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ABSTRACT

Real-world data streams are rarely characterized by stationary data distributions. Instead, the phe-
nomenon commonly termed as concept drift, threatens the performance of estimators conducting
inference on such data. Our contribution builds on the unsupervised concept drift detector CDCStream,
which is specialized on processing categorical data directly. We propose a cooldown mechanism
aiming at reducing its excessive sensitivity in order to curb false-alarm detections. Using practical
classification and regression problems, we evaluate the impact of the mechanism on estimation
performance and highlight the transferability of our mechanism on other detection methods. Ad-
ditionally, we provide an intuitive means for tuning the sensitivity of drift detectors. While only
marginally improving the unaltered form of the detector on publicly available benchmark data, our
mechanism does so consistently in almost all configurations. In contrast, within the context of another
real-world scenario, almost none of the tested drift-detection-based approaches could outperform a
baseline approach. However, potentially false-alarm detections are reduced drastically in all scenarios.
With this resulting in a cutback in signals for refitting estimators, while maintaining a better or at
least comparable performance to vanilla CDCStream, compute infrastructure utilization could be
economized further.

Keywords unsupervised concept drift detection · data stream mining · productive artificial intelligence · categorical
data processing

1 Introduction

Technologies such as the internet of things, implemented as interconnected machines and sensors, demand analytical and
predictive approaches to process data streams of eminently high speed and volume. The assumption that distributions
associated to such data are stationary does often not hold, given the volatile nature of the processes generating it. Closely
intertwined with non-stationary processes, the phenomenon commonly termed as concept drift can arise with different
magnitudes, able to be defined on arbitrary scales, or dynamic profiles, such as incremental, abrupt or recurring drift
(Webb et al., 2016). Especially estimators, being core components of data-driven services based on artificial intelligence,
are under immense pressure to continuously adapt to the ever-changing environment of e.g. a shop floor and the
degenerating impact of drift. Such adaptation needs to happen in-pipeline, hence highly automated and efficiently.

Therefore, it is of utmost importance to detect drifts and to mitigate their impact on the performance of estimators. Many
prominent approaches assume the availability of ground truth information for detecting drift. However, this is often not
realistic, with such information being either expensive to obtain or arriving with substantial delay (Gemaque et al., 2020).
Unsupervised drift detection approaches target this problem. Using such approaches, one can only detect data drift
(also known as virtual concept drift) (Oikarinen et al., 2021), which nonetheless threatens the performance of estimators
(Oliveira et al., 2021). The reason for this is that data drift might develop into real concept drift (Khamassi et al., 2018)
or other data-distribution-related circumstances such as previously underrepresented classes gaining importance.
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In order to tackle these challenges, we contribute by augmenting an unsupervised drift detector, which heavily suffers
from false-alarm detections in various data contexts. More specifically, we (i) suggest a mechanism for varying
the drift detection sensitivity, which is transferable to other detection approaches as well, and (ii) outline a means to
analyze unsupervised drift detection performance in detail without explicit knowledge on the presence and location of
drifts. The gist of our proposed mechanism is the suppression of redundant subsequent detections, enabling the detector
to readapt itself to a new concept after a drift detection. It is simple yet shows to be highly effective and does not
tamper with the unsupervised detection character. Furthermore, instead of having to alter detector parameters requiring
profound method knowledge, our proposed mechanism facilitates abstract and intuitive sensitivity tuning.

This work is structured as follows: A concise review of the body of related work and the methodical basis are given in
section 2 and 3, respectively. Our contribution is introduced in section 4 and thoroughly evaluated in section 5. Finally,
section 6 concludes this work and provides an outlook.

2 Related Work

The field of unsupervised (or at least semi-supervised) drift detection reveals itself as still under-researched, especially
within the stream processing context. However, several recent works aim at closing that gap. Those could be categorized
based on whether they assess every single incoming data instance or gather multiple ones in batches before assessing
these for the occurrence of drift (Gemaque et al., 2020).

