
 

 

RETINAL VESSEL SEGMENTATION 

USING TEXTONS 

 

 

 

 

 

 

LEI ZHANG 
 

 

 

 

A thesis submitted to the University Of East Anglia School Of 

Computing Sciences in fulfilment of the requirements for the degree 

of Doctor of Philosophy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

© This copy of the thesis has been supplied on condition that anyone who 
consults it is understood to recognise that its copyright rests with the author and 
that no quotation from the thesis, nor any information derived therefrom, may 
be published without the author's prior written consent. 



i 
 

Abstract  

Segmenting vessels from retinal images, like segmentation in many other medical image 

domains, is a challenging task, as there is no unified way that can be adopted to extract the 

vessels accurately. However, it is the most critical stage in automatic assessment of various 

forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and 

cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation 

approaches based on textons as they provide a compact description of texture that can be 

learnt from a training set. This thesis presents a brief review of those diseases and also 

includes their current situations, future trends and techniques used for their automatic 

diagnosis in routine clinical applications. The importance of retinal vessel segmentation is 

particularly emphasized in such applications. An extensive review of previous work on 

retinal vessel segmentation and salient texture analysis methods is presented. Five automatic 

retinal vessel segmentation methods are proposed in this thesis. The first method focuses on 

addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal 

vessel segmentation, which have been identified by other researchers as a problem and a 

common source of error. The results show that the modified method shows some 

improvement compared to a previously published method. The second novel supervised 

segmentation method employs textons. We propose a new filter bank (MR11) that includes 

bar detectors for vascular feature extraction and other kernels to detect edges and photometric 

variations in the image. The k-means clustering algorithm is adopted for texton generation 

based on the vessel and non-vessel elements which are identified by ground truth. The third 

improved supervised method is developed based on the second one, in which textons are 

generated by k-means clustering and texton maps representing vessels are derived by back-

projecting pixel clusters onto hand labelled ground truth. A further step is implemented to 

ensure that the best combinations of textons are represented in the map and subsequently used 

to identify vessels in the test set. The experimental results on two benchmark datasets show 

that our proposed method performs well compared to other published work and the results of 

human experts. A further test of our system on an independent set of optical fundus images 

verified its consistent performance. The statistical analysis on experimental results also 

reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth 

method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The 
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method is inspired by the human visual system. Machine learning is used to optimize the 

Gabor filter parameters. The experimental results demonstrate that our method significantly 

enhances the true positive rate while maintaining a level of specificity that is comparable with 

other approaches. Finally, we proposed a new unsupervised texton based retinal vessel 

segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of 

sufficient quantities of hand labelled ground truth and the high level of variability in ground 

truth labels amongst experts provides the motivation for this approach. The evaluation results 

reveal that our unsupervised segmentation method is comparable with the best other 

supervised methods and other best state-of-the-art methods.  
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CHAPTER 1 

1. Introduction 

1.1 Overview 

In recent decades, the assessment of retinal images has become increasingly important in 

early medical diagnosis of several diseases such as diabetes, hypertension and cardiovascular 

disease etc. [2]. Images of the ocular fundus are now routinely captured during retinal 

examinations as they allow pathological changes of retinal vasculatures such as diameter, 

length, and branching angle to be measured as these features, together with other anomalies 

enable clinical experts to diagnose  and assess the progression of a range of diseases [2]. 

Because of this, the routine screening of these images is viewed as particularly important but 

human assessment of retinal vessels and the detection of anomalies is a skilled time 

consuming task [1]. For instance, diabetic retinopathy (DR) is a serious eye disease that 

affects the vision of patients with diabetes and even causes adult blindness by affecting and 

damaging the retinal vasculature structures inside the eye. However, it’s hard to detect DR in 

its early stage until vision loss occurs. Imaging and analysing the optic fundus of patients at 

regular intervals, is one solution that could prevent this by detecting the changes of retinal 

vessels and treating the disease at an early stage. Computer based assessment of retinal 

vessels is seen as an important tool in undertaking  population-based diagnoses of DR and 

this has motivated research into automatic assessment techniques.  

Many automatic assessment procedures initially require the segmentation of the vessels 

from the background and this task plays a very important role in the success of the 

subsequent computer assisted diagnosis stages. It is a crucial stage which produces basic 

material that can be analysed and assessed. The completeness and accuracy of vessel 

segmentation determines the practicality of automated detection of relative diseases (see sub-

section 1.2.4). However, in practice, automatic accurate retinal vessel segmentation is still a 

great challenge because of the complex nature of fundus images and effects such as noise, 
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low contrast between vessels (capillaries) and background, some abnormal regions 

(pathologies), illumination (vessel reflection), the variety of vessel structures  (different width, 

length, cross) etc. All of these factors may influence the accuracy of segmentation. For 

instance, low contrast between the capillaries and the background could result in a failure to 

detect smaller capillaries or some abnormal non-vessel objects (exudates) to be segmented as 

vessels.    

Our research aims to design and develop accurate retinal vessel automatic segmentation 

approaches based upon investigating texture analysis techniques. The motivation of our 

research focuses on structural texture analysis techniques using textons as we have found this 

approach to be under represented in the retinal vessel segmentation methods published within 

this research specialism. Work elsewhere in computer vision has demonstrated the 

advantages of using texture in providing significant information to distinguish the various 

patterns that present different visual features. For example, texture based segmentation 

methods in natural image segmentation and feature analysis has been widely studied and 

researchers have achieved some successes on problems of content based image retrieval. 

With this in mind, we believe that this research makes a significant contribution in filling a 

gap in the retinal vessel segmentation research field by investigating structure based texture 

analysis techniques (textons) to achieve accurate retinal vessel segmentation. This thesis 

particularly focuses on investigating texton-based approaches which have been a significant 

branch of texture analysis process since the term texton was introduced by Julesz in the 

1980’s [3]. 

In the following sections, we introduce the background relating to retinal vessel 

segmentation and include knowledge of the optical fundus image and descriptions of 

elements in retinal images relevant to vessel network segmentation. We also describe the 

diagnosis of common diseases using analysis of retinal fundus images followed by 

corresponding reviews of automated disease detection techniques using fundus images in 

recent years emphasizing the importance of retinal vessel segmentation in automated 

computer aided diagnosis system. Finally the corresponding contributions of the research are 

summarized and the overall outline of the thesis is described. 
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1.2 Retinal images 

1.2.1 Eye Anatomy 

This thesis focuses on the retina. Firstly, we describe eye anatomy related background 

knowledge. Figure 1.1 illustrates a brief review of eye structure. The visible parts of eye have 

a number of components which include cornea, sclera, iris, pupil, lens, vitreous body, retina, 

optic nerve and choroid. The cornea looks like a clear window at the front of the eye which 

allows light to transmit into the eye. The sclera is normally known as the ‘white of the eye’ 

and forms a part of the supporting wall of the eyeball. The iris is a colored circular muscle. It 

regulates the amount of light that is allowed to enter the eye by controlling the size of pupil, 

depending on the intensity of incoming light. 

 
The lens is a transparent structure that converges and focuses light waves onto the retina. 

The vitreous body fills the middle of eye between the lens and retina. It is filled with a 

viscous substance. The retina is the nerve layer that lines the back of eye. Here, light 

impulses are sensed and changed into electrical signals that are sent though the optic nerve to 

the brain. In the center of the retina, there is a small and highly light-sensitive yellow spot, 

which is known as the macula. It’s a critical part of retina responsible for transforming the 

light into a nerve signal. The fovea is located near the center of the macula and responsible 

for detailed central and high resolution vision. The optic nerve transfers the electrical signals 

generated by the retina to the visual cortex of the brain. All of these components form three 

Figure 1.1 Cross sectional illustration of eye structures.[4] 
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different layers: the external layer is formed by the sclera and cornea, the intermediate layer 

is formed by the iris, ciliary body and choroid, the internal layer is the retina [5]. 

The process of vision is described as follows. Light waves enter the eye first through the 

cornea (external layer), the light then focus through the pupil, the size of it is controlled by 

the iris (intermediate layer).  The light is directed by the pupil to the lens, which focuses the 

light and projects it on the retina (internal layer); the retina forms the light into electrical 

signals sent to cortex of the brain though the optic nerve.  

Many prevalent diseases can be studied by analyzing pathological information extracted 

from the internal layer (retina), such as diabetic, diabetic retinopathy, glaucoma, and 

cardiovascular disease [2]. Hence visualisation of the retina has attracted great interest for a 

long time.  Due to the availability of digital fundus cameras retinal imaging techniques have 

developed rapidly during the past several decades. 

1.2.2 Fundus imaging  

Since the appearance of features on the retina allows detection of diseases that may cause 

visual loss, such as diabetic retinopathy, and because records of their structural change over 

time provides objective evidence on the progression of the disease and response to treatment 

techniques for capturing and analysing images of the retina fundus have attracted great 

interest amongst scientists and researches during the past years. Today, techniques for 

imaging the eye are based upon the achievement of Gullstrand who first developed the fundus 

camera in 1910 [7]. The concept of fundus photography is still used to guide development of 

recent fundus imaging techniques. Fundus imaging is the procedure for capturing the 

components (such as retina, optic disc, macula, fovea et.al.) on the internal surface of eyeball 

[8]. Technically speaking, fundus imaging is the process whereby the 3D internal surface of 

eyeball is represented as a 2D object projected onto the imaging plane using reflected light 

[9]. Because of its cost-efficiency, fundus imaging is now commonly adopted in 

ophthalmology departments as a primary method of retinal imaging [10]. The following 

modes or techniques are representative categories of fundus imaging.  

• Fundus photography: Images are obtained by a fundus camera which is equipped with a 

specialized low power microscope and an attached camera [22]. The basis of using fundus 

camera is that the imaging light and the corresponding reflectance of the retina can pass 
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through the pupil in both directions, thus an image of the inside of the eye can be obtained. 

Images captured by fundus cameras depend on the optical angle of acceptance of the lens. 

The normal angle of view is 30° which results in an image magnification of 

approximately 2.5 times. For wider optical angles between 45°-140° the magnification is 

less [22]. Traditionally, fundus cameras were used for mydriatic photography, so-called 

because the patient’s pupil needs to be dilated using mydriatic eye drops before the retina 

is photographed. But recently, non-mydriatic fundus cameras have been developed. These 

cameras enable high quality images to be obtained and are particularly useful for imaging 

some diabetic patients whose pupils cannot be fully dilated using mydriatic eye drops.  

 

 
 

 

Two modalities of fundus photography denoted colour and grey modes (also known as 

red free) are available. Conventional, red-free fundus photography uses 35 mm film which is 

subject to special colour filter operations to improve contrast between vessels and other 

structures. Recently, superior digital images can be obtained using a charge-coupled device 

(CCD) as the imaging sensor. Colour fundus photography senses three channels; red, green 

and blue (R G B) of reflected light which are determined by the spectral sensitivity of the 

sensor [9]. Figure 1.2 (a) illustrates a red-free fundus image of a normal left eye, (b) is an 

example of a colour fundus image of the right eye obtained from a healthy 25-year old male 

volunteer. 

Figure 1.2  Fundus photographs of normal eyes. (a) A red-free fundus image (left eye) 

[12]; (b) A colour fundus image (right eye) [11]. 

(a) (b) 
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• Stereo fundus photography: stereo-imaging techniques use two or more images 

captured at different angles to generate depth information of the object’s surface, 

represented using 3-dimensional coordinates (x, y, z). The images can either be captured 

simultaneously using a specialised fundus camera, or can be collected sequentially by 

using a standard retinal fundus camera [13]. Stereo fundus imaging is particularly useful 

for diagnosing and monitoring the pathology of glaucoma (see section 1.2.4). Its clinical 

use has been guided by both the European Glaucoma Society and the American Academy 

of ophthalmology [14]. Figure 1.3 illustrates an example stereo fundus image. Both 

images (left and right) were captured at different angles simultaneously by NAVIS-Lite 

[15].  

 

 
 
 
• Fluorescein angiography/Indocyanine green angiography: Fluorescein angiography is 

an important invention for examining vascular structures on the retina. The principle was 

first proposed by Maclean and Maumenee [16] and later developed by Novotny and Alvis 

[17]. The technique is based upon the characteristic of fluorescein which is capable of 

absorbing light in the blue wavelengths and emitting it in the green wavelengths. Initially, 

fluorescein dye is injected into vessels and this defuses into the surrounding tissue. Then 

a fundus camera equipped with excitation and barrier filters is used to capture an image 

that registers the amount of injected fluorescein dye remaining within the retinal blood 

flow. The excitation filter allows a blue light to be projected into the eye, thus a green 

light is emitted from fluorescein. The barrier filter (yellow) blocks any reflected blue light 

Figure 1.3 Stereo Optic Nerve Head (ONH) image [15] 
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but allows green light through. A range of different pathologies can be diagnosed by 

analysing a sequence of images captured during the fluorescein angiography procedure. 

Figure 1.4 illustrates a fluorescein angiogram image of a normal eye in which we can see 

that the contrast between vessel and background (other structures) is enhanced. 

 

 
 

A similar technique known as Indocyanine green angiography uses indocyanine green 

dye (a tricarbocyanine dye) which is sensitive to infrared rays. Consequently the fundus 

camera is equipped with different filters. 

The utilities of Fluorescein angiography/Indocyanine green angiography are common 

in recent clinical applications because they provide significantly functional information 

about the retinal circulation.  

• Scanning laser ophthalmoscopy (SLO): SLO is a confocal optical system used to obtain 

a three-dimensional image having plane coordinates (x-axis, y-axis) that are vertical to 

the optic axis (the z-axis is along the optic axis).  Unlike conventional photography, SLO 

uses a laser beam instead of a bright light to scan each point across the fundus, then the 

reflections of light at each point are captured on imaging plane (e.g. CCD) through a 

narrow aperture (a confocal pinhole). The confocal pinhole can minimize image blur and 

hence a more clearly defined image can be obtained [20].  Recently, Heidelberg Retinal 

tomography II (HRT II) [19] has been used in a clinical application for diagnosis and 

monitoring of glaucomatous optic neuropathy and retinal imaging [10]. Figure 1.5 (a) 

Figure 1.4 Normal Fluorescein Angiogram [18] 
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presents an image of the optical nerve head on the retinal nerve fibre layer, obtained by 

HRT II. The latest version, the Heidelberg Retinal Tomograph III (Figure 1.5 b) is more 

compact [21], the software has been upgraded to address an issue within the previous 

application that required the clinician to manually identify the optic disc resulting in 

variability of disc outline. Moreover, it is capable of providing a glaucoma probability 

score (GPS) based on automatic analysis of three scans of the disc [21].    

 
 
 

 

Many fundus imaging techniques have been designed and developed for screening the 

internal retina and much effort has been made to improve the accessibility of the equipment. 

This overcomes the issue that traditional fundus imaging needs to be operated by experienced 

ophthalmic photographers. The most common and straight forward solution for improving 

accessibility is the adoption of a digital sensor (e.g. a charge-coupled device (CCD)) to record 

reflected light instead of using the traditional film-based imaging plane. This trend has 

resulted in widespread use of digital fundus cameras for routine clinical applications in 

ophthalmology departments. Moreover, the adoption of digital fundus cameras is consistent 

with technologies such as the Picture Archiving and Communication Systems (PACS) [23] 

which provides an economical storage solution for effective management, convenient 

distribution and presentation of medical images and rapid image retrieval etc.  

Figure 1.5 (a) Image at the retinal nerve fibre layer obtained by Heidelberg Retinal 
Tomogroph II (b) The Heidelberg Retinal Tomogroph III.  

(a) (b) 
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Although new techniques such as tomographic imaging methods (SLO) can provide more 

detailed and specific images, there is still a role for conventional fundus photography. The 

safety, cost-effectiveness and accessibility of the digital fundus camera, and the acceptance of 

fundus photography as the primary fundus imaging technique for various ophthalmologic 

applications, drives research in  retinal image processing and analysis .  

1.2.3 Landmarks of fundus photography 

Fundus photography (producing fundus images) has been employed in routine clinical 

therapy for a very long time. Many ophthalmological departments of hospitals in the UK are 

equipped with fundus cameras. Due to its relatively low cost, clinical diagnosis via fundus 

image analysis is still the most prevalent way to detect ophthalmic disease or assess some 

systemic diseases (these diseases are further described in section 1.2.4). The potential utilities 

of CAD offer an ability to analyse large numbers of fundus images and report corresponding 

diagnoses automatically. Consequently, accurate diagnostic reporting depends on reliable 

techniques for landmark identification and investigation.  

A fundus photograph contains several important elements which could be used in various 

clinical applications. Primarily, these elements include the macula, optic disc (OD) also 

known as the optic nerve head (ONH), vessels and background structures.  

Figure 1.6 illustrates an example retinal image used in a routine ophthalmic application. 

The image is captured from the left eye. The left bright circle is the optic disc and its cross-

sectional view is illustrated in figure 1.1. It’s generally called the physiological blind spot 

because it allows optic nerves to pass though and transfers the signal to the brain. This 

component is extremely important in clinical applications involving the diagnosis of 

glaucoma. The dark area located near the centre of the image is the macula which aggregates 

visual pigments. Much research focuses on detecting its pathology (e.g. macular degeneration) 

as this influences vision. The vascular system of the eye which supplies blood to the retina 

includes invisible parts (e.g. choroid) and visible vessels which lie on the surface of retina.   

Normally, retinal blood vessels emerge from the ONH and radiate over the interior 

surface of the retina in various directions. Their specific characteristics can be described as 

follows. 
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Anatomically speaking, the retinal blood vessel trees can split into different types: arteries, 

veins, arterioles, venules and capillaries, which are characterized by their diameters. Usually 

the arteries and veins are characterised by larger calibres and the arterioles and veinules are 

smaller. In fact, the arterioles and venules are of equal width during childhood. However, for 

an adult, the calibre of the arterioles is narrower but diameters of venules are enlarged, 

because of fibrosis of tissue caused by the physical pulse of the circulation system [24].  The 

capillaries are the small branches at the end of the vessel tree. Some of them just appear as 2-

4 pixels wide in a retinal image. Many diseases can cause pathological changes of these 

vascular structures and this in turn influences their visual appearance. For example, 

hypertension results in leakage of the vascular blood also known as haemorrhage due to 

rising blood pressure. The leakage of plasma and blood that permeates the surface of the 

retina will influence visual function. Retinopathy, such as venous changes, (e.g. distortion 

and dilatation of the retinal vein) and breaks in capillaries can be found in diabetics. The 

pathological changes in capillaries may result in leakage which may extend to the fovea area 

leading to loss of vision. In section 1.2.4 we will describe specific diseases which can be 

analysed and studied using retinal images. In many clinical cases, it is extremely important 

and significant to isolate and study retinal blood vessels for diagnosis and treatment of related 

diseases.   

There are several specific characteristics that can be used in retinal vessel studies.  

However, some of them may hinder distinguishing the vessels from other organs.   

Figure 1.6 An example retinal image (fundus photography) showing anatomic structures. 

Optic Disc 

Macula 

Vessels 
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• The vessels are treelike and tubular structures. Each structure is supposed to be 

connected. 

• Vessels appear in low contrast against the background. The appearance of blood 

vessels is dimmer than the background in colour fundus photography. The colour of 

vessels normally is dark red, and the background is close to orange. In a grey level 

image, their appearance is close to the other elements in the background (e.g. the 

macula). The appearance   of capillaries may be very similar to that of the background.  

• Because of the illumination, the vessels may contain specular effects located on the 

centre of vessel objects.    

• In grey level images, the grey level of vessels is continuous and does not change 

abruptly.  

• The vessel is a piecewise linear shape. The curve of the outline is relatively smooth 

without abrupt changes of orientation.   

• Vessels are not all the same size. The width of a vessel covers a wide range of 

diameters and they can be extended along their length at any orientations.  

• Vessel cross-sectional intensity profile approximates a Gaussian shape [85].   

• Some specific shapes may characterise specific vessel pathologies. For instance, 

nipping of the arteriovenous crossing [24] may be presented in a fundus image of a 

hypertensive patient and spot shapes (microaneurysms) [25] may be found around the 

vessels in a diabetic patient’s fundus image.   

1.2.4 Review of common diseases using analysis of retinal fundus images 

Because many pathological abnormities in the retina manifest some systemic diseases and 

some ophthalmic diseases are caused by pathologies of the retina, the diagnosis of disease, 

either systemic or ophthalmic, based upon observing and documenting changes of eye tissues 

in fundus images has become  particularly prevalent. In order to further discuss the important 

utilization of fundus images in clinical application, we summarise the most common diseases 

which have been studied based on the analysis of fundus images. The following provides a 

brief overview.    



12 

 

• GLAUCOMA 

Glaucoma is a significant disease that leads to 12% of overall blind registrations in the UK, 

it’s been diagnosed particularly in the elderly, i.e. those in the 65 plus age group. Studies 

have reported glaucoma to be a common problem affecting 0.5% of the total population 

including 1% in the over 45s and 6.6% in the over 75s [25].  Glaucoma is the third leading 

cause of blindness in the U.S. [26]. It is a primary optic neuropathy that manifests the loss of 

nerve fibres which may associate with raised intraocular pressure. Visually, the hallmark of 

this optic neuropathy is a characteristic change in the optic nerve head known as cupping of 

the optic disc (Figure 1.7). The pressure on the nerve head may reduce the blood supply to 

the rim. As a result the axons of the retina may be damaged. This process will appear as an 

enlargement of the central cup or as defects of the nerve fibre layer in the focal area.   

In routine practice, there are three characteristic measurements that can be tested for 

diagnosis of glaucoma. Firstly, raised intraocular pressure (IOP); Secondly, a characteristic 

pattern of visual field loss and thirdly pathological changes (cupping) of the optic nerve head 

[27]. The accurate diagnosis of glaucoma depends on taking all these inter-related features 

into account, as raised IOP alone may give false positives and testing of the visual field is 

time-consuming and requires specific equipment [25]. Accurate assessment of cupping of the 

ONH depends on accurate analysis of the optic disc [28]. The use of fundus images for 

analysis of the optic disc has been employed to detect early cases of the glaucoma before 

deterioration of the visual field develops using characteristic features of the disc and signs of 

vascular changes. 

 

 

OD Rim 

Cup 

Figure 1.7 A fundus image of glaucoma patient. Diagnostic: focal nerve fibre loss.[27] 
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An important indicator for assessing the cup is the cup/disc ratio which is measured by 

judging the cup’s vertical height against the vertical height of the optic disc.  In normal eyes 

the cup/disc ratio is generally below 0.5 except in some special cases that represent 

congenitally enlarged disc with a large cup.  Difference in the cup/disc ratio between both 

eyes of 0.2 or more is a risk indicator for glaucoma. Moreover, a vertical cup/disc ratio larger 

than the horizontal ratio combined with an OD that does not have an increased vertical 

diameter is a sign of neural rim damage. Besides assessing the pathological changes of the 

OD, a fundus image based glaucoma analysis procedure, needs to assess the vascular changes 

around the OD, so that the progression of glaucoma can be recorded and measured. For 

example, evidence of vascular haemorrhage on or around the optical disc is a common 

clinical sign in patients with progressive glaucoma. In advanced glaucoma, other 

morphological features of vessels may be detected, such as a narrowing in the appearance of 

the retinal arterioles. Abnormal distortion of vascular shape (e.g. the appearance of so-called 

z bend also known as bayoneting) may signify local erosion of the neural rim [28].     

• Age-related macular degeneration (AMD) 

Age-related macular degeneration (AMD) is a common eye disease that causes irreversible 

vision loss (such as blurred vision or slight distortion) in adults older than 50 years of age. In 

AMD, the macula (see Figure 1.6) degenerates with age and this results in vision blur or more 

severely loss of central vision. According to an NHS report, up to 500,000 people are affected 

by some form of AMD in the UK [30]. It is also reported to be the most common optical 

disease causing visual loss in the U.S. Approximately 7,300,000 Americans have some form 

of AMD [31]. Patients with AMD suffer no pain in the early stages of the disease, hence it is 

difficult for patients to perceive symptoms until they get the blurred vision or loss of central 

vision,  (i.e. they cannot see objects in front of them clearly) [29]. Normally, AMD is 

classified as being one of two forms: early stage AMD- Dry macular degeneration (DMD) 

and advanced stage-Wet macular degeneration (WMD). DMD usually manifests itself by the 

appearance of drusens (small yellowish-white blobs), which are the deposits of epithelial cell 

waste located beneath the retina. WMD also known as choroidal neovascularization is 

indicative of abnormal growth of the choroidal vascular structure into or around the macula. 

These new vessels are weak and easily bleed [32].  Drusen are present in both forms of AMD 

and are classified as two types, hard and soft (Figure.1.8). Hard drusen (Figure.1.8-a) are 

characterised by a clear boundary that can be easily defined. Hard drusen are generally less 
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harmful than soft drusen (Figure.1.8 -b). These present a fuzzy boundary, which may be 

accompanied by other abnormalities such as new growth of the vascular structure.  

 

 

 

The dursen can be gradually formed into any shape, size and number during the 

development of AMD, hence identification of dursen’s characteristics are used by 

ophthalmologists to assess the progress of AMD so patients can receive appropriate treatment 

without delay. It is extremely significant to detect hard drusen in the early stage of AMD so 

that one is able to stabilize the pathogenic condition.  

Currently, routine clinical identification and evaluation of drusen is implemented with the 

aid of fundus colour images which provide important signs for diagnosis.  Many efforts in 

computer-assisted analysis of AMD have been made to achieve large population-based 

diagnoses of patients. In particular those studies which concern automated drusen detection 

and assessment based upon fundus images have been reported in much of the literature 

[34][35][36][37][38][39].  

• Vascular disorders  

The blood supply of the retina is through the choroid and retinal vessels which lie on the top 

of the retina. The retinal vessel is the only visible part of the blood circulation system. 

Observing the changes of the vascular characteristics can give information about the health of 

vessels, moreover pathological features of retinal vessels can manifest the risk of 

cardiovascular disease, such as hypertension, atherosclerosis and retinal vein/artery occlusion.   

Figure 1.8  Two forms of age-related macular degeneration (AMD). The bright spots in 

(a) are hard drusen; (b) is wet AMD with soft drusen.  

Hard Drusen 
Macula

(a) 

Soft Drusen 

(b) 
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Vascular disorders can affect the eye by various forms, for instance, new vessel formation 

in the OD and the macular, and acute ischemia, which cause cotton wool spots and the 

appearance of flame haemorrhage on the surface of the retina, etc. [24]. Some features that 

appear in fundus images of hypertensive patients can reflect the seriousness of hypertension 

thereby indicating whether the patient demands immediate treatment. In the early stage, the 

nipping or nicking of the arteriovenous crossing (crossing points of arteries and veins) is 

defined as early evidence of hypertension (Figure 1.9-b), whilst the appearance of scattered 

flame haemorrhages (Figure.1.9-c) is a classic indication of  hypertension [24][25][41]. The 

narrowing of the arteries and the dilation of veins are symptomatic of patients at risk of 

subsequent development of hypertension [40]. Figure 1.9-a illustrates the appearance of mild 

narrowing and sclerosis of retinal arteries resulting in a decreased overall A/V ratio [42].  In 

practice, a decreased ratio between diameters of arteries to those of veins also known as the 

A/V ratio is used to assess the risk of hypertension. For those patients who have hypertension, 

the appearance of pale cotton-wool spots (Figure1.9-d) in the fundus image suggests urgent 

treatment is needed [25][41][42].   

Retinal vein or arterial occlusion is a complication associated with hypertension or 

diabetes. The former is more common, however occlusion of retinal arteries is more severe as 

it is irretrievable. In a pathological fundus image, signs of retinal vein occlusion are 

characterised by dilated and tortuous veins, which may be accompanied by massive 

Figure 1.9 Manifestations of hypertensive retinopathy in fundus images. (a) A decrease A/V 

ratio; (b) nipping characteristic; (c) example of flame haemorrhages; (d) pale cotton-wool 

spots [42].  

Nipping  Hemorrhage
s  

(b) (c) 

Cotton-wool spots 

(d) 



16 

 

haemorrhage. The range of these haemorrhages depends on the type of retinal venous 

occlusion, which is classified as either central or branch. The central retinal vein occlusion 

presents global haemorrhages, whilst the haemorrhages of branch retinal venous occlusion 

occur in the local area of the fundus image. Retinal arterial occlusion is characterised by the 

appearance of pale embolus around the area at the artery branch. Patients suffering from this 

condition are at risk of a retinal stroke which may block the blood flow to the retina and 

therefore result in retinal death.       

• DIABETIC RETINOPATHY  

Currently, the diagnostic criteria for diabetes is defined by the world health organization 

(WHO) to be  a patient who has a fasting level of plasma glucose ≥ 7.0mmol/l (126mg/dl) or 

2–hour plasma glucose  ≥ 11.1mmol/l (200mg/dl) [43]. Approximately 171 million people in 

the world were diagnosed with diabetes in the year 2000. This number is estimated to 

increase in the next decades, and is predicted to increase to 366 million by 2030 [44].  

Approximately 3.5% of the UK population are affected by diabetes [10] and the U.S. 

Department of health and human services (DHHS) reported that 9% of adults (aged 18 and 

over) had been diagnosed with diabetes [45].  Diabetes manifests as a rise in blood glucose 

which many cause damage to vascular walls. Consequently, it results in diabetic 

complications known as diabetic retinopathy which may cause loss of vision. Diabetic 

retinopathy is the leading causes of blindness or visual loss within the working age group 

[46]. According to a clinical study report [47], in England and Wales, approximately 7.6% of 

patients who registered as vision impaired during year 1999-2000 are affected by diabetic 

retinopathy, resulting in 6.3% blindness for this patient group. A report presented by ‘prevent 

blindness America’ [48], indicates that diabetic retinopathy affects approximately 7.7 million 

U.S. people aged 40 and older in 2010. Routine screening for diabetic retinopathy and early 

detection of sight-threatening changes can be used in early diagnosis. A laser treatment called 

photocoagulation, can be prescribed to prevent the consequent loss of vision [25][49][50][51].   

The prevalent forms of diabetic retinopathy can be typed as mild or severe depending on 

whether the pathological abnormalities are associated with damage to the macula or fovea. It 

can also be classified as non-proliferative retinopathy or proliferative retinopathy by 

considering how the abnormalities and pathological changes present new growth of tissue 

(vessels). The progress or deterioration of diabetic retinopathy is a gradual procedure. 

Normally, background retinopathy (Figure 1.10-a) can be detected at an early stage of 
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diabetes and it is less harmful. It is characterised by the appearance of microaneurysms, 

scattered haemorrhages and retinal exudates. Microaneurysms are a specific sign of diabetes 

and manifest themselves as small red dots, occurring in areas around the macula. The 

haemorrhages are caused by leakage within small weak vessels (capillaries) that can be 

observed from retinal fundus images as flame blots. In early stages of retinopathy, these 

haemorrhages normally appear as a few isolated components, distant from macula or fovea 

rather than the mass of haemorrhages indicative of severe retinopathy (Figure 1.10-c). The 

leakage of fat and protein from weak vessels may form yellow white blots in the retina called 

retinal exudates or hard exudates (Figure 1.10-a). They are characterised by a clear identified 

boundary, appearing as brighter blots than background, but these do not affect the macula or 

fovea. However, in some severe cases of retinopathy (diabetic maculopathy), normally 

occurring in type II diabetes, there are  increased numbers of exudates with an enlarged size, 

spreading towards macula or in some cases even  aggregated on the macula Figure.1.10-b 

( so-called macular exudate). Consequently these pathological changes may be accompanied 

by macular oedema, which has been reported as the most common cause of virtual loss in 

diabetics [9][25].  

Retinal ischemia is an important factor causing severe diabetic retinopathy. Characteristic 

features such as a mass of haemorrhages, venous tortuosity and dilatation, cotton-wool spots, 

intra-retinal microvascular abnormality (IRMA), and proliferation can be detected in such 

fundus images. The size and number of these haemorrhages rapidly increase. The veins are 

dilated and tortuous because of hypoxia. The cotton-wool spots appear as white patches, 

fluffy in density with a fuzzy boundary on the retinal nerve fibre layer. This results from 

accumulations of swelling axon terminals which are caused by stimulation of retinal ischemia 

[52]. IRMA is characterised by abnormalities of capillaries (dilation and tortuosity).     

One or more of these features appearing in a fundus image indicates that retinopathy has 

deteriorated into the pre-proliferative stage (Figure 1.10-c). This also signifies that the 

proliferation of IRMA is more likely [24]. However, early detection and treatment in this 

stage can prevent the further deterioration to the proliferative retinopathy stage (Figure 1.10-

d). Although this is not common it is very severe and results in blindness. The characteristics 

of proliferative retinopathy are the appearance of new growth of blood vessels on the retina 

or OD. Because of severe hypoxia, the new vessels seek other sources of oxygen by growing 

in any direction and this may lead to vessel growth on the OD and the area between the lens 
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and vitreous body. Consequently, this may result in vitreous hemorrhage when blood and 

other liquids contaminate the vitreous body. This pathological change may even progress and 

in severe cases may detach the retina. Therefore, it’s very important to give laser treatment 

before vitreous hemorrhage occurs to prevent blindness. 

 

 

1.3 Automated detection of retinal disease using fundus images 

A traditional but prevalent way of retinal disease diagnosis is manual screening and 

reviewing the images by ophthalmologists in routine clinical diagnosis. However, with the 

popularized utilities of new optical examination techniques and equipment, an abundance of 

images have been generated to assist the diagnosis. The quantity of images already exceeds 

the limit of the clinicians’ ability to fully utilize it. Not only because manual diagnosis is a 

time-consuming procedure and the huge number of patients’ demand prompt diagnosis by a 

Figure 1.10 Different stages of diabetic retinopathy in (a) background retinopathy; (b) macular 

exudates; (c) pre-proliferative retinopathy and (d) proliferative retinopathy. 

