored as TIFF format. The
database is divided into training and test setgrevieach set consists of 20 images. The
manual segmentations are available for both setsthie test set, manual segmentations are
provided by two observers. In practice, the fiest is used as ground truth whilst the other
one can be used to provide a reference indepemdeman segmentation, which can be used
as a measuring standard to qualify the computeergéed segmentation. However, only one
set of manual vessel tree segmentations is availakthe training set. Additionally, a mask

for each image is available for both sets and tlais be used to remove the rim border
surrounding the field of interest. Compared witle t&STARE database, the condition of

images in the DRIVE database is less complex, smust of the samples are normal cases.
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2.2.2 STARE database

The STARE database was originally collected by Hwat al.[90], and is publicly available

on the website www.ces.clemson.edu/ahoover/staited. database consists of 81 fundus

images captured by the TopCon TRV-50 fundus camteaa35field of view. The images are
stored as PPM format, 8 bits per colour channel digdalized with size 700x605. The
dataset contains two sets of hand-labelled growtid made by two observers, each of which
contains 40 binary manual segmentations imagesnblieks are provided. Compared to the
DRIVE database, the conditions presented are momgplex, as 10 of 20 images contain
abnormalities. Also, the number of ground truth gesis not as comprehensive as provided
in the DRIVE database. However, it has irreplaceaallue for retinal vessel segmentation
research, since it provides some examples of padluall changes in the fundus image which
may appear in routine clinical application and npagsent more difficulties for automatic

vessel segmentation algorithms.

2.3 Retinal vessel segmentation methods

We would like to emphasise that the categorizatodnreviewed retinal blood vessel
segmentation methods presented here does not teladestrict taxonomy. Many recent
retinal vessel segmentation methods normally atimbiniques which have been proposed by
earlier researchers to resolve some particular lpnab (e.g. image smoothing, feature
extraction, pattern recognition etc.), and sometlidm employ hybrid techniques to
implement retinal vessel segmentation. In this case aggregated the methods which use
similar key techniques (algorithms) into the samasug when we reviewed them. Here the

reviewed retinal vessel segmentation methods ameagty divided into four categories:
(1) Matched filtering;

(2) Vessel tracing/tracking;

(3) Classifiers

(4) Model-based segmentation.

We introduce these segmentation methods by eaegargtin the following sub-sections.
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2.3.1 Methods using matched filters

The basis of matched filtering methods for extragtascular structures is derived from the
concept of signal detection, in which a filter kelris modelled as a template based on the
known information in a signal. The modelled temglatan then be correlated with an
unknown signal in order to detect the presencéheftemplate in the unknown signal. For
retinal vessel extracting purpose, the approachvalees the retinal fundus image with
multiple 2-D kernels (templates) to generate c@wasling filter responses which are able to
represent vascular features. Those templates (2w&arl kernel) are designed by taking
known information into account. (e. g. the vess@lss-sectional intensity profile can be
approximated by a Gaussian shaped curve). A classiched filter (CMF) was proposed by
Chaudhuri et al. [85] for retinal vessel segmeatatBecause of its simplicity, the CMF has
been employed and further studied by other reseesdbr a long time. Matched filter based
methods are normally combined with threshold-basggmentation methods to obtain a final
binary segmentation result. There are several dtions of using CMFs. The efficiency of
the algorithm may be affected by the size of thierfikernel. A large convolution kernel
which needs to be rotated at various orientati@ssilts in increased computational costs.
Moreover, it is difficult to extract various vesseldths using a filter set at one scale. As such
the kernels size is determined by scale parameikish are selected to model a specific
range of vessel widths. As a result, if a wide eeselated parameter is selected, many
capillaries may fail to be detected. Additionalthe Gaussian kernel of the CMF will
recognize non-vessel objects indicative of cerfathologies as vessels structures and this
may influence the accuracy of segmentation. Gitenadvantages and limitations, CMFs
have attracted extensive further investigationsrétinal blood vessels detection in fundus
images. Most of the proposed methods improve thd= @yl modifying or optimizing the
filter kernel to overcome some of the limitatiomghile other approaches combine the CMF

with other techniques to achieve more accurateopednces.

In the literature [86], the Gaussian function mo{#b] was further studied and an
amplitude-modified second-order Gaussian filter wegposed by L. Gang et al. [86]. They
optimized the parameters of the matcher filter mathematical analysis and experimental

simulation. In their work, they demonstrate that tptimal Gaussian filter to detect vessels is

given when the parameteequals 3.5, whereis the power ob in amplitude factorj%)
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of second-order Gaussian filter (referring to thguation 5.5). The most significant
contribution of their research is that they showtth is possible to measure the vessel
diameter with a matched filter using parametersniec from a training set. Using this
methodology in the vessel segmentation process,stlogess rate of detection can be
improved. The proposed method is evaluated on 4@icdundus images and the authors

reported 94.3% of blood vessels can be detected.

M. Al-Rawi et al. [87] also improved the performanaf the CMF by optimizing the filter
parameters. Three important filter parameters andT are optimizedl( indicates the length
of the vessel segment that has the same orientf@idno defines the spread of the intensity
profile; T is a parameter used to truncate the long doubésidails of the Gaussian curve). In
[85] parameterd, o andT are 9, 2 and 6, pixels. M. Al-Rawi et al. optindzghem to 10.8,
1.9 and 8 pixels respectively by comparing the ssagation results to corresponding ground
truth. The termaccuracy(94.3%) equals the TPR (true positive ratio) mithes FPR (false
positive ratio) was used to optimize parameterss TiQure represents an important reference
when searching for better values of parameters.nikibde, their experiment also showed
that the green channel is more appropriate thagr dthnds (Red, Blue) for generating more
true positive responses. The final segmentationlteesire obtained by using an automated
threshold selection method, which considers diffeconditions of the number of connected
components and Euler number. They present expetainesults using the DRIVE database
and demonstrate an average accuracy is 0.953vad35 AUC.

Cinsdikici and Aydin [88] proposed a hybrid modsing a matched filter and ant colony
algorithm. Their novel method overcomes an impeidecof the CMF by improving the
performance of detecting thin vessels (capillarid$)e procedure of vessel segmentation
comprises two parallel stages, one using the CMFtlaa other using the ant algorithm. At
the end of the procedure, they combine the segri@mti@sults with a logical OR operation
and then use a length filter to remove disconnestginents to get the final segmentation
results. Before implementing the vessel extractibey add a pre-processing step to enhance
the contrast between vessels and background, ichwbnly the green band of a RGB image
was obtained. Then they applied a nonlinear intgmisinsformation on the green band image.
Finally, the image is divided into several smatlesblocks, which are further classified into
blocks containing vessels and non-vessels by miegstine entropy value. Those blocks
containing vessels are utilized by a vessel extrggirocess. This method has two limitations:
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first, two types of parameters need to be set (paters relating to the ant colony and the
CMF) and this may reduce the robustness of apprdaebond, the segmented vessels are
thicker than those vessels identified in groundhtr(manual annotation of vessels). This
tends to increase the FPR, and reduce the prasticdlthe application, since one of the
applications of vessel segmentation is to measheewidth of vessels which manifest

pathological changes in images.

Zhang et al. [89] proposed a novel extension ofGMF approach named MF-FDOG to
detect vessel structures and distinguish the vedsmih edges of non-vessel structures. It
segments the vessel objects by thresholding theateimage’s response to a zero-mean
Gaussian function, whilst using the local meanhef tesponse to the first-order derivative of
Gaussian (FDOG) to adjust the threshold level depto remove the non-vessel edges. The
algorithm is developed based on the fact that tlessesection of a vessel is a symmetric
Gaussian function but the step edge is asymmeisperimental results using MF-FDOG
reveal that the MF-FDOG optimizes the CMF by redgcihe false detections, whilst the
CMF function is enhanced by detecting many finesets which are miss-detected by the
CMF. A limitation of the method is that the segnatiuin is sensitive to noise and so some

noisy patterns may be detected as vessels.

Hoover et al. [90] proposed a vessel segmentatiethoad based on local and global
vessel features. The segmentation is implemented) Uscal vessel attributes and region-
based attributes. The responses of the CMF argsathin pieces and thresholded using an
interactive probing technique. At each iteratioapsta decision to continue to extend the
probe is assessed by region-based attributes tedtggeces whilst pixels in such pieces are
segmented as vessel or non-vessel. Pixels whichardetected as vascular candidates by
the probe are recycled for further probing. Th@meparative evaluation results demonstrate
that the proposed method reaches about 80% setysaind 90% specificity.

In the literature [91], the matched filter is coméd with other categories of filter as a
general tool to enhance the vascular structuree¥\al. particularly focused on dealing with
the capability of detecting thin vessels. The freumik of their method can be split into three
steps: a pre-processing step, a vessel enhancsiteenand a segmentation step. In the pre-
processing step they remove the image noise andthnttee image by a nonlinear diffusion
technique, which is able to smooth the image withdurring vessels boundaries. In the
vessel enhancement step, they use a compound ddrgc which combines Hessian-based
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filters, matched filters, and incorporates edgest@amts of vessels. The advantage of
employing a Hessian based filter is that it canagck vessels of various sizes and estimate
their directions simultaneously. However, Hessiasdual filters can't distinguish step edges
from vessels effectively. A CMF is employed by adesing its effectiveness on
distinguishing step edges from vessels. To solegthblem of false detection of edges using
the CMF, they analyse the edge information at tbenbary of vessels based on an
assumption that a vessel should have two edgesdnsde of it. In the segmentation step,
the vessels are tracked by a ridge-based algoritharhich the multiple seeds are obtained
by multiple thresholds of the enhanced image, aeditges are determined according to the

orientation and size information which are obtaifredh the enhancement filter.

Table 2-2 Performances of matched filtering bas#idal vessel segmentation approaches

Method Year Database Sensitivity Specificity Accuracy Area under the ROC
(AUC)
Chaudhure et al.[85] 1989 DRIVE - - 0.8773 0.7878
Hoover et al.[90] 2000 STARE 0.6751 0.9567 0.9275 -
Wu et al.[91] 2007 DRIVE 0.84 0.81 - -
Al-Rawi et al.[87] 2007 DRIVE - - 0.9535 0.9435
Cinsdikici and Aydin[88] 2009 DRIVE - - 0.9293 0.9407
Zhang et al.[89] 2010 STARE  0.7177 0.9753 0.9484 -
DRIVE 0.7120 0.9724 0.9382 -
Li et al.[92] 2012 STARE 0.8069 0.958 0.9461 -
DRIVE 0.7154 0.9716 0.9343 =
Odstrcilik et al. [93] 2013 STARE 0.7847 0.9512 0.9341 0.9569
DRIVE 0.7060 0.9693 0.9340 0.9519

Li et al. [92] proposed multi-scale vessel ext@attischeme based on matched filter
responses at 3 scales with optimized parametersh Ee@ale is designed to extract specific
widths of vessels, of which the first scale is usednhance thin vessels and third scale is for
wide vessels. The middle scale can generate apat®pesponses for both tiny and wide
vessels. The parameters are optimized by deteittengnaximal filter responses through scale
space. The final segmentation is derived from abbethresholding procedure based on
selected responses at two scales. Experimentdtgemmonstrated the performance of their

simple and effective method.
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More recently, Odstrcilik et al. [93] proposed aveb method for retinal vessel
segmentation in which a matched filtering processproved. After performing illumination
correction and contrast equalisation of the fundusge in a pre-processing stage, the pre-
processed image is then convolved with each offilbker kernels. Then each maximal
response is combined into one map. Five 2-D filteingch cover five different blood vessel
widths were designed according to blood vesselkesestional intensity profiles. These filter
kernels are designed by fully considering the Vessfection issues, whilst each designed
filter kernel is rotated into 12 different orientats in order to cover all possible vessels’
directions. The segmentation is derived by apphanipresholding method on such a map.
The proposed approach is evaluated on their new-feigolution fundus image database
(HRF), DRIVE and STARE, respectively.

We summarise the performances of the matched Glsed retinal fundus image vessel
segmentation approaches we reviewed in table ZZré@sent the comparative performance
of those methods under the same circumstance stwadéthods which are evaluated on either
DRIVE or STARE databases or both. The measureme#=ither a set of evaluated terms
(sensitivity, specificity and accuracy) or a figuepresenting the area under the ROC (AUC)

(see section 2.1 for more details). All data aniéected from the respective published papers.
2.3.2 Methods tracing vessel structures

Segmentation approaches that trace retinal vesselsalso known as tracking based
approaches and tend to work particularly well @ingle retinal vessel rather than on a whole
image. Commonly, an algorithm starts from initiglgs points of interest on the vessel or
detecting its centreline by connecting each pixéhea centre of the longitudinal cross-section
of a vessel. Then the optimized path which matehesssel profile model according to some
local information is traced outwards in directiombich the vessels spread. The points of
interest in respect of vessels can be detected) wassel feature extraction techniques (e.g.
matched filters), whilst different sketching teatunes can be adopted for detection of the
vessel centreline. The advantage of segmentatidmigues that trace vessels is that the
corresponding vessel segmentations have accuralkih &nd these features are important
signs for pathology assessment, e.g. vessel diammatasurement for diagnosis of

hypertension. However, vessel tracing methods havttions for detecting some branches

of vessels, such as arterioles and venules, aslvasssings produce occlusions which may
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interfere with the tracing procedure. Also somenbhees may be excluded if initial points

(seeds) are not identified within those branches.

Echevarria and Miller [94] reported a method thaliaes the level set method [117] to
remove the noise followed by using a fast marchimgghod to trace the vessels. Initially,
they use a CMF to enhance the contrast of vesgeis.terative tracing process is
implemented using the fast marching method, in tvhidtial seeds placed at interfaces
within major vessels are spread until all pixelsha image are covered. In this procedure, a
double thresholding technique is employed to locatgons of vessels pixels and seed the
interface. In the spreading process, a speed tim¢k) of a seed interface is constructed,
which takes into account the gradient of areasénitnage and the curvature of the interface.
The interface is propagated by solving the boundarynulation differential equation
|[VT(x,y)|F = 1, where T(x,y) donates the time the interface passes throughra(xg) in
the image. The minimum time value of each pixelgsed in the tracing step to judge whether
the pixel belongs to vessels or not. This procedume until all the interfaces are stable. The
output of the fast matching method is then revibgda level set method to get the final

segmentation.

Wu et al. [95] proposed an automated blood vessghentation method which combines
a vessel enhancing step, feature extraction steg,vassel tracing step. They employ an
adaptive histogram equalization (AHE) techniquernibance the vessel from the background.
To classify the blood vessels and non-vessel ahjebt different texture features of both
vessels and non-vessels structures are obtainadgiby a shape-based standard deviation
filter (GS). The significant function of the featuextraction stage is detecting the small
vessels, since these produce a significant resgortke GS. The contrast-enhanced map and
GS-filtering map obtained from the previous twagopstare further used to track the larger and
small vessels in the vessel tracing step. In thmathod, initial seeds are set by combining
results obtained through three ways. First, theeSdletector is applied on the contrast-
enhanced map to obtain edges of large vesselsn&elmral maximal points are selected
from the GS-filtering map as candidates. Third, fibgal maxima from the responses to a
CMF are also calculated as candidates. The trgmimgess starts from the seeds and proceeds
in a forward detection, employing bifurcation idénation and backward verification. The
drawbacks of this vessel tracing method are firgtly performance depends on the selected

seeds. The authors report that most false detsctiom due to incorrectly identified initial
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seeds. Secondly, there are lots of ‘rags’ on edobdbcapillary in the segmentation result.
The method is evaluated on the STARE databasehenalthors report 84.3% sensitivity and
96.1% specificity.

Tolias and Panas [96] proposed a new unsupervisesy falgorithm to track vessels. In
their method, the optic disc (OD) is detected aseldduas a starting point for the vessel tracing
procedure. The pixels on the circular boundaryhef optic nerve are detected and formed
into a sequence. These detected pixels are fudlassified into vessel and non-vessel
regions using the fuzzy C-means (FCM) clusterirgpathm. Within each classified vessel
relative region three dark pixels are initially ihefd as vessels. Then the centres of these
regions are defined as seeds. A fuzzy vessel trggiiocedure is applied on each selected
seed. The vessels are tracked by finding memhefshctions of two structures (vessels and
non-vessels). More vascular memberships of pixelhe profile indicate a higher possibility
that the pixel belongs to a vessel. The advantddkeoproposed method is that only local
intensity information is used unlike other vesselcing methods which may demand
information on more complex profiles (e.g. edgeoinfation). This advantage makes the
method more automatic and efficient. Additionatlye method has robust performance and is
able to deal with vessel junctions. The signifamf this method is that it can be used to

trace vessels in images from other modalities giagraphy [96].

In the literature [97], Chutatape and Zheng progoaeetinal vessel tracking scheme
which employs a second-derivative Gaussian, mattliedand extended Kalman filter. The
second derivative Gaussian is used to locate liptints and detect the width of vessels.
The extended Kalman filter is used to estimatentia possible location of vessel pixels. The
vessel tracing process starts from the circulambaty of the optic disc (OD) and local
maxima of the response to the matched filter detfieecentre of the blood vessel sources. In
the vessel tracing process, a source pool is aaristt, in which every source (seed) is
considered as a potential starting point of a uessel the Kalman filter is initialized on the
start point taking into account its direction. Toytimal estimation of the next position is
given by the Kalman filter, and then the Gaussiterflocates the next vessel segment based
on the estimated position and direction. If theefildetects pixels on branching vessels then
these points are added to the source pool as arswibiece seed. This iteration continues until

the endpoint is detected by the Gaussian filter.
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A novel multi-scale line-tracking scheme is progbser retinal vessel segmentation by
Vlachos and Dermatas [98]. The algorithm startsélgcting potential seeds according to a
brightness selection rule and the procedure coasimnuntil a cross-sectional profile condition
becomes invalid. Multiple individual image mapsatelg to each scale are combined to
generate the multi-scale image map, which contéiesestimated confidence of vessels
related to pixels. The initial segmentation is ai#d by quantising the map which is
represented as a multi-scale confidence matrix.fifta¢ segmentation is generated by using
a median filter to join disconnected vascular fragts followed by a post-processing stage to
remove the false positives. The proposed methcal/aduated on the DRIVE database by
measurements of the sensitivity, specificity andusacy. The results show that the average
accuracy of the proposed algorithm is 0.929 withues of 0.747 sensitivity and 0.955
specificity. The major limitation of the methodtigt it is sensitive to noise and abnormities
in images thus the vessel segmentation resultscoriain non-vessel objects. This results in

correspondingly high misclassification rate.

Delibasis et al. [99] proposed a vessel tracingreggation method. The tracing routine
uses a geometric model to represent the vessid) (stnich is used to discover the relation
between the fitted model diameter and vessels deaama set of initial seed points located
close to the vessel centreline are detected and eacdidate is considered by a model
matching routine which takes into account the Istap orientation and measurements to
constrain the search space. The vessel diameted foy the matching algorithm is used to
segment the vessels. The proposed algorithm isaeféggtive however it exhibits a stochastic
behaviour which is caused by an initialization gaare that employs random seeds. The
proposed method is evaluated on the DRIVE datalddseresults demonstrated 72.88+0.63
sensitivity, 95.05+0.35 specificity and 93.11+0&%uracy.

A principal curve based retinal vessel segmentatjgoroach is proposed by You et al.
[100]. The appearances of vessels are enhancegl arsiisotropic Gaussian kernel and Frangi
filter. A multi-scale principal curve projectios applied to associate pixels to vessel ridges
and the branches of each ridge are then tracedsreely by the principal curve tracing
algorithm. The tracing procedure starts from ada#ate seed on the principal curve, and
then the vessel centre lines can be traced thrthagltangent subspace according to proper

directions and step length. The approach is impteetk and evaluated on the DRIVE

42



database. The corresponding measurements of peaficen(sensitivity, specificity and
accuracy) are 0.8033, 0.9594 and 0.9456, respéctive

Ocbagabir et al. [101] proposed a novel ruled-bdsstng algorithm for retinal vessel
segmentation, which is called a star networked Igpezking algorithm. Following a pre-
processing and vessel enhancement procedure, eadhopthe entire image is compared
with its four neighbouring pixels aligned at 45° the tracking process. Using local
information, pixel connections along eight orieittas are checked iteratively and pixels are
classified as vessels or not. The major advantagfeedracking algorithm is that it is able to
reduce the interference due to noise and artefactbe image when tracing the vessel
structures. The proposed method is evaluated o®RI¥E database and achieved overall

95.83% accuracy.

Table 2.3 illustrates the evaluated performandessensitivity, specificity, accuracy and
AUC measured on the DRIVE or STARE databases. Sassel tracing methods reviewed
above are excluded from the table, as those metweds evaluated by neither DRIVE nor

STARE, or published without any evaluation results.

Table 2-3 Performances of tracing based retinadelesegmentation approaches

Method Year Database Sensitivity ~ Specificity Acayra (AUC)
Wu et al.[95] 2006 STARE 0.8430 0.9610 - -
M. Vlachos and E. 2010 DRIVE 0.7470 0.9550 0.9290 -
Dermatas[98]

Delibasis et al.[99] 2010 DRIVE 0.7290 0.9510 0.9310 -
You et al. [100] 2011 DRIVE 0.8033 0.9594 0.9456 -
Ocbagabir et al.[101] 2013 DRIVE 0.7130 0.9820 0.9580 -

2.3.3 Classifier based methods

The basis of classifier based retinal vessel setatien methods is that an unknown element
or pattern within the fundus image is categorizedvéssel or non-vessel by algorithms
according to various forms of features. Commorilis procedure is divided into two stages:
first, the connected spatial regions with corresinog features are detected by a low-level
algorithm. Then those candidate regions are cladsito vessel or non-vessel (background)
based on the extracted features. According toreifiees of classifier training schemes, the
approaches for vessel segmentation can be divided two categories: supervised and

unsupervised approaches. The supervised retinadelesegmentation approaches need
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information from prior labelling which is providedh a training stage. The labelling
information provides indications of vessels or n@ssel structures in a set of training sample
images. Conventionally, the experimental trainingtad may provide such segmented
reference images known as ground truth which aoglymed manually by some expert
observers. For instance, the ground truth vesselsnarked or labelled precisely by one or
more ophthalmologists. As the name implies, thaipas/ised approaches perform the vessel
segmentation without aid of any prior manual labgllinformation. The classifier or model
of unsupervised methods are trained in order t@gxphe inherent characteristic features of
vessel and non-vessel structures in retinal imalgas subsequently are used as criteria to
determine whether a pixel belongs to vessel or Tioe following reviews of segmentation
methods based on vessel segmenting are categantedsupervised and unsupervised

approaches, respectively.

® Supervised classifier-based retinal vessel segmetite on fundus images

Staal et al. [102] proposed a classifier basedaktiessel segmentation based on extraction
of vessel ridges. The detected ridges are usegttace the vessel primitives (line elements)
which are defined as a coordinate frame for partitig an image into convex set regions by
assigning each pixel to the closest line elememntt.elvery pixel, features are calculated from
a convex set of regions that follows a featurect®le scheme using a sequential forward
selection method. The KNN classifier is applied dtassification of the feature vectors. The
method is evaluated on two databases. One is tteehitdatabase which is obtained from a
screening program in the Netherlands, and the atheris STARE. The results outperform
the method proposed by Hoover et al. [90] andchiieved 0.9516 accuracy with 0.9614
AUC.

Soares et al. [103] proposed a scheme using th&&ir wavelet to implement noise
filtering and feature extraction. Then they use@aussian mixture model (GMM) classifier
which is derived from a Bayesian classifier to deiee whether a pixel is vessel or not.
Each class-conditional probability density funcids described as a linear combination of
Gaussian functions. The pixel’s feature vectorscaraposed of the pixel’'s intensity and 2-D
Gabor wavelet transform responses. Extraction afufe vectors is based on a 2-D Gabor
wavelet basis which is a complex exponential mdddl&aussian that can be fine-tuned to
specific frequencies and is capabledgttecting oriented features. The classifier isnedi

based on manual segmentations of training imagesir Experimental results demonstrate
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that the GMM classifier has good performance whichieves 0.9466 sensitivity on DRIVE
AND 0.9480 sensitivity on STARE.

In paper [104], Ricci and Perfetti proposed a edtiressel segmentation technique based
on a simple line operator. The method is compoded feature extraction stage and a
classification stage. Three categories of featwee taken into account to generate feature
vectors. Linear features of vessels were calculassgd on the average grey level along lines
of 15 pixels length passing through the targetIpatel2 orientations. A line of three pixels
length which is orthogonal to the main line was Eyed to discriminate features of inside
vessel pixels. Additionally, the grey level of thigel was considered as a third feature. In the
classification stage, they proposed two schemesvéssel classification. They adopted
unsupervised classification by thresholding onhihsic line detector’s responses in the first
scheme, which is further developed in the secopersised scheme by employing a linear
support vector machine (SVM) as a classifier. Thappsed approach only requires a small
training set for vessel classification accordinghe produced features. Experimental results
are evaluated on the STARE and DRIVE databaseltiregin average accuracy of 0.9646
and 0.9595, respectively. The area under the RQEZ(As 0.9680, 0.9633.