Within the drift detection and also related contexts, it is important to note that the nontrivial processing of categorical
data lacks research as well. Reddy Madhavi et al. (2020) and Li et al. (2014) highlight the importance of drift-adaptive,
iterative and efficient techniques for clustering such data. Reddy Madhavi et al. (2020) suggest a sliding-window-based
method for that purpose but only briefly touch upon a means of making it more robust against drift, based on cluster
distribution characteristics. Li et al. (2014) design several novel similarity measures and a drift detection approach. The
latter is based on the occurrence of outliers in clustering results and similarity of pairs of such and constitutes only a
part of their multi-faceted contribution.

A more distinct focus on drift detection however can be attributed to a series of works contributed by Cao and colleagues
on clustering of categorical data streams (Cao et al., 2010; Cao and Huang, 2013; Cao et al., 2014). Based on rough
set theory, Cao et al. (2010) propose a means of formulating the distance between two concepts, representable as
clusters. By maintaining multiple sliding windows, this distance between two contiguous ones can be calculated. If it
exceeds a predefined threshold, a drift detection is triggered and the involved windows are interpreted as containing
different concepts. Based on a similar foundation, a revised distance formulation is defined by Cao and Huang (2013),
additionally enabling the calculation of speed and magnitude of occurring changes. The solution proposes to discern
drift via comparing the latter with a threshold separating non-drifting and drifting magnitudes. Cao et al. (2014) further
extend both previous works by adding approaches enabling to link drifts to possible causes and to conduct trend analysis
of drifts.

Ienco et al. (2014) also strive for the goal of facilitating drift detection on categorical data streams and introduce their
unsupervised detector algorithm CDCStream (Change Detection in Categorical Evolving Data Streams). This approach
is based on summarizing categorical data by calculating a statistic, based upon a distance function introduced in their
previous work. Two different severity levels of drift, tied to bounds defined using Chebyshev’s inequality, can then be
determined via monitoring the difference between subsequent summary statistics. D’Ettorre et al. (2017) show how this
algorithm can be slightly adapted by maintaining an ensemble of detector instances working on partially overlapping
copies of the buffered stream data. Also, they focus on a vote-based strategy for discerning drift. They claim that this
way, abruptly occurring changes can be detected with higher accuracy and shorter delay.

Plasse and Adams (2019) are also faced with the challenge of rapidly evolving categorical data streams. The goals of
their work are improving the accuracy for determining the timing of drifts and accurately and continuously estimating
distribution characteristics of the data stream by means of a forgetting mechanism. Within this context, they stress the
importance of a grace period, during which their drift detector is not assessing data for the presence of drift and thus
allowing it to readapt to new concepts.

In this work, we intend to augment the unaltered form of CDCStream (Ienco et al., 2014) by introducing a mechanism
aiming at reducing its detection sensitivity in the presence of incremental drifts. We found this to be relevant, given that
the detector reacts overly sensitive in various use cases and parametrizations we examined. Our mechanism is similar
to above-mentioned grace period to the effect that the detector shall be granted time to readapt to newly developing
data characteristics. However, we focus on evaluating the performance of estimators when using detections emitted by
CDCStream as occasion to refit to data.
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3 Drift Detection Algorithm

In this section, the basics for understanding the drift detection mechanism of CDCStream (Ienco et al., 2014) are briefly
introduced1.

3.1 Batch Summary Computation

For enabling the drift detection algorithm to process categorical data, several computations are done. Initially, a distance
function suitable to factor in correlation and distribution characteristics of the categorical data is defined. A summary is
then calculated for all data points in a batch and subsequently passed to the drift detector.

We start by assuming that, within the context of a streaming scenario, each entry in a batch of data, arriving at time t,
Dt is defined over a set X of m categorical features Xi, denoted by X = {X1, ..., Xm}. Each feature Xi can attain
several discrete categories x, counted by its cardinality denoted as |Xi|.
The employed function Distance Learning for Categorical Attributes (DILCA) (Ienco et al., 2012) requires a context for
calculating a distance. One or more features Xi ∈ X can be selected as context for one other target feature Y ∈ X ,
formalized as C(Y ), with C(Y ) ⊆ X \ Y . Based on all entries of a batch Dt, DILCA then assigns each pair of target
feature categories yu and yv a scalar distance computed as

dt(yu, yv) =

√∑
Xi∈C(Y )