(a) (b) 

(c) (d) 

Microaneurysms 

Exudate

Macula 
Macula 

Exudate

Haemorrhages 

Cotton-wool spots 

New vessels 



19 

 

limited number of ophthalmologists before they can receive appropriate treatment. But also 

the manual diagnosis is experience dependent and high quality clinical detection relies on 

rich experience. For example, in some cases, changes in the pathology (e.g. the new growth 

of tinny vessels or microaneurysms in proliferative retinopathy) are difficult to observe and 

distinguish and therefore decisions are prone to inter and intra-observer variability. This in 

turn may result in patients missing the best time for treatment. An effective scheme to 

achieve population-based diagnosis relies on developing automated screening tools or 

computer-assisted diagnostic (CAD) systems that employ modern advanced computing 

techniques (image processing and analysis, computer vision techniques, distributed 

computing etc.).  In the past few decades, numerous steps have been undertaken to achieve 

more accurate automated diagnosis using digital fundus images. A brief review of the latest 

techniques and their relevance to the specific diseases described in section 1.2.4 is 

summarized in the following sub-sections.  

1.3.1 Automated detection of Glaucoma 

Automated classifications of normal or glaucomatous patients need to rely on evaluating the 

features extracted from the patients’ fundus image. In routine clinical glaucoma detection, 

such features may include cupping of the ONH, nerve fibre layer defects, and peripapillary 

atrophy etc.. Among those features, cupping of the ONH is the most important sign of 

glaucoma. As we described in section 1.2.4, the pathological changes of Glaucoma in the 

optic nerve head (ONH) area which can be observed from a retinal fundus image are primary 

indicators but they are not limited to this area. Numerous methods have been proposed to 

automatically detect and combine one or more of these abnormities in the optic disc followed 

by analysis to determine if they belong to corresponding progressive stages of the disease 

using a diagnostic criterion (e.g. C/D ratio etc.). Under normal circumstances, to calculate 

this ratio, the optic nerve head and optic cup need to be detected and extracted. In [55], 

Nayak et al. proposed an automated glaucoma detection method which employs three 

features: the C/D ratio, the distance between optic disc centre and the ONH, and the ratio of 

the total area of the blood vessels in the inferior and superior side of the ONH to the total area 

of the blood vessels in the nasal and temporal area. Morphological closing and opening 

operations followed by a thresholding method are adopted for segmentation of the ONH. 

Vascular tree segmentation is implemented using bottom-hat filtering combined with 

thresholding. Finally, classification is performed by an artificial neural network (ANN) 
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classifier. In another article [56], the displacements of blood vessels within the OD are 

measured. The distances between centroids of the vessels in the superior, inferior and nasal 

areas to a reference point in the temporal side of the retina is proposed to distinguish normal 

or glaucomatous subjects. The performance of this method achieved 93.02% sensitivity, 

91.66% specificity, and 91.34% accuracy. Further state-of-the-art methods for automated 

extraction of anatomical features from retinal images for early diagnosis of glaucoma are 

presented in the survey [57]. Bock et al. [53] proposed a system for automated glaucoma 

detection using colour retinal fundus images and achieved 80% accuracy. Pre-processing is 

implemented to address inhomogeneity in the illumination. Vessels localized on the ONH are 

removed by applying retinal vessel segmentation followed by inpainting of the detected 

vessel tree. Then three features are generated by different generic image representations, 

which are used to generate a glaucoma risk index (GRI). Finally, a stand-alone SVM 

classification scheme combines the GRI to generate a diagnosis. Noronha et al. [54] proposed 

an automated glaucoma diagnosis system that classified three states of glaucoma (normal, 

mild and severe)  using a support vector machine (SVM) and Naive Bayesian (NB) classifiers 

based on features derived from  higher order spectra (HOS) cumulants extracted from a radon 

transform of the digital fundus images. The performance of their system reaches 92.65% 

accuracy.   

1.3.2 Automated detection of AMD 

Age-related macular degeneration (AMD) is the most common cause of gradual loss of vision 

in the aged 50 and over group in the UK and U.S.. The critical risk of AMD is that it can’t be 

perceived until vision is impaired. Early detection of AMD may reduce this risk and laser 

treatments can be used to stop progression of the disease. Five computer-assisted diagnostic 

systems for detecting and manually grading AMD which have been used in clinical 

applications are summarized by Zarbin and Chu [58]. These systems have potential to be 

improved by replacing the manual grading stage with an automatic grading module, thereby 

allowing the system to meet the demands of an enormous number of patients. During recent 

years, many efforts have been devoted to studying automated diagnosis of AMD using 

different features extracted from components in digital colour fundus images of the retina. 

The methods initially detect abnormalities in retinal fundus image then classify cases as 

normal or AMD via quantification of those features. Many modern digital image processing 

and analysis techniques can be employed, e.g. image compression, image enhancement and 
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image segmentation etc. The most important part of the process is the automated 

segmentation of drusen, as they are the characteristic sign of AMD.  

To some extent, the performance of a system for automated diagnosis of AMD relies on 

adopting a successful method of segmentation. Bhuiyan et al. [59] proposed a method for the 

detection and quantification of drusen for early detection of AMD. Initially, a vessel tree and 

background mask is generated to exclude the vessels and background related interference. 

Then drusen are detected using the combined local intensity distribution and adaptive 

intensity threholding. A first order Gaussian derivative filter is employed which works with 

the mask to generate a magnitude image without vessel and background pixels. This is used 

to identify edge information of drusen. The severity of early AMD is evaluated by 

quantifying the drusen occurring in the area of the macula. Their proposed method achieved 

100% accuracy of drusen detection in 50 images collected by them.  Rapantzikos et al. [60] 

employed multilevel histogram equalization (MLE) based on sequential applications of 

histogram equalization to enhance image contrast followed by histogram-based adaptive local 

thresholding (HALT) for detection of drusen.  The advantage of utilizing HALT is that it is 

capable of extracting features of interest without influencing other components [60] (e.g. 

haemorrhage, vessel and optical disc). The method presented in paper [61] focuses on 

automated detection of advanced AMD by detection of the wet drusen and patches indicative 

of haemorrhage. Three regions of interest: (blood vessels trees and haemorrhages, OD and 

macula, background) are segmented using the k-means clustering algorithm, of which 

haemorrhages and drusen are related to the first and second regions. The vascular trees are 

removed by implementing erosion and dilation using cellular neural network (CNN) 

templates. Boundaries corresponding to regions of interest (ROI) are found using a Sobel 

operator and these are used for monitoring the progression of the condition.  Kose et al. [62] 

proposed a method which allows ophthalmologists to evaluate if treatment for 

degeneration is effective or not by automatically monitoring changes in the 

degeneration. Instead of detecting abnormalities directly, their method first extracts 

health components from the area containing the macula using a region growing 

method. Then the vessels are segmented and healthy components in the ROI are 

eliminated. The final segmented image is obtained from inversing segmented images. 

Finally, the quantitative results can be generated by comparing the segmented 

pathological structures (degenerated areas) at different time periods. For the purpose 
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of automated diagnosis, if the detected degenerated area exceeds a clinical safe 

threshold value, the diagnosis is positive. A stable feature generated from drusen 

based information extracted from intensity, colour and gradient information is 

proposed by Burlina et al. [63]. This is produced by using a hybrid parametric 

constant false alarm rate (CFAR) detector combined with a non-parametric CFAR 

detector based on a support vector machine (SVM).  

1.3.3 Automated measurement of vascular disorders 

Pathological changes of vascular structure caused by medical conditions such as hypertension 

may lead to retinopathy and therefore affects vision. Abnormalities on the retina also are 

significant signs of the progression of cardiovascular disease (see section 1.2.4). 

Morphological characteristics of vascular trees such as atrophy, dilation and tortuosity can be 

expressed by the A/V ratio and other mathematical terms. These terms are extremely 

important for automated measurement of the vascular tree and these features can be used in 

early diagnosis to prevent heart attack, brain stroke etc. Hence automated measurement of 

vascular structure has attracted a lot of interest by researchers.   

Narasimhan et al. [64] proposed a method for diagnosis of hypertensive retinopathy by 

estimating the A/V radio. Features derived from grey level moments, intensity and colour 

information were employed for vessel tree segmentation. Vessels are classified by 

measurement of geometrical widths and the A/V ratio is calculated. This is used as a marker 

to grade the severity of hypertensive retinopathy. A similar method of A/V ratio measurement 

is proposed by Niemeijer et al. [65]. In their method, vessel segmentation is implemented by 

a k-NN classifier. Then the centreline of each vessel is skeletonized from segmented vessels. 

The local vessel width is measured by finding the left and right vessel edges from the 

centreline and calculating the distance between them. The A/V radio is calculated by an 

iterative process. Ortíz et al. [66], implement vessel enhancement by using a Gabor wavelet 

combined with a Hessian matrix and the resulting images then are binarized using a threshold 

method (Niblack) to obtain the vessel segmentation. The vascular widths are obtained using 

the Parr-Hubbar formulas, which is a relative precise measurement. The tortuosity of the 

vessels is a significant property especially for early detection of retinopathy, and important 

because it allows early diagnosis to be given such that patients may receive timely treatment. 

The commonest way to measure the retinal vessel tortuosity is the ratio between curve length 
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and chord length which is defined as the distance between the curve end points [67]. 

Chandrinos et al. [68] proposed a mean angle metric based on changes in the local direction 

of the vessel. Grisan et al. [69] proposed a novel vascular tortuosity measurement method 

which simulates the procedure of clinical evaluation of tortuosity applied by 

ophthalmologists. Vessels are decomposed into a set of consecutive segments of constant-

sign curvature and each is evaluated by integrating such segments.   

1.3.4 Automated detection of DR 

With the increasing number of diabetics, there are urgent demands for a computer assisted 

clinical tool to detect diabetic retinopathy. Such an application would enable those patients 

suffering from diabetes and any complications of diabetic retinopathy to receive timely 

treatment. In clinical practice, the early detection of diabetic retinopathy via population 

screening have been shown to prevent vision loss and blindness [49][50][51]. Towards this 

direction, international and national guidelines encourage all diabetic patients to have an 

annual fundus examination. In England and Wales, a national fundus screening program has 

been recommended by the National screening committee. The same guidelines have been 

issued by the Haute Autorité de santé (HAS) in France [70]. In the Netherland, over 30000 

diabetics were screened since 2001 [9]. In several European countries, systemic programs for 

early detection of diabetic retinopathy via an expert manually reviewing using digital fundus 

photography have been integrated into existing health care systems. In an effective 

application of telemedicine, the fundus image is acquired from the patient by remote imaging 

and then reviewed by ophthalmologists to assess or grade. However, there are concerns 

regarding the cost of manual workload, particularly because of projected increases in the size 

of the diabetic population. In the next few years, it is estimated that the time required to 

implement the programme will exceed the limit of workloads. This situation stimulates 

intense research towards an automated population-based DR detection and grading system. 

Research effort over the past ten years has concentrated on designing automated detection of 

abnormalities (such as microaneurysms, exudates, cotton-wool spots, etc.) on the retina to 

diagnose and grade DR. Numerous approaches have been proposed to pursue more reliable 

schemes for automated detection of DR, since there is no completely independent automated 

DR program that can be applied in clinical practice. Generally, the research areas for 

automated DR detection using fundus photography can be divided into three primary 

categories. The first category is focused on designing systematic DR systems, the second for 
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developing segmentation and detection of those abnormalities, and the third for measuring 

the segmented abnormalities relating to different stages of DR.  

 Dupas et al. [70] measured microaneurysms, haemorrhages, and exudates based on a 

suite of algorithms for automated detection proposed by Sinthanayothin [71]. These 

algorithms were incorporated into a computer-assisted diagnostic (CAD) system for grading 

different stages of DR. The system performs detection of four classes of components (vessel 

tree, microaneurysms and haemorrhages, macula, and exudates), thus the combination of all 

four results can be used to assess the severity of DR by referring to specific grading rules. 

Their evaluation of the system show that for DR detection, the sensitivity and specificity of 

the algorithm were 83.9% and 72.7%.  More specific protocols for clinical DR grading are 

presented elsewhere in the literature [72]. Yun et al. [73] proposed a DR grading system to 

classify samples into one of four groups (normal, moderate non-proliferative diabetic 

retinopathy (NPDR), severe non-proliferative diabetic retinopathy (SNPDR) and proliferative 

diabetic retinopathy (PDR)). The perimeter and areas of blood vessels and relative defects 

along the vessels are used as features for classification. The classification was achieved by 

employing a three-layer feedforward neural network (NN) classifier. They reported results in 

terms of accuracy, sensitivity, specificity of 84%, 91.7%, 100% respectively.  Larsen et al. 

also present work for automated diagnosis to classify patients in two classes normal or DR 

[74]. The performance of their system can be adjusted by a so-called visibility threshold 

parameter (either set to a default value or supplied by user). They achieved 93.1% sensitivity 

and 71.6% specificity with the parameter set at high sensitivity and 76.4% sensitivity and 

96.6% specificity with the parameter set at high specificity. Usher [75] et al. developed a tool 

for diagnosing patients as normal or DR. Their strategy initially extracts normal components 

(e.g. OD, vessels) and then excludes these structures using recursive region growing (RRG) 

combined with an adaptive intensity thresholding (AIT) approach to extract lesions (bright 

exudates). To extract those dark lesions (e.g. haemorrhages, microaneurysms), they adopted 

an edge enhancement operator they call a ‘moat operator’ technique. The classification was 

implemented by an artificial neural network based on the features generated from lesions. 

They report results of 94.8% sensitivity.  

Many efforts have been devoted to automated detection of various abnormalities (e.g. 

microanrurysms, microaneurysms, exudes, vessels) in order to improve the stability of CAD 

systems. For instance Walter et al. [76] proposed a microaneurysms (MA) detection method 
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for use in colour fundus images. Potential MA candidates are detected by a diameter closing 

operator followed by an automatic threshold scheme. MA (or non-MA) classification is 

implemented by Bayesian risk minimization that relies on kernel density estimation. The 

system demonstrates 88.5% sensitivity at an average number of 2.13 false positives per image. 

In the literature [77], Giancardo et al. proposed a method for diabetic macular edema (DME) 

detection based on the detection of exudates. Features characterising exudates are extracted 

based on colour information and wavelet decomposition. Then the generated features are 

classified with an SVM classifier to automatically diagnose DME. The proposed algorithm is 

evaluated by AUC, of which the maximum is 0.94. Sánchez [78] proposed a novel method to 

detect hard exudates from fundus images which is capable of distinguishing hard exudates 

from other bright lesions. The algorithm uses mixture models to dynamically threshold the 

images to obtain exudates.  Then the extracted exudates are further characterized by edge 

shape to distinguish them from other bright lesions (cotton wool spots and light reflection of 

vessels). The evaluation process demonstrated 100% sensitivity with 90% specificity.   

1.4 The thesis contributions 

Given the importance of retinal vessels for the diagnosis of various forms of diseases, the 

segmentation of vessels in fundus images remains a great challenge. This is due to the 

complexity of fundus images and conditions such as  image noise, low contrast between 

vessels (capillaries) and background, some abnormal regions (pathology), illumination 

(vessel reflection), and the variety of vessels  (different width, length). This topic is discussed 

in detail in chapter 2. Our research aims to design and develop more accurate retinal vessel 

segmentation methods based upon investigating texture analysis techniques. We particularly 

focus on texton-based approaches as these build on filter bank schemes that have been 

successful in earlier work. The primary contributions of this thesis include:  

• A hybrid retinal vessel segmentation method that is able to exclude the interference 

caused by abnormalities in fundus images is proposed. Such anomalies (e.g. drusen) 

are the primary factor that influences the accuracy of segmentation in this field.  

• A novel supervised texton based retinal vessel segmentation method is proposed 

which employs a new spatial filter bank design (MR11) for vessel feature extraction. 
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This method significantly improves performance in terms of accuracy and efficiency 

compared to many other state-of-the-art methods.  

• We investigate the effect of different training regimes and provide an experimental 

basis for training a general textons library for vessel segmentation. Given that the lack 

of study materials (ground truth) is an open issue in this research field, we built a new 

dataset (using original data supplied from the Manchester Eye Hospital) that can be 

used as a resource for future vessel segmentation research.  The data set includes 3 

sets of ground truth, hand labelled by 3 ophthalmologists. 

• Building on experience gained during the development of the MR11 filter bank a 

supervised texton based vessel segmentation method using an optimized Gabor filter 

is developed. We show that this approach saves computational cost while maintaining 

good performance. Finally, a new unsupervised retinal vessel segmentation method is 

proposed, which achieves a level of performance comparable with other supervised 

state-of-the-art methods. This unsupervised segmentation method represents a 

significant contribution since it addresses the problems that arise due to inconsistent 

ground truth labels in the database.   

1.5 Organization of thesis 

The rest of chapters in this thesis are organized as follows: Chapter 2 presents a 

comprehensive survey of previous and current techniques which have been proposed for 

retinal vessel segmentation. These methods are categorized into four categories and we 

review them by each category. Chapter 3 provides relative background information on 

textons and texture analysis techniques, in which an extensive review of prevalent texture 

measure techniques for image segmentation is presented. Chapter 4 presents a hybrid retinal 

vessel segmentation method which is able to obtain vessel segmentation that is robust to 

anomalies in the image. In Chapter 5, three subsets of experiments are described. A 

supervised texton based retinal vessel segmentation method is described in the first subset of 

experiments. Then the supervised texton based segmentation method is extended by 

optimizing the procedure for generating textons. The third subset of experiments comprises a 

comparative study undertaken in order to qualify the consistent performance of the method. 

Chapter 6 describes a further texton based segmentation method using optimized Gabor 

filters and an unsupervised texton based segmentation approach which uses a Derivative of 
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the Scale Invariant Feature Transform (DSIFT) and multi-scale Gabor filters. Chapter 7 

presents conclusions and suggestions for further work. 
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CHAPTER 2  

2. Review of retinal vessel segmentation and evaluation  

The segmentation of retinal blood vessels and their extraction from the background in retinal 

fundus images is an essential stage for automated retinal vessel analysis and can also be a 

useful pre-processing step, prior to manual screening. The biomedical measurements of 

retinal vessels are analyzed and evaluated in several routine clinical diagnoses. For example, 

it is critical to diagnose, screening, and treatment for various ophthalmologic diseases, such 

as Glaucoma, AMD, diabetic retinopathy (DR) and vascular disorders etc., as discussed 

previously in section 1.2.4, because these characterise pathologic changes that manifest the 

progress of various diseases such as hypertension, diabetes, etc., segmenting retinal blood 

vessels and assessing segmented vessels is particularly important to detecting or grading 

those diseases. For instance, displacements of blood vessels within the OD are measured in 

some automated Glaucoma diagnosis systems [55][56].  In some systems used for diagnosis 

of AMD, Glaucoma and DR, retinal blood vessels are segmented and identified as the normal 

healthy components and  so the system can eliminate these vessels from further stages and 

related inferences [53][59][61][62][75][78]. The vessels also can play a role by providing 

reference coordinates to describe the locations of other elements in the images [73].  The 

morphological characteristics of vascular trees include atrophy, dilation and tortuosity which 

can be expressed as the A/V ratio (see section 1.2.4 for more details) and in mathematical 

terms of tortuosity. These terms are extremely important for automated measurement of the 

vascular tree to prevent diseases such as heart attack, brain stroke etc. [64][65][66]. Moreover, 

retinal blood vessel segmentation has more specific significance for other applications. For 

instance, segmented retinal blood vessels can provide a tool for multimodal image 

registration [79].  

Currently, vessel networks presented in retinal fundus images are primarily delineated 

manually by experts (ophthalmologists). Subsequently, these components can be used as 

signs to assess corresponding diseases based on particular clinical rules in the screening 

application or computer-assisted diagnostic system. However, the manual vessel 

segmentation is quite time-consuming and experience based, whilst the cost of workloads 
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(training, labour force) has to be considered. Many efforts have been devoted in developing 

automated vessel segmentation and computer-assisted diagnosis systems, which we have 

summarized in the previous section (1.3). To some extent, the reliability of those systems 

especially considering the accuracy of diagnosis is quite reliant on the performance of 

segmentation methods, as every false segmentation or miss-segmentation may affect accurate 

measurement of structures. It is commonly accepted by clinicians that automated assessment 

of vascular structures in the retinal fundus image is a critical stage in the development of a 

computer assisted diagnostic system for automated detection and grading of various forms of 

retinopathy.   

Although automatic segmentation of the blood vessel networks has been studied widely 

and a large number of approaches have been proposed, it is still a big challenge and retinal 

vessel segmentation remains a focus for ongoing research.  The challenges faced in accurate 

automatic retinal vessel segmentation include various factors. We list them as follows. 

� Wide range of vessel widths, from large (12-15pixels) to small (2-5 pixels).  

� The specific morphological characteristics, such as vessels (veins and arteries) may cross 

and overlap.   

� Presence of noise in fundus images. 

� The low and unstable local intensity contrast between vessels and background.  

� Presence of pathology elements including haemorrhage, exudates, and microaneurysms 

etc. and the presence of other anatomic components in the fundus images (such as OD, 

macular). 

� Different optical features in the fundus image; especially, those due to illumination 

which may result in various artefacts, e.g. light reflected from vessels which may 

influence the segmentation.  

Figure 2.1 illustrates examples of such factors in fundus images which may influence the 

accuracy of automatic retinal vessel segmentation. The wide range of vascular width can be 

observed in all the sub-images. In practice, the most difficult task of retinal vessel 

segmentation is to detect the tiny vessels (capillaries) from the background. To the best of our 

knowledge no approaches have been proposed that are able to completely segment all vessels.  

Figure 2.1-b demonstrates the exudates (hard drusens and haemorrhages) which may result in 

an increase of false positives, namely those abnormalities that may be segmented as vessels. 

The boundary of the OD in Figure 2.1-c exhibits an extremely large intensity gradient change, 
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thus it may be mis-segmented as a linear structure (vessel).  The vessel reflections may be 

detected as non-vessel, as its colour intensity is quite different from the normal vessel. Most 

of proposed methods utilize pre-processing techniques to handle this issue.       

All the factors listed above may more or less influence accuracies of segmentation 

methods which have been proposed previously. Hence automatic retinal vessel segmentation 

remains a focus for current research. 

 

 

 

A large number of such approaches have been proposed using various modern image 

processing and analysis techniques. Comprehensive surveys of vessel segmentation 

approaches in various modalities of medical images are present in the literature [82][83]. 

Some brief reviews of retinal vessel extraction methods have been presented in the literature 

[9][80][81], some of which may be particularly utilized as a tool for automated detection of 

pathologies. Fraz et al. present a survey in [84] that particularly focusses on approaches of 

retinal vessel segmentation in fundus images. In this chapter, prevalent evaluation methods 

and the most commonly utilized experimental materials (datasets) are introduced in section 

2.1 and 2.2, respectively. We present a review of previous segmentation methods in section 

2.3 where numerous approaches are classified into each category. The summarized methods 

Figure 2.1 A series of factors influence the automatic retina vessel segmentation. (a) 
illustrates the large and tiny vessel width; (b) demonstrates the exudates, the boundary of the 
OD in (c) exhibits an extremely large intensity gradient change, vessel cross and vessel 
reflection are shown in (a) and (c). 
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cover both early state-of-the-art methods and very recent published work. In section 2.4, we 

summarise the existing approaches, state corresponding problems and discuss the future 

trends of retinal vessel segmentation in fundus images.   

2.1 Evaluation method 

In order to evaluate the performance of retinal vessel segmentation methods, two categories 

of performance measures methodologies are commonly used to qualify the segmentation 

results. One evaluates the performance in terms of accuracy, sensitivity and specificity, and 

the other plots a Receiver Operating Characteristic (ROC) curve [131] and reports the 

segmentation quality by calculating the area under the curve (AUC). Either or both of these 

evaluation methodologies are used in retinal vessel segmentation methods reported in the 

previous section to generate comparative results that are able to indicate the merits of the 

methods. The values of sensitivity, specificity, accuracy and AUC can provide numerical 

evidence to verify the performance whilst the ROC method also produces curves that can be 

compared visually to study the performance of different segmentation approaches under the 

same circumstances. We introduce both evaluation methods in the next subsections.   

2.1.1 Sensitivity, Specificity and Accuracy   

To explain the terms (accuracy, sensitivity and specificity) clearly, we start by describing 

some essential properties of classifiers. Given a binary classifier and a candidate instance, 

there are four possible outcomes. Table 2.1 shows these four outcomes. The real class is 

labelled as {T, F}, and we use the labels {P, N} for the class predictions. If an instance is 

positive and it is classified as positive, it is counted as true positive (TP), however if it is 

classified as negative, it is counted as false negative (FN). Analogously, if the instance is 

negative and it is classified as negative, it is counted as true negative (TN), but if it is 

classified as positive, it is counted as false positive (FP). In practice, the real classes are given 

by the ground truth, The ground truth is normally represented as a binary image in which 

pixels belonging to vessels have been manually labelled by experts. Sensitivity and 

specificity are the factors which indicate the rate of success of classifying vessel and non-

vessel pixels, respectively. Accuracy, on the other hand, is an overall measure of the ratio of 

total well classified pixels with respect to ground truth. 
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Table 2-1 The confusion matrix of measures properties 

 Real class 

T F 

 
Predicted class 

P True Positives False Positives 

 
N False Negatives True Negatives 

 
Taking table 2.1 into account, the terms can be expressed as 
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2.1.2 Receiver operating characteristic (ROC) curves 

The receiver operating characteristic (ROC) curve is a general tool to assess the performance 

of a classifier [203]. In general, a ROC plot is a two-dimensional graph in which false 

positive fractions (FPF) is plotted on the x axis and true positive fractions (TPF) is plotted on 

the y axis. For a binary classifier, the output is only a class label (e.g. either T or F, either 1 or 

0). Each this classifier produces a pair of TPF, FPF corresponding to a single point in a ROC 

graph. The point plotted closer to the top left corner presents the better performance of the 

classifier. For some other classifiers (e.g. Neural network, Native Bayes Classifier), normally 

the output is an instance probability or score, which can be further used with a threshold to 

produce a binary classifier, each threshold value produces a different point in ROC. A ROC 

curve is then constructed according to those points. Here, a ROC curve plots true positive 

fractions (TPF) versus false positive fractions (FPF) by thresholding the image (e.g. a 

probability map) with different values starting from 0 up to 1 with a step size of 0.001, where 

the TPF is calculated by dividing the number of true positives by the total number of vessel 

pixels in the ground truth and the FPF is the number of false positives divided by the total 

number of non-vessel pixels of the ground truth (see equation 2.2). TPF (true positive 
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fractions) is also equal to sensitivity, and FPF (false positive fractions) is equal to (1-

specificity). An ROC curve plotted closer to the top left corner is indicative of better 

performance of the method. Therefore, the increasing value of the area under the curve means 

better performance, the best value of the AUC is one.   
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2.2 Available Materials 

Standard sets of images make it possible to compare the performance of different 

segmentation approaches under the same circumstances so comparative measures can be 

generated. The DRIVE [132] and STARE [133] databases provide such materials as they are 

publicly available and have been widely used by almost all of the previous methods. A 

summary of these retinal fundus image databases is presented in the following subsections.    

2.2.1 DRIVE database 

The DRIVE database was collected by Staal et al. [102], and is publicly available on the 

website: http://www.isi.uu.nl/Research/Databases/DRIVE/. 40 images were captured by a 

Canon CR5 fundus camera at a 45o field of view, each image was digitized with size 

565×584, captured at 8 bits per colour plane and compressed, stored as TIFF format. The 

database is divided into training and test sets, where each set consists of 20 images. The 

manual segmentations are available for both sets. For the test set, manual segmentations are 

provided by two observers. In practice, the first set is used as ground truth whilst the other 

one can be used to provide a reference independent human segmentation, which can be used 

as a measuring standard to qualify the computer generated segmentation. However, only one 

set of manual vessel tree segmentations is available in the training set. Additionally, a mask 

for each image is available for both sets and this can be used to remove the rim border 

surrounding the field of interest. Compared with the STARE database, the condition of 

images in the DRIVE database is less complex, since most of the samples are normal cases.          
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2.2.2 STARE database  

The STARE database was originally collected by Hoover et al. [90], and is publicly available 

on the website www.ces.clemson.edu/ahoover/stare/. The database consists of 81 fundus 

images captured by the TopCon TRV-50 fundus camera at a 35o field of view. The images are 

stored as PPM format, 8 bits per colour channel and digitalized with size 700×605. The 

dataset contains two sets of hand-labelled ground truth made by two observers, each of which 

contains 40 binary manual segmentations images. No masks are provided. Compared to the 

DRIVE database, the conditions presented are more complex, as 10 of 20 images contain 

abnormalities. Also, the number of ground truth images is not as comprehensive as provided 

in the DRIVE database. However, it has irreplaceable value for retinal vessel segmentation 

research, since it provides some examples of pathological changes in the fundus image which 

may appear in routine clinical application and may present more difficulties for automatic 

vessel segmentation algorithms.     

2.3 Retinal vessel segmentation methods 

We would like to emphasise that the categorization of reviewed retinal blood vessel 

segmentation methods presented here does not relate to a strict taxonomy. Many recent 

retinal vessel segmentation methods normally adopt techniques which have been proposed by 

earlier researchers to resolve some particular problems (e.g. image smoothing, feature 

extraction, pattern recognition etc.), and some of them employ hybrid techniques to 

implement retinal vessel segmentation. In this case, we aggregated the methods which use 

similar key techniques (algorithms) into the same group when we reviewed them. Here the 

reviewed retinal vessel segmentation methods are primarily divided into four categories:  

(1) Matched filtering;  

(2) Vessel tracing/tracking;  

(3) Classifiers  

(4) Model-based segmentation.   

We introduce these segmentation methods by each category in the following sub-sections.  
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2.3.1 Methods using matched filters 

The basis of matched filtering methods for extracting vascular structures is derived from the 

concept of signal detection, in which a filter kernel is modelled as a template based on the 

known information in a signal. The modelled template can then be correlated with an 

unknown signal in order to detect the presence of the template in the unknown signal. For 

retinal vessel extracting purpose, the approach convolves the retinal fundus image with 

multiple 2-D kernels (templates) to generate corresponding filter responses which are able to 

represent vascular features. Those templates (2-D linear kernel) are designed by taking 

known information into account.  (e. g. the vessel cross-sectional intensity profile can be 

approximated by a Gaussian shaped curve). A classic matched filter (CMF) was proposed by 

Chaudhuri et al. [85]  for retinal vessel segmentation. Because of its simplicity, the CMF has 

been employed and further studied by other researchers for a long time. Matched filter based 

methods are normally combined with threshold-based segmentation methods to obtain a final 

binary segmentation result. There are several limitations of using CMFs. The efficiency of 

the algorithm may be affected by the size of the filter kernel. A large convolution kernel 

which needs to be rotated at various orientations results in increased computational costs. 

Moreover, it is difficult to extract various vessel widths using a filter set at one scale. As such 

the kernels size is determined by scale parameters which are selected to model a specific 

range of vessel widths. As a result, if a wide vessel related parameter is selected, many 

capillaries may fail to be detected. Additionally, the Gaussian kernel of the CMF will 

recognize non-vessel objects indicative of certain pathologies as vessels structures and this 

may influence the accuracy of segmentation. Given its advantages and limitations, CMFs 

have attracted extensive further investigations for retinal blood vessels detection in fundus 

images. Most of the proposed methods improve the CMF by modifying or optimizing the 

filter kernel to overcome some of the limitations, while other approaches combine the CMF 

with other techniques to achieve more accurate performances. 

In the literature [86], the Gaussian function model [85] was further studied and an 

amplitude-modified second-order Gaussian filter was proposed by L. Gang et al. [86]. They 

optimized the parameters of the matcher filter via mathematical analysis and experimental 

simulation. In their work, they demonstrate that the optimal Gaussian filter to detect vessels is 

given when the parameter t equals 3.5, where t is the power of σ in amplitude factor (
$

√&'()) 
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of second-order Gaussian filter (referring to the equation 5.5). The most significant 

contribution of their research is that they show that it is possible to measure the vessel 

diameter with a matched filter using parameters learned from a training set. Using this 

methodology in the vessel segmentation process, the success rate of detection can be 

improved. The proposed method is evaluated on 48 colour fundus images and the authors 

reported 94.3% of blood vessels can be detected.   

M. Al-Rawi et al. [87] also improved the performance of the CMF by optimizing the filter 

parameters. Three important filter parameters L, σ and T are optimized (L indicates the length 

of the vessel segment that has the same orientation [85]; σ defines the spread of the intensity 

profile; T is a parameter used to truncate the long double sided tails of the Gaussian curve). In 

[85] parameters L, σ and T are 9, 2 and 6, pixels. M. Al-Rawi et al. optimized them to 10.8, 

1.9 and 8 pixels respectively by comparing the segmentation results to corresponding ground 

truth. The term accuracy (94.3%) equals the TPR (true positive ratio) minus the FPR (false 

positive ratio) was used to optimize parameters. This figure represents an important reference 

when searching for better values of parameters. Meanwhile, their experiment also showed 

that the green channel is more appropriate than other bands (Red, Blue) for generating more 

true positive responses. The final segmentation results are obtained by using an automated 

threshold selection method, which considers different conditions of the number of connected 

components and Euler number. They present experimental results using the DRIVE database 

and demonstrate an average accuracy is 0.9535 with 0.9435 AUC.  