Rezatofighi et al.[105] employed the contourlehsfarm technique to enhance the vessel
contrast from background that contributes to detagillaries from the low contrast fundus
image. The features are produced by Local BinatieRa(LBP) and morphological methods.
The classification is implemented by using the #&sgapMulti-Layer Perceptron (MLP),
Artificial Neural Networks and Adaptive Neuro-Fuzzinference System (ANFIS),
respectively. The comparative results demonsthatethe performance of ANFIS classifier is
better than the MLP classifier, where the MLP dfgss achieves accuracy of 0.9221,
sensitivity of 0.6944 and specificity of 0.968, hexer the ANFIS achieves relatively better
measurement, with accuracy of 0.9410, sensitiViit§.8308, and 0.9723 specificity based on

evaluation of the DRIVE database.

Moin et al. [106] presented a low dimensional featector extraction method for vessel
and non-vessel classification. Four features wétaioed by implementing Gabor wavelet
and Local Binary Patterns (LBP). For extractingsenagotation variant features, the Gabor
kernels were rotated on 18 different orientatioRsr extracting rotation and gradient

invariant features, rotation invariant LBP was eoypd. The supervised classification is
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based on training the GMM classifier which is tlane as Soares et al. employed [103].

Their computational results show the high efficken€the proposed method.

Lupascu and Tegolo et al. [107] collected varioassel relative features based on the
local, spatial and structural properties of vessalgl1-D feature vector was generated for
each pixel in the image. These feature vectorsisbmd responses of different filters.
Features from vessel boundaries were calculated®gussian related filter (first and second
order derivative Gaussian) and vessel likeliho@lures were obtained by matched filters at
multiple scales. Spatial features were measurderéygi, Lindeberg and Staal measurements
[107]. Gabor wavelet transforms were employed toaece vessel contrast. Intensity features
were obtained by numerical estimators. The clasgibn is implemented using the AdaBoost
classifier which is an iterative boosting algorithin this approach a strong classifier is
produced by a weighted combination of weak clamsfin the algorithm. The AdaBoost
classifier is trained on 789914 gold standard sempif vessel and nonvessel pixels. The
proposed method is tested on the DRIVE databaset authieves 0.9561 AUC with 0.9567

accuracy.

Marin et al. [108] proposed a novel supervised oeflor retinal vessel segmentation in
digital retinal images. The method adopts a nemetivork (NN) to achieve a pixel
classification task based on a 7-D feature vedteaah pixel which comprises grey-level and
moment invariants-based features. The procedulades four stages: first pre-processing
for enhancing the vessels appearance. Second, |srefessture extraction for pixel
characterization which can be used in the clasdifio stage. In this stage, each pixel is
characterized by a vector in a 7-D vector spacerdItlassification is implemented to
determine whether the pixels belong to vesselsobr The classification step handles the
following two tasks: training and application. TN& configuration is initialized before the
NN is trained in the training step. The outputted application task is a vessel probability
map. In order to get the binary segmentation, estiwlding scheme on the probability map is
employed. Finally, the pixel gaps are filled aneglesegmentations are removed in the post-
processing stage. The method was evaluated onDRIME and STARE databases and the
experimental results present accuracy of DRIVE &WARE is 0.9454 and 0.9525,

respectively.

Selvathi and P. Lalitha Vaishnavi [109], comparesupport vector machine (SVM)
classifier and relevance vector machine (RVM) dfessfor retinal vessel segmentation.
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Each classifier is used to classify each pixel essgl or non-vessel based on the pixel’s
feature vectors, which are produced by using a Galavelet combined with the pixel's
intensity information. They investigate and compé#ne two classifiers on the STARE
database. As a result, their experimental resuiggyest that the SVM classifier produces
better results than the RVM classifier, which agbge0.6585 sensitivity, 0.9666 specificity

and 0.9447 accuracy, however the RVM takes less énd incurs less computational cost.

Fraz et al. [110] proposed a supervised retinadelesegmentation method according to a
7-D feature vector. The features for each pixelexacted using a combination of multi-
scale Gabor filters, line strengths and morpholagicansformation. The Gabor filters and
line strengths are sensitive to the area contaipitpologies in the fundus image, so the
morphological top-hat transformation is employedal with such issues. The segmentation
is obtained by using a Gaussian Mixture Model (GMNgssifier. The method is evaluated
using the images of both DRIVE and STARE databassslting in average sensitivity of
0.7525, average specificity of 0.9722, and averageuracy of 0.9476 on the DRIVE
database and 0.7604 sensitivity, 0.9812 specifiaitgd 0.9579 accuracy on the STARE
database. The area under the ROC curve is alsoumsdafor each database and the result
demonstrates AUCs of 0.9616 and 0.9734 for the [ERdVid STARE databases, respectively.

Condurache and Mertins [111] proposed a novel seh&endesign a fast and accurate
classifier for binary classification purposes. Sabvelassifiers are designed for segmenting
vessel from background in the scheme. Two optimitassifiers are produced: pessimist and
optimist, of which the former one represents ttghkionfidence classifier and works with a
practically zero false-positive rate and a higlsdéahegative rate, the latter one is the low-
confidence classifier and works with a practicalgro false-negative rate and a high false-
positive rate. The classification is implementeddzhon a multidimensional feature vector
for each pixel. The vessel relative features atainbd based on five different vessel maps
which are generated by employing 5 categories aisfiorms: Bot-hat transform, Hessian
transform at a single scale; multi-scale Hessiansfiorm, Band-pass filter and Laplacian
pyramid transform. The proposed scheme is testell emaluated on both DRIVE and
STARE. The experimental results show sensitivit) &094, specificity of 0.9591, accuracy
of 0.9516 and AUC of 0.9094 on DRIVE database, sthsensitivity, specificity, accuracy
and AUC of STARE database are 0.9094 0.9094, 0.95610.9516, respectively.
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Table 2-4Performances of supervised classifier-based retesdel segmentation approaches

Method Classifier  Year Database Sensitivity Specificity = Accuracy (AUC)
Staal et al. [102] kNN 2004 DRIVE 0.7194 0.9773 0.9441 -
STARE - - 0.9516 0.9614
Soares et al.[103] GMM 2006 DRIVE - - 0.9466 0.9614
STARE - - 0.9480 0.9671
Ricci & Perfetti [104] SVM 2007 DRIVE - - 0.9595 0.9633
STARE - - 0.9646 0.9680
Rezatofighi et ANFIS 2008 DRIVE 0.7308 0.9723 0.9410 -
al.[105]
Moin et al. [106] GMM 2010 DRIVE - - 0.9447 0.9515
Lupascu et al. [107] AdaBoost 2010 DRIVE - - 0.9561 0.9567
Marin et al. [108] NN 2011 DRIVE 0.7067 0.9801 0.9454 0.9588
STARE 0.6944 0.9819 0.9526 0.9769
Selvathi et al. [109] SVM 2011 STARE 0.6585 0.9666 0.9447 -
Fraz et al. [110] GMM 2011 DRIVE 0.7525 0.9722 0.9476 0.9616
STARE 0.7604 0.9812 0.9597 0.9734
Condurache & hysteresis 2012 DRIVE 0.9094 0.9591 0.9516 0.9726
Mertins et al. [111] -classifier STARE 0.8902 0.9673 0.9595 0.9791

We summarize measurements of the reviewed supdrvidassifier-based vessel
segmentation method on fundus images in tableir2 which the contents are categorized by

rows with corresponding authors and classifiers.
® Unsupervised classification methods

Salem et al.[112] proposed a radius based clugtatgorithm (RACAL) for segmentation of
blood vessels from colour fundus images. The pregasgorithm uses a distance based
principle to map the distribution of the image psxavhere the number of clusters does not
have to be specified. The features extracted froenimage can then be clustered by the
RACAL. These features include: pixel intensity loé tgreen channel; the local maxima of the
gradient magnitude; and the local maxima of thgdar eigenvalue of the Hessian matrix. A
comparison of the proposed algorithm and a kNNsdias is implemented. As a result, they
conclude that the RACAL performs better than thé\kiN the case of detecting capillaries.
In the segmentation stage, the RACAL is aided Ipamial supervision strategy and defined
as a classifier for vessel classification, in whittte trained clusters are assigned to
corresponding manually defined classes of groumdh timages. The proposed method
achieves sensitivity of 0.8215 and specificity &F@b0 on the STARE database.
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Kande et al. [113] proposed a retinal vessel setptien method using the pixel intensity
information from both red and green channels tastdjhe non-uniform illumination in the
colour fundus images, followed by a vessel enhaec¢ratage by using matched filtering.
Enhanced vessels are segmented by adopting spateitjhted fuzzy C-means cluster based
thresholding, which takes the spatial distributadnmage pixel intensities into account. The
final segmentation is obtained by using label fittg to remove some misclassified pixels.
The proposed method is evaluated on the DRIVE amiRE databases and it achieves an
area under the ROC (AUC) of 0.9518 and 0.9602, @uracy of 0.8911 and 0.8976,

respectively.

In [114], Oliveira et al. proposed an unsupervisgtthal vessel segmentation procedure
using a combined filter which includes a matchéigrfi Frangi filter and Gabor filter. The
combined filter is used for vessel enhancement @rdesponding feature extraction. The
extracted features are then clustered by a fuzzye@ns algorithm (FCM) to implement
vessel segmentation based on their observationtieahumber of non-vessel elements is
larger than vessel elements. Consequently, oneeofltistering group is used to indicate the
group of vessels pixels. The proposed unsupervistathl vessel segmentation is tested and
evaluated on both DRIVE and STARE databases, whatheves accuracies of 0.9580 and
0.9582, respectively.

Wang et al. [115] proposed an unsupervised retieakel segmentation method which
does not require pre-processing. The vessels dtallyn enhanced by using a matched
filtering with a multi-wavelet kernel in which thenulti-wavelet kernel is capable of
responding to blood vessels and non-vessel edgescl@ssification of vessel and non-vessel
is implemented by using an iterative multi-scaleraichical decomposition algorithm based
on a two-class decomposition model, which is cdietdoy one optimal scale parameter. The
final binary segmentation is derived from adoptargadaptive thresholding. The proposed
novel method is evaluated on both DRIVE and STARfablases. For those images of
DRIVE, it achieves an accuracy of 0.9441 and AUCO0d543, whilst the performance
measurement, accuracy and AUC on STARE is 0.958D8682, respectively.

Table 2.5 summarizes each proposed unsupervisedlre¢ssel segmentation method on
colour fundus images, in which those methods amicated by the corresponding

classification algorithm.
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Table 2-5 Performance of unsupervised classifiodb@sed retinal vessel segmentation
approaches

Method Algorithm Year Database Sensitivity Specificity Accuracy (AUC)
Salem et al.[112] RACAL 2007 STARE 0.8215 0.975 - -
Kande et al. [113] FCM 2010 DRIVE - - 0.8911 0.9518
STARE - - 0.8976 0.9602
Oliveira et al. FCM 2012 DRIVE - - 0.9580 -
[114] STARE - - 0.9582 -
Wang et al. [115] Hierarchical 2013 DRIVE - - 0.9441 0.9543
Decomposition STARE - - 0.9521  0.9682

2.3.4 Model based methods

Model based retinal vessel segmentation methoddaitetect the inherent vessel model to
extract the vessels tree. Two representative caesgof the model-based approach are the
vessel profile model and the deformable model. pitveciple of the vessel profile model is
that the intensity profile across a blood vessel loa described by a specific model such as
Gaussian or derivative of Gaussian. The latter ihdescribes where light is reflected within
the vessel. In this case, the matched filter [8Bictv we described in section 2.3.1 also can
be categorized as a model or template-based segtoenimethod. Conventionally, the
computation of a deformable model can be descriagda procedure that initialises a
parametric curve or surface close to the objectstefrest, and then deforms it iteratively
towards to the objects’ boundary until the procesaches convergence. According to
different contour representations, deformable nm®dein be divided into parametric and
geometric models. A representative parametric ma&lan active contour model which is
known as a ‘snake’ initially introduced by Kassakt[116]. A snake is first initialled on the
area close to the boundary of objects, and therstlake expands to fit the shape of the
desired object according to an internal and extefoie. The internal force is used to
constrain the snake’s contour while the externatdoattracts the contour to objects
according to desirable features. The geometricrdeible model is based on the level set
method [117], which is a numerical technique facking shapes. The moving contour is
characterized as a zero level set of a higher dsineal level set function. The following
model-based retinal vessel segmentation approasheBindus images are reviewed by

corresponding categories.

Wang et al. [118] proposed a retinal vessel segatient algorithm based on a multi-

resolution Hermite model. Blood vessel profiles avedelled as a 2-D Hermite function
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intensity model in a quad-tree structure over ageaof spatial resolutions. A Gaussian
intensity model is employed to model local vessehtdres, of which the optimized
parameters are further estimated by using an exfp@etmaximization (EM) scheme. The
final global vessel tree is obtained by linking tloeal features using Bayesian stochastic
inference. The developed model has robust perfoceam detect various types of vessels
which includes handling those vessels that exhiitaction artefacts. The algorithm is
evaluated on both STARE and DRIVE databases. 3atsibf 0.820, specificity of 0.933
for the STARE database and sensitivity of 0.84&cHity of 0.966 for the DRIVE database

are reported.

Lam et al. [119] employed the concavity in the insi¢y profile to model vessel or non-
vessel planes in order to segment vessels fromgbaigkd in fundus images. The proposed
method is able to segment the vessel on both namagjes and abnormal images (i.e. those
containing exudates etc.). Different concavity nuees are used to model hard exudate,
haemorrhages, and vessels, respectively after iagply perceptive transform in a pre-
processing stage. The steep intensity transitidtefpathat characterises hard exudates is
used to distinguish them from other objects, whalstthe haemorrhages exhibit an irregular
shape intensity structure and blood vessels hdve-@hape intensity structure, a line-shape
concavity detection algorithm is proposed to mathel vessel and exclude haemorrhages.
The global vessel tree that is detected relies ombining these concavity measures
according to their statistical distributions. Timeasurement of performance (accuracy and
AUC) for the DRIVE database is 0.9472 and 0.96#&4pectively. For the STARE database,
the accuracy is 0.9567 and AUC is 0.9739.

Espona et al. [120] proposed an active contour mdseake) based retinal vessel
segmentation method. Initially, the vessel skelgtane extracted which can be used to
initialize the snake and guide the contour evohutidbhe snake is initialized by intersecting
the detected optical disc (OD) boundary and vesgeletons. The external energy is
modelled as an energy function which is composeal s#t of energies and weighting factors.
Instead of using a specific internal force, theseésdge energy constrains the contour
evolution when it expands along the vessel skeleitie snake expands inside the vessel
following an iterative algorithm to minimise thesaergy functions in order to obtain the
vessel segmentation. The measurement of evaluatiothe DRIVE database demonstrates
that the accuracy, sensitivity and specificity au@316, 0.6634 and 0.9682, respectively.
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Al-Diri et al. [121] proposed a novel active contanodel for retinal vessel segmentation
and measurement. The proposed method integrateselvesegmentation and width
measurement together, which comprises severalsst&gst, an initial set of potential vessel
segment pixels is located by a tramline algoritt8acond, an active contour based model
called ‘Ribbon of Twins’ (ROT) is applied to convehe tramline pixels into a set of
segments. Each ROT contains four linked active amont of which one pair of contours
insides a vessel expand towards the internal ealg the other pair of contours locate the
outside edges and deform toward the internal cestdihe contour energy function consists
of internal, photometric and ROT energy paramefeng. internal energy models the tension
and rigidity of contours, the photometric energysed to attract the contours towards edges,
and the ROT model energy is used to capture theeVesdges. Third, a junction resolution
algorithm is developed to join up each vessel segreeproduce the global vessel tree. The
proposed method is evaluated on DRIVE and STARBl@dees and it achieves a sensitivity
of 0.7282, specificity of 0.9551 on DRIVE and séingly of 0.7521 and specificity of 0.9681
on STARE.

Szpak and Tapamo [122] proposed a geometric defdemmaodel based retinal vessel
segmentation method which employs a fast levelnssthod [124] without solving partial
differential equations to extract the contour of tiktinal vessels. The fast level set method
[124] assumes that pixels in an image can be cereidas the points on a grid. The
neighbouring grid points inside the contour areeepnted as negative values and the points
outside the contour are positive. A speed functibeach pixel determined the evolution of
the contour. In the proposed method [122], thicfiom is formed by a binary pre-segmented
vessel map which is obtained by applying a Lapla®& Gaussian on the pre-processed
image to extract edges of vessels followed by tokekng. The vessel part of the binary
vessel map constitutes a fixed positive speed,ewthié rest part of the map constitutes a
fixed negative speed. This speed field guides thaaur to gradually expand towards the
vessel edges to obtain the final vessel tree segitn@m The proposed method achieves an
average accuracy of 0.9299 on the DRIVE database.

In [123], the vessels properties are modelled liygua second derivative Gaussian filter.
The response to the filter is further analysed htaim the most probable parameters
describing the vessel. The width, contrast andctioe at each point on the blood vessel in
the image are estimated. Homogeneous zero meansi@ausoise with a statistical
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autocorrelation function is chosen to produce aeanodel in the background. The method is
evaluated on the STARE database, and achieves® s#txsitivity and 0.9530 specificity,
respectively. Table 2.6 illustrates the measuremerit performance using model-based

retinal vessel segmentation methods.

Table 2-6 Performances of model based retinal V¥esgenentation approaches

Method Algorithm Year Database Sensitivity Specificity Accuracy AUC
Wang et al.[118] Multi-resolution 2007 DRIVE 0.841 0.966 - -
Hermite model STATE 0.82 0.933 - -
Espona et al. [120] Snake 2007 DRIVE 0.6634 0.9682 0.9316 -
Szpak and Tapamo Geometric 2007 DRIVE - - 0.9299 -
[122] deformable
model
Al-Diri et al. [121] Ribbon of 2009 DRIVE 0.7282 0.9551 - -
Twins STATE 0.7521 0.9681 - -
Ng et al.[123] vessel profile 2010 STARE 0.7000 0.9530 - -
model
Lam[119] Multi-concavity 2010 DRIVE - - 0.9472 0.9614
STATE - - 0.9567  0.9739

Besides the four main categories of retinal vessgimentation approaches reviewed
above, a number of alternative methods have bemgpoped. Zana and Klein [125] employed
an algorithm using mathematical morphology and ssmsgvature evaluation to detect
vascular patterns. The morphological properties/edsels are extracted by mathematical
morphology, and then the cross-curvature evaluaisorperformed to eliminate similar
patterns which are non-vessel related. Mendonca Genrdpiho [126] proposed a retinal
vessel segmentation method combining centrelineectden and morphological
reconstruction. The vessel centrelines are exulaci@ally, and these guide the subsequent
vessel filling phase. A complete segmentation ef iétinal vessels is produced by a multi-
scale approach followed by a simple region growaigorithm. In this stage a set of
morphological operators is employed to generaters¢enhanced representations of vessels
and then image masks containing binary reconstmgtof the main vessel segments are
derived from the enhanced representations by mdérploal reconstruction. The final
segmentation is obtained by an iterative vesdeidilprocedure. Miri and Mahloojifar [127]
employed a so called curvelet transform to enhdheevessel edges before a segmentation
stage. The segmentation of the vessel tree is mgaiéed by using morphology operators for
reconstruction and length filtering. Graph techessjlhave also been employed for retinal

segmentation in the literature [128]. To enhaneecthntrast between vessels and background,
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Salazar-Gonzalez et al. [128] adopted adaptive odniatn equalization. A binary
morphological opening process was applied therdistance transform is used to generate a
distance map which is used to construct a grapha@hChung [129] used normalized cuts
for retinal vessel segmentation. The algorithm @ypla gradient matrix to locate a local
candidate window which may contain vessels. Eadldidate window is segmented using an
intensity threshold which is calculated by minimigithe normalized cut criterion. Finally, a
tracing strategy is utilized and segmentation tssalre optimized by avoiding noisy
candidate windows. In the literature [130], an yesuised retinal vessel segmentation based
on a water flooding model is proposed. The methoualisites the principle of water flooding

also known as the watershed which exploits a diglevation model.

We summarise evaluations of reviewed methods orMBRIr STARE or both databases
above in the table 2.7. Note: Cai and Chung is metuded as no corresponding

measurements are reported.

Table 2-7 Performances of other retinal vessel segation approaches

Method Core Algorithm  Year Database Sensitivity —Specificity Accuracy AUC

Zana and Klein [125] Mathematical 2001 DRIVE 0.6696 0.9769 0.9377 -
morphology

Mendonca and Morphological 2006 DRIVE 0.7315 0.9781 0.9463 -

Campiho [126] econstruction STARE 0.7123 0.9458 0.9479

Miri and Mahloojifar ~ Morphological 2011 DRIVE 0.7352 0.9795 0.9458 -
[127] reconstruction

Salazar-Gonzalez Graph cut 2010 DRIVE 0.7197 0.9665 0.9479 -
[128] STATE 0.6782 0.9729 0.9478 -
Asad et al. [130] Watershed 2013 DRIVE 0.6292 0.9821 0.9369 -

2.4 Chapter conclusion and discussion

Segmentation of retinal blood vessels in retinaldiuts images is an essential stage in the
retinal vessel analysis process. The morpholograberties of retinal vessels provide
important signs or evidence of several routineicéihdiagnoses. This is particularly critical
to diagnosis, screening, and treatment for varapighalmologic diseases, such as Glaucoma,
AMD, diabetic retinopathy (DR) and vascular disosdetc.. Automated assessment of
vascular structures in the retinal fundus imagadsepted in the clinical community as a
critical stage in the development of a computeiiséss diagnostic system for automated

detection and grading various forms of retinopathy.practice, the retinal vessel tree in the
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retinal fundus image is primarily segmented manualy experts. However, the manual
segmentation is quite time-consuming and the taskahds considerable experience. As
such, screening programs must consider the cosbdfloads (training, labour force). This
motivates studies of automatic segmentation obthed vessel networks and a large number
of approaches have been proposed. However, thdesbat of developing accurate
automatic retinal vessel segmentations are corateiand it remains a focus for ongoing
research. Such challenges include the wide rangmasifular width and tortuosity, presence
of noise in each fundus image, the low and unstialgla intensity contrast between vessels
and background, presence of pathology elementspeggknce of various optical artefacts
such as reflection and refraction within vesseispractice, the most difficult task of retinal
vessel segmentation is to detect the tiny vessglil(aries) from the background. There are
no approaches which have been proposed that szd¢abegment all capillaries completely,
to the best of our knowledge. Additionally, pathgt@l changes presented in fundus images
may be segmented as vessels. Reflection withirelessay be detected as non-vessel, as its
colour intensity is quite different from the normeéssel. Under these circumstances,
automatic retinal vessel segmentation remains asféar improvements in performance due
to the limitations of state-of-the-art methods.afge number of novel approaches have been
proposed using various modern image processingaaalysis techniques. These have been

review in section 2.3. The methods are primanlyded into four categorizes;
(1) Matched filtering based segmentation,

(2) Vessel tracing/tracking based segmentation,

(3) Classifier based segmentation,

(4) Model-based segmentation.

Matched filtering is designed by considering knoimformation that the vessel cross-
sectional intensity profile can be approximatedabgaussian shaped curve. As a specific
linear detector, its simplicity attracts many resbainterests. However, the efficiency of
algorithm may be affected by the size of design#drfkernel. Moreover, the designed
kennel may not cover various widths of vessel, &ad limitations for detecting those
capillaries. One solution to enhance the filtemledtto detect vessels is that of optimizing the
parameters of matcher filter via mathematical asialgnd experiment simulation [86][87].

To overcome the limits of the matched filter, othwmaging segmentation techniques are

55



combined with the matched filter. Such techniques presented in reviewed methods
[88][89][90]. A common solution to overcome the iinof capillary detection is increasing
the number of kernels by using kernel at multi esaWwhere each scale is designed for
specific vessel extraction purposes [92][93] oribroducing and working together with
other categories of vessel enhancement filters. [Bli¢ matched filter has specific ability to
detect the linear structures in the image. Hencdelieve it will remain a focus for ongoing

research. For instance, it can be used as anaagdisdl for vessel enhancement.

The tracing/tracking based retinal vessel segmentahethod provides highly accurate
measurement of vessel width and tortuosity. HowewNdras limitation for detecting some
branches of vessels, such as arterioles and veragesessel crossing may influence the
tracing procedure and the branch may be eliminédtdee initializing points (seeds) are not
placed on the branch. Meanwhile, the low contrasivben capillaries and background may
result in tracing failure. The tracing based metiguery sensitive to the presence of noise.
Good achievements of those methods also rely onctiical stages: the initializing and
tracing stage, in which vessel centre lines or seegled to be initialized using vessel
enhancing filters, such as using matched filtej[@®], Gaussian derivative filters [97][100],
and relying on seed selecting rules, for instasekecting seeds from the optical disc[96][97],
using a brightness selection rule [98] or guidiggsbssel centreline [99]. In the tracing stage,
the optimized path which matches a vessel profieehaccording to some local information
is traced towards to the vessel spreading direcfitve tracing process can be based on a
speed function [94], can rely on the possibilityvessel pixel belonging tdustering group
[96][98], and also can be a local vessel profiteded [99][100][101].

