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ABSTRACT

Electric motor condition monitoring can detect anomalies in the motor performance

which have the potential to result in unexpected failure and financial loss. This study exam-

ines different fault detection and diagnosis approaches in induction motors and is presented

in six chapters. First, an anomaly technique or outlier detection is applied to increase the

accuracy of detecting broken rotor bars. It is shown how the proposed method can sig-

nificantly improve network reliability by using one-class classification technique. Then,

ensemble-based anomaly detection is utilized to compare different methods in ensemble

learning in detection of broken rotor bars. Finally, a deep neural network is developed to

extract significant features to be used as input parameters of the network. Deep autoen-

coder is then employed to build an advanced model to make predictions of broken rotor

bars and bearing faults occurring in induction motors with a high accuracy.
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CHAPTER 1

Introduction

Electrical motors play a significant role in our daily lives. Therefore, it is very important

that they do not fail unexpectedly [39]. Three main kinds of electrical motors used in in-

dustry are DC motors, synchronous motors, and induction motors. The most popular kind

of electrical machines is the polyphase induction motor. A source of polyphase AC volt-

age applied to the stator winding is required for induction motors. This voltage produces

a magnetic flux which rotates around the stator at synchronous speed. A magnetic flux

produced by induced currents in the rotor winding combines with the stator flux to produce

torque. Since these motors are subjected to sudden malfunction due to different reasons;

it is a matter of high importance to recognize such faults to prevent unexpected failure.

Various methods of fault detection and diagnosis of induction motors are described in this

thesis.

Induction motors (IMs) are considered electromechanical energy transformation de-

vices since they convert electrical energy into mechanical energy [44]. Reliability, simple

design, construction, and cost effectiveness are the major reasons for the vast applications

of IMs in industry [48]. Three possible types of faults that affect IMs performance include

electrical, mechanical, and environmental faults. Major mechanical faults in IMs include

bearing faults, stator faults, and rotor faults including broken rotor bars. Each of them

may lead to the system failure [44]. The severity of such damages makes it absolutely

essential to establish an accurate monitoring system to detect such incident [49, 44]. A

significant number of issues can cause broken rotor bar (BRB) fault, including thermal,

magnetic, residual, dynamic, environmental stresses, and mechanical defects generated by

bearing faults [82]. Since the rotor is rotating quite quickly and it is difficult to attach

1



1. INTRODUCTION

transducers directly to the rotor body, fault detection and diagnosis is a challenging task.

Therefore, indirect measurement techniques are required to detect rotor damage. One of

the best measurement techniques for detecting rotor faults is stator current analysis. On the

other hand, the bearings faults can be caused by a number of reasons, including material

fatigue, overheating, harsh environments, corrosion, improper installation, poor lubrication

which is the main cause of their failure, and so on. Vibration and stator current analysis are

developed for the detection of bearing faults in IMs. Over the last decades, fault detection

and condition monitoring systems have improved rapidly that help to increase the avail-

ability, and enhance the performance of the system. These studies are mainly based on the

health management with fault detection and diagnostics (FDD) methods using condition-

based maintenance (CBM) for IMs [48, 44]. Condition monitoring methods possess certain

advantages including detection of the motor failure, improving the reliability, decreasing

the maintenance cost and machine downtime [44]. The general approaches in condition

monitoring are model-based and data-driven methods. This thesis focuses on data-driven

techniques to detect broken rotor bars and bearing faults. The rest of the thesis is orga-

nized as follows. In Chapter 2, detailed information about fault detection and diagnosis

approaches is given. Chapter 3 describes anomaly technique, whereas Chapter 4 presents

the ensemble-based anomaly detection, Chapter 5 defines deep learning models to solve

fault diagnosis problems. Finally, the thesis ends with some concluding remarks in Chap-

ter 6.
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CHAPTER 2

Fault Detection and Diagnosis

Approaches

In order to prevent destructive unanticipated failures, a large number of studies in condition

monitoring (CM), fault detection and diagnosis in the dynamic modeling of, for example,

gears, bearings, rotor bars in IMs have been carried out to study. Fault detection and diag-

nosis approaches can be categorized into two types in CM named a model-based approach

and data-driven approach [47, 64, 12]. A brief summary of prior work based on these

approaches and the values of them are defined in this chapter.

2.1 Condition Monitoring Approaches

2.1.1 Model-Based Approach

The model-based fault detection and diagnosis approach is a mathematical model of the

system under observation, in which a fault will cause deterministic changes in the model

parameters. These techniques use usual differential equations and different elements of the

model relating to actual results. They produce features like residuals r, parameter estimates

Θ or state estimates x , based on measured input signals U and output signals Y , identify

the possible fault conditions, and extract useful information [16]. The main model-based

techniques advantage is the ability to detect unexpected faults beside the replacement of

hardware redundancy by diagnostic redundancy [83]. Many real-world applications are

too complex to develop an accurate model. Therefore, model-based fault detection and

diagnosis approaches are almost impractical to apply and other methods should be applied.

3



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

2.1.2 Data-Driven Approach

Extracted features from the measured process data are applied in data-driven approach in

order to build a model that shows the process. The data-driven approach has been applied

in many too complex real-world applications to develop an accurate model. A large num-

ber of techniques in data-driven approach have been applied to solve fault detection and

diagnosis problems. Statistically based methods and those based on artificial intelligence

(AI) techniques [42, 86] are different methods in the data-driven approach. As it is illus-

trated in Figure 2.1.1, after data collection and feature extraction, the intelligent detection

and diagnosis will be employed.

Feature 
Extraction

Data Collection
Fault Detection 

& Diagnosis

FIGURE 2.1.1: Fault detection and diagnosis step

Statistically-Based Approaches

Data-Driven based fault detection and diagnosis is a novel detection for CM, which recog-

nizes any abnormalities between the features extracted from the measured data and the data

measured under normal (healthy) operating conditions. Extracted features from a machine

in its healthy state will have a distribution with a connected mean and variance. When the

fault occurs, a variation in the mean and/or variance will appear. One of the earliest statis-

tical fault detection techniques is statistical control charts (SCCs) [86]. SCCs monitor the

distribution of the features and detect any changes in the distribution characteristics of the

features will indicate the fault, termed outlier analysis. One of the intelligent detection and

diagnosis examples in the statistically-based approaches is anomaly technique or outlier

analysis.

4



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

Artificial Intelligence (AI)-Based Approaches

A computerized approach that applies knowledge to enable machines to perform tasks

which humans perform using their intelligence [36] is artificial intelligence (AI). In or-

der to enhance the accuracy and efficiency of fault detection and diagnosis of machines,

AI techniques such as artificial neural networks, fuzzy logic and support vector machines

(SVM) have been widely developed in recent years. In addition, the intelligent detection

and diagnosis examples in AI-based approaches are training classifiers like artificial neu-

ral networks (ANN), also known as Multi-layer Perceptron (MLP) [30, 56], and support

vector machine (SVM) [71] with these features. The accuracy of intelligent fault diagnosis

with the help of their multilayer nonlinear mapping ability can be improved by using their

multilayer nonlinear mapping ability which is named deep learning models.

Artificial Neural Network (ANN)

The artificial neural network is inspired by human brains. Data processing and learning

ability of biological neurons are processed in the brain. ANN is used artificial neurons

which use the functionality of both memory and computation [70, 19]. As a result, ANNs

can play an important role in identifying and diagnosing faults in machinery. These intel-

ligent fault diagnosis can propose a self-diagnostic procedure. They can be applied for a

variety of applications to the area of intelligent condition monitoring, including function

approximation, classification, pattern recognition, clustering, and forecasting [70].

Support Vector Machines (SVM)

One types of artificial intelligence methodology applied commonly for the classification

and regression of data is support vector machine (SVM). In most neural network systems,

SVMs are supervised learning methods resulting from statistical learning theory. Super-

vised learning is one of the machine learning methods which creates a clear map between

the inputs and outputs in the training data. Normally, SVMs are applied for binary-class

classification, but they can be used for multi-class classification problems [62, 58] by using

some techniques. SVMs can predict the relationship between the input and output accu-

rately by using a small amount of training information. For instance, SVM can classify

a two-class dataset by finding a splitting plane between two classes. The splitting plane

5



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

named decision boundary can be a linear or non-linear boundary.

SVMs applications:

• Mechanical fault diagnosis

• Data mining

• Text classification

• Facial recognition

2.2 Condition Monitoring Techniques

Various CM techniques have been applied for the purpose of rotating machinery health

monitoring in recent decades. These techniques, including vibration, acoustic emission,

motor current, lubricant analysis, and thermal monitoring. The most applicable techniques

to use in different applications are described in this section.