Cinsdikici and Aydin [88] proposed a hybrid model using a matched filter and ant colony 

algorithm. Their novel method overcomes an imperfection of the CMF by improving the 

performance of detecting thin vessels (capillaries). The procedure of vessel segmentation 

comprises two parallel stages, one using the CMF and the other using the ant algorithm.  At 

the end of the procedure, they combine the segmentation results with a logical OR operation 

and then use a length filter to remove disconnected segments to get the final segmentation 

results.  Before implementing the vessel extraction, they add a pre-processing step to enhance 

the contrast between vessels and background, in which, only the green band of a RGB image 

was obtained. Then they applied a nonlinear intensity transformation on the green band image. 

Finally, the image is divided into several small size blocks, which are further classified into 

blocks containing vessels and non-vessels by measuring the entropy value. Those blocks 

containing vessels are utilized by a vessel extracting process. This method has two limitations: 
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first, two types of parameters need to be set (parameters relating to the ant colony and the 

CMF) and this may reduce the robustness of approach. Second, the segmented vessels are 

thicker than those vessels identified in ground truth (manual annotation of vessels). This 

tends to increase the FPR, and reduce the practicality of the application, since one of the 

applications of vessel segmentation is to measure the width of vessels which manifest 

pathological changes in images.  

Zhang et al. [89] proposed a novel extension of the CMF approach named MF-FDOG to 

detect vessel structures and distinguish the vessels from edges of non-vessel structures.  It 

segments the vessel objects by thresholding the retinal image’s response to a zero-mean 

Gaussian function, whilst using the local mean of the response to the first-order derivative of 

Gaussian (FDOG) to adjust the threshold level in order to remove the non-vessel edges.  The 

algorithm is developed based on the fact that the cross-section of a vessel is a symmetric 

Gaussian function but the step edge is asymmetric. Experimental results using MF-FDOG 

reveal that the MF-FDOG optimizes the CMF by reducing the false detections, whilst the 

CMF function is enhanced by detecting many fine vessels which are miss-detected by the 

CMF. A limitation of the method is that the segmentation is sensitive to noise and so some 

noisy patterns may be detected as vessels.  

Hoover et al. [90] proposed a vessel segmentation method based on local and global 

vessel features. The segmentation is implemented using local vessel attributes and region-

based attributes. The responses of the CMF are analysed in pieces and thresholded using an 

interactive probing technique. At each iteration step, a decision to continue to extend the 

probe is assessed by region-based attributes in tested pieces whilst pixels in such pieces are 

segmented as vessel or non-vessel. Pixels which are not detected as vascular candidates by 

the probe are recycled for further probing. Their comparative evaluation results demonstrate 

that the proposed method reaches about 80% sensitivity and 90% specificity.  

In the literature [91], the matched filter is combined with other categories of filter as a 

general tool to enhance the vascular structure. Wu et al. particularly focused on dealing with 

the capability of detecting thin vessels. The framework of their method can be split into three 

steps: a pre-processing step, a vessel enhancement step and a segmentation step. In the pre-

processing step they remove the image noise and smooth the image by a nonlinear diffusion 

technique, which is able to smooth the image without blurring vessels boundaries. In the 

vessel enhancement step, they use a compound filter bank which combines Hessian-based 
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filters, matched filters, and incorporates edge constraints of vessels. The advantage of 

employing a Hessian based filter is that it can enhance vessels of various sizes and estimate 

their directions simultaneously. However, Hessian-based filters can't distinguish step edges 

from vessels effectively. A CMF is employed by considering its effectiveness on 

distinguishing step edges from vessels. To solve the problem of false detection of edges using 

the CMF, they analyse the edge information at the boundary of vessels based on an 

assumption that a vessel should have two edges on each side of it. In the segmentation step, 

the vessels are tracked by a ridge-based algorithm, in which the multiple seeds are obtained 

by multiple thresholds of the enhanced image, and the ridges are determined according to the 

orientation and size information which are obtained from the enhancement filter. 

Table 2-2 Performances of matched filtering based retinal vessel segmentation approaches 

Method Year Database Sensitivity Specificity Accuracy Area under the ROC 

(AUC) 

Chaudhure et al.[85] 1989 DRIVE - - 0.8773 0.7878 

Hoover et al.[90] 2000 STARE 0.6751 0.9567 0.9275 - 

Wu et al.[91] 2007 DRIVE 0.84 0.81 - - 

Al-Rawi et al.[87] 2007 DRIVE - - 0.9535 0.9435 

Cinsdikici and Aydin[88] 2009 DRIVE - - 0.9293 0.9407 

Zhang et al.[89] 2010 STARE 0.7177 0.9753 0.9484 - 

DRIVE 0.7120 0.9724 0.9382 - 

Li et al.[92] 2012 STARE 0.8069 0.958 0.9461 - 

DRIVE 0.7154 0.9716 0.9343 - 

Odstrcilik et al. [93] 2013 STARE 0.7847 0.9512 0.9341 0.9569 

DRIVE 0.7060 0.9693 0.9340 0.9519 

 

Li et al. [92] proposed multi-scale vessel extraction scheme based on matched filter 

responses at 3 scales with optimized parameters. Each scale is designed to extract specific 

widths of vessels, of which the first scale is used to enhance thin vessels and third scale is for 

wide vessels. The middle scale can generate appropriate responses for both tiny and wide 

vessels. The parameters are optimized by detecting the maximal filter responses through scale 

space. The final segmentation is derived from a double-thresholding procedure based on 

selected responses at two scales. Experimental results demonstrated the performance of their 

simple and effective method. 
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More recently, Odstrcilik et al. [93] proposed a novel method for retinal vessel 

segmentation in which a matched filtering process is improved. After performing illumination 

correction and contrast equalisation of the fundus image in a pre-processing stage, the pre-

processed image is then convolved with each of the filter kernels. Then each maximal 

response is combined into one map. Five 2-D filters which cover five different blood vessel 

widths were designed according to blood vessel cross-sectional intensity profiles. These filter 

kernels are designed by fully considering the vessel reflection issues, whilst each designed 

filter kernel is rotated into 12 different orientations in order to cover all possible vessels’ 

directions. The segmentation is derived by applying a thresholding method on such a map. 

The proposed approach is evaluated on their new high-resolution fundus image database 

(HRF), DRIVE and STARE, respectively.     

We summarise the performances of the matched filter based retinal fundus image vessel 

segmentation approaches we reviewed in table 2.2. To present the comparative performance 

of those methods under the same circumstance, we list methods which are evaluated on either 

DRIVE or STARE databases or both. The measurements use either a set of evaluated terms 

(sensitivity, specificity and accuracy) or a figure representing the area under the ROC (AUC) 

(see section 2.1 for more details).  All data are collected from the respective published papers. 

2.3.2 Methods tracing vessel structures 

Segmentation approaches that trace retinal vessels are also known as tracking based 

approaches and tend to work particularly well on a single retinal vessel rather than on a whole 

image. Commonly, an algorithm starts from initialising points of interest on the vessel or 

detecting its centreline by connecting each pixel at the centre of the longitudinal cross-section 

of a vessel. Then the optimized path which matches a vessel profile model according to some 

local information is traced outwards in directions which the vessels spread. The points of 

interest in respect of vessels can be detected using vessel feature extraction techniques (e.g. 

matched filters), whilst different sketching techniques can be adopted for detection of the 

vessel centreline. The advantage of segmentation techniques that trace vessels is that the 

corresponding vessel segmentations have accurate width and these features are important 

signs for pathology assessment, e.g. vessel diameter measurement for diagnosis of 

hypertension. However, vessel tracing methods have limitations for detecting some branches 

of vessels, such as arterioles and venules, as vessel crossings produce occlusions which may 
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interfere with the tracing procedure. Also some branches may be excluded if initial points 

(seeds) are not identified within those branches.    

Echevarria and Miller [94] reported a method that utilizes the level set method [117] to 

remove the noise followed by using a fast marching method to trace the vessels. Initially, 

they use a CMF to enhance the contrast of vessels. An iterative tracing process is 

implemented using the fast marching method, in which initial seeds placed at interfaces 

within major vessels are spread until all pixels of the image are covered. In this procedure, a 

double thresholding technique is employed to locate regions of vessels pixels and seed the 

interface. In the spreading process, a speed function (F) of a seed interface is constructed, 

which takes into account the gradient of areas in the image and the curvature of the interface. 

The interface is propagated by solving the boundary formulation differential equation 

|∇T x, y#|F = 1, where  T x, y# donates the time the interface passes through a point(x,y) in 

the image. The minimum time value of each pixel is used in the tracing step to judge whether 

the pixel belongs to vessels or not. This procedure runs until all the interfaces are stable. The 

output of the fast matching method is then revised by a level set method to get the final 

segmentation.  

Wu et al. [95] proposed an automated blood vessel segmentation method which combines 

a vessel enhancing step, feature extraction step, and vessel tracing step. They employ an 

adaptive histogram equalization (AHE) technique to enhance the vessel from the background. 

To classify the blood vessels and non-vessel objects, the different texture features of both 

vessels and non-vessels structures are obtained by using a shape-based standard deviation 

filter (GS). The significant function of the feature extraction stage is detecting the small 

vessels, since these produce a significant response to the GS.  The contrast-enhanced map and 

GS-filtering map obtained from the previous two steps are further used to track the larger and 

small vessels in the vessel tracing step. In their method, initial seeds are set by combining 

results obtained through three ways. First, the Sobel detector is applied on the contrast-

enhanced map to obtain edges of large vessels. Second, local maximal points are selected 

from the GS-filtering map as candidates. Third, the local maxima from the responses to a 

CMF are also calculated as candidates. The tracing process starts from the seeds and proceeds 

in a forward detection, employing bifurcation identification and backward verification. The 

drawbacks of this vessel tracing method are firstly the performance depends on the selected 

seeds. The authors report that most false detections are due to incorrectly identified initial 
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seeds. Secondly, there are lots of ‘rags’ on each blood capillary in the segmentation result. 

The method is evaluated on the STARE database and the authors report 84.3% sensitivity and 

96.1% specificity.  

Tolias and Panas [96] proposed a new unsupervised fuzzy algorithm to track vessels. In 

their method, the optic disc (OD) is detected and used as a starting point for the vessel tracing 

procedure. The pixels on the circular boundary of the optic nerve are detected and formed 

into a sequence. These detected pixels are further classified into vessel and non-vessel 

regions using the fuzzy C-means (FCM) clustering algorithm. Within each classified vessel 

relative region three dark pixels are initially defined as vessels.  Then the centres of these 

regions are defined as seeds. A fuzzy vessel tracking procedure is applied on each selected 

seed.  The vessels are tracked by finding membership functions of two structures (vessels and 

non-vessels). More vascular memberships of pixels on the profile indicate a higher possibility 

that the pixel belongs to a vessel. The advantage of the proposed method is that only local 

intensity information is used unlike other vessel tracing methods which may demand 

information on more complex profiles (e.g. edge information). This advantage makes the 

method more automatic and efficient. Additionally, the method has robust performance and is 

able to deal with vessel junctions.  The significance of this method is that it can be used to 

trace vessels in images from other modalities of angiography [96].  

In the literature [97], Chutatape and Zheng proposed a retinal vessel tracking scheme 

which employs a second-derivative Gaussian, matched filter and extended Kalman filter. The 

second derivative Gaussian is used to locate initial points and detect the width of vessels.  

The extended Kalman filter is used to estimate the next possible location of vessel pixels. The 

vessel tracing process starts from the circular boundary of the optic disc (OD) and local 

maxima of the response to the matched filter define the centre of the blood vessel sources. In 

the vessel tracing process, a source pool is constructed, in which every source (seed) is 

considered as a potential starting point of a vessel, and the Kalman filter is initialized on the 

start point taking into account its direction. The optimal estimation of the next position is 

given by the Kalman filter, and then the Gaussian filter locates the next vessel segment based 

on the estimated position and direction. If the filter detects pixels on branching vessels then 

these points are added to the source pool as another source seed. This iteration continues until 

the endpoint is detected by the Gaussian filter.   
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A novel multi-scale line-tracking scheme is proposed for retinal vessel segmentation by 

Vlachos and Dermatas [98]. The algorithm starts by selecting potential seeds according to a 

brightness selection rule and the procedure continues until a cross-sectional profile condition 

becomes invalid. Multiple individual image maps relating to each scale are combined to 

generate the multi-scale image map, which contains the estimated confidence of vessels 

related to pixels. The initial segmentation is obtained by quantising the map which is 

represented as a multi-scale confidence matrix. The final segmentation is generated by using 

a median filter to join disconnected vascular fragments followed by a post-processing stage to 

remove the false positives. The proposed method is evaluated on the DRIVE database by 

measurements of the sensitivity, specificity and accuracy. The results show that the average 

accuracy of the proposed algorithm is 0.929 with values of 0.747 sensitivity and 0.955 

specificity.  The major limitation of the method is that it is sensitive to noise and abnormities 

in images thus the vessel segmentation results may contain non-vessel objects. This results in 

correspondingly high misclassification rate.   

Delibasis et al. [99] proposed a vessel tracing segmentation method. The tracing routine 

uses a geometric model to represent the vessel (strip) which is used to discover the relation 

between the fitted model diameter and vessels diameter. A set of initial seed points located 

close to the vessel centreline are detected and each candidate is considered by a model 

matching routine which takes into account the local strip orientation and measurements to 

constrain the search space. The vessel diameter found by the matching algorithm is used to 

segment the vessels. The proposed algorithm is very effective however it exhibits a stochastic 

behaviour which is caused by an initialization procedure that employs random seeds. The 

proposed method is evaluated on the DRIVE database. The results demonstrated 72.88±0.63 

sensitivity, 95.05±0.35 specificity and 93.11±0.34 accuracy.  

A principal curve based retinal vessel segmentation approach is proposed by You et al. 

[100]. The appearances of vessels are enhanced using an isotropic Gaussian kernel and Frangi 

filter.  A multi-scale principal curve projection is applied to associate pixels to vessel ridges 

and the branches of each ridge are then traced recursively by the principal curve tracing 

algorithm.  The tracing procedure starts from a candidate seed on the principal curve, and 

then the vessel centre lines can be traced through the tangent subspace according to proper 

directions and step length. The approach is implemented and evaluated on the DRIVE 
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database. The corresponding measurements of performance (sensitivity, specificity and 

accuracy) are 0.8033, 0.9594 and 0.9456, respectively.   

Ocbagabir et al. [101] proposed a novel ruled-based tracing algorithm for retinal vessel 

segmentation, which is called a star networked pixel tracking algorithm. Following a pre-

processing and vessel enhancement procedure, each pixel of the entire image is compared 

with its four neighbouring pixels aligned at 45° in the tracking process. Using local 

information, pixel connections along eight orientations are checked iteratively and pixels are 

classified as vessels or not. The major advantage of the tracking algorithm is that it is able to 

reduce the interference due to noise and artefacts in the image when tracing the vessel 

structures. The proposed method is evaluated on the DRIVE database and achieved overall 

95.83% accuracy.  

Table 2.3 illustrates the evaluated performances, the sensitivity, specificity, accuracy and 

AUC measured on the DRIVE or STARE databases. Some vessel tracing methods reviewed 

above are excluded from the table, as those methods were evaluated by neither DRIVE nor 

STARE, or published without any evaluation results. 

Table 2-3 Performances of tracing based retinal vessel segmentation approaches 

Method Year Database Sensitivity Specificity Accuracy (AUC) 

Wu et al.[95]            2006 STARE 0.8430 0.9610 - - 

M. Vlachos and E. 
Dermatas[98] 

2010 DRIVE 0.7470 0.9550 0.9290 - 

Delibasis et al.[99] 2010 DRIVE 0.7290 0.9510 0.9310 - 
You et al. [100] 2011 DRIVE 0.8033 0.9594 0.9456 - 
Ocbagabir et al.[101] 2013 DRIVE 0.7130 0.9820 0.9580 - 

 

2.3.3 Classifier based methods 

The basis of classifier based retinal vessel segmentation methods is that an unknown element 

or pattern within the fundus image is categorized to vessel or non-vessel by algorithms 

according to various forms of features. Commonly, this procedure is divided into two stages: 

first, the connected spatial regions with corresponding features are detected by a low-level 

algorithm. Then those candidate regions are classified into vessel or non-vessel (background) 

based on the extracted features. According to differences of classifier training schemes, the 

approaches for vessel segmentation can be divided into two categories: supervised and 

unsupervised approaches. The supervised retinal vessel segmentation approaches need 
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information from prior labelling which is provided in a training stage. The labelling 

information provides indications of vessels or non-vessel structures in a set of training sample 

images. Conventionally, the experimental training data may provide such segmented 

reference images known as ground truth which are produced manually by some expert 

observers. For instance, the ground truth vessels are marked or labelled precisely by one or 

more ophthalmologists. As the name implies, the unsupervised approaches perform the vessel 

segmentation without aid of any prior manual labelling information. The classifier or model 

of unsupervised methods are trained in order to expose the inherent characteristic features of 

vessel and non-vessel structures in retinal images that subsequently are used as criteria to 

determine whether a pixel belongs to vessel or not. The following reviews of segmentation 

methods based on vessel segmenting are categorised into supervised and unsupervised 

approaches, respectively.  

� Supervised classifier-based retinal vessel segmentation on fundus images  

Staal et al. [102] proposed a classifier based retinal vessel segmentation based on extraction 

of vessel ridges. The detected ridges are used to extract the vessel primitives (line elements) 

which are defined as a coordinate frame for partitioning an image into convex set regions by 

assigning each pixel to the closest line element. For every pixel, features are calculated from 

a convex set of regions that follows a feature selection scheme using a sequential forward 

selection method. The kNN classifier is applied for classification of the feature vectors. The 

method is evaluated on two databases. One is the Utrecht database which is obtained from a 

screening program in the Netherlands, and the other one is STARE. The results outperform 

the method proposed by Hoover et al. [90]  and it achieved 0.9516 accuracy with 0.9614 

AUC.  

Soares et al. [103] proposed a scheme using the 2D Gabor wavelet to implement noise 

filtering and feature extraction. Then they used a Gaussian mixture model (GMM) classifier 

which is derived from a Bayesian classifier to determine whether a pixel is vessel or not. 

Each class-conditional probability density functions is described as a linear combination of 

Gaussian functions. The pixel’s feature vectors are composed of the pixel’s intensity and 2-D 

Gabor wavelet transform responses. Extraction of feature vectors is based on a 2-D Gabor 

wavelet basis which is a complex exponential modulated Gaussian that can be fine-tuned to 

specific frequencies and is capable of detecting oriented features. The classifier is trained 

based on manual segmentations of training images. Their experimental results demonstrate 
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that the GMM classifier has good performance which achieves 0.9466 sensitivity on DRIVE 

AND 0.9480 sensitivity on STARE.    

In paper [104], Ricci and Perfetti proposed a retinal vessel segmentation technique based 

on a simple line operator. The method is composed of a feature extraction stage and a 

classification stage. Three categories of features were taken into account to generate feature 

vectors. Linear features of vessels were calculated based on the average grey level along lines 

of 15 pixels length passing through the target pixel at 12 orientations. A line of three pixels 

length which is orthogonal to the main line was employed to discriminate features of inside 

vessel pixels. Additionally, the grey level of the pixel was considered as a third feature. In the 

classification stage, they proposed two schemes for vessel classification. They adopted 

unsupervised classification by thresholding on the basic line detector’s responses in the first 

scheme, which is further developed in the second supervised scheme by employing a linear 

support vector machine (SVM) as a classifier. The proposed approach only requires a small 

training set for vessel classification according to the produced features. Experimental results 

are evaluated on the STARE and DRIVE database, resulting in average accuracy of 0.9646 

and 0.9595, respectively. The area under the ROC (AUC) is 0.9680, 0.9633.  

Rezatofighi et al.[105] employed the contourlet transform technique to enhance the vessel 

contrast from background that contributes to detect capillaries from the low contrast fundus 

image. The features are produced by Local Binary Pattern (LBP) and morphological methods. 

The classification is implemented by using the adaptive Multi-Layer Perceptron (MLP), 

Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System (ANFIS), 

respectively. The comparative results demonstrate that the performance of ANFIS classifier is 

better than the MLP classifier, where the MLP classifier achieves accuracy of 0.9221, 

sensitivity of 0.6944 and specificity of 0.968, however the ANFIS achieves relatively better 

measurement, with accuracy of 0.9410, sensitivity of 0.7308, and 0.9723 specificity based on 

evaluation of the DRIVE database.   

Moin et al. [106] presented a low dimensional feature vector extraction method for vessel 

and non-vessel classification. Four features were obtained by implementing Gabor wavelet 

and Local Binary Patterns (LBP). For extracting those rotation variant features, the Gabor 

kernels were rotated on 18 different orientations. For extracting rotation and gradient 

invariant features, rotation invariant LBP was employed. The supervised classification is 
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based on training the GMM classifier which is the same as Soares et al. employed [103]. 

Their computational results show the high efficiency of the proposed method.   

Lupascu and Tegolo et al. [107] collected various vessel relative features based on the 

local, spatial and structural properties of vessels. A 41-D feature vector was generated for 

each pixel in the image. These feature vectors consist of responses of different filters. 

Features from vessel boundaries were calculated by a Gaussian related filter (first and second 

order derivative Gaussian) and vessel likelihood features were obtained by matched filters at 

multiple scales. Spatial features were measured by Frangi, Lindeberg and Staal measurements 

[107]. Gabor wavelet transforms were employed to enhance vessel contrast. Intensity features 

were obtained by numerical estimators. The classification is implemented using the AdaBoost 

classifier which is an iterative boosting algorithm. In this approach a strong classifier is 

produced by a weighted combination of weak classifiers in the algorithm. The AdaBoost 

classifier is trained on 789914 gold standard samples of vessel and nonvessel pixels. The 

proposed method is tested on the DRIVE database and it achieves 0.9561 AUC with 0.9567 

accuracy.    

Marín et al. [108] proposed a novel supervised method for retinal vessel segmentation in 

digital retinal images. The method adopts a neural network (NN) to achieve a pixel 

classification task based on a 7-D feature vector at each pixel which comprises grey-level and 

moment invariants-based features. The procedure includes four stages: first pre-processing 

for enhancing the vessels appearance. Second, vessels feature extraction for pixel 

characterization which can be used in the classification stage. In this stage, each pixel is 

characterized by a vector in a 7-D vector space. Third, classification is implemented to 

determine whether the pixels belong to vessels or not. The classification step handles the 

following two tasks: training and application. The NN configuration is initialized before the 

NN is trained in the training step.  The output of the application task is a vessel probability 

map. In order to get the binary segmentation, a thresholding scheme on the probability map is 

employed. Finally, the pixel gaps are filled and over-segmentations are removed in the post-

processing stage. The method was evaluated on both DRIVE and STARE databases and the 

experimental results present accuracy of DRIVE and STARE is 0.9454 and 0.9525, 

respectively.    

Selvathi and P. Lalitha Vaishnavi [109], compare a support vector machine (SVM) 

classifier and relevance vector machine (RVM) classifier for retinal vessel segmentation. 
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Each classifier is used to classify each pixel as vessel or non-vessel based on the pixel’s 

feature vectors, which are produced by using a Gabor wavelet combined with the pixel’s 

intensity information. They investigate and compare the two classifiers on the STARE 

database. As a result, their experimental results suggest that the SVM classifier produces 

better results than the RVM classifier, which achieves 0.6585 sensitivity, 0.9666 specificity 

and 0.9447 accuracy, however the RVM takes less time and incurs less computational cost.   

Fraz et al. [110] proposed a supervised retinal vessel segmentation method according to a 

7-D feature vector. The features for each pixel are extracted using a combination of multi-

scale Gabor filters, line strengths and morphological transformation. The Gabor filters and 

line strengths are sensitive to the area containing pathologies in the fundus image, so the 

morphological top-hat transformation is employed to deal with such issues. The segmentation 

is obtained by using a Gaussian Mixture Model (GMM) classifier.  The method is evaluated 

using the images of both DRIVE and STARE databases resulting in average sensitivity of 

0.7525, average specificity of 0.9722, and average accuracy of 0.9476 on the DRIVE 

database and 0.7604 sensitivity, 0.9812 specificity and 0.9579 accuracy on the STARE 

database. The area under the ROC curve is also measured for each database and the result 

demonstrates AUCs of 0.9616 and 0.9734 for the DRIVE and STARE databases, respectively.  

Condurache and Mertins [111] proposed a novel scheme to design a fast and accurate 

classifier for binary classification purposes. Several classifiers are designed for segmenting 

vessel from background in the scheme. Two optimized classifiers are produced: pessimist and 

optimist, of which the former one represents the high-confidence classifier and works with a 

practically zero false-positive rate and a high false-negative rate, the latter one is the low-

confidence classifier and works with a practically zero false-negative rate and a high false-

positive rate. The classification is implemented based on a multidimensional feature vector 

for each pixel. The vessel relative features are obtained based on five different vessel maps 

which are generated by employing 5 categories of transforms: Bot-hat transform, Hessian 

transform at a single scale; multi-scale Hessian transform, Band-pass filter and Laplacian 

pyramid transform. The proposed scheme is tested and evaluated on both DRIVE and 

STARE. The experimental results show sensitivity of 0.9094, specificity of 0.9591, accuracy 

of 0.9516 and AUC of 0.9094 on DRIVE database, whilst sensitivity, specificity, accuracy 

and AUC of STARE database are 0.9094 0.9094, 0.9591 and 0.9516, respectively.  
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Table 2-4 Performances of supervised classifier-based retinal vessel segmentation approaches 

Method Classifier Year Database Sensitivity Specificity Accuracy  (AUC) 

Staal et al. [102] kNN 2004 DRIVE 0.7194 0.9773 0.9441 - 

   STARE - - 0.9516 0.9614 

Soares et al.[103] GMM 2006 DRIVE - - 0.9466 0.9614 

 STARE - - 0.9480 0.9671 

Ricci & Perfetti [104] SVM 2007 DRIVE - - 0.9595 0.9633 
 STARE - - 0.9646 0.9680 

Rezatofighi et 
al.[105] 

ANFIS 2008 DRIVE 0.7308 0.9723 0.9410 - 

Moin et al. [106] GMM 2010 DRIVE - - 0.9447 0.9515 
Lupascu et al. [107] AdaBoost 2010 DRIVE - - 0.9561 0.9567 
Marín et al. [108] NN 2011 DRIVE 0.7067 0.9801 0.9454 0.9588 

 STARE 0.6944 0.9819 0.9526 0.9769 
Selvathi et al. [109] SVM 2011 STARE 0.6585 0.9666 0.9447 - 
Fraz et al. [110] GMM 2011 DRIVE 0.7525 0.9722 0.9476 0.9616 

 STARE 0.7604 0.9812 0.9597 0.9734 
Condurache & 
Mertins et al. [111] 

hysteresis
-classifier 

2012 DRIVE 0.9094 0.9591 0.9516 0.9726 
STARE 0.8902 0.9673 0.9595 0.9791 

 

We summarize measurements of the reviewed supervised classifier-based vessel 

segmentation method on fundus images in table 2.4, in which the contents are categorized by 

rows with corresponding authors and classifiers.  

� Unsupervised classification methods 

Salem et al.[112] proposed a radius based clustering algorithm (RACAL) for segmentation of 

blood vessels from colour fundus images. The proposed algorithm uses a distance based 

principle to map the distribution of the image pixels, where the number of clusters does not 

have to be specified. The features extracted from the image can then be clustered by the 

RACAL. These features include: pixel intensity of the green channel; the local maxima of the 

gradient magnitude; and the local maxima of the largest eigenvalue of the Hessian matrix. A 

comparison of the proposed algorithm and a kNN classifier is implemented. As a result, they 

conclude that the RACAL performs better than the kNN in the case of detecting capillaries. 

In the segmentation stage, the RACAL is aided by a partial supervision strategy and defined 

as a classifier for vessel classification, in which the trained clusters are assigned to 

corresponding manually defined classes of ground truth images. The proposed method 

achieves sensitivity of 0.8215 and specificity of 0.9750 on the STARE database.    
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Kande et al. [113] proposed a retinal vessel segmentation method using the pixel intensity 

information from both red and green channels to adjust the non-uniform illumination in the 

colour fundus images, followed by a vessel enhancement stage by using matched filtering. 

Enhanced vessels are segmented by adopting spatially weighted fuzzy C-means cluster based 

thresholding, which takes the spatial distribution of image pixel intensities into account. The 

final segmentation is obtained by using label filtering to remove some misclassified pixels. 

The proposed method is evaluated on the DRIVE and STARE databases and it achieves an 

area under the ROC (AUC) of 0.9518 and 0.9602, an accuracy of 0.8911 and 0.8976, 

respectively.  

In [114], Oliveira et al. proposed an unsupervised retinal vessel segmentation procedure 

using a combined filter which includes a matched filter, Frangi filter and Gabor filter. The 

combined filter is used for vessel enhancement and corresponding feature extraction. The 

extracted features are then clustered by a fuzzy C-means algorithm (FCM) to implement 

vessel segmentation based on their observation that the number of non-vessel elements is 

larger than vessel elements. Consequently, one of the clustering group is used to indicate the 

group of vessels pixels. The proposed unsupervised retinal vessel segmentation is tested and 

evaluated on both DRIVE and STARE databases, which achieves accuracies of 0.9580 and 

0.9582, respectively.  

Wang et al. [115] proposed an unsupervised retinal vessel segmentation method which 

does not require pre-processing. The vessels are initially enhanced by using a matched 

filtering with a multi-wavelet kernel in which the multi-wavelet kernel is capable of 

responding to blood vessels and non-vessel edges. The classification of vessel and non-vessel 

is implemented by using an iterative multi-scale hierarchical decomposition algorithm based 

on a two-class decomposition model, which is controlled by one optimal scale parameter. The 

final binary segmentation is derived from adopting an adaptive thresholding. The proposed 

novel method is evaluated on both DRIVE and STARE databases. For those images of 

DRIVE, it achieves an accuracy of 0.9441 and AUC of 0.9543, whilst the performance 

measurement, accuracy and AUC on STARE is 0.9521 and 0.9682, respectively.     

Table 2.5 summarizes each proposed unsupervised retinal vessel segmentation method on 

colour fundus images, in which those methods are indicated by the corresponding 

classification algorithm.  
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Table 2-5 Performance of unsupervised classification based retinal vessel segmentation 
approaches 

Method Algorithm Year Database Sensitivity Specificity Accuracy  (AUC) 

Salem et al.[112]  RACAL 2007 STARE 0.8215 0.975 - - 

Kande et al. [113] FCM 2010 DRIVE - - 0.8911 0.9518 
 STARE - - 0.8976 0.9602 

Oliveira et al. 
[114] 

FCM 2012 DRIVE - - 0.9580 - 
 STARE - - 0.9582 - 

Wang et al. [115] Hierarchical 
Decomposition 

2013 DRIVE - - 0.9441 0.9543 

 STARE - - 0.9521 0.9682 

2.3.4 Model based methods  

Model based retinal vessel segmentation methods aim to detect the inherent vessel model to 

extract the vessels tree. Two representative categories of the model-based approach are the 

vessel profile model and the deformable model. The principle of the vessel profile model is 

that the intensity profile across a blood vessel can be described by a specific model such as 

Gaussian or derivative of Gaussian. The latter model describes where light is reflected within 

the vessel. In this case, the matched filter [85] which we described in section 2.3.1 also can 

be categorized as a model or template-based segmentation method. Conventionally, the 

computation of a deformable model can be described as a procedure that initialises a 

parametric curve or surface close to the objects of interest, and then deforms it iteratively 

towards to the objects’ boundary until the process reaches convergence. According to 

different contour representations, deformable models can be divided into parametric and 

geometric models. A representative parametric model is an active contour model which is 

known as a ‘snake’ initially introduced by Kass et al. [116]. A snake is first initialled on the 

area close to the boundary of objects, and then the snake expands to fit the shape of the 

desired object according to an internal and external force. The internal force is used to 

constrain the snake’s contour while the external force attracts the contour to objects 

according to desirable features. The geometric deformable model is based on the level set 

method [117], which is a numerical technique for tracking shapes. The moving contour is 

characterized as a zero level set of a higher dimensional level set function. The following 

model-based retinal vessel segmentation approaches on fundus images are reviewed by 

corresponding categories.   

Wang et al. [118] proposed a retinal vessel segmentation algorithm based on a multi-

resolution Hermite model. Blood vessel profiles are modelled as a 2-D Hermite function 
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intensity model in a quad-tree structure over a range of spatial resolutions. A Gaussian 

intensity model is employed to model local vessel features, of which the optimized 

parameters are further estimated by using an expectation-maximization (EM) scheme. The 

final global vessel tree is obtained by linking the local features using Bayesian stochastic 

inference. The developed model has robust performance to detect various types of vessels 

which includes handling those vessels that exhibit refraction artefacts. The algorithm is 

evaluated on both STARE and DRIVE databases. Sensitivity of 0.820, specificity of 0.933 

for the STARE database and sensitivity of 0.841, specificity of 0.966 for the DRIVE database 

are reported.  

Lam et al. [119] employed the concavity in the intensity profile to model vessel or non-

vessel planes in order to segment vessels from background in fundus images. The proposed 

method is able to segment the vessel on both normal images and abnormal images (i.e. those 

containing exudates etc.). Different concavity measures are used to model hard exudate, 

haemorrhages, and vessels, respectively after applying a perceptive transform in a pre-

processing stage. The steep intensity transition pattern that characterises hard exudates is 

used to distinguish them from other objects, whilst as the haemorrhages exhibit an irregular 

shape intensity structure and blood vessels have a line-shape intensity structure, a line-shape 

concavity detection algorithm is proposed to model the vessel and exclude haemorrhages. 

