1,603 research outputs found

    Rotor Bar Fault Monitoring Method Based on Analysis of Air-Gap Torques of Induction Motors

    Get PDF
    A robust method to monitor the operating conditions of induction motors is presented. This method utilizes the data analysis of the air-gap torque profile in conjunction with a Bayesian classifier to determine the operating condition of an induction motor as either healthy or faulty. This method is trained offline with datasets generated either from an induction motor modeled by a time-stepping finite-element (TSFE) method or experimental data. This method can effectively monitor the operating conditions of induction motors that are different in frame/class, ratings, or design from the motor used in the training stage. Such differences can include the level of load torque and operating frequency. This is due to a novel air-gap torque normalization method introduced here, which leads to a motor fault classification process independent of these parameters and with no need for prior information about the motor being monitored. The experimental results given in this paper validate the robustness and efficacy of this method. Additionally, this method relies exclusively on data analysis of motor terminal operating voltages and currents, without relying on complex motor modeling or internal performance parameters not readily available

    Fault Detection and Diagnosis of Electric Drives Using Intelligent Machine Learning Approaches

    Get PDF
    Electric motor condition monitoring can detect anomalies in the motor performance which have the potential to result in unexpected failure and financial loss. This study examines different fault detection and diagnosis approaches in induction motors and is presented in six chapters. First, an anomaly technique or outlier detection is applied to increase the accuracy of detecting broken rotor bars. It is shown how the proposed method can significantly improve network reliability by using one-class classification technique. Then, ensemble-based anomaly detection is utilized to compare different methods in ensemble learning in detection of broken rotor bars. Finally, a deep neural network is developed to extract significant features to be used as input parameters of the network. Deep autoencoder is then employed to build an advanced model to make predictions of broken rotor bars and bearing faults occurring in induction motors with a high accuracy

    Support vector machine based classification in condition monitoring of induction motors

    Get PDF
    Continuous and trouble-free operation of induction motors is an essential part of modern power and production plants. Faults and failures of electrical machinery may cause remarkable economical losses but also highly dangerous situations. In addition to analytical and knowledge-based models, application of data-based models has established a firm position in the induction motor fault diagnostics during the last decade. For example, pattern recognition with Neural Networks (NN) is widely studied. Support Vector Machine (SVM) is a novel machine learning method introduced in early 90's. It is based on the statistical learning theory presented by V.N. Vapnik, and it has been successfully applied to numerous classification and pattern recognition problems such as text categorization, image recognition and bioinformatics. SVM based classifier is built to minimize the structural misclassification risk, whereas conventional classification techniques often apply minimization of the empirical risk. Therefore, SVM is claimed to lead enhanced generalisation properties. Further, application of SVM results in the global solution for a classification problem. Thirdly, SVM based classification is attractive, because its efficiency does not directly depend on the dimension of classified entities. This property is very useful in fault diagnostics, because the number of fault classification features does not have to be drastically limited. However, SVM has not yet been widely studied in the area of fault diagnostics. Specifically, in the condition monitoring of induction motor, it does not seem to have been considered before this research. In this thesis, a SVM based classification scheme is designed for different tasks in induction motor fault diagnostics and for partial discharge analysis of insulation condition monitoring. Several variables are compared as fault indicators, and forces on rotor are found to be important in fault detection instead of motor current that is currently widely studied. The measurement of forces is difficult, but easily measurable vibrations are directly related to the forces. Hence, vibration monitoring is considered in more detail as the medium for the motor fault diagnostics. SVM classifiers are essentially 2-class classifiers. In addition to the induction motor fault diagnostics, the results of this thesis cover various methods for coupling SVMs for carrying out a multi-class classification problem.reviewe

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio

    Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors

    Get PDF
    ProducciĂłn CientĂ­ficaThree-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.Consejo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3