2.2.1 Vibration Condition Monitoring

Fault detection and diagnosis techniques in various industrial applications [28] use vibra-

tion signal analysis. Each component’s geometry and the rotational speed of the machine

effect on each component’s frequencies. Vibration signal analysis can determine the fault

along with its cause and severity by using the relationship between the measured frequen-

cies and expected faults, either by theoretical modeling of the machine or by measurement.

When there is a surge in vibration level, it means that a fault occurs in a rotating machine. In

order to analyze the vibration signal of rotating machines, different methods including, fast

Fourier transform (FFT) for frequency analysis, empirical mode decomposition (EMD),

wavelet analysis, and so on are applied. The main goal of signal processing is getting some

useful information which cannot be received for any reasons from the initial signal. This

goal is named feature extraction which is achieved by data mining. Data mining is extract-

ing hidden data (features) from the signals. Figure 2.2.1 shows different categories of the

signal processing step.

6



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

Time-domain
Frequency-

domain

Time-
Frequency 

domain

Signal 
Processing

FIGURE 2.2.1: Signal processing step

Importance of signal processing:

• Remove and reduce the effect of noise

• Achieve hidden signal content

• Create a better signal for better data mining

When the signal is contaminated by noise, vibration condition monitoring can improve

the signal-to-noise ratio. Therefore, faults can be detected efficiently.

Various methods of signal processing:

• Time-domain

Almost all vibrating signals are initially time-domain. It means that the signal layers

apart from what is measured is the nature of the time. In other words, the variation

of signal’s amplitude over time is referred to the time domain. In order to analyze

mathematical functions, physical signals or time series of economic or environmental

data, with respect to time, time domain technique can be used. Real-world signals

in the time domain, including continuous and discrete time, can be visualized by

a common tool named an oscilloscope. Fault detection and prognosis of control

systems, CM, and time series are some time-domain signals’ applications.

• Frequency-domain

In general, all signals are composed of many sinusoidal signals with different fre-

quencies (Fourier series). And in some cases, the frequency content of a signal con-

tains an essential and necessary information of the signal. The presence of noise

7



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

in the time-domain signals leads to some problems in fault detection and diagnosis.

In order to solve these problems, signals should be converted to frequency-domain.

Frequency-domain can remove noise from the signals. As a result, useful information

can be achieved. The most common method in this domain is fast Fourier transform

(FFT).

• Time-frequency domain

Classical Fourier analysis assumes that signals are infinite in time or periodic, while

many signals in practice are of short duration, and change substantially over their

duration. As a result, time-frequency analysis should be applied. Time-frequency

analysis is the study of the signal in both the time and frequency domains simul-

taneously. It means that time-frequency analysis studies a two-dimensional signal.

Different kinds of time-frequency analysis methods are short-time Fourier transform

(STFT), wavelet analysis, and empirical mode decomposition (EMD).

There is no particular mathematical-physical interpretation in these methods for signal

processing step since they include a very large group of raw data. As a result, a number

of signal features that are mathematically interpreted should be extracted. In other words,

after employing one of these methods for signal processing step, fundamental information

(fault features) should be extracted from the vibration signal of machines.

The properties and states of a signal cannot be highlighted by the low selection of

features since it is impossible to distinguish between two different signals. Also, it is

difficult to analyze a large number of features. As a result, the behavior of a signal cannot

be accurately predicted in these two cases. In order to reduce data space, save time, and

improve the performance, a large number of features should be extracted and then select

some useful features from them. This selection of some useful features is named feature

selection.

2.2.2 Acoustic Emission Condition Monitoring

The study of the generation, propagation, and reception of sound that is heard by a human

being [63] is Acoustics. The sounds are divided into desirable and undesirable, which is

8



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

traditionally known as noise. Only sound waves within a specific frequency range, between

20 Hz to 20 kHz, can be heard by human ears. Moreover, frequencies above 20 kHz are

recognized as ultrasonic. High-frequency signals range from 100 kHz to 1 MHz [63, 76]

can be dealt with the acoustic emission (AE) technique, which has more stable performance

in fault detection. Therefore, the AE-based technique needs much higher sampling rates

than vibration-based techniques. Most machines under normal operating conditions emit

acoustic signatures and any variation in these signatures can show the start of corrosion of

some components.

2.2.3 Motor Current Signature Analysis Condition Monitoring

Mechanical faults with electrical signatures can be detected by motor current signal anal-

ysis (MCSA). The stator current signal of the motor can be measured at distant locations

from the motor because of the accessibility of the current-carrying conductor to the motor.

Therefore, this sensorless technology does not need any transducers or measuring equip-

ment to be installed on or near the monitored machine. A large number of faults in IMs

can be detected by this technique, including broken rotor bars [23, 7], shorted windings,

air-gap eccentricity [18], bearing faults [72], load faults, and so on.

Stator Current Analysis

Stator current analysis means filtering the stator current to remove the important frequency

content that is irrelevant to faults occurring in IMs [75]. A baseline or reference model

named autoregressive model can be trained by the filtered healthy current signal. When a

fault occurs, the deviation in spectral content from its reference measurement is increased.

This increase in spectral deviation can be used as the fault index. One reliable method

for detecting faults at their early stages in IMs [27] is a CM technique based on statistical

and numerical tools. In order to find the spectrum of the motor current, FFT can be used.

And then wavelet function, a multi-resolution signal processing technique, can be applied

on this spectrum to detect the significant peaks. In wavelet function, vibration signals are

segmented into multi-level in order to analyze the simulated signals. These signals are

9



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

analyzed using time and frequency-domain feature extraction techniques. Then, some sta-

tistical parameters, including mean value, root mean square (RMS), energy, entropy and so

on are calculated from each segment and applied to detect faults at their early stages. Over-

all, some diagnostic techniques such as spectrum comparison, spectral kurtosis analysis,

and envelope analysis can be applied to the vibration signals for fault detection method in

IMs.

Various feature functions:

• Mean value

The mean value is good to be calculated when the defect affects the overall mean of

the signal amplitude. As it is shown in the below equation, X(n) is a value of the

signal and N is a number of signal points at the time.

Mean =
∑N

n=1X(n)

N

• Root Mean Square (RMS)

RMS is the effective amount of a signal. And it can be measured by the below

equation:

RMS =

√∑N
n=1X(n)2

N

• Energy

The energy level of a signal indicates its degree of disturbance. Therefore, signal

high energy indicates a phenomenon such as a system failure, an installation failure,

and so on. The below formula shows it.

Energy =
∑N

n=1X(n)2

• Entropy

Entropy is one of the significant features for condition monitoring (CM).

Entropy =
∑N

n=1 (X(n) ∗ log( 1
X(n)

))
2

10
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2.3 Fault Detection in IMs

2.3.1 Detection of Broken Rotor Bars

A number of work done have been noted that broken rotor bars cause a pulsation at twice

the slip frequency in the stator current [32, 50]. In addition, others concluded that ax-

ial flux may be monitored in order to detect faults [81, 55]. Although the amplitude of

vibrations caused by a damaged rotor is smaller compared with that caused by damaged

bearings, vibration can also be utilized to detect rotor faults [81]. Parameter estimation is

another technique for the detection of broken rotor bars [14, 24]. Model parameters are the

measurements of current and voltage. A sensor should be connected to the motor supply

terminals in order to measure the voltage. On the other hand, a current transformer or Hall

effect transducer should be clamped to the motor supply cable to measure a current. It is

used for stator current analysis. And when specific frequency components in the spectrum

of the stator current exist, rotor faults can be detected [32].

2.3.2 Detection of Bearing Faults

The most of the failures occurring in IMs (about 40%) are related to the bearings [17].

These failures are so costly and time-consuming. They do not lead to an immediate break-

down. But, they evolve in time until they produce a critical failure of the machine. Rolling-

element bearing fault detection in IMs using MCSA technique is described in [72]. First,

[72] researched on the effects of different bearing faults on the stator current spectrum

and the relationship between motor current and induced vibration, due to incipient bearing

faults. The predicted relationship between the vibration and current frequencies showed

that the stator current signature can be applied for a bearing fault detection. Overall, the

bearing characteristic frequencies and the modes of failure are related to the bearings con-

struction. As a result, vibration analysis is not always possible to diagnose the bearing

faults because some vibration sensors and particular equipment for the CM are needed.

Moreover, the stator current monitoring is more convenient because it needs only simple

11



2. FAULT DETECTION AND DIAGNOSIS APPROACHES

and cheap current sensors. Therefore, the stator current analysis can be applied in some

specific situations. In general, the rolling-element bearing consists of two rings, between

which a set of balls or rollers rotate in raceways. In most cases, fatigue failure begins

with small cracks, which are located on the surfaces of the raceway and rolling elements

under normal operating conditions. The cracks slowly expanded by the repetitive impacts

between the components of the bearing and the faulted surfaces. These cracks cause an

increase in vibrations and noise levels [33]. The position of the fault affects vibrations.

