362 research outputs found

    A Survey of Geometric Analysis in Cultural Heritage

    Get PDF
    We present a review of recent techniques for performing geometric analysis in cultural heritage (CH) applications. The survey is aimed at researchers in the areas of computer graphics, computer vision and CH computing, as well as to scholars and practitioners in the CH field. The problems considered include shape perception enhancement, restoration and preservation support, monitoring over time, object interpretation and collection analysis. All of these problems typically rely on an understanding of the structure of the shapes in question at both a local and global level. In this survey, we discuss the different problem forms and review the main solution methods, aided by classification criteria based on the geometric scale at which the analysis is performed and the cardinality of the relationships among object parts exploited during the analysis. We finalize the report by discussing open problems and future perspectives

    ArchAIDE-Archaeological Automatic Interpretation and Documentation of cEramics

    Get PDF
    The goals of H2020 project "ArchAIDE: are to support the classification and interpretation work of archaeologists with innovative computer-based tools, able to provide the user with features for the semi-automatic description and matching of potsherds over the huge existing ceramic catalogues. Pottery classification is of fundamental importance for the comprehension and dating of the archaeological contexts, and for understanding production, trade flows and social interactions, but it requires complex skills and it is a very time consuming activity, both for researchers and professionals. The aim of ArchAIDE is to support the work of archaeologists, in order to meet real user needs and generate economic benefits, reducing time and costs. This would create societal benefits from cultural heritage, improving access, re-use and exploitation of the digital cultural heritage in a sustainable way. These objectives will be achieved through the development of: - an as-automatic-as-possible procedure to transform the paper catalogues in a digital description, to be used as a data pool for search and retrieval process; - a tool (mainly designed for mobile devices) that will support archaeologists in recognizing and classifying potsherds during excavation and post-excavation analysis, through an easy-to-use interface and efficient algorithms for characterisation, search and retrieval of the visual/geometrical correspondences; - an automatic procedure to derive a complete potsherds identity card by transforming the data collected into a formatted electronic document, printable or visual; - a web-based real-time data visualisation to improve access to archaeological heritage and generate new understanding; - an open archive to allow the archival and re-use of archaeological data, transforming them into common heritage and permitting economic sustainability. Those tools will be tested and assessed on real-cases scenarios, paving the way to future exploitation

    Computer Vision and Machine Learning for Archaeology

    Get PDF

    Virtual 3D Reconstruction of Archaeological Pottery Using Coarse Registration

    Get PDF
    The 3D reconstruction of objects has not only improved visualisation of digitised objects, it has helped researchers to actively carry out archaeological pottery. Reconstructing pottery is significant in archaeology but is challenging task among practitioners. For one, excavated potteries are hardly complete to provide exhaustive and useful information, hence archaeologists attempt to reconstruct them with available tools and methods. It is also challenging to apply existing reconstruction approaches in archaeological documentation. This limitation makes it difficult to carry out studies within a reasonable time. Hence, interest has shifted to developing new ways of reconstructing archaeological artefacts with new techniques and algorithms. Therefore, this study focuses on providing interventions that will ease the challenges encountered in reconstructing archaeological pottery. It applies a data acquisition approach that uses a 3D laser scanner to acquire point cloud data that clearly show the geometric and radiometric properties of the object’s surface. The acquired data is processed to remove noise and outliers before undergoing a coarse-to-fine registration strategy which involves detecting and extracting keypoints from the point clouds and estimating descriptions with them. Additionally, correspondences are estimated between point pairs, leading to a pairwise and global registration of the acquired point clouds. The peculiarity of the approach of this thesis is in its flexibility due to the peculiar nature of the data acquired. This improves the efficiency, robustness and accuracy of the approach. The approach and findings show that the use of real 3D dataset can attain good results when used with right tools. High resolution lenses and accurate calibration help to give accurate results. While the registration accuracy attained in the study lies between 0.08 and 0.14 mean squared error for the data used, further studies will validate this result. The results obtained are nonetheless useful for further studies in 3D pottery reassembly

    Similarity reasoning for local surface analysis and recognition

    Get PDF
    This thesis addresses the similarity assessment of digital shapes, contributing to the analysis of surface characteristics that are independent of the global shape but are crucial to identify a model as belonging to the same manufacture, the same origin/culture or the same typology (color, common decorations, common feature elements, compatible style elements, etc.). To face this problem, the interpretation of the local surface properties is crucial. We go beyond the retrieval of models or surface patches in a collection of models, facing the recognition of geometric patterns across digital models with different overall shape. To address this challenging problem, the use of both engineered and learning-based descriptions are investigated, building one of the first contributions towards the localization and identification of geometric patterns on digital surfaces. Finally, the recognition of patterns adds a further perspective in the exploration of (large) 3D data collections, especially in the cultural heritage domain. Our work contributes to the definition of methods able to locally characterize the geometric and colorimetric surface decorations. Moreover, we showcase our benchmarking activity carried out in recent years on the identification of geometric features and the retrieval of digital models completely characterized by geometric or colorimetric patterns

    A 3D Digital Approach to the Stylistic and Typo-Technological Study of Small Figurines from Ayia Irini, Cyprus