∑
xk∈Xi

(Pt(yu|xk)−Pt(yv|xk))2∑
Xi∈C(Y ) |Xi|

. (1)

Equation (1) shows how the squared differences of the conditional probabilities Pt of each target feature category pair,
inferred from batch Dt given a category xk, are summed up for all xk of a feature Xi. This step is then repeated within
the context of a sum over all features belonging to the respective context C(Y ), which ultimately equates to calculating
a Euclidean distance. Before calculating the square root, the result is normalized based on the sum of the cardinalities
of all features belonging to the context C(Y ). Depending on the problem size, the selection of a suitable context can
be difficult, which is why a correlation-based filter (Yu and Liu, 2003) is employed for this purpose. DILCA is then
repeatedly applied in order to assemble a matrix MXi containing the distances computed for all category pairs of a
feature Xi (and consequently having row and column size equal to |Xi|). With this process being repeated for each
feature, a set M containing the m matrices MXi is assembled, subsequently serving as input for the calculation of the
scalar summary statistic zt representing data characteristics of Dt:

zt(M) =

∑
MXi

∈M

2·
√∑|Xi|

r=0

∑|Xi|
s=r+1 MXi

(r,s)2

|Xi|·(|Xi|−1)

|M |
(2)

The numerator on the right hand side of (2) is a compact formulation of summing up all squared values above the
zero-valued diagonal, dividing the square root of the sum by the quantity of said values and repeating this step within
the context of a sum over all matrices in M . Finally, the result is divided by the number of matrices |M |, leading to all
zt values always lying within the 0-1 range.

3.2 Detection of Warnings and Changes

The core component of this algorithm is based on Chebyshev’s distribution-agnostic inequality (Alsmeyer, 2011) for
random variables, borrowed from probability theory and commonly used for, in simplified terms, defining bounds on
probabilities. With P representing a probability, it can be formulated as

P (|S − µ| ≥ kσ) ≤ 1

k2
for k > 0. (3)

Applied to our problem of statistical nature, (3) states that at most a fraction of 1
k2 of samples of a random variable S

are expected to lie beyond the region enclosed within k standard deviations around the mean of S.

Based on (3), the algorithm CDCStream continuously evaluates whether incoming batches deviate statistically from
insights of previously probed batches. Instead of memorizing all probed data, summary statistics zt are computed for

1Our implementation, including the proposed mechanism, is available at https://github.com/fzi-forschungszentrum-
informatik/cdcstream.
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each batch Dt based on (2) and saved in an array-like continuously augmented history L. With a new batch arriving,
zt is computed and the content of L is checked. As it is empty exclusively on the initial invocation of CDCStream,
subsequent calls check whether L contains either one or more than one element. In the latter case, mean µ and standard
deviation σ are computed from the sample of past data represented by all zt ∈ L, as required by (3). Also, extrema
σmin and σmax are continuously maintained and updated as standard deviation σ is calculated. For k, following Ienco
et al. (2014), two different instances kw and kc are used and kept at values 2 and 3 throughout this work, representing
the bounds of the drift magnitude levels warning and change, respectively. Note that, based on (3), k adopting these two
values and without further assumptions on the distribution of summary statistics zt, one would expect at least 75% and
roughly 89% of zt to lie within the region bound by two and three standard deviations from the mean, respectively.
This way, two differently tight and thus differently strict bounds are realized with kw and kc for determining discrete
drift severity magnitudes. Next, in case of an issued change, no probing for a warning is done and history L is wiped.
However, in the former case of L containing exactly one summary statistic zt (computed from the previous batch), µ
adopts this value and σ is calculated as arithmetic mean of σmin and σmax. If these extrema are not set, we are within
the first cycles after CDCStream has initially been invoked and postpone drift probing to a later stage, when more
batches will have been assessed. Finally, zt of the currently probed batch is appended to L, leaving the latter never
empty once started.