The fault can be occurred in the inner race, the outer race, balls, and cage [72].

12



CHAPTER 3

Anomaly Technique

One of the data-driven techniques like anomaly technique or outlier analysis with their fu-

sion in various configurations, are defined in this chapter. A data-driven diagnostic scheme

to detect broken rotor bar by analyzing stator current signal is proposed. The primary goal

of the proposed model is to create a proper feature subset that represents a precise index

of the IMs operating conditions. More importantly, the proposed model has benefited from

one-class classifiers (OCCs), which are ideal for fault detection purposes [87, 74]. OCCs

are outlier detection techniques [37], which aims to detect the normal condition or the tar-

get class and reject abnormal samples or the outliers, in this case representive samples of

broken rotor bar. OCCs could assist in fault detection process even when only the infor-

mation about normal state of the system is available, which is frequently happens in real

applications. They are mainly used to know the normal condition or class of target, and

reject any other samples as fault or class of outlier [87, 74].

3.1 One-class classifiers (OCCs)

A one-class classifier aims to detect particular samples, which belong to the class of target,

amongst all other samples that belong to the class of outlier. It is widely used to identify

whether the new samples are similar to the sample of the target class, which the classifier

already learned them during the training process. If a new testing sample is not the same

as the training set, it will be called an outlier, or novelty or abnormality [13]. In this sec-

tion, six state-of-the-art OCCs named Gaussian Distribution (GD), Parzen Density (PD),

Nearest Neighbour (NN), k-Nearest Neighbour (kNN), k-means, and Angle-Based Out-

13



3. ANOMALY TECHNIQUE

lier Fraction (ABOF) are discussed. These classifiers are working based on four different

methods; the density-based estimation method (i.e., GD and PD), the distance or boundary

methods (i.e., NN and kNN), the reconstruction method (i.e., k-means) and the last method

which is based on the variance of the angles (i.e. ABOF).

3.1.1 Gaussian Density or Normal Distribution

Gaussian density is widely used to estimate the density of the probability functions [60].

This one-class classifier models the target class as a Gaussian distribution [79]. Given a test

point x, the Gaussian method uses the Mahalanobis distance to measure the resemblance

between x and all training samples. The measurement of the distance d from x to the target

class, which is represented by the mean value of the training set µtr, is calculated by [20]:

D2 = (x− µtr)T (covtr)
−1(x− µtr)

where, covtr stands for the covariance of the training set. One should apply a threshold like

β, which describes the separation between the target and outlier classes. If D2 ≤ β, so

f(x) =target, otherwise f(x) is an outlier [77].

3.1.2 Parzen Density

Parzen method needs a large number of training objects to make a correct probability den-

sity estimation. A width parameter σ gives an information about the probability den-

sity distribution. In this method the width σ of the kernels has to be expected [78]:

p(x) = 1
N

∑
xtr

1

(2π)
d
2 σd

exp( −1
2σ2 (x− xtr)2)

This is the average of N Gaussian functions with each data point as a center, which can

be used to model the training subset. xtr is a data point in the training set and d is the

dimensionality of the input space [78, 60]. This method can incorporate the outlier in its

probability estimate [61]. This method sorts all training objects and, during the test phase,

calculates and sorts the distances to all training objects. This might limit the applicabil-

ity of the method, especially when large datasets in high dimensional feature spaces are

considered [61].

14
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3.1.3 Nearest Neighbour (NN)

The nearest neighbor data description (NNDD) is a one-class classification method that is

on the basis of the distance between the object and its nearest object in the feature space

[43]. Given a test object x, the first nearest objects of x like xtr1 will be selected, and the

distance between x and its neighbor in the training set, xtr1 will be calculated and named

d1.

||dist(x, xtr1(x)‖ = d1

After that, the distance between xtr1 and its nearest neighbor in the training set, xtr2 will

be calculated and named d2.

||dist(xtr1, xtr2)‖ = d2

, where dist is the Euclidean distance between two objects [13].

NN method says if d1
d2
< 1 , x is accepted as a target. Otherwise, if d1

d2
> 1 , x is an outlier

[80, 46, 13].

3.1.4 k-Nearest Neighbour (kNN)

The same as NN, k-Nearest neighbor data description is a one-class classification method,

in which instead of choosing only the first nearest neighbor, it needs to select k nearest

neighbors [80, 46, 13]. Where k is the number of nearest neighbors to an object detected

by the classifier [2].

3.1.5 Angle-Based Outlier Fraction (ABOF)

Another method to detect outliers is the Angle-Based outlier detection approach. ABOF,

instead of using distance-based methods to detect outliers, makes use of the variance of

angles. These angles are more stable than distances in high dimensional space [52]. The

Angle-Based Outlier Factor ABOF (
−→
A ) is the variance over the angles between the differ-

ent vectors of
−→
A to all pairs of nearest neighbors, e.g.,

−→
B ,
−→
C ∈ Nk(

−→
A ), weighted by the

distance of the samples, where Nk(
−→
A ) of

−→
A stands for the k nearest neighbors of

−→
A :
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3. ANOMALY TECHNIQUE

ABOF (
−→
A ) = V AR−→

B,−→c ∈Nk(
−→
A )

(
〈AB,AC〉
||AB‖2.||AC‖2

)
(3.1.1)

The ABOD algorithm assigns the angle-based outlier factor ABOF to each point in the

dataset and returns the list of points sorted according to their ABOF [53]. The variance

of the angles for points outside of the cluster is the smallest and, thus, these points are

assigned as outliers.

3.1.6 k-means

The simplest reconstruction method is the k-means clustering [9]. Clustering algorithms are

widely divided into two methods: hierarchical and partitional. Among different methods,

k-means is the simplest partitional algorithm [41]. k-means forms k clusters whose points

have maximum interior cluster similarity (minimum distance) and also minimum similarity

with points inside the other clusters. In this algorithm, k initial ”means” or ”cluster centers”

are randomly created within each cluster. Therefore, assume X=xi, i = 1, ..., n as the set

of n d-dimensional points to be clustered into a set of k clusters, cj , j = 1, ..., k [41].

The distance metric can be found by measuring the similarity between interior points and

the mean of the cluster. Within cluster distance, it can be defined as:

E1 =
∑

xi∈cj dist(xi, µj) =
∑

xi∈cj ‖xi − µj‖
2

, where µj is the mean of cluster cj . Minimizing the sum of this distance over all k clusters

is the main aim of k-means.

E2 =
k∑
j=1

∑
xi∈cj

dist(xi, µj) =
k∑
j=1

∑
xi∈cj

‖xi − µj‖2 (3.1.2)

In the k-means classifier, it is assumed that if E2 ≤ θ, f(x) =target, otherwise f(x) is an

outlier (θ is a preset threshold) [77].
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3. ANOMALY TECHNIQUE

3.2 Design of The Fault Detection

The goal of this chapter is to design a fault detection model to identify broken rotor bar

of IMs. Figure 3.2.1 shows the proposed fault detection scheme, which consists of three

sub-modules of feature extraction (FE), feature selection (FS), and fault classifiers. In the

first module named feature extraction (FE) is applied to the stator current signals. In other

words, vibration signals including normal and faulty conditions are segmented into differ-

ent parts, then seven time-domain features, including root mean square, mean value, shape

factor, energy, entropy, peak to peak, and variance of each segment are calculated. The

normalization is also applied on the extracted features to create a well-processed dataset

[68]. Once feature extraction task is completed, two different scenarios are considered. In

the first scenario, the extracted features are directly fed to the six different state-of-the-art

OCCs to discover if the motor is in the normal condition or not. In the second scenario, the

correlation-based feature selection method, adopted from [31], is applied on the extracted

features before the classification task. This feature selection technique tries to find a subset

of features, which is the most correlated to IM operating condition, while it also considers

the degree of redundancy between the features. The Best-first search starts with an empty

set and then, searches forward through the feature space [65].
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FIGURE 3.2.1: Block diagram of the proposed fault detection scheme
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3.3 Experimental Results

In this study, a three-phase, 1.2 KW, 380 volt, 50 Hz, 1400 rpm, four-pole induction motor

is used to collect experimental data. The stator current signal is analyzed with the proposed

fault detection scheme. The experimental results obtained from two different scenarios,

with/without applying feature selection method, are evaluated and compared. Moreover,

the performance metrics (i.e., accuracy and f-measure) for each state-of-the-art one-class

classifiers (i.e., GD, PD, NN, kNN, k-means and ABOF) are calculated to determine the

best technique. It is also noticeable that 10-fold cross validation is considered to provide

a reliable evaluation. The proposed fault detection scenarios are compared with each other

in Figure 3.3.1. In this figure, solid blue circles show the accuracy and f-measure of the

six different OCCs participating in each scenario, the white squares show the average per-

formance, and the red crosses represent the outliers. From this it can be concluded that the

use of selected features by means of FS (i.e., mean and entropy) could improve the average

performance of the OCCs from about 0.67 in the first scenario to around 0.96 in the second

scenario. In other words, the applied feature selection method could effectively enhance

the accuracy of the fault detection scheme about 0.29. Figure 3.3.2 is also provided to take

a closer look at efficiency of each one-class classifier after feature selection. This figure

shows that kNN has the best performance since it has the highest mean value. In addition,

performance of ABOF and k-means as fault detectors are very close to each other and can

be placed in second and third ranks, respectively. The highest variation and the least stable

results corresponds to GD and NN classifiers.

