38,657 research outputs found

    Survey: Data Mining Techniques in Medical Data Field

    Get PDF
    Now days most of the research area are working on data mining techniques in medical data. Knowledge discovery and data mining have found numerous applications in business and scientific domain. Valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, we briefly examine the potential use of classification based data mining techniques such as Rule based, decision tree, machine learning algorithms like Support Vector Machines, Principle Component Analysis etc., Rough Set Theory and Fuzzy logic. In particular we consider a case study using classification techniques on a medical data set of diabetic patients

    Aplikasi Metode Fuzzy Kernel K-Medoids untuk Klasifikasi Kanker berdasarkan Konsentrasi Logam di dalam Darah

    Get PDF
    Classification technique has already been applied widely in the medical data. One of its applications is for classification of cancer. The accuracy of this technique highly depends on the type of data to be processed (whether the data are separable or non-separable) and the dissimilarity function used. To surmount those hindrances and to improve the accuracy of classification therefore a method named Fuzzy Kernel K-Medoids (FKKM). The method can be used for separable or non separable of data. Based on the research on the concentration data of Zn, Ba, Mg, Ca, Cu, and Se in blood in order to diagnose cancer, FKKM gives better result than the Support Vector Machines Method. This paper will discuss an application of the FKKM method on the concentration data of Zn, Ba, Mg, Ca, Cu, and Se in blood samples and compared with the Support Vector Machines Method for the diagnosis of cancer. Results showed that the FKKM method produced a better result than the Support Vector Machines Method.Teknik klasifikasi telah diaplikasikan secara luas didalam bidang medis. Salah satunya adalah untuk klasifikasi kanker. Akurasi teknik ini sangat tinggi tergantung pada tipe data yang diproses (apakah data dapat atau tidak dapat dipisahkan secara linear) dan fungsi disimiliritas yang digunakan. Untuk mengatasi kedua hambatan tersebut dan meningkatkan akurasi teknik klasifikasi dibentuk suatu metode yang dinamakan Fuzzy Kernel K-Medoids (FKKM). Metode ini dapat digunakan untuk data yang dapat dipisahkansecara linear maupun tidak. Berdasarkan hasil penelitian terhadap konsentrasi logam Zn, Ba, Mg, Ca, Cu, dan Se dalam darah, didalam mendiagnosis penyakit kanker, FKKM memberikan hasil yang lebih baik dibandingkan dengan metode Support Vector Machines

    A Study of recent classification algorithms and a novel approach for biosignal data classification

    Get PDF
    Analyzing and understanding human biosignals have been important research areas that have many practical applications in everyday life. For example, Brain Computer Interface is a research area that studies the connection between the human brain and external systems by processing and learning the brain signals called Electroencephalography (EEG) signals. Similarly, various assistive robotics applications are being developed to interpret eye or muscle signals in humans in order to provide control inputs for external devices. The efficiency for all of these applications depends heavily on being able to process and classify human biosignals. Therefore many techniques from Signal Processing and Machine Learning fields are applied in order to understand human biosignals better and increase the efficiency and success of these applications. This thesis proposes a new classifier for biosignal data classification utilizing Particle Swarm Optimization Clustering and Radial Basis Function Networks (RBFN). The performance of the proposed classifier together with several variations in the technique is analyzed by utilizing comparisons with the state of the art classifiers such as Fuzzy Functions Support Vector Machines (FFSVM), Improved Fuzzy Functions Support Vector Machines (IFFSVM). These classifiers are implemented on the classification of same biological signals in order to evaluate the proposed technique. Several clustering algorithms, which are used in these classifiers, such as K-means, Fuzzy c-means, and Particle Swarm Optimization (PSO), are studied and compared with each other based on clustering abilities. The effects of the analyzed clustering algorithms in the performance of Radial Basis Functions Networks classifier are investigated. Strengths and weaknesses are analyzed on various standard and EEG datasets. Results show that the proposed classifier that combines PSO clustering with RBFN classifier can reach or exceed the performance of these state of the art classifiers. Finally, the proposed classification technique is applied to a real-time system application where a mobile robot is controlled based on person\u27s EEG signal

    Computational intelligence applied to discriminate bee pollen quality and botanical origin