    A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study

    Get PDF
    Rotor bars are one of the most failure-critical components in induction machines. We present an approach for developing a rotor bar fault identification classifier for induction machines. The developed machine learning-based models are based on simulated electrical current and vibration velocity data and measured vibration acceleration data. We introduce an approach that combines sequential model-based optimization and the nested cross-validation procedure to provide a reliable estimation of the classifiers’ generalization performance. These methods have not been combined earlier in this context. Automation of selected parts of the modeling procedure is studied with the measured data. We compare the performance of logistic regression and CatBoost models using the fast Fourier-transformed signals or their extracted statistical features as the input data. We develop a technique to use domain knowledge to extract features from specific frequency ranges of the fast Fourier-transformed signals. While both approaches resulted in similar accuracy with simulated current and measured vibration acceleration data, the feature-based models were faster to develop and run. With measured vibration acceleration data, better accuracy was obtained with the raw fast Fourier-transformed signals. The results demonstrate that an accurate and fast broken rotor bar detection model can be developed with the presented approach

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    DATA-DRIVEN TECHNIQUES FOR DIAGNOSING BEARING DEFECTS IN INDUCTION MOTORS

    Get PDF
    Induction motors are frequently used in many automated systems as a major driving force, and thus, their reliable performances are of predominant concerns. Induction motors are subject to different types of faults and an early detection of faults can reduce maintenance costs and prevent unscheduled downtime. Motor faults are generally related to three components: the stator, the rotor and/or the bearings. This study focuses on the fault diagnosis of the bearings, which is the major reason for failures in induction motors. Data-driven fault diagnosis systems usually include a classification model which is supported by an efficient pre-processing unit. Various classifiers, which aim to diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of different diameters), require well-processed data. The pre-processing tasks plays a vital role for extracting informative features from the vibration signal, reducing the dimensionality of the features and selecting the best features from the feature pool. Once the vibration signal is perfectly analyzed and a proper feature subset is created, then fault classifiers can be trained. However, classification task can be difficult if the training dataset is not balanced. Induction motors usually operate under healthy condition (than faulty situation), thus the monitored vibration samples relate to the normal state of the system expected to be more than the samples of the faulty state. Here, in this work, this challenge is also considered so that the classification model needs to deal with class imbalance problem

    Higher-order spectral analysis of stray flux signals for faults detection in induction motors