For a better comparison, the decision boundaries of six classifiers are shown in Figure

3.3.3. Considering kNN, ABOF and k-means panels in this figure, there are a very few

samples of outlier (broken rotor bar), which are located inside the normal region (i.e.,

representative of the missed alarms). Moreover, the number of misclassified samples of

normal condition, which results in false alarms, is almost so small. As represented in the

figure, GD has the highest amount of the false alarms and NN has missed many alarms,

i.e., samples of faulty class. As a result, NN and GD are also ranked as fifth and sixth,

respectively.
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FIGURE 3.3.1: Performance measures (i.e., accuracy and f-measure) obtained by each
scenario.
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FIGURE 3.3.2: Performance measures (accuracy and f-measure) obtained by each one-
class classifier after feature selection.
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FIGURE 3.3.3: Performance measures trends for each one-class classifier after feature
selection.
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In addition, it is common in OCCs to determine a threshold parameter like β (i.e., frac-

tion of target rejected or missed alarm) which describes the separation between the target

and outlier class during learning process. Figure 3.3.4 is also provided to present the clas-

sifiers’ performances obtained by varying β from 0.01 to 0.9 after feature selection. From

this figure, one may conclude that by increasing β the average performance measures are

decreased among all classifiers. kNN, ABOF, and k-means have very similar trend. They

have the best rank among others. The difference between them is just standard deviation.

PD, NN, and GD have some variation in results (they do not have a stable results in this

range).
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FIGURE 3.3.4: Performance measures trends for each One-class classifiers after feature
selection.

In addition, the obtained accuracy and f-measure of the classifiers for both scenarios
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are presented in Table 3.3.1. The performance metrics are formatted as mean ± standard

deviation of the 10-fold cross validation. The classifiers are ranked according to their per-

formance measures, from 1 which means the best performance to the 6, in the last column

of the table.

TABLE 3.3.1: Classifiers’ performances with/ without feature selection

First scenario Accuracy F-measure Rank
GD 0.71± 0.17 0.76± 0.12 1

ABOF 0.50± 0.01 0.66± 0.02 2
NN 0.50± 0.02 0.66± 0.02 3

k-means 0.51± 0.03 0.67± 0.03 3
kNN 0.50± 0.03 0.66± 0.03 4
PD 0.64± 0.17 0.70± 0.15 5

Second scenario Accuracy F-measure Rank
kNN 0.98± 0.03 0.98± 0.04 1

ABOF 0.99± 0.02 0.99± 0.02 2
k-means 0.99± 0.02 0.99± 0.03 3

PD 0.97± 0.05 0.96± 0.06 4
NN 0.94± 0.08 0.95± 0.06 5
GD 0.93± 0.09 0.91± 0.13 6
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CHAPTER 4

Ensemble-based Anomaly Detection

4.1 Problem statement

Ensemble methods using OCCs:

This chapter aims to study the use of the ensemble of OCCs for detecting broken rotor

bars in IMs. Various configurations of the ensemble are made and studied in this chapter in

order to design of the fault detection system. These fault detection configurations are indeed

multiple classifier systems (MCSs) that aim to combine the outputs of various individual

OCCs. These OCCs can be merged together through mean voting, majority or plural voting,

and random subspace [10, 26]. These are indeed different sets of diverse models [3]. This

diversity usually results in a better performance.

4.2 Ensemble-based systems

The main idea in MCSs is creating different subsets of data and, then, train a number of

OCCs based on each. Various factors play important roles in designing a learning system

including classifier parameters and training sets. This diversity can result in less estima-

tion error. This section initially explains these ensemble techniques, including random

subspace, bagging, and boosting of similar and different OCCs.

4.2.1 Bagging

The Bootstrap Aggregation (bagging) algorithm creates a numerous bootstrapped training

sets repeatedly in a random manner to train individual models. This means that some
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4. ENSEMBLE-BASED ANOMALY DETECTION

training instances may be selected several times and others may not be selected at all. This

algorithm applies the Majority Voting technique for aggregation. This means that at least

more than half of the classifiers should return a label so that label can be assigned to that

sample [3]. Moreover, the Parallel and Stacked combination have also been utilized in

order to combine classifiers [21]. Bagging reduces the variance, while boosting reduces

both bias and variance [10, 6]. Bagging algorithm as illustrated in Figure 4.2.1.

DATA

OCC 2

OCC 3

OCC 5

OCC 4

OCC 1Subset 1

Subset 2

 Subset 3

Subset 4

Subset 5 Ensemble 
Decision 

Majority
Voting

FIGURE 4.2.1: General scheme of the bagged of OCCs [5]
.

4.2.2 Random Subspace

Random subspace method is one of the ensemble learning methods, which is similar to

bagging algorithm, called feature bagging. The only difference is in selecting random

features. This method has a better performance for the high-dimensional data, where the

number of features is much greater than the number of samples [73, 38]. Figure 4.2.2

illustrates the general scheme of the random subspace ensemble of OCCs.

4.2.3 Boosting

Boosting creates and trains a number of weak learners, which perform slightly better than

random guessing. It modifies the input subsets of the upcoming OCC with increasing the

weight of samples that are misclassified by means of previous OCCs and, thus, return the
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FIGURE 4.2.2: General scheme of the random subspace ensemble of OCCs.

total error [25]. The main objective of boosting is combining a number of weak learners

to achieve a strong learner with the desired accuracy. There exists three different methods

boosting strategies [51]:

• Filtering

In this method, selected samples of the large dataset are deleted or returned to the

dataset.

• Sub-sampling

It is applicable over a constant dataset, where datasets will be resampled with re-

placement by using a probability distribution to their weights.

• Reweighting

It is similar to the sub-sampling approach. This strategy aims to re-weight the sam-

ples according to the classification of the samples in previous iterations.

In this work, AdaBoost (M1) is used to begin a fault detection system by means of OCCs.

AdaBoost is an algorithm which utilizes a reweighting method to choose the train-

ing subsets. If a sample is misclassified by a weak OCC, the probability distribution (the

weights) of selecting that sample for the next weak OCC will be increased. Otherwise,

the probability will be decreased. The final hypothesis can be calculated by a weighted
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majority voting algorithm [59] over all OCCs. This method then focuses on misclassified

samples. The number of classifiers is an important parameter of the AdaBoost algorithm.

Figure 4.2.3 illustrates the general scheme of the boosted OCCs.

Training
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Training 
Data

Update
Distribution

Voting 
Weights

Normalized 
Error

OCC2

OCC3

OCC5

OCC4

OCC1

Weighted 
Majority 
Voting 

TestingTraining

FIGURE 4.2.3: General scheme of the boosted OCCs [66].

4.2.4 One-Class Fault Classifiers

In this work, five OCCs, including GD, PD, NN, kNN, and k-means, are applied to design

fault detection systems by constructing various type of ensemble. These OCCs techniques

were individually used to detect BRB in Chapter 3 [68].

4.3 Experimental Results

In this section, a 3-phase, 50 Hz, 380 volts, 1.2 KW, 1400 rpm, 4-pole induction motor is

used to gather experimental data. First of all, the stator current signal in normal and faulty

conditions are segmented into various non-overlapping parts. Consequently, seven statisti-

cal features are extracted from each segment forming a feature set of statistical measures.

These statistical features are root mean square, mean value, shape factor, energy, entropy,

peak to peak and variance. The resulted sets contain seven features and less number of

samples that is equal to number of non-overlapping segments. The normalization is also
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TABLE 4.2.1: Performance measures obtained by each ensemble-based systems.