    Get PDF
    The aim of this work was to develop computational intelligence models based on neural networks (NN), fuzzy models (FM), and support vector machines (SVM) to predict physicochemical composition of bee pollen mixture given their botanical origin. To obtain the predominant plant genus of pollen (was the output variable), based on physicochemical composition (were the input variables of the predictive model), prediction models were learned from data. For the inverse case study, input/output variables were swapped. The probabilistic NN prediction model obtained 98.4% of correct classification of the predominant plant genus of pollen. To obtain the secondary and tertiary plant genus of pollen, the results present a lower accuracy. To predict the physicochemical characteristic of a mixture of bee pollen, given their botanical origin, fuzzy models proven the best results with small prediction errors, and variability lower than 10%.info:eu-repo/semantics/publishedVersio

    A novel ensemble modeling for intrusion detection system

    Get PDF
    Vast increase in data through internet services has made computer systems more vulnerable and difficult to protect from malicious attacks. Intrusion detection systems (IDSs) must be more potent in monitoring intrusions. Therefore an effectual Intrusion Detection system architecture is built which employs a facile classification model and generates low false alarm rates and high accuracy. Noticeably, IDS endure enormous amounts of data traffic that contain redundant and irrelevant features, which affect the performance of the IDS negatively. Despite good feature selection approaches leads to a reduction of unrelated and redundant features and attain better classification accuracy in IDS. This paper proposes a novel ensemble model for IDS based on two algorithms Fuzzy Ensemble Feature selection (FEFS) and Fusion of Multiple Classifier (FMC). FEFS is a unification of five feature scores. These scores are obtained by using feature-class distance functions. Aggregation is done using fuzzy union operation. On the other hand, the FMC is the fusion of three classifiers. It works based on Ensemble decisive function. Experiments were made on KDD cup 99 data set have shown that our proposed system works superior to well-known methods such as Support Vector Machines (SVMs), K-Nearest Neighbor (KNN) and Artificial Neural Networks (ANNs). Our examinations ensured clearly the prominence of using ensemble methodology for modeling IDSs. And hence our system is robust and efficient

    Fuzzy Least Squares Twin Support Vector Machines

    Full text link
    Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an efficient and fast algorithm for binary classification. It combines the operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still unable to cope with two features of real-world problems. First, in many real-world applications, labels of samples are not deterministic; they come naturally with their associated membership degrees. Second, samples in real-world applications may not be equally important and their importance degrees affect the classification. In this paper, we propose Fuzzy LST-SVM (FLST-SVM) to deal with these two characteristics of real-world data. Two models are introduced for FLST-SVM: the first model builds up crisp hyperplanes using training samples and their corresponding membership degrees. The second model, on the other hand, constructs fuzzy hyperplanes using training samples and their membership degrees. Numerical evaluation of the proposed method with synthetic and real datasets demonstrate significant improvement in the classification accuracy of FLST-SVM when compared to well-known existing versions of SVM

    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy

    Get PDF
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.НаиболСС распространСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΊΠ»Π°ΡΡΠΎΠ²ΠΎΠΉ классификации Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π°Π±ΠΎΡ€Π° Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… классификаторов ΠΈ ΠΈΡ… объСдинСнии. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° машина ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² с классификатором Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² исправлСния ошибок(ECOC-SVM) с Ρ†Π΅Π»ΡŒΡŽ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ качСства элСктроэнСргии, ΠΊΠ°ΠΊ гармоничСскиС искаТСния, ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ напряТСния ΠΈ скачок напряТСния, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… элСктростанций Π² систСмах ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ элСктроэнСргии. Π‘Π½Π°Ρ‡Π°Π»Π° выполняСтся Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΡ‚ΠΎΠΊΠ° нСсиммСтричной Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Ρ‚Ρ€Π΅Ρ… Ρ„Π°Π· для расчСта разностных характСристик элСктричСской сСти, ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ напряТСния, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности. ПослС этого дискрСтноС Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ΡΡ с вСроятностной модСлью ECOC-SVM для построСния классификатора. НаконСц, ECOC-SVM классифицируСт ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ‚ΠΈΠΏ возмущСния Π² соотвСтствии с ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ энСргии дискрСтного Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-прСобразования. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄Π°Π΅Ρ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ 99,2% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ качСства элСктроэнСргии ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ отклонСния ΠΎΡ‚ чисто ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π²ΠΎΠ»Π½Ρ‹, Ρ‡Ρ‚ΠΎ способствуСт Ρ€Π°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡŽ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ‚ΠΈΠΏΠ° возмущСния, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ
    • …
    corecore