The classifier based retinal vessel segmentatiothhadeis originated from the machine
learning pattern recognition and classificationesesh field. The achievement of classifier
based methods relies on extracting characterigatufes from vessel and non-vessel
structures and training appropriate classifier Base such features. For classifier based
segmentation methods, many feature extraction sehdrave been proposed. For instance,
extracting features based on several transforni3 @abor wavelet, Hessian transform etc.)
and local intensity [103][106][109][111][112]. Leéwar features are detected according to grey
level [102][104], local vessel features are caltedaby Local Binary Pattern (LBP)[105][106]
and using combined filters to enhance the vesskbanerate corresponding multi dimension
feature vectors [107][108][113][114][115]. For suyeed classifier based methods, in the
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classification stage, different classifiers are kygd, such as KNN[102], NN[108],
GMM[103][106][110], SVM[104], ANFIS[105], AdaBoosip7] etc. For unsupervised
classification methods, the extracted vessel rél&atures may be clustered into a vessel
group using a clustering algorithm such as RACAL1ZL and fuzzy c-means
(FCM)[113][114]. According to our investigation ofassification methods, we find that most
state-of-the-art supervised methods have bettdompeances than unsupervised methods in
healthy retinal fundus image, since the classifgertrained based on manually-labelled
samples. However, the performance of supervisethadstis very dependent on those pre-
classified data, which may not be available in eggllications. Moreover, as Hoover et al.
[90] mentions, manual segmentation results may tsiyeificant differences varying from
observer to observer, but the equality of groumthtimay affect the trained classifier. This
state is verified by our experiment which is preednn section 5.3. In practice, such issues
have been an open problem which is challengingréutuork. Pursuing more accurate
unsupervised methods which reduce dependence® @rdbnd truth may handle such issues.
Additionally, developing supervised methods whicate a&apable of handling unhealthy
fundus images may be the trend of future work.

Model based retinal vessel segmentation methodbealivided into vessel profile model
and deformable model based approaches. Desigreofetbsel profile model is based on the
intensity profile across a blood vessel being preskas a Gaussian or derivative Gaussian in
the case of vessel reflection. In the literatur&8]119][123], some specific vessel profile
model are presented. According to different contepresentations, the deformable models
can be divided into parametric and geometric modélse good performance of the
deformable model based approach depends on thgnddsinternal and external energy
function. The advantage of deformable model basgmentation is that it is capable of
detecting tinny vessels if the evolution of contasrguided by an appropriate vessel
centreline, whilst the detected diameter of thesgkss more close to the real width. The
potential utilities of such method could be: daterthe vessels while measuring the vessel
widths, so that vessel segmentation and measureraenbe accomplished simultaneously.

Al-Diri et al. [121] give a good example of suchawplication.

Besides four categories of retinal vessel segmentatsome alternative hybrid
approaches are reviewed in this chapter. For instathe morphological reconstruction
technique is employed in approaches [125][126][1ZHe Graph cutechnique is adopted in
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[128]. A normalized cuts approach is used in [12@)d a watershed method is implemented
in [130].

Two commonly used evaluation methods are reviewHte terms sensitivity and
specificity are the factors which indicate succeste of classifying vessel and non-vessel
pixels, respectively. The accuracy indicates anmalvmeasurement that provides the ratio of
total well classified pixels relative to ground ttru The receiver operating characteristic
(ROC) curve is a general tool also used to meafirasegmentation performance. An ROC
curve plotted closer to the top left corner is aadive of better performance of the method.
The area under the curve (AUC) can also be used pearformance index. Two publicly
available databases DRIVE [132] and STARE [133]ia®duced in section 2.2 as well.

We summarize the performance of reviewed approaschdbe DRIVE database and the
STARE database in table 2.8 and table 2.9 resmdg¢tivThe methods are sorted by their

published year, and corresponding measured tererssted by each column.

The method proposed by Ricci & Perfetti [104] agbiethe best accuracy and AUC on
both databases. To provide a more intuitive vieshose methods’ performances in terms of
sensitivity, specificity and accuracy, we plot tiistogram for each method on both database
in figure 2.2 and figure 2.3. Here the x-axis h® tpublished year and y-axis represents
accuracy, sensitivity and specificity on a scal¢hwialues ranging from 0.5 tol. The best
sensitivity on DRIVE and STARE are 0.9094 and 0Z&9@espectively, reported by
Condurache & Mertins et al.[111].

Observing the tables and figures, we can see tleage accuracies of 6 methods are
over 0.95 on the DRIVE dataset, and average adesra¢ 6 methods are over 0.95 on the
STARE dataset as well. However, there are sigmfichfferences between sensitivity and
specificity, indicated by the red and green piliaroth figures. We would like to emphasise
that achieving better sensitivity without sacrifigi specificity may be the focus of future

research interest.
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Table 2-8 Performance of previous retinal vessgingntation methods on the DRIVE

database
Method Categories YearDatabase Sensitivity ~ Specificity Accuracy (AUC)
chaudhure et al.[85] MF 1989 DRIVE - - 0.8773 0.7878
Zana and Klein [125] Mathematical 2001 DRIVE 0.6696 0.9769 0.9377 -
morphology
Soares et al.[103] supervised 2006 DRIVE 0.7283 0.9788 0.9466 0.9614
Mendonca and Campiho morphological 2006 DRIVE 0.7315 0.9781 0.9463 -
[126] reconstruction
Wu et al.[91] MF 2007 DRIVE 0.84 0.81 - -
Al-Rawi et al.[87] MF 2007 DRIVE - - 0.9535 0.9435
Ricci & Perfetti [104] supervised 2007 DRIVE - = 0.9595 0.9633
Wang et al.[118] Hermite model 2007 DRIVE 0.841 0.966 - -
Espona et al. [120] Snake 2007 DRIVE 0.6634 0.9682 0.9316 -
Szpak and Tapamo [122] Geometric deformable 2007 DRIVE - - 0.9299 -
model
Rezatofighi et al.[105] supervised 2008 DRIVE 0.7308 0.9723 0.941 -
Cinsdikici and MF 2009 DRIVE - - 0.9293 0.9407
Aydin[88]
Al-Diri et al. [121] Snake 2009 DRIVE 0.7282 0.9551 = -
Zhang et al.[89] MF 2010 DRIVE 0.712 0.9724 0.9382 -
M. Vlachos and E. Tracing 2010 DRIVE 0.747 0.955 0.929 -
Dermatas[98]

Delibasis et al.[99] Tracing 2010 DRIVE 0.7290 0.9510 0.9310 -
Moin et al. [106] supervised 2010 DRIVE - - 0.9447 0.9515
Lupascu et al. [107] supervised 2010 DRIVE - - 0.9561 0.9567
Kande et al. [113] unsupervised 2010 DRIVE - - 0.8911 0.9518
Lam et al. [119] Multi-concavity 2010 DRIVE - - 0.9472 0.9614
Salazar-Gonzalez[128]  Graph cut 2010 DRIVE 0.7197 0.9665 0.9479 -

You et al. [100] Tracing 2011 DRIVE 0.8033 0.9594 0.9456 -
Marin et al. [108] supervised 2011 DRIVE 0.7067 0.9801 0.9454 0.9588
Fraz et al. [110] supervised 2011 DRIVE 0.7525 0.9722 0.9476 0.9616
Miri and Mahloajifar morphological 2011 DRIVE 0.7352 0.9795 0.9458 -
[127] reconstruction

Li et al.[92] MF 2012 DRIVE 0.7154 0.9716 0.9343 -
Condurache & Mertins supervised 2012 DRIVE 0.9094 0.9591 0.9516 0.9726
etal. [111]

Oliveira et al. [114] unsupervised 2012 DRIVE - - 0.958 -
Odstrcilik et al. [93] MF 2013 DRIVE 0.706 0.9693 0.934 0.9519
Ocbagabir et al.[101] Tracing 2013 DRIVE 0.7131 0.9824 0.9583 -
Wang et al. [115] unsupervised 2013 DRIVE = - 0.9441 0.9543
Asad et al. [130] Watershed 2013 DRIVE 0.6292 0.9821 0.9369 -
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Figure 2.2 Histograms of terms: Accuracy (Bluehsstvity (Red) and specificity (Green) on

the DRIVE database

Table 2-9 Performance of previous retinal vessgingatation methods on the STARE

database

Method Categories  YearDatabaseSensitivity ~Specificity Accuracy (AUC)
Hoover et al.[90] MF 2000 STARE 0.6751 0.9567 0.9275 -

Staal et al. [102] supervised 2004 STARE - - 0.9516 0.9614
Wau et al.[95] Tracing 2006 STARE 0.843 0.961 - -
Soares et al.[103] supervised 2006 STARE - - 0.948 0.9671
Ricci & Perfetti [104] supervised 2007 STARE - - 0.9646 0.968
Salem et al.[112] unsupervised 2007 STARE 0.8215 0.975 - -
Zhang et al.[89] MF 2010 STARE 0.7177 0.9753 0.9484 -
Kande et al. [113] unsupervised 2010 STARE - - 0.8976 0.9602
Marin et al. [108] supervised 2011 STARE 0.6944 0.9819 0.9526  0.9769
Selvathi et al. [109] supervised 2011 STARE 0.6585 0.9666 0.9447 -
Fraz et al. [110] supervised 2011 STARE 0.7604 0.9812 0.9597 0.9734

Li et al.[92] MF 2012 STARE 0.8069 0.958 0.9461 -
Condurache & Mertins et al. supervised 2012 STARE 0.8902 0.9673 0.9595 0.9791
[111]

Oliveira et al. [114] unsupervised 2012 STARE - - 0.9582 -
Odstrcilik et al. [93] MF 2013 STARE 0.7847 0.9512 0.9341  0.9569
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CHAPTER 3

3. Texture measure for segmentation

Putting aside the colour, grey level and region&nsity of an image, texture could be seen
as another important element in distinguishing ousi patterns as it provides significant
information regarding different visual featuresimages, i.e. those features that represent
visually homogeneous patterns within the image.tismives a more specific description in
[134], and defines texture as “homogeneous patterrspatial arrangements of pixels that
cannot be described sufficiently by regional intgnsr colour alone” [134]. As such, texture
has attracted extensive attention within the coeaputsion community and has been used to
perform tasks such as object recognition, surfaeengpetries analysis and image pattern
classification etc. Image segmentation or shapectien is an important pre-processing stage
in these tasks. Texture based image segmentatiarsignificant category of region based
segmentation approaches. It has been adopted widedpplications of segmentation in
images of natural scenes and has been particslaciyessful in content based image retrieval.
Reed and Dubuf [141] present an exhaustive reviet@xure segmentation, in which they
categorized the previous texture segmentation ndstito feature based, model based and
structural methods according to different featugaetion techniques they adopt. Numerous
texture segmentation methods for natural imagespesposed. For instance, Deng [135]
presented a region growing method named as JSHGatkes colour-texture patterns into
account. Blas et al. [136] proposed a fast integrapproach, in which the local colour and
texture variations have been represented by a atngedour and texture descriptor. Fauzi
and Lewis [137] extracted the features of imageters by a discrete wavelet frame and
classified the image into different texture regidayscombing the mean shift algorithm with
fuzzy C-means clustering. Moreover, texture basegimentation approaches have been
employed to address medical image segmentatiors.taék and Muhimmah et al. [138]
presented a method which aims to segment mammadgraplages into mammographic
building blocks (i.e. nodular, linear, homogeneaars] radiolucent structures). Our work is
inspired by their achievements on mammographicyxfreges and also motivated by Varma
and Zisserman’s work [139] which achieved succesdassifying a range of natural texture
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patterns. The framework provides an approach fanniag texture features which is founded
in human perception. However, only a few autho[lhave investigated structural texture
based approaches for retinal vessel segmentatitimdus images. This motivates our focus
on investigating texture discrimination techniqugsplied to retinal vessel segmentation in

fundus images.

Texture analysis is a critical stage in image sedat®n and texture classification, which
is a procedure of characterizing the texture wiihmages. In practice, the methodology and
performance of the texture analysis component oetes the quality of the image
segmentation. To facilitate understanding of ourrkwan this chapter, we present an
introduction to texture analysis methodologies Wwhibave been utilized in image
segmentation. First, we introduce general categarfetexture analysis methods in section
3.1, then corresponding structural and statisteaiure characterizing methods are described
in section 3.2. A brief summary of first- and sedamder statistics and Markov random
fields (MRF) is presented in subsections 3.2.1,23ghd 3.2.3, respectively. In subsections
3.2.4 and 3.2.5, the structural features charaaogrimaximal response and Gabor filters are
introduced. In order to describe representativallaexture features, local binary pattern
(LBP) and scale invariant features are describeskettion 3.3. The chapter conclusion and

discussion are presented in section 3.4.

3.1 Texture analysis methods

The primary aim of texture analysis in machineasnsresearch is to detect, characterize, and
process image texture. This is a mathematical pigee for measuring the spatial
arrangement of grey values and modelling pixelrinéationships within an image. Texture
analysis is a critical stage in image processiagnsentation and texture classification, and it
is critical to achieving good performance in mapplications, such as object recognition,
content based image retrieval etc.. Numerous methage been proposed in the past few
decades. Earlier attention in texture analysis @niy focused on first- and second-order
statistical analysis. Later on, model-based metlsads as Gaussian Markov random fields
were introduced and recently, the focus of reseheshturned to discovering local invariant
texture features. Exhaustive reviews of existinguee analysis methods can be found in the
literature [142][143] [150]. A review of texture m&ure and analysis approaches for texture

segmentation is presented in [141]. Xie [144] pnése a review of recent texture analysis
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techniques for surface defect detection which leenlviewed as a texture analysis problem.
Several brief reviews of recent texture analysthéques are presented in [145][146][147],
where Zhang and Tan [147] focused on investigatmgriant texture features analysis
methods. Recently, texture has been seen as afpbvesl in image processing and texture
analysis techniques have been extended to someah@uiage analysis applications. In the
literature [148], texture analysis methods partidyl focused on medical image applications
are reviewed and Kassner and Thornhill [149] preskena review which considers
applications involving neurologic MR images.

Descriptions that characterize texture by diffenerathematical procedures broadly fall
into two categories: statistical methods and stmattmethods. By considering different
forms of object representation (pixel, boundary region), some authors [145][150]
categorize the approaches into pixel based, l@abn based and region based methods. In
the literature [143][142], some model based metl{edsh as autoregressive models, Markov
random fields, Fractal models) are classified mtelatively independent category, and some
convolution filtering based methods which derivenir signal processing techniques are
categorized into transform methods or filteringdzhmethods. In this thesis, since combined
spatial filter banks, Gabor filters and waveletsfarms are commonly used to describe
structure primitives, we categorize filter basedhods as structural methods. In our review,
we adopt a similar approach to surveys of sevesdlte analysis methods [142][143][144]
[146][147][150], and categorise texture methads:istatistical methods, structural methods

and model based methods.

3.1.1 Statistical methods

Commonly, statistical methods measure the spaistlilsution of grey values and treat
textures as statistical phenomena. The texturepesented as statistical distributions of the
selected features which are computed at each pixbe image. The early methods used for
texture discrimination in the machine vision fiede statistical methods. Many of these
methods were proposed based on Julesz’s pionaearig[151][152], in which he found that
the human visual system uses statistical propeitietexture discrimination. These include
first and second order spatial statistics and higinder statistics. These properties manifest
the distribution and interrelationship of grey \@uwhich have different effectiveness in

discriminating texture within the human visual gyst Julesz found that if second-order
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spatial statistics of two textures are identichlese two textures are not discriminated
spontaneously. The co-occurrence matrix is the kegtvn second order statistical texture
analysis technique. Its corresponding conceptionnisoduced in subsection 3.2.2. The
histogram statistics are normally used to detest-Grder texture features; these are further
described in subsection 3.2.1. Some other statistiiethods such as autocorrelation and

local binary patterns have also been applied itutexanalysis.

3.1.2 Structural methods, Textons

Structural methods represent texture as consistihgnany texture primitives and a
corresponding spatial arrangement of these prigstitt’s important to determine the form of
the texture primitives. Commonly, these texturemitives can be individual pixels, average
element intensity, or geometric segments etc. [144]. The primary goal of extracting
primitives is to find fundamental micro-structuresimages. Numerous structural texture
analysis methods have been proposed. For inst@hen et al. [156] proposed a grey-scale
morphological granulometry algorithm for structurééxture analysis. An iterative
morphological decomposition algorithm was propasgdVang et al. [157] to decompose an
image into a set of morphological base functiorfseiif work was further extended by Lam
and Li [158]. In [159], the structures are captufiean natural images using a sparse coding
concept, which simulates the coding strategy witthie visual cortex of primates. The
dominant representative research branch for extgadexture primitives from images is
derived from texton theory. Julesz [3] introduckd term texton for the first time to explain
the pre-attentive discrimination of texture paife described textons as the line segments,
elongated blobs, crosses and terminators whichbeamtilized in texture discrimination.
Terminators include the corners and the endpoihimes. He conjectured that pre-attentive
discrimination of textures having identical secamder statistics but are made up by
different textons can be perceived by the humanalisystem. For instance, Figure 3.1(a)
and (b) illustrate two texture patterns which aradem up by two pairs of basic units
illustrated at the bottom in Figure 3.1 (a) and (&3pectively, where both textures have
identical second-order statistics. In the left @ait(a), the numbers of terminators (say,
endpoints of lines and line segments) of the twaidanits are the same. Therefore this pair
of units cannot be distinguished pre-attentivefycontrast, the second pair of units (b) can

be discriminated pre-attentively, since althougkythave the same line segments (both are
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three), the number of terminators are different.this instance the triangle has three
terminators, but the other one has four terminators
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Figure 3.1 Two texture patterns with identical setorder statistics. Left pattern (a) is
composed of a pair of units which have the sammmax(terminators) and right pattern (b) is

composed of a pair of units which have differenmnber of terminators.

Although Julesz proposed the theory of textons, tdren “textons” remains a vague
concept [153], as Julesz did not provide an opmmati definition or mathematical model.
Malik and Leung et al. [154][155] extended the telerton and proposed an operational

definition that a texture can be characterizedibydasponses to a filter barfk (F»,...,R).

R={Fl*I(X,Y),Fz*I(X,Y),...,Fn*I(X,Y)} (31)

If the filter bank is convolved with an input imadeat each pixel (equation 3.1), it is
reasonable to believe that some specific struct(egs lines, blobs) may produce positive
responses (depending on the design of the filtetklbaAnd if those structures appear
repeatedly in the image, the feature vectors irsti® must be clustered into corresponding
groups. Accordingly, filter responses that are teltedd into a set of prototype response
vectors are defined as textons by Malik and Leursy.€r'his novel definition enables textons

to be generated automatically from an image.

Filter based feature extraction approaches areegtdivay to extract features which can
be used to generate textons. This approach isedefrom signal processing techniques, in
which pixel sequences in an image is processed geafic signal sequence. A general

framework of these methods is that a set of filisrapplied on an image to generate filter
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responses (equation 3.1) and certain features adetlresponses are then extracted for
classification or segmentation purposes. The metlavd divided into three subcategories:
spatial domain, frequency domain and joint spdteduency domain. We describe the spatial
domain filters first in subsection 3.2.4. Detaifsteéchniques relating to frequency and joint

spatial/frequency domain filters are describedhamgubsection 3.2.5.

3.1.3 Model based methods

In model based texture analysis methods, a textuege is modelled as a parametric
probability model or as a combination of a setwfdtions which represents known structural
information and a random noise sequence. The &xtwan be characterized by the
parameters of the model. Model based methods hega hsed for texture segmentation,
classification and synthesis. Methods represemtati the current state-of-the-art in the field
of texture segmentation research include fractatets [163][164][165], autoregressive
models [160][161][162], and Markov random field$§]{167][168][169]. Fractal geometry
was firstly introduced by Mandelbrot [163] and ttegm fractals describe the geometric
primitives which are self-similar and irregular. & fractal dimension is an important feature
of fractals, as it provides a measure of the roeghrof a surface. Pentland [164] has proved
that there is a strong correlation between thetdtadgimension and human perception of
surface roughness. In practice, many efforts hawenbmade to determine the fractal
dimension to model the texture that can be usedammous image processing applications
[165]. In the autoregressive model, the texturehigracterized by spatial interactions among
image pixels, where pixel intensity is represerded weighted sum of neighbouring pixels.
The Markov random field (MRF) is a powerful stodi@asool to model the joint probability
distribution of the image pixels in terms of locgdatial interaction. It is a probabilistic
process, in which it encodes spatial contextuaktamts into the prior probability [167].
These models have been employed widely for imagenestation [166] [168] and texture
classification [169]. Further fundamental conceaplating to MRFs are described in section
3.2.3.

3.2 Texture feature extraction and description

Feature extraction is the essential stage of textased segmentation and classification. The

primary goal of texture feature extraction is tpeess the differences in spatial structures by
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differences in pixel intensities, so that homogerse@gions can be extracted based on such a
feature space [141]. In a sensdhe taxonomy of texture analysis methods relies on

categorizing the feature extraction techniques. uthe large number of activities that can

be undertaken to extract useful textures, it is practical to consider all proposed texture
features. This section concentrates on those feaixtraction techniques that have been
widely used in image segmentation and have potesitansion to be developed for medical

image segmentations. The brief descriptions ofdhesture feature extraction techniques are
provided in following subsections.

3.2.1 First order statistic based feature

First order statistics represent an early methadl €till an active one for texture feature
extraction. They are low cost approaches thatrarariant to rotation, as they are applied on
sets of pixel values and are not involved in ird@&tionships among neighbouring pixels.
Commonly, the texture features are characterizeflrtyorder histograms of intensity that
provides a simple summary of statistical informatod an image. Let a functid(x,y) of two
space variableze [1,2,...,N] andy€ [1,2,...,M] represent an image, theepresents the
grey levels. The first order histograinti) is defined as:

ZJIC\!:l Zyzl Ii(x'y) .

H(i) = T ie0,..,G—1) (3.2

where G is the total number of grey levels in amgsm The most commonly used central
moments such as mean, variance, skewness and igurnttch are derived from the

histogram can be used to characterize the imagerésa as defined by Equations (3.3)-(3.6).

Meap:= ¥ ' iH(i) (3.3)

Variance: = \/Zi‘i‘ol(i — W2H(®) (3.4)
G—1/: .

Skewnegg:= Zizo (ZW°HED) (3.5)

o3

61 _ )4 H (i
Kurtosigt, = 2z ("W HO 4 (3.6)

o4
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The mean describes the average intensity of theireexvhereas the variance measures
the variation of grey level from the mean. The skess represents the degree of asymmetry
around the mean, and the kurtosis is a measursstoigham flatness. Features based on first
order histogram statistics cannot provide any mfmron about the spatial variation of the
various grey levels within the image, but combimeth some features based on second order
statistics these measures can provide a usefufdooexture feature extraction. Recently,
Aggarwal and Agrawal [170] used features basedist fand second-order statistics for
classification of MRI brain images, and report tessd@rom comparative experiments that
verify that the performance with such features erftpms existing methods based on

wavelet transformation.

3.2.2 Co-occurrence matrix (GLCM)

The grey level co-occurrence matrix (GLCM) [171hisvell-known texture analysis method.
The matrix is derived from an original imaggen which second order statistics are measured,
stored and presented as a joint distribution ofgitey levels of two pixels. The dependency
of two pixels is described as a function of two gmaeters: distance of pixet§ and its
relative orientatiorf. Assuming an image is a functibmith total number (G) of grey levels,
the co-occurrence matrix is a GxG matrix, in whilsh entries are counts of the appearance
of pixel pairs with grey level value andj in a window separated by the distartet
orientationd. The matrix can be expressedHag)(i,j). Figure 3.2 illustrates the GLCM
calculation with distancel=1 and 6 = {0° 45, 9¢°, 135}, where (a) is an 4x4 image
example with grey levels {0,1,2,3}, (b) is the stmuction of GLCM, (c)(d)(e)(f) are the
different forms of GLCM which are generated on fouentations. The texture features such
as energy, contrast, homogeneity, correlation ancbgy can then be extracted from these
matrices [171]. The energy is also known as thgukm second moment. It measures the
smoothness of the texture surface hence largeresabi energy indicate the region is

smoother. The term energy is given by:
EnergiE(d, 6) = 250 X0 Ha0) ()7 (3.7)

The contrast feature is expressed in equation \8ich is a measure of local variations

present in an image.

Contrast: &(0) = X.{=g X520 1i — jI*Hea,0) (i, )) (3.8)
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Homogeneity is a measure of image local homogenigycontrast and homogeneity are

inversely correlated. It is also called inversdeddénce and given by
-1 v6-1Ha@e @) (3.9)

Homogeneityz-y 2.7=o 1+i—j|?

Correlation is the measure of grey level lineareation in two directions.

. et U (i
Correlation{-¢' %54 il U”fr) @) @) (3.10)
x0Ty

Entropy is a measure of disorder of an image agid/en by

Entropy= X725 X920 Hea,e)(i,j) 1082 Hia 0y (i, j) (3.11)
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Figure 3.2GLCM calculation with matrix function parameteatsl, 8 = {0°, 45, 9C°, 135%}.
(@) is an 4x4 image example with grey levels {®3}; (b) is the construction of GLCM;

(c)(d)(e)(f) are the different forms of GLCM whielne generated on four orientations.

Combinations of all the above features can be eyeploas a useful tool for texture
discrimination and image segmentation. In [172}p BLCM is applied to estimate an
appropriate level which may qualify the sub-regioofs a natural image which will

subsequently be further segmented. Marron [173eus a comparative study of two texture
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operators (GLCM and fractal dimension) for imaggnsentation on various image forms. He
noticed that the GLCM based features entropy caxige a better definition of edges and it
outperforms many edge detectors. However, its coatipnal cost is too expensive.