The global vessel tree that is detected relies on combining these concavity measures 

according to their statistical distributions.  The measurement of performance (accuracy and 

AUC) for the DRIVE database is 0.9472 and 0.9614, respectively. For the STARE database, 

the accuracy is 0.9567 and AUC is 0.9739. 

Espona et al. [120] proposed an active contour model (snake) based retinal vessel 

segmentation method. Initially, the vessel skeletons are extracted which can be used to 

initialize the snake and guide the contour evolution. The snake is initialized by intersecting 

the detected optical disc (OD) boundary and vessel skeletons. The external energy is 

modelled as an energy function which is composed of a set of energies and weighting factors. 

Instead of using a specific internal force, the vessel edge energy constrains the contour 

evolution when it expands along the vessel skeleton. The snake expands inside the vessel 

following an iterative algorithm to minimise these energy functions in order to obtain the 

vessel segmentation. The measurement of evaluation on the DRIVE database demonstrates 

that the accuracy, sensitivity and specificity are 0.9316, 0.6634 and 0.9682, respectively.  
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Al-Diri et al. [121] proposed a novel active contour model for retinal vessel segmentation 

and measurement. The proposed method integrates vessel segmentation and width 

measurement together, which comprises several stages. First, an initial set of potential vessel 

segment pixels is located by a tramline algorithm. Second, an active contour based model 

called ‘Ribbon of Twins’ (ROT) is applied to convert the tramline pixels into a set of 

segments. Each ROT contains four linked active contours, of which one pair of contours 

insides a vessel expand towards the internal edge, and the other pair of contours locate the 

outside edges and deform toward the internal contours. The contour energy function consists 

of internal, photometric and ROT energy parameters. The internal energy models the tension 

and rigidity of contours, the photometric energy is used to attract the contours towards edges, 

and the ROT model energy is used to capture the vessel’s edges. Third, a junction resolution 

algorithm is developed to join up each vessel segment to produce the global vessel tree. The 

proposed method is evaluated on DRIVE and STARE databases and it achieves a sensitivity 

of 0.7282, specificity of 0.9551 on DRIVE and sensitivity of 0.7521 and specificity of 0.9681 

on STARE.  

Szpak and Tapamo [122] proposed a geometric deformable model based retinal vessel 

segmentation method which employs a fast level set method [124] without solving partial 

differential equations to extract the contour of the retinal vessels.  The fast level set method 

[124] assumes that pixels in an image can be considered as the points on a grid. The 

neighbouring grid points inside the contour are represented as negative values and the points 

outside the contour are positive. A speed function of each pixel determined the evolution of 

the contour. In the proposed method [122], this function is formed by a binary pre-segmented 

vessel map which is obtained by applying a Laplacian of Gaussian on the pre-processed 

image to extract edges of vessels followed by thresholding. The vessel part of the binary 

vessel map constitutes a fixed positive speed, while the rest part of the map constitutes a 

fixed negative speed. This speed field guides the contour to gradually expand towards the 

vessel edges to obtain the final vessel tree segmentation. The proposed method achieves an 

average accuracy of 0.9299 on the DRIVE database.  

In [123], the vessels properties are modelled by using a second derivative Gaussian filter. 

The response to the filter is further analysed to obtain the most probable parameters 

describing the vessel. The width, contrast and direction at each point on the blood vessel in 

the image are estimated. Homogeneous zero mean Gaussian noise with a statistical 
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autocorrelation function is chosen to produce a noise model in the background. The method is 

evaluated on the STARE database, and achieves 0.7000 sensitivity and 0.9530 specificity, 

respectively. Table 2.6 illustrates the measurements of performance using model-based 

retinal vessel segmentation methods. 

Table 2-6 Performances of model based retinal vessel segmentation approaches 

Method Algorithm  Year Database Sensitivity Specificity Accuracy  AUC 

Wang et al.[118] Multi-resolution 
Hermite model 

2007 DRIVE 0.841 0.966 - - 
 STATE 0.82 0.933 - - 

Espona et al. [120] Snake 2007 DRIVE 0.6634 0.9682 0.9316 - 
Szpak and Tapamo 
[122] 

Geometric 
deformable 
model 

2007 DRIVE - - 0.9299 - 

Al-Diri et al. [121] Ribbon of 
Twins 

2009 DRIVE 0.7282 0.9551 - - 
 STATE 0.7521 0.9681 - - 

Ng et al.[123] vessel profile 
model 

2010 STARE 0.7000 0.9530 - - 

Lam[119] Multi-concavity  2010 DRIVE - - 0.9472 0.9614 
 STATE - - 0.9567 0.9739 

 

Besides the four main categories of retinal vessel segmentation approaches reviewed 

above, a number of alternative methods have been proposed. Zana and Klein [125] employed 

an algorithm using mathematical morphology and cross-curvature evaluation to detect 

vascular patterns. The morphological properties of vessels are extracted by mathematical 

morphology, and then the cross-curvature evaluation is performed to eliminate similar 

patterns which are non-vessel related. Mendonca and Campiho [126] proposed a retinal 

vessel segmentation method combining centreline detection and morphological 

reconstruction. The vessel centrelines are extracted initially, and these guide the subsequent 

vessel filling phase. A complete segmentation of the retinal vessels is produced by a multi-

scale approach followed by a simple region growing algorithm. In this stage a set of 

morphological operators is employed to generate several enhanced representations of vessels 

and then image masks containing binary reconstructions of the main vessel segments are 

derived from the enhanced representations by morphological reconstruction. The final 

segmentation is obtained by an iterative vessel filling procedure. Miri and Mahloojifar [127] 

employed a so called curvelet transform to enhance the vessel edges before a segmentation 

stage. The segmentation of the vessel tree is implemented by using morphology operators for 

reconstruction and length filtering. Graph techniques have also been employed for retinal 

segmentation in the literature [128]. To enhance the contrast between vessels and background, 
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Salazar-Gonzalez et al. [128] adopted adaptive histogram equalization. A binary 

morphological opening process was applied then the distance transform is used to generate a 

distance map which is used to construct a graph. Cai and Chung [129] used normalized cuts 

for retinal vessel segmentation. The algorithm employs a gradient matrix to locate a local 

candidate window which may contain vessels. Each candidate window is segmented using an 

intensity threshold which is calculated by minimizing the normalized cut criterion. Finally, a 

tracing strategy is utilized and segmentation results are optimized by avoiding noisy 

candidate windows. In the literature [130], an unsupervised retinal vessel segmentation based 

on a water flooding model is proposed. The method simulates the principle of water flooding 

also known as the watershed which exploits a digital elevation model. 

We summarise evaluations of reviewed methods on DRIVE or STARE or both databases 

above in the table 2.7. Note: Cai and Chung is not included as no corresponding 

measurements are reported. 

Table 2-7 Performances of other retinal vessel segmentation approaches 

Method Core Algorithm  Year Database Sensitivity Specificity Accuracy  AUC 

Zana and Klein [125] Mathematical 
morphology 

2001 DRIVE 0.6696 0.9769 0.9377 - 

Mendonca and 
Campiho [126] 

Morphological 
econstruction 

2006 DRIVE 0.7315 0.9781 0.9463 - 
 STARE 0.7123 0.9458 0.9479  

Miri and Mahloojifar 
[127] 

Morphological 
reconstruction 

2011 DRIVE 0.7352 0.9795 0.9458 - 

Salazar-Gonzalez 
[128] 

Graph cut 2010 DRIVE 0.7197 0.9665 0.9479 - 
 STATE 0.6782 0.9729 0.9478 - 

Asad et al. [130] Watershed 2013 DRIVE 0.6292 0.9821 0.9369 - 
 

2.4 Chapter conclusion and discussion 

Segmentation of retinal blood vessels in retinal fundus images is an essential stage in the 

retinal vessel analysis process. The morphological properties of retinal vessels provide 

important signs or evidence of several routine clinical diagnoses. This is particularly critical 

to diagnosis, screening, and treatment for various ophthalmologic diseases, such as Glaucoma, 

AMD, diabetic retinopathy (DR) and vascular disorders etc.. Automated assessment of 

vascular structures in the retinal fundus image is accepted in the clinical community as a 

critical stage in the development of a computer assisted diagnostic system for automated 

detection and grading various forms of retinopathy.  In practice, the retinal vessel tree in the 
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retinal fundus image is primarily segmented manually by experts. However, the manual 

segmentation is quite time-consuming and the task demands considerable experience. As 

such, screening programs must consider the cost of workloads (training, labour force). This 

motivates studies of automatic segmentation of the blood vessel networks and a large number 

of approaches have been proposed. However, the challenges of developing accurate 

automatic retinal vessel segmentations are considerable and it remains a focus for ongoing 

research. Such challenges include the wide range of vascular width and tortuosity, presence 

of noise in each fundus image, the low and unstable local intensity contrast between vessels 

and background, presence of pathology elements, and presence of various optical artefacts 

such as reflection and refraction within vessels. In practice, the most difficult task of retinal 

vessel segmentation is to detect the tiny vessel (capillaries) from the background. There are 

no approaches which have been proposed that are able to segment all capillaries completely, 

to the best of our knowledge. Additionally, pathological changes presented in fundus images 

may be segmented as vessels. Reflection within vessels may be detected as non-vessel, as its 

colour intensity is quite different from the normal vessel. Under these circumstances, 

automatic retinal vessel segmentation remains a focus for improvements in performance due 

to the limitations of state-of-the-art methods. A large number of novel approaches have been 

proposed using various modern image processing and analysis techniques. These have been 

review in section 2.3.  The methods are primarily divided into four categorizes;  

(1) Matched filtering based segmentation,  

(2) Vessel tracing/tracking based segmentation,  

(3) Classifier based segmentation,  

(4) Model-based segmentation.   

Matched filtering is designed by considering known information that the vessel cross-

sectional intensity profile can be approximated by a Gaussian shaped curve. As a specific 

linear detector, its simplicity attracts many research interests. However, the efficiency of 

algorithm may be affected by the size of designed filter kernel. Moreover, the designed 

kennel may not cover various widths of vessel, and has limitations for detecting those 

capillaries. One solution to enhance the filter kernel to detect vessels is that of optimizing the 

parameters of matcher filter via mathematical analysis and experiment simulation [86][87]. 

To overcome the limits of the matched filter, other imaging segmentation techniques are 
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combined with the matched filter. Such techniques are presented in reviewed methods 

[88][89][90]. A common solution to overcome the limit of capillary detection is increasing 

the number of kernels by using kernel at multi scales, where each scale is designed for 

specific vessel extraction purposes [92][93] or by introducing and working together with 

other categories of vessel enhancement filters [91]. The matched filter has specific ability to 

detect the linear structures in the image. Hence we believe it will remain a focus for ongoing 

research. For instance, it can be used as an assistant tool for vessel enhancement.  

The tracing/tracking based retinal vessel segmentation method provides highly accurate 

measurement of vessel width and tortuosity. However, it has limitation for detecting some 

branches of vessels, such as arterioles and venules, as vessel crossing may influence the 

tracing procedure and the branch may be eliminated if the initializing points (seeds) are not 

placed on the branch. Meanwhile, the low contrast between capillaries and background may 

result in tracing failure. The tracing based method is very sensitive to the presence of noise. 

Good achievements of those methods also rely on two critical stages: the initializing and 

tracing stage, in which vessel centre lines or seeds need to be initialized using vessel 

enhancing filters, such as using matched filter [94][95], Gaussian derivative filters [97][100],  

and relying on seed selecting rules, for instance, selecting seeds from the optical disc[96][97], 

using a brightness selection rule [98] or guiding by vessel centreline [99]. In the tracing stage, 

the optimized path which matches a vessel profile model according to some local information 

is traced towards to the vessel spreading direction. The tracing process can be based on a 

speed function [94], can rely on the possibility of vessel pixel belonging to clustering group 

[96][98],  and also can be a local vessel profile model [99][100][101].     

The classifier based retinal vessel segmentation method is originated from the machine 

learning pattern recognition and classification research field. The achievement of classifier 

based methods relies on extracting characteristic features from vessel and non-vessel 

structures and training appropriate classifier based on such features. For classifier based 

segmentation methods, many feature extraction schemes have been proposed. For instance, 

extracting features based on several transforms (2-D Gabor wavelet, Hessian transform etc.) 

and local intensity [103][106][109][111][112].  Linear features are detected according to grey 

level [102][104], local vessel features are calculated by Local Binary Pattern (LBP)[105][106] 

and using combined filters to enhance the vessel and generate corresponding multi dimension 

feature vectors [107][108][113][114][115]. For supervised classifier based methods, in the 



57 

 

classification stage, different classifiers are employed, such as kNN[102], NN[108], 

GMM[103][106][110], SVM[104], ANFIS[105], AdaBoost[107] etc. For unsupervised 

classification methods, the extracted vessel related features may be clustered into a vessel 

group using a clustering algorithm such as RACAL [112] and fuzzy c-means 

(FCM)[113][114]. According to our investigation of classification methods, we find that most 

state-of-the-art supervised methods have better performances than unsupervised methods in 

healthy retinal fundus image, since the classifier is trained based on manually-labelled 

samples. However, the performance of supervised methods is very dependent on those pre-

classified data, which may not be available in real applications. Moreover, as Hoover et al. 

[90] mentions, manual segmentation results may have significant differences varying from 

observer to observer, but the equality of ground truth may affect the trained classifier. This 

state is verified by our experiment which is presented in section 5.3. In practice, such issues 

have been an open problem which is challenging future work. Pursuing more accurate 

unsupervised methods which reduce dependences on the ground truth may handle such issues. 

Additionally, developing supervised methods which are capable of handling unhealthy 

fundus images may be the trend of future work.  

Model based retinal vessel segmentation methods can be divided into vessel profile model 

and deformable model based approaches. Design of the vessel profile model is based on the 

intensity profile across a blood vessel being presented as a Gaussian or derivative Gaussian in 

the case of vessel reflection. In the literature [118][119][123], some specific vessel profile 

model are presented. According to different contour representations, the deformable models 

can be divided into parametric and geometric models. The good performance of the 

deformable model based approach depends on the designed internal and external energy 

function. The advantage of deformable model based segmentation is that it is capable of 

detecting tinny vessels if the evolution of contour is guided by an appropriate vessel 

centreline, whilst the detected diameter of the vessel is more close to the real width. The 

potential utilities of such method could be: detecting the vessels while measuring the vessel 

widths, so that vessel segmentation and measurement can be accomplished simultaneously. 

Al-Diri et al. [121] give a good example of such an application.  

Besides four categories of retinal vessel segmentation, some alternative hybrid 

approaches are reviewed in this chapter. For instance, the morphological reconstruction 

technique is employed in approaches [125][126][127], The Graph cut technique is adopted in 
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[128]. A normalized cuts approach is used in [129], and a watershed method is implemented 

in [130]. 

Two commonly used evaluation methods are reviewed. The terms sensitivity and 

specificity are the factors which indicate success rate of classifying vessel and non-vessel 

pixels, respectively. The accuracy indicates an overall measurement that provides the ratio of 

total well classified pixels relative to ground truth. The receiver operating characteristic 

(ROC) curve is a general tool also used to measure the segmentation performance. An ROC 

curve plotted closer to the top left corner is indicative of better performance of the method. 

The area under the curve (AUC) can also be used as a performance index. Two publicly 

available databases DRIVE [132] and STARE [133] are introduced in section 2.2 as well.    

We summarize the performance of reviewed approaches on the DRIVE database and the 

STARE database in table 2.8 and table 2.9 respectively.  The methods are sorted by their 

published year, and corresponding measured terms are listed by each column. 

The method proposed by Ricci & Perfetti [104] achieves the best accuracy and AUC on 

both databases. To provide a more intuitive view of those methods’ performances in terms of 

sensitivity, specificity and accuracy, we plot the histogram for each method on both database 

in figure 2.2 and figure 2.3.  Here the x-axis is the published year and y-axis represents 

accuracy, sensitivity and specificity on a scale with values ranging from 0.5 to1. The best 

sensitivity on DRIVE and STARE are 0.9094 and 0.8902, respectively, reported by 

Condurache & Mertins et al.[111]. 

Observing the tables and figures, we can see that average accuracies of 6 methods are 

over 0.95 on the DRIVE dataset, and average accuracies of 6 methods are over 0.95 on the 

STARE dataset as well. However, there are significant differences between sensitivity and 

specificity, indicated by the red and green pillars in both figures. We would like to emphasise 

that achieving better sensitivity without sacrificing specificity may be the focus of future 

research interest. 
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  Table 2-8 Performance of previous retinal vessel segmentation methods on the DRIVE 
database 

Method Categories Year Database Sensitivity Specificity Accuracy (AUC) 

chaudhure et al.[85] MF 1989 DRIVE - - 0.8773 0.7878 
Zana and Klein [125] Mathematical 

morphology 
2001 DRIVE 0.6696 0.9769 0.9377 - 

Soares et al.[103] supervised 2006 DRIVE 0.7283 0.9788 0.9466 0.9614 

Mendonca and Campiho 
[126] 

morphological 
reconstruction 

2006 DRIVE 0.7315 0.9781 0.9463 - 

Wu et al.[91] MF 2007 DRIVE 0.84 0.81 - - 

Al-Rawi et al.[87] MF 2007 DRIVE - - 0.9535 0.9435 

Ricci & Perfetti [104] supervised 2007 DRIVE - - 0.9595 0.9633 
Wang et al.[118] Hermite model 2007 DRIVE 0.841 0.966 - - 
Espona et al. [120] Snake 2007 DRIVE 0.6634 0.9682 0.9316 - 

Szpak and Tapamo [122] Geometric deformable 
model 

2007 DRIVE - - 0.9299 - 

Rezatofighi et al.[105] supervised 2008 DRIVE 0.7308 0.9723 0.941 - 

Cinsdikici and 
Aydin[88] 

MF 2009 DRIVE - - 0.9293 0.9407 

Al-Diri et al. [121] Snake 2009 DRIVE 0.7282 0.9551 - - 

Zhang et al.[89] MF 2010 DRIVE 0.712 0.9724 0.9382 - 

M. Vlachos and E. 
Dermatas[98] 

Tracing 2010 DRIVE 0.747 0.955 0.929 - 

Delibasis et al.[99] Tracing 2010 DRIVE 0.7290 0.9510 0.9310 - 
Moin et al. [106] supervised 2010 DRIVE - - 0.9447 0.9515 

Lupascu et al. [107] supervised 2010 DRIVE - - 0.9561 0.9567 

Kande et al. [113] unsupervised 2010 DRIVE - - 0.8911 0.9518 

Lam et al. [119] Multi-concavity 2010 DRIVE - - 0.9472 0.9614 

Salazar-Gonzalez[128] Graph cut  2010 DRIVE 0.7197 0.9665 0.9479 - 

You et al. [100] Tracing 2011 DRIVE 0.8033 0.9594 0.9456 - 

Marín et al. [108] supervised 2011 DRIVE 0.7067 0.9801 0.9454 0.9588 

Fraz et al. [110] supervised 2011 DRIVE 0.7525 0.9722 0.9476 0.9616 

Miri and Mahloojifar 
[127] 

morphological 
reconstruction 

2011 DRIVE 0.7352 0.9795 0.9458 - 

Li et al.[92] MF 2012 DRIVE 0.7154 0.9716 0.9343 - 

Condurache & Mertins 
et al. [111] 

supervised 2012 DRIVE 0.9094 0.9591 0.9516 0.9726 

Oliveira et al. [114] unsupervised 2012 DRIVE - - 0.958 - 
Odstrcilik et al. [93] MF 2013 DRIVE 0.706 0.9693 0.934 0.9519 

Ocbagabir et al.[101] Tracing 2013 DRIVE 0.7131 0.9824 0.9583 - 

Wang et al. [115] unsupervised 2013 DRIVE - - 0.9441 0.9543 

Asad et al. [130] Watershed 2013 DRIVE 0.6292 0.9821 0.9369 - 
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Figure 2.2 Histograms of terms: Accuracy (Blue), sensitivity (Red) and specificity (Green) on 

the DRIVE database  

 

Table 2-9 Performance of previous retinal vessel segmentation methods on the STARE 
database 

Method Categories Year Database Sensitivity Specificity Accuracy (AUC) 

Hoover et al.[90] MF 2000 STARE 0.6751 0.9567 0.9275 - 

Staal et al. [102] supervised 2004 STARE - - 0.9516 0.9614 

Wu et al.[95] Tracing 2006 STARE 0.843 0.961 - - 

Soares et al.[103] supervised 2006 STARE - - 0.948 0.9671 

Ricci & Perfetti [104] supervised 2007 STARE - - 0.9646 0.968 

Salem et al.[112] unsupervised 2007 STARE 0.8215 0.975 - - 

Zhang et al.[89] MF 2010 STARE 0.7177 0.9753 0.9484 - 
Kande et al. [113] unsupervised 2010 STARE - - 0.8976 0.9602 

Marín et al. [108] supervised 2011 STARE 0.6944 0.9819 0.9526 0.9769 

Selvathi et al. [109] supervised 2011 STARE 0.6585 0.9666 0.9447 - 

Fraz et al. [110] supervised 2011 STARE 0.7604 0.9812 0.9597 0.9734 

Li et al.[92] MF 2012 STARE 0.8069 0.958 0.9461 - 

Condurache & Mertins et al. 
[111] 

supervised 2012 STARE 0.8902 0.9673 0.9595 0.9791 

Oliveira et al. [114] unsupervised 2012 STARE - - 0.9582 - 

Odstrcilik et al. [93] MF 2013 STARE 0.7847 0.9512 0.9341 0.9569 
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Figure 2.3 Histogram of terms: Accuracy (Blue), sensitivity (Red) and specificity (Green) on 

the STARE database 
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CHAPTER 3  

3. Texture measure for segmentation 

Putting aside the colour, grey level and regional intensity of an image, texture could be seen 

as another important element in distinguishing various patterns as it provides significant 

information regarding different visual features in images, i.e. those features that represent 

visually homogeneous patterns within the image. Smith gives a more specific description in 

[134], and defines texture as “homogeneous patterns or spatial arrangements of pixels that 

cannot be described sufficiently by regional intensity or colour alone” [134]. As such, texture 

has attracted extensive attention within the computer vision community and has been used to 

perform tasks such as object recognition, surface geometries analysis and image pattern 

classification etc. Image segmentation or shape detection is an important pre-processing stage 

in these tasks. Texture based image segmentation is a significant category of region based 

segmentation approaches. It has been adopted widely in applications of segmentation in 

images of natural scenes and has been particularly successful in content based image retrieval. 

Reed and Dubuf [141] present an exhaustive review of texture segmentation, in which they 

categorized the previous texture segmentation methods into feature based, model based and 

structural methods according to different feature extraction techniques they adopt. Numerous 

texture segmentation methods for natural images are proposed. For instance, Deng [135] 

presented a region growing method named as JSEG that takes colour-texture patterns into 

account. Blas et al. [136] proposed a fast integrated approach, in which the local colour and 

texture variations have been represented by a compact colour and texture descriptor. Fauzi 

and Lewis [137] extracted the features of image contents by a discrete wavelet frame and 

classified the image into different texture regions by combing the mean shift algorithm with  

fuzzy C-means clustering. Moreover, texture based segmentation approaches have been 

employed to address medical image segmentation tasks. He and Muhimmah et al. [138] 

presented a method which aims to segment mammographic images into mammographic 

building blocks (i.e. nodular, linear, homogeneous, and radiolucent structures). Our work is 

inspired by their achievements on mammographic x-ray images and also motivated by Varma 

and Zisserman’s work [139] which achieved success in classifying a range of natural texture 
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patterns. The framework provides an approach for learning texture features which is founded 

in human perception. However, only a few authors [140] have investigated structural texture 

based approaches for retinal vessel segmentation in fundus images. This motivates our focus 

on investigating texture discrimination techniques applied to retinal vessel segmentation in 

fundus images.   

Texture analysis is a critical stage in image segmentation and texture classification, which 

is a procedure of characterizing the texture within images. In practice, the methodology and 

performance of the texture analysis component determines the quality of the image 

segmentation. To facilitate understanding of our work, in this chapter, we present an 

introduction to texture analysis methodologies which have been utilized in image 

segmentation. First, we introduce general categories of texture analysis methods in section 

3.1, then corresponding structural and statistical feature characterizing methods are described 

in section 3.2. A brief summary of first- and second-order statistics and Markov random 

fields (MRF) is presented in subsections 3.2.1, 3.2.2 and 3.2.3, respectively. In subsections 

3.2.4 and 3.2.5, the structural features characterizing maximal response and Gabor filters are 

introduced. In order to describe representative local texture features, local binary pattern 

(LBP) and scale invariant features are described in section 3.3. The chapter conclusion and 

discussion are presented in section 3.4.   

3.1 Texture analysis methods 

The primary aim of texture analysis in machine vision research is to detect, characterize, and 

process image texture. This is a mathematical procedure for measuring the spatial 

arrangement of grey values and modelling pixel inter-relationships within an image. Texture 

analysis is a critical stage in image processing, segmentation and texture classification, and it 

is critical  to achieving good performance in many applications, such as object recognition, 

content based image retrieval etc.. Numerous methods have been proposed in the past few 

decades. Earlier attention in texture analysis is mainly focused on first- and second-order 

statistical analysis. Later on, model-based methods such as Gaussian Markov random fields 

were introduced and recently, the focus of research has turned to discovering local invariant 

texture features. Exhaustive reviews of existing texture analysis methods can be found in the 

literature [142][143] [150]. A review of texture measure and analysis approaches for texture 

segmentation is presented in [141]. Xie [144] presented a review of recent texture analysis 
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techniques for surface defect detection which has been viewed as a texture analysis problem. 

Several brief reviews of recent texture analysis techniques are presented in [145][146][147], 

where Zhang and Tan [147] focused on investigating invariant texture features analysis 

methods. Recently, texture has been seen as a powerful tool in image processing and texture 

analysis techniques have been extended to some medical image analysis applications. In the 

literature [148], texture analysis methods particularly focused on medical image applications 

are reviewed and Kassner and Thornhill [149] presented a review which considers 

applications   involving neurologic MR images.  

Descriptions that characterize texture by different mathematical procedures broadly fall 

into two categories: statistical methods and structural methods. By considering different 

forms of object representation (pixel, boundary or region), some authors [145][150] 

categorize the approaches into pixel based, local region based and region based methods. In 

the literature [143][142], some model based methods (such as autoregressive models, Markov 

random fields, Fractal models) are classified into a relatively independent category, and some 

convolution filtering based methods which derive from signal processing techniques are 

categorized into transform methods or filtering based methods. In this thesis, since combined 

spatial filter banks, Gabor filters and wavelet transforms are commonly used to describe 

structure primitives, we categorize filter based methods as structural methods. In our review, 

we adopt a similar approach to surveys of several texture analysis methods [142][143][144] 

[146][147][150], and  categorise texture  methods into: statistical methods, structural methods 

and model based methods.   

3.1.1 Statistical methods 

Commonly, statistical methods measure the spatial distribution of grey values and treat 

textures as statistical phenomena. The texture is represented as statistical distributions of the 

selected features which are computed at each pixel in the image. The early methods used for 

texture discrimination in the machine vision field are statistical methods. Many of these 

methods were proposed based on Julesz’s pioneering work [151][152], in which he found that 

the human visual system uses statistical properties for texture discrimination. These include 

first and second order spatial statistics and higher order statistics. These properties manifest 

the distribution and interrelationship of grey values which have different effectiveness in 

discriminating texture within the human visual system. Julesz found that if second-order 
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spatial statistics of two textures are identical, these two textures are not discriminated 

spontaneously. The co-occurrence matrix is the best known second order statistical texture 

analysis technique. Its corresponding conception is introduced in subsection 3.2.2. The 

histogram statistics are normally used to detect first-order texture features; these are further 

described in subsection 3.2.1. Some other statistical methods such as autocorrelation and 

local binary patterns have also been applied in texture analysis.  

3.1.2 Structural methods, Textons 

Structural methods represent texture as consisting of many texture primitives and a 

corresponding spatial arrangement of these primitives. It’s important to determine the form of 

the texture primitives. Commonly, these texture primitives can be individual pixels, average 

element intensity, or geometric segments etc. [144][147]. The primary goal of extracting 

primitives is to find fundamental micro-structures in images. Numerous structural texture 

analysis methods have been proposed. For instance, Chen et al. [156] proposed a grey-scale 

morphological granulometry algorithm for structural texture analysis. An iterative 

morphological decomposition algorithm was proposed by Wang et al. [157] to decompose an 

image into a set of morphological base functions. Their work was further extended by Lam 

and Li [158]. In [159], the structures are captured from natural images using a sparse coding 

concept, which simulates the coding strategy within the visual cortex of primates. The 

dominant representative research branch for extracting texture primitives from images is 

derived from texton theory. Julesz [3] introduced the term texton for the first time to explain 

the pre-attentive discrimination of texture pairs. He described textons as the line segments, 

elongated blobs, crosses and terminators which can be utilized in texture discrimination. 

Terminators include the corners and the endpoints of lines. He conjectured that pre-attentive 

discrimination of textures having identical second-order statistics but are made up by 

different textons can be perceived by the human visual system. For instance, Figure 3.1(a) 

and (b) illustrate two texture patterns which are made up by two pairs of basic units 

illustrated at the bottom in Figure 3.1 (a) and (b) respectively, where both textures have 

identical second-order statistics. In the left pattern (a), the numbers of terminators (say, 

endpoints of lines and line segments) of the two basic units are the same. Therefore this pair 

of units cannot be distinguished pre-attentively. In contrast, the second pair of units (b) can 

be discriminated pre-attentively, since although they have the same line segments (both are 
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three), the number of terminators are different. In this instance the triangle has three 

terminators, but the other one has four terminators. 

 

Figure 3.1 Two texture patterns with identical second-order statistics. Left pattern (a) is 

composed of a pair of units which have the same textons (terminators) and right pattern (b) is 

composed of a pair of units which have different number of terminators.    

Although Julesz proposed the theory of textons, the term “textons” remains a vague 

concept [153], as Julesz did not provide an operational definition or mathematical model. 

Malik and Leung et al. [154][155] extended the term texton and  proposed an operational 

definition that a texture can be characterized by its responses to a filter bank (F1,F2,…,Fn).  

                      R = 2�$ ∗ 4 x, y#, �& ∗ 4 x, y#, … , �6 ∗ 4 x, y#7       (3.1) 

If the filter bank is convolved with an input image I at each pixel (equation 3.1), it is 

reasonable to believe that some specific structures (e.g. lines, blobs) may produce positive 

responses (depending on the design of the filter bank). And if those structures appear 

repeatedly in the image, the feature vectors in the set R must be clustered into corresponding 

groups. Accordingly, filter responses that are clustered into a set of prototype response 

vectors are defined as textons by Malik and Leung et al. This novel definition enables textons 

to be generated automatically from an image.  

Filter based feature extraction approaches are a direct way to extract features which can 

be used to generate textons. This approach is derived from signal processing techniques, in 

which pixel sequences in an image is processed as a specific signal sequence. A general 

framework of these methods is that a set of filters is applied on an image to generate filter 

(a) (b) 
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responses (equation 3.1) and certain features of those responses are then extracted for 

classification or segmentation purposes. The methods are divided into three subcategories: 

spatial domain, frequency domain and joint spatial/frequency domain. We describe the spatial 

domain filters first in subsection 3.2.4. Details of techniques relating to frequency and joint 

spatial/frequency domain filters are described in the subsection 3.2.5.  

3.1.3 Model based methods  

In model based texture analysis methods, a texture image is modelled as a parametric 

probability model or as a combination of a set of functions which represents known structural 

information and a random noise sequence. The textures can be characterized by the 

parameters of the model. Model based methods have been used for texture segmentation, 

classification and synthesis.  Methods representative of the current state-of-the-art in the field 

of texture segmentation research include fractal models [163][164][165], autoregressive 

models [160][161][162], and Markov random fields [166][167][168][169]. Fractal geometry 

was firstly introduced by Mandelbrot [163] and the term fractals describe the geometric 

primitives which are self-similar and irregular. The fractal dimension is an important feature 

of fractals, as it provides a measure of the roughness of a surface. Pentland [164] has proved 

that there is a strong correlation between the fractal dimension and human perception of 

surface roughness. In practice, many efforts have been made to determine the fractal 

dimension to model the texture that can be used in various image processing applications 

[165]. In the autoregressive model, the texture is characterized by spatial interactions among 

image pixels, where pixel intensity is represented as a weighted sum of neighbouring pixels. 

The Markov random field (MRF) is a powerful stochastic tool to model the joint probability 

distribution of the image pixels in terms of local spatial interaction. It is a probabilistic 

process, in which it encodes spatial contextual constraints into the prior probability [167]. 

These models have been employed widely for image segmentation [166] [168] and texture 

classification [169].  Further fundamental concepts relating to MRFs are described in section 

3.2.3.   

3.2 Texture feature extraction and description 

Feature extraction is the essential stage of texture based segmentation and classification. The 

primary goal of texture feature extraction is to express the differences in spatial structures by 
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differences in pixel intensities, so that homogeneous regions can be extracted based on such a 

feature space [141]. In a sense， the taxonomy of texture analysis methods relies on 

categorizing the feature extraction techniques. Due to the large number of activities that can 

be undertaken to extract useful textures, it is not practical to consider all proposed texture 

features. This section concentrates on those feature extraction techniques that have been 

widely used in image segmentation and have potential extension to be developed for medical 

image segmentations. The brief descriptions of those texture feature extraction techniques are 

provided in following subsections.  

3.2.1 First order statistic based feature  

First order statistics represent an early method and still an active one for texture feature 

extraction. They are low cost approaches that are invariant to rotation, as they are applied on 

sets of pixel values and are not involved in interrelationships among neighbouring pixels. 

