5,408 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Automatic Gaze Classification for Aviators: Using Multi-task Convolutional Networks as a Proxy for Flight Instructor Observation

    Get PDF
    In this work, we investigate how flight instructors observe aviator scan patterns and assign quality to an aviator\u27s gaze. We first establish the reliability of instructors to assign similar quality to an aviator\u27s scan patterns, and then investigate methods to automate this quality using machine learning. In particular, we focus on the classification of gaze for aviators in a mixed-reality flight simulation. We create and evaluate two machine learning models for classifying gaze quality of aviators: a task-agnostic model and a multi-task model. Both models use deep convolutional neural networks to classify the quality of pilot gaze patterns for 40 pilots, operators, and novices, as compared to visual inspection by three experienced flight instructors. Our multi-task model can automate the process of gaze inspection with an average accuracy of over 93.0% for three separate flight tasks. Our approach could assist existing flight instructors to provide feedback to learners, or it could open the door to more automated feedback for pilots learning to carry out different maneuvers

    Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations

    Full text link
    Recent advances in scanning transmission electron and scanning probe microscopies have opened exciting opportunities in probing the materials structural parameters and various functional properties in real space with angstrom-level precision. This progress has been accompanied by an exponential increase in the size and quality of datasets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large datasets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extract information from atomically resolved images including location of the atomic species and type of defects. We develop a 'weakly-supervised' approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular 'rotor'. This deep learning based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data

    Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward.

    Get PDF
    The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmenting medical images and localising and recognising objects of interest have become much less challenging. This progress has the potential of accelerating research and deployment of multitudes of medical applications that utilise CV. However, in reality, there are limited practical examples being physically deployed into front-line health facilities. In this paper, we examine the current state of the art in CV as applied to the medical domain. We discuss the main challenges in CV and intelligent data-driven medical applications and suggest future directions to accelerate research, development, and deployment of CV applications in health practices. First, we critically review existing literature in the CV domain that addresses complex vision tasks, including: medical image classification; shape and object recognition from images; and medical segmentation. Second, we present an in-depth discussion of the various challenges that are considered barriers to accelerating research, development, and deployment of intelligent CV methods in real-life medical applications and hospitals. Finally, we conclude by discussing future directions

    An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work.

    Get PDF
    Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors' efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use

    Facial Thermal and Blood Perfusion Patterns of Human Emotions: Proof-of-Concept

    Full text link
    In this work, a preliminary study of proof-of-concept was conducted to evaluate the performance of the thermographic and blood perfusion data when emotions of positive and negative valence are applied, where the blood perfusion data are obtained from the thermographic data. The images were obtained for baseline, positive, and negative valence according to the protocol of the Geneva Affective Picture Database. Absolute and percentage differences of average values of the data between the valences and the baseline were calculated for different regions of interest (forehead, periorbital eyes, cheeks, nose and upper lips). For negative valence, a decrease in temperature and blood perfusion was observed in the regions of interest, and the effect was greater on the left side than on the right side. In positive valence, the temperature and blood perfusion increased in some cases, showing a complex pattern. The temperature and perfusion of the nose was reduced for both valences, which is indicative of the arousal dimension. The blood perfusion images were found to be greater contrast; the percentage differences in the blood perfusion images are greater than those obtained in thermographic images. Moreover, the blood perfusion images, and vasomotor answer are consistent, therefore, they can be a better biomarker than thermographic analysis in identifying emotions.Comment: 22 pages, 9 figure

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions
    • …
    corecore