3.2.3 Markov random fields (MRF)

Markov random field (MRF) theory is a branch of lpability theory, which can be used to
capture contextual information in an image. In pcac such information (e.g. contextual
constrains) are normally expressed as a joint fimbbyabased on local spatial interaction.
The MRF models assume that the intensity of eagkl glepend on the intensities of its
neighbouring pixels. These local neighbourhoodisties are captured and represented by
MRF models [167]. Assuming a 2D image with siéeN is a rectangular lattice, it can be

denoted by
I={(x,)1<x,y<Nj} (3.12)

For the lattice, pixelx, y) can be simply re-indexed by a numbewherei=(x-1)N+j and
i < NXN. Let F; be a random variable which may represent the sitierat pixel &, y).

Accordingly, a set of all random variables defirmgdthe set can be denoted by
F = {Fl ,FZ ) e IFNXN } (313)

where eaclir; takes a valug in setL which is a set of labels. The label ket specified as
being continuous or discrete in different applicas. A labelling of the sites incan be
defined by

f=U1. 20 fusn (3.14)

For example, as a discrete sketmay be represented by the set of quantized vadfies

intensities, like {0, 1, 2...255}, for an image wi?®6 grey levels.

The interrelationships of sites ircan be defined by a neighbourhood system whigjivien

by
N = {N;|Vi € I} (3.15)

whereN; is the neighbour set of a sitdn the first order neighbourhood system, theisitas

four connected neighbours. In the second orderhbeigrhood system, there are eight
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neighbours surround site Within N, a series of subsets of sites called clique$ ame
extracted. The form of cliques can be a single piddr sites, triple sites and quadruple sites
depending on the different neighbourhood systenisad. The random field= can be
defined as a MRF, if the probability mass functadrF satisfies two conditions: one is that
the function is positive and the other is that fimection should satisfy Markovianity [167].

A MRF can be specified in two ways, either usinghdibonal probabilities or joint
probability. The theorem of MRF and Gibbs disttibn equivalence [174] provides a means
of specifying the joint probability of a MRF, soathnot only the local information can be
modelled in terms of conditional probabilities, lalgo the global texture can be measured by

the joint probability.

A discrete Gibbs random field (GRF) which assigrns@bability mass function over the

entire lattice with respect fd is given by following form:
p(FIf,.f €L) =Z e VD) (3.16)
where
Z=Ysp e 'D (3.17)

The parameter Z is a normalizing constant calledprtition function which is a sum over
all possible labellings i.. The energy functioti (f)is a sum of potential functions(f)

over all possible cliques C.

U(f) = Leec Ve (f) (3.18)

MRF-based approaches have been successfully endpkmyemany image processing
applications which include image restoration angihsentation, edge detection, and texture
analysis etc.. The MRF based image segmentatiproaph is based on a view of a random
field segmentation result as a distribution of lakbia the same lattice as the original image
[166]. Kato and Pong [168] proposed a Markov randatd (MRF) image segmentation
model, which aims to combine colour and texturaéuiess. The remarkable contribution of
their research is that it takes both colour antutexfeatures into account in the segmentation
of colour images. Deng and Clausi[166] proposeningle Markov random field model with
a new implementation scheme for unsupervised irsagmentation based on image features.

The proposed algorithm addresses the issue ttditioraal MRF segmentation models need

12



training data to estimate the model parametersmeaand Zisserman developed a MRF
classifier [169] for texture classification basead their previous method using filter bank in
[204]. The MRF model is used to represent a prdibabliensity function (PDF) of the central
pixels conditioned on their local neighbourhoodsth filtering stage, instead of using filter
responses at a pixel, the raw intensities of pikela neighbourhood square (of sixe&N)
around that pixel are recorded to form a row veuwiith dimensiorN®. They demonstrate that
in feature extraction processes for certain tagkg. (classification), filter banks are not
necessary but are sufficient [169]. Although the raformation (intensity values) from the
texture pattern can be used to construct MRF modetsmajor disadvantage of using the
MRF to represent a texture is the quadratic ineeasthe dimension of the feature space
with the scale of the neighbourhood. The numbediafensions of the feature space is
completely relied on the sizeN)Y of the selected neighbourhood window. These high
dimensional %) features (vectors) may increase the computaticosti when implementing
the further computing processes (e.g. clusteringssdication and synthesis etc.).
Additionally, because of using raw intensities akegbs from source image, the MRF
representation may be sensitive to the noise imntlage.

3.2.4 Spatial domain filter bank (MR8, LM, Berkley)

Spatial domain filters are the straight forward viayharacterize textures. One of the earlier
attempts to discriminate between textures is byswéag the edge density using various
edge detectors such as Sobel, Canny, Robert, liaplat Gaussian and Laws filters. Later
on, multiple categories of filter kernels at differestales are combined into a filer bank
which can be used to extract more sophisticatethifes for texture discrimination. In this
case each filter kernel can be considered as alnobd=lls in the receptive fields of the
visual cortex. This scheme was motivated by psybiisipal research finding of models of
processing in the early visual stages of primaig9][178]. Leung and Malik [154][155]
proposed a filter bank called LM which is used lssify natural texture patterns taken from
Columbia-Utrecht (CURet) texture database. This kwaras extended by Varma and
Zisserman [139][169], who proposed the Maximum fese filter bank named MRS.
Similar work by Martin et al. [175] introduced a alinset of filters denoted as Berkeley

Martin to detect boundaries in natural images.

® |M filter bank
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In the LM filter bank, there are a total of 48 dils (Figure 3.3), comprising 18 even-
symmetric filters (Figure 3.3-a), which are secoddrivative of Gaussian on 6
orientations at 3 scales and 18 odd-symmetricrdil{€igure 3.3-b), which are derived
from applying the Hilbert transform on those Gaassilerivatives. This makes total of
36 elongated filters. 8 filters (Figure 3.3-c) aentre-surround difference of Gaussian
(DoG) and 4 filters (Figure 3.3-d) are Gaussiatefd, these 12 filters are radially

symmetric ones.

If an image is convolved with this filter bank, Bapixel is transformed into a 48
dimensional vector, and it is reasonable to beli&va® most of the linear features can be
extracted to characterize the texture, as elongéteds are typically bar or edge

detectors.

Figure 3.3 The LM filter bank with 48 filter kerrsgel which composes of (a) 18 even-
symmetric filters, (b) 18 odd-symmetric filters) & DoG filters and (d) 4 Gaussian filters

® MRS filter bank

In the MRS filter bank, a similar set of Gaussiaridatives are employed. It consists of
38 filters, instead of using the Hilbert transfoofnthe second derivative Gaussian, they
used the first derivative Gaussian giving an odawsetric filter (see Figure 3.4-a) for
edge detection, whilst used the second derivatigas&an as an even-symmetric filter
(see Figure 3.4-b) for bar detection. As in theeaaisLM, both these filters are oriented,
rotated on 6 orientations and employed at 3 scAldditionally, two radially symmetric
filters: Laplacian of Gaussian (LoG) and low-pasau§sian are added to the set (see
Figure 3.4-c). It should be noted that a differenaie Gaussian (DoG) can be
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approximated by a LoG. The filter responses of @rpic first and second derivative
Gaussian filters are generated by sampling the mmaxi filter responses in 6
orientations at each scale while the responsesotriopic filters (Gaussian and LoG) are
used directly. This not only achieves rotation meace, but also reduces the
computational costs in the subsequent featureesingt stage, as it reduces the size of
the dimensional space from 38 to 8 (6 maximum nese® of elongated filters and 2

responses of radially symmetric filters).

A comparative study in [176] also demonstrates tMiR8 provides better
performance for texture feature extraction thanlilkfilter bank and the Schmid filter

bank [182] which will be introduced in subsectiaf.S.
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Figure 3.4 MR8 filter bank with 38 filter kernelsyhich composes of (a) 18 odd-

symmetric filters, (b) 18 even-symmetric filters) LoG filter and Gaussian filter
Berkley Matrtin

A filter bank known as Berkley Martin [175] was dgeed and used to detect boundaries
of different objects in natural images taken frome Berkeley segmentation dataset.
Changes in brightness, colour and texture assdciaféh natural boundaries were
combined to characterize the objects’ features. filte¥ bank consists of six pairs of
elongated, oriented filters and an additional @estrrround filter. The elongated filters
are divided into two classes: even-symmetric Sltemd the odd-symmetric filters,

derived from a second derivative Gaussian and ilteeH transform, respectively. These
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filters are rotated on 6 orientations but at onhe cscale. Therefore if an image is
convolved with the filter bank, each pixel is reggeted as a vector of 13 dimensional

space.

Figure 3.5 Berkley Martin filter bank with 13 filt&ernels

It is notable that the filter set only containsteiis at a single scale. This may
compromise the approach and result in an inabiliggetecting rich features from objects
of interest. However, for the purpose detectingrioauies, one scale is supposed to be

enough, especially given consideration of compaoiteti costs.

3.2.5 Joint spatial/frequency domain filters

Psychophysical studies have indicated that the humsual system processes images by
analyzing their frequency and orientation compos¢hf9]. The Fourier transform is able to
perform global frequency analysis of image textuké®mwvever, it lacks analysis in the spatial
domain. Indeed, the spatial information is sigafit in many applications. The classical way
to handle this is by introducing spatial dependeiy Fourier analysis through the
Windowed Fourier Transform (WFT) which can be defiras

F,(w,e) = ffooof(x)W(x —g)e @¥dx  (3.19)

Here the functiorf(x) is a one dimensional signal and/(x) is the so called window
function which allows us to see how the spectruranges in the spatial domain. If the

window function is Gaussian, the WFT becomes a Gabhasform.

Dennis Gabor [180] introduced the Gabor filter thoe first time and for a one dimensional

function it is defined as:
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x2

G(¥) = Gre (x) + 1Gim (x) = e e/ (3.20)

2

1 _X . . ; .
Whereme 207 represents a Gaussian envelgpis the centre frequency ae#/~ is a

complex sinusoid which consists of real comporgp€x) and imaginary componeft,, (x).

The real part also can be denoted as:

%2

Gre(x) = —e “20% cos(2mfx) (3.21)

the imaginary part is defined as

X2

Gim(x) = 202 sin(2mfx) (3.22)

Daugaman [181] extended the concept to two dimessamd adopted it for modeling of
the receptive field of simple cells in the visuabrtex of some mammals. The two

dimensional Gabor function can be defined as

1 %2 y2

G(x,y) =e 2oty cos(2nfx + @) (3.23)

whereo, ando, determine the spread of the Gaussian enveloppasdthe phase of the
sinusoidal wave. Whegp equals;E or -725 the equation turns into an odd-symmetric function

In practice, only the real part of the Gabor filterconvolved with the image region that
coincides with the Gaussian envelope. Since theofGéler analyses the image in both
spatial and frequency domains, different textuedfiees can be extracted depending on the
values of various parameters. The approach has Wity used in many applications of

image processing, such as object recognition, texdegmentation and classification.

The wavelet transform has similar properties toGador transform, which has also been
widely used for texture feature extraction and sifasation. The usage of wavelet transform
within texture analysis was introduced by Mallat[BD5], where the textural features are
extracted by using three wavelets at dyadic scéletke the Gabor transform, the spatial
resolution of wavelet transform is adopted to iegiency content [144]. Wavelet transform
can thus be regarded as image decomposition inad spatially oriented frequency channels
[142]. Recently, the wavelet transform has beemetd much interest in many applications
of texture analysis [206] [207] [208] [209] [210].
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Schmid [182] proposed a filter bank for featurerastion, which consists of 13 isotropic
“Gabor-like” filters. The filters combine the fregnicy and spatial scales by introducing two
variables ( ando ) in a function, which is defined as

2+y2

F(x,y,1,0) = Fy(t,0) +cos(“x +y? Tye 22 (3.24)

whereF,(t,0) is added to obtain a zero DC component. In thgregments, rotationally
invariant filters are used with only 5 scales2, 4, 6, 8, 10) and 4 frequenciesZ, 2, 3, 4),
in which for a small scale only smallare used to avoid generating a high dimensionabve
Figure 3.6 illustrated 13 rotationally invariantltdr kernels which are grouped by

corresponding rowstf and columnd).
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Figure 3.6 Schmid filter bank with 13 filter kergel

3.3 Local invariant texture feature descriptor

In practice, texture features can be extractedaabus scales where for each scale, some
particular local features can be detected whichqgaige important for texture segmentation
(object recognition). For instance, a tree cons$tgaves, branches, and a trunk. If features
are required to be extracted at the leaf levely tmbk corresponding scale need to be selected
and applied. As we zoom out, if the required fezduare at whole tree level, the scale has to
change. Structural texture analysis methods deteriiose scales by the sizes of the filter
kernel in the filter bank and these, in turn aresen to respond to the different sizes of
structures. Moreover, many texture features arevetdifrom the original grey levels in an
image. However, those algorithms may be sensitivarty changes of grey level among

different image modalities. In this case, grey-lewevariant features are significant in
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handling those problems. We introduce two techrsqradled the Local Binary Pattern (LBP)
and the Scale Invariant Feature Transform (SIFThéfollowing subsections.

3.3.1 Local Binary Pattern (LBP)

Local Binary Pattern (LBP) texture analysis is ahod that uses grey-scale invariant texture
statistics, derived from detecting grey level isign differences in a local neighbourhood.
The LBP operator was first introduced as a compigarg measure for local image contrast
by Ojala [183], and although a number of extensidi@gl] [185] [187] for LBP have been
developed, the basis of LBP is similar. A binarymier at each pixel is calculated by
thresholding between the centre pixel and its r@ghing pixels. The classic version of the
LBP considers only eight neighbour pixels of thentoe pixel, and then all circular
neighbourhoods are considered. A procedure for t@Rputation is illustrated in Figure 3.7,
using a simple image ofX3 size. The corresponding grey level values of gagbl are
presented in Figure 3.7 (a). The grey level difieess between the centre pixel and
neighbouring pixels are illustrated in Figure 3oJ. (f the difference is larger or equal to O,
the neighbouring pixel is signed as value 1, otlewthe value is 0. This gives 8 binary
numbers surrounding the centre pixel, as showrigaré 3.7 (c). The LBP code then can be
calculated through multiplying those binary numb@sr 1) by powers of two and summing
them. So, for the Figure 3.7 example, the LBP dedex 2° + 0 x 21 + 0 x 22 + 1 x 23 + 1 X

2% +1x2°+1x25+0x27 =120.

899 | | @
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Figure 3.7 An example of LBP computation, (a) a genimage of 3 3 size with
corresponding grey level values of each pixel, i{ljstrates the grey level differences
between the centre pixel and neighbouring pixets, i(lustrates 8 binary numbers

surrounding the centre pixel
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The LBP operator has been extended to use neighbods with different sizes [184]. In
this derivation of LBP, the LBP code is calculated each pixel in any cropped portion of
the image that allows any radius (denoted as R)namcber of pixels (denoted as P) in the
neighbourhood. The values of neighbours which ddowate exactly on pixels are estimated

by bilinear interpolation. The LBP code then carchleulated by

LBPp p(xc,yo) = Xp=55(gp — 90)2P (3.24)

whereg, — g. is the difference of gray level values between ¢hatre pixel and one of

neighbouring pixels. Functios(x)is defined by

s(x) = {éi i 8 (3.25)

Finally, a feature vector can be represented byligtebution of these codes.

Another extension of the original LBP [185] genegmtotation invariant LBPs called
uniform patterns that make LBP codes invariant wétspect to rotation of the image domain,

and also reduce the dimensionality of the featextor.

The LBP method can be regarded as a general todtifioctural and statistical texture
analysis, since the LBP code that labels eachl gan be interpreted as a micro-structure
(include spots, flat areas, edges, curves, etad,tle distribution of micro-structure can be
seen as a statistical placement. Because of tviantabe, the LBP has been applied and
extended in texture classification, texture basegmeentation, and texture synthesis. For
instance, Connah and Finlayson [186] investigateel application of the LBP texture
operator in the retrieval of coloured object undeanges in illumination colour and object
pose. In [187], Liao and Chung extended the LBRnixypducing the concept of Advanced
Local Binary Patterns (ALBP), and demonstrate thase are capable of representing most
of the essential local structure characteristicsteoture images obtained from CURenT
database. He et al. [188] proposed a Bayesian Ld#ator which is formulated using a

novel Filtering, Labelling and Statistical (FLSxfnework.
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3.3.2 Scale invariant feature transform (SIFT)

The Scale Invariant Feature Transform (SIFT) wasppsed by Lowe [202] to extract
distinctive local image features that can be used various image processing applications,
such as image matching, object recognition, objeatking etc. There are four stages to
extracting SIFT features: The first stage calcsglgietential points that may be invariant to
scale and orientation by detecting local minima arakima based on responses of a set of
difference of Gaussian (DoG) filters. The deterriora of so-called keypoint candidates
(minima and maxima) is based on a scheme that c@®peaach point with its 26
neighbouring pixels at the same and adjacent sc@lemn the location and scale of each
potential keypoint are determined in the secondestan which all points with low contrast
are discarded. The third stage assigns one or rapeatations to each keypoint. The
orientations are calculated based on local imagédignts around keypoints. Figure 3.8 (a)
illustrates the image gradient magnitudes and taiems in the region around the keypoints
at the selected scale, where the circles inditeteg3aussian window covering the region. All
gradients are generated from a 16x16 sample regvbich are then accumulated into a
descriptor. Finally, a keypoint descriptor is getted at each keypoint. It is formed as a
vector which contains values of all the orientasi@mnd corresponding lengths, as shown in
Figure 3.8 (b). The descriptor is represented aéxat grid which summarizes those
orientation histograms overx# sub-regions, and each orientation histogram aut8
direction bins. The sum of the gradient magnitudesr that direction is indicated by length
of each arrow. It results in a feature vector ciommg 4x4x8=128 elements.

Features extracted from the image using SIFT arariant to scale and orientation, and
are highly distinctive of the image. SIFT has besed in some natural image processing
applications. For instance, Suga and Fukuda ¢188] proposed an object recognition and
segmentation method on natural images using SlEibgeed with graph cuts. SIFT is used
to detect the potential candidate seeds for thehgeat algorithm. Sobek and Cetnarowicz et
al.[190] applied the SIFT algorithm in fingerprirgcognition. Two fingerprint images are
matched by matching their descriptors. KamencayBumednan et al. extended the SIFT by
proposing a SIFT-PCA algorithm for face recognitiam which the principle component
analysis (PCA) is employed to analyse face data. mbdified algorithm uses PCA instead
of histograms to normalize gradient patches and thgnificantly reduces the vector

dimensionality.
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Figure 3.8 SIFT descriptor computation, (a) illagts the image gradient magnitudes and
orientations in the region around the key pointhet selected scale, the descriptor (b) is

formed as a vector which contains values of therwations and corresponding lengths.

3.4 Chapter conclusion and discussion

Image texture is one of the most important charaties to distinguish various patterns
which have different visual features in imageshds received extensive attention and has
been used to perform image segmentation and shafextion. Texture based image
segmentation has been adopted widely on problestdving natural image segmentation,
where texture analysis is a critical stage. Texamalysis is a procedure for characterizing
textures within the image that can achieve verycessgful image segmentation results. To
facilitate an understanding of our work and set itontext, this chapter introduced various
texture analysis methodologies which have beeizedilin image segmentation. The methods
are categorized into: statistical methods, strattunethods and model based methods.
Statistical methods represent textures as a #tatististribution of selected features which
are computed at each pixel in images. In contsdsictural method, represented texture as
consisting of many texture primitives grouped withi corresponding spatial arrangement. In
model based texture analysis, a texture image wettenl as a parametric probability model
or as a combination of a set of functions whichrespnts the known structural information
and random noise. Early attention in texture amalygs mainly focused on statistical
methods such as the first- and second-order statistnalysis; later model-based methods
such as Gaussian Markov random fields are intratl@sel more recently, local invariant

features representing texture has become a foaeseérch.
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In a sense the taxonomy of texture analysis methods reliea eategorization of feature
extraction techniques. We described those featMteaation techniques with respect to
corresponding categories of texture analysis methpdrticularly concentrating on those
techniques that have potential extensions for nadincage segmentations. The first order
histogram is a low level feature for texture disgnation. Although it cannot reflect
interrelationships among neighbouring pixels i b& used for image pre-processing within
the segmentation pipeline (e.g. normalization, @oggluction etc.) and is especially attractive
considering its low computational costs,. Featwteaetion methods based on second order
statistics such as GLCM use a joint distributiorthe grey levels of two pixels. Model based
methods such as MRF and LBP provide more sophistcdeatures which reflect
interrelationships among neighbouring pixels. Défg texture primitives which are able to
characterize texture can be detected using MRFB#?. llt is reasonable to believe that MRF
and LBP have more potential to achieve better insgggmentation performance compared
with GLCM. In practice, minimising the high comptitaal cost caused by high dimensional
feature vectors generated when using MRF or LBP meapain a research focus. In structural
methods, filter based feature extraction approadfts a direct way to extract features
which can be used to generate textons. The steuatan be decomposed into micro-
structures (line, spot) using a filter bank whi@ntins a set of filters. A comparative study
in [176] demonstrates that the MR8 filter bank lwetter performance for extraction of
texture features than either the LM filter bankloe Schmid filter bank [182].

Psychophysical studies have indicated that theamuwisual system process images by
analyzing their frequency and orientation composi¢hf9]. This research finding motivates
applications and developments of Gabor filters Whamalyse texture features in both the
spatial and frequency domain. The primary limitatiof filter based methods is that the
extracted features are sensitive to choices oksshich determine the size of filter kernel.
Detected feature structures are also determingtidoghosen filter kernel shapes. Therefore,
the selected filters have to be optimized in kersiee, shape and rotation according to
consideration of specific properties of structumesmages. It is not possible to design a
unified filter bank to extract various types of ti@@s from images in different applications.
This problem can be addressed using scale andtati@mn invariant feature extraction

techniques such as SIFT that can be employed taatdpecific invariant features.

Considering the lack of existing methods for rdtvessel segmentation using texton, we
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would like to fill this gap and pursue more accars¢gmentation by investigating filter based
texture feature extraction techniques and textdie following chapters describe how to
design the filter bank for retinal vessel segmentain fundus images, and show that better
segmentation performance can be achieved usingnextVe also examine the feasibility of
using a general texton to implement retinal vessgimentation on different datasets, the
utilities of Gabor filters to reduce the dimensilityaof feature vectors and the potential

application of SIFT to improve texton generation.
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CHAPTER 4

4. Retinal vessel segmentation on pathological fundus

image

The importance of retinal vessel segmentation fagmbsis, screening and treatment of
various ocular diseases has been emphasised itecHapnd 2. We also demonstrated the
significance of automated retinal vessel segmemtatnethods for a computer assisted
diagnostic system which is capable of automateéctien and grading various forms of
retinopathy. Many methods have been reviewed ipten&2. Among them a representative
category is the matched filter based segmentatiethod, in which the retinal vessel’s
features are extracted by convolving a retinal @mdmage with multiple specific filter
kernels. Conventionally, the matched filtering lwhseethod is combined with thresholding-
based segmentation methods to obtain a final bisegynentation result. Many retinal vessel
segmentation methods have been proposed basedssicahatched filters (CMF) [85]. Most
of them improved CMF by modifying or optimizing tifiéter kernel, while some methods
combined CMF with other techniques to generate raoceirate results. However, in many of
these methods, the algorithms frequently fail isesawhich contain some pathological
changes. Those anomalies are particularly charaeteby various forms of exudates (soft
and hard drusens, cotton-wool spots, etc.) andfesrthemselves as local small brightness
blobs in a fundus image. These anomalies, espgeidlén located around vessels, have the
most important influences for segmentation. Besideages are often contaminated by noise
and suffer low contrast between the vessels andwudling background that also challenges
the vessel segmentation. Cases which suffer froistieg damage due to disease can be
particularly problematic and thus remain an opeblem. Our initial work is focused in this

area.

In this chapter, we describe an improved retinadsee segmentation scheme that is
capable of excluding influences caused by anomahedundus images. The chapter
demonstrates how to use local texture energiestectithose anomalies like drusen and how

to eliminate their influences for retinal vessegrsentation. Initially, such influences are
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detailed in section 4.1 and a method we adoptedriggen detection is described in section
4.2. In section 4.3, the matched filter which iedido extract the vessel features and

segmentation is detailed. Section 4.4 presentexperimental results and evaluation.

4.1 The influence of abnormalities on vessel segmenita

As we described in chapter 1, commonly, the hardadt drusen can be found in retinal
images of patients who suffer from AMD. The hardsgm manifests itself as a set of small
yellowish-white blobs with a clear boundary, and foft drusen has a similar appearance but
with a fuzzy boundary. For those patients with yeathge DR, the fat and protein that leaks
from weak vessels may form yellow white blobs oa tétina. These are known as so-called
retinal exudates, appearing as brighter blobs tharbackground in retinal fundus images.
For those patients who suffer from later stage DiRjr retinal fundus images normally
contain cotton-wool spots which appear as whitehed that exhibit fluffy density and a

fuzzy boundary.