Commonly, the texture features are characterized by first order histograms of intensity that 

provides a simple summary of statistical information of an image. Let a function I(x,y) of two 

space variables x∈ [1,2,…,N] and y∈ [1,2,…,M] represent an image, the i represents the 

grey levels. The first order histogram 8 �# is defined as: 

                        8 �# = ∑ ∑ :;<=>?@A>?  B,C#
D×�  �F 0, … , H − 1#       (3.2) 

where G is the total number of grey levels in an image. The most commonly used central 

moments such as mean, variance, skewness and kurtosis which are derived from the 

histogram can be used to characterize the image features, as defined by Equations (3.3)-(3.6).  

                                 Mean: μ = ∑ iH i#LM$NOP                          (3.3) 

                     Variance: σ = Q∑  i − μ#&H i#LM$NOP                  (3.4) 

                            Skewness:μR = ∑  NMS#TU N#VW?X>Y ZT                    (3.5) 

                         Kurtosis: μ[ = ∑  NMS#\U N#VW?X>Y Z\ -3                    (3.6) 
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The mean describes the average intensity of the texture whereas the variance measures 

the variation of grey level from the mean. The skewness represents the degree of asymmetry 

around the mean, and the kurtosis is a measure of histogram flatness. Features based on first 

order histogram statistics cannot provide any information about the spatial variation  of the 

various grey levels within the image, but combined with some features based on second order 

statistics  these measures can provide a useful tool for texture feature extraction. Recently, 

Aggarwal and Agrawal [170] used features based on first- and second-order statistics for 

classification of MRI brain images, and report results from comparative experiments that 

verify that the performance with such features outperforms existing methods based on 

wavelet transformation.    

3.2.2 Co-occurrence matrix (GLCM) 

The grey level co-occurrence matrix (GLCM) [171] is a well-known texture analysis method. 

The matrix is derived from an original image I, in which second order statistics are measured, 

stored and presented as a joint distribution of the grey levels of two pixels. The dependency 

of two pixels is described as a function of two parameters: distance of pixels d, and its 

relative orientation �. Assuming an image is a function I with total number (G) of grey levels, 

the co-occurrence matrix is a G×G matrix, in which the entries are counts of the appearance 

of pixel pairs with grey level value i and j in a window separated by the distance d at 

orientation �. The matrix can be expressed as 8 ],^# �, _#. Figure 3.2 illustrates the GLCM 

calculation with distance d=1 and  �  = {0o, 45o, 90o, 135o}, where (a) is an 4×4 image 

example with  grey levels {0,1,2,3}, (b) is the construction of GLCM, (c)(d)(e)(f) are the 

different forms of GLCM which are generated on four orientations. The texture features such 

as energy, contrast, homogeneity, correlation and entropy can then be extracted from these 

matrices [171].  The energy is also known as the angular second moment. It measures the 

smoothness of the texture surface hence larger values of energy indicate the region is 

smoother. The term energy is given by: 

                           Energy: E(`, �) =  ∑ ∑ 8 ],^# �, _#&aM$bOP  aM$cOP                 (3.7) 

The contrast feature is expressed in equation 3.8, which is a measure of local variations 

present in an image.    

                      Contrast: C(`, �) = ∑ ∑ |� − _|&8 ],^# �, _#aM$bOP  aM$cOP             (3.8) 
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Homogeneity is a measure of image local homogeneity, the contrast and homogeneity are 

inversely correlated. It is also called inverse difference and given by  

                        Homogeneity=∑ ∑ d e,f# c,b#

$�|cMb|g
aM$
bOP 	aM$

cOP                   (3.9) 

Correlation is the measure of grey level linear correlation in two directions.  

                 Correlation=∑ ∑  cMhA# bMh=#d e,f# c,b#

(A(=

aM$
bOP 	aM$

cOP         (3.10) 

Entropy is a measure of disorder of an image and is given by  

                 Entropy="∑ ∑ 8 ],^# �, _#aM$
bOP log& 8 ],^# �, _#	aM$

cOP  (3.11) 

 

 

Figure 3.2 GLCM calculation with matrix function parameters d=1, l = {0o, 45o, 90o, 135o}. 

(a) is an 4x4 image example with  grey levels {0,1,2,3}; (b) is the construction of GLCM; 

(c)(d)(e)(f) are the different forms of GLCM which are generated on four orientations.     

Combinations of all the above features can be employed as a useful tool for texture 

discrimination and image segmentation. In [172], the GLCM is applied to estimate an 

appropriate level which may qualify the sub-regions of a natural image which will 

subsequently be further segmented. Marrón [173] presents a comparative study of two texture 

(a) 
(b) 

(e) d=1 �=90o 

(d) d=1 �=45o (c) d=1 �=0o 

(f) d=1 �=135 o 
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operators (GLCM and fractal dimension) for image segmentation on various image forms. He 

noticed that the GLCM based features entropy can provide a better definition of edges and it 

outperforms many edge detectors. However, its computational cost is too expensive. 

3.2.3 Markov random fields (MRF) 

Markov random field (MRF) theory is a branch of probability theory, which can be used to 

capture contextual information in an image. In practice, such information (e.g. contextual 

constrains) are normally expressed as a joint probability based on local spatial interaction. 

The MRF models assume that the intensity of each pixel depend on the intensities of its 

neighbouring pixels. These local neighbourhood statistics are captured and represented by 

MRF models [167]. Assuming a 2D image with size N×N is a rectangular lattice, it can be 

denoted by  

                              4 = 2 �, �#|1 ≤ �, � ≤ �7                     (3.12) 

For the lattice, pixel (x, y) can be simply re-indexed by a number i, where i=(x-1)N+j  and 

i ≤ N × N. Let Fi be a random variable which may represent the intensity at pixel (x, y). 

Accordingly, a set of all random variables defined on the set I can be denoted by  

                                 � = 2�$ , �& , … , ��×� 7                   (3.13) 

where each Fi  takes a value fi in set L which is a set of labels. The label set L is specified as 

being continuous or discrete in different applications. A labelling of the sites in I can be 

defined by  

                                   � = 2�$ , �& , … , ��×� 7                 (3.14) 

 For example, as a discrete set, L may be represented by the set of quantized values of 

intensities, like {0, 1, 2…255}, for an image with 256 grey levels.   

The interrelationships of sites in I can be defined by a neighbourhood system which is given 

by 

                                             � = 2�c|∀� ∈ 47                     (3.15) 

where �c is the neighbour set of a site i. In the first order neighbourhood system, the site i has 

four connected neighbours. In the second order neighbourhood system, there are eight 
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neighbours surround site i.  Within N, a series of subsets of sites called cliques in I are 

extracted. The form of cliques can be a single site, pair sites, triple sites and quadruple sites 

depending on the different neighbourhood systems utilised. The random field F can be 

defined as a MRF, if the probability mass function of F satisfies two conditions: one is that 

the function is positive and the other is that the function should satisfy Markovianity [167].  

A MRF can be specified in two ways, either using conditional probabilities or joint 

probability.  The theorem of MRF and Gibbs distribution equivalence [174] provides a means 

of specifying the joint probability of a MRF, so that not only the local information can be 

modelled in terms of conditional probabilities, but also the global texture can be measured by 

the joint probability.  

A discrete Gibbs random field (GRF) which assigns a probability mass function over the 

entire lattice with respect to N is given by following form: 

                                       p �|�, � ∈ r# = sM$�Mt u#                   (3.16) 

where  

                                          Z = ∑ �Mt u#uwx                                    (3.17) 

The parameter Z is a normalizing constant called the partition function which is a sum over 

all possible labellings in L. The energy function y �#is a sum of potential functions z{ �# 

over all possible cliques C.  

                                          U �# = ∑ z{ �#{w}                                (3.18) 

MRF-based approaches have been successfully employed for many image processing 

applications which include image restoration and segmentation, edge detection, and texture 

analysis etc..  The MRF based image segmentation approach is based on a view of a random 

field segmentation result as a distribution of labels in the same lattice as the original image 

[166]. Kato and Pong [168] proposed a Markov random field (MRF) image segmentation 

model, which aims to combine colour and texture features. The remarkable contribution of 

their research is that it takes both colour and texture features into account in the segmentation 

of colour images. Deng and Clausi[166] proposed a simple Markov random field model with 

a new implementation scheme for unsupervised image segmentation based on image features. 

The proposed algorithm addresses the issue that traditional MRF segmentation models need 
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training data to estimate the model parameters. Varma and Zisserman developed a MRF 

classifier [169] for texture classification based on their previous method using filter bank in 

[204]. The MRF model is used to represent a probability density function (PDF) of the central 

pixels conditioned on their local neighbourhoods. At the filtering stage, instead of using filter 

responses at a pixel, the raw intensities of pixels in a neighbourhood square (of size N×N) 

around that pixel are recorded to form a row vector with dimension N2. They demonstrate that 

in feature extraction processes for certain tasks (e.g. classification), filter banks are not 

necessary but are sufficient [169]. Although the raw information (intensity values) from the 

texture pattern can be used to construct MRF models, the major disadvantage of using the 

MRF to represent a texture is the quadratic increase in the dimension of the feature space 

with the scale of the neighbourhood. The number of dimensions of the feature space is 

completely relied on the size (N) of the selected neighbourhood window. These high 

dimensional (N2) features (vectors) may increase the computational cost when implementing 

the further computing processes (e.g. clustering, classification and synthesis etc.). 

Additionally, because of using raw intensities of pixels from source image, the MRF 

representation may be sensitive to the noise in the image. 

3.2.4 Spatial domain filter bank (MR8, LM, Berkley) 

Spatial domain filters are the straight forward way to characterize textures. One of the earlier 

attempts to discriminate between textures is by measuring the edge density using various 

edge detectors such as Sobel, Canny, Robert, Laplacian of Gaussian and Laws filters.  Later 

on, multiple categories of filter kernels at different scales are combined into a filer bank 

which can be used to extract more sophisticated features for texture discrimination. In this 

case each filter kernel can be considered as a model of cells in the receptive fields of the 

visual cortex. This scheme was motivated by psychophysical research finding of models of 

processing in the early visual stages of primates [177][178].   Leung and Malik [154][155] 

proposed a filter bank called LM which is used to classify natural texture patterns taken from 

Columbia-Utrecht (CURet) texture database. This work was extended by Varma and 

Zisserman [139][169], who  proposed the Maximum Response filter bank named MR8. 

Similar work by Martin et al. [175] introduced a small set of filters denoted as Berkeley 

Martin to detect boundaries in natural images.  

� LM filter bank  
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In the LM filter bank, there are a total of 48 filters (Figure 3.3), comprising 18 even-

symmetric filters (Figure 3.3-a), which are second derivative of Gaussian on 6 

orientations at 3 scales and 18 odd-symmetric filters (Figure 3.3-b), which are derived 

from applying the Hilbert transform on those Gaussian derivatives. This makes total of 

36 elongated filters. 8 filters (Figure 3.3-c) are centre-surround difference of Gaussian 

(DoG) and 4 filters (Figure 3.3-d) are Gaussian filters, these 12 filters are radially 

symmetric ones.  

If an image is convolved with this filter bank, each pixel is transformed into a 48 

dimensional vector, and it is reasonable to believe that most of the linear features can be 

extracted to characterize the texture, as elongated filters are typically bar or edge 

detectors. 

 

Figure 3.3 The LM filter bank with 48 filter kernels, which composes of (a) 18 even-

symmetric filters, (b) 18 odd-symmetric filters, (c) 8 DoG filters and (d) 4 Gaussian filters  

 

� MR8 filter bank  

In the MR8 filter bank, a similar set of Gaussian derivatives are employed. It consists of 

38 filters, instead of using the Hilbert transform of the second derivative Gaussian, they 

used the first derivative Gaussian giving an odd-symmetric filter (see Figure 3.4-a) for 

edge detection, whilst used the second derivative Gaussian as an even-symmetric filter 

(see Figure 3.4-b) for bar detection. As in the case of LM, both these filters are oriented, 

rotated on 6 orientations and employed at 3 scales. Additionally, two radially symmetric 

filters: Laplacian of Gaussian (LoG) and low-pass Gaussian are added to the set (see 

Figure 3.4-c). It should be noted that a difference of Gaussian (DoG) can be 

(a) (b) 

(c) (d) 
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approximated by a LoG. The filter responses of anisotropic first and second derivative 

Gaussian filters are generated by sampling the maximum filter responses in 6 

orientations at each scale while the responses of isotropic filters (Gaussian and LoG) are 

used directly. This not only achieves rotation invariance, but also reduces the 

computational costs in the subsequent feature clustering stage, as it reduces the size  of 

the dimensional space from 38 to 8 (6 maximum responses of elongated filters and 2 

responses of radially symmetric filters).   

A comparative study in [176] also demonstrates that MR8 provides better 

performance for texture feature extraction than the LM filter bank and the Schmid filter 

bank [182] which will be introduced in subsection 3.2.5. 

 

 

Figure 3.4 MR8 filter bank with 38 filter kernels, which composes of (a) 18 odd-

symmetric filters, (b) 18 even-symmetric filters, (c) LoG filter and Gaussian filter 

� Berkley Martin 

A filter bank known as Berkley Martin [175] was designed and used to detect boundaries 

of different objects in natural images taken from the Berkeley segmentation dataset. 

Changes in brightness, colour and texture associated with natural boundaries were 

combined to characterize the objects’ features. The filter bank consists of six pairs of 

elongated, oriented filters and an additional centre-surround filter. The elongated filters 

are divided into two classes: even-symmetric filters and the odd-symmetric filters, 

derived from a second derivative Gaussian and its Hilbert transform, respectively. These 

(a) (b) 

(c) 
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filters are rotated on 6 orientations but at only one scale. Therefore if an image is 

convolved with the filter bank, each pixel is represented as a vector of 13 dimensional 

space.            

 

Figure 3.5 Berkley Martin filter bank with 13 filter kernels 

It is notable that the filter set only contains filters at a single scale. This may 

compromise the approach and result in an inability in detecting rich features from objects 

of interest. However, for the purpose detecting boundaries, one scale is supposed to be 

enough, especially given consideration of computational costs. 

3.2.5 Joint spatial/frequency domain filters  

Psychophysical studies have indicated that the human visual system processes images by 

analyzing their frequency and orientation components [179].  The Fourier transform is able to 

perform global frequency analysis of image textures. However, it lacks analysis in the spatial 

domain.  Indeed, the spatial information is significant in many applications. The classical way 

to handle this is by introducing spatial dependency into Fourier analysis through the 

Windowed Fourier Transform (WFT) which can be defined as  

                    F~ �, �	# � � � �#� � " �#�
M� �Mc�B `�       (3.19) 

Here the function � �#  is a one dimensional signal and  � �# is the so called window 

function which allows us to see how the spectrum changes in the spatial domain. If the 

window function is Gaussian, the WFT becomes a Gabor transform.  

Dennis Gabor [180] introduced the Gabor filter for the first time and for a one dimensional 

function it is defined as:  
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             G �# = G�� �# + �Gc� �# = $
√&'( �M Ag

g�g�c&'uB       (3.20) 

Where 
$

√&'( �M Ag
g�g represents a Gaussian envelope, � is the centre frequency and �c&'uB is a 

complex sinusoid which consists of real component H�� �# and imaginary component Gc� �#. 

The real part also can be denoted as: 

                            G�� �# = $
√&'( �M Ag

g�g cos 2���#               (3.21) 

the imaginary part is defined as   

                          Gc� �# = $
√&'( �M Ag

g�g sin 2���#              (3.22) 

Daugaman [181] extended the concept to two dimensions and adopted it for modeling of 

the receptive field of simple cells in the visual cortex of some mammals. The two 

dimensional Gabor function can be defined as  

                         G �, �# = �M?
g Ag

�A�=g
�=# cos 2��� + �#        (3.23) 

where σB  and σC  determine the spread of the Gaussian envelop and � is the phase of the 

sinusoidal wave. When � equals 
'
& or -

'
&, the equation turns into an odd-symmetric function. 

In practice, only the real part of the Gabor filter is convolved with the image region that 

coincides with the Gaussian envelope. Since the Gabor filter analyses the image in both 

spatial and frequency domains, different texture features can be extracted depending on the 

values of various parameters. The approach has been widely used in many applications of 

image processing, such as object recognition, texture segmentation and classification.   

The wavelet transform has similar properties to the Gabor transform, which has also been 

widely used for texture feature extraction and classification.  The usage of wavelet transform 

within texture analysis was introduced by Mallat in [205], where the textural features are 

extracted by using three wavelets at dyadic scales. Unlike the Gabor transform, the spatial 

resolution of wavelet transform is adopted to its frequency content [144]. Wavelet transform 

can thus be regarded as image decomposition in a set of spatially oriented frequency channels 

[142]. Recently, the wavelet transform has been attracted much interest in many applications 

of texture analysis [206] [207] [208] [209] [210].  
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Schmid [182] proposed a filter bank for feature extraction, which consists of 13 isotropic 

“Gabor-like” filters. The filters combine the frequency and spatial scales by introducing two 

variables ( τ and σ ) in a function, which is defined as 

              F �, �, τ, σ	# � FP τ, σ#�cos �Bg�Cg'�
(

# �MAg�=g

g�g     (3.24) 

where FP τ, σ# is added to obtain a zero DC component. In their experiments, rotationally 

invariant filters are used with only 5 scales (σ=2, 4, 6, 8, 10) and 4 frequencies (τ=1, 2, 3, 4), 

in which for a small scale only small τ are used to avoid generating a high dimensional vector. 

Figure 3.6 illustrated 13 rotationally invariant filter kernels which are grouped by 

corresponding rows (τ) and column (σ). 

 

 

Figure 3.6 Schmid filter bank with 13 filter kernels  

3.3 Local invariant texture feature descriptor 

In practice, texture features can be extracted at various scales where for each scale, some 

particular local features can be detected which are quite important for texture segmentation 

(object recognition). For instance, a tree consists of leaves, branches, and a trunk. If features 

are required to be extracted at the leaf level, only this corresponding scale need to be selected 

and applied. As we zoom out, if the required features are at whole tree level, the scale has to 

change. Structural texture analysis methods determine those scales by the sizes of the filter 

kernel in the filter bank and these, in turn are chosen to respond to the different sizes of 

structures. Moreover, many texture features are derived from the original grey levels in an 

image. However, those algorithms may be sensitive to any changes of grey level among 

different image modalities. In this case, grey-level invariant features are significant in 

τ � 1 

τ � 2 

τ � 3 

τ � 4 

σ � 2 σ � 4 σ � 6 σ � 8 σ � 10 
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handling those problems. We introduce two techniques called the Local Binary Pattern (LBP) 

and the Scale Invariant Feature Transform (SIFT) in the following subsections.          

3.3.1 Local Binary Pattern (LBP) 

Local Binary Pattern (LBP) texture analysis is a method that uses grey-scale invariant texture 

statistics, derived from detecting grey level intensity differences in a local neighbourhood.  

The LBP operator was first introduced as a complementary measure for local image contrast 

by Ojala [183], and although a number of extensions [184] [185] [187] for LBP have been 

developed, the basis of LBP is similar. A binary number at each pixel is calculated by 

thresholding between the centre pixel and its neighbouring pixels.  The classic version of the 

LBP considers only eight neighbour pixels of the centre pixel, and then all circular 

neighbourhoods are considered.  A procedure for LBP computation is illustrated in Figure 3.7, 

using a simple image of 3×3 size. The corresponding grey level values of each pixel are 

presented in Figure 3.7 (a). The grey level differences between the centre pixel and 

neighbouring pixels are illustrated in Figure 3.7 (b). If the difference is larger or equal to 0, 

the neighbouring pixel is signed as value 1, otherwise, the value is 0. This gives 8 binary 

numbers surrounding the centre pixel, as shown in Figure 3.7 (c). The LBP code then can be 

calculated through multiplying those binary numbers (0 or 1) by powers of two and summing 

them. So, for the Figure 3.7 example, the LBP code is 0 � 2P � 0 � 2$ � 0 � 2& � 1 � 2R � 1 �

2[ � 1 � 2� � 1 � 2� � 0 � 2�  =120.  

 

Figure 3.7 An example of LBP computation, (a) a simple image of 3� 3 size with 

corresponding grey level values of each pixel, (b) illustrates the grey level differences 

between the centre pixel and neighbouring pixels, (c) illustrates 8 binary numbers 

surrounding the centre pixel 

(a) (b) (c) 
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The LBP operator has been extended to use neighbourhoods with different sizes [184]. In 

this derivation of LBP, the LBP code is calculated for each pixel in any cropped portion of 

the image that allows any radius (denoted as R) and number of pixels (denoted as P) in the 

neighbourhood. The values of neighbours which do not locate exactly on pixels are estimated 

by bilinear interpolation. The LBP code then can be calculated by  

                          r���,� �{ , �{# = ∑ 
 �� − �{#2��M$�OP                 (3.24) 

where �� − �{ is the difference of gray level values between the centre pixel and one of 

neighbouring pixels. Function s(x) is defined by  

                                      s x# = �1 � ≥ 00 � < 0                                   (3.25) 

Finally, a feature vector can be represented by the distribution of these codes.   

Another extension of the original LBP [185] generates rotation invariant LBPs called 

uniform patterns that make LBP codes invariant with respect to rotation of the image domain, 

and also reduce the dimensionality of the feature vector.   

The LBP method can be regarded as a general tool for structural and statistical texture 

analysis, since the  LBP code that labels  each pixel can be interpreted  as a micro-structure 

(include spots, flat areas, edges, curves, etc.), and the distribution of micro-structure can be 

seen as a statistical placement. Because of this advantage, the LBP has been applied and 

extended in texture classification, texture based segmentation, and texture synthesis. For 

instance, Connah and Finlayson [186] investigated the application of the LBP texture 

operator in the retrieval of coloured object under changes in illumination colour and object 

pose. In [187], Liao and Chung extended the LBP by introducing the concept of Advanced 

Local Binary Patterns (ALBP), and demonstrate that these are capable of representing most 

of the essential local structure characteristics of texture images obtained from CURenT 

database. He et al. [188] proposed a Bayesian LBP operator which is formulated using a 

novel Filtering, Labelling and Statistical (FLS) framework. 
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3.3.2 Scale invariant feature transform (SIFT) 

The Scale Invariant Feature Transform (SIFT) was proposed by Lowe [202] to extract 

distinctive local image features that can be used in a various image processing applications, 

such as image matching, object recognition, object tracking etc. There are four stages to 

extracting SIFT features: The first stage calculates potential points that may be invariant to 

scale and orientation by detecting local minima and maxima based on responses of a set of 

difference of Gaussian (DoG) filters. The determination of so-called keypoint candidates 

(minima and maxima) is based on a scheme that compares each point with its 26 

neighbouring pixels at the same and adjacent scales. Then the location and scale of each 

potential keypoint are determined in the second stage, in which all points with low contrast 

are discarded. The third stage assigns one or more orientations to each keypoint. The 

orientations are calculated based on local image gradients around keypoints. Figure 3.8 (a) 

illustrates the image gradient magnitudes and orientations in the region around the keypoints 

at the selected scale, where the circles indicate the Gaussian window covering the region. All 

gradients are generated from a 16x16 sample region, which are then accumulated into a 

descriptor. Finally, a keypoint descriptor is generated at each keypoint. It is formed as a 

vector which contains values of all the orientations and corresponding lengths, as shown in 

Figure 3.8 (b). The descriptor is represented as a 4× 4 grid which summarizes those 

orientation histograms over 4×4 sub-regions, and each orientation histogram contains 8 

direction bins. The sum of the gradient magnitudes near that direction is indicated by length 

of each arrow. It results in a feature vector containing 4x4x8=128 elements. 

Features extracted from the image using SIFT are invariant to scale and orientation, and 

are highly distinctive of the image. SIFT has been used in some natural image processing 

applications. For instance, Suga and Fukuda et al. [189] proposed an object recognition and 

segmentation method on natural images using SIFT combined with graph cuts.  SIFT is used 

to detect the potential candidate seeds for the graph cut algorithm. Sobek and Cetnarowicz et 

al.[190] applied the SIFT algorithm in fingerprint recognition. Two fingerprint images are 

matched by matching their descriptors. Kamencay and Breznan et al. extended the SIFT by 

proposing a SIFT-PCA algorithm for face recognition, in which the principle component 

analysis (PCA) is employed to analyse face data. The modified algorithm uses PCA instead 

of histograms to normalize gradient patches and this significantly reduces the vector 

dimensionality. 
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Figure 3.8 SIFT descriptor computation, (a) illustrates the image gradient magnitudes and 

orientations in the region around the key point at the selected scale, the descriptor (b) is 

formed as a vector which contains values of the orientations and corresponding lengths.   

3.4 Chapter conclusion and discussion 

Image texture is one of the most important characteristics to distinguish various patterns 

which have different visual features in images. It has received extensive attention and has 

been used to perform image segmentation and shape detection. Texture based image 

segmentation has been adopted widely on problems involving natural image segmentation, 

where texture analysis is a critical stage. Texture analysis is a procedure for characterizing 

textures within the image that can achieve very successful image segmentation results. To 

facilitate an understanding of our work and set it in context, this chapter introduced various 

texture analysis methodologies which have been utilized in image segmentation. The methods 

are categorized into: statistical methods, structural methods and model based methods. 

Statistical methods represent textures as a statistical distribution of selected features which 

are computed at each pixel in images. In contrast, structural method, represented texture as 

consisting of many texture primitives grouped within a corresponding spatial arrangement. In 

model based texture analysis, a texture image is modelled as a parametric probability model 

or as a combination of a set of functions which represents the known structural information 

and random noise. Early attention in texture analysis has mainly focused on statistical 

methods such as the first- and second-order statistical analysis; later model-based methods 

such as Gaussian Markov random fields are introduced and more recently, local invariant 

features representing texture has become a focus of research. 

(a) (b) 
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In a sense，the taxonomy of texture analysis methods relies on a categorization of feature 

extraction techniques. We described those feature extraction techniques with respect to 

corresponding categories of texture analysis methods, particularly concentrating on those 

techniques that have potential extensions for medical image segmentations. The first order 

histogram is a low level feature for texture discrimination. Although it cannot reflect 

interrelationships among neighbouring pixels  it can be used for image pre-processing  within 

the segmentation pipeline (e.g. normalization, noise reduction etc.) and is especially attractive 

considering its low computational costs,. Feature extraction methods based on second order 

statistics such as GLCM use a joint distribution of the grey levels of two pixels.  Model based 

methods such as MRF and LBP provide more sophisticated features which reflect 

interrelationships among neighbouring pixels. Different texture primitives which are able to 

characterize texture can be detected using MRF or LBP. It is reasonable to believe that MRF 

and LBP have more potential to achieve better image segmentation performance compared 

with GLCM. In practice, minimising the high computational cost caused by high dimensional 

feature vectors generated when using MRF or LBP may remain a research focus. In structural 

methods, filter based feature extraction approaches offer a direct way to extract features 

which can be used to generate textons. The structure can be decomposed into micro-

structures (line, spot) using a filter bank which contains a set of filters. A comparative study 

in [176] demonstrates that the MR8 filter bank has better performance for extraction of 

texture features than either the LM filter bank or the Schmid filter bank [182]. 

 Psychophysical studies have indicated that the human visual system process images by 

analyzing their frequency and orientation components [179].  This research finding motivates 

applications and developments of Gabor filters which analyse texture features in both the 

spatial and frequency domain. The primary limitation of filter based methods is that the 

extracted features are sensitive to choices of scale which determine the size of filter kernel.  

Detected feature structures are also determined by the chosen filter kernel shapes. Therefore, 

the selected filters have to be optimized in kernel size, shape and rotation according to 

consideration of specific properties of structures in images. It is not possible to design a 

unified filter bank to extract various types of features from images in different applications. 

This problem can be addressed using scale and orientation invariant feature extraction 

techniques such as SIFT that can be employed to extract specific invariant features.  

Considering the lack of existing methods for retinal vessel segmentation using texton, we 
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would like to fill this gap and pursue more accurate segmentation by investigating filter based 

texture feature extraction techniques and textons. The following chapters describe how to 

design the filter bank for retinal vessel segmentation in fundus images, and show that better 

segmentation performance can be achieved using textons. We also examine the  feasibility of 

using a general texton to implement retinal vessel segmentation on different datasets, the 

utilities of Gabor filters to reduce the dimensionality of feature vectors and the potential 

application of SIFT to improve  texton generation.   
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CHAPTER 4 

4. Retinal vessel segmentation on pathological fundus 

image  

The importance of retinal vessel segmentation for diagnosis, screening and treatment of 

various ocular diseases has been emphasised in chapter 1 and 2. We also demonstrated the 

significance of automated retinal vessel segmentation methods for a computer assisted 

diagnostic system which is capable of automated detection and grading various forms of 

retinopathy. Many methods have been reviewed in chapter 2. Among them a representative 

category is the matched filter based segmentation method, in which the retinal vessel’s 

features are extracted by convolving a retinal fundus image with multiple specific filter 

kernels. Conventionally, the matched filtering based method is combined with thresholding-

based segmentation methods to obtain a final binary segmentation result. Many retinal vessel 

segmentation methods have been proposed based on classic matched filters (CMF) [85]. Most 

of them improved CMF by modifying or optimizing the filter kernel, while some methods 

combined CMF with other techniques to generate more accurate results. However, in many of 

these methods, the algorithms frequently fail in cases which contain some pathological 

changes. Those anomalies are particularly characterized by various forms of exudates (soft 

and hard drusens, cotton-wool spots, etc.) and manifest themselves as local small brightness 

blobs in a fundus image. These anomalies, especially when located around vessels, have the 

most important influences for segmentation. Besides, images are often contaminated by noise 

and suffer low contrast between the vessels and surrounding background that also challenges 

the vessel segmentation. Cases which suffer from existing damage due to disease can be 

particularly problematic and thus remain an open problem. Our initial work is focused in this 

area.  

In this chapter, we describe an improved retinal vessel segmentation scheme that is 

capable of excluding influences caused by anomalies in fundus images. The chapter 

demonstrates how to use local texture energies to detect those anomalies like drusen and how 

to eliminate their influences for retinal vessel segmentation. Initially, such influences are 
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detailed in section 4.1 and a method we adopted for drusen detection is described in section 

4.2. In section 4.3, the matched filter which is used to extract the vessel features and 

segmentation is detailed. Section 4.4 presents the experimental results and evaluation.          

4.1  The influence of abnormalities on vessel segmentation  

As we described in chapter 1, commonly, the hard or soft drusen can be found in retinal 

images of patients who suffer from AMD. The hard drusen manifests itself as a set of small 

yellowish-white blobs with a clear boundary, and the soft drusen has a similar appearance but 

with a fuzzy boundary. For those patients with early stage DR, the fat and protein that leaks 

from weak vessels may form yellow white blobs on the retina. These are known as so-called 

retinal exudates, appearing as brighter blobs than the background in retinal fundus images. 

For those patients who suffer from later stage DR, their retinal fundus images normally 

contain cotton-wool spots which appear as white patches that exhibit fluffy density and a 

fuzzy boundary.  

 

Figure 4.1 The segmentation problem for fundus image contains pathological changes. (a) a 

grey level fundus image contains numerous drusens; (b) illustrates retinal vessel 

segmentation result using the matched filter based method proposed by Chanwimaluang [192]   

The common characteristic of these anomalies presented in fundus images is that 

normally they are brighter than the background. These characteristics may result in the failure 

of vessel segmentation due to the dramatic gradient changes around the boundaries. This is 

especially problematic in cases where the anomalies are located around the vessels as the 

anomalies significantly influence the segmentation. Figure 4.1 illustrates an example where 

(a) (b) 
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the segmentation has been compromised by anomalies. Figure 4.1 (a) demonstrates a grey 

level fundus image which contains numerous drusens around vessels, and Figure 4.1 (b) 

illustrates the retinal vessel segmentation result using the matched filter based method 

proposed in [192]. We address this problem by removing the brightness blobs (that appear 

like drusen) before undertaking segmentation in order to reduce their effect on the vessel 

segmentation. The framework of our method is primarily composed of four stages: First, pre-

processing to reduce noise and enhance the contrast; second, detecting and removing drusen; 

third, extracting vessel features using a matched filter to generate maximal filter responses; 

and fourth, converting the responses to binary by using a local entropy thresholding algorithm 

followed by using length filtering to remove the isolated objects. 