3.3 Shortcomings

As mentioned in section 2, we tested CDCStream in several scenarios using different parametrizations beforehand. As
exemplarily shown in section 5.2, it can exhibit a very high detection sensitivity and often emits detections in a cascaded
fashion, i.e. in short intervals, or even contiguously. We argue, that this might be a result of history L containing only a
low number of summary statistics zt after a change detection, which causes a history wipe as explained in section 3.2
above. Therefore, in this post-change period, CDCStream maintains a history containing characteristics of a potentially
newly developing data distribution with very limited evidential value. Nevertheless, it still continues to assess data
batches and is not blocked from emitting subsequent warning and change detections.

4 Cooldown Mechanism

Within the context of incremental drift scenarios, we argue that cascaded drift detections emitted by a temporarily
unnecessarily sensitive CDCStream might be redundant, as new data distributions evolve slowly when compared to e.g.
abrupt drift. We further expect that if the detector is granted time to readapt its history L in post-change periods and to
gather characteristics on a developing data distribution without interruption, unnecessary detection cascades would be
suspended.

From a set of possible solutions to achieve this, we choose to limit the sensitivity of CDCStream using a cooldown
mechanism. This way, suffering from the lack of evidential value in a recently cleared history L, CDCStream is not
forced to continue assessing data batches for the presence of drift. In principle, the cooldown mechanism causes
CDCStream to skip drift (warnings and changes) assessment for a certain number of times. Therefore, each time a
change is detected, a counter corresponding to a predefined number of invocations of CDCStream (thus each time a data
batch is passed) is initiated. Then, for each subsequent detector invocation, applying (3) for comparing the statistics of
history L with the summary statistic zt that would have been computed from the current data batch is skipped if the
value of the counter is greater than 0. After that, the counter value is decreased by 1. Once the counter value reaches
0, assessment for the presence of drift is resumed. For the remainder of this paper, the initial value of the counter is
referred to as cooldown length. With it being set to 0, our augmentation of CDCStream corresponds to its unaltered
form. As an example, the proposed mechanism is schematically depicted in Fig. 1 with the cooldown length being set
to 3, represented as hatched area. In this figure, one can see how a change is being detected at time t0, represented as
a solid vertical line. Potential subsequent change and warning detections for an immediate successor batch arriving
at t0 + 1 and another one at t0 + 3 are suppressed, represented as dashed vertical lines. At the end of the detector
invocation at t0 +3, afore-mentioned counter reaches 0. Hence, drift detections are again possible with one exemplarily
occurring at t0 + 4.

The impact of this mechanism would mean less interference with adapting productively employed estimators due to
unnecessary detection signals, without missing out on drift events of potentially disruptive consequences. Consequently,
the risk of deploying under-fitted estimators, if training data for such were tied to the repeatedly small history of
CDCStream, could potentially be mitigated. Also, omitting redundant estimator fitting reduces utilization of compute
infrastructure accordingly. Without the cooldown mechanism, the need for downstream measures against false refitting
signals would increase.
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t
t0 t0+1 t0+2 t0+3 t0+4 ...

Figure 1: Exemplary depiction of the change detection behavior at cooldown length 3.

One might expect that an effect similar to that of our mechanism can be obtained by increasing the parameters kw
and kc. Initially, we conducted a series of experiments in which we varied these parameters with small increments.
Following this approach, we did not achieve productive results. Sensitivity control can only be exercised via adjustments
within very narrow value ranges. However, the relation between the parameter and the sensitivity space is difficult to
track, which renders tuning activities very cumbersome. In contrast, the suggested cooldown mechanism offers to do so
intuitively without having to deviate from parameter values recommended by the detector’s inventors. As we focus on
the suggested approach, an extensive analysis of the impact of varying kw and kc is not documented in this work.

5 Evaluation

We consider supervised classification and regression problems and observe how the performance of the respective
productive estimator is impacted by drift adaptation using CDCStream in a warning-change strategy context (Ienco et al.,
2014), given various magnitudes of our proposed cooldown mechanism. An issued warning leads to a new background
estimator being created and trained in parallel, whereas a change results in the substitution of the productive with the
current background estimator. Each change additionally leads to the creation of a new background estimator. Note that,
unshaken from the supervised character of the estimation problems, the drift detector is applied in an unsupervised
fashion as no ground truth information or estimator performance valuation is utilized. Across all experiments, the
parameters kc and kw, as defined in section 3.2, are kept at 3 and 2, respectively.