Ensembles Performance Measures GD PD NN kNN k-means Combining heterogeneous classifiers

Random Subspace
Accuracy 0.96 0.99 0.64 1 0.99 0.70

F-Measure 0.96 0.99 0.44 1 0.99 0.70

Average 0.96 0.99 0.54 1 0.99 0.70

Bagging
Accuracy 0.98 0.99 0.95 1 0.99 1

F-Measure 0.98 0.99 0.95 1 0.99 1

Average 0.98 0.99 0.95 1 0.99 1

Adaboost
Accuracy 0.97 0.95 0.92 0.99 0.97 0.98

F-Measure 0.98 0.96 0.94 0.99 0.93 0.99

Average 0.975 0.955 0.93 0.99 0.95 0.985

applied to the extracted features to produce a well-processed dataset. The extracted set

of normalized features is then used as inputs to construct the ensemble of OCCs for the

sake of fault detection in IMs. Three different ensemble algorithms of random subspace,

bagging and boosting with feature selection and a 5-fold cross validation is assessed and

compared with each other in this section. Moreover, the performance metrics (i.e., Ac-

curacy and F-Measure) for each method are measured to find the best detection scheme.

First of all, the random subspace method is applied which generates features randomly

and, then, trains five homogeneous and one heterogeneous OCCs. The results are summa-

rized in Table 4.2.1. The best first feature selection strategy is used for selecting proper

set of feature for each ensemble of OCCs. Various ensemble models, including bagging,

boosting, and random subspace are constructed in homogeneous and heterogeneous config-

urations by means of the five stated OCCs. The attained results, i.e., performance measures

by each ensemble model are reported in Table 4.2.1. As it can be seen in the table, the

random subspace ensembles of NNs and heterogeneous OCCs do not perform well unlike

bagged and boosted ensembles that result in satisfactory measures. This enlightens the

fact that the random selection of features in relatively low dimensional data decreases the

efficiency of the algorithms. Besides, homogeneous and heterogeneous bagged of OCCs

slightly outperform homogeneous and heterogeneous boosted ensemble of OCCs. More-

over, homogeneous bagged of kNN and heterogeneous bagged of OCCs outperform other
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techniques. The random subspace of kNN has also achieved a very promising performance.

The attained results also show that kNN is the best OCC to generate the ensemble schemes

compared to other individual OCCs.
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CHAPTER 5

Deep Neural Network

5.1 Artificial Neural Network

In recent decades, articial intelligence (AI) has played a significant role in the creation of

machines that function as closely as possible to human brains as well as researching in

some dynamic topics. Humans solve intuitive tasks easily, but describing that intuitive pro-

cess is difficult. Therefore, AIs main applications include cognition and machine learning

abilities. The machine is an intelligent computer that collects data from experience, learns

complicated concepts and then makes an accurate decision. Deep learning is a subset of

machine learning, which itself falls under the category of AI [8]. AI takes input data from

the environment, and processes it for the purpose of decision making. The main goal of

AI is simulating and understanding of human behavior. AI has a variety of applications,

including robotics, natural language recognition, computer games, economics, behaviour

recognition, and fault detection and diagnosis.

Dataset
Learning

Algorithm
Applications

FIGURE 5.1.1: General scheme of machine learning techniques

As it is illustrated in Figure 5.1.1, the dataset is introduced to the machine learning al-

gorithm and in the next process, the algorithm will be trained to get a target goal using this

dataset. Once the algorithm is completed, it will be used for desired applications. A simple

machine learning algorithm called representation learning is used to extract the right set
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of features [8]. Representation learning is also known as feature extraction. The model

is trained by these extracted features and then performs one of two tasks: classification or

regression. The model’s task is to match each of the input data to the class related to it.

Figure 5.1.2 shows this process. As it is shown in Figure 5.1.3, feature extraction is di-

Representation
Learning

Learning
Algorithm

Classification
Or

Regression

FIGURE 5.1.2: Steps in machine learning techniques

vided into two categories named automatic feature extraction (representation learning like

deep learning, neural network, clustering, and so on) that results in much more acceptable

performance compared with the traditional method (manual one) using formulas or prede-

termined methods. In representation learning methods, the algorithm itself learns which

features are appropriate and how to extract them. Then, these extracted features are fed to

the classifier to perform classification task or diagnose results.

Feature 
Extraction

Automatic 
Feature 

Extraction

Manual 
Feature 

Extraction

Classifier
Diagnosis 

Results

FIGURE 5.1.3: Different kinds of feature extraction

In the 1950s, linear models or the perceptron [69] were the simplest models in the artifi-

cial neural network which were inspired by human brains. In these models, information or

data are transmitted or removed from the cell as electrical pulses or signals. These electrical

signals from different neurons are entered into a core of neurons by dendrites. In the cell

body, all inputs are added together, and then this data is processed to create a new signal

which transmits along the cell’s axon and sends to other neurons. During passing through
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the cell, some processes are done along the human’s life which is similar to training the

neural network over life. This structure of the human brain is interpreted to an artificial

neural network for the computers. For example, in Figure 5.1.4, the n-dimensional input

for the artificial neuron is assumed and the inputs are X1,X2,...,Xn, which are multiplied

by a specific weight, W1,W2,...,Wn. The summation of weighted inputs and a bias are then

passed through an activation function F (z), which is a non-linear function, to create the

output that is sent to other neurons. These linear classifiers could separate two different

categories of inputs by learning the weights of inputs from each category [11, 8].

X2

X3

X4

X1 W1

W2

W3

W4

Sum F(z)

Bias

Output

Xn Wn

…

…

...

…

…

...

FIGURE 5.1.4: Schematic of a neuron in an artificial neural network

The below formula is used to show a neuron in an artificial neural network:

uk =
∑n

j=1WkjXkj

and

yk = f(uk + bk)

In mathematical terms, X1, X2, ..., Xn are input signals; W1,W2...,Wn are the synaptic

weights of neuron k; uk is the linear combiner output due to the input signals; the bias

is bk ; f(.) is the activation function; and the output signal of the neuron is yk. De-

pending on whether the applied bias is positive or negative, respectively it can either in-

crease or decrease the net input of the activation function, and change the output uk [34].
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In the Figure 5.1.4, the input to the jth layer of the network is assummed as a vector

X =
[
X1 X2 X3 ... Xn

]
that propagates through the neurons and then the vector

output Y =
[
Y1 Y2 ... Yn

]
will be produced by multiplying a weight matrix W and X

and then add vector b. Therefore, the output of the neuron as yk =
∑n

j=1WkjXkj + bk is

defined by the activation function f(.), which implements a mathematical function on its

input [11, 34].

5.2 Activation Function

There are various forms of nonlinear neurons in the hidden layer. In this section, three

major types will be introduced. The first of these is the sigmoid neuron, which uses the

following non-linear activation function: f(z) = 1
1+e−z

Its graph is s-shaped. It is also defined as a firmly increasing function that shows a smooth

balance between linear and nonlinear actions. Its procedure has realized a breakdown,

because its outputs are not zero-centred and it is likely to overload, which decreases its

learning capacity. Another type of nonlinear neurons is Hyperbolic tangent neurons stating

an s-shape neuron, the only difference is ranging boundary, the output of Hyperbolic tan-

gent neurons range from -1 to 1 and it is zero-centered. Therefore, the Hyperbolic tangent

neuron is often better than the sigmoid neuron [45]. Restricted linear unit (ReLU) neu-

ron uses a different kind of nonlinearity with the function f(z) = max(0, z), which states

a specific hockey stick shaped response. And it changes the negative inputs to zero. A

large number of neurons never influences the output of the neural network in this activation

function. Therefore, it finds applications mostly in computer vision. The output layers,

however, mostly use nodes with linear functions while input layer acts as a buffer.

5.3 Feed-Forward Networks

One layer in the neural network has one or more neurons [34]. There are three types of

layers:

• Input Layers
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They are connected to the inputs of the model.

• Hidden Layers

They are not visible in the training set.

• Output Layers

They present the output of the model.

The depth of the model is known as the number of layers, while the number of neurons in

a layer is referred to as the width of the model. At least a depth of three including input,

single hidden, and output layer is called deep learning. ANNs are divided into two layered

network including feedforward and recurrent neural networks based on the connections

between the layers. Figure 5.3.1 shows single-layer feed-forward networks, one of the sim-

plest form of a layered network, which has an input layer that affects on an output layer of

neurons. This network is firmly a feed-forward or acyclic type [34]. Moreover, input layers

are not necessarily connected to one neuron. This means that these layers can be connected

to multiple neurons with various weights. For instance, the three-dimensional input layer

can be connected to four different hidden or output layer neurons. As it is illustalated

in Figure 5.3.2, the inputs are mapped from three-dimensional to four-dimensional space

which is considered as the features space. It means that the input mapped to a series of use-

ful features. This process is the same as feature extraction. Feed-forward neural networks

contain zero or more hidden layers, where all of the leaving connections from layer N will

influence layer N + 1. While, recurrent neural networks learn from sequences instead of

discrete training examples by using an additional feedback loop [35]. Nonlinear data can

be classified by using deep networks [54]. In addition, the ideal instance of a deep learning

model known as a multi-layer perceptron (MLP) or multilayer feed-forward networks that

consist one or more hidden layers were formed. Hidden layers get involved in the external

input and the network output in some useful manner. Useful features from the input can

be learned by using hidden layers [11, 34]. For instance, as it is shown in Figure 5.3.2,

the network is enabled to extract higher-order statistics [15]. In Figure 5.3.3, after feature

extraction, features are used as inputs of the classification task to find the classes of the

input. Classification method can be added as a layer to the network. This classifying a
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set of inputs is called forward propagation neural network. Higher-order statistics can be

extracted by hidden neurons and when the size of the input layer is large, these layers are

mainly valued [34]. This figure illustrates the framework of a multilayer feed-forward neu-

ral network for the case of a single hidden layer. In addition, this figure is considered as

a 3-4-2 network because it has 3 input neurons, 4 hidden neurons, and 2 output neurons.