(@) (b)

Figure 4.1 The segmentation problem for fundus enegntains pathological changes. a)
grey level fundus image contains numerous drus€b$; illustrates retinal vessel

segmentation result using the matched filter basetihod proposed by Chanwimaluang [192]

The common characteristic of these anomalies predem fundus images is that
normally they are brighter than the background.sEhgharacteristics may result in the failure
of vessel segmentation due to the dramatic gradieanges around the boundaries. This is
especially problematic in cases where the anomalieslocated around the vessels as the

anomalies significantly influence the segmentatigigure 4.1 illustrates an example where
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the segmentation has been compromised by anomgigse 4.1 (a) demonstrates a grey
level fundus image which contains numerous druseonsind vessels, and Figure 4.1 (b)
illustrates the retinal vessel segmentation resslhg the matched filter based method
proposed in [192]. We address this problem by rengpthe brightness blobs (that appear
like drusen) before undertaking segmentation ireotd reduce their effect on the vessel
segmentation. The framework of our method is pripaomposed of four stages: First, pre-
processing to reduce noise and enhance the cqrdeasind, detecting and removing drusen;
third, extracting vessel features using a matcliest to generate maximal filter responses;
and fourth, converting the responses to binarydiggua local entropy thresholding algorithm

followed by using length filtering to remove thelsted objects.
4.2 Drusen detection using local energy

In our experiment, an original image is convertetb ia grey level image by isolating the
green channel before we apply a texture-based nldetection scheme on the image. We use
the green channel since other authors (e.g. Wil 1) have noted that contrast between
vessels and background is enhanced in this chafhelimage is then smoothed by a two
dimensional Gaussian filter. After the image pregasssing stage, we adopted a texture-
based drusen detection method [193], in which é&x¢éute of the drusen is characterized in
term of local energy. The local energy has beemeéfin [194] as the sum of squared
responses of orthogonal pairs of Gabor or Log-Gditmrs. The Log-Gabor filter was
proposed by Field [195], which is a logarithmicnséormation of the Gabor function. A
Gabor filter is a powerful tool to analyse texturéboth the spatial and frequency domain. It
has commonly adapted to calculate the local enbaped on the multi-scales and multi-
orientation features. Unlike the Gabor filter, theg-Gabor filter has Gaussian transfer
function when viewed on the logarithmic frequencgle, which allows the filters to be used
in large bandwidths, from 1 to 3 octaves. This abtaristic make the Log-Gabor filter to be
a particularly useful tool for drusen detectiorsegmentation [193]. Due to the singularity in
the Log-Gabor function at the origin, an analytieapression for the filter in spatial domain

is absented. In the linear frequency domain, thgg Gabor function is formed by

—[log(f/f o)) } {—[9—60]2}
X e

G(fO, 90) — e{Z[IOg(Uf/fo)]z 2092 (4.1)
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where the former part of the formula is a radiahponent and the latter part is an angular
component. Parametefg, 0) represent a set of polar coordinatgsindicates the central
radial frequency and th# is the filter directiono; andog define the radial bandwidth and
angular bandwidths, respectively. The terif, in equation 4.1 has to be held constant for
varyingf,to obtain constant shape ratio filters. In ordedésign the filter to have bandwidth
of 2 octaves, the terwy/f, is empirically chosen as 0.65. The Log-Gaboeffiitras applied

at 2 scales f;=1/3 andf,=1/6). Because the exudate contained in a retimalge may
presented as an arbitrary blob (e.g. a spot, amgated ellipse etc.), filters are applied at
different orientations. In our experiment, the eswf orientation parameté: 0°, 30°, 60°,
90°, 150 were chosen as same as in [193]. The local erarggach pixel is calculated by
summing squares of even and odd symmetric Log-Ghlbanr responses at every pixel. It is

obtained as
ERGey) = (R, y))? + (R (x,1))? (4.2)

where (R2"*" (x,y)) and(R}°* (x,y)) present the responses of even and odd symmetric

Log-Gabor filters, respectively. Figure 4.2 illeges an example of exudate detections using
local energy, in which (a) is the pre-processedy devel image, and (b) demonstrates

exudates contained in (a).

(a) (b) (c)

Figure 4.2 Local energy example of detecting exeidéd) is the pre-processed grey level
image, and (b) demonstrates exudates contained)jn(d) is the result image where the

exudates are removed.

Once drusen are detected they are removed by aagaveg filter applied to the areas
identified by the local energy map. Each pixel ealo the areas of detected exudates is

replaced by the average value of its neighbourhbogbractice, the averaging filter also is
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based on a kernel, and can be seen as a convolilitgonThe kernel determines the size of
the neighbourhood. In our experiment, considerrglarge size of a fundus image (e.g. size
of 565x584 pixels in the DRIVE dataset and 700xpd&ls in the STARE dataset), we
choose a filter size of 40x40. And before applyftlier on the objective areas of image (the
drusen areas), we transform the local energy map twnary image which is used to
determine the range of averaging area. In our @xeet, these areas, actually, are drusen.
The threshold is simply chosen by calculating therage value of the energy map. An
example of final result image is demonstrated guFe 4.2 (c).

4.3 Retinal vessel segmentation using Matched filter

4.3.1Matched filter

The design of the matched filter is based uponaiapprofile of a vessel that exhibits a
cross-sectional intensity profile that can be appnated by a Gaussian shaped curve (Figure
4.3-b illustrates this property; Figure 4.3-a igadch of original fundus image). The basis of
using matched filter is constructing a Gaussiarpstianodel which can be used to match the
vessels for detection [85]. Therefore, the matdited kernel can be expressed by

x2

k(x,y) = _ela)y ly| < (4.3)

N |~

wherel is the length of the vessel segment that hased fxientation.o is the spread of the
intensity profile. Because the vessels may rotateny orientation, the kernkl(x, y) has to

be rotated as well. The kernel then can be tramsfdras

cosf; —sin6;

sinf; cos#6; (4.4)

P = [uv] = k() x|

—u?

Ki(x,y) = —e(m) VP, €N (4.5)

In which, theP; denotes the points in a neighbourhdbdefined in the area ¢ft v]. Thei (i
=1, 2, 3 ... 12) indicates the index of kernel whids a predefined angle. To eliminate the
long double sided tails of a Gaussian curvéNiin equation 4.5), the tails are truncated at

+30 and—30, thus|u| < 30[85]. Meanwhile,|v| < L/2 is defined, in whicl. is used as
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the neighbourhood length of the kernel. The matdiied is then normalized to have zero

mean as follows:

K'i(x,y) = Ki(x,y) =~ Spen Ki(x, ) (4.6)

In which the number of points M is denoted as.

In our experiment, we applied a set of 12 orieotsti(0°, 15°, 30°, 45°, 60°, 75°, 90°,
105°, 120°, 135°, 150°, 165°) of filter kernel ateoscale € =1.75). The choice of thel2
orientations is according to the statement in [8Wjere they introduced that a filter kernel
rotating by an amount of 13s adequate to detect vessels with an acceptabbaira of
accuracy. The value of sigma was chosen empiricailyce an empirical evaluation on
training images showed that on average, the sigri&=fave the visually maximum
responses. The cross-sectional intensity profilethaf kernel with orientations = 0° is

illustrated in Figure 4.3 -c.
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Figure 4.3 Vessel's cross-sectional intensity peofand matched filter kernels (d) and
examples of filtering results. (a) is a patch afjimal fundus image; (b) is a cross-sectional
intensity profile of a vessel; (c) is the crosstgem@l intensity profile of the matched filter

kernel with orientations = 0°; (e) show exampleat ttesult from the filtering using Match

Filter, where the gray scale images are illustraeléft column of (e) and the right column

illustrates the corresponding filter responses.

Given the vessel networks have a wide range ofeVesglths (2-15 pixels), the size of

each Gaussian kernel is chosen to be 16x15 pikejare 4.3-d illustrated the filter kernel
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with 12 different orientations. The vessel featutemn are extracted by taking the maximum

filter responses at each pixel.
4.3.2Segmentation method

The segmentation method is implemented based orchettfilter responses using a
thresholding scheme to find an optimal thresholtieyavhich can be used to distinguish
between vessels and the background. The threslgaddigorithm adopts local entropy based
on the grey level co-occurrence matrix, in whicktiilbution of the grey levels of two pixels
are taken into account. This local entropy baseestiolding technique was proposed by Pal
and Pal [196] and has been employed by Chanwimglaaa Fan [192] for retinal vessel
segmentation. Considering dependences of intessitetween each image pixel and its
effectiveness, we follow the same approach. Theoamxrence matrix was made by
considering horizontal right and vertical lowernsdions [196]. Namely the distandeof
maitrix Hg ¢(i,j) equals 1 an@ are Gand 270 (see section 3.2.2 for details). Therefore, the

probability of co-occurrencgy; ;) of grey levels andj can be expressed as

i = H1,0)(,))+H(1,270)(0.))
) 3y Ha o) D +2i 2 Hir 270 (i)

4.7)

Let s be a threshold which is<Os < G — 1, in which the G is the total number of grey levels
contained in an image. Therefore the image carplieiisto two parts, the object donated by
A and the background donated by B. We get theviotig cell probabilities:

PGj) ..
pAi=—2) (< ,] <s 4.8
Y Yi0Xi=o PG J ( )

pE _ PG s+1<i,j<G-1 (4.9)

i — vG-1 G-1
H Yiist12iZs+1 PG )

Then the second order entropies of the object anliground can be defined as
1
E(s) = =3 %o o Py log: P} (4.10)
1 - —
EQ(s) = =230 292, PElog, PE (4.12)

The total second-order local entropy of the obgt the background can be written as
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EP(s) = B (s) + EP(s) (4.12)

The optimal threshold for object and backgroundssifecation then can be obtained by

finding the grey level corresponding to the maxirrmlrﬁf) (s) [196].

After implementing the thresholding algorithm, sopieels may be misclassified and may
be presented as small isolated objects in the imEggrefore, length filtering which uses the
concept of connected pixels labelling is adoptektoove those isolated objects.

4.4 Experimental results and evaluation

In our experiment, the parameters of the Log-Gditer for drusen detection described in
subsection 4.2 and the parameters of the Matchestr Bescribed in subsection 4.3.1 were
obtained empirically based on the 20 images ofnimgi set in STARE. The test and
evaluation procedure are applied to 20 STARE tgstimages using both the original method
proposed by Chanwimaluang [192] and our improvethiod (that includes a pre-processing
step to remove exudates). Figure 4.4 illustratesnaparison of segmentation performance, in
which (a) is a pre-processed image named ‘im044hanSTARE database, (b) is its ground
truth, (c) is the segmentation result using Charalirang method, and (d) is the
segmentation result using our method. Visually,o@)tains exudates which influences the
segmentation illustrated in (c). This abnormaligsHess influence (d) when applied to our
method on an image that contains pathological absnig order to evaluate the segmentation
performance of our method, we use the standard uresmssensitivity, specificity and
accuracy (see section 2.1). The comparative restiiensitivity, specificity and accuracy are
illustrated in table 4.1, of which the last row alsothe average values of those terms. The
column “1” denotes the results using our methodthed2” the results of Chanwimaluang’s
method. Paired t-tests on the specificity valuedrfdividual images of the STARE database
show that our method (Performs significantly better than the Chanwimanlyia method
(2), with p-values=1.1x10% meanwhile, as expected, the test results alsmustmate that
there is no significant difference on the sengyivibetween our method and
chanwimanluang’s method. This, in turn, resultshie better accuracy of our method. These
results also reflect that our improved method igatde of excluding the drusen influences
while maintains the good sensitivity of vessel segtation. Additionally, the standard

deviations of all measurements derived from our ho@tare lower than the ones of
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Chanwimanluang’s method (see the bottom row oktdll (.)), this also reflects the stability
of our method.

Table 4-1 Comparative results on STARE data usurgrethod and the method in [192].

Sensitivit Specificit Accurac Az

1 2 1 2 1 2 1 2
ImO001 | 0.7009 0.6686 0.9509 0.9279 0.9310 0.90720810. 0.8926
Im0002 | 0.7386 0.7258 0.9200 0.9001 0.9080 0.8889152 0.9065
ImO003 | 0.7692 0.7634 0.9016 0.8957 0.8937 0.8878913®. 0.9112
Im0004 | 0.5344 0.5747 0.9840 0.9809 0.9507 0.9508273. 0.9181
ImO005 | 0.5825 0.6146 0.9729 0.9672 0.9377 0.9359323 0.9347
Im0044 | 0.6907 0.8614 0.9736 0.9112 0.9539 0.820816®. 0.9406
ImO077 | 0.7669 0.8041 0.9637 0.9526 0.9479 0.940B314 0.9261
Im0081 | 0.8242 0.8646 0.9517 0.9382 0.9422 0.932B410 0.9346
Im0082 | 0.7267 0.7922 0.9766 0.9634 0.9569 0.9500@331 0.9330
Im0139 | 0.7083 0.7654 0.9744 0.9465 0.9530 0.932@267 0.9275
Im0162 | 0.7171 0.7534 0.9721 0.9600 0.9539 0.9463492 0.9488
Im0163 | 0.7450 0.8128 0.9819 0.9669 0.9636 0.9549544 0.9519
Im0235 | 0.7959 0.8140 0.9495 0.9440 0.9358 0.932®239 0.9235
Im0236 | 0.6972 0.8392 0.9736 0.9310 0.9485 0.922B370 0.9366
Im0239 | 0.7374 0.6348 0.9703 0.9775 0.9502 0.9479246. 0.9185
Im0240 | 0.6632 0.7391 0.9679 0.9577 0.9367 0.9364264 0.9187
Im0255 | 0.7207 0.8079 0.9743 0.9584 0.9516 0.9449478 0.9474
Im0291 | 0.7423 0.7726 0.9817 0.9769 0.9696 0.968668576 0.9518
Im0319 | 0.7478 0.5645 0.9644 0.9851 0.9550 0.9670160. 0.9107
Im0324 | 0.8235 0.6318 0.9519 0.9756 0.9434 0.952951@. 0.9363

Average| 0.7216 0.7402 0.9628 0.9508 0.9442 0.9308 0.9317 0.9285
Std. (0.0699) (0.0901) (0.0209) (0.0264) (0.0177) (0.0338) (0.0147) (0.0161)

(@) (b) () (d)

Figure 4.4 The comparison of vessel segmentatisaltee using our and Chanwimaluang

method. (a) is pre-processed image; (b) is itsmpideuth; (c) is the segmentation result using

Chanwimaluang method; and (d) is the segmentaéisultrusing our method.

In addition, the algorithm’s performance was alseasured with receiver operating
characteristic (ROC) curves (see section 2.21.21étails). The ROC curves for each image
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are obtained by manually thresholding the imagé wie threshold values starting from 0 to
1 in a step of 0.01 (e.g. Figure 4.5). The areateuthe ROC curves for both the original

method and our method are listed in Table 4.1.n&ltcates the area under the ROC curves,

also known as AUC.

Considering the sensitivity, specificity, accuraoyd the ROC curve, we can say that the
modified method improves the segmentation perfooseacompared to original method,
particularly reduces the miss-segmentation ratd=YR#hich is the rate at which tissue not
belonging to vessel are miss-segmented as vesdgderving from Figure 4.5, in contrast to
the original method'’s plus (+symbols) points ling can find that the red point curve plotted
closer to the top left corner. This also confirms method achieves some success in
reducing the effects caused by drusen which presehght spots in the image and produce

false positives.
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Figure 4.5 ROC curves for the first image of STARE

4.5 Chapter conclusion and discussion

In this chapter, we demonstrated the effect ofHteiganomalies on vessel segmentation in
retinal fundus images. We propose a retinal vessginentation scheme using a Log-Gabor
filter and a matched filter. A Log-Gabor filter énployed to detect drusens which manifest
as bright areas in the image. Drusens can causes énrthe vessel segmentation. Considering
our experimental results (the sensitivity 0.72 & csficity 0.9628 and accuracy 0.9442 with
AUC area under the ROC curve 0.9317) compare witinal method (sensitivity 0.7402,
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specificity 0.9508 and accuracy 0.9308 with AUCaanmeder the ROC curve 0.9285) we can
conclude that our method improves the segmentg@formance compared to the original
method, particularly reduce the miss-segmentai@a (FPF) which is the rate at which the

tissue not belonging to vessels are miss-segmastedssels.

Nevertheless, recalling our scheme, the segmentatgorithm is primarily based on the
local entropy of the grey level co-occurrence mxatim which the joint distribution of the
grey levels of two neighbouring pixels is considees a texture feature for classification.
However, it is not strong enough to discriminateses related textures, since a fundus image
contains other components (OD, exudates, and maaeuld even the vessel tree has various
texture characteristics (different width, tortugsiteflection, artificiality). Moreover, the
retinal fundus image has low and inconsistent esttbetween the vessels and background,
especially for those capillaries in the images Whave very similar appearances compared
to the background. This phenomenon may resultemtisclassification of those capillaries.
In this case, we would like to say that the retwedsel segmentation using only one global
threshold based on low level feature extraction @isdrimination techniques will encounter
a bottleneck to accurately distinguish vessel amlvessel objects. In the next chapters, we
will introduce more sophisticated schemes for leasd non-vessel feature extraction and
classification by using the texton concept basedimerstanding limitations of techniques

adopted in this chapter.
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Chapter 5

5. Texton based retinal vessel segmentation experiment

Although numerous automatic retinal vessel segniientanethods on fundus images have
been proposed in the past (referring to the congmrgkie review of those methods presented
in chapter 2), it is still a big challenge; andimat vessel segmentation remains a focus for
ongoing research. In this chapter we focus on #irak texture-based segmentation
techniques known as textons (see chapter 3 foilg)etas only a few authors [197] have
investigated this approach for retinal vessel segation and it provides a framework for
learning texture features which is founded in hurparception. This chapter describes three
sets of experiments about our texton-based retiesdel segmentation schemes. In the first
experiment, a supervised texton-based retinal Vagggnentation method is introduced, in
which the textons are trained on vessel and badkgresamples separately. The second
experiment improves the scheme by introducing ahmaclearning stage to distinguish
corresponding vessel textons from background tesxttdMoreover, to pursue an automatic
vessel segmentation method that does not requaessive retraining and is robust to noise
and variation in image capture, we performed thel thet of experiments on retinal images
captured in three different datasets, generatirtpms from one set and testing on the other
two data sets. The third experiment reveals thist fiossible to train a set of general texons
based on our proposed scheme, which can be used gemeral tool for retinal vessel
segmentation for other image databases. The #xperiments are detailed in section 5.1,
5.2 and 5.3, each of which presents its correspgnekperimental results and evaluations.

5.1 Supervised texton based retinal vessel segmentatio

In this experiment, segmentation is performed usin@pproach that classifies each pixel in
a fundus image as vessel or non-vessel. The assifdesigned using a supervised learning
scheme, in which vessel relative textons are tchime vessel related responses and non-
vessel textons are trained from responses to nsseletructure. The training samples are

obtained using ground truth to label vessel andvessel objects in response to a fundus
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image. Textons are learnt from the responses ibea thank which is applied to each image
in the training set. For example, suppose therendikers, then the response of filtEris

given by
Ri(x,y) = F; * Iy, (5.1)

wherex denotes the convolution operation. The filter cases form an-dimensional vector
R =[R.,R,, ...R,]T at each pixel position in the image. Filter resggmnfrom pixels im
training images are clustered using kameans algorithm int& groups. Thesk clustering

centres form a set of prototype response vectawhkras textons.

Trainin Testing

|

MR11 Filter bank
------------ MR11 Filter bank

\\\\\

labelin e I
Groud Truth

vessel responses non-vessel responses

Assign

Segmentation

K-means K-means

vessel textons non-vessel textons

N ¢

Texton Dictionary

Figure 5.1 The framework of a supervised textoretastinal vessel segmentation method.
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Note that in our first experiment, the vessel edatextons and non-vessel textons are
trained separately and stored into a textons diatiypwhich can be used in the testing stage.
In the testing stage, the same filter bank is applo each novel image and pixels are
classified as vessel or non-vessel by mapping #&panses onto cluster centroids
representing each class in the multidimensionalufeaspace. Figure 5.1 illustrates this

procedure.
5.1.1 Feature extraction using the MR11 Filter bank

Design of a filter bank is an important part of aygtem using textons and different sets of
filters have been identified in previously publidheork. Varma and Zisserman [139][176]
examined the significance of a so-called maximapoase 8 (MRS8) filter bank in their
proposed framework which is used to classify natiegture patterns (see section 3.2.4 for
more details). Adjeroh et al. [197] considered preblem of designing a filter bank for
retinal images and proposed a correlation-basederaent of filters in previous retinal
segmentation studies. For our retinal vessel agipdic we designed a new filter bank to
extract features from vessels by considering thieatometric and structural properties. The
most significant properties for vessel extractiom eessel width and angles. As we described
in previous chapters, the vessel networks have vadge of vessel widths (from 2-15pixels),
and they may be at any orientation in fundus imagesddition, a fundus image contains
other anatomic components (such as OD and macalat) some pathological changes;
various artefacts such as vessel light reflectiay ralso appear on the vessel surface. In
practice, vessel networks (arteries, veins andllaaps) are typically bar structures and the
vessel cross-sectional intensity profile can ber@pmated by a Gaussian shaped curve.
With this in mind, we employed the second-ordendgive Gaussian filter that forms part of
the MR8 filter bank. Let’s define the one dimens{@b) Gaussian function as follows:

X2

L o722 (5.2)

G(x) = =

The two dimension Gaussian function is given by:

2 y

1 1 20

X
_ 307
G(x,y) e T X

<N

(5.3)

First and second order derivative 1D Gaussian fonstare given by
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e 307 (5.4)

\/_3

G'(x) =

x2

(x?2 —0g%)e 202 (5.5)

n 1
G"(x) = Tt

Therefore according to equation 5.3 and 5.5, thers® order partial derivative 6f(x, y)
with respect to the y-axis direction can be givgn b
x2 yz

3" _x" Y
Gxy) __ e ZUJZC X

_ 202
dy T V2moy, 27ta5 (y O-y)e g (56)

In order to allow the filter kernel to be rotatedany orientation, an orthonormal rotation

., [cos@ —sinf]. . L [x :
matrix [Sme cos 9] is multiplied by matnx{y], hence the equation 5.6 can be converted
to
X2 y,Z
a”G(xI’yl) 1 o2 _?
2, = Voo e 29% X 5(y —ogg)e ¥y (5.7)
where

x' =xcosf —ysinf
y' =xsinf + ycos6

In our experiment, the second order derivative Gansfilter is applied at 3 scalds,,o,)
={(1,3), (1.5,4.5), (2,6)}, and the anisotropictéit kernel at each scale is rotated in 12
orientations (0, 1% 3@, 45, 60, 75, 9¢F, 107, 12C, 135, 150, 165). These filter kernels
are illustrated in the rows1-3 of Figure 5.2.

Under a specific illumination condition, a retinatage may contain some photometric
anomalies. These may include effects such as tbselieeflection problem. In [118], Wang
et al. proposed a model based method to addresgtbblem. The vessel profile which
contains specular reflection is modelled by a Hentaussian model. In our work, to
address this we employ a Difference of Gaussiamgs{0ilter proposed by Gao et al. [198].
In equation 5.3, assume thg equals3o, to make the filter to be an anisotropic kernel, in
which g, or g, is the standard deviation which defines the spoddde intensity profile. The

2D Gaussian function can be converted to
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61Oy

J— _+_
¢ 27 507 (5.8)

Gox(xl y) =

Then the DoG is expressed as
DOGO'xl,O'xz (xr Y)Z GO'xl (xr Y) - AGO'xz (x + 6! Y) (59)

where the offset paramet&in equation 5.9 represents the centre positidghefessel over a
cross section. In reality, the vessel reflectiorymat just appear exactly on the centre line.
Under this circumstance, the offset parameter @madjusted based on the location of the
light reflection. The parametéris used to regulate the amplitude of the Gaudsiaction. It
combines with the multiplierl(/6mo?) of the Gaussain function that controls the initgnsf
curves. The amplitude paramet@ris chosen as1/m in order to avoid an overlarge
amplitude of the Gaussian curves, as in realitthoalgh the vessel light reflections are
brighter than vessels, their illumination condisare still within a certain range, for instance,
they are not brighter than some exudates or the Rdbameters,,anda,, represent the
spread of the Gaussian curve chosen to fit diftevessel diameters. In our experiments we
found thats = 0.5, 0.75, 1.0 are appropriate values(tgs, o,,)= {(1.5, 0.5), (1.5, 0.8), (2,
1.4)}, respectively. Rows 4-6 of figure 5.2 illustie the DoG filter. Our filter bank also
includes a matched filter modelled as the geneaaisGian function described in section 4.3.1.
For the parameter we choose = 1, 1.5, 2 pixels, respectively. The length of tressel
segmentL was set to 9. These values match structural ptiepen our dataset and others
have used similar values [85]. The matched fil{ats3-scales) are shown in Figure 5.2, rows
7-9.