4.2  Drusen detection using local energy 

In our experiment, an original image is converted into a grey level image by isolating the 

green channel before we apply a texture-based drusen detection scheme on the image. We use 

the green channel since other authors (e.g. Wu et al. [91]) have noted that contrast between 

vessels and background is enhanced in this channel. The image is then smoothed by a two 

dimensional Gaussian filter. After the image pre-processing stage, we adopted a texture-

based drusen detection method [193], in which the texture of the drusen is characterized in 

term of local energy. The local energy has been defined in [194] as the sum of squared 

responses of orthogonal pairs of Gabor or Log-Gabor filters. The Log-Gabor filter was 

proposed by Field [195], which is a logarithmic transformation of the Gabor function. A 

Gabor filter is a powerful tool to analyse texture in both the spatial and frequency domain. It 

has commonly adapted to calculate the local energy based on the multi-scales and multi-

orientation features. Unlike the Gabor filter, the Log-Gabor filter has Gaussian transfer 

function when viewed on the logarithmic frequency scale, which allows the filters to be used 

in large bandwidths, from 1 to 3 octaves. This characteristic make the Log-Gabor filter to be 

a particularly useful tool for drusen detection or segmentation [193]. Due to the singularity in 

the Log-Gabor function at the origin, an analytical expression for the filter in spatial domain 

is absented. In the linear frequency domain, the Log-Gabor function is formed by 

                G �P, θP# = e¤ W[¦§¨ ©/©Y#]g
g[¦§¨ �©/©Y#]g¬ × �­W[fWfY]g

g�fg ®
            (4.1) 
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where the former part of the formula is a radial component and the latter part is an angular 

component. Parameters  �, �# represent a set of polar coordinates, �P  indicates the central 

radial frequency and the �P is the filter direction. σ¯ and σ° define the radial bandwidth and 

angular bandwidths, respectively. The term �u/�P in equation 4.1 has to be held constant for 

varying fPto obtain constant shape ratio filters. In order to design the filter to have bandwidth 

of 2 octaves, the term �u/�P  is empirically chosen as 0.65. The Log-Gabor filter was applied 

at 2 scales (�P=1/3 and �P=1/6). Because the exudate contained in a retinal image may 

presented as an arbitrary blob (e.g. a spot, an elongated ellipse etc.), filters are applied at 

different orientations. In our experiment, the values of orientation parameter �P: 0o, 30 o, 60 o, 

90 o, 150o were chosen as same as  in [193]. The local energy at each pixel is calculated by 

summing squares of even and odd symmetric Log-Gabor filter responses at every pixel. It is 

obtained as  

             ²^Y

uY �, �# �  ³^Y

uY,�´�6 �, �##& �  ³^Y

uY,µ]] �, �##&            (4.2) 

where   ³^Y

uY,�´�6 �, �## and  ³^Y

uY,µ]] �, �## present the responses of even and odd symmetric 

Log-Gabor filters, respectively. Figure 4.2 illustrates an example of exudate detections using 

local energy, in which (a) is the pre-processed grey level image, and (b) demonstrates 

exudates contained in (a).  

 

Figure 4.2 Local energy example of detecting exudate. (a) is the pre-processed grey level 

image, and (b) demonstrates exudates contained in (a); (c) is the result image where the 

exudates are removed.    

Once drusen are detected they are removed by an averaging filter applied to the areas 

identified by the local energy map. Each pixel value in the areas of detected exudates is 

replaced by the average value of its neighbourhood. In practice, the averaging filter also is 

(b) (a) (c) 
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based on a kernel, and can be seen as a convolution filter. The kernel determines the size of 

the neighbourhood. In our experiment, considering the large size of a fundus image (e.g. size 

of 565×584 pixels in the DRIVE dataset and 700×605 pixels in the STARE dataset), we 

choose a filter size of 40×40. And before apply the filter on the objective areas of image (the 

drusen areas), we transform the local energy map to a binary image which is used to 

determine the range of averaging area. In our experiment, these areas, actually, are drusen. 

The threshold is simply chosen by calculating the average value of the energy map. An 

example of final result image is demonstrated in Figure 4.2 (c).  

4.3  Retinal vessel segmentation using Matched filter  

4.3.1  Matched filter  

The design of the matched filter is based upon a spatial profile of a vessel that exhibits a 

cross-sectional intensity profile that can be approximated by a Gaussian shaped curve (Figure 

4.3-b illustrates this property; Figure 4.3-a is a patch of original fundus image). The basis of 

using matched filter is constructing a Gaussian-shaped model which can be used to match the 

vessels for detection [85]. Therefore, the matched filter kernel can be expressed by 

                              ¶ �, �# = −e·WAg
g�g¸ ∀ |�| ≤ x

&                            (4.3) 

where r is the length of the vessel segment that has a fixed orientation.  σ is the spread of the 

intensity profile. Because the vessels may rotate in any orientation, the kernel ¶ �, �# has to 

be rotated as well. The kernel then can be transformed as 

                        �c = [� 
] = ¶ �, �# × ¹cos �c    − sin �csin �c      cos �c   º              (4.4) 

                                  »c �, �# = −e·W¼g
g�g ¸ ∀�c ∈ �                          (4.5) 

In which, the �c denotes the points in a neighbourhood � defined in the area of [� 
]. The � (i 
=1, 2, 3 … 12) indicates the index of kernel which has a predefined angle. To eliminate the 

long double sided tails of a Gaussian curve in N (in equation 4.5), the tails are truncated at 

+3� and −3�, thus |�| ≤ 3�[85]. Meanwhile, |
| ≤ r 2⁄  is defined, in which r is used as 



90 

 

the neighbourhood length of the kernel. The matched filter is then normalized to have zero 

mean as follows: 

                        »¾c �, �# � »c �, �# " $
6
∑ »c �, �#�;∈�               (4.6) 

In which the number of points in N is denoted as 	.  

 

In our experiment, we applied a set of 12 orientations (0°, 15°, 30°, 45°, 60°, 75°, 90°, 

105°, 120°, 135°, 150°, 165°) of filter kernel at one scale (� =1.75). The choice of the12 

orientations is according to the statement in [87], where they introduced that a filter kernel 

rotating by an amount of 15o is adequate to detect vessels with an acceptable amount of 

accuracy. The value of sigma was chosen empirically, since an empirical evaluation on 

training images showed that on average, the sigma=1.75 gave the visually maximum 

responses. The cross-sectional intensity profile of the kernel with orientations = 0° is 

illustrated in Figure 4.3 -c.   

 

Figure 4.3 Vessel’s cross-sectional intensity profile and matched filter kernels (d) and 

examples of filtering results. (a) is a patch of original fundus image; (b) is a cross-sectional 

intensity profile of a vessel; (c) is the cross-sectional intensity profile of the matched filter 

kernel with orientations = 0°; (e) show examples that result from the filtering using Match 

Filter, where the gray scale images are illustrated in left column of (e) and the right column 

illustrates the corresponding filter responses.  

Given the vessel networks have a wide range of vessel widths (2-15 pixels), the size of 

each Gaussian kernel is chosen to be 16×15 pixels. Figure 4.3-d illustrated the filter kernel 

(a) (b) (c) 

(d) (e) 
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with 12 different orientations. The vessel features then are extracted by taking the maximum 

filter responses at each pixel. 

4.3.2  Segmentation method 

The segmentation method is implemented based on matched filter responses using a 

thresholding scheme to find an optimal threshold value which can be used to distinguish 

between vessels and the background. The thresholding algorithm adopts local entropy based 

on the grey level co-occurrence matrix, in which distribution of the grey levels of two pixels 

are taken into account. This local entropy based thresholding technique was proposed by Pal 

and Pal [196] and has been employed by Chanwimaluang and Fan [192] for retinal vessel 

segmentation. Considering dependences of intensities between each image pixel and its 

effectiveness, we follow the same approach. The co-occurrence matrix was made by 

considering horizontal right and vertical lower transitions [196]. Namely the distance ` of 

matrix 8 ],^# �, _# equals 1 and � are 0o and 270o (see section 3.2.2 for details). Therefore, the 

probability of co-occurrence � c,b# of grey levels � and _ can be expressed as  

                      � c,b# =  d ?,Y# c,b#�d ?,g¿Y# c,b#
∑ ∑ d ?,Y# c,b#À; �∑ ∑ d ?,g¿Y# c,b#À;                          (4.7) 

Let s be a threshold which is 0≤ s ≤ G − 1, in which the G is the total number of grey levels 

contained in an image. Therefore the image can be split into two parts, the object donated by 

A and the background donated by B. We get the following cell probabilities: 

                             �cbÁ = � ;,À#
∑ ∑ � ;,À#Â;>YÂ;>Y

   0 ≤ �, _ ≤ s                     (4.8) 

                       �cbÃ = � ;,À#
∑ ∑ � ;,À#ÄW?;>Â�?ÄW?;>Â�?

   s + 1 ≤ �, _ ≤ G − 1        (4.9) 

Then the second order entropies of the object and background can be defined as  

                           ²Á &# 
# = − $
& ∑ ∑ �cbÁ log& �cbÁÅbOPÅcOP                  (4.10) 

                         ²Ã &# 
# = − $
& ∑ ∑ �cbÃ log& �cbÃaM$bOÅ�$aM$cOÅ�$              (4.11) 

The total second-order local entropy of the object and the background can be written as  
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                                 ²� &# 
# = ²Á &# 
# + ²Ã &# 
#                       (4.12) 

The optimal threshold for object and background classification then can be obtained by 

finding the grey level corresponding to the maximum of ²� &# 
# [196].  

After implementing the thresholding algorithm, some pixels may be misclassified and may 

be presented as small isolated objects in the image. Therefore, length filtering which uses the 

concept of connected pixels labelling is adopted to remove those isolated objects. 

4.4  Experimental results and evaluation 

In our experiment, the parameters of the Log-Gabor filter for drusen detection described in 

subsection 4.2 and the parameters of the Matched Filter described in subsection 4.3.1 were 

obtained empirically based on the 20 images of training set in STARE. The test and 

evaluation procedure are applied to 20 STARE testing images using both the original method 

proposed by Chanwimaluang [192]  and our improved method (that includes a pre-processing 

step to remove exudates). Figure 4.4 illustrates a comparison of segmentation performance, in 

which (a) is a pre-processed image named ‘im044’ in the STARE database, (b) is its ground 

truth, (c) is the segmentation result using Chanwimaluang method, and (d) is the 

segmentation result using our method. Visually, (a) contains exudates which influences the 

segmentation illustrated in (c). This abnormality has less influence (d) when applied to our 

method on an image that contains pathological changes. In order to evaluate the segmentation 

performance of our method, we use the standard measures sensitivity, specificity and 

accuracy (see section 2.1). The comparative results of sensitivity, specificity and accuracy are 

illustrated in table 4.1, of which the last row shows the average values of those terms. The 

column “1” denotes the results using our method and the “2” the results of Chanwimaluang’s 

method. Paired t-tests on the specificity values for individual images of the STARE database 

show that our method (1) performs significantly better than the Chanwimanluang’s method 

(2), with p-values= 1.1x10-2, meanwhile, as expected, the test results also demonstrate that 

there is no significant difference on the sensitivity between our method and 

chanwimanluang’s method. This, in turn, results in the better accuracy of our method. These 

results also reflect that our improved method is capable of excluding the drusen influences 

while maintains the good sensitivity of vessel segmentation. Additionally, the standard 

deviations of all measurements derived from our method are lower than the ones of 



93 

 

Chanwimanluang’s method (see the bottom row of table 4.1 (.)), this also reflects the stability 

of our method.  

Table 4-1 Comparative results on STARE data using our method and the method in [192]. 

 

 

Figure 4.4 The comparison of vessel segmentation results using our and Chanwimaluang 

method. (a) is pre-processed image; (b) is its ground truth; (c) is the segmentation result using 

Chanwimaluang method; and (d) is the segmentation result using our method. 

In addition, the algorithm’s performance was also measured with receiver operating 

characteristic (ROC) curves (see section 2.21.2 for details). The ROC curves for each image 

Image Sensitivity Specificity Accuracy Az 
 1 2 1 2 1 2 1 2 
Im0001 0.7009 0.6686 0.9509 0.9279 0.9310 0.9072 0.9081 0.8926    
Im0002 0.7386 0.7258 0.9200 0.9001 0.9080 0.8885 0.9152 0.9065     
Im0003 0.7692 0.7634 0.9016 0.8957 0.8937 0.8878 0.9136 0.9112     
Im0004 0.5344 0.5747 0.9840 0.9809 0.9507 0.9508 0.9273 0.9181     
Im0005 0.5825 0.6146 0.9729 0.9672 0.9377 0.9354 0.9323 0.9347       
Im0044 0.6907 0.8614 0.9736 0.9112 0.9539 0.8204 0.9166 0.9406     
Im0077 0.7669 0.8041 0.9637 0.9526 0.9479 0.9407 0.9314    0.9261     
Im0081 0.8242 0.8646 0.9517 0.9382 0.9422 0.9327 0.9410    0.9346    
Im0082 0.7267 0.7922 0.9766 0.9634 0.9569 0.9500 0.9331    0.9330   
Im0139 0.7083 0.7654 0.9744 0.9465 0.9530 0.9320 0.9267    0.9275    
Im0162 0.7171 0.7534 0.9721 0.9600 0.9539 0.9453 0.9492     0.9488     
Im0163 0.7450 0.8128 0.9819 0.9669 0.9636 0.9549 0.9544     0.9519      
Im0235 0.7959 0.8140 0.9495 0.9440 0.9358 0.9325 0.9239     0.9235    
Im0236 0.6972 0.8392 0.9736 0.9310 0.9485 0.9227 0.9370    0.9366     
Im0239 0.7374 0.6348 0.9703 0.9775 0.9502 0.9479 0.9245 0.9185 
Im0240 0.6632 0.7391 0.9679 0.9577 0.9367 0.9354 0.9264     0.9187     
Im0255 0.7207 0.8079 0.9743 0.9584 0.9516 0.9449 0.9478    0.9474     
Im0291 0.7423 0.7726 0.9817 0.9769 0.9696 0.9666 0.9576    0.9518    
Im0319 0.7478 0.5645 0.9644 0.9851 0.9550 0.9670 0.9160 0.9107 
Im0324 0.8235 0.6318 0.9519 0.9756 0.9434 0.9527 0.9519 0.9363 
Average 
Std. 

0.7216 
(0.0699) 

0.7402 
(0.0901) 

0.9628 
(0.0209) 

0.9508 
(0.0264) 

0.9442 
(0.0177) 

0.9308 
(0.0338) 

0.9317 
(0.0147) 

0.9285 
(0.0161) 

(a) (b) (c) (d) 
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are obtained by manually thresholding the image with the threshold values starting from 0 to 

1 in a step of 0.01 (e.g. Figure 4.5). The areas under the ROC curves for both the original 

method and our method are listed in Table 4.1. Az indicates the area under the ROC curves, 

also known as AUC. 

Considering the sensitivity, specificity, accuracy and the ROC curve, we can say that the 

modified method improves the segmentation performance compared to original method, 

particularly reduces the miss-segmentation rate (FPF) which is the rate at which tissue not 

belonging to vessel are miss-segmented as vessels. Observing from Figure 4.5, in contrast to 

the original method’s plus (+symbols) points line, we can find that the red point curve plotted 

closer to the top left corner.  This also confirms our method achieves some success in 

reducing the effects caused by drusen which present as light spots in the image and produce 

false positives. 

 

Figure 4.5 ROC curves for the first image of STARE 

4.5  Chapter conclusion and discussion 

In this chapter, we demonstrated the effect of brighter anomalies on vessel segmentation in 

retinal fundus images. We propose a retinal vessel segmentation scheme using a Log-Gabor 

filter and a matched filter. A Log-Gabor filter is employed to detect drusens which manifest 

as bright areas in the image. Drusens can cause errors in the vessel segmentation. Considering 

our experimental results (the sensitivity 0.7216, specificity 0.9628 and accuracy 0.9442 with 

AUC area under the ROC curve 0.9317) compare with original method (sensitivity 0.7402, 
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specificity 0.9508 and accuracy 0.9308 with AUC area under the ROC curve 0.9285) we can 

conclude that our method improves the segmentation performance compared to the original 

method, particularly reduce the miss-segmentation rate (FPF) which is the rate at which the  

tissue not belonging to vessels are miss-segmented as vessels.  

Nevertheless, recalling our scheme, the segmentation algorithm is primarily based on the 

local entropy of the grey level co-occurrence matrix, in which the joint distribution of the 

grey levels of two neighbouring pixels is considered as a texture feature for classification. 

However, it is not strong enough to discriminate vessel related textures, since a fundus image 

contains other components (OD, exudates, and macula), and even the vessel tree has various 

texture characteristics (different width, tortuosity, reflection, artificiality). Moreover, the 

retinal fundus image has low and inconsistent contrast between the vessels and background, 

especially for those capillaries in the images which have very similar appearances compared 

to the background. This phenomenon may result in the misclassification of those capillaries. 

In this case, we would like to say that the retinal vessel segmentation using only one global 

threshold based on low level feature extraction and discrimination techniques will encounter 

a bottleneck to accurately distinguish vessel and non-vessel objects. In the next chapters, we 

will introduce more sophisticated schemes for vessel and non-vessel feature extraction and 

classification by using the texton concept based on understanding limitations of techniques 

adopted in this chapter.         
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Chapter 5 

5. Texton based retinal vessel segmentation experiments  

Although numerous automatic retinal vessel segmentation methods on fundus images have 

been proposed in the past (referring to the comprehensive review of those methods presented 

in chapter 2), it is still a big challenge; and retinal vessel segmentation remains a focus for 

ongoing research. In this chapter we focus on structural texture-based segmentation 

techniques known as textons (see chapter 3 for details), as only a few authors [197] have 

investigated this approach for retinal vessel segmentation and it provides a framework for 

learning texture features which is founded in human perception. This chapter describes three 

sets of experiments about our texton-based retinal vessel segmentation schemes. In the first 

experiment, a supervised texton-based retinal vessel segmentation method is introduced, in 

which the textons are trained on vessel and background samples separately. The second 

experiment improves the scheme by introducing a machine learning stage to distinguish 

corresponding vessel textons from background textons. Moreover, to pursue an automatic 

vessel segmentation method that does not require excessive retraining and is robust to noise 

and variation in image capture, we performed the third set of experiments on retinal images 

captured in three different datasets, generating textons from one set and testing on the other 

two data sets. The third experiment reveals that it is possible to train a set of general texons 

based on our proposed scheme, which can be used as a general tool for retinal vessel 

segmentation for other image databases.  The three experiments are detailed in section 5.1, 

5.2 and 5.3, each of which presents its corresponding experimental results and evaluations.  

5.1  Supervised texton based retinal vessel segmentation  

In this experiment, segmentation is performed using an approach that classifies each pixel in 

a fundus image as vessel or non-vessel. The classifier is designed using a supervised learning 

scheme, in which vessel relative textons are trained on vessel related responses and non-

vessel textons are trained from responses to non-vessel structure. The training samples are 

obtained using ground truth to label vessel and non-vessel objects in response to a fundus 
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image. Textons are learnt from the responses of a filter bank which is applied to each image 

in the training set. For example, suppose there are n filters, then the response of filter �c is 

given by  

                                  ³c �, �# � �c ∗ 4 B,C#                                 (5.1) 

where ∗ denotes the convolution operation. The filter responses form an n-dimensional vector 

R � ¥³$, ³&, … ³6«� at each pixel position in the image. Filter responses from pixels in m 

training images are clustered using the k-means algorithm into k groups.  These k clustering 

centres form a set of prototype response vectors known as textons.  

 

Figure 5.1 The framework of a supervised texton based retinal vessel segmentation method. 
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Note that in our first experiment, the vessel related textons and non-vessel textons are 

trained separately and stored into a textons dictionary which can be used in the testing stage. 

In the testing stage, the same filter bank is applied to each novel image and pixels are 

classified as vessel or non-vessel by mapping the responses onto cluster centroids 

representing each class in the multidimensional feature space. Figure 5.1 illustrates this 

procedure. 

5.1.1 Feature extraction using the MR11 Filter bank 

Design of a filter bank is an important part of any system using textons and different sets of 

filters have been identified in previously published work. Varma and Zisserman [139][176] 

examined the significance of a so-called maximal response 8 (MR8) filter bank in their 

proposed framework which is used to classify natural texture patterns (see section 3.2.4 for 

more details). Adjeroh et al. [197] considered the problem of designing a filter bank for 

retinal images and proposed a correlation-based refinement of filters in previous retinal 

segmentation studies. For our retinal vessel application we designed a new filter bank to 

extract features from vessels by considering their photometric and structural properties. The 

most significant properties for vessel extraction are vessel width and angles. As we described 

in previous chapters, the vessel networks have wide range of vessel widths (from 2-15pixels), 

and they may be at any orientation in fundus images. In addition, a fundus image contains 

other anatomic components (such as OD and macular) and some pathological changes; 

various artefacts such as vessel light reflection may also appear on the vessel surface. In 

practice, vessel networks (arteries, veins and capillaries) are typically bar structures and the 

vessel cross-sectional intensity profile can be approximated by a Gaussian shaped curve. 

With this in mind, we employed the second-order derivative Gaussian filter that forms part of 

the MR8 filter bank. Let’s define the one dimension (1D) Gaussian function as follows: 

                                   H �# = $
√&'( �M Ag

g�g                                 (5.2) 

The two dimension Gaussian function is given by: 

                      H �, �# = $
√&'(A �M Ag

g�Ag × $
√&'(= �M =g

g�=g                  (5.3) 

First and second order derivative 1D Gaussian functions are given by  
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                                 H¾ �# = B
√&'(T �M Ag

g�g                       (5.4) 

                        H¾¾ �# = $
√&'(Æ  �& − �&#�M Ag

g�g               (5.5) 

Therefore according to equation 5.3 and 5.5, the second order partial derivative of H �, �# 
with respect to the y-axis direction can be given by  

          
ÇÈÈÄ A,=#

Ç= = $
√&'(A �M Ag

g�Ag × $
√&'(=Æ  �& − �C&#�M =g

g�=g     (5.6) 

In order to allow the filter kernel to be rotated to any orientation, an orthonormal rotation 

matrix Écos �  − sin �sin �      cos �Ê is multiplied by matrix É��Ê, hence the equation 5.6 can be converted 

to  

   
ÇÈÈÄËAÈ,=ÈÌ

Ç= = $
√&'(A �M AÈg

g�Ag × $
√&'(=Æ  �¾& − �C&#�M=Èg

g�=g       (5.7) 

where 

�¾ = � cos � − � sin �  

�¾ = � sin � + � cos � 

In our experiment, the second order derivative Gaussian filter is applied at 3 scales  (�B,�C) 

={(1,3), (1.5,4.5), (2,6)}, and the anisotropic filter kernel at each scale is rotated in 12 

orientations (0, 15o, 30o, 45o, 60o, 75o, 90o, 105o, 120o, 135o, 150o, 165o). These filter kernels 

are illustrated in the rows1-3 of Figure 5.2.  

Under a specific illumination condition, a retinal image may contain some photometric 

anomalies. These may include effects such as the vessel reflection problem. In [118], Wang 

et al. proposed a model based method to address this problem. The vessel profile which 

contains specular reflection is modelled by a Hermite Gaussian model. In our work, to 

address this we employ a Difference of Gaussians (DoG) filter proposed by Gao et al. [198]. 

In equation 5.3, assume the �C equals 3�B to make the filter to be an anisotropic kernel, in 

which �B or �C is the standard deviation which defines the spread of the intensity profile. The 

2D Gaussian function can be converted to  
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                           H(A �, �# = $
�'(Ag �M?

g Ag
�Ag� =g

T�Ag#
                           (5.8) 

Then the DoG is expressed as 

                ÍÎH(A?,(Ag �, �#= H(A? �, �# − �H(Ag � + Ï, �#        (5.9) 

where the offset parameter δ in equation 5.9 represents the centre position of the vessel over a 

cross section. In reality, the vessel reflection may not just appear exactly on the centre line. 

Under this circumstance, the offset parameter can be adjusted based on the location of the 

light reflection. The parameter A is used to regulate the amplitude of the Gaussian function. It 

combines with the multiplier (1 6��B&⁄ ) of the Gaussain function that controls the intensity of 

curves. The amplitude parameter A is chosen as  1 �⁄  in order to avoid an overlarge 

amplitude of the Gaussian curves, as in reality, although the vessel light reflections are 

brighter than vessels, their illumination conditions are still within a certain range, for instance, 

they are not brighter than some exudates or the OD. Parameters �B$and �B& represent the 

spread of the Gaussian curve chosen to fit different vessel diameters. In our experiments we 

found that Ï = 0.5, 0.75, 1.0 are appropriate values for  �B$, �B&#= {(1.5, 0.5), (1.5, 0.8), (2, 

1.4)}, respectively. Rows 4-6 of figure 5.2 illustrate the DoG filter. Our filter bank also 

includes a matched filter modelled as the general Gaussian function described in section 4.3.1. 

For the parameter σ we choose σ = 1, 1.5, 2 pixels, respectively. The length of the vessel 

segment L was set to 9. These values match structural properties in our dataset and others 

have used similar values [85]. The matched filters (at 3-scales) are shown in Figure 5.2, rows 

7-9. 

Since the Difference of Gaussian (DoG) and Matched filters (MF) like the second-order 

derivative Gaussian (2DG) are anisotropic filters (shown in Figure 5.2, rows 1-9), to detect 

the vessels at different orientations, the filter kernel has to be rotated. In our study, 

anisotropic filter kernels are presented in 12 orientations (columns 1-12). All anisotropic 

filters are applied at 3 scales using a filter kernel size of 16×15 pixels to estimate different 

widths of vessels. For the anisotropic filters the maximal response, across all orientations, 

represents its output. We also employ two isotropic Gaussian and LoG filters to extract 

general image features from the background and vessel boundaries (Figure 5.2, row 10, col’s 

1-2). Consequently, the proposed filter bank comprises of 110 filters but only 11 filter 

responses are obtained, hence we named it MR11.       
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Figure 5.2 Filter bank MR11 for vascular feature extraction 

We should point out that in some cases the second order derivative of Gaussian has better 

performance than the Matched Filter. Figure 5.3 (a1) and (a2) illustrate the second order 

derivative of Gaussian response and Matched Filter response, respectively, which are derived 

from an example image (a).  A comparison of these filter responses is analysed by using ROC 

curve. As we can see in Figure 5.3 (b), the solid curve of second order derivative of Gaussian 

plotted closer to the top left corner compared to the dot line curve of the Match Filter. The 

corresponding AUCs of second order derivative of Gaussian and Matched filter are 0.9380 

and 0.9341, respectively. However, this does not mean that the second order derivative of 

Gaussian always outperforms the Matched filter. In contrast, for the fundus image contains 

large width vessels, the Matched filter has better performance. A vessel reflection 

phenomenon presented in a square area of Figure 5.3 (a) is amplified and illustrated in Figure 

5.3(c). Figure 5.3 (c1) and (c2) are the filter responses to the second order derivative of 

Gaussian and the difference of Gaussian, respectively. Comparing (c1) to (c2), we can 

observe that the shadow in (c1) caused by vessel reflection is removed in (c2). Considering 

respective advantages and disadvantages of different filter categories, we combine these filter 

categories into the MR11 filter bank to extract more sophisticated vessels features from 

fundus images. After applying the filter bank on an image, each pixel is converted into 11-D 

feature vector, which can be further used in a subsequent stage to generate textons.        
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Figure 5.3 Comparisons of responses to filters in MR11 filter banks. (a) is an example image; 
(a1) is the (a) filter response to second order derivative of Gaussian at scale (ÑÒ,ÑÓ)=(1.5, 
4.5); (a2) is the matched filter response at scale Ô=1.5; (b) illustrates ROC plots for both 
second order derivative of Gaussian an Matched filter. (c) is an amplified vessel reflection 
presented in (a); (c1) is the filtering result using the second order derivative of Gaussian; and 
(c2) is the filtering result using difference of Gaussian.      

5.1.2 Textons generation and segmentation 

In our experiment, textons were trained from the MR11 filter bank responses generated from 

training samples, from which we extracted local features of retinal vessels. The training 

procedure includes two stages. In the vessel texton training stage, the texton computing 

procedure was implemented on filter responses in which the non-vessel related responses 

were identified using ground truth and removed. To train non-vessel texons, the vessel related 

areas in responses were removed in order to obtain non-vessel background responses. The 

textons were generated by employing a k-means clustering algorithm on the filter responses. 

As representations of texture, the textons were aggregated based on the properties of 

distances calculated from memberships to clustering centres. The clustering procedure is an 

iterative process. Initially, k random points were selected as default means (centroids) of k 

clusters. Corresponding memberships were selected based on differences of Euclidean 

distance between means and centre bins. New means of those memberships were calculated 

again and were defined as new clustering centres. The process runs iteratively until it 

(a) (a1) (a2) 

(c) 

(c1) 

(c2) (b) 
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converges. The flowchart of this algorithm is illustrated in Figure 5.4. Both vessel textons 

and background textons were stored in a texton dictionary and subsequently used in the test 

stage. At the test stage, the trained textons were assigned depending on responses of the filter 

bank and then the corresponding texton memberships are calculated by assigning each pixel 

to the nearest cluster centre (texton) based on the Euclidean distance. The vessel texton 

related memberships generate texton maps and the segmentation results are obtained by 

combining vessel texton related maps. At the vessel texton training stage, we applied two 

schemes for selecting the value of k. Initially, as a direct way that we chose k=2, i.e. one class 

for vessel texton and the other representing background texton. Then considering the natural 

condition of fundus images comprising those vessels that also contain light reflection and  

backgrounds which contain pathological anomalies (exudates, drusen, etc.), we chose k=4; 

two vessel related textons and two non-vessel related textons. The iteration parameter of the 

k-means algorithm determines the efficiency of performance. The iteration parameter=30 is 

chosen empirically in our experiment, taking into consideration both complexity and 

performance of the algorithm. This value is selected based upon an experimental evidence 

that iteration=30 and iteration=50 have the similar performance for clustering in training 

images.  

 

Figure 5.4 Flowchart of texton generation algorithm 
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5.1.3 Experimental results and evaluation 

The proposed method was tested and evaluated on the DRIVE data set which has been 

introduced in subsection 2.2.1 of chapter 2. In order to quantify the performance of the 

proposed approach, segmentation results are compared to corresponding ground truths. The 

ground truth is defined by a binary vessel mask in which all vessel pixels are set to one and 

all non-vessel pixels are set to zero. The DRIVE database is divided into training and test sets 

where each set consists of 20 images.  

For the test set, two sets of manual segmentations are provided by two observers. The first 

observer’s manual segmentations are used as ground truth in our experiment. Figure 5.5 

illustrates two examples of segmentation results, in which the first row (a) and (b) are original 

fundus images, the second row (a1) and (b1) are corresponding ground truths. The third row 

(a2) (b2) are segmentation results using the 2 textons set, and the last row illustrates 

segmentation results using 4 textons set. Visually, the segmentation results of using 4 texons 

are more detailed than using 2 textons segmentations, especially for the arterioles, venules 

and capillaries, but with more isolated objects which may be fragmentary vessel segments or 

noise. This phenomenon is also confirmed by our evaluation of segmentation shown in the 

table 5.1. 

Our algorithm was evaluated in terms of sensitivity, specificity and accuracy (see 

subsection 2.2.1 for details). Table 5.1 illustrates the evaluation results for each test image in 

test set using k=2 and k=4 in our algorithm. For k=2, the average specificity reaches 0.9806 

with 0.7325 sensitivity, the average accuracy is 0.9587. The values of specificity, sensitivity 

and accuracy for the k=4 are 0.9524, 0.8323, 0.9422, respectively. We can see that there is an 

increasing sensitivity of using 4 textons compared to sensitivity of using 2 textons whilst the 

specificity of 4 textons is lower than the specificity of 2 texton. This is because segmentation 

using 4 textons set contains more misclassified non-vessel elements than 2 textons set (see 

Figure 5.5).  

The primary limitation of this scheme is the high computational cost, as the training 

procedure has to implement the clustering computation twice, one for vessel related textons 

generation and the other for non-vessel textons generation. With this in mind, we improved 

our initial method by proposing a new texton generation scheme which is described in the 

next section.  
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Figure 5.5 Examples of segmentation results using two textons (the third row a2, b2) and four 

textons (the fourth row a3, b3); (a)(b) are original images and (a1)(b1) are their 

corresponding ground truths. 

(a) (b) 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 
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Table 5-1 Performance results on DRIVE database using 2 texons and 4 textons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 An improved supervised texton based retinal vessel 

segmentation  

In this experiment, the segmentation method is improved by modifying the texton training 

stage. In this framework, the classifier is designed using a supervised learning algorithm to 

generate textons based on our previous experiment. This learning algorithm aims to reduce 

the computational cost of the vessel segmentation algorithm so that its efficiency can be 

Image Sensitivity Specificity Accuracy 
 K=2 K=4 K=2 K=4 K=2 K=4 
01test 0.8190 0.8990 0.9758 0.9471 0.9618 0.9428 

02test 0.7545 0.8419 0.9844 0.9603 0.9609 0.9482 

03test 0.6612 0.7831 0.9847 0.9562 0.9524 0.9390 

04test 0.7397 0.8203 0.9807 0.9526 0.9586 0.9404 

05test 0.6677 0.7763 0.9905 0.9729 0.9603 0.9544 

06test 0.6526 0.7650 0.9880 0.9700 0.9554 0.9500 

07test 0.7112 0.8141 0.9769 0.9403 0.9527 0.9403 

08test 0.6476 0.7769 0.9773 0.9496 0.9490 0.9347 

09test 0.6612 0.7855 0.9882 0.9704 0.9617 0.9554 

10test 0.7040 0.8087 0.9834 0.9633 0.9604 0.9506 

11test 0.7245 0.8186 0.9775 0.9418 0.9549 0.9307 

12test 0.7429 0.8410 0.9797 0.9482 0.9593 0.9390 

13test 0.7110 0.8116 0.9796 0.9510 0.9533 0.9374 

14test 0.7786 0.8670 0.9724 0.9345 0.9568 0.9290 

15test 0.7968 0.8767 0.9663 0.9215 0.9541 0.9183 

16test 0.7603 0.8641 0.9826 0.9565 0.9625 0.9481 

17test 0.7252 0.8358 0.9788 0.9446 0.9574 0.9354 

18test 0.7828 0.8800 0.9782 0.9482 0.9627 0.9428 

19test 0.8440 0.9086 0.9837 0.9580 0.9722 0.9539 

20test 0.7658 0.8718 0.9825 0.9604 0.9666 0.9539 

Average 0.7325 0.8323 0.9806 0.9524 0.9587 0.9422 
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improved. Our aim is to change the framework shown in Figure 5.1 and to use only one k-

means clustering procedure to generate all the texton maps. 

