10,517 research outputs found

    Database server workload characterization in an e-commerce environment

    Get PDF
    A typical E-commerce system that is deployed on the Internet has multiple layers that include Web users, Web servers, application servers, and a database server. As the system use and user request frequency increase, Web/application servers can be scaled up by replication. A load balancing proxy can be used to route user requests to individual machines that perform the same functionality. To address the increasing workload while avoiding replicating the database server, various dynamic caching policies have been proposed to reduce the database workload in E-commerce systems. However, the nature of the changes seen by the database server as a result of dynamic caching remains unknown. A good understanding of this change is fundamental for tuning a database server to get better performance. In this study, the TPC-W (a transactional Web E-commerce benchmark) workloads on a database server are characterized under two different dynamic caching mechanisms, which are generalized and implemented as query-result cache and table cache. The characterization focuses on response time, CPU computation, buffer pool references, disk I/O references, and workload classification. This thesis combines a variety of analysis techniques: simulation, real time measurement and data mining. The experimental results in this thesis reveal some interesting effects that the dynamic caching has on the database server workload characteristics. The main observations include: (a) dynamic cache can considerably reduce the CPU usage of the database server and the number of database page references when it is heavily loaded; (b) dynamic cache can also reduce the database reference locality, but to a smaller degree than that reported in file servers. The data classification results in this thesis show that with dynamic cache, the database server sees TPC-W profiles more like on-line transaction processing workloads

    Object Distribution Networks for World-wide Document Circulation

    Get PDF
    This paper presents an Object Distribution System (ODS), a distributed system inspired by the ultra-large scale distribution models used in everyday life (e.g. food or newspapers distribution chains). Beyond traditional mechanisms of approaching information to readers (e.g. caching and mirroring), this system enables the publication, classification and subscription to volumes of objects (e.g. documents, events). Authors submit their contents to publication agents. Classification authorities provide classification schemes to classify objects. Readers subscribe to topics or authors, and retrieve contents from their local delivery agent (like a kiosk or library, with local copies of objects). Object distribution is an independent process where objects circulate asynchronously among distribution agents. ODS is designed to perform specially well in an increasingly populated, widespread and complex Internet jungle, using weak consistency replication by object distribution, asynchronous replication, and local access to objects by clients. ODS is based on two independent virtual networks, one dedicated to the distribution (replication) of objects and the other to calculate optimised distribution chains to be applied by the first network

    Index ordering by query-independent measures

    Get PDF
    Conventional approaches to information retrieval search through all applicable entries in an inverted file for a particular collection in order to find those documents with the highest scores. For particularly large collections this may be extremely time consuming. A solution to this problem is to only search a limited amount of the collection at query-time, in order to speed up the retrieval process. In doing this we can also limit the loss in retrieval efficacy (in terms of accuracy of results). The way we achieve this is to firstly identify the most “important” documents within the collection, and sort documents within inverted file lists in order of this “importance”. In this way we limit the amount of information to be searched at query time by eliminating documents of lesser importance, which not only makes the search more efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the TREC Terabyte collection, report significant savings, in terms of number of postings examined, without significant loss of effectiveness when based on several measures of importance used in isolation, and in combination. Our results point to several ways in which the computation cost of searching large collections of documents can be significantly reduced

    Adapting ACME to the database caching environment : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Information Systems at Massey University

    Get PDF
    The field of database cache replacement has seen a great many replacement policies presented in the past few years. As the challenge to find the optimal replacement policy continues, new methods and techniques of determining cache victims have been proposed, with some methods having a greater effect on results than others. Adaptive algorithms attempt to adapt to changing patterns of data access by combining the benefits of other existing algorithms. Such adaptive algorithms have recently been proposed in the web-caching environment. However, there is a lack of such research in the area of database caching. This thesis investigates an attempt to adapt a recently proposed adaptive caching algorithm in the area of web-caching, known as Adaptive Caching with Multiple Experts (ACME), to the database environment. Recently proposed replacement policies are integrated into ACME'S existing policy pool, in an attempt to gauge its ability and robustness to readily incorporate new algorithms. The results suggest that ACME is indeed well-suited to the database environment, and performs as well as the best currently caching policy within its policy pool at any particular point in time in its request stream. Although execution time increases by integrating more policies into ACME, the overall time saved increases by avoiding disk reads due to higher hit rates and fewer misses on the cache

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Active architecture for pervasive contextual services

    Get PDF
    International Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil This work was supported by the FP5 Gloss project IST2000-26070, with partners at Trinity College Dublin and Université Joseph Fourier, and by EPSRC grants GR/M78403/GR/M76225, Supporting Internet Computation in Arbitrary Geographical Locations, and GR/R45154, Bulk Storage of XML Documents.Pervasive services may be defined as services that are available "to any client (anytime, anywhere)". Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of as-similating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself.Peer reviewe

    Active architecture for pervasive contextual services

    Get PDF
    Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of assimilating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself
    • 

    corecore