Generally, in feed-forward networks, only the first layer is connected to the second layer

which means that neurons of the same layer are not connected, and there are no connections

that transmit data from the second layer to the first layer.

���������Input Layer          Output Layer

FIGURE 5.3.1: Single-layer feed-forward fully connected networks

         Input Layer

         

             Features

         Output Layer

FIGURE 5.3.2: Example of single-layer feed-forward networks
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         Input Layer

         

             Features

                  Output Layer

      Classifier

         Hidden Layer1

FIGURE 5.3.3: Multilayer feed-forward networks

5.4 Multiple Layer Perceptron ( MLP )

Figure 5.5.1 represents multiple layers of perceptrons. This neural network shows that

every neuron in each layer of the network is connected to every other neuron in the next

forward layer and it is referred to as fully connected. However, the network is partially

connected if some of these synaptic connections are missing from the network [34]. MLP

networks are feed-forward direction or forward propagation neural networks which repre-

sent the relation between inputs and outputs and also consist multiple layers of neurons.

The MLP structure consists three layers of input, multiple hidden, and output [11, 8]. In

order to improve the performance of expectations, MLP networks are widely utilized for

a variety of purposes, including pattern recognition, condition monitoring, fault diagnosis,

function approximation, and many other purposes [85]. In order to learn weights of MLP

networks, backpropagation (BP) will be applied. In BP, gradient descent will be used to

minimize the square error of outputs of the network and target values. BP can show hidden

layers in MLP.
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5.5 Deep Feed-Forward Neural Networks

Deep neural networks (DNNs) or feed-forward neural networks are similar to MLP that

contain multiple hidden layers. Feed-forward neural networks estimate a function f(.),

which represents the relation between the input vector x and the output vector y [29]. This

means, the behaviour of the output layers is described by the training set from the values in

the input layer. DNNs can be applied for both classification and regression problems. For

early fault detection in industrial systems, unlabeled sensor data have been used in DNNs

[4]. The normal operating data is applied to train the DNN in order to predict a measured

parameter based on a wide range of measured features. Then, the model can make predic-

tions of the measured parameters, which can be compared to the actual measurements of

that parameter.

         Input Layer

         Output Layer

         Hidden Layer1          Hidden Layer2         Hidden Layer3

FIGURE 5.5.1: Multiple layer perceptron structure
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5.6 Deep Learning Models

Computers are able to create more complicated and reliable models because of deep learn-

ing techniques, one representation of learning algorithms. The complex models are divided

into sequences of simple patterns in deep learning models. In other words, in MLP struc-

ture, all neurons in each layer are fully connected to the others in the next layer. But, deep

learning method applies various models for the connection of neurons, including stacked

autoencoder (SAE), deep belief networks (DBN), convolutional neural networks (CNN),

and recurrent neural networks (RNN). Deep learning models are widely functional for a va-

riety of purposes in data mining, computer vision, video games, medical, natural language

processing, and robotics. Deep learning has a large number of advantages that include the

automatic learning of features, multi-layer features learning, high accuracy and generaliza-

tion ability, hardware and software support, and the potential for more capabilities. On the

other hand, the challenges of that are the weakness of the theory, high computational cost,

requires vast amount of data, difficulty adjusting the parameters, and training problems

like overfitting. In other words, deep learning is used to avoid overfitting in the training

and to increase performance. Methods available in deep learning include supervised learn-

ing, unsupervised learning, semi-supervised learning, and reinforcement learning. In this

chapter, stacked autoencoder (SAE), which uses the unsupervised learning method in train-

ing, and makes use of a large amount of data to reflect hidden features, has been applied

and compared with Support Vector Machine (SVM).

5.7 Autoencoder

Autoencoders are the first models in deep learning which use one of the learning algorithms

of unsupervised learning. In addition, these models are one of the ideal examples of the

representation learning algorithm. Simple autoencoders are feed-forward neural networks,

containing an input layer, one or more hidden layers, and an output layer. Autoencoders

are the mixture of the encoder and decoder functions. In most of the autoencoders, the in-

put data is transformed into various features in feature space by using encoder function and
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then these new features are decoded to the original format. The only difference between au-

toencoders and feed-forward neural networks is the number of neurons in the output layer,

which is equal to the number of neurons in the input layer. As a result, they learn an estima-

tion of the activation function by reconstructing the input vector at the output as illustrated

in Figure 5.7.1. For more explanation, encoding defines the mapping of the inputs to the

various features and the mapping of these extracted features to the outputs is considered as

decoding. Autoencoders calculate W1,W2,W3,W4 and b1,b2,b3,b4 by using stochastic gra-

dient descent method. Autoencoders are divided into two models of linear and nonlinear.

As it can be seen in Figure 5.7.1, 4-dimensional data is mapped into 2-dimensional space

by using a neural network with one hidden layer, called linear autoencoder. In these au-

toencoders, the linear activation function is used. However, nonlinear or deep autoencoder

is used for nonlinear data which requires more hidden layers adding to the network [54].

In addition, simple autoencoder with a single hidden sigmoid layer is comparable with its

counterpart principal component analysis (PCA), a data preprocessing method.

Autoencoder Applications

• Denoising:

Denoising autoencoders can remove noise from the input data to reconstruct data

without noise at the output.

• Data compression:

In this method, autoencoders can reduce the dimension and new data or features can

be applied as compressed data. Moreover, effective features can be learned automat-

ically from the data, but this only can compress similar patterns in order to be trained

on. Furthermore, autoencoders can encode the random inputs, and cannot be applied

in low-dimensional representations. Although, it can be applied for data compres-

sion, it is more normally used for data denoising and dimensionality reduction.

• Unsupervised learning:

In this case, a number of useful features can be applied by using unsupervised learn-

ing (unlabeled data). Unsupervised learning is a machine learning process without
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human guidance in which only input data is accessible. The main use of that is find-

ing predictabilities in the input without any labels. On the other hand, in supervised

learning, supervisor creates some exact values related to the outputs in order to find

the relation between the input and output [1]. This machine learning problem has

a variety of applications including learning the essential similarities in the data and

their clustering, feature extraction like dimensionality reduction, and so on.

Different kinds of Autoencoders:

• Stacked autoendocer

• Denoising autoendocer

• Sparse autoendocer

• Contractive autoendocer

• Convolutional autoendocer

• Variational autoendocer

Features

         Output Layer         Input Layer

Encoder Decoder 

Hidden Layer

FIGURE 5.7.1: The general structure of Autoencoder

5.7.1 Deep Autoencoder (DAE)

Deep autoencoder (DAE) or stacked autoencoder (SAE) consists of several autoencoders

arranged side by side which have several encoders and decoders as it is shown in Figure
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5.7.2. SAE features can be trained , extracted by raw data, and retrained.

Encoder 1 Encoder 2 Decoder 1 Decoder 2

FIGURE 5.7.2: Deep autoencoder (DAE) structure

5.7.2 Training Autoencoder

The process of adjusting an important part, weights, and biases, in order to compare and

match the expectation to the correct output is called training algorithm. Autoencoders are

trained by this adjusting to minimize the reconstruction error between the input vector x

and its reconstruction at the output vector x [22]:

min‖x− x‖2

In order to solve the challenges in the training of a deep autoencoder, greedy layer-wise

training algorithm is introduced in which each layer of the network is trained individually

in one autoencoder and then the training layers are stacked together. This algorithm of

training can build the better network by using a large number of unlabeled data and identify

the better parameter space for the weights of each layer after training [84].

Greedy layer-wise training algorithm

The first layer is shown in Figure 5.7.3, which is a simple autoencoder with three different

layers including input layer x, hidden layer or features a, and output layer x as recon-

structed inputs. Then, this autoencoder is being trained in such a way that some features a

are created by x in encoder part and in the decoder part, these features are decoded to create
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         Input Layer Features a          Output Layer

FIGURE 5.7.3: The first layer

x. After the network has been trained, these suitable features (features a) are being pro-

duced, and then the decoder part is set aside. As it is shown in Figure 5.7.4, if it is needed

to add a new layer to the network, the main input is set aside and made another autoencoder

with features a. This network is being trained to turn inputs (features a) into features b, and

then features a can be reconstructed by the features b. Similarly, after the training of the

network and setting aside the decoder part, features b will be created. Figure 5.7.5 shows

one trained deep autoencoder as two-layer features are extracted from the inputs.