 

Figure 5.6 The framework of improved supervised texton based retinal vessel segmentation 

method. 

5.2.1 The improved scheme of texton generation  

Given the structures within retinal images, normally each scan consists of five classes of 

objects; background, vessel tree network (possibly exhibiting light reflection anomalies), OD, 

and other pathological changes (particularly found in images of patients). In this scheme, we 

chose 5 textons to reflect significant classes of those objects that are visible in the images. 

The textons are computed by applying the same MR11 filter bank to each image in the 

training sample to get 11 classes of filter responses. We use the k-means algorithm once to 

cluster the filter responses into k=5 groups identified by their cluster ID (k=1…5). We run the 

k-means algorithm until either it converges or the number iterations reaches a limit (30). To 

determine the vessel texton class membership from the ground-truth, we first rank the clusters 

based on their size. The largest cluster in the list maps onto the background pixels. The 
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remaining clusters are considered as textons. These are subjected to further analysis to 

identify optimized combinations. For instance, we got four texton ID which are 1, 2, 3, 4, 

respectively. There are 11 combinations of these four textons related memberships (map), 

namely, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4) and (1, 2, 

3, 4). Each combination is evaluated with regard to accuracy by back-projecting the clustered 

pixels and recovering their ground truth labels. We store the combination with the highest 

accuracy and its corresponding texons ID represent the vessel related textons. Figure 5.7 

illustrated the trained textons dictionaries from the STARE and DRIVE databases, in which 

each dictionary contains 5 textons. Each texton is a 11 dimensional vector and assigned by an 

integer ID [1,K]. Figure 5.7 (a) is the dictionary from STARE, showing IDs (1, 2, 5) are 

indicated as vessel related textons and IDs (3, 4) are non-vessel textons. Figure 5.7 (b) is the 

textons dictionary from the DRIVE dataset, where IDs (2, 3, 4) are vessel textons and the IDs 

(1, 5) are non-vessel textons. These identifications of textons are trained based on the training 

scheme described above. These dictionaries of stored textons will be used to evaluate the 

vessel segmentation in a subsequent testing stage. 

 

Figure 5.7 Textons dictionaries of STARE and DRIVE database. (a) is the STARE textons 

dictionary, IDs (1, 2, 5) are indicated as vessel related textons and IDs (3, 4) are non-vessel 

textons; (b) is the DRIVE textons dictionary, IDs (2, 3, 4) are vessel textons and IDs (1, 5) 

are non-vessel textons. 

5.2.2 Experimental results and evaluation  

In this experiment, the improved method was tested and evaluated on both STARE and 

DRIVE datasets (described in section 2.3). The DRIVE database includes training and testing 

(a) STARE textons dictionary  

(b) DRIVE textons dictionary  
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sets. The STARE database is not pre-split into training and testing sets, but it provides 40 

images with two sets of associated ground truth, hand labelled by two experts. In our 

evaluation, 20 images which have been tested by many other authors are grouped into the test 

dataset; the 20 remaining images in the database are assigned to the training dataset. For both 

databases, the textons are trained on the training samples, and are tested on the 20 remaining 

images.   

 

Figure 5.8 Examples of segmentation results using improved supervised texton based method. 

The first row (a) (b) (c) (d) shows original colour fundus images; The second row (a1) (b1) 

(c1) (d1) illustrates corresponding ground truths; the bottom row (a2) (b2) (c2) (d2) are vessel 

segmentation using our improved scheme.  

Examples of our retinal vessel segmentation results on both STARE and DRIVE database 

are shown in the Figure 5.8, of which the left two columns relate to the STARE database and 

the right two columns illustrate the original images and segmentation results with respect to 

the DRIVE database. The first row (a) (b) (c) (d) in Figure 5.8 shows original colour fundus 

STARE DRIVE 

(a) (b) (c) (d) 

(a1) (b1) (c1) (d1) 

(a2) (b2) (c2) (d2) 



110 

 

images. The second row (a1) (b1) (c1) (d1) illustrates corresponding ground truths. The 

segmentation results using the improved scheme are illustrated on the bottom row. 

The algorithm was also evaluated by standard measurements of sensitivity, specificity and 

accuracy. On the STARE database, average specificity reaches 0.9643 with 0.7517 sensitivity, 

the average accuracy is 0.9506. The values of specificity, sensitivity and accuracy for the 

DRIVE dataset are 0.9831, 0.7167 and 0.9591, respectively.  

Table 5-2 Performance results on STARE and DRIVE databases using improved supervised 

retinal vessel segmentation on fundus images  

Image 

STARE 

Sensitivity Specificity Accuracy Image 

DRIVE 

Sensitivity Specificity Accuracy 

Im0001 0.7029 0.9366 0.9180 01test 0.8036 0.9784 0.9628 

Im0002 0.6460 0.9459 0.9259 02test 0.7377 0.9864 0.9609 

Im0003 0.6547 0.9558 0.9750 03test 0.6439 0.9865 0.9524 

Im0004 0.4588 0.9938 0.9541 04test 0.7246 0.9835 0.9597 

Im0005 0.6507 0.9741 0.9449 05test 0.6510 0.9918 0.9599 

Im0044 0.7647 0.9706 0.9562 06test 0.6370 0.9894 0.9551 

Im0077 0.8869 0.9413 0.9369 07test 0.6913 0.9807 0.9543 

Im0081 0.8867 0.9539 0.9489 08test 0.6287 0.9806 0.9503 

Im0082 0.8595 0.9577 0.9500 09test 0.6432 0.9898 0.9617 

Im0139 0.8350 0.9362 0.9280 10test 0.6891 0.9851 0.9608 

Im0162 0.8898 0.9586 0.9537 11test 0.7114 0.9805 0.9564 

Im0163 0.9120 0.9634 0.9595 12test 0.7263 0.9822 0.9601 

Im0235 0.8347 0.9586 0.9476 13test 0.6946 0.9820 0.9539 

Im0239 0.7845 0.9632 0.9477 14test 0.7637 0.9760 0.9588 

Im0236 0.8411 0.9591 0.9484 15test 0.7818 0.9706 0.9571 

Im0240 0.6562 0.9831 0.9497 16test 0.7452 0.9847 0.9630 

Im0255 0.8548 0.9686 0.9584 17test 0.7090 0.9818 0.9587 

Im0291 0.6944 0.9894 0.9745 18test 0.7702 0.9809 0.9642 

Im0319 0.6053 0.9897 0.9731 19test 0.8336 0.9863 0.9736 

Im0324 0.6109 0.9867 0.9616 20test 0.7481 0.9846 0.9672 

Average 0.7515 0.9643 0.9506 Average 0.7167 0.9831 0.9591 
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Table 5.2 illustrates measurements of 20 test images for both STARE and DRIVE 

database, respectively. Each database has 20 testing samples which are numbered using their 

image file names. In practice, the sensitivity is much more important than the specificity, 

since the number of background pixels is larger than the number of vessel related pixels in a 

fundus image. As we can see from the table 5.2, the maximum and minimum sensitivity are 

0.9120 and 0.4588 for STARE images.  For the DRIVE images, the maximum sensitivity is 

0.8336 and minimum sensitivity is 0.6370.  

 

Figure 5.9 The segmentation results with the least sensitivity for both STARE and DRIVE 

databases. (a) (b) are test images of STARE and DRIVE databases; (a1) and (b2) are the 

ground truths and (a2), (b2) are the segmentation results  

STARE “IM0004” DRIVE “08test” 

(a) (b) 

(a1) (b1) 

(a2) (b2) 
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Figure 5.9 illustrates the cases with the worst sensitivity in the STARE and DRIVE 

database, in which (a) ‘IM0004’ is a test image of STARE and (b) is an image of DRIVE. 

Visually, the local contrast between vessels and background is extremely low in both (a) and 

(b). In figure 5.9 (b), most of vessels surrounding the macula cannot even be distinguished 

pre-attentively from the background by the human vision system. 

Comparing the segmentation results (a2, b2) to the ground truths (a1) and (b2), 

respectively, we can see some vessel trees are miss-segmented. This low contrast condition is 

the critical factor that leads to the poor segmentation using the proposed method. Extremely 

low contrast between vessels and background is a common issue for retinal vessel 

segmentation, however there are no solutions that can handle it completely in the research 

community, to the best of our knowledge. We also compare our approach to other retinal 

vessel segmentation algorithms to set the performance of our method in context. Table 5.3 

shows these comparative results of performance. Experimental results show that our proposed 

method outperforms some state-of-the-art methods, while the performance compares well 

with the best published results on both datasets.  

 

Table 5-3 Comparison between our method with five other methods on STARE and DRIVE 

databases 

Method Performance Results 
database Sensitivity Specificity Accuracy 

2nd human observer STARE 0.8949 0.9390 0.9354 

Our method STARE 0.7515 0.9643 0.9506 
Hoover[90] STARE 0.6751 0.9567 0.9275 
Soares [103] STARE 0.7165 0.9748 0.9480 
Marín [108] STARE 0.6944 0.9819 0.9526 
Staal [102] STARE 0.6970 0.9810 0.9516 
Zhang [89] STARE 0.7177 0.9753 0.9484 

2nd human observer DRIVE 0.7761 0.9725 0.9473 
Our method DRIVE 0.7167 0.9831 0.9591 

Mendonca [126] DRIVE 0.7344 0.9764 0.9425 
Soares  [103] DRIVE 0.7283 0.9788 0.9466 
Zana [125] DRIVE 0.6696 0.9769 0.9377 
Staal [102] DRIVE 0.7194 0.9773 0.9441 
Zhang[89] DRIVE 0.7120 0.9724 0.9382 
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5.3 Retinal vessel segmentation using general textons  

Normally, similar objects in the natural world have similar properties, such as shape, colour, 

texture etc., and it is reasonable to believe that the similar objects should have similar 

structural primitives (textons). Consequently we can assume that the vessel or non-vessel 

elements in fundus images which are obtained from different databases should have similar 

textons that can be used as a general tool for retinal vessel segmentation. Under ideal 

circumstances it should even be possible to construct a unified vessel textons library, which 

can be employed for vessel segmentation on fundus images in any datasets.  In order to verify 

this assumption, we set up an experiment on retinal images captured from three different 

datasets, in which texons trained on one data set were reused on other data sets. This 

experiment may not be sufficient to verify the assumption under the ideal circumstance, but it 

provides evidence of the feasibility and motivation for pursing an automatic vessel 

segmentation method that does not require excessive retraining and is robust to noise and 

variation in image capture methods. This experiment evaluates the performance of our 

proposed method and provides evidence to extend applications of our textons based methods.  

5.3.1 Experimental setup  

To verify the feasibility of using a unified texton as a general tool for retinal vessel 

segmentation in fundus images, we first adopt a statistical analysis method (paired t-test) to 

analyse the difference between two segmentation results which were obtained by using two 

sets of textons. The paired t-test has been widely used to prove whether differences between 

two methods are significant. A novel method can be qualified based on the performance of 

the other method.  For the first experiment, our hypothesis is that if the textons trained from 

one dataset produce  segmentation results on another dataset with similar or better 

performance compared to the manual segmentation or other proposed methods then this 

provides some evidence that unified textons may be an acceptable tool for retinal vessel 

segmentation.   

Towards this direction, in our first experiments, test images from the DRIVE database 

were segmented by employing the textons trained from the STARE database. The first 

observer’s manual segmentation of test images in the DRIVE database is defined as ground 

truth. The measures of the second observer’s segmentation can be used to compare with the 
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measures of automatic machine segmentation using the STARE textons. Moreover, we also 

compared our results to the results published by Marín et al. [108], as they reported detailed 

measurements for each test image in the DRIVE database.   

In the second experiment, we investigated the inter observer variability between two 

methods which use two sets of textons (one texton set is trained from the database itself and 

the other is trained from another independent database). We would like to compare this inter-

observer variability with the inter observer variability of two expert segmentations of the 

same datasets. In the second experiment, we built a new independent data set which 

comprised 114 images collected from Manchester Royal Eye Hospital (MREH). Each image 

was digitized with a size 756×656 pixel and was stored as png format. 20 images were 

randomly selected as test samples, 20 of remaining images were used as training samples. We 

asked three ophthalmologists to manually segment retinal vessels from the background on 20 

test images, in which one of the ophthalmologists provides ground truth on 20 training 

images and the manual segmentation of the senior expert is chosen as ground truth.         

5.3.2 Comparative study of retinal vessel segmentation using general 

textons    

In the first experiment, the textons from the STARE database were applied on the DRIVE 

test images to obtain the vessel segmentations (denoted as our*). Then the result of each 

image was evaluated by standard measurements. The measured results of 20 DRIVE test 

images are illustrated in table 5.4, in which the average sensitivity, specificity and accuracy 

are 0.7795, 0.9706 and 0.9537, respectively. In order to provide the comparable 

measurements, the second observer’s segmentations of the DRIVE database (denoted as 

human) were measured with average sensitivity, specificity and accuracy as 0.7761, 0.9725 

and 0.9473 respectively. There are two sets of ground truth provided by two experts 

independently in the DRIVE database (refer to the section 2.2.1). Therefore, for manual 

segmentation measurement, by convention, if the manual segmentations provided by the first 

expert are defined as gourd truths, a set of measurements (sensitivity, specificity and 

accuracy) for each individual image in test dataset can be calculated by comparing the second 

expert manual segmentation to the ground truth (first expert segmentation). As a result, there 

are in total 20 sets of these measurements for 20 test images. The measurements of 

segmentation results (denoted as Marín) which were produced by Marín et al. are collected 

from their published paper in [108], where all their 20 sets of evaluation measurements are 
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reported. We analysed the differences among our method (our*), human segmentation 

(human) and Marín method using the paired t-test based on respective 20 sets of evaluation 

measurements. Paired t-tests on the accuracy values for individual images of DRIVE 

database show that our* performs significantly better than the Marín et al. with p-values= 

6.58x10-8, meanwhile the test results also demonstrate that our* outperforms the human with 

p-values=4.75x10-4. The corresponding results are illustrated by box-and-whisker plots in 

Figure 5.10. However, we can observe from the Figure 5.10 that the range of boxes related to 

the human segmentations is less than our method (our*) for all three measures. This reflects 

that human segmentation has a more stable performance compared to automatic segmentation 

methods. The manual segmentation still needs to be approved in terms of robustness and 

reproducibility for vessel segmentation in the retinal images which are commonly 

inconsistent in image condition (illumination, contrast et al.) and quality.  

 

Figure 5.10 The box plots of accuracy, sensitivity and specificity for Marín, human and our* 

methods 

In the second experiment, we further evaluated our approach by segmenting 20 images 

from the MREH data set. To investigate different training regimes we built two classifiers. 

The first was trained on the STARE images and the second was trained on a training subset 

of MREH images. Examples of segmentations are illustrated in Figure 5.11, in which the (a) 

is an original test image, (b) demonstrates the ground truth, (c) is the segmentation result 

using STARE textons and (d) is the segmentation result using textons trained from subset of 

MREH database. In each case the test set of MREH was evaluated in terms of sensitivity, 

specificity and accuracy, corresponding measurements are shown in table 5.5, of which the 

left part lists measurements of each case using MREH textons (denoted as MREH) and the 
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right part includes measurements of each case using STARE textons (denoted as MREH*). 

The average measurements of MREH are 0.7678, 0.9636 and 0.9447, the average 

measurements of MREH* are 0.7901, 0.9556 and 0.9397; sensitivity, specificity & accuracy 

respectively. The comparative results of these two classifiers are presented in Figure 5.12 (a). 

Table 5-4 Measurement results on DRIVE database using STARE textons 

Image 

DRIVE 

Sensitivity Specificity Accuracy 

01test 0.8539 0.9660 0.9560 

02test 0.7938 0.9758 0.9571 

03test 0.7212 0.9760 0.9506 

04test 0.7806 0.9683 0.9510 

05test 0.7223 0.9839 0.9594 

06test 0.7055 0.9814 0.9545 

07test 0.7578 0.9645 0.9456 

08test 0.7082 0.9676 0.9453 

09test 0.7232 0.9811 0.9602 

10test 0.7529 0.9763 0.9579 

11test 0.7631 0.9668 0.9486 

12test 0.7896 0.9687 0.9532 

13test 0.7594 0.9696 0.9490 

14test 0.8230 0.9593 0.9483 

15test 0.8323 0.9513 0.9428 

16test 0.8063 0.9730 0.9580 

17test 0.7786 0.9662 0.9504 

18test 0.8273 0.9682 0.9570 

19test 0.8742 0.9742 0.9659 

20test 0.8176 0.9743 0.9628 

Average 0.7795 0.9706 0.9537 
 

To get the comparable measurements, we evaluated the inter observer variability between 

two expert segmentations of the same datasets (MREH) and present the results in Figure 

5.12(b). A paired t-test result shows that accuracy and sensitivity of two expert segmentations 

are statistically significantly different with p-values=4.7x10-4, 1.1x10-5, respectively. The 

mean of difference on accuracy and sensitivity are 0.0052 and 0.0535, respectively. Although 

a paired t-test on the accuracy, sensitivity of two segmentations (MREH, MREH*) shows that 

the inter observer variability between two methods is also different with p-values=2.6x10-9, 
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7.9x10-9, the mean of difference on the accuracy and sensitivity are 0.0050 and 0.0223 which 

are less than the differences of two ophthalmologists. 

Both the first experiment and the subsequent experimental results provide evidence 

which demonstrates the robustness of our texton based retinal vessel segmentation method. 

The comparative study results reveal that textons derived from one database are sufficiently 

general to be operationally useful on other databases. This suggests that it may be feasible to 

generate a consistently updated unified texton dictionary which can then be used in several 

databases. 

Table 5-5 Performance results on MREH database using two training regimes 

MREH Sensitivity Specificity Accuracy MREH* Sensitivity Specificity Accuracy 

01test 0.7896 0.9441 0.9253 01test 0.8037 0.9327 0.9169 

03test 0.7278 0.9849 0.9664 03test 0.7618 0.9815 0.9657 

06test 0.7557 0.9662 0.9445 06test 0.7767 0.9569 0.9383 

07test 0.7916 0.9587 0.9439 07test 0.8098 0.9488 0.9364 

08test 0.7715 0.9628 0.9396 08test 0.7902 0.9556 0.9355 

22test 0.8014 0.9556 0.9419 22test 0.8169 0.9473 0.9357 

23test 0.7759 0.9552 0.9403 23test 0.7935 0.9463 0.9337 

25test 0.8491 0.9698 0.9599 25test 0.8670 0.9647 0.9567 

26test 0.8363 0.9602 0.9479 26test 0.8496 0.9527 0.9424 

30test 0.7212 0.9595 0.9356 30test 0.7460 0.9509 0.9303 

34test 0.8158 0.9652 0.9516 34test 0.8326 0.9580 0.9466 

35test 0.8202 0.9599 0.9484 35test 0.8387 0.9505 0.9413 

39test 0.6674 0.9640 0.9312 39test 0.6961 0.9572 0.9284 

41test 0.7918 0.9623 0.9460 41test 0.8094 0.9542 0.9403 

49test 0.7628 0.9698 0.9531 49test 0.7852 0.9638 0.9494 

92test 0.8187 0.9512 0.9399 92test 0.8297 0.9423 0.9327 

95test 0.7249 0.9604 0.9357 95test 0.7828 0.9433 0.9293 

99test 0.7150 0.9736 0.9480 99test 0.7378 0.9671 0.9443 

102test 0.6973 0.9838 0.9558 102test 0.7283 0.9794 0.9549 

109test 0.7212 0.9647 0.9388 109test 0.7461 0.9581 0.9356 

Average 0.7678 0.9636 0.9447 Average 0.7901 0.9556 0.9397 
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Figure 5.11 The examples of segmentation on a MREH image using different training 

regimes. (a) is an original test image; (b) demonstrates the ground truth; (c) is the 

segmentation result using STARE textons and (d) is the segmentation result using textons 

trained from subset of MREH database.  

 

 

Figure 5.12 (a) The box plots of measurements of two classifiers trained on MREH (MREH) 

and STARE (MREH*); (b) Comparative performance of two experts.  

(a) (b) 

(a) (b) (c) (d) 
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5.4 Chapter conclusion and discussion  

Three sets of experiments have been described in this chapter. The first set of experiments 

demonstrated a supervised retinal vessel segmentation method using a novel MR11 filter 

bank and textons. The performance measurements on the DRIVE database shows that for k=2, 

the average specificity reaches 0.9806 with 0.7325 sensitivity, the average accuracy is 0.9587. 

The values of specificity, sensitivity and accuracy for the k=4 are 0.9524, 0.8323, 0.9422, 

respectively. The second set of experiments described an improved texton generation scheme 

based on the previous experiments, which improves the efficiency and is more automated 

than our previous method. The evaluation results suggest that our proposed method 

outperforms many published works and the performance compares well with the best 

published results on STARE and DRIVE datasets. For our segmentations of the STARE 

dataset, the average specificity = 0.9643, sensitivity = 0.7515 and accuracy = 0.9506. 

Specificity, sensitivity and accuracy for the DRIVE dataset are 0.9831, 0.7167, and 0.9591 

respectively. The third set of experiments provided sufficient evidence which verifies that 

textons trained on one dataset can be reused on other datasets, while our analysis also 

revealed the consistent performance of our proposed method when applying it on an 

independent set of optical fundus images. Besides using publicly available STARE and 

DRIVE database, a new independent dataset named MREH was employed to test our 

technique. As expected, we found that textons trained on images drawn from the same dataset 

as the test sample perform better. However, the performance we measured when training 

images were drawn from a different dataset was only marginally poorer and comparable to 

that found between human experts, faced with the same task.   

In practice, although the experimental results suggest that the textons are successfully 

capturing vessel texture and the framework for learning and selecting textons is robust, the 

high (11) dimensional feature vector causes high computational cost which still remains a 

problem in practical application. Moreover, some blood arterioles, venules and capillaries are 

miss-detected because of limited scales of spatial domain filters. A straight forward way to 

handle this issue is increasing the number of scales that may cover more vessel diameters. 

However it will again increase the computational cost. Therefore we believe that this 

contradiction cannot be resolved using this proposal. An alternative solution is introducing 

the Gabor filter to analyse the image in both the spatial and frequency domain. Our 

subsequent studies using the Gabor filter for retinal vessel feature extraction and 
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segmentation are presented in the next chapter.  In addition, the statistical analysis results in 

our experiment shows that the performance of two expert’s segmentations have statistically 

significant difference, which is some cause for concern and suggests that our approach may 

benefit from techniques for identifying ground truth that compensate for this inter observer 

variability [199]. We believe there is scope for further work focused on producing reliable 

ground truth from multiple experts, and we hope the comparative study undertaken with 

human experts will inform future clinical investment in this area.  
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Chapter 6 

6. Texton based retinal vessel segmentation using Gabor 
filters and derivative of SIFT 

Retinal vessel segmentation is an important preliminary stage in automatic assessment of 

retinopathy as it enables the vascular tree to be constructed. Numerous automatic retinal 

vessel segmentation approaches on fundus image have been proposed. A Comprehensive 

survey of these methods was presented in chapter 2. A significant number of filter-based 

methods are proposed to extract vessel and non-vessel features. The achievement of filter-

based methods depends on the design of the filter bank used to extract vessel features. 

However these approaches that rely on special filters suffer due to the large range of various 

vessel widths that occur in fundus images and a common problem is that some tiny vessels 

are miss-segmented. Although our proposed MR11 filter bank can address some of these 

limitations (see section 5.1.1 for details), the technique is computationally expensive since 

many filter kernels need to be convolved with the image and the features that are formed are 

high dimensional vectors and this, in turn increases the computational cost of subsequent 

clustering or classifying algorithms.  

The first experiment presented in this chapter investigates if we can balance this situation 

by decreasing the number of filters while maintaining or improving the segmentation 

performance. Our technique uses the Gabor filter to extract vessel relative features. 

In practice, although supervised segmentation methods exhibit more competitive 

performance than unsupervised methods (refer to table 2.8, 2.9), pursuing more automatic 

(unsupervised) retinal vessel segmentation method has still been a focus of research in the 

area, especially, for those classifier-based segmentation methods. Unsupervised training 

schemes commonly do not rely on the ground truth and this is an attractive feature as in 

reality it may not be reliably provided. Building on texton theory and given that the vessel 

structure can be decomposed into many vessel segments rotated in any specific angle, we 

develop a derivative of the scale invariant feature transform (SIFT) [202] based on Gabor 

filters to extract specific vessel relative features.  
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In the second experiment, we propose an unsupervised retinal vessel segmentation method, 

in which, a derivative of the scale invariant feature transform (DSIFT) algorithm extracts 

vessel features that are used to determine appropriate scale parameters and potential 

interesting key-points which are further employed to inform the initialization of a k-means 

algorithm in the texton generation stage. The use of stable vessel key points derived from 

DSIFT improves the stability of the clustering algorithm and this enables textons to be 

selected automatically without manual intervention.   

These two sets of experiments are described in section 6.1 and 6.2 respectively. The 

segmentation results for each experiment were measured, and corresponding evaluation 

results are presented in subsection 6.1.3 and 6.2.3. Section 6.3 presents the chapter 

conclusion and discussion. 

6.1 Retinal vessel segmentation using Gabor filter and Textons  

The Gabor filter was originally proposed by Dennis Gabor [180] and subsequently used by 

Daugman [181] to model specific frequencies and orientations of certain cells in the visual 

cortex of some mammals. Because of its characteristics, the Gabor filters have been widely 

used in many applications of image processing, such as object recognition, edge detection, 

and texture classification. Since the Gabor filter is localised, spatially different image textures 

can be extracted depending on values of the filter parameters. In this experiment, we choose 

the Gabor filter kernel considering the vessels’ morphological characteristics, of which the 

most important vascular properties are vessel width and their corresponding rotated angle. 

We present a procedure for parameter selection based on the retinal vessel features, and use a 

further parameter λ to control the function’s performance. Machine learning is used to 

optimize the filter parameters for retinal vessel extraction. The filter responses are 

represented as textons and this allows the corresponding membership functions to be used as 

the framework for learning vessel and non-vessel classes. Then, vessel texton memberships 

are used to generate segmentation results. 

6.1.1 Optimization of Gabor filter parameters 

We choose a Gabor filter kernel to extract features of retinal vessels as the function encodes 

information about specific frequencies and orientations. The mathematical expressions of the 

1-D function and 2-D function have been presented in section 3.2.5. In order to allow the 
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filter kernel to be rotated in any orientation, the equation 3.23 is converted to following 

equation: 

                      G^ �, �# � �
M?

g
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cos 2���¾ � �#                (6.1) 

where �¾ � � cos � � � sin �, �¾ � "� sin � �� cos �. �B and �C determine the spread of the 

Gaussian envelope in x and y axis directions, respectively. We set the term �B equals to �C in 

our experiment. The term � denotes the spatial frequency of the Gabor filter kernel. We 

introduce the parameter λ which presents the wavelength of the cosine factor (cos 2π ×È

Ø
� φ#, 

see equation 6.2) of the Gabor filter kernel and the 1/	λ denotes the special frequency of the 

cosine factor (see � in equation 6.1). Because the linear structure (vessel segment) has an 

approximate rectangular shape, the kernel should be anisotropic. In order to construct an 

anisotropic kernel we insert the spatial aspect ratio parameter γ into the equation 6.1, which 

determines the ellipticity of Gabor Kernel. Consequently, equation 6.1 can be converted into 

the following form: 
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If  γ=1, the kernel is circular and σ is the standard deviation of the Gaussian envelope.   

 

Figure 6.1 Showing the characteristics of vessel boundaries, the symmetric Gabor kernel and 
the optimal Gabor filter bank; (a) is a panel cropped from a grey-level retinal image; (b) a 
grey level profile from the red line crossing the vessel in (a); (c) Gabor kernel with parameter 
φ=0; (d) Gabor kernel with parameter φ= π; (e) is optimized Gabor filter bank for retinal 
vessel feature extraction. 

(a) (b) 

(c) (d) (e) 
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Because the vessel boundaries in fundus images are presented in a plane approximately 

normal to the sensor plane their edges are assumed to be parallel. So we model the vessel as 

an even symmetric function with corresponding  centre-on and centre-off responses given by 

φ = 0 and φ = π.  When � equals 
'
& or -

'
&, the equation becomes an odd-symmetric function. 

Figure 6.1-c and 6.1-d illustrate Gabor kernels with parameter φ = 0 and φ = π, respectively. 

Since retinal vessels appear darker compared with their background (e.g. Figure 6.1-a is a 

panel cropped from a grey-level retinal image and 6.1-b is a grey level profile from the red 

line crossing the vessel in 6.1-a), we choose φ = π for our kernel model.  

Neurophysiological research shows that the parameter λ and σ are not independent [200], 

Petkov and Kruizinga [201] reported that the ratio σ/λ is related to the half-response spatial 

frequency bandwidth b and can be set as follows. 

                                 
(
Û = $

' Qßà &
& . &â�$

&âM$                                       (6.3) 

In practice, the bandwidth b controls the number of visible parallel excitatory and 

inhibitory stripe zones. Three zones, one inhibitory and two excitatory are visible in the 

retinal vessel structure (Figure 6.1-a) so we determined b=3 in our experiment. We set the 

spatial aspect ratio γ as 0.85 as our previous work suggests this ratio to be optimal. Since 

σ and λ  are correlated, only one of them (λ) is considered a free parameter.  Hence, we 

rewrite equation 6.2 as  

                       HÛ,^ �, �# = � MAÈg�Y.¿g=Èg
Y.?g⋅äg # cos 2� BÈ

Û + �#               (6.4) 

The orientation of the retinal vessel is another significant structural characteristic since 

vessels are neither vertical nor horizontal precisely. Consequently, the Gabor filter kernels are 

designed to cover 12 different orientations in 15o increments. Hence, our filter bank 

comprises a set of Gabor kernels parameterised by λ which can control the function’s 

performance with respect to the enhancement of vessels. The choice of  λ, and hence using 

the relationship in equation 6.3, the kernel size � is of primary importance with regard to the 

performance of the Gabor filter and its ability to extract vessels. We choose å by plotting a 

family of ROC curves for a range of filter responses obtained from a training set of images.  
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Figure 6.2 The ROC curves obtained by different lambda values. 

 

Typical results are plotted in Figure 6.2. Corresponding qualitative measurements AUCs 

(area under the curves) were obtained based on the selection of λ values (6-16).  

 

Figure 6.3 The AUCs of ROCs with different lambdas 

 

As we can see from the Figure 6.3, when λ is 13, the value of AUC reaches maxima 

(0.9421), the remaining values of AUCs are 0.9074, 0.9170, 0.9248, 0.9312, 0.9364, 0.9395, 

0.9417, 0.9415, 0.9401 and 0.9379, respectively.  From this analysis we chose λ=13. Using 

equation 6.3, we find σ is 3.12 and hence a suitable kernel size is 9×9. Figure 6.1-e illustrates 

optimized Gabor filter bank for retinal vessel feature extraction. 

AUCs 

λ 
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To assess the performance of the Gabor filter bank we designed, we compare Gabor filter 

with matched filter using ROC curves. Figure 6.4 illustrates both curves, in which the curve 

shown with the solid line represents the performance of our Gabor filter and the curve shown 

with a dotted line represents the matched filter. The results indicate that the Gabor filter 

outperforms the matched filter, since the Gabor filter curve is closer to the top left corner.  

 

Figure 6.4 Comparative ROCs between Gabor filter and Matched filter 

 

A typical example image response to Gabor filer bank with optimized parameter is 

illustrated in figure 6.5, in which 6.5(a) is an original fundus image and the 6.5(b) is the filter 

response.    

 

Figure 6.5 An example of optimal Gabor filter response, (a) is an original fundus image and 

(b) is the filter response to optimized Gabor filter. 

(a) (b) 
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6.1.2 Generating the textons 

The procedure for generating textons is similar to the scheme described in section 5.1.2. In 

this experiment, we search for an optimal value for parameter k of the k-means clustering 

procedure.   When training vessel textons , various values of k (number of cluster centres) 

were chosen (k = 1…5) and when training non-vessel textons  k= (1…10) were chosen. The 

corresponding accuracies were calculated by evaluating with respect to ground truth. 

Consequently, a total of 12 textons were generated and stored in the texton dictionary, in 

which 3 textons are related to vessel elements and 9 textons are related to non-vessel 

elements. 

6.1.3 Experimental results and evaluation 

In this experiment, the proposed method was tested and evaluated on the DRIVE data sets. 

Our algorithm was evaluated using standard measurements, in terms of sensitivity, specificity 

and accuracy for each sample of test images. Table 6.1 illustrates these measurements for 

each case in the test set of the DRIVE database, in which the average specificity reaches 

0.9602 with 0.7673 sensitivity and the average accuracy is 0.9430. An example of a 

segmentation for an image in the test set of the DRIVE database is illustrated in Figure 6.6, in 

which the 6.6 (a) is an original image, the 6.6 (b) is its ground truth and 6.6(c) is the vessel 

segmentation. Visually, most of tiny vessel braches (capillaries) are detected. However some 

false positive pixels are evident in the area at the right bottom corner and around the optic 

disc (OD).  

To verify the performance of our method, we compare results with other state-of-the-art 

approaches for retinal vessel segmentation in fundus images. Table 6.2 presents 

corresponding results. The relative terms of measurement are average obtained from all of the 

test images. 

