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Abstract

A typical E-commerce system that is deployed on the Internet has multiple layers
that include Web users, Web servers, application servers, and a database server. As
the system use and user request frequency increase, Web/application servers can be
scaled up by replication. A load balancing proxy can be used to route user requests
to individual machines that perform the same functionality.

To address the increasing workload while avoiding replicating the database server,
various dynamic caching policies have been proposed to reduce the database workload
in E-commerce systems. However, the nature of the changes seen by the database
server as a result of dynamic caching remains unknown. A good understanding of
this change is fundamental for tuning a database server to get better performance.

In this study, the TPC-W (a transactional Web E-commerce benchmark) work-
loads on a database server are characterized under two different dynamic caching
mechanisms, which are generalized and implemented as query-result cache and table
cache. The characterization focuses on response time, CPU computation, buffer pool
references, disk I/O references, and workload classification.

This thesis combines a variety of analysis techniques: simulation, real time mea-
surement and data mining. The experimental results in this thesis reveal some inter-
esting effects that the dynamic caching has on the database server workload charac-
teristics. The main observations include: (a) dynamic cache can considerably reduce
the CPU usage of the database server and the number of database page references
when it is heavily loaded; (b) dynamic cache can also reduce the database reference
locality, but to a smaller degree than that reported in file servers. The data classifi-
cation results in this thesis show that with dynamic cache, the database server sees
TPC-W profiles more like on-line transaction processing workloads.
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Chapter 1

Introduction

1.1 E-commerce System and Their Challenges

The use of computer networks to conduct commercial activities has shown a steady

increase and is an important component of the retail industry. The term E-commerce

is used to describe many forms of such activity, from business to consumer, business

to business and consumer to consumer. Different researchers and business people

use the term in different contexts. In one report published by US Census Bureau1,

the E-commerce sales reached 21 billion dollars in the third quarter of 2005, which

accounted for 2.2% of total retail sales; compared with the same quarter in the

previous year, the E-commerce sales increased by 26.5% at an annual rate on average

for every quarter from the first quarter of 2001 to the third quarter of 2005.

Also, Statistics Canada2 reports that the E-commerce sales in Canada increased

by a high annual rate of 51.4% on average from the year of 2000 to the year of 2004.

More interestingly, it shows that in Canada, private sector firms accounted for an

overwhelming majority of the E-commerce sales, and that business to business sales

played an important role in E-commerce activities. For example in 2004, private

companies contributed 93% of the total E-commerce sales, and business to business

sales represented 75% of total E-commerce sales by private firms.

E-commerce provides Web users the convenience of shopping online. If Web

users experience long response time however, the results to an E-commerce business

1http://www.census.gov/mrts/www/data/html/05Q3table4.html
2http://www.statcan.ca/Daily/English/050420/d050420b.htm
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provider can be detrimental. Previous study [25] has shown that users abandon Web

sites at the rate of 2% when the response times are less than 7 seconds, while this

rate goes dramatically up to 30% with response times around 8 seconds, and jumps

to 70% if response times are more than 12 seconds. Slow processing of the online

transactions caused about 420 million USD in lost revenues in 1999 [42]. A response

time is composed of client processing time, network delay and server processing

time, and it has been found that server-side latency accounts for 40% of the Web

page delay experienced by the Web users [21].

The database server in E-commerce systems can become the performance bottle-

neck when the request frequency increases due to the increase of the number of Web

users. Zhang et al. [53] have shown that the database server response time increases

dramatically when the number of concurrent users increases. All the database re-

sponse times are less than 5 seconds when there are 128 concurrent users. However,

5% of the database response times are more than 5 seconds when there are 256

concurrent users, and the percentage goes up to 20% when there are 512 concurrent

users.

To reduce the delay at the server side, a database server in an E-commerce

system can be upgraded to a machine with a faster CPU, more memory, and faster

disks. This is an expensive solution, however, and such a server will become the

bottleneck again due to the continuous increase of database size and the request

frequency.

Fortunately, there are two alternative solutions addressing the challenge [26].

The first one is to extend the traditional database to a parallel database or dis-

tributed database to achieve the scalability. The second solution is to use caching to

store frequently accessed items in higher speed storage locations either near clients

or near the server.

Database workloads in E-commerce tend to be split into 2 separate activi-

ties/categories. Some of the data is mainly read-only data, for example the address of

a customer. Other data is updated very often, such as prices and quantities in stock.