         Output LayerFeature a Features b

FIGURE 5.7.4: The second layer

Deep Autoencoder Applications [54]:

• Feature Extraction using unsupervised data

This method is a pretraining step in which deep autoencoder is trained, using unsu-

pervised data, and finally, a number of features are extracted from the inputs. Feature
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         Input Layer

Features a Features b

FIGURE 5.7.5: Trained deep autoencoder

extraction for autoencoders can also be named dimensionality reduction.

• Fine-tuning of a pre-trained network using supervised leaning

In this method, a pre-trained network or the last layer is trained again by using labeled

data to solve classification problems and it can improve the performance of deep

neural network. This method is illustrated in Figure 5.7.6.

         Input Layer

Features a Features b

Lables

Softmax Classifier

FIGURE 5.7.6: Fine-tune algorithm

• Reconstructing Data or Denoising Autoencoder

As it can be seen in Figure 5.7.7, the decoder part is added to the encoder and the

inputs are given and outputs reconstruct the data. Usually, this is a network-style

for data modification, such as input noise data and as a result, data output includes

no noise. In general, denoising autoencoder learns to perform a noise cancellation

process. Backpropagation algorithm (BP) is used in these autoencoders. It means
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that this algorithm is able to set the output values to be equal to the input values.

Encoder Decoder 

FIGURE 5.7.7: Denoising autoencoder

In this chapter, the unsupervised pretraining method, and fine-tune algorithm using super-

vised classification network based on the softmax function, the output, have been applied.

The supervised learning stage can decrease the training error by applying a small amount

of labeled data.

Softmax Classifier

As it can be seen, SAE can be connected with two kinds of classifiers, named logistic

classifier and softmax classifier, to complete the network. In order to have more accurate

predictions, a special layer called a softmax output layer, which is commonly used in neu-

ral networks for multi-class classification, can be applied. On the other hand, the logistic

classifier can be used for binary classification [84]. Probability distribution is used in this

classifier. Therefore, the desired output vector is as below, where [11]∑9
i=0 Pi = 1[
P0 P1 P2 ... P9

]
As it can be seen in the above formula, the sum of all the outputs should be equal to 1. As

a result, the outputs of all the other neurons affects on the output of a neuron in a softmax

layer. Assume zi be the logit of the ith softmax neuron, set its output, and this normaliza-

tion is achieved:

yi = ezi∑
j e

zi

A probability distribution over a set of mutually exclusive labels is mostly employed in Im-

age Recognition. In general, deep learning based on fault diagnosis is put forward, cosists

43



5. DEEP NEURAL NETWORK

of feature learning by stacked sparse autoencoder and fault classification by softmax clas-

sifier. Back Propagation optimization algorithm is also used to train the softmax classifier

[67].

5.8 The Comparison between two different methods of In-

duction Motor Fault Diagnosis

In this section, two methods are applied in induction motor fault diagnosis, including deep

autoencoder, and Support Vector Machine (SVM). Two different parts of the induction

motor, including rotor bar and bearing, are used to simulate fault diagnosis models. These

parts are discussed in two case studies. As it is mentioned before, the main application

of deep autoencoder is extracting useful data from a large amount of unlabeled data and

preprocessing with it. The model can be trained with that autoencoder which uses softmax

classifier (supervised learning) to do classification task. Moreover, it can be compared with

SVM, a supervised learning algorithm, which is one of the nonlinear detection methods. In

other words, autoencoders are used for feature extraction and SVMs for anomaly detection.

5.8.1 Case Study I

Availability of Data

In this study, a three-phase, 1.2 KW, 380 volts, 50 Hz, 1400 rpm, the four-pole induction

motor is used to collect experimental data. Broken rotor bars detection is described in this

case study. The stator current signal is recorded in three different conditions, normal, one

broken bar and two broken bars. Figure 5.8.1 and Figure 5.8.2 show different conditions of

the stator current signal.

Discussion and Comparison of Results

This acquired rotor bar data contains three classes including data of normal operation, data

of one broken bar, and data of two broken bars. In this simulation experiment, the stator

current signal is segmented into 15000 samples. 100 points of current are recorded for each
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FIGURE 5.8.1: The comparison between various conditions
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FIGURE 5.8.2: The comparison between various conditions
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TABLE 5.8.1: Parameters in experiments

Parameters Value
Input Units 100
Output Units 3
Number of Hidden Layer 2
Number of Neurons In Each Hidden Layer [70,10]

TABLE 5.8.2: Samples of simulation experiment

Number of Hidden Layer Hidden Layer I Hidden Layer II Accuracy (%)
2 50 10 62.6
2 70 10 84.6
2 70 5 74.9

sample before fault or during normal or healthy operation. Then, 100 points of current are

entered into a network as the input layer. So, this layer contains 100 neurons. The number

of output neurons is given by 3 since the data is divided into three classes. This network of

fault diagnosis in a simulation is shown in Figure 5.8.3.
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FIGURE 5.8.3: Deep fault diagnosis model

Table 5.8.2 represents the best parameters chosen for the experiment. The fault diagno-

sis performance is shown by accuracy rate of diagnosis, which is calculated by the different

number of each hidden layer. In Matlab environment, these simulation experiments repre-

sent that three hidden layers cannot considerably improve the accuracy, only two hidden

layers of autoencoder are enough. Moreover, this table shows the power of a number of

each hidden layer on accuracy rate of diagnosis.
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Multi-Class Confusion Matrices Case Study I

A confusion matrix is applied to summarize the performance of a classification algorithm.

If there are more than two classes in the data, classification accuracy cannot represent what

the classification model is getting right and what types of errors it is making. In other words,

the performance of your model cannot be diagnosed. As a result, confusion matrix can be

calculated. Classification accuracy can be measured by the ratio of correct predictions to

total predictions made. It is normally shown as a percentage by multiplying the result by

100. Misclassification rate or error rate can be calculated by

Error rate = 1 - classification accuracy.

The main aim of the confusion matrix is summarizing the number of correct and incorrect

predictions of each class. Moreover, it shows not only the errors made by the classifier

but also, the types of errors are diagnosed. Figure 5.8.4, 5.8.5, and 5.8.6 show confusion

matrices obtained from the Table 5.8.2, respectively. These diagnosis confusion matrices

represent how the classification of the different conditions is done.
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47.0%
53.0%

62.6%
37.4%

FIGURE 5.8.4: Confusion matrix I

Figure 5.8.5 represents the best number of each hidden layer, the first hidden layer has

70 neurons and the second one has 10 neurons. In this figure, the number and percentage

of correct classifications by the trained network are shown by the first two diagonal cells.

For instance, 4752 samples are correctly classified as a class of normal. This corresponds
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FIGURE 5.8.5: Confusion matrix II
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FIGURE 5.8.6: Confusion matrix III
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to 31.7% of all 15000 samples. Similarly, 3781 cases are correctly classified as one bro-

ken bar. This corresponds to 25.2% of all samples. In addition, 4150 cases are correctly

classified as two broken bars. This corresponds to 27.7% of all samples. 140 of the normal

condition are incorrectly classified as one broken bar and this corresponds to 0.9% of all

15000 samples in the data. And, 19 of the normal condition are incorrectly classified as

two broken bars and this corresponds to 0.1% of all 15000 samples in the data. 221 of

the normal condition are incorrectly classified as one broken bar and this corresponds to

1.5% of all data. Also, 831 of two broken bars are incorrectly classified as one broken bar

and this corresponds to 5.5% of all data. Similarly, 27 of normal operation are incorrectly

classified as two broken bars and this corresponds to 0.2% of all data. 1079 of one broken

bar are incorrectly classified as two broken bars and this corresponds to 7.2% of all data.

Out of 4911 normal predictions, 96.8% are correct and 3.2% are wrong. Out of 4833 one

broken bar predictions, 78.2% are correct and 21.8% are wrong. Out of 5256 two broken

bars predictions, 79% are correct and 21% are wrong. Out of 5000 normal cases, 95%

are correctly predicted as normal and 5% are predicted as other classes. Out of 5000 one

broken bar cases, 75.6% are correctly classified as one broken bar and 24.4% are classified

as other classes. Out of 5000 two broken bars cases, 83% are correctly classified as two

broken bars and 17% are classified as other classes. Overall, 84.6% of the predictions are

correct and 15.4% are wrong classifications.