5.1 Employed Datasets and Estimators

Firstly, we evaluate our approach using the popularly employed open dataset comparing electricity market prices of
the Australian state New South Wales with those of its neighboring state Victoria (ELEC2) (Harries, 1999). It roughly
covers the years 1996 to 1998 and has 45,312 entries, eight features and a binary class variable indicating an increase or
decrease in the price in New South Wales with respect to the mean price of the preceding 24 hours. All features, except
the only categorical one indicating the weekday, are normalized to a 0-1 range. In order to compare the performance
of our treatment in this scenario, we proceed as done by Ienco et al. (2014). Given all eight features, we estimate the
class using a Naive Bayes classifier and discretize the non-categorical features into five identically wide bins for drift
detection preprocessing. Furthermore, drift might occur due to weather fluctuations and the intrinsic price volatility over
days, weeks and seasons, as well as the market’s expansion into neighboring areas, also covered by the data (Harries,
1999).

Secondly, a lead time prediction case study (Bender et al., 2022) (labeled as company A in cited reference), conducted in
a medium-sized enterprise, shall serve as a more practically oriented evaluation context (henceforth termed LEADTIME).
Here, the goal is to predict the duration of various process types occurring within the manufacturing context of highly
customised forging products. From a total of 99,526 entries, covering the years 2019, 2020 and several months of 2021,
5,186 ones representing standstill/waiting operations are filtered out and subsequently sorted by increasing values of the
feature date_registered. Before dividing it into batches, the first 10% of the data is held out for initial estimator
fitting. In contrast to the original case study, no inter-quartile-range-based filtering is applied. As estimator, we use a
stacked estimator containing a least angle regressor and an ensemble of randomized decision trees, designated as the
original case study’s best result. Regarding this data, based on the available information and careful visualization-based
analysis, we do not know whether drift is present. However, due to various factors, such as evolving customer needs,
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we initially assume it. More details, e.g on the estimator parametrization, which we do not vary, can be obtained from
Bender et al. (2022).

For regression estimator fitting, we resort to employing 21 different features, as done by Bender et al. (2022). All
categorical features are label-encoded and then passed as numerical features, alongside genuinely numerical ones.
Before being passed to the drift detector, the afore-mentioned feature set is augmented by the also available but
previously unused features customer_id, run_id, work_sequence_id_planned. In contrast to estimator-related
preprocessing, raw categorical features are used while numerical ones are discretized into five equally wide bins, as this
work focuses on categorical data for drift detection.

5.2 Drift Detection Behavior

As mentioned in section 3.3, CDCStream has been observed to emit a high count of detections on certain parametriza-
tions, phrased as detection cascades in this work. Therefore, we compare the drift detection evidence observed across all
experiments in the following. As a metric, we focus on the change rate, which describes the number of detected changes
as a fraction of the total number of possible drift detections and is consistently comparable across multiple experiment
settings. Possible detections correspond to the number of seen data batches reduced by 1 as the first data batch cannot
trigger a detection. For the sake of brevity and clarity, we provide absolute numbers for certain characteristic findings
only. Even if it is not our goal to lower detection counts, we aim at suspending detection cascades, great numbers of
detections are a symptom of.

Table 1 shows the change rate when applying CDCStream onto ELEC2 data. Stream data of the four different batch
sizes also used by Ienco et al. (2014) is processed. We limit ourselves to only documenting the results associated to
these batch sizes here. Also, as warning detection behavior exhibits a trend highly similar to that of changes, we omit
showing details here, which is further backed up by the fact that estimator substitutions are performed solely based on
change evidence.

Table 1: Change rate observed when applying CDCStream onto the ELEC2 dataset.