Since the Difference of Gaussian (DoG) and Matdilezts (MF) like the second-order
derivative Gaussian (2DG) are anisotropic filtessofvn in Figure 5.2, rows 1-9), to detect
the vessels at different orientations, the filtexrriel has to be rotated. In our study,
anisotropic filter kernels are presented in 12 miggons (columns 1-12). All anisotropic
filters are applied at 3 scales using a filter késize of 16x15 pixels to estimate different
widths of vessels. For the anisotropic filters thaximal response, across all orientations,
represents its output. We also employ two isotrdpaussian and LoG filters to extract
general image features from the background ancevessindaries (Figure 5.2, row 10, col's
1-2). Consequently, the proposed filter bank cosgziof 110 filters but only 11 filter
responses are obtained, hence we named it MR11.
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Figure 5.2 Filter bank MR11 for vascular featuré&r@stion

We should point out that in some cases the secaiet derivative of Gaussian has better
performance than the Matched Filter. Figure 5.3 @id (a2) illustrate the second order
derivative of Gaussian response and Matched Fetgronse, respectively, which are derived
from an example image (a). A comparison of thét fesponses is analysed by using ROC
curve. As we can see in Figure 5.3 (b), the salide of second order derivative of Gaussian
plotted closer to the top left corner comparedhi dot line curve of the Match Filter. The
corresponding AUCs of second order derivative otisdaan and Matched filter are 0.9380
and 0.9341, respectively. However, this does naamtbat the second order derivative of
Gaussian always outperforms the Matched filtercdntrast, for the fundus image contains
large width vessels, the Matched filter has befperformance. A vessel reflection
phenomenon presented in a square area of Figuf@)si8amplified and illustrated in Figure
5.3(c). Figure 5.3 (cl) and (c2) are the filterpasses to the second order derivative of
Gaussian and the difference of Gaussian, respécti@mparing (cl1) to (c2), we can
observe that the shadow in (cl) caused by vesBettien is removed in (c2). Considering
respective advantages and disadvantages of difféiten categories, we combine these filter
categories into the MR11 filter bank to extract en@ophisticated vessels features from
fundus images. After applying the filter bank oniaage, each pixel is converted into 11-D
feature vector, which can be further used in asglsnt stage to generate textons.
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(a2)

True positive rate

=

T
False positive rate

(c2) (b)

Figure 5.3 Comparisons of responses to filters R1¥ filter banks. (a) is an example image;
(al) is the (a) filter response to second ordeiveve of Gaussian at scale(a,)=(1.5,

4.5); (a2) is the matched filter response at sealk5; (b) illustrates ROC plots for both
second order derivative of Gaussian an Matchedrfilic) is an amplified vessel reflection
presented in (a); (cl) is the filtering result gsthe second order derivative of Gaussian; and
(c2) is the filtering result using difference of @&aian.

5.1.2 Textons generation and segmentation

In our experiment, textons were trained from the INMIRilter bank responses generated from
training samples, from which we extracted localtdeas of retinal vessels. The training
procedure includes two stages. In the vessel tekt@mining stage, the texton computing
procedure was implemented on filter responses iitlwthe non-vessel related responses
were identified using ground truth and removediram non-vessel texons, the vessel related
areas in responses were removed in order to ohtarvessel background responses. The
textons were generated by employing-@means clustering algorithm on the filter responses
As representations of texture, the textons wereremgged based on the properties of
distances calculated from memberships to clustezemdres. The clustering procedure is an
iterative process. Initiallyk random points were selected as default meansréodsit of k
clusters. Corresponding memberships were selecésddbon differences of Euclidean
distance between means and centre bins. New médhese memberships were calculated

again and were defined as new clustering centreg. grocess runs iteratively until it
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converges. The flowchart of this algorithm is ithaéed in Figure 5.4. Both vessel textons
and background textons were stored in a textomodiaty and subsequently used in the test
stage. At the test stage, the trained textons assgned depending on responses of the filter
bank and then the corresponding texton membersigsalculated by assigning each pixel
to the nearest cluster centre (texton) based onEtiidean distance. The vessel texton
related memberships generate texton maps and tiraes¢ation results are obtained by
combining vessel texton related maps. At the vetesabn training stage, we applied two
schemes for selecting the valuekofnitially, as a direct way that we chdse2, i.e. one class
for vessel texton and the other representing backwgt texton. Then considering the natural
condition of fundus images comprising those ves®s$ also contain light reflection and
backgrounds which contain pathological anomaliesidates, drusen, etc.), we chds#l;
two vessel related textons and two non-vesselaglegxtons. The iteration parameter of the
k-means algorithm determines the efficiency of penfance. The iteration parameter=30 is
chosen empirically in our experiment, taking intonsideration both complexity and
performance of the algorithm. This value is selédiased upon an experimental evidence
that iteration=30 and iteration=50 have the simparformance for clustering in training

images.

k-means(k.data, maxlter)
n=get size of data |
RPn=Random Permutation(n)

RegionN=round(n/3)
I'he number of elements in
decomposed region of data

) RegionData=data(:,RPn(1:RegionN))
gy <R NO 2 2 g
R“E(']““\ K g |- xract the region data
E K-means(k,RegionData,MaxIter)
YES

pump Pick k random points as default means

{

While NO Compute memberships
iter<Maxlter of clustering centres

iter=iter+1

[Compute membership

—

Compute new means

{

NO > YES
—_— converges!?

Figure 5.4 Flowchart of texton generation algorithm
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5.1.3 Experimental results and evaluation

The proposed method was tested and evaluated oDRH¥E data set which has been
introduced in subsection 2.2.1 of chapter 2. Ineortb quantify the performance of the
proposed approach, segmentation results are cothpareorresponding ground truths. The
ground truth is defined by a binary vessel maswiiich all vessel pixels are set to one and
all non-vessel pixels are set to zero. The DRIVE&liase is divided into training and test sets

where each set consists of 20 images.

For the test set, two sets of manual segmentatiemprovided by two observers. The first
observer’s manual segmentations are used as groutidin our experiment. Figure 5.5
illustrates two examples of segmentation resuitsyhich the first row (a) and (b) are original
fundus images, the second row (al) and (bl) aresmonding ground truths. The third row
(a2) (b2) are segmentation results using the 2omsxtset, and the last row illustrates
segmentation results using 4 textons set. Visutllly,segmentation results of using 4 texons
are more detailed than using 2 textons segmentatespecially for the arterioles, venules
and capillaries, but with more isolated objectsalihiay be fragmentary vessel segments or
noise. This phenomenon is also confirmed by oufuasi@n of segmentation shown in the
table 5.1.

Our algorithm was evaluated in terms of sensitjvigpecificity and accuracy (see
subsection 2.2.1 for details). Table 5.1 illustsatee evaluation results for each test image in
test set usingg=2 andk=4 in our algorithm. Fok=2, the average specificity reaches 0.9806
with 0.7325 sensitivity, the average accuracy 8587. The values of specificity, sensitivity
and accuracy for thie=4 are 0.9524, 0.8323, 0.9422, respectively. Weseanthat there is an
increasing sensitivity of using 4 textons comparedensitivity of using 2 textons whilst the
specificity of 4 textons is lower than the spedijiof 2 texton. This is because segmentation
using 4 textons set contains more misclassifiedvessel elements than 2 textons set (see
Figure 5.5).

The primary limitation of this scheme is the higbmputational cost, as the training
procedure has to implement the clustering compartdiivice, one for vessel related textons
generation and the other for non-vessel textongrgéion. With this in mind, we improved
our initial method by proposing a new texton genemascheme which is described in the

next section.
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(a3) (b3)

Figure 5.5 Examples of segmentation results usuogtéxtons (the third row a2, b2) and four
textons (the fourth row a3, b3); (a)(b) are originmages and (al)(bl) are their

corresponding ground truths.
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Table 5-1 Performance results on DRIVE databasgustexons and 4 textons

K=2 K=4 K=2 K=4 K=2 K=4

Oltest 0.8190 0.8990 0.9758 0.9471 0.9618 0.9424
02test 0.7545 0.8419 0.9844 0.9603 0.9609 0.9482
O3test 0.6612 0.7831 0.9847 0.9564 0.9524 0.9390
O4test 0.7397 0.8203 0.9807 0.9526 0.9586 0.9404
O5test 0.6677 0.7763 0.9905 0.9729 0.9603 0.9544
O6test 0.6526 0.765( 0.9880 0.970( 0.9554 0.9500
O7test 0.7112 0.8141 0.9769 0.9403 0.9527 0.9403
O8test 0.6476 0.7769 0.9773 0.9496 0.9490 0.9347
09test 0.6612 0.7854 0.9882 0.9704 0.9617 0.9554
10test 0.7040 0.8087 0.9834 0.9633 0.9604 0.9506
11test 0.7245 0.8184 0.9775 0.9418 0.9549 0.9307
12test 0.7429 0.841Q 0.9797 0.9482 0.9593 0.939(
13test 0.7110 0.8114 0.9796 0.951Q 0.9533 0.9374
l4test 0.7786 0.867( 0.9724 0.9343 0.9568 0.9290
15test 0.7968 0.8767 0.9663 0.9215 0.9541 0.9183
16test 0.7603 0.8641 0.9826 0.9565 0.9625 0.948]
17test 0.7252 0.835§ 0.9788 0.9444 0.9574 0.9354
18test 0.7828 0.880() 0.9782 0.9487 0.9627 0.9428
19test 0.8440 0.9084 0.9837 0.958(Q 0.9722 0.9539
20test 0.7658 0.871§ 0.9825 0.9604 0.9666 0.9539
Average | 0.7325 0.8323 0.9806 0.9524 0.9587 0.9422

5.2 An improved supervised texton based retinal vessel

segmentation

In this experiment, the segmentation method is awgd by modifying the texton training
stage. In this framework, the classifier is desthosing a supervised learning algorithm to
generate textons based on our previous expeririémn. learning algorithm aims to reduce

the computational cost of the vessel segmentatigorithm so that its efficiency can be
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improved. Our aim is to change the framework shawkigure 5.1 and to use only oke

means clustering procedure to generate all thetaxiaps.

MRI11 Filter bank

Groud Truth ¢

Texton Dictionary

LR J
: \K-mcan
i — ==
/ Identify vessel texton
Assign
=

Segmentation

Figure 5.6 The framework of improved superviseddexbased retinal vessel segmentation

method.
5.2.1 The improved scheme of texton generation

Given the structures within retinal images, norgnahch scan consists of five classes of
objects; background, vessel tree network (posskhybiting light reflection anomalies), OD,
and other pathological changes (particularly foundnages of patients). In this scheme, we
chose 5 textons to reflect significant classeshoké objects that are visible in the images.
The textons are computed by applying the same Mftet bank to each image in the
training sample to get 11 classes of filter respen¥Ve use thk-means algorithm once to
cluster the filter responses irte5 groups identified by their cluster IRH(1...5). We run the
k-means algorithm until either it converges or thenber iterations reaches a limit (30). To
determine the vessel texton class membership frengitound-truth, we first rank the clusters

based on their size. The largest cluster in thentiaps onto the background pixels. The
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remaining clusters are considered as textons. Thesesubjected to further analysis to
identify optimized combinations. For instance, wa fpur texton ID which are 1, 2, 3, 4,
respectively. There are 11 combinations of thesg fextons related memberships (map),
namely, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), 43, (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4) did 2,

3, 4). Each combination is evaluated with regarddeouracy by back-projecting the clustered
pixels and recovering their ground truth labels. B¥#&re the combination with the highest
accuracy and its corresponding texons ID reprettentvessel related textons. Figure 5.7
illustrated the trained textons dictionaries frdm STARE and DRIVE databases, in which
each dictionary contains 5 textons. Each text@l4 dimensional vector and assigned by an
integer ID [1,K]. Figure 5.7 (a) is the dictionalppm STARE, showing IDs (1, 2, 5) are
indicated as vessel related textons and IDs (&r&non-vessel textons. Figure 5.7 (b) is the
textons dictionary from the DRIVE dataset, whers [R, 3, 4) are vessel textons and the IDs
(1, 5) are non-vessel textons. These identificatmintextons are trained based on the training
scheme described above. These dictionaries ofdstesdons will be used to evaluate the

vessel segmentation in a subsequent testing stage.

~-R- ] -

ID=1 ID=2 ID=3 ID=4 ID=5

(a) STARE textons dictionary

EEEE

ID=1 ID=2 ID=3 ID=4 ID=5
(b) DRIVE textons dictionary

Figure 5.7 Textons dictionaries of STARE and DRIW&abase. (a) is the STARE textons
dictionary, IDs (1, 2, 5) are indicated as vess#dted textons and IDs (3, 4) are non-vessel
textons; (b) is the DRIVE textons dictionary, 105 B, 4) are vessel textons and IDs (1, 5)

are non-vessel textons.
5.2.2 Experimental results and evaluation

In this experiment, the improved method was tested evaluated on both STARE and

DRIVE datasets (described in section 2.3). The DRt&é&tabase includes training and testing
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sets. The STARE database is not pre-split intaitngi and testing sets, but it provides 40
images with two sets of associated ground trutimdhiabelled by two experts. In our
evaluation, 20 images which have been tested by midner authors are grouped into the test
dataset; the 20 remaining images in the databasasaigned to the training dataset. For both
databases, the textons are trained on the tragangples, and are tested on the 20 remaining

images.

(c2)

Figure 5.8 Examples of segmentation results usimggaoved supervised texton based method.
The first row (@) (b) (c) (d) shows original coloundus images; The second row (al) (bl)
(cl) (d1) illustrates corresponding ground truths; bottom row (a2) (b2) (c2) (d2) are vessel

segmentation using our improved scheme.

Examples of our retinal vessel segmentation resmtsoth STARE and DRIVE database
are shown in the Figure 5.8, of which the left wadumns relate to the STARE database and
the right two columns illustrate the original imagend segmentation results with respect to
the DRIVE database. The first row (a) (b) (c) (a)Figure 5.8 shows original colour fundus
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images. The second row (al) (bl) (cl) (d1) illussacorresponding ground truths. The

segmentation results using the improved schemilastated on the bottom row.

The algorithm was also evaluated by standard measnts of sensitivity, specificity and
accuracy. On the STARE database, average specifeathes 0.9643 with 0.7517 sensitivity,
the average accuracy is 0.9506. The values of fepBgi sensitivity and accuracy for the
DRIVE dataset are 0.9831, 0.7167 and 0.9591, réspbc

Table 5-ZPerformance results on STARE and DRIVE databaseg usproved supervised

retinal vessel segmentation on fundus images

Image Sensitivity  Specificity Accuracy Image Sensitivity Specificity Accuracy

STARE DRIVE

Im0001 0.7029 0.9366 0.9180 | O1test 0.8036  0.9784  0.9628
Im0002 0.6460 0.9459 0.9259 | O2test  0.7377 0.9864 0.9609
ImO003  0.6547 0.9558 0.9750 | O3test  0.6439 0.9865 0.9524
Im0004  0.4588 0.9938 0.9541| O4test 0.7246  0.9835  0.9597
ImO005  0.6507 0.9741 0.9449 | O5test  0.6510 0.9918 0.9599
Im0044  0.7647 0.9706 0.9562 | O6test 0.6370  0.9894  0.9551
Im0077 0.8869 0.9413 0.9369 | O7test  0.6913 0.9807 0.9543
Im0081 0.8867 0.9539 0.9489 | 08test  0.6287  0.9806  0.9503
Im0082  0.8595 0.9577 0.9500 | 09test  0.6432  0.9898  0.9617
Im0139 0.8350 0.9362 0.9280 | 10test  0.6891 0.9851 0.9608
Im0162 0.8898 0.9586 0.9537 | 11test  0.7114  0.9805  0.9564
Im0163  0.9120 0.9634 0.9595| 12test 0.7263 0.9822 0.9601
Im0235  0.8347 0.9586 0.9476 | 13test 0.6946  0.9820  0.9539
Im0239  0.7845 0.9632 0.9477 | 14test 0.7637  0.9760  0.9588
Im0236 0.8411 0.9591 0.9484 | 15test 0.7818 0.9706 0.9571
Im0240  0.6562 0.9831 0.9497 | 16test  0.7452  0.9847  0.9630
Im0255 0.8548 0.9686 0.9584 | 17test  0.7090 0.9818 0.9587
Im0291  0.6944 0.9894 0.9745 | 18test 0.7702  0.9809  0.9642
Im0319 0.6053 0.9897 0.9731| 19test 0.8336  0.9863  0.9736
Im0324 0.6109 0.9867 0.9616 | 20test  0.7481 0.9846 0.9672
Average 0.7515 0.9643 0.9506| Average 0.7167 0.9831 0.9591
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Table 5.2 illustrates measurements of 20 test isidge both STARE and DRIVE
database, respectively. Each database has 2(gteatmples which are numbered using their
image file names. In practice, the sensitivity iscm more important than the specificity,
since the number of background pixels is largen tie number of vessel related pixels in a
fundus image. As we can see from the table 5.2m&e@mum and minimum sensitivity are
0.9120 and 0.4588 for STARE images. For the DRiMBges, the maximum sensitivity is
0.8336 and minimum sensitivity is 0.6370.

STARE “IM0004” DRIVE “O8test”

(b2)

Figure 5.9 The segmentation results with the lsassitivity for both STARE and DRIVE
databases. (a) (b) are test images of STARE and/PRlatabases; (al) and (b2) are the
ground truths and (a2), (b2) are the segmentaéisults
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Figure 5.9 illustrates the cases with the worsts#eity in the STARE and DRIVE
database, in which (a) ‘IM0004’ is a test imageSGARE and (b) is an image of DRIVE.
Visually, the local contrast between vessels arukdpaund is extremely low in both (a) and
(b). In figure 5.9 (b), most of vessels surroundihg macula cannot even be distinguished

pre-attentively from the background by the humasiowi system.

Comparing the segmentation results (a2, b2) to dheund truths (al) and (b2),
respectively, we can see some vessel trees areseussented. This low contrast condition is
the critical factor that leads to the poor segm@ntausing the proposed method. Extremely
low contrast between vessels and background is mmom issue for retinal vessel
segmentation, however there are no solutions tathandle it completely in the research
community, to the best of our knowledge. We alsmpgare our approach to other retinal
vessel segmentation algorithms to set the perfoceaf our method in context. Table 5.3
shows these comparative results of performanceeriirpntal results show that our proposed
method outperforms some state-of-the-art methodiglewwhe performance compares well

with the best published results on both datasets.

Table 5-3 Comparison between our method with fileomethods on STARE and DRIVE

databases
Method Performance Results
database | Sensitivity | Specificity | Accuracy
2"’ human observer STARE 0.8949 0.9390 0.9354
Our method STARE| 0.7515 0.9643 0.9506
Hoover[90] STARE 0.6751 0.9567 0.927b
Soares [103] STARE 0.7165 0.9748 0.9480
Marin [108] STARE 0.6944 0.9819 0.9526
Staal [102] STARE 0.6970 0.9810 0.951
Zhang [89] STARE 0.7177 0.9753 0.9484
2"° human observer DRIVE | 0.7761 0.9725 0.9473
Our method DRIVE| 0.7167 0.9831 0.9591
Mendonca [126] DRIVE 0.7344 0.9764 0.9425
Soares [103] DRIVE 0.7283 0.9788 0.9446
Zana [125] DRIVE 0.6696 0.9769 0.937Y
Staal [102] DRIVE 0.7194 0.9773 0.9441
Zhang[89] DRIVE 0.7120 0.9724 0.9382
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5.3 Retinal vessel segmentation using general textons

Normally, similar objects in the natural world hasienilar properties, such as shape, colour,
texture etc., and it is reasonable to believe that similar objects should have similar
structural primitives (textons). Consequently wa& @ssume that the vessel or non-vessel
elements in fundus images which are obtained frdferdnt databases should have similar
textons that can be used as a general tool fonaletiessel segmentation. Under ideal
circumstances it should even be possible to coctstrunified vessel textons library, which
can be employed for vessel segmentation on furmdages in any datasets. In order to verify
this assumption, we set up an experiment on retmabes captured from three different
datasets, in which texons trained on one data ®gé& weused on other data sets. This
experiment may not be sufficient to verify the asption under the ideal circumstance, but it
provides evidence of the feasibility and motivatidor pursing an automatic vessel
segmentation method that does not require excessivaning and is robust to noise and
variation in image capture methods. This experimevaluates the performance of our

proposed method and provides evidence to extenccappns of our textons based methods.

5.3.1 Experimental setup

To verify the feasibility of using a unified textoms a general tool for retinal vessel
segmentation in fundus images, we first adopt @stital analysis method (paired t-test) to
analyse the difference between two segmentatiantseshich were obtained by using two

sets of textons. The paired t-test has been widlsdygl to prove whether differences between
two methods are significant. A novel method cambalified based on the performance of
the other method. For the first experiment, oyrdilgesis is that if the textons trained from
one dataset produce segmentation results on anodwaset with similar or better

performance compared to the manual segmentatioothmr proposed methods then this
provides some evidence that unified textons mayamecceptable tool for retinal vessel

segmentation.

Towards this direction, in our first experimentssttimages from the DRIVE database
were segmented by employing the textons trainech ftbe STARE database. The first
observer's manual segmentation of test imagesdrDRIVE database is defined as ground
truth. The measures of the second observer’s sdgti@ncan be used to compare with the
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measures of automatic machine segmentation uss\@ TARE textons. Moreover, we also
compared our results to the results published byirMet al. [108], as they reported detailed
measurements for each test image in the DRIVE datab

In the second experiment, we investigated the ioteserver variability between two
methods which use two sets of textons (one texévmsgrained from the database itself and
the other is trained from another independent @t} We would like to compare this inter-
observer variability with the inter observer vailyp of two expert segmentations of the
same datasets. In the second experiment, we burleva independent data set which
comprised 114 images collected from Manchester Réya Hospital (MREH). Each image
was digitized with a size 756x656 pixel and wagestoas png format. 20 images were
randomly selected as test samples, 20 of remaimages were used as training samples. We
asked three ophthalmologists to manually segmeimtatesressels from the background on 20
test images, in which one of the ophthalmologistsvigles ground truth on 20 training

images and the manual segmentation of the senpareis chosen as ground truth.

5.3.2 Comparative study of retinal vessel segmentation urgy general

textons

In the first experiment, the textons from the STAB&abase were applied on the DRIVE
test images to obtain the vessel segmentationof@e@rasour*). Then the result of each
image was evaluated by standard measurements. €asuned results of 20 DRIVE test
images are illustrated in table 5.4, in which threrage sensitivity, specificity and accuracy
are 0.7795, 0.9706 and 0.9537, respectively. Inerortb provide the comparable
measurements, the second observer's segmentatiotiee DRIVE database (denoted as
humar) were measured with average sensitivity, spetyfiand accuracy as 0.7761, 0.9725
and 0.9473 respectivelylhere are two sets of ground truth provided by texperts
independently in the DRIVE database (refer to thetisn 2.2.1). Therefore, for manual
segmentation measurement, by convention, if theuadasegmentations provided by the first
expert are defined as gourd truths, a set of meammts (sensitivity, specificity and
accuracy) for each individual image in test datasetbe calculated by comparing the second
expert manual segmentation to the ground trutkt(@xpert segmentation). As a result, there
are in total 20 sets of these measurements fore20 images. The measurements of
segmentation results (denotedMarin) which were produced biylarin et al. are collected

from their published paper in [108], where all th20 sets of evaluation measurements are
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reported. We analysed the differences among ouhadefour*), human segmentation
(human andMarin method using the paired t-test based on respe2@veets of evaluation
measurements. Paired t-tests on the accuracy vatresdividual images of DRIVE
database show thaur* performs significantly better than tiMarin et al. with p-values=
6.58x10%, meanwhile the test results also demonstrateciln@toutperforms théumanwith
p-values=4.75x10 The corresponding results are illustrated by aod-whisker plots in
Figure 5.10. However, we can observe from the [Eigut0 that the range of boxes related to
the human segmentations is less than our methad)(for all three measures. This reflects
that human segmentation has a more stable perfesr@mpared to automatic segmentation
methods. The manual segmentation still needs tapmeoved in terms of robustness and
reproducibility for vessel segmentation in the nmati images which are commonly

inconsistent in image condition (illumination, caadt et al.) and quality.

The differences of Accuracy The differences of Sensitivity The differences of Specificity
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Marin Human Our* Marin Human Our* Marin Human Our*

Methods Methods Methods

Figure 5.10 The box plots of accuracy, sensitigitg specificity foMarin, human and our*
methods

In the second experiment, we further evaluatedapproach by segmenting 20 images
from the MREH data set. To investigate differemiirtng regimes we built two classifiers.
The first was trained on the STARE images and #uersd was trained on a training subset
of MREH images. Examples of segmentations aretiitesd in Figure 5.11, in which the (a)
iIs an original test image, (b) demonstrates theirgplotruth, (c) is the segmentation result
using STARE textons and (d) is the segmentatioultresing textons trained from subset of
MREH database. In each case the test set of MRE$ewaluated in terms of sensitivity,
specificity and accuracy, corresponding measuresnarg shown in table 5.5, of which the
left part lists measurements of each case using IMREtons (denoted as MREH) and the
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right part includes measurements of each case &IARE textons (denoted as MREH*).
The average measurements of MREH are 0.7678, 0.9686 0.9447, the average
measurements of MREH* are 0.7901, 0.9556 and 0,;9887%itivity, specificity & accuracy

respectively. The comparative results of thesedlassifiers are presented in Figure 5.12 (a).