    Get PDF
    The thesis aims to develop a 3D digital approach to the stylistic and typo-technological study of coroplastic, focusing on small figurines. The case study to test the method is a sample of terracotta statuettes from an assemblage of approximately 2000 statues and figurines found at the beginning of the 20th century in a rural open-air sanctuary at Ayia Irini (Cyprus) by the archaeologists of the Swedish Cyprus Expedition. The excavators identified continuity of worship at the sanctuary from the Late Cypriot III (circa 1200 BC) to the end of the Cypro-Archaic II period (ca. 475 BC). They attributed the small figurines to the Cypro-Archaic I-II. Although the excavation was one of the first performed through the newly established stratigraphic method, the archaeologists studied the site and its material following a traditional, merely qualitative approach. Theanalysis of the published results identified a classification of the material with no-clear-cut criteria, and their overlap between types highlights ambiguities in creating groups and classes. Similarly, stratigraphic arguments and different opinions among archaeologists highlight the need for revising. Moreover, pastlegislation allowed the excavators to export half of the excavated antiquities, creating a dispersion of the assemblage. Today, the assemblage is still partly exhibited at the Cyprus Museum in Nicosia and in four different museums in Sweden. Such a setting prevents to study, analyse and interpret the assemblageholistically. This research proposes a 3D chaîne opératoire methodology to study the collection’s small terracotta figurines, aiming to understand the context’s function and social role as reflected by the classification obtained with the 3D digital approach. The integration proposed in this research of traditional archaeological studies, and computer-assisted investigation based on quantitative criteria, identified and defined with 3D measurements and analytical investigations, is adopted as a solution to the biases of a solely qualitative approach. The 3D geometric analysis of the figurines focuses on the objects’ shape and components, mode of manufacture, level of expertise, specialisation or skills of the craftsman and production techniques. The analysis leads to the creation of classes of artefacts which allow archaeologists to formulate hypotheses on the production process, identify a common production (e.g., same hand, same workshop) and establish a relative chronological sequence. 3D reconstruction of the excavation’s area contributes to the virtual re-unification of the assemblage for its holistic study, the relative chronological dating of the figurines and the interpretation of their social and ritual purposes. The results obtained from the selected sample prove the efficacy of the proposed 3D approach and support the expansion of the analysis to the whole assemblage, and possibly initiate quantitative and systematic studies on Cypriot coroplastic production

    Effective 3D Geometric Matching for Data Restoration and Its Forensic Application

    Get PDF
    3D geometric matching is the technique to detect the similar patterns among multiple objects. It is an important and fundamental problem and can facilitate many tasks in computer graphics and vision, including shape comparison and retrieval, data fusion, scene understanding and object recognition, and data restoration. For example, 3D scans of an object from different angles are matched and stitched together to form the complete geometry. In medical image analysis, the motion of deforming organs is modeled and predicted by matching a series of CT images. This problem is challenging and remains unsolved, especially when the similar patterns are 1) small and lack geometric saliency; 2) incomplete due to the occlusion of the scanning and damage of the data. We study the reliable matching algorithm that can tackle the above difficulties and its application in data restoration. Data restoration is the problem to restore the fragmented or damaged model to its original complete state. It is a new area and has direct applications in many scientific fields such as Forensics and Archeology. In this dissertation, we study novel effective geometric matching algorithms, including curve matching, surface matching, pairwise matching, multi-piece matching and template matching. We demonstrate its applications in an integrated digital pipeline of skull reassembly, skull completion, and facial reconstruction, which is developed to facilitate the state-of-the-art forensic skull/facial reconstruction processing pipeline in law enforcement

    Spaces of Time: An Archaeological Perspective on the Deborah Newman Homesite

    Get PDF
    This thesis serves as an archaeological perspective of a Nipmuc family and their land at Hassanamisco, combining documentary and archival research with archaeological, environmental, and conservational methods. Hassanamisco was the third Indigenous community in New England to accept the teachings of John Eliot during the mid-17th century. In 1727, seven Nipmuc families sold portions of their land in what is today Grafton, MA to 40 English families. Deborah Newman was the granddaughter of one of the original Nipmuc proprietors from this sale of ancestral Hassanamisco land, and through her grandfather’s claim she held rights to land and monetary compensation from the Trustees put in place by the colony. By focusing on her family and land, this perspective illuminates how Nipmuc proprietors navigated the Guardianship-system on a daily basis, while also providing a case study for Nipmuc land loss and historical erasure within the broader framework of colonial encroachment on Native New England lands. The documentary evidence presented within places Deborah Newman and her family at this particular space at Hassanamisco, which is further corroborated by the ceramic analysis of its assemblage. The material culture analyses also reveal specific Nipmuc practices that are connected to a deeper past occurring at the site during this family’s occupation; practices that were not introduced by colonists, and remained a part of life afterward. Part of this thesis focuses on the remains of a structure at the Newman site. Evidence suggests it could be more similar to wetu or other vernacular Indigenous structure than a framed home with a stone foundation. The Newman site is part of land owned and passed down from mother to daughter, and their space in the overplus lot was the last piece of this lot owned by Nipmuc families before being consolidated by English proprietors
    • …
    corecore