The experimental results show that our proposed method produced a much better figure 

for sensitivity, whilst maintaining almost the same overall accuracy, compared with the best 

other methods.  Note: Comparative results include work by Soares [103] and Fraz [110] who 

also use Gabor filters. 
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Table 6-1 Performance results on the DRIVE database using the optimized Gabor filter 

Image 

DRIVE 

Sensitivity Specificity Accuracy 

01test 0.8499 0.9564 0.9469 
02test 0.7351 0.9739 0.9495 
03test 0.6680 0.9714 0.9411 
04test 0.7618 0.9562 0.9383 
05test 0.6631 0.9864 0.9561 
06test 0.7060 0.9743 0.9481 
07test 0.7524 0.9459 0.9282 
08test 0.7101 0.9551 0.9340 
09test 0.7216 0.9744 0.9539 
10test 0.7493 0.9694 0.9513 
11test 0.7561 0.9494 0.9321 
12test 0.7827 0.9560 0.9410 
13test 0.7542 0.9572 0.9373 
14test 0.8073 0.9427 0.9317 
15test 0.8250 0.9322 0.9245 
16test 0.8092 0.9626 0.9488 
17test 0.7808 0.9511 0.9367 
18test 0.8340 0.9559 0.9462 
19test 0.8636 0.9649 0.9565 
20test 0.8159 0.9679 0.9568 
Average 0.7673 0.9602 0.9430 

 

  

Figure 6.6 Examples of segmentation on a DRIVE image using optimized Gabor filter. (a) is 
an original image, (b) is its ground truth and (c) is the vessel segmentation   

In practice, it’s difficult to balance the sensitivity and specificity. Normally, with 

increasing sensitivity, the value of specificity might reduce and this, in turn changes the 

overall accuracy. In our experiment, we found that sensitivity increased more than 5% 

however the specificity just reduced 1%. This performance confirms the robustness of our 

method in detecting retinal vessels.   

(a) (b) (c) 
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Table 6-2 Comparative results on the DRIVE database 

Method 
Performance Results 

database Sensitivity Specificity Accuracy 

2nd observer DRIVE 0.7761 0.9725 0.9473 
Our method(Gabor) DRIVE 0.7673 0.9602 0.9430 
Our method(MR11) DRIVE 0.7167 0.9831 0.9591 

Mendonca [126] DRIVE 0.7344 0.9764 0.9452 
Zana[125] DRIVE 0.6696 0.9769 0.9377 
Staal [102] DRIVE 0.7194 0.9773 0.9441 
Zhang [89] DRIVE 0.7120 0.9724 0.9382 

Soares [103] DRIVE 0.7283 0.9788 0.9466 

Fraz [110] DRIVE 0.7525 0.9722 0.9476 

Table 6.2 also includes the measurements of method using MR11 (expressed as our 

method (MR11)) which has been described in chapter 5. Comparing with the experimental 

results of chapter 5, the performance of our method using Gabor in terms of accuracy is 

poorer than the performance of the method using MR11, however the former is much more 

effective, as the dimensions of feature vectors are reduced and the computational cost is 

lower. In the next experiment, we will investigate how to improve its performance by 

adopting multi-scale Gabor filters and propose an unsupervised texton based segmentation 

method using a derivative of SIFT.  

6.2 Unsupervised texton based retinal vessel segmentation using 

DSIFT and the multi-scale Gabor filter  

Although supervised segmentation methods are more competitive in terms of performance 

than unsupervised approaches, their dependence on ground-truth requires a training stage and 

the problem of intra- and inter-observer variability amongst experts needs to be considered as 

in practice this limits the robustness of the application [199]. In this and many other research 

fields, the availability of ground truth may be sparse or very expensive to acquire due to the 

laborious nature of the task. Even when a suitable image database with corresponding ground 

truth is available, inaccuracies in the segmentation will lead to poor performance compared to 

ground truth. Moreover, because a significant number of supervised vessel segmentation 

methods use filter banks to extract vessel and non-vessel features, the performance depends 

on the design of the filter bank. However they are computationally expensive since many 

filter kernels need to be convolved with the image and the features that are formed are high 
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dimensional vectors and this, in turn increases the computational cost of subsequent 

clustering or classifying algorithms. In this case, it’s very significant to develop an 

unsupervised method using a limited number of filters to handle this issue, especially in the 

retinal vessel segmentation research field.  

 

Figure 6.7 The framework of an unsupervised retinal vessel segmentation on fundus image 

using multi-scale Gabor filters and DSIFT 

Recalling the schemes of previous methods presented in section 6.1 and chapter 5, ground 

truth is used to determine the vessel or non-vessel related textons when training appropriate 

classifiers for vessel segmentation. In this experiment, we wish to develop a new algorithm to 

identify the vessel textons directly instead of using ground truth. We adopted the Gabor 

filters presented in the previous section to detect potentially interesting pixels that will be 
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used to extract the specific vessel feature around those individual candidates based on an 

algorithm derived from SIFT. We call this algorithm the derivative of SIFT (DSIFT) 

algorithm. The feature descriptors derived from extracted features then can be used as 

indicators to identify the vessel relative elements on the fundus image. Consequently, the 

clustering computation procedure is seeded from those identified vessel elements to generate 

vessel textons that are subsequently used for segmentation in the testing stage. 

The framework of this procedure is illustrated in Figure 6.7.  It is split into two primary 

stages: training and testing. The training set is drawn from the DRIVE database and includes 

20 images. We further split these images into two subsets, of which one was used for training 

a dictionary of vessel relative descriptors  by employing DSIFT (section 6.2.1) and the other 

was used to train a dictionary of vessel textons as described in section 6.2.2.  

At the textons training stage, the selection of appropriate Gabor filter scales is determined 

by scales of key points. This in turn allows textons to be formed at specific scales. We call 

these meta-textons (see section 6.2.2). The vessel feature descriptors were computed on each 

pixel of potential interest (key points), and then these generated descriptors are matched to 

those pre-trained vessel feature descriptors. Seeds for initializing the k-means algorithm were 

selected from the matched vessel key points. This determines the trained textons relating to 

vessel. At the test stage, meta-textons are assigned depending on responses of multi-scale 

Gabor filters. The selection of filter scales is informed automatically by scale information in 

meta-textons. The vessel texton related memberships generate texton maps and the 

segmentation results are obtained by combining vessel texton related maps. 

6.2.1 Derivative of SIFT 

The scale invariant feature transform (SIFT) was originally proposed by Lowe [202], a brief 

review of SIFT has been presented in section 3.3.2. SIFT is used to extract distinctive local 

image features that has been employed as a powerful tool for various image processing 

applications. Computing the SIFT involves four stages, see section 3.3.2 for details. In our 

experiment, inspired by Lowe’s work, we developed an approach called derivative of SIFT 

(DIFT). Our approach uses Gabor filter to model the distinctive vessel features. The detail of 

the Gabor filter characterised by a free parameter λ is presented in section 6.1.1.  
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Figure 6.8 Vessel features extraction and key points selection in DSIFT 

Given a significant natural characteristic of retinal vessels is the wide range of vascular 

widths presented  in fundus images (see Figure 2.1), applying a filter bank using only a single 

scale may not be sufficient to detect various widths of vessels exactly. So although applying 

the filter at an optimal scale may provide good performance with regard to extraction of the 

main vessels, some tiny vessels may be miss-detected. However, using Gabor filters at each 

scale have their advantages and disadvantages. As we described in section 6.1.1, the value of 

lambda (λ) determines the value of sigma (σ), see equation 6.3. The value of � determines the 

kernel size, thus different widths of vessels can be detected using various �. In practice, while 

small values of σ  (scale) are useful for detecting tiny vessels, they are also sensitive to image 

noise. With increasing value of  σ, the filter may detect wider vessels, however, those tiny 

vessels may be miss-detected. With this in mind, in order to detect potential vessel key points 

which are further analysed to generate corresponding descriptors, we adopted Gabor filters at 

multiple scales in our experiment. Note: based on our earlier work we select the range of 

scales empirically i.e.  λ ∈ ¥4, 6, 8, 9, 13,15«.      

Although the descriptors could be calculated for each pixel in the image, to reduce the 

computational cost, descriptors are only computed for a subset of the most representative 

vessel pixels. These so-called vessel key points were obtained by comparing the filter-bank 

response at a pixel (marked as cross in Figure 6.8) to its 8 neighbours (marked as circles) at 

the same scale and meanwhile comparing the pixel to its 18 neighbours at its adjacent scales. 
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The selection of the local maxima, inspired by SIFT, aims to identify a set of representative 

vessel pixel candidates, therefor the local minima were not taken into account. 

 

Figure 6.9 Examples of detected key points of vessels and corresponding descriptors. (a) 

illustrates the key points and (b) illustrates corresponding descriptors. One of the descriptors 

is zoomed in and presented in (b1); one of the orientation histograms presented in (b1) is 

illustrated in (b2).   

Figure 6.9 (a) illustrates the potential key points. As we can see from the image, key 

points correspond not only to main vessels, but also a few key points are located in the areas 

around the end of some capillaries. This is because we apply the Gabor filter at multiple 

scales and each scale has a corresponding ability to extract various sizes of vessels. For 

instance, assuming λ equals 4, 6, and 8, the filter with λ=4 has an ability to extract thin 

vessels thus the responses of capillaries are evident. The filter with λ =8 has valid 

performance for detecting wide vessel however the responses of tiny vessels may not be 

evident. The performance of filter with λ=6 is intermediate between λ=4 and λ=8. In this case, 

these differences of responses among three scales may be detected and the maxima in both 

wide and thin vessels can be extracted when each pixel compares to its 26 neighbours.  In the 

second stage, the detected maxima are used as potential vessel candidates. For each candidate, 

its location and corresponding scale are recorded. Note: low contrast points are removed.  In 

the third stage, each key point is assigned to one or more orientation based on the local image 

(a) 

(b1) 

(b2) 
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gradients around the key points. Image gradient magnitude è �, �#  and corresponding 

orientation � �, �# are calculated using pixels differences at each scale. The equation can be 

expressed as follows:  

           è �, �# = � ³ � + 1, �# − ³ � − 1, �##& +  ³ �, � + 1# − ³ �, � − 1##&        (6.5) 

                                               � �, �# = ��	M$ é� B�$,C#M� BM$,C#
� B,C�$#M� B,CM$#ê                                   (6.6) 

where R is the Gaussian smoothed image at a specific scale which is determined by the scale 

of the key points. The calculated gradient orientations are further formed as an orientation 

histogram which covers 360 degrees range of orientations. The computation of gradients and 

orientations are weighted by a Gaussian window. The different sizes of the Gaussian circular 

window are determined by the scales of selected key points. These scales (� ) are also 

inherited by the parameters of the Gaussian envelope of the Gabor function. In our 

experiment, the radius of the Gaussian circular window is determined by �, where values of  

�  are calculated based on the parameter lambda λ ∈ [4, 6, 8, 9, 13, 15]  , consequently, 

referring to equation 6.3, a range of � values is [0.96, 1.45, 1.93, 2.17, 3.13, 3.61]. Note, here, 

in our experiment the appropriate scales of key points include λ ∈ [6, 8, 9, 13] , so the 

employed  � values  are  [1.45, 1.93, 2.17, 3.13]. Employing a circular window allows an 

orientation histogram to be generated within the specific region located around the vessels. At 

the final stage, all generated gradients and orientations are accumulated into a representation 

(descriptor) by summing the gradient magnitudes near that orientation in the region (see 

Figure 3.8). Each descriptor is formed as a 4x4 grid, of which each sub-grid contains an 

orientation histograms that contains 8 direction bins. An example of vessel key points’ 

descriptors is shown in the Figure 6.9 (b).  To see it clear, one of the descriptors in (b) is 

zoomed in and presented in (b1). The descriptor is presented as a 4×4 grid. An orientation 

histogram in each grid contains 8 direction bins. This histogram is presented in (b2) derived 

from (b1). 

In our experiment, we trained vessel relative descriptors from a subset of training samples 

and stored them into a descriptors library. For images in the training subset which are used to 

generate textons, we detect key points in the same way, and apply the same scheme to 

generate their descriptors. Up to this point, each key point is represented by its descriptor 

which is formed as a 4x4x8=128 dimensional vector. The matching process is implemented 

by finding the best candidate match for each key point from the key point library using 
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corresponding descriptor. The factor to identify the best candidate is based on its nearest 

neighbor which is defined as the key point with minimum Euclidean distance for the invariant 

descriptor vector. In the original SIFT algorithm, the second-closest neighbor is defined as 

being the closest neighbor considering that there are multiple training images of the same 

object. In [202], the objects in a natural image could be any structures which are not known 

in advance, thus the adopted difference of Gaussian filter in the feature extraction stage is not 

designed for a particular object (e.g. a cup, a car or a house etc.). This results in some features 

from an image may have incorrect match in the training database because they may arise 

from background cluster or were miss detected in the training images. Instead, in our 

experiment, the object of interest (vessel) is known explicitly that motivates us to design a 

specific Gabor filter bank (see section 6.1.1) to detect vessel features. Therefore at the key 

point detection stage, the detected key points and corresponding calculated descriptors are 

completely relevant to the vessels.  In an extreme condition, we can even use all of detected 

key points derived from a novel image without matching process. However, in order to use 

the most representative candidates to initialize the clustering process, detect key points were 

matched according to the minimum Euclidean distance between the novel descriptors and the 

descriptors stored in descriptors library following by a global distance thresholding procedure. 

The matched key points are used in the next stage to identify seed candidates which are 

subsequently used to initialise the clustering algorithm when generating textons (Figure 6.7). 

We will describe texton based vessel segmentation using the multi-scale Gabor filter in the 

next subsection.    

6.2.2 Textons generation and segmentation 

Textons are learnt from the responses of multi-scale Gabor filters which are applied to 

each image in the training set. Here, the scales used are derived from the scales of which 

contain the matched key points, found during training. The combined filters can extract both 

tiny and wide vessel features and this results in more accurate segmentation. The k-means 

algorithm is informed by key points, in which, initially, instead of selecting k random points 

as default means (centroids) as we did in the previous scheme (see Figure 5.4), initial pixels 

are selected from matched vessel key points as initial candidates, then the new means of 

pixels located in the areas of the remaining matched key-points are computed in preference to 

other pixel candidates in the image. This computing procedure not only improves the stability 

of the k-means algorithm, but also allows the clustering procedure to start from more salient 
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vessel elements and has the advantage that the vessel texton dictionary can be constructed 

without the assistance of ground truth. 

In our experiment, we chose k=5 to reflect significant classes of objects that are visible in 

the images, i.e. vessels, bifurcations, optic disc (OD), vessel reflection, and background. To 

determine texton classes, we first rank the clusters based on their size. The largest cluster in 

the list maps onto the background texton class, since the background has the most number of 

pixels in an image. The remaining clusters are considered as textons that relate to vessels. 

In the texton training stage, only those Gabor filters at more appropriate scales are 

employed to extract vessel features. The scales are determined by the scales of detected key 

points which are generated using the DSIFT algorithm. We store generated textons and 

corresponding scales (in our experiment, these scales are λ =6, 8, 9, 13) into a texton 

dictionary which can be used in the test stage. Each texton in the dictionary is formed as a 4-

dimensional vector which is indexed by the corresponding scale. This scale information is 

stored in the first column of texton dictionary matrix, and the remaining rows record 

clustering centroids according to corresponding scales. We call it meta-textons. In our 

experiment, five meta-textons are trained, therefore, a total 5×4 numbers of clustering 

centroids are composed in the dictionary. Table 6.3 illustrated a schematic matrix of the 

meta-textons which is trained from the training set in the DRIVE database. The first column 

of the matrix shows the scale information. Each grid in the rest matrix contains a clustering 

mean value related to each texton ID [1,…, 5]. 

Table 6-3 A schematic diagram of the meta-texton trained from the DRIVE database 

Scales\Id 1 2 3 4 5 
6 0.180189 2.612138 1.371923 10.78716 4.293368 

8 0.198127 1.455655 1.28509 9.580782 3.988796 

9 0.155359 5.88564 1.561048 11.87148 4.670367 

13 0.170376 11.3539 2.054979 10.70356 4.549439 

 

In the test phase, we filter each novel image with the texton filter bank to generate 

corresponding responses at each pixel, where firstly, scales are selected by loading the meta-

textons and reading its scales. In this case, the novel image doesn’t need to convolve with 
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filter at all pre-defined scales (e.g. λ ∈ ¥4, 6, 8, 9, 13, 15« ), therefore reducing the 

computational cost of the system. Then corresponding vessel textons relating to selected 

scales are assigned based on the filter responses. The memberships of each texton are 

calculated that from the corresponding textons maps, segmentation results are obtained by 

combining various vessel texton maps. 

 

 

Figure 6.10 More accurate diameters of veins, arteries and capillaries in segmentation results 

using multi-scale Gabor filter. (a) is an original fundus image, (b) is its ground truth (c) is the 

vessel segmentation using our method and (d) is the segmentation using Cinsdikici [88] 

method   

The advantages of adopting multi-scale Gabor filters is that it provides useful functions for 

the algorithm, in which the tiny and wide vessels can be distinguished, thus the detected 

diameters of vessels are more accurate. For instance, a segmentation result using a state-of-

the-art method present in published work [88] is shown in figure 6.10-d. The result shows the 

diameters of the tiniest vessels are wider than the actual diameters in the corresponding 

(a) (b) 

(c) (d) 
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ground truth (Figure 6.10-b). In contrast, the vessel segmentation using multi-scale Gabor 

filters (Figure 6.10-c) produced much better results than results presented in Figure 6.10 -d.  

We hope to emphasize that the diameter of segmented vessels is a significant property for 

automated detection of corresponding diseases. For instance, in reality, a decreased ratio 

between diameters of arteries to those of veins also known as A/V ratio is used to assess the 

risk of hypertension (see section 1.3 for more details). 

6.2.3 Experimental results and evaluation 

The proposed method was tested and evaluated on the DRIVE data sets. Each image in the 

test set of the DRIVE database was segmented. The segmentation examples are shown in 

Figure 6.10 -c and Figure 6.11-a2, -b2. We can see from these results that our method 

extracts veins and arties (vessels with wide diameter) accurately while many capillaries (tiny 

vessels) are segmented. Note: many tiny vessels at the end of vessel network are detected, in 

which the diameter of those vessels are close to the real width of vessels (shown in ground 

truth). In order to qualify the performance of the proposed method, each segmentation result 

was compared to its ground truth. Standard metrics (sensitivity, specificity and accuracy) 

were employed to measure the performance. Table 6-4 illustrates measurements of each case, 

the average specificity reaches 0.9668 with 0.7812 sensitivity, the average accuracy is 0.9504.   

 

Figure 6.11 Unsupervised texton based vessel segmentation results using multi-scale Gabor 

filter. (a)(b) are original fundus images, their ground truths are shown in (a1)(b1), and (a2)(b2) 

are corresponding vessel segmentations using our method. 

(a) (a1) (a2) 

(b) (b1) (b2) 
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As we mentioned in the previous chapter, it’s difficult to balance the sensitivity and 

specificity. The tiny vessels have extremely low contrast compared with the background, thus 

if the algorithm is particularly designed for extraction of tiny vessel elements in order to 

increase the sensitivity of segmentation, more non-vessel elements from the background may 

be detected as vessels. This will lead to a reduction in specificity and accuracy. In this 

experiment, the average sensitivity reaches 0.7812. This reveals the algorithm using DSIFT 

descriptors and multi-scale Gabor filters has more competitive performance for vessel 

extraction. The maximum sensitivity reaches 0.8833, whilst the average specificity of 0.9668. 

This confirms that the algorithm maintains good performance and is insensitive to features 

due to non-vessel elements in the background. 

Table 6-4 Performance results on DRIVE database using multi-scale Gabor filter and DSIFT 

Image Sensitivity Specificity Accuracy 

01test 0.8506 0.9670 0.9566 
02test 0.7717 0.9799 0.9586 
03test 0.7825 0.9513 0.9344 
04test 0.8142 0.9549 0.9420 
05test 0.7449 0.9800 0.9580 
06test 0.7477 0.9696 0.9480 
07test 0.7108 0.9750 0.9509 
08test 0.7267 0.9559 0.9362 
09test 0.7819 0.9676 0.9526 
10test 0.8111 0.9623 0.9499 
11test 0.7663 0.9640 0.9463 
12test 0.7900 0.9678 0.9524 
13test 0.7448 0.9707 0.9486 
14test 0.8213 0.9466 0.9365 
15test 0.7381 0.9810 0.9637 
16test 0.7261 0.9835 0.9603 
17test 0.7996 0.9519 0.9391 
18test 0.7817 0.9752 0.9599 
19test 0.8833 0.9640 0.9573 
20test 0.8302 0.9676 0.9575 
Average 0.7812 0.9668 0.9504 

 

Our method was compared with other state-of-the-art approaches and the most recent 

work, sorted by published year in table 6.5. Most of methods presented in table 6.5 are 

supervised classifier based methods. A tracing-based method [101] and a graphic cut based 

method [128] are also included, as both of them are proposed very recently and have 

outstanding performance. 
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The comparative results show that our method has much better sensitivity than the best 

other methods. To the best of our knowledge, the maximum accuracy of previous method is 

0.9595, proposed by Ricci and Perfetti [104], however they didn’t report values of sensitivity 

and specificity. Relatively, the proposed tracing based method due to Ocbagabir et al. [101] 

has competitive accuracy (0.9583), the sensitivity of our method is about 7% better however 

the specificity is 1.5% worse. Although the lower specificity indicates that more non-vessel 

elements were segmented as vessels, the better sensitivity reveals that our method has better 

performance to detect vessels from background. In this field, the primary goal of vessel 

segmentation is to detect as many vessel elements as possible. Therefore we are inclined to 

improve the overall accuracy by pursuing higher sensitivity while maintaining the same 

specificity or sacrificing only a small fraction of it      

Table 6-5 Comparative results between our unsupervised retinal vessel segmentation method 
and other state-of-the-art methods on the DRIVE database 

Method 
Performance Results 

year categories Sensitivity Specificity Accuracy 

2nd observer - Manual 0.7761 0.9725 0.9473 
Staal [102] 2004 Supervised 0.7194 0.9773 0.9441 

Soares [103] 2006 Supervised 0.7283 0.9788 0.9466 

Ricci & Perfetti [104] 2007 Supervised - - 0.9595 
Rezatofighi et al.[105] 2008 Supervised 0.7308 0.9723 0.9410 
Salazar-Gonzalez[128] 2010 Graph cut 0.7197 0.9665 0.9479 

Fraz [110] 2011 Supervised 0.7525 0.9722 0.9476 
Marín et al. [108] 2011 Supervised 0.7067 0.9801 0.9454 

Condurache & Mertins et al. 
[111] 

2012 Supervised 0.9094 0.9591 0.9516 

Ocbagabir et al.[101] 2013 Tracing 0.7131 0.9824 0.9583 
Our method(Gabor) 2013 Supervised 0.7673 0.9602 0.9430 

Our method (Multi-
Gabor&DSIFT)  

2014 Unsupervised 0.7812 0.9668 0.9504 

 

We wish to emphasize that the primary goal of this experiment to develop an unsupervised 

method which has relatively good performance compared with supervised methods which 

requires ground truth. Our experimental results confirm that the texton based method using 

DSIFT and multi-scale Gabor filtering technique has significantly competitive performance 

compared to many other supervised methods. 
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6.3  Chapter conclusion and discussion 

This chapter described two sets of experiments, in which an optimized Gabor filter for vessel 

feature extraction was proposed. The advantage of using this filter is that it reduces the 

dimension of feature vectors which will be clustered in a textons generation procedure. Thus 

it significantly saves the computational cost when we implement the application. The basis of 

a single parameter controlled Gabor filtering technique is using correlations between 

parameters λ and � of the Gabor filter, in which the � determines the spread of the Gaussian 

envelop of the Gabor function. This plays a significant role in determining the width of 

vessels. Therefore using λ determines sigma can detect more vessel features that can be used 

to generate corresponding textons. The experimental results revealed that performance of our 

Gabor filter is better than the matched filter based on the ROC analysis (see Figure 6.4). The 

corresponding parameters of the Gabor filter were optimized also using a ROC analysis of the 

filter performance on training data. Results of the first experiment demonstrated that vessel 

segmentation using optimized Gabor filer and textons enhances the true positive rate while 

maintaining a level of specificity that is comparable with other approaches.  

In the second experiment, we proposed a new unsupervised retinal vessel segmentation 

method by developing a derivative of SIFT (DSIFT) to optimize the generation of vessel 

relative textons and determine more appropriate scales for extracting vessel features. In order 

to extract distinguishing vessel features for training vessel textons, we applied Gabor filters at 

multiple scales. As each scale is tuned to detect corresponding vessels with different 

diameters, the selection of scales was determined by the scales of selected key points, 

identified by DSIFT descriptors. The vessel related descriptors identified by applying DSIFT 

on a training set are stored in a descriptors dictionary. These trained descriptors are matched 

to novel descriptors generated from another set of training images used to generate textons.  

Textons corresponding to descriptors that most closely match descriptors in the dictionary are 

used as default means in a clustering process that identifies textons. The integration between 

the DSIFT descriptors computation and textons generation allows suitable scales to be 

selected automatically without manual intervention. Thus the method can be more automated 

and be invariant to scales. Here, the textons are formed as meta-textons which not only 

contains prototype responses vectors but also records corresponding appropriate scales for 

vessel feature extraction. The evaluation results verified that our proposed unsupervised 

retinal vessel segmentation have competitive performance, compared to the best other 
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supervised methods. Additionally, we believe that the proposed scheme for selecting 

potential vessel candidates based on DSIFT also can be used as a general tool to detect more 

appropriate initial seeds in some tracing based vessel segmentation methods.  

Although the performances of both methods presented in sub-sections 6.1 and 6.2 in 

terms of sensitivity, specificity, and accuracy are comparable with the best published work, 

we can find some limitations and weaknesses from our methods. Visually, some false 

positive pixels appear in segmentation results, especially in areas around the optic disc (OD) 

and in the left part of the peripheral area. This is because the area surrounding the OD and the 

outer circle exhibits strong contrast and so there are significant gradient changes on its 

boundary. We believe that our method can be improved by removing these false positive 

pixels. A direct way to handle this limitation is adding a pre-processing stage to eliminate 

such influences. An alternative way is applying a post-processing stage on the segmentation 

results to remove them. We intend to address these limitations in our suggested further work.        
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Chapter 7 

7. Conclusion and future work  

In optometry, the appearance of blood vessels in the retina are routinely examined as their 

condition is indicative of disease, such as diabetes, hypertension, and glaucoma. However, 

the assessment of the retina vessel anomalies is a skilled time consuming task, and as such it 

has been the focus of research into automatic assessment techniques. Retinal vessel 

segmentation on fundus images is a critical stage in computer assisted diagnosis of systematic 

disease such as DR, AMD and Glaucoma etc. Measurements of vessel features also play an 

important role in the diagnosis of hypertension, obesity, arteriosclerosis, assessment of retinal 

artery occlusion and in computer-assisted laser surgery. Numerous approaches for automatic 

retinal vessel segmentation have been proposed. However, it is still a big challenge and 

remains a focus for ongoing research because of the complex nature of fundus images. The 

primary goal of our research is to investigate and developed accurate retinal vessel 

segmentation approaches in fundus images using texture feature extraction techniques and 

textons. This thesis presents a brief review of those diseases and also includes their current 

status, future trends and their automatic diagnosis techniques in routine clinical applications. 

The importance of retinal vessel segmentation is particularly emphasized in such applications. 

An extensive review of texture analysis methods that are especially useful for image 

segmentation is presented. Five automatic retinal vessel segmentation methods are proposed 

in this thesis, in which the experimental results suggested that our supervised and 

unsupervised texton based retinal vessel segmentation methods are more competitive than 

may other state-of-the-art methods. 

In this thesis, the early chapters describe the motivation for the project and provide an 

introduction to the field, in which various forms of common diseases (e. g. Glaucoma, Age-

related macular degeneration (AMD), vascular disorders, and Diabetic retinopathy) and 

corresponding automated detection techniques using fundus images are comprehensively 

reviewed. No such comprehensive review exists (as far as we’re aware) and this provides a 

valuable resource for those undertaking further work in the area. A comprehensive survey of 
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earlier and current retinal vessel segmentation methods was presented. Here, these 

approaches were divided into four categories: Matched filtering based segmentation; Vessel 

tracing/tracking based segmentation; Classifier based segmentation; and Model-based 

segmentation. Numerous such segmentation methods were briefly reviewed in each category 

and the advantages and disadvantages of methods in each category were discussed according 

to their corresponding comparative performance and summarized in tables 2.8 and 2.9. The 

classifier-based segmentation includes supervised and unsupervised methods. The advantage 

of supervised methods is that it provides more accurate segmentation results than other 

categories. However, its dependence on ground-truth requires a training stage and the 

problem of intra- and inter-observer variability amongst experts needs to be considered as in 

practice this limits the robustness of the application. Unsupervised classifier-based methods 

are seen to be a more appropriate way to segment the retinal vessels, but limitations (e.g. high 

computational costs and relatively poorer performance) need to be solved. In addition, this 

thesis presents an extensive review of texture analysis techniques which may be appropriate 

for retinal vessel segmentation. This may also provide a useful resource for medical image 

segmentation using various texture analysis techniques.  

The later chapters of this thesis described five automatic retinal vessel segmentation 

methods, in which the hybrid retinal vessel segmentation method is able to eliminate the 

interference caused by abnormalities in fundus images. Such anomalies (e.g. drusen) are the 

primary factor that influences the accuracy of segmentation in this field. The novel 

supervised texton based retinal vessel segmentation method is proposed which employs a 

new spatial filter bank design (MR11) for vessel feature extraction. This method significantly 

improves performance in terms of accuracy and efficiency compared to many other state-of-

the-art methods. This method was further developed by optimizing the texton generation 

stage in order to reduce the computational costs. The experimental results on two benchmark 

databases (DRIVE and STARE) show that our improved texton based method performs well 

compared to other published work and the results of human experts. On the STARE database, 

average specificity reaches 0.9643 with 0.7517 sensitivity and the average accuracy is 0.9506. 

The values of specificity, sensitivity and accuracy for the DRIVE dataset are 0.9831, 0.7167 

and 0.9591, respectively. In addition, we investigate the effect of different training regimes 

and provide an experimental basis for training a general textons library for vessel 

segmentation. Given that the lack of study materials (ground truth) is an open issue in this 

research field, we built a new dataset (using original data supplied from Manchester Eye 
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Hospital) that can be used as a resource for future vessel segmentation research.  The data set 

includes 3 sets of ground truth, hand labelled by 3 ophthalmologists.  

Building on experience gained during the development of the MR11 filter bank a 

supervised texton based vessel segmentation method using an optimized Gabor filter was 

described. We showed this approach to significantly enhance the true positive rate while 

maintaining a level of specificity that is comparable with other approaches. Finally, a new 

unsupervised texton based retinal vessel segmentation method using the derivative of SIFT 

(DSIFT) and multi-scale Gabor filters is proposed, which achieves a level of performance 

comparable with other supervised state-of-the-art methods. The performance of this method 

on the DRIVE database, in term of average sensitivity, specificity and accuracy are 0.7812, 

0.9668 and 0.9504, respectively.  In this method, the textons were formed as meta-textons 

which contain both prototype response vectors and appropriate scale information. This 

unsupervised segmentation method represents a significant contribution since it addresses the 

problems that arise due to inconsistent ground truth labels in the database and moreover, the 

DSIFT algorithm can be used to initialize seeds for many other categories of retinal vessel 

segmentation methods (e.g. tracing based method). The computer specifications and 

efficiencies of our proposed methods are reported in table 7.1. 

Table 7-1 Computer specifications and efficiencies of our methods 

Method  Time per image  Computer specifications OS Software 
Improved method 
described in chapter 4 5.45s 

Inter (R) Core(TM) i7-
4770,3.40 GHz, 16 GB 

Windows 
8 64-bit Matlab 

Supervised texton 
based method using 
MR 11 described in 
chapter 5  21.31s 

Inter (R) Core(TM) i7-
4770,3.40 GHz, 16 GB 

Windows 
8 64-bit Matlab 

Improved Supervised 
texton based method 
using MR11 described 
in chapter 5 20.78s 

Inter (R) Core(TM) i7-
4770,3.40 GHz, 16 GB 

Windows 
8 64-bit Matlab 

Supervised texton 
based method using 
multi-scales Gabor 
filters described in 
chapter 6 8.93s 

Inter (R) Core(TM) i7-
4770,3.40 GHz, 16 GB 

Windows 
8 64-bit Matlab 

Unsupervised texton 
based method using 
multi-scales Gabor 
filters and D-SIFT 
described in chapter 6   12.66s 

Inter (R) Core(TM) i7-
4770,3.40 GHz, 16 GB 

Windows 
8 64-bit 

Matlab, 
C++ 
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Considering some issues have not been resolved in this field, and we believe that our 

proposed texton-based approaches have some potential improvements. We list our further 

work as follows:   

1. The experimental results in section 5.3 have suggested that performances of two experts 

segmentations are statistically significantly different, which is some cause for concern 

and suggests that our approach may benefit from techniques for identifying ground truth 

that compensate for  this inter-observer variability. We believe there is scope for further 

work focused on producing reliable ground truth from multiple experts.  

2. Considering the robustness of our texton based vessel segmentation method, we believe 

that our method can be extended to segment several clinical structures simultaneously in 

fundus images by designing a new filter bank which not only contains filters for vessel 

and background feature extraction but also contains specific filters to extract features 

from different forms of anomalies in fundus images. This may allow our texton based 

segmentation method to be a more operationally useful tool for commercial applications. 

Moreover, we also would like to extend our method for segmentation in other medical 

image modalities.    

3. Measure the diameter and tortuosity of segmented vessels to assess the disease (e.g. 

hypertensive retinopathy, DR, cardiovascular disease ect.) by A/V radio and 

mathematical terms of tortuosity. These should also be addressed in further work. 
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