    Full text link
    [EN] This work is a review of current trends in the stray flux signal processing techniques applied to the diagnosis of electrical machines. Initially, a review of the most commonly used standard methods is performed in the diagnosis of failures in induction machines and using stray flux; and then specifically it is treated and performed the algorithms based on statistical analysis using cumulants and polyspectra. In addition, the theoretical foundations of the analyzed algorithms and examples applications are shown from the practical point of view where the benefits that processing can have using HOSA and its relationship with stray flux signal analysis, are illustrated.This work has been supported by Generalitat Valenciana, Conselleria d'EducaciĂł, Cultura i Esport in the framework of the "Programa para la promociĂłn de la investigaciĂłn cientĂ­fica, el desarrollo tecnolĂłgico y la innovaciĂłn en la Comunitat Valenciana", Subvenciones para grupos de investigaciĂłn consolidables (ref: AICO/2019/224). J. Alberto Conejero is also partially supported by MEC Project MTM2016-75963-P.Iglesias MartĂ­nez, ME.; Antonino Daviu, JA.; FernĂĄndez De CĂłrdoba, P.; Conejero, JA. (2020). Higher-order spectral analysis of stray flux signals for faults detection in induction motors. Applied Mathematics and Nonlinear Sciences. 5(2):1-14. https://doi.org/10.2478/amns.2020.1.00032S11452H. Akçay and E. Germen. Subspace-based identification of acoustic noise spectra in induction motors. IEEE Transactions on Energy Conversion, 30(1):32–40, 2015.J. Antonino-Daviu, M. Riera-Guasp, J. Roger-Folch, F. MartĂ­nez-GimĂ©nez, and A. Peris. Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines. Applied and Computational Harmonic Analysis, 21(2):268–279, 2006.N. Arthur and J. Penman. Induction machine condition monitoring with higher order spectra. IEEE Transactions on Industrial Electronics, 47(5):1031–1041, 2000.T. P. Banerjee and S. Das. Multi-sensor data fusion using support vector machine for motor fault detection. Information Sciences, 217:96–107, 2012.G. Bin, J. Gao, X. Li, and B. Dhillon. Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network. Mechanical Systems and Signal Processing, 27:696–711, 2012.B. Boashash, E. J. Powers, and A. M. Zoubir. Higher-order statistical signal processing. Longman Cheshire, 1995.A. Ceban, R. Pusca, and R. Romary. Eccentricity and broken rotor bars faults-effects on the external axial field. In The XIX International Conference on Electrical Machines-ICEM 2010, pages 1–6. IEEE, 2010.I. Chernyavska and O. VĂ­tek. Analysis of broken rotor bar fault in a squirrel-cage induction motor by means of stator current and stray flux measurement. In 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), pages 532–537. IEEE, 2016.T. Chow and G. Fei. Three phase induction machines asymmetrical faults identification using bispectrum. IEEE Transactions on Energy Conversion, 10(4):688–693, 1995.X. Dai and Z. Gao. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. IEEE Transactions on Industrial Informatics, 9(4):2226–2238, 2013.J. de Jesus Rangel-Magdaleno, H. Peregrina-Barreto, J. M. Ramirez-Cortes, P. Gomez-Gil, and R. Morales-Caporal. Fpga-based broken bars detection on induction motors under different load using motor current signature analysis and mathematical morphology. IEEE Transactions on Instrumentation and Measurement, 63(5):1032–1040, 2013.P. A. Delgado-Arredondo, D. Morinigo-Sotelo, R. A. Osornio-Rios, J. G. Avina-Cervantes, H. Rostro-Gonzalez, and R. de Jesus Romero-Troncoso. Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83:568–589, 2017.M. Drif and A. J. M. Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 10(2):1348–1360, 2014.L. Frosini, C. HarliƟca, and L. SzabĂł. Induction machine bearing fault detection by means of statistical processing of the stray flux measurement. IEEE Transactions on Industrial Electronics, 62(3):1846–1854, 2014.Z. Gao, C. Cecati, and S. X. Ding. A survey of fault diagnosis and fault-tolerant techniques—part i: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 62(6):3757–3767, 2015.M. Geethanjali and H. Ramadoss. Fault diagnosis of induction motors using motor current signature analysis: A review. In Advanced Condition Monitoring and Fault Diagnosis of Electric Machines, pages 1–37. IGI Global, 2019.T. Ghanbari and A. Farjah. A magnetic leakage flux-based approach for fault diagnosis in electrical machines. IEEE Sensors Journal, 14(9):2981–2988, 2014.A. Glowacz. Acoustic based fault diagnosis of three-phase induction motor. Applied Acoustics, 137:82–89, 2018.A. Glowacz, W. Glowacz, Z. Glowacz, and J. Kozik. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement, 113:1–9, 2018.T. Goktas, M. Zafarani, K. W. Lee, B. Akin, and T. Sculley. Comprehensive analysis of magnet defect fault monitoring through leakage flux. IEEE Transactions on Magnetics, 53(4):1–10, 2016.K. C. Gryllias and I. A. Antoniadis. A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Engineering Applications of Artificial Intelligence, 25(2):326–344, 2012.F. Gu, Y. Shao, N. Hu, A. Naid, and A. Ball. Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment. Mechanical Systems and Signal Processing, 25(1):360–372, 2011.C. HarliƟca, L. SzabĂł, L. Frosini, and A. Albini. Diagnosis of rolling bearings faults in electric machines through stray magnetic flux monitoring. In 2013 8TH International Symposium on Advanced Topics in Electrical Engineering (Atee), pages 1–6. IEEE, 2013.R. Hoppler and R. A. Errath. Motor bearings, not must a piece of metal. In 2007 IEEE Cement Industry Technical Conference Record, pages 214–233. IEEE, 2007.R. M. Howard. Principles of random signal analysis and low noise design: The power spectral density and its applications. John Wiley & Sons, 2004.J.-N. Hwang and Y. H. Hu. Handbook of neural network signal processing. CRC press, 2001.M. E. Iglesias-MartĂ­nez, J. A. Antonino-Daviu, P. FernĂĄndez de CĂłrdoba, and J. A. Conejero. Rotor fault detection in induction motors based on time-frequency analysis using the bispectrum and the autocovariance of stray flux signals. Energies, 12(4):597, 2019.M. E. Iglesias-Martinez, P. F. de Cordoba, J. Antonino-Daviu, and J. A. Conejero. Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals. IEEE Transactions on Industry Applications, 55(5):4585–4594, 2019.M. E. Iglesias-MartĂ­nez, P. F. de CĂłrdoba, J. A. Antonino-Daviu, and J. A. Conejero. Detection of bar breakages in induction motor via spectral subtraction of stray flux signals. In 2018 XIII International Conference on Electrical Machines (ICEM), pages 1796–1802. IEEE, 2018.M. E. Iglesias-MartĂ­nez, P. F. de CĂłrdoba, J. A. Antonino-Daviu, and J. A. Conejero. Detection of adjacent and non-adjacent bar breakages in induction motors via convolutional analysis of sound signals. Preprint, 2020.F. Immovilli, A. Bellini, R. Rubini, and C. Tassoni. Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison. IEEE Transactions on Industry Applications, 46(4):1350–1359, 2010.C. Jiang, S. Li, and T. G. Habetler. A review of condition monitoring of induction motors based on stray flux. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5424–5430. IEEE, 2017.L. Jiang, Y. Liu, X. Li, and S. Tang. Using bispectral distribution as a feature for rotating machinery fault diagnosis. Measurement, 44(7):1284–1292, 2011.Q. Jiang and F. Chang. A novel rolling-element bearing faults classification method combines lower-order moment spectra and support vector machine. Journal of Mechanical Science and Technology, 33(4):1535–1543, 2019.X. Jin and T. W. Chow. Anomaly detection of cooling fan and fault classification of induction motor using mahalanobis–taguchi system. Expert Systems with Applications, 40(15):5787–5795, 2013.J. JĂłzwik. Identification and monitoring of noise sources of CNC machine tools by acoustic holography methods. Advances in Science and Technology Research Journal, 10(30), 2016.S. M. Kay. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.R. Liu, B. Yang, E. Zio, and X. Chen. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108:33–47, 2018.Z. Liu, H. Cao, X. Chen, Z. He, and Z. Shen. Multi-fault classification based on wavelet svm with pso algorithm to analyze vibration signals from rolling element bearings. Neurocomputing, 99:399–410, 2013.J. M. Mendel. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of the IEEE, 79(3):278–305, 1991.M. Mrugalski, M. Witczak, and J. Korbicz. Confidence estimation of the multi-layer perceptron and its application in fault detection systems. Engineering Applications of Artificial Intelligence, 21(6):895–906, 2008.V. Muralidharan and V. Sugumaran. A comparative study of naĂŻve bayes classifier and bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Applied Soft Computing, 12(8):2023–2029, 2012.Y. Ono, Y. Onishi, T. Koshinaka, S. Takata, and O. Hoshuyama. Anomaly detection of motors with feature emphasis using only normal sounds. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 2800–2804. IEEE, 2013.R. H. C. PalĂĄcios, I. N. da Silva, A. Goedtel, and W. F. Godoy. A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors. Electric Power Systems Research, 127:249–258, 2015.P. Panagiotou, I. Arvanitakis, N. Lophitis, J. A. Antonino-Daviu, and K. N. Gyftakis. Analysis of stray flux spectral components in induction machines under rotor bar breakages at various locations. In 2018 XIII International Conference on Electrical Machines (ICEM), pages 2345–2351. IEEE, 2018.P. A. Panagiotou, I. Arvanitakis, N. Lophitis, J. Antonino-Daviu, and K. N. Gyftakis. A new approach for broken rotor bar detection in induction motors using frequency extraction in stray flux signals. IEEE Transactions on Industry Applications, 2019.K. Pandey, P. Zope, and S. Suralkar. Review on fault diagnosis in three-phase induction motor. MEDHA–2012, Proceedings published by International Journal of Computer Applications (IJCA), 2012.J. Rafiee, F. Arvani, A. Harifi, and M. Sadeghi. Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical systems and signal processing, 21(4):1746–1754, 2007.A. Sadeghian, Z. Ye, and B. Wu. Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Transactions on Instrumentation and Measurement, 58(7):2253–2263, 2009.L. Saidi, J. B. Ali, and F. Fnaiech. Application of higher order spectral features and support vector machines for bearing faults classification. ISA transactions, 54:193–206, 2015.L. Saidi, F. Fnaiech, G. Capolino, and H. Henao. Stator current bi-spectrum patterns for induction machines multiple-faults detection. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pages 5132–5137. IEEE, 2012.L. Saidi, F. Fnaiech, H. Henao, G. Capolino, and G. Cirrincione. Diagnosis of broken-bars fault in induction machines using higher order spectral analysis. ISA Transactions, 52(1):140–148, 2013.M. Salah, K. Bacha, and A. Chaari. An improved spectral analysis of the stray flux component for the detection of air-gap irregularities in squirrel cage motors. ISA transactions, 53(3):816–826, 2014.B. Samanta. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical systems and signal processing, 18(3):625–644, 2004.P. Sangeetha and S. Hemamalini. Dyadic wavelet transform-based acoustic signal analysis for torque prediction of a three-phase induction motor. IET Signal Processing, 11(5):604–612, 2017.J. Sanz, R. Perera, and C. Huerta. Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks. Applied Soft Computing, 12(9):2867–2878, 2012.Z. Shen, X. Chen, X. Zhang, and Z. He. A novel intelligent gear fault diagnosis model based on emd and multi-class tsvm. Measurement, 45(1):30–40, 2012.A. Singhal and M. A. Khandekar. Bearing fault detection in induction motor using fast fourier transform. In IEEE Int. Conf. on Advanced Research in Engineering & Technology, 2013.A. Soualhi, K. Medjaher, and N. Zerhouni. Bearing health monitoring based on hilbert–huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement, 64(1):52–62, 2014.A. Swami, G. B. Giannakis, and G. Zhou. Bibliography on higher-order statistics. Signal processing, 60(1):65–126, 1997.O. Vitek, M. Janda, and V. Hajek. Effects of eccentricity on external magnetic field of induction machine. In Melecon 2010–2010 15th IEEE Mediterranean Electrotechnical Conference, pages 939–943. IEEE, 2010.H. Wang, X. Bao, C. Di, and Z. Cheng. Detection of eccentricity fault using slot leakage flux monitoring. In 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), pages 2188–2193. IEEE, 2015.Y. Wang, J. Xiang, R. Markert, and M. Liang. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mechanical Systems and Signal Processing, 66:679–698, 2016.Z. Wang and C. Chang. Online fault detection of induction motors using frequency domain independent components analysis. In 2011 IEEE International Symposium on Industrial Electronics, pages 2132–2137. IEEE, 2011.Z. Wang, C. Chang, and Y. Zhang. A feature based frequency domain analysis algorithm for fault detection of induction motors. In 2011 6th IEEE Conference on Industrial Electronics and Applications, pages 27–32. IEEE, 2011.W. Wenbing and X. Jinquan. The application of coupled three order cumulants’ differential feature in fault diagnosis. In 2017 International Conference on Virtual Reality and Visualization (ICVRV), pages 374–375. IEEE, 2017.I. Zamudio-Ramirez, R. A. Osornio-Rios, M. Trejo-Hernandez, R. d. J. Romero-Troncoso, and J. A. Antonino-Daviu. Smart-sensors to estimate insulation health in induction motors via analysis of stray flux. Energies, 12(9):1658, 2019.X. Zhang and J. Zhou. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines. Mechanical Systems and Signal Processing, 41(1–2):127–140, 2013.W. Zhao, T. Tao, and E. Zio. System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Applied Soft Computing, 30:792–802, 2015.W. Zhao, Y. Zhang, and Y. Zhu. Diagnosis for transformer faults based on combinatorial Bayes Network. In 2009 2nd International Congress on Image and Signal Processing, pages 1–3. IEEE, 2009.F. Zidat, J.-P. Lecointe, F. Morganti, J.-F. Brudny, T. Jacq, and F. Streiff. Non invasive sensors for monitoring the efficiency of ac electrical rotating machines. Sensors, 10(8):7874–7895, 2010
    • 

    corecore