Table 5-4 Measurement results on DRIVE databasey&TARE textons

Sensitivity Specificity Accuracy

Oltest | 0.8539 0.9660 0.9560
O2test | 0.7938 0.9758 0.9571
O3test | 0.7212 0.9760 0.9506
O4test | 0.7806 0.9683 0.9510
O5test | 0.7223 0.9839 0.9594
O6test | 0.7055 0.9814 0.9545
O7test | 0.7578 0.9645 0.9456
O8test | 0.7082 0.9676 0.9453
09test | 0.7232 0.9811 0.9602
10test | 0.7529 0.9763 0.9579
1lltest | 0.7631 0.9668 0.9486
12test | 0.7896 0.9687 0.9532
13test | 0.7594 0.9696 0.9490
l4test | 0.8230 0.9593 0.9483
15test | 0.8323 0.9513 0.9428
16test | 0.8063 0.9730 0.9580
17test | 0.7786 0.9662 0.9504
18test | 0.8273 0.9682 0.9570
19test | 0.8742 0.9742 0.9659
20test | 0.8176 0.9743 0.9628
Average| 0.7795 0.9706 0.9537

To get the comparable measurements, we evaluageidttdr observer variability between
two expert segmentations of the same datasets (MRIEH present the results in Figure
5.12(b). A paired t-test result shows that accuay sensitivity of two expert segmentations
are statistically significantly different with p-hes=4.7x10, 1.1x10°, respectively. The
mean of difference on accuracy and sensitivity0a@@52 and 0.0535, respectively. Although
a paired t-test on the accuracy, sensitivity of sggmentations (MREH, MREH*) shows that
the inter observer variability between two meth@dalso different with p-values=2.6x10

116



7.9x10° the mean of difference on the accuracy and seigiare 0.0050 and 0.0223 which

are less than the differences of two ophthalmotegis

Both the first experiment and the subsequent exparial results provide evidence
which demonstrates the robustness of our textoadbestinal vessel segmentation method.
The comparative study results reveal that text@rs/eld from one database are sufficiently
general to be operationally useful on other datdabhis suggests that it may be feasible to
generate a consistently updated unified textoriatiaty which can then be used in several

databases.

Table 5-5 Performance results on MREH database waio training regimes

Sensitivity  Specificity Accuracy | MREH*  Sensitivity Specificity Accuracy

Oltest 0.7896 0.9441 0.9253 | O1test  0.8037 0.9327 0.9169
O3test 0.7278 0.9849 0.9664 | O3test  0.7618 0.9815 0.9657
O6test 0.7557 0.9662 0.9445 | O6test  0.7767 0.9569 0.9383
O7test 0.7916 0.9587 0.9439 | O7test  0.8098 0.9488 0.9364
O8test 0.7715 0.9628 0.9396 | O8test  0.7902 0.9556 0.9355
22test 0.8014 0.9556 0.9419 | 22test  0.8169 0.9473 0.9357
23test 0.7759 0.9552 0.9403 | 23test  0.7935 0.9463 0.9337
25test 0.8491 0.9698 0.9599 | 25test  0.8670 0.9647 0.9567
26test 0.8363 0.9602 0.9479 | 26test  0.8496 0.9527 0.9424
30test 0.7212 0.9595 0.9356 | 30test  0.7460 0.9509 0.9303
34test 0.8158 0.9652 0.9516 | 34test  0.8326 0.9580 0.9466
35test 0.8202 0.9599 0.9484 | 35test  0.8387 0.9505 0.9413
39test 0.6674 0.9640 0.9312 | 39test  0.6961 0.9572 0.9284
41test 0.7918 0.9623 0.9460 | 41test  0.8094 0.9542 0.9403
49test 0.7628 0.9698 0.9531 | 49test  0.7852 0.9638 0.9494
92test 0.8187 0.9512 0.9399 | 92test  0.8297 0.9423 0.9327
95test 0.7249 0.9604 0.9357 | 95test  0.7828 0.9433 0.9293
99test 0.7150 0.9736 0.9480 | 99test  0.7378 0.9671 0.9443
102test 0.6973 0.9838 0.9558 | 102test 0.7283 0.9794 0.9549
109test 0.7212 0.9647 0.9388 | 109test  0.7461 0.9581 0.9356
Average 0.7678 0.9636 0.9447 | Average 0.7901 0.9556 0.9397
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(b)

Figure 5.11 The examples of segmentation on a MR#Bge using different training
regimes. (a) is an original test image; (b) demonstrates gheund truth; (c) is the
segmentation result using STARE textons and (dhéssegmentation result using textons

trained from subset of MREH database.
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Figure 5.12 (a) The box plots of measurements ofdlassifiers trained on MREH (MREH)
and STARE (MREH?*); (b) Comparative performancewbtexperts.
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5.4 Chapter conclusion and discussion

Three sets of experiments have been describedsrctiapter. The first set of experiments
demonstrated a supervised retinal vessel segmamtatethod using a novel MR11 filter
bank and textons. The performance measurementeddRIVE database shows that for k=2,
the average specificity reaches 0.9806 with 0. &&2sitivity, the average accuracy is 0.9587.
The values of specificity, sensitivity and accurdoy the k=4 are 0.9524, 0.8323, 0.9422,
respectively. The second set of experiments desttidm improved texton generation scheme
based on the previous experiments, which improkiesefficiency and is more automated
than our previous method. The evaluation resultggsst that our proposed method
outperforms many published works and the perforrmanompares well with the best
published results on STARE and DRIVE datasets. dtor segmentations of the STARE
dataset, the average specificity = 0.9643, seitgitiwv 0.7515 and accuracy = 0.9506.
Specificity, sensitivity and accuracy for the DRI\dataset are 0.9831, 0.7167, and 0.9591
respectively. The third set of experiments providedficient evidence which verifies that
textons trained on one dataset can be reused ar dHtasets, while our analysis also
revealed the consistent performance of our propasethod when applying it on an
independent set of optical fundus images. Besid@sgupublicly available STARE and
DRIVE database, a new independent dataset namedHVIR& employed to test our
technique. As expected, we found that textonsedhon images drawn from the same dataset
as the test sample perform better. However, théommeance we measured when training
images were drawn from a different dataset was amyginally poorer and comparable to

that found between human experts, faced with theedask.

In practice, although the experimental results sagghat the textons are successfully
capturing vessel texture and the framework forrieay and selecting textons is robust, the
high (11) dimensional feature vector causes higinprdational cost which still remains a
problem in practical application. Moreover, somedadl arterioles, venules and capillaries are
miss-detected because of limited scales of spatiaiain filters. A straight forward way to
handle this issue is increasing the number of scidlat may cover more vessel diameters.
However it will again increase the computationaktcolherefore we believe that this
contradiction cannot be resolved using this propdsa alternative solution is introducing
the Gabor filter to analyse the image in both tipatial and frequency domain. Our
subsequent studies using the Gabor filter for abtimessel feature extraction and
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segmentation are presented in the next chapteaddition, the statistical analysis results in
our experiment shows that the performance of twameeds segmentations have statistically
significant difference, which is some cause fora@n and suggests that our approach may
benefit from techniques for identifying ground trihat compensate for this inter observer
variability [199]. We believe there is scope forther work focused on producing reliable
ground truth from multiple experts, and we hope toenparative study undertaken with

human experts will inform future clinical investntem this area.
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Chapter 6

6. Texton based retinal vessel segmentation using Gabo
filters and derivative of SIFT

Retinal vessel segmentation is an important prekmy stage in automatic assessment of
retinopathy as it enables the vascular tree to dsestoucted. Numerous automatic retinal
vessel segmentation approaches on fundus image beese proposed. A Comprehensive
survey of these methods was presented in chaptAr 2gnificant number of filter-based
methods are proposed to extract vessel and nomlviesgures. The achievement of filter-
based methods depends on the design of the fidek lused to extract vessel features.
However these approaches that rely on speciatdikaffer due to the large range of various
vessel widths that occur in fundus images and amommproblem is that some tiny vessels
are miss-segmented. Although our proposed MR1érfiank can address some of these
limitations (see section 5.1.1 for details), thehtgque is computationally expensive since
many filter kernels need to be convolved with thage and the features that are formed are
high dimensional vectors and this, in turn increagee computational cost of subsequent

clustering or classifying algorithms.

The first experiment presented in this chapter stigates if we can balance this situation
by decreasing the number of filters while maintagnior improving the segmentation
performance. Our technique uses the Gabor filtextoact vessel relative features.

In practice, although supervised segmentation nasthexhibit more competitive
performance than unsupervised methods (refer tie @28, 2.9), pursuing more automatic
(unsupervised) retinal vessel segmentation metlazdshill been a focus of research in the
area, especially, for those classifier-based setatien methods. Unsupervised training
schemes commonly do not rely on the ground trutth #us is an attractive feature as in
reality it may not be reliably provided. Buildingy dexton theory and given that the vessel
structure can be decomposed into many vessel ségnmmated in any specific angle, we
develop a derivative of the scale invariant featmamsform (SIFT) [202] based on Gabor

filters to extract specific vessel relative feature
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In the second experiment, we propose an unsupdriegmal vessel segmentation method,
in which, a derivative of the scale invariant feataransform (DSIFT) algorithm extracts
vessel features that are used to determine apptepscale parameters and potential
interesting key-points which are further employedrtform the initialization of &-means
algorithm in the texton generation stage. The Usstable vessel key points derived from
DSIFT improves the stability of the clustering aitfon and this enables textons to be

selected automatically without manual intervention.

These two sets of experiments are described inose6tl and 6.2 respectively. The
segmentation results for each experiment were meadswand corresponding evaluation
results are presented in subsection 6.1.3 and .63e8tion 6.3 presents the chapter

conclusion and discussion.

6.1 Retinal vessel segmentation using Gabor filter an@iextons

The Gabor filter was originally proposed by Den@igbor [180] and subsequently used by
Daugman [181] to model specific frequencies anémtations of certain cells in the visual
cortex of some mammals. Because of its charadts;ghe Gabor filters have been widely
used in many applications of image processing, siscbbject recognition, edge detection,
and texture classification. Since the Gabor fikdocalised, spatially different image textures
can be extracted depending on values of the filéeameters. In this experiment, we choose
the Gabor filter kernel considering the vesselstphological characteristics, of which the
most important vascular properties are vessel wadlith their corresponding rotated angle.
We present a procedure for parameter selectiordb@séhe retinal vessel features, and use a
further parametef. to control the function’s performance. Machinerh#ag is used to
optimize the filter parameters for retinal vesseltraction. The filter responses are
represented as textons and this allows the comelspg membership functions to be used as
the framework for learning vessel and non-vessassds. Then, vessel texton memberships

are used to generate segmentation results.
6.1.1 Optimization of Gabor filter parameters

We choose a Gabor filter kernel to extract featmfeetinal vessels as the function encodes
information about specific frequencies and orieate. The mathematical expressions of the

1-D function and 2-D function have been presentedaction 3.2.5. In order to allow the
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filter kernel to be rotated in any orientation, teguation 3.23 is converted to following

equation:
_l(ﬁ.l.ﬁ)
Go(x,y) =e * 9 9 cos(2nfx' + ¢) (6.1)
wherex’ = x cosf + ysinf,y’ = —xsinf +y cos 6. o, ando,, determine the spread of the

Gaussian envelope in x and y axis directions, @spsy. We set the term, equals ta,, in

our experiment. The terrh denotes the spatial frequency of the Gabor fikemel. We

introduce the paramet&mwhich presents the wavelength of the cosine fa(ctm(ZnXX + ),

see equation 6.2) of the Gabor filter kernel arel xR\ denotes the special frequency of the
cosine factor (segin equation 6.1). Because the linear structures@lesegment) has an
approximate rectangular shape, the kernel shouldrisotropic. In order to construct an
anisotropic kernel we insert the spatial aspeab f@arametey into the equation 6.1, which
determines the ellipticity of Gabor Kernel. Consenfly, equation 6.1 can be converted into

the following form:

x'24y2y'2

Gr0,p,00 (%, Y) = e 22 )cos(Zn% + @) (6.2)

x' =xcos@ +ysinf
y' = —xsinf +ycosf

If y=1, the kernel is circular anglis the standard deviation of the Gaussian envelope

©) (d) ©)

Figure 6.1 Showing the characteristics of vessahbaries, the symmetric Gabor kernel and
the optimal Gabor filter bank; (a) is a panel cregpgrom a grey-level retinal image; (b) a
grey level profile from the red line crossing thessel in (a); (c) Gabor kernel with parameter
¢=0; (d) Gabor kernel with parameter x; (e) is optimized Gabor filter bank for retinal

vessel feature extraction.
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Because the vessel boundaries in fundus imagegresented in a plane approximately
normal to the sensor plane their edges are asstortasl parallel. So we model the vessel as

an even symmetric function with correspondiogntre-onandcentre-offresponses given by
@ = 0 andp = . Wheng equalsfzE or —g the equation becomes an odd-symmetric function.
Figure 6.1-c and 6.1-d illustrate Gabor kerneldwwi@rametep = 0 ande = m, respectively.
Since retinal vessels appear darker compared Wwéh background (e.g. Figure 6.1-a is a
panel cropped from a grey-level retinal image aridi6is a grey level profile from the red

line crossing the vessel in 6.1-a), we chopse n for our kernel model.

Neurophysiological research shows that the parametado are not independent [200],
Petkov and Kruizinga [201] reported that the rati@ is related to the half-response spatial

frequency bandwidtb and can be set as follows.

o 1 [In2 2b+1
1T ;\/7- 21 (6.3)

In practice, the bandwidth controls the number of visible parallel excitatcapd

inhibitory stripe zones. Three zones, one inhigitand two excitatory are visible in the
retinal vessel structure (Figure 6.1-a) so we datexd b=3 in our experiment. We set the
spatial aspect ratipas 0.85 as our previous work suggests this ratibet optimal. Since

o andA are correlated, only one of them) (is considered a free parameter. Hence, we
rewrite equation 6.2 as

x'2+0.72y"2

o )cos(Zn%+n) (6.4)

Gro(x,y) =e
The orientation of the retinal vessel is anothenificant structural characteristic since
vessels are neither vertical nor horizontal prégiseonsequently, the Gabor filter kernels are
designed to cover 12 different orientations in° iBcrements. Hence, our filter bank
comprises a set of Gabor kernels parameterised lyhich can control the function’s
performance with respect to the enhancement ofel&sshe choice ofA, and hence using
the relationship in equation 6.3, the kernel gize of primary importance with regard to the
performance of the Gabor filter and its abilityextract vessels. We choaséy plotting a

family of ROC curves for a range of filter respamsbtained from a training set of images.
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Figure 6.2 The ROC curves obtained by differentddenvalues.

Typical results are plotted in Figure 6.2. Corregpng qualitative measurements AUCs

(area under the curves) were obtained based msetbetion ofA values (6-16).
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Figure 6.3 The AUCs of ROCs with different lambdas

As we can see from the Figure 6.3, wiiéa 13, the value of AUC reaches maxima
(0.9421), the remaining values of AUCs are 0.9@/2170, 0.9248, 0.9312, 0.9364, 0.9395,
0.9417, 0.9415, 0.9401 and 0.9379, respectivelpmRhis analysis we cho2e13. Using
equation 6.3, we find is 3.12 and hence a suitable kernel size is igfr& 6.1-e illustrates

optimized Gabor filter bank for retinal vessel teatextraction.
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To assess the performance of the Gabor filter anklesigned, we compare Gabor filter
with matched filter using ROC curves. Figure 6ldsirates both curves, in which the curve
shown with the solid line represents the perforneamfcour Gabor filter and the curve shown
with a dotted line represents the matched filtdre Tesults indicate that the Gabor filter

outperforms the matched filter, since the Gabaoerfiturve is closer to the top left corner.
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Figure 6.4 Comparative ROCs between Gabor filteratched filter

A typical example image response to Gabor filerkbanth optimized parameter is
illustrated in figure 6.5, in which 6.5(a) is anginal fundus image and the 6.5(b) is the filter
response.

(a) (b)

Figure 6.5 An example of optimal Gabor filter respe, (a) is an original fundus image and

(b) is the filter response to optimized Gabor filte
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6.1.2 Generating the textons

The procedure for generating textons is similathe scheme described in section 5.1.2. In
this experiment, we search for an optimal valuedarameteik of the k-means clustering
procedure. When training vessel textons , varivalaes ofk (number of cluster centres)
were chosenk(= 1...5) and when training non-vessel textoks (1...10) were chosen. The
corresponding accuracies were calculated by evatpatith respect to ground truth.
Consequently, a total of 12 textons were generatetl stored in the texton dictionary, in
which 3 textons are related to vessel elements @ndxtons are related to non-vessel

elements.
6.1.3 Experimental results and evaluation

In this experiment, the proposed method was testeldevaluated on the DRIVE data sets.
Our algorithm was evaluated using standard measamemin terms of sensitivity, specificity
and accuracy for each sample of test images. Tallellustrates these measurements for
each case in the test set of the DRIVE databasehioh the average specificity reaches
0.9602 with 0.7673 sensitivity and the average mmu is 0.9430. An example of a
segmentation for an image in the test set of th&/BRlatabase is illustrated in Figure 6.6, in
which the 6.6 (a) is an original image, the 6.6igbits ground truth and 6.6(c) is the vessel
segmentation. Visually, most of tiny vessel bracfvagillaries) are detected. However some
false positive pixels are evident in the area atright bottom corner and around the optic
disc (OD).

To verify the performance of our method, we compasailts with other state-of-the-art
approaches for retinal vessel segmentation in fsindmages. Table 6.2 presents
corresponding results. The relative terms of measant are average obtained from all of the

test images.

The experimental results show that our proposedodeproduced a much better figure
for sensitivity, whilst maintaining almost the sameerall accuracy, compared with the best
other methods. Note: Comparative results includekvoy Soares [103] and Fraz [110] who
also use Gabor filters.
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Table 6-1 Performance results on the DRIVE database) the optimized Gabor filter

Image Sensitivity Specificity Accuracy

DRIVE

Oltest | 0.8499 0.9564 0.9469
O2test | 0.7351 0.9739 0.9495
O3test | 0.6680 0.9714 0.9411
O4test | 0.7618 0.9562 0.9383
O5test | 0.6631 0.9864 0.9561
O6test | 0.7060 0.9743 0.9481
O7test | 0.7524 0.9459 0.9282
O8test | 0.7101 0.9551 0.9340
09%est | 0.7216 0.9744 0.9539
10test | 0.7493 0.9694 0.9513
1ltest | 0.7561 0.9494 0.9321
12test | 0.7827 0.9560 0.9410
13test | 0.7542 0.9572 0.9373
l4test | 0.8073 0.9427 0.9317
15test | 0.8250 0.9322 0.9245
16test | 0.8092 0.9626 0.9488
17test | 0.7808 0.9511 0.9367
18test | 0.8340 0.9559 0.9462
19test | 0.8636 0.9649 0.9565
20test | 0.8159 0.9679 0.9568
Average| 0.7673 0.9602 0.9430

(@)

Figure 6.6 Examples of segmentation on a DRIVE enagjng optimized Gabor filter. (a) is
an original image, (b) is its ground truth andigcthe vessel segmentation

In practice, it's difficult to balance the sensityv and specificity. Normally, with
increasing sensitivity, the value of specificitygii reduce and this, in turn changes the
overall accuracy. In our experiment, we found thahsitivity increased more than 5%
however the specificity just reduced 1%. This penance confirms the robustness of our

method in detecting retinal vessels.
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Table 6-2 Comparative results on the DRIVE database

Performance Results

Method database | Sensitivity | Specificity | Accuracy
2" observer DRIVE| 0.7761 0.9725 0.9473

Our method(Gabor) | DRIVE 0.7673 0.9602 0.9430
Our method(MR11) DRIVE  0.7167 0.9831 0.9591
Mendonca [126] DRIVE 0.7344 0.9764 0.9452
Zana[125] DRIVE 0.6696 0.9769 0.9377
Staal [102] DRIVE 0.7194 0.9773 0.9441
Zhang [89] DRIVE 0.7120 0.9724 0.9382
Soares [103] DRIVE 0.7283 0.9788 0.9466
Fraz [110] DRIVE 0.7525 0.9722 0.9476

Table 6.2 also includes the measurements of metisoty MR11 (expressed as our
method (MR11)) which has been described in chapt€€omparing with the experimental
results of chapter 5, the performance of our methsidg Gabor in terms of accuracy is
poorer than the performance of the method using MRbwever the former is much more
effective, as the dimensions of feature vectorsradkiced and the computational cost is
lower. In the next experiment, we will investigatew to improve its performance by
adopting multi-scale Gabor filters and propose asupervised texton based segmentation
method using a derivative of SIFT.

6.2 Unsupervised texton based retinal vessel segmentatiusing

DSIFT and the multi-scale Gabor filter

Although supervised segmentation methods are momgpetitive in terms of performance
than unsupervised approaches, their dependenceondjtruth requires a training stage and
the problem of intra- and inter-observer variapiitnongst experts needs to be considered as
in practice this limits the robustness of the agailon [199]. In this and many other research
fields, the availability of ground truth may be sg&or very expensive to acquire due to the
laborious nature of the task. Even when a suitabégye database with corresponding ground
truth is available, inaccuracies in the segmentatidl lead to poor performance compared to
ground truth. Moreover, because a significant nundfesupervised vessel segmentation
methods use filter banks to extract vessel andvessel features, the performance depends
on the design of the filter banklowever they are computationally expensive sinceayma

filter kernels need to be convolved with the imagel the features that are formed are high
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dimensional vectors and this, in turn increases ¢benputational cost of subsequent
clustering or classifying algorithms. In this casgs very significant to develop an
unsupervised method using a limited number ofrBlt® handle this issue, especially in the
retinal vessel segmentation research field.

Training set 2 .
- Training Testing

y

\\Iulil-sculcs Gabor filter
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the vessel candidates” locations

Figure 6.7 The framework of an unsupervised retuggsel segmentation on fundus image
using multi-scale Gabor filters and DSIFT

Recalling the schemes of previous methods presemtsettion 6.1 and chapter 5, ground
truth is used to determine the vessel or non-vastatied textons when training appropriate
classifiers for vessel segmentation. In this expent, we wish to develop a new algorithm to
identify the vessel textons directly instead ofngsground truth. We adopted the Gabor

filters presented in the previous section to depatentially interesting pixels that will be
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used to extract the specific vessel feature ardbode individual candidates based on an
algorithm derived from SIFT. We call this algoriththe derivative of SIFT (DSIFT)

algorithm. The feature descriptors derived fromraoted features then can be used as
indicators to identify the vessel relative elementsthe fundus image. Consequently, the
clustering computation procedure is seeded froreehdentified vessel elements to generate

vessel textons that are subsequently used for sggtimn in the testing stage.

The framework of this procedure is illustrated igufe 6.7. It is split into two primary
stages: training and testing. The training setravad from the DRIVE database and includes
20 images. We further split these images into tulwssts, of which one was used for training
a dictionary of vessel relative descriptors by Eypg DSIFT (section 6.2.1) and the other

was used to train a dictionary of vessel textondessribed in section 6.2.2.

At the textons training stage, the selection ofrappate Gabor filter scales is determined
by scales of key points. This in turn allows textda be formed at specific scales. We call
these meta-textons (see section 6.2.2). The vissere descriptors were computed on each
pixel of potential interest (key points), and thitese generated descriptors are matched to
those pre-trained vessel feature descriptors. Seedstializing the k-means algorithm were
selected from the matched vessel key points. Téisrohines the trained textons relating to
vessel. At the test stage, meta-textons are askigapending on responses of multi-scale
Gabor filters. The selection of filter scales iformed automatically by scale information in
meta-textons. The vessel texton related membershgserate texton maps and the

segmentation results are obtained by combiningelésston related maps.

6.2.1 Derivative of SIFT

The scale invariant feature transform (SIFT) wagioally proposed by Lowe [202], a brief
review of SIFT has been presented in section 32T is used to extract distinctive local
image features that has been employed as a powedulfor various image processing
applications. Computing the SIFT involves four si®gsee section 3.3.2 for details. In our
experiment, inspired by Lowe’s work, we developedapproach called derivative of SIFT
(DIFT). Our approach uses Gabor filter to modeldistinctive vessel features. The detail of

the Gabor filter characterised by a free parametgipresented in section 6.1.1.
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Figure 6.8 Vessel features extraction and key paatection in DSIFT

Given a significant natural characteristic of ratinessels is the wide range of vascular
widths presented in fundus images (see Figure 2ablying a filter bank using only a single
scale may not be sufficient to detect various vadihvessels exactly. So although applying
the filter at an optimal scale may provide goodigrenance with regard to extraction of the
main vessels, some tiny vessels may be miss-ddtddtmvever, using Gabor filters at each
scale have their advantages and disadvantageseAkescribed in section 6.1.1, the value of
lambda &) determines the value of sign&),(see equation 6.3. The valuesofletermines the
kernel size, thus different widths of vessels camétected using variows In practice, while
small values ob (scale) are useful for detecting tiny vesselsy thre also sensitive to image
noise. With increasing value of, the filter may detect wider vessels, howeverséhony
vessels may be miss-detected. With this in mindyder to detect potential vessel key points
which are further analysed to generate correspgndigscriptors, we adopted Gabor filters at
multiple scales in our experiment. Note: based onearlier work we select the range of

scales empirically i.eA € [4,6,8,9,13,15].