As well, the order table is updated on every order transaction. Parallel/distributed
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databases do not explicitly consider this processing characteristic and instead try

to optimize performance for a general database workload [37]. Therefore, the ap-

proach in this thesis will focus on caching techniques which permit the separation

of data items according to their usage characteristics. In such techniques, managing

read-only data at a cache can reduce the load on a database server, while updates

are still served by the database server.

Caching can affect the characteristics of the E-commerce workloads seen by the

database server. Understanding the effects that caching has on E-commerce work-

loads is crucial for the design and tuning of database servers in E-commerce systems.

This thesis studies the effects that caching has on the database workloads in an E-

commerce environment.

1.2 Definitions

Some words/terms used in this thesis have their word context in general use, but

they are restricted for the purpose of this thesis. These terms include “E-commerce”,

“response time”, and ”transaction”.

E-commerce: E-commerce can be generally defined as electronically conduct-

ing any form of business, such as buying, selling, marketing, and negotiating over

computer networks [5]. In this thesis, E-commerce is more narrowly referred to as

the business model of purchasing and selling products and/or services electronically

over the Internet. Particularly, the focus is on a Web commerce model. In a Web

commerce system, a consumer treats a company’s Web site as a virtual store where

the consumer can browse around or buy products/services and pay with a credit

card [36].

Response time: In this thesis, response time is used in two different contexts.

The response time of a Web user request is a significant metric which has been used

to measure the performance of an E-commerce system [41]. It refers to the time

elapsed from when a user requests a Web interaction until when the user receives

the resultant Web page. The response time of a database server refers to the time

3



elapsed from an application requesting a database transaction until the transaction

is completed and the feedback is sent to the application.

Transaction: This term is generally used in this thesis to refer to a complete

data exchange process between a Web user and the related servers of an enterprise

computer system3. The enterprise servers usually include Web servers, application

servers, and a database server. From a database point of view, a transaction is also

defined as an atomic database management system (DBMS) interaction [41]. It is

guaranteed either to complete successfully or not at all. If a transaction completes

successfully, database changes are said to be committed; if not, changes are rolled

back. The meaning of “transaction” in this thesis depends on the context. It refers

to the first process if associated with an entire enterprise server system, while it

refers to the latter activity if used with respect to a database server only.

1.3 A Typical Three-tier E-commerce System

There are at least three types of E-commerce applications: business to business,

business to consumer, and consumer to consumer [9]. The focus of this study is

the business to consumer model. A representative business to consumer enterprise

E-commerce system includes three tiers (as shown in Figure 1.1): Web servers,

application servers, and a database server that host the functions of presentation

logic, business logic, and data management respectively [31].

In the three-tier E-commerce system architecture shown in Figure 1.1, each

Web/application server can run on the same machine or separate ones. Running

on separate machines introduces network latency between the Web server and the

application server. Using one machine removes the network latency, but adds some

requirements on the hardware, such as memory, due to the resource competition

between the Web server and the application server programs. In a typical system,

instead of sharing one machine with Web/application servers, a dedicated machine

with a fast CPU running a traditional centralized database server is generally de-

3http://www.csgnetwork.com/glossary.html
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Browser
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Network Load

  Internet
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Database
  Server

Figure 1.1: Three-tiered E-commerce Architecture

ployed [18, 25] to get better system performance, such as good response time.

Users in this type of a system (as in Figure 1.1) interact with the system through

a Web interface and the system executes business logic at application servers. The

business logic typically responds to requests from the Web servers, and may access

the database server to complete the requests, and build response pages in order to do

so. Application servers also keep track of user sessions to manage the shopping cart

and provide page personalization. The database server stores business information,

for example the price of a product. The database server also processes queries from

the application server, for example selecting the top ten best sellers from the product

table.

When a user accesses an E-commerce Web site, an outgoing request from the

user is received by a Web server. An example of such a request is “get product

details”. Next, the Web server takes out the associated parameters from the request

and routes the parameters to an application server. The application server identifies

the requested data and sends queries to the database server. The database server

processes the queries and sends the results back to the application server. Then,

the application server uses the results to assemble a page and sends it to the Web

server for final transmission to the user. Finally, the response Web page is displayed

in the user’s Web browser.
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In a typical Web E-commerce system, the data objects stored at Web/application

servers, such as images and scripts, are static. To achieve a high degree of scalability,

Web servers and application servers can be scaled up by adding more machines using

current network load balancing technology [26]. It is cost-effective to use many low-

end commodity machines as Web/application servers. The system administrators

can use multiple similarly configured machines to execute the functionality and im-

plement a proxy machine to route the initial requests to individual Web/application

servers. On the other hand, the database server stores some data, such as product

quantities, that is updated frequently by transactions. It is very difficult and costly

to replicate the database server while maintaining data consistency efficiently in

E-commerce systems [25, 40].

