677 research outputs found

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p

    Incremental Market Behavior Classification in Presence of Recurring Concepts

    Get PDF
    In recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the non-stationary nature and the likelihood of drastic structural or concept changes in the markets. Traditional systems are unable or slow to adapt to these changes. Ensemble-based systems are widely known for their good results predicting both cyclic and non-stationary data such as stock prices. In this work, we propose RCARF (Recurring Concepts Adaptive Random Forests), an ensemble tree-based online classifier that handles recurring concepts explicitly. The algorithm extends the capabilities of a version of Random Forest for evolving data streams, adding on top a mechanism to store and handle a shared collection of inactive trees, called concept history, which holds memories of the way market operators reacted in similar circumstances. This works in conjunction with a decision strategy that reacts to drift by replacing active trees with the best available alternative: either a previously stored tree from the concept history or a newly trained background tree. Both mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The experimental validation of the algorithm is based on the prediction of price movement directions one second ahead in the SPDR (Standard & Poor's Depositary Receipts) S&P 500 Exchange-Traded Fund. RCARF is benchmarked against other popular methods from the incremental online machine learning literature and is able to achieve competitive results.This research was funded by the Spanish Ministry of Economy and Competitiveness under grant number ENE2014-56126-C2-2-R

    Towards handling temporal dependence in concept drift streams.

    Get PDF
    Modern technological advancements have led to the production of an incomprehensible amount of data from a wide array of devices. A constant supply of new data provides an invaluable opportunity for access to qualitative and quantitative insights. Organisations recognise that, in today's modern era, data provides a means of mitigating risk and loss whilst maximising effciency and profit. However, processing this data is not without its challenges. Much of this data is produced in an online environment. Realtime stream data is unbound in size, variety and velocity. Data may arrive complete or with missing attributes, and data availability and persistence is limited to a small window of time. Classification methods and techniques that process offline data are not applicable to online data streams. Instead, new online classification methods have been developed. Research concerning the problematic and prevalent issue of concept drift has produced a considerable number of methods that allow online classifiers to adapt to changes in the stream distribution. However, recent research suggests that the presence of temporal dependence can cause misleading evaluation when accuracy is used as the core metric. This thesis investigates temporal dependence and its negative effcts upon the classification of concept drift data. First, this thesis proposes a novel method for coping with temporal dependence during the classification of real-time data streams, where concept drift is present. Results indicate that a statistical based, selective resetting approach can reduce the impact of temporal dependence in concept drift streams without significant loss in predictive accuracy. Secondly, a new ensemble based method, KTUE, that adopts the Kappa-Temporal statistic for vote weighting is suggested. Results show that this method is capable of outperforming some state-of-the-art ensemble methods in both temporally dependent and non-temporally dependent environments. Finally, this research proposes a novel algorithm for the simulation of temporally dependent concept drift data, which aims to help address the lack of established datasets available for evaluation. Experimental results show that temporal dependence can be injected into fabricated data streams using existing generation methods

    Sensitivity-Based Optimization of Unsupervised Drift Detection for Categorical Data Streams

    Get PDF
    Real-world data streams are rarely characterized by stationary data distributions. Instead, the phenomenon commonly termed as concept drift, threatens the performance of estimators conducting inference on such data. Our contribution builds on the unsupervised concept drift detector CDCStream, which is specialized on processing categorical data directly. We propose a cooldown mechanism aiming at reducing its excessive sensitivity in order to curb false-alarm detections. Using practical classification and regression problems, we evaluate the impact of the mechanism on estimation performance and highlight the transferability of our mechanism on other detection methods. Additionally, we provide an intuitive means for tuning the sensitivity of drift detectors. While only marginally improving the unaltered form of the detector on publicly available benchmark data, our mechanism does so consistently in almost all configurations. In contrast, within the context of another real-world scenario, almost none of the tested drift-detection-based approaches could outperform a baseline approach. However, potentially false-alarm detections are reduced drastically in all scenarios. With this resulting in a cutback in signals for refitting estimators, while maintaining a better or at least comparable performance to vanilla CDCStream, compute infrastructure utilization could be economized further

    A survey on machine learning for recurring concept drifting data streams

    Get PDF
    The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time

    A review of spam email detection: analysis of spammer strategies and the dataset shift problem

    Get PDF
    .Spam emails have been traditionally seen as just annoying and unsolicited emails containing advertisements, but they increasingly include scams, malware or phishing. In order to ensure the security and integrity for the users, organisations and researchers aim to develop robust filters for spam email detection. Recently, most spam filters based on machine learning algorithms published in academic journals report very high performance, but users are still reporting a rising number of frauds and attacks via spam emails. Two main challenges can be found in this field: (a) it is a very dynamic environment prone to the dataset shift problem and (b) it suffers from the presence of an adversarial figure, i.e. the spammer. Unlike classical spam email reviews, this one is particularly focused on the problems that this constantly changing environment poses. Moreover, we analyse the different spammer strategies used for contaminating the emails, and we review the state-of-the-art techniques to develop filters based on machine learning. Finally, we empirically evaluate and present the consequences of ignoring the matter of dataset shift in this practical field. Experimental results show that this shift may lead to severe degradation in the estimated generalisation performance, with error rates reaching values up to 48.81%.SIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p
    • …
    corecore