Although the descriptors could be calculated fazhepixel in the image, to reduce the
computational cost, descriptors are only computdaf subset of the most representative
vessel pixels. These so-called vessel key pointg wbtained by comparing the filter-bank
response at a pixel (marked as cross in Figuret6.B¥ 8 neighbours (marked as circles) at
the same scale and meanwhile comparing the pix& 8 neighbours at its adjacent scales.
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The selection of the local maxima, inspired by SI&ims to identify a set of representative

vessel pixel candidates, therefor the local minimeae not taken into account.

(b2)

Figure 6.9 Examples of detected key points of uesard corresponding descriptors. (a)
illustrates the key points and (b) illustrates esponding descriptors. One of the descriptors
IS zoomed in and presented in (bl); one of thentat®n histograms presented in (bl) is
illustrated in (b2).

Figure 6.9 (a) illustrates the potential key paifds we can see from the image, key
points correspond not only to main vessels, b alfew key points are located in the areas
around the end of some capillaries. This is becausepply the Gabor filter at multiple
scales and each scale has a corresponding alailigktract various sizes of vessels. For
instance, assumingequals 4, 6, and 8, the filter wikx4 has an ability to extract thin
vessels thus the responses of capillaries are mvidehe filter withA =8 has valid
performance for detecting wide vessel however #sponses of tiny vessels may not be
evident. The performance of filter wili¥6 is intermediate betweé@4 andA=8. In this case,
these differences of responses among three scalgdendetected and the maxima in both
wide and thin vessels can be extracted when eaeh gompares to its 26 neighbours. In the
second stage, the detected maxima are used agdiglotessel candidates. For each candidate,
its location and corresponding scale are recordete: low contrast points are removed. In

the third stage, each key point is assigned tooomeore orientation based on the local image
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gradients around the key points. Image gradient nitade m(x,y) and corresponding
orientationd(x, y) are calculated using pixels differences at eaakesdhe equation can be

expressed as follows:

m(xJY) = \/(R(x + 1:3’) - R(x - 1:3’))2 + (R(x:y + 1) - R(x'y - 1))2 (65)

_ —1 (R(x+1,y)-R(x-1,y)
H(X, y) = tan (R(x,y+1)—R(x,y—1)) (6'6)

where R is the Gaussian smoothed image at a spscdle which is determined by the scale
of the key points. The calculated gradient orieatest are further formed as an orientation
histogram which covers 360 degrees range of otienta The computation of gradients and
orientations are weighted by a Gaussian window. diffierent sizes of the Gaussian circular
window are determined by the scales of selected gaagts. These scalesr) are also
inherited by the parameters of the Gaussian enegelop the Gabor function. In our
experiment, the radius of the Gaussian circuladawm is determined by, where values of

o are calculated based on the parameter lanibdd4,6,8,9,13,15] , consequently,
referring to equation 6.3, a rangeoo¥alues is [0.96, 1.45, 1.93, 2.17, 3.13, 3.61]telNbere,

in our experiment the appropriate scales of keyntgoincludeA € [6,8,9,13], so the
employed o values are [1.45, 1.93, 2.17, 3.13]. Employingiraular window allows an
orientation histogram to be generated within thectj region located around the vessels. At
the final stage, all generated gradients and atemts are accumulated into a representation
(descriptor) by summing the gradient magnitudes rnieat orientation in the region (see
Figure 3.8). Each descriptor is formed as a 4xd, gof which each sub-grid contains an
orientation histograms that contains 8 directionsbiAn example of vessel key points’
descriptors is shown in the Figure 6.9 (b). To bexear, one of the descriptors in (b) is
zoomed in and presented in (b1l). The descriptpresented as ax4 grid. An orientation
histogram in each grid contains 8 direction binsisThistogram is presented in (b2) derived
from (bl).

In our experiment, we trained vessel relative dpsams from a subset of training samples
and stored them into a descriptors library. Forgesain the training subset which are used to
generate textons, we detect key points in the samane and apply the same scheme to
generate their descriptors. Up to this point, elaep point is represented by its descriptor
which is formed as a 4x4x8=128 dimensional vecithe matching process is implemented

by finding the best candidate match for each kewtpfsom the key point library using
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corresponding descriptor. The factor to identife thest candidate is based on its nearest
neighbor which is defined as the key point with imiam Euclidean distance for the invariant
descriptor vector. In the original SIFT algoriththe second-closest neighbor is defined as
being the closest neighbor considering that theeenaultiple training images of the same
object. In [202], the objects in a natural imageldde any structures which are not known
in advance, thus the adopted difference of Gaudsianin the feature extraction stage is not
designed for a particular object (e.g. a cup, aocar house etc.). This results in some features
from an image may have incorrect match in the imgirdatabase because they may arise
from background cluster or were miss detected i tilaining images. Instead, in our
experiment, the object of interest (vessel) is kmaxplicitly that motivates us to design a
specific Gabor filter bank (see section 6.1.1) étedt vessel features. Therefore at the key
point detection stage, the detected key points aamcesponding calculated descriptors are
completely relevant to the vessels. In an extreoralition, we can even use all of detected
key points derived from a novel image without maighprocess. However, in order to use
the most representative candidates to initializedlustering process, detect key points were
matched according to the minimum Euclidean distdoste/een the novel descriptors and the
descriptors stored in descriptors library followimga global distance thresholding procedure.
The matched key points are used in the next stagdentify seed candidates which are
subsequently used to initialise the clustering illgm when generating textons (Figure 6.7).
We will describe texton based vessel segmentatsamguthe multi-scale Gabor filter in the

next subsection.

6.2.2 Textons generation and segmentation

Textons are learnt from the responses of multies€dbor filters which are applied to
each image in the training set. Here, the scaled ase derived from the scales of which
contain the matched key points, found during tragniThe combined filters can extract both
tiny and wide vessel features and this results amemaccurate segmentation. Tkeneans
algorithm is informed by key points, in which, iaity, instead of selecting random points
as default means (centroids) as we did in the pusvscheme (see Figure 5.4), initial pixels
are selected from matched vessel key points aglimi&dndidates, then the new means of
pixels located in the areas of the remaining matdey-points are computed in preference to
other pixel candidates in the image. This compupiragedure not only improves the stability

of thek-means algorithm, but also allows the clusteringcpdure to start from more salient
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vessel elements and has the advantage that thel ves®n dictionary can be constructed

without the assistance of ground truth.

In our experiment, we chogeb5 to reflect significant classes of objects that\asible in
the images, i.e. vessels, bifurcations, optic ¢@D), vessel reflection, and background. To
determine texton classes, we first rank the cladbaised on their size. The largest cluster in
the list maps onto the background texton classesihe background has the most number of

pixels in an image. The remaining clusters areidaensd as textons that relate to vessels.

In the texton training stage, only those Gabomeffdtat more appropriate scales are
employed to extract vessel features. The scaledetegmined by the scales of detected key
points which are generated using the DSIFT algarithVe store generated textons and
corresponding scales (in our experiment, theseescateA=6, 8, 9, 13) into a texton
dictionary which can be used in the test stagehEaxton in the dictionary is formed as a 4-
dimensional vector which is indexed by the corresiiog scale. This scale information is
stored in the first column of texton dictionary mpgt and the remaining rows record
clustering centroids according to correspondinglescaWe call it meta-textons. In our
experiment, five meta-textons are trained, theefa total 5x4 numbers of clustering
centroids are composed in the dictionary. Table iBu3trated a schematic matrix of the
meta-textons which is trained from the trainingisethe DRIVE database. The first column
of the matrix shows the scale information. Eacldl gmi the rest matrix contains a clustering

mean value related to each texton ID [1,..., 5].

Table 6-3 A schematic diagram of the meta-textaméd from the DRIVE database

Scales\Id 1 2 3 4 5

6

0.180189

2.612138

1.371923

10.78716

4.293368

8

0.198127

1.455655

1.28509

9.580782

3.988796

9

0.155359

5.88564

1.561048

11.87148

4.670367

13

0.170376

11.3539

2.054979

10.70356

4.549439

In the test phase, we filter each novel image i@ texton filter bank to generate
corresponding responses at each pixel, whereyfisthles are selected by loading the meta-

textons and reading its scales. In this case, tivelnmage doesn’t need to convolve with
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filter at all pre-defined scales (e.d.€[4,6,8,9,13,15] ), therefore reducing the

computational cost of the system. Then correspondessel textons relating to selected
scales are assigned based on the filter respofi$es.memberships of each texton are
calculated that from the corresponding textons mapgmentation results are obtained by

combining various vessel texton maps.

(d)

Figure 6.10 More accurate diameters of veins, iageand capillaries in segmentation results
using multi-scale Gabor filter. (a) is an origifahdus image, (b) is its ground truth (c) is the
vessel segmentation using our method and (d) isséggnentation using Cinsdikici [88]

method

The advantages of adopting multi-scale Gabor §ltetthat it provides useful functions for
the algorithm, in which the tiny and wide vesseds de distinguished, thus the detected
diameters of vessels are more accurate. For irst@nsegmentation result using a state-of-
the-art method present in published work [88] isveh in figure 6.10-d. The result shows the
diameters of the tiniest vessels are wider thanattteal diameters in the corresponding
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ground truth (Figure 6.10-b). In contrast, the eésegmentation using multi-scale Gabor

filters (Figure 6.10-c) produced much better resthian results presented in Figure 6.10 -d.

We hope to emphasize that the diameter of segmeetsels is a significant property for
automated detection of corresponding diseases.ifistance, in reality, a decreased ratio
between diameters of arteries to those of veirs lat®wn as A/V ratio is used to assess the

risk of hypertension (see section 1.3 for moreitta

6.2.3 Experimental results and evaluation

The proposed method was tested and evaluated dbRR¢E data sets. Each image in the
test set of the DRIVE database was segmented. @gmentation examples are shown in
Figure 6.10 -c and Figure 6.11-a2, -b2. We canfea® these results that our method
extracts veins and arties (vessels with wide diametccurately while many capillaries (tiny
vessels) are segmented. Note: many tiny vesséie and of vessel network are detected, in
which the diameter of those vessels are closedadhl width of vessels (shown in ground
truth). In order to qualify the performance of fh®posed method, each segmentation result
was compared to its ground truth. Standard mef{gessitivity, specificity and accuracy)
were employed to measure the performance. Tabldléstrates measurements of each case,

the average specificity reaches 0.9668 with 0. &&&itivity, the average accuracy is 0.9504.

(b)

Figure 6.11 Unsupervised texton based vessel sdagtimmresults using multi-scale Gabor
filter. (a)(b) are original fundus images, theiognd truths are shown in (al)(bl), and (a2)(b2)

are corresponding vessel segmentations using otioche
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As we mentioned in the previous chapter, it's difft to balance the sensitivity and
specificity. The tiny vessels have extremely lowmtcast compared with the background, thus
if the algorithm is particularly designed for exdian of tiny vessel elements in order to
increase the sensitivity of segmentation, more vessel elements from the background may
be detected as vessels. This will lead to a reolici specificity and accuracy. In this
experiment, the average sensitivity reaches 0.78f. reveals the algorithm using DSIFT
descriptors and multi-scale Gabor filters has mooenpetitive performance for vessel
extraction. The maximum sensitivity reaches 0.88&3|st the average specificity of 0.9668.
This confirms that the algorithm maintains goodf@enance and is insensitive to features

due to non-vessel elements in the background.

Table 6-4 Performance results on DRIVE databasegusulti-scale Gabor filter and DSIFT

Image  Sensitivity Specificity Accuracy

Oltest | 0.8506 0.9670 0.9566
02test | 0.7717 0.9799 0.9586
O3test | 0.7825 0.9513 0.9344
O4test | 0.8142 0.9549 0.9420
O5test | 0.7449 0.9800 0.9580
O6test | 0.7477 0.9696 0.9480
O7test | 0.7108 0.9750 0.9509
O8test | 0.7267 0.9559 0.9362
O09test | 0.7819 0.9676 0.9526
10test | 0.8111 0.9623 0.9499
11ltest | 0.7663 0.9640 0.9463
12test | 0.7900 0.9678 0.9524
13test | 0.7448 0.9707 0.9486
l4test | 0.8213 0.9466 0.9365
15test | 0.7381 0.9810 0.9637
16test | 0.7261 0.9835 0.9603
17test | 0.7996 0.9519 0.9391
18test | 0.7817 0.9752 0.9599
19test | 0.8833 0.9640 0.9573
20test | 0.8302 0.9676 0.9575
Average | 0.7812 0.9668 0.9504

Our method was compared with other state-of-theapproaches and the most recent
work, sorted by published year in table 6.5. Mokinethods presented in table 6.5 are
supervised classifier based methods. A tracingébasethod [101] and a graphic cut based
method [128] are also included, as both of them @@posed very recently and have

outstanding performance.
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The comparative results show that our method hashrbetter sensitivity than the best
other methods. To the best of our knowledge, theirmam accuracy of previous method is
0.9595, proposed by Ricci and Perfetti [104], hosvethey didn’t report values of sensitivity
and specificity. Relatively, the proposed traciregdd method due to Ocbagabir et al. [101]
has competitive accuracy (0.9583), the sensitioftpur method is about 7% better however
the specificity is 1.5% worse. Although the loweesificity indicates that more non-vessel
elements were segmented as vessels, the betténsgnieveals that our method has better
performance to detect vessels from backgroundhis field, the primary goal of vessel
segmentation is to detect as many vessel elemseniessible. Therefore we are inclined to
improve the overall accuracy by pursuing highersgeity while maintaining the same

specificity or sacrificing only a small fraction f

Table 6-5 Comparative results between our unsugpedivietinal vessel segmentation method
and other state-of-the-art methods on the DRIV EAlge

Performance Results

Method year | categories Sensitivity | Specificity | Accuracy
2" observer - Manual 0.7761 0.9725 0.9473
Staal [102] 2004 Supervised 0.7194 0.9773 0.9441
Soares [103] 2006 Supervised 0.7283 0.9788 0.9466

Ricci & Perfetti [104] 2007| Supervised - - 0.9595

Rezatofighi et al.[105] 2008| Supervised 0.7308| 0.9723 0.9410
Salazar-Gonzalez[128] 2010 Graph cut 0.7197 0.9665 0.9479
Fraz [110] 2011 Supervised 0.7525 0.9722 0.9476
Marin et al. [108] 2011 Supervised 0.7067 0.9801 0.9454

Condurache & Mertins et al.| 2012| Supervised 0.9094 0.9591 0.9516

[111]

Ocbagabir et al.[101] 2013 Tracing 0.7131 0.9824 | 0.9583
Our method(Gabor) 2013 Supervised 0.7673 0.9602 0.9430

Our method (Multi- 2014 | Unsupervised 0.7812 0.9668 0.9504

Gabor&DSIFT)

We wish to emphasize that the primary goal of éixigeriment to develop an unsupervised
method which has relatively good performance coegbawith supervised methods which
requires ground truth. Our experimental resultsfioonthat the texton based method using
DSIFT and multi-scale Gabor filtering technique Isagnificantly competitive performance

compared to many other supervised methods.
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6.3 Chapter conclusion and discussion

This chapter described two sets of experimentghich an optimized Gabor filter for vessel
feature extraction was proposed. The advantagesioiguhis filter is that it reduces the
dimension of feature vectors which will be clustene a textons generation procedure. Thus
it significantly saves the computational cost winanimplement the application. The basis of
a single parameter controlled Gabor filtering tegbha is using correlations between
parameterd ando of the Gabor filter, in which the determines the spread of the Gaussian
envelop of the Gabor function. This plays a sigaifit role in determining the width of
vessels. Therefore usidgdetermines sigma can detect more vessel featuaésan be used
to generate corresponding textons. The experimegsalts revealed that performance of our
Gabor filter is better than the matched filter lshea the ROC analysis (see Figure 6.4). The
corresponding parameters of the Gabor filter wgtenozed also using a ROC analysis of the
filter performance on training data. Results of tingt experiment demonstrated that vessel
segmentation using optimized Gabor filer and textenhances the true positive rate while

maintaining a level of specificity that is compdeatvith other approaches.

In the second experiment, we proposed a new ungspdrretinal vessel segmentation
method by developing a derivative of SIFT (DSIF®)dptimize the generation of vessel
relative textons and determine more appropriateesdar extracting vessel features. In order
to extract distinguishing vessel features for fragrvessel textons, we applied Gabor filters at
multiple scales. As each scale is tuned to detectesponding vessels with different
diameters, the selection of scales was determinedhé scales of selected key points,
identified by DSIFT descriptors. The vessel reladedcriptors identified by applying DSIFT
on a training set are stored in a descriptorsahetiy. These trained descriptors are matched
to novel descriptors generated from another sétagiing images used to generate textons.
Textons corresponding to descriptors that mosetyamatch descriptors in the dictionary are
used as default means in a clustering processdéatifies textons. The integration between
the DSIFT descriptors computation and textons geiwer allows suitable scales to be
selected automatically without manual interventidhus the method can be more automated
and be invariant to scales. Here, the textons anmdd as meta-textons which not only
contains prototype responses vectors but also decmorresponding appropriate scales for
vessel feature extraction. The evaluation resudisfied that our proposed unsupervised
retinal vessel segmentation have competitive perdmce, compared to the best other
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supervised methods. Additionally, we believe thhé tproposed scheme for selecting
potential vessel candidates based on DSIFT alsdearsed as a general tool to detect more

appropriate initial seeds in some tracing basedelesgmentation methods.

Although the performances of both methods presemteslub-sections 6.1 and 6.2 in
terms of sensitivity, specificity, and accuracy aoeparable with the best published work,
we can find some limitations and weaknesses from roathods. Visually, some false
positive pixels appear in segmentation resultse@afly in areas around the optic disc (OD)
and in the left part of the peripheral area. Thibecause the area surrounding the OD and the
outer circle exhibits strong contrast and so theme significant gradient changes on its
boundary. We believe that our method can be imgtdwe removing these false positive
pixels. A direct way to handle this limitation islding a pre-processing stage to eliminate
such influences. An alternative way is applyingostgprocessing stage on the segmentation
results to remove them. We intend to address tiragations in our suggested further work.
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Chapter 7

7. Conclusion and future work

In optometry, the appearance of blood vesselsenr¢ina are routinely examined as their
condition is indicative of disease, such as diahetgpertension, and glaucoma. However,
the assessment of the retina vessel anomalieskisled time consuming task, and as such it
has been the focus of research into automatic sreees techniques. Retinal vessel
segmentation on fundus images is a critical stag@imputer assisted diagnosis of systematic
disease such as DR, AMD and Glaucoma etc. Measuitsmoé vessel features also play an
important role in the diagnosis of hypertensioresty, arteriosclerosis, assessment of retinal
artery occlusion and in computer-assisted lasagesyr Numerous approaches for automatic
retinal vessel segmentation have been proposed.etwit is still a big challenge and
remains a focus for ongoing research because ofdhmlex nature of fundus images. The
primary goal of our research is to investigate ateleloped accurate retinal vessel
segmentation approaches in fundus images usingréeftature extraction techniques and
textons. This thesis presents a brief review obéhdiseases and also includes their current
status, future trends and their automatic diagn@esisniques in routine clinical applications.
The importance of retinal vessel segmentation igquéarly emphasized in such applications.
An extensive review of texture analysis methodst the especially useful for image
segmentation is presented. Five automatic retiaas®l segmentation methods are proposed
in this thesis, in which the experimental resultgggested that our supervised and
unsupervised texton based retinal vessel segmemtaiethods are more competitive than

may other state-of-the-art methods.

In this thesis, the early chapters describe thewvaimn for the project and provide an
introduction to the field, in which various form§ @mmon diseases (e. g. Glaucoma, Age-
related macular degeneration (AMD), vascular diemsd and Diabetic retinopathy) and
corresponding automated detection techniques ulsindus images are comprehensively
reviewed. No such comprehensive review exists das$ we're aware) and this provides a

valuable resource for those undertaking furtherkwiorthe area. A comprehensive survey of
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earlier and current retinal vessel segmentationhotst was presented. Here, these
approaches were divided into four categories: Madctitering based segmentation; Vessel
tracing/tracking based segmentation; Classifieredasegmentation; and Model-based
segmentation. Numerous such segmentation methodshsiefly reviewed in each category
and the advantages and disadvantages of meth@@slncategory were discussed according
to their corresponding comparative performance surdmarized in tables 2.8 and 2.9. The
classifier-based segmentation includes superviadduasupervised methods. The advantage
of supervised methods is that it provides more mteusegmentation results than other
categories. However, its dependence on ground-tretjuires a training stage and the
problem of intra- and inter-observer variability @mgyst experts needs to be considered as in
practice this limits the robustness of the applocatUnsupervised classifier-based methods
are seen to be a more appropriate way to segmenétinal vessels, but limitations (e.g. high
computational costs and relatively poorer perforceameed to be solved. In addition, this
thesis presents an extensive review of textureyaisalechniques which may be appropriate
for retinal vessel segmentation. This may also ipewa useful resource for medical image

segmentation using various texture analysis teclasiqg

The later chapters of this thesis described fivoraatic retinal vessel segmentation
methods, in which the hybrid retinal vessel segaiér method is able to eliminate the
interference caused by abnormalities in fundus esaguch anomalies (e.g. drusen) are the
primary factor that influences the accuracy of segtation in this field. The novel
supervised texton based retinal vessel segmentatithod is proposed which employs a
new spatial filter bank design (MR11) for vesseltéee extraction. This method significantly
improves performance in terms of accuracy andiefficy compared to many other state-of-
the-art methods. This method was further develdmgdptimizing the texton generation
stage in order to reduce the computational costs.ekperimental results on two benchmark
databases (DRIVE and STARE) show that our imprdegtbn based method performs well
compared to other published work and the resultsuaian experts. On the STARE database,
average specificity reaches 0.9643 with 0.7517iseityg and the average accuracy is 0.9506.
The values of specificity, sensitivity and accuréaythe DRIVE dataset are 0.9831, 0.7167
and 0.9591, respectively. In addition, we invegeghe effect of different training regimes
and provide an experimental basis for training anegal textons library for vessel
segmentation. Given that the lack of study materigtound truth) is an open issue in this

research field, we built a new dataset (using pabgdata supplied from Manchester Eye
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Hospital) that can be used as a resource for futessel segmentation research. The data set

includes 3 sets of ground truth, hand labelled lpBthalmologists.

Building on experience gained during the developmeinthe MR11 filter bank a
supervised texton based vessel segmentation metsiod an optimized Gabor filter was
described. We showed this approach to significaatijance the true positive rate while
maintaining a level of specificity that is compdealwith other approaches. Finally, a new
unsupervised texton based retinal vessel segmemtatethod using the derivative of SIFT
(DSIFT) and multi-scale Gabor filters is proposedhich achieves a level of performance
comparable with other supervised state-of-the-aathods. The performance of this method
on the DRIVE database, in term of average sensitigpecificity and accuracy are 0.7812,
0.9668 and 0.9504, respectively. In this methbd, textons were formed as meta-textons
which contain both prototype response vectors gopropriate scale information. This
unsupervised segmentation method represents dicggnicontribution since it addresses the
problems that arise due to inconsistent groundh tialbels in the database and moreover, the
DSIFT algorithm can be used to initialize seedsrfany other categories of retinal vessel
segmentation methods (e.g. tracing based methodg domputer specifications and

efficiencies of our proposed methods are repornddble 7.1.

Table 7-1 Computer specifications and efficienciesur methods

Method Time per image Computer specifications OS | Software
Improved method Inter (R) Core(TM) i7- Windows
described in chapter 4| 5.45s 4770,3.40 GHz, 16 GB 8 64-bit Matlab
Supervised texton

based method using

MR 11 described in Inter (R) Core(TM) i7- Windows

chapter 5 21.31s 4770,3.40 GHz, 16 GB 8 64-bit Matlab
Improved Supervised

texton based method

using MR11 described Inter (R) Core(TM) i7- Windows

in chapter 5 20.78s 4770,3.40 GHz, 16 GB 8 64-bit Matlab
Supervised texton

based method using

multi-scales Gabor

filters described in Inter (R) Core(TM) i7- Windows

chapter 6 8.93s 4770,3.40 GHz, 16 GB 8 64-bit Matlab
Unsupervised texton

based method using

multi-scales Gabor

filters and D-SIFT Inter (R) Core(TM) i7- Windows | Matlab,
described in chapter 6 12.66s 4770,3.40 GHz, 16 GB 8 64-bit | C++
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Considering some issues have not been resolvelisrfield, and we believe that our
proposed texton-based approaches have some pbiemii@vements. We list our further

work as follows:

1. The experimental results in section 5.3 have sugddbat performances of two experts
segmentations are statistically significantly difet, which is some cause for concern
and suggests that our approach may benefit frohmigaes for identifying ground truth
that compensate for this inter-observer varighiWe believe there is scope for further
work focused on producing reliable ground truthrroultiple experts.

2. Considering the robustness of our texton basedel/esgmentation method, we believe
that our method can be extended to segment sesterighl structures simultaneously in
fundus images by designing a new filter bank whol only contains filters for vessel
and background feature extraction but also contapecific filters to extract features
from different forms of anomalies in fundus imagé&hkis may allow our texton based
segmentation method to be a more operationallyulsebl for commercial applications.
Moreover, we also would like to extend our method gsegmentation in other medical

image modalities.

3. Measure the diameter and tortuosity of segmentexdele to assess the disease (e.qg.
hypertensive retinopathy, DR, cardiovascular diseast.) by A/V radio and

mathematical terms of tortuosity. These should besaddressed in further work.
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