The comparison between deep autoencoder and SVM

Table 5.8.3 represents the results obtained by deep autoencoder and SVM. As it is illus-

trated, in deep autoencoder, 96.8% are correctly classified as the normal class, 78.2% as

one broken bar, 79.0% as two broken bars, and overall, its accuracy is 84.6%. On the other

hand, in SVM, 87.71% are correctly classified as the normal, 69.02% as one broken bar,

83.09% as two broken bars, and overall, its accuracy is 79.94%. As a result, deep fault

diagnosis model has a better performance in diagnosing different faults occurring in rotor

compared with SVM.
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TABLE 5.8.3: The comparison between deep autoencoder and SVM

Broken Rotor Bar Conditions Deep Autoencoder (Accuracy %) SVM (Accuracy %)
Normal condition 96.8 87.71
One broken bar 78.2 69.02
Two broken bars 79.0 83.09

Overall 84.6 79.94

5.8.2 Case Study II

Availability of Data

Ball bearing data from Case Western Reserve University is used. The experimental setup

consisted of a 2hp (horsepower) motor (1750 rpm), a torque converter/encoder, a dy-

namometer and control circuits. Vibration signals considered in this study include the

normal, an inner race fault, and outer race fault signals were sampled at the 12kHz fre-

quency. Drive end accelerometer data with fault diameter of 0.07 inch is studied. Figure

5.8.7 and 5.8.8 show different conditions of the vibration signal.
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FIGURE 5.8.7: The comparison between various conditions

Discussion and Comparison of Results

This acquired bearing data contains three classes including data of normal operation, data

of inner race fault, and data of outer race fault. In this simulation experiment, the vibration

signal is segmented into 1080 samples. 100 points are recorded for a sample before fault
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FIGURE 5.8.8: The comparison between various conditions

TABLE 5.8.4: Parameters in experiments

Parameters Value
Input Units 100
Output Units 3
Number of Hidden Layer 2
Number of Neurons In Each Hidden Layer [70,5]

or during normal operation. Then, 100 points of each sample are entered into a network as

the input layer. So, this layer contains 100 neurons. The number of output neurons is given

by 3 since the data is divided into three classes.

Multi-Class Confusion Matrices Case Study II

Table 5.8.4 represents the best parameters chosen for the experiment. The fault diagnosis

performance is shown by accuracy rate of diagnosis, which is calculated by the different

number of each hidden layer. In Matlab environment, these simulation experiments repre-

sent that three hidden layers cannot considerably improve the accuracy, only two hidden

layers of autoencoder are enough. Moreover, this table shows the power of a number of

each hidden layer on accuracy rate of diagnosis.

Fig 5.8.11 represents the best number of each hidden layer, the first hidden layer has

70 neurons and the second one has 5 neurons. In this figure, 360 samples are correctly

classified as a normal condition. This corresponds to 33.3% of all 1080 samples. Similarly,
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TABLE 5.8.5: Samples of simulation experiment

Number of Hidden Layer Hidden Layer I Hidden Layer II Accuracy (%)
2 50 10 98.1
2 70 10 98.4
2 70 5 99.0
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352 cases are correctly classified as inner race fault. This corresponds to 32.6% of all

samples. In addition, 357 cases are correctly classified as outer race fault. This corresponds

to 33.1% of all samples. Seven of the normal class are incorrectly classified as inner race

fault and this corresponds to 0.6% of all 1080 samples in the data. And, none of the normal

conditions are incorrectly classified as outer race fault. None of the normal conditions are

incorrectly classified as inner race fault. Also, three of outer race fault. are incorrectly

classified as inner race fault. and this corresponds to 0.3% of all data. Similarly, none of

the normal conditions are incorrectly classified as outer race fault. One of the inner race

fault is incorrectly classified as outer race fault and this corresponds to 0.1% of all data. Out

of 367 the normal predictions, 98.1% are correct and 1.9% are wrong. Out of 355 inner

race fault predictions, 99.2% are correct and 0.8% are wrong. Out of 358 outer race fault

predictions, 99.7% are correct and 0.3% are wrong. Out of 360 the normal cases, 100% are

correctly predicted as the normal. Out of 360 inner race fault cases, 97.8% are correctly

classified as inner race fault and 2.2% are classified as other classes. Out of 360 outer race

fault cases, 99.2% are correctly classified as outer race fault and 0.8% are classified as other

classes. Overall, 99% of the predictions are correct and 1% are wrong classifications.
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TABLE 5.8.6: The comparison between deep autoencoder and SVM

Bearing Conditions Deep Autoencoder (Accuracy %) SVM (Accuracy %)
Normal condition 98.1 100
Inner race fault 99.2 26.85
Outer race fault 99.7 71.30

Overall 99.0 66.05

The comparison between deep autoencoder and SVM

Table 5.8.6 shows the results obtained by Deep Autoencoder and SVM. As it is illustrated,

in Deep Autoencoder, 98.1% are correctly classified as the normal condition, 99.2% as

inner race fault, 99.7% as outer race fault, and overall, its accuracy is 99%. On the other

hand, in SVM, 100% are correctly classified as the normal, 26.85% as inner race fault,

71.30% as outer race fault, and overall, its accuracy is 66.05%. Therefore, deep fault

diagnosis model has a better performance in diagnosing different faults occurring in bearing

compared with SVM.
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CHAPTER 6

Conclusions and Future Works

6.1 Contributions

This thesis dealt with fault detection and diagnosis approaches in IMs. These approaches

were proposed in the thesis in order to solve major problems with high computational

cost of pre-processing techniques along with anomaly technique, ensemble-based anomaly

detection, and learn the deep architectures of fault data by using a deep neural network.

Moreover, various novelty detection techniques are applied to broken rotor bars and bearing

faults by analyzing the stator current and vibration signals. In Chapter 3, pre-processing

tasks including feature extraction and feature selection were followed with the one-class

classification techniques to detect broken rotor bars in IMs. The results showed that the

combination of feature selection and kNN one-class classifier provides the highest accu-

racy among all other techniques. From the experimental results, it was concluded that the

proposed method can detect broken rotor bars with about 0.99 percent accuracy. Chapter 4

studied the use of ensemble techniques for fault detection in IMs. The system was specifi-

cally designed to detect and identify broken rotor bars in IMs. For this purpose, one-class

classification techniques were used to construct the ensemble. The proposed scheme in-

cluded a pre-processing step to extract and select proper sets of features. Then, five OCCs,

including GD, PD, NN, kNN, and k-means were applied to train ensemble schemes. Three

methods of random subspace, bagging, and boosting were applied for combining the clas-

sifiers. It was shown that bagging of homogenous kNN and five heterogenous OCCs out-

perform other models and result in a promising detection accuracy. The established fault

detection and diagnosis system in this chapter was capable of detecting broken rotor bars
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in order to enhance the benefits of IMs. Chapter 5 presented the application of deep neu-

ral network for IMs fault diagnosis. Two different parts of the induction motor, including

rotor bar and bearing, were used to simulate fault diagnosis models. Deep autoencoder

and support vector machine (SVM) were applied and compared with each other in order

to simulate these fault diagnosis models. Deep autoencoder could extract suitable features

that were initially ignored by statistic techniques. In addition, the deep autoencoder has

a strong learning ability for detecting different kinds of faults by using a softmax classi-

fier. Softmax classifier reflects the types and possibility of diagnosis. As a result, this deep

learning technique can improve the performance of fault detection and diagnosis in IMs.

It was concluded that the performance of deep neural network was generally better than

SVM. Due to a high computational load in the presence of a large number of training data

and the absence of control over the number of data, SVM cannot perform accurately on the

some datasets.

6.2 Future Works

In this study, the focus was on the condition monitoring of the induction motor and for

that, many algorithms and techniques were studied and applied. In order to create a more

accurate design and optimization of other electrical machines, more advanced methods are

introduced by the researchers for numerous purposes. Therefore, a significant future work

is investigating other signal processing techniques for all aspects of data pre-processing,

including short-time Fourier transform (STFT), wavelet analysis, and empirical mode de-

composition (EMD). Moreover, the applications and comparisons of different methods in

a deep neural network including a deep belief network (DBN) and a convolutional neural

network (CNN) in other electrical machines fault diagnosis can be applied. In addition,

the future studies can also focus on fault prognosis and Remaining Useful Life estimation

(RUL). Fault prognosis and Remaining Useful Life estimation (RUL) depend on the data

availability. In other words, when a specific fault has occurred, the trend of data can be

classified as the specific fault and models can be trained to detect it as opposed to normal

behavior trends in fault detection and diagnosis step. Then, faulty data shows a degradation
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of the system or components performance, it can be used to estimate remaining useful life

of various components which may lead to prognostic, predictive maintenance, and finally

reduction of operational costs.
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