Suppose several replicated databases are grouped together to serve queries via a

standalone load-balancing machine. Assume a dedicated master database broadcasts

any update, such as a new on sale price, to all other databases when it comes to the

database group. An update is completed only after a transaction is committed across

all the databases to ensure data consistency [40]. The relevant data items have to

be locked until the final commit is performed on all the databases, before the fresh

data is available to the incoming queries that depend on the updated data. This

synchronization would be very costly, since the transaction data at an E-commerce

site is usually updated with a high frequency, sometimes in a burst mode.

The single database server can use up its computing resources however to process

queries from application servers with a high user request frequency. It then becomes

the bottleneck of E-commerce systems, and the time spent at the database server

will dominate the response time perceived by the Web users [26, 29, 53].

Caching is used in E-commerce systems for the following reasons. First, a parallel

DBMS or distributed DBMS is still expensive, while cache servers can use cheap

machines. The database server is often the most expensive component in the system.

For example in the xSeries 440 system, the price of the database server is about the

same as that of the sixty-two front-end servers (27 Web servers, 21 image servers,

and 14 Web caches). Second, by holding the cached content on a separate server and

6



moving it closer to users, caching can achieve additional gains on the challenges of

availability and performance via reduced network latency and other related factors

as well as reducing the cost of the database server. These factors are not explicitly

considered in this thesis, but are part of future work.

1.4 General Caching

Caching is a fundamental technique used to improve the performance of a com-

puter system. It is widely used in operating systems, database systems, and Web

servers/proxies. The objective of caches is to reduce the relative number of accesses

to storage devices which have longer access times. Caching mechanisms store some

portion of the data from the device with longer access time in the device that has

shorter access time [35]. The resources saved could be memory access (for CPU

cache), disk I/O (for file client cache and server cache), and network bandwidth (for

Web browser cache and proxy cache).

Caching is often used at different levels of a system. Furthermore, it is common

to have multi-level caches. A storage system has I/O controller cache and disk cache.

A file system has client cache, server cache, in addition to the underlying storage

caches. A Web site has browser cache, one or more proxy caches, Web server cache,

in addition to the cache hierarchies of the underlying file and storage system. A

database system has buffer pool cache in addition to the cache hierarchies of the

underlying storage system.

1.5 Dynamic Caching in E-commerce Systems

To reduce the load on the database server and reduce the user response time, a

variety of dynamic caching approaches have been proposed for E-commerce systems.

The dynamic cache can be placed in the infrastructure of an enterprise E-commerce

system or over the Internet between users and an enterprise E-commerce system.

The idea of dynamic caching is to cache some query results and/or tables, so
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some queries can be filtered out before they reach the database server. A query

result cache stores query results and serves subsequent identical queries using these

results. A table-cache server runs on a separate machine and replicates infrequently-

updated tables. The table cache server processes queries that involve the replicated

tables so as to reduce the load on the database server.

In this thesis, a single cache is used. For query result cache, a timeout value (30

seconds) is set for all the cache results. After the timeout, a cached result becomes

invalid, and the corresponding query must be forwarded to the database server.

Before a cached result becomes invalid, the related data at the database server might

change. For example the “best seller” might change during the timeout period. This

possible misrepresentation during the 30 seconds of timeout period will not cause

an inconsistency at the database server since the query result cache does not store

any result from “update” queries, for example “customer registration”. Therefore,

data maybe obsolete, but it is never inconsistent.

For table cache, the changes on the cached table are propagated from the database

server to the cache periodically. Some cached tables rarely change, for example the

table of the names of countries. Some cached tables are not frequently updated,

for example the table of the addresses of customers. There could be a misrepresen-

tation at the table cache before changes on the cached tables are propagated from

the database server to the table cache. This possible misrepresentation at the ta-

ble cache will not cause data conflicts at the database server since all the updating

queries are forwarded to the database server and the periodical data updating only

happens in one direction: from the database server to the table cache.

In this thesis, the single query result cache or table cache is assumed being placed

in the infrastructure of an E-commerce