Batch size Cooldown length
0 1 2 3 4 5 7 10

50 0.9680 0.0177 0.0110 0.0099 0.0099 0.0033 0.0077 0.0077
100 0.6460 0.0111 0.0111 0.0111 0.0088 0.0088 0.0088 0.0088
500 0.5506 0.0337 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225
1000 0.4545 0.0682 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682

The column for cooldown length set to 0 corresponds to a vanilla configuration of CDCStream, hence without our
treatment. Note that we can reproduce the results from Ienco et al. (2014) with relatively small deviations. We deem
it not necessary to analyze these further, as they might be artifacts from e.g. rounding errors in detection routines,
resulting in marginally different change detection counts.

Detection cascades are especially apparent for batch size 50, resulting in 876 detected changes corresponding to a
change rate of approx. 0.9680. The temporal dispersion of change detections can be described using the average
distance measured in batches between such, with a distance of 0 indicating consecutive detections. In this case, an
average distance of roughly 0.2121 batches, thus less than one batch, can be observed. However, applying the cooldown
mechanism with length 1 and 2 yields a striking reduction to merely 16 and ten change detections, corresponding to
change rates of approx. 0.0177 and 0.0110, respectively. In these two configurations, an average distance between
detected changes of 56.4000 and 38.0000 batches can be observed, respectively. This precisely represents the effect
the mechanism is intended to induce. Applying the cooldown mechanism with length 1 onto the 100, 500 and 1000
batch size configurations leads to change rates of approx. 0.0111, 0.0337 and 0.0682, respectively. When compared
to the associated vanilla CDCStream findings, these translate into reductions by approx. 0.6350, 0.5169 and 0.3864,
respectively. Increasing cooldown length from 1 to higher values does merely cause slight variation in change rate but
are documented nonetheless. Apart from that, contrary to what is observed for vanilla CDCStream, our treatment within
the context of batch sizes 500 and 1000 results in higher change rates than batch sizes 50 and 100.

In Table 2, observed change rates in the LEADTIME scenario are shown. We evaluated the same configurations
regarding cooldown length while probing more different batch sizes than in the ELEC2 scenario. The latter is done as
we want to analyze detector behavior on a broader spectrum of batch sizes on this dataset, CDCStream has not been
used on before. Regarding warnings, their associated trend is also highly similar to that of changes, which is why we do
not show details in that regard.
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Table 2: Change rate observed when applying CDCStream onto the LEADTIME dataset.

Batch size Cooldown length
0 1 2 3 4 5 7 10

5 0.1265 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002
50 0.0094 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024

100 0.0542 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012
250 0.0118 0.0089 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059
500 0.5357 0.0417 0.0179 0.0179 0.0179 0.0179 0.0060 0.0060
750 0.0179 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089
1000 0.9759 0.0241 0.0241 0.0241 0.0241 0.0241 0.0120 0.0241
1500 0.2727 0.0545 0.0364 0.0364 0.0364 0.0364 0.0182 0.0182

When analyzing change rates associated to vanilla CDCStream, one might notice more fluctuation for increasing batch
sizes. A minimum of approx 0.0094 is found at batch size 50, whereas a maximum of approx. 0.9759 is found at batch
size 1000, with several local maxima and minima in between. When considering our proposed cooldown mechanism, a
drastic reduction in detected changes can be observed for batch size 5 and cooldown length 1. Here, the change rate
drops by 0.1261 from approx. 0.1265 to 0.0004, which corresponds to going from 2148 detected changes down to
merely six. This also shows the cooldown mechanism’s impact in a rather extreme case regarding absolute numbers.
Comparable to what is observed on ELEC2 data, constant non-zero cooldown lengths generally result in higher change
rates for higher batch sizes, given only few exceptions. Also, change rate variation for increasing non-zero cooldown
lengths is observed to be rather low for constant batch sizes.

5.3 Drift Adaptation Performance

In all scenarios, we evaluate performance in the style of prequential evaluation: On arrival of each data batch, it is used
for evaluating the estimator’s performance and, subsequently, for incremental estimator fitting2. In order to enable
comparable results across all experiments, we decided to consistently analyze the mean of the respective scenario’s
performance metric over all batches. As a strong baseline, we decided to fit the respective estimator incrementally and
batch wise, without any forgetting of historical data. In other words, estimator adaptation is constantly done without
taking any drift detection into account. Note, however, that this is computationally expensive and, due to the immediate
necessity of ground truth, rarely possible in practical data streaming contexts.

The mean of the estimator’s accuracy, achieved on all batches of the ELEC2 scenario, serves as performance indicator3.
The results are presented in Table 3. As a reminder, note that a cooldown length of 0 corresponds to applying CDCStream
without our treatment. Accuracy values in this column coincide with and reflect the observations from Ienco et al.
(2014) to the effect that batch sizes 50 and 100 result in better estimator performance than higher ones. This also holds
when applying our treatment, regardless of its magnitude.

Table 3: Estimator accuracy observed during experiments on the ELEC2 dataset. Bold values mark row maxima.

Batch size No drift adaptation Cooldown length
0 1 2 3 4 5 7 10

50 0.7250 0.7537 0.7506 0.7545 0.7543 0.7541 0.7496 0.7542 0.7542
100 0.7245 0.7472 0.7513 0.7513 0.7513 0.7522 0.7522 0.7522 0.7522
500 0.7247 0.7192 0.7411 0.7403 0.7419 0.7419 0.7419 0.7403 0.7403
1000 0.7196 0.7281 0.7285 0.7291 0.7285 0.7285 0.7285 0.7285 0.7285

The second column, indicating the absence of drift adaptation, shows that vanilla CDCStream outperforms the baseline
for all batch sizes except 500. In contrast, when applying our cooldown mechanism, it outperforms the baseline for all
batch sizes and, moreover, this is true for each probed non-zero cooldown length.

The configuration with cooldown length set to 2 and batch size 50 results in the greatest accuracy observed across
all experiments on ELEC2 data, valued at approx. 0.7545. This corresponds to an increase of approx. 0.0008, when

2Following Gama et al. (2014), for estimators not supporting incremental/partial fitting, we apply a workaround by fitting from
scratch, providing the same data as bulk instead of batch wise, which leads to the identical estimator knowledge gain.

3Note that a different scoring metric is employed by Ienco et al. (2014).
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compared to vanilla CDCStream. For batch size 100, cooldown lengths 4, 5, 7 and 10 equally result in the greatest
accuracy with a value of 0.7522. This is explainable, as four changes were detected in these settings, with an average
distance of 56 data batches between each other. In other words, change detections are spread out widely enough,
so higher cooldown lengths do not impact subsequent detections. For batch sizes 500 and 1000, similar results are
achieved. Here, one can highlight the greatest increase in accuracy of approx. 0.0227 being observed for batch size 500
and cooldown lengths 3, 4 and 5. Generally, across all probed batch sizes, we note that the highest estimator accuracy
is always achieved with the cooldown treatment being applied (cooldown length greater than 0). Even further, the
cooldown treatment always outperforms vanilla CDCStream for batch sizes 100, 500 and 1000. For batch size 50, this
is the only case for five out of seven probed non-zero cooldown lengths.

Table 4 provides an overview of the batch-wise mean absolute error one can observe for the estimator’s inference on the
LEADTIME dataset. With this use case focusing on duration predictions, the advantage of this performance metric is
that it is immediately intuitively comprehensible as its unit is given in minutes.

Table 4: Mean absolute estimation errors observed during experiments on the LEADTIME dataset. Bold values mark
row minima.

Batch size No drift adaptation Cooldown length
0 1 2 3 4 5 7 10

5 96.70 122.06 115.46 115.34 115.15 115.15 115.15 115.15 115.15
50 99.09 114.77 113.65 113.70 113.70 113.70 113.70 113.70 113.70

100 99.91 110.74 108.90 108.90 108.90 108.90 108.90 108.90 108.90
250 101.13 107.93 104.25 104.30 103.77 103.77 104.20 104.20 104.20
500 102.04 113.21 105.15 106.98 106.20 106.20 106.00 105.42 105.42
750 102.22 107.22 103.70 106.10 106.10 106.10 106.10 106.10 106.10
1000 102.92 112.71 107.15 107.15 107.15 107.15 107.15 107.01 106.57
1500 103.08 109.91 106.15 106.07 106.07 103.27 103.27 102.68 102.68

In this scenario, as obtainable from the second column of Table 4, the baseline outperforms any drift-based estimator
adaptation for almost all batch sizes. It achieves the lowest error across all experiments on this data at batch size 5
with a value of approx. 96.70 minutes. Solely the configuration with batch size 1500 and cooldown lengths 7 and 10,
resulting in an error of approx. 102.68 minutes, marginally outperforms the baseline by roughly 0.40 minutes. Being
faced with these findings, multiple explanations are conceivable. On the one hand, despite us initially assuming it, there
might be no drift occurrences in the data. Given that the baseline model is trained on each batch after being tested on it,
it might do so without being disrupted by changing concepts. If this is the case, one would expect to observe exactly the
described result. On the other hand, as Bender et al. (2022) point out, the data acquisition practice might be error prone
due to a high degree of manual intervention. In that case, any analytical approach might be limited in exploiting this
data for the intended goals.

Nevertheless, regarding the configuration in which our treatment outperforms the baseline, a change rate of approx.
0.0182 can be observed as as shown in Table 2, corresponding to one change located in the first quarter of the stream.
Simultaneously, this configuration also outperforms vanilla CDCStream by approx. 7.23 minutes, with the latter
detecting 15 changes in this case, corresponding to a change rate of roughly 0.2727. The greatest improvement relative
to vanilla CDCStream, with our treatment being applied, is achieved at batch size 500 and cooldown length equal to 1.
In this case, the error is reduced by around 8.06 minutes from approx. 113.21 to 105.15 minutes.

Remarkable is that our proposed treatment (any non-zero cooldown length) strictly leads to lower errors for all probed
batch sizes when compared to vanilla CDCStream.

6 Conclusion

We show that the suggested cooldown mechanism is able to successfully suspend drift detection cascades, i.e. detections
in short intervals or contiguous ones, resulting in improved drift adaptation in all considered estimation problems. This
way, we strictly outperform the unaltered version of the considered unsupervised drift detector CDCStream. Regarding
the ELEC2 scenario, this is evident as the best estimation performance is consistently achieved with the cooldown
treatment being applied to the drift detector. Furthermore, for almost all batch sizes of streamed data, this is even the
case regardless of the chosen magnitude of our suggested mechanism. On the LEADTIME scenario, both previous
statements hold for all probed batch sizes, but only when compared with the unaltered form of CDCStream. On the
latter dataset, the baseline, which does not take any drift detections into account but consistently fits the employed
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estimator incrementally using each incoming data batch and associated labels, is only outperformed by CDCStream
for batch size 1500 with our treatment being applied. For the remaining probed ones, the baseline exhibits better
performance, which might arise from the possibility that the data does not contain any drifts. The intended reduction
in drift detection sensitivity becomes apparent in our evaluation as detection counts considerably decrease in various
configurations on both datasets. Moreover, the proposed mechanism is not limited to the considered drift detector but
can potentially be employed for other detection methods that maintain a memory on evaluated data.

Based on the entirety of these observations, one might argue that a great number of originally detected drifts are
no reliable indicators for estimator adaptation or forgetting of supposedly drifting data. Consequently, this benefits
productive applications consuming drift detections. In terms of, for instance, drift adaptation, less estimator refitting
would be triggered, hence unnecessary labelling costs and occupation of compute infrastructure could potentially be
avoided. Similarly, valuable data could be prevented from being falsely flagged as outdated.

In future works, we intend to explore further research directions for drift detection approaches and means for evaluating
such. Specifically, regarding the considered LEADTIME scenario, we remain uncertain about the existence of drift.
In case it contains drift, Bifet (2017) argues that exclusively considering the performance within the context of a
supervised estimation problem can lead to ambiguous insights. This circumstance could be mitigated using a set of
detection-related metrics, which, however, would require ground truth information on the presence of drift. If we
cannot obtain or infer such for our use case, synthesizing it is an avenue we plan to pursue, in order to evaluate our
approach more profoundly, also in terms of i.a. detection accuracy and delay. Apart from that, being beyond the scope
of this work, we will examine solutions on how to identify features exhibiting large portions of detected drift, by e.g.
employing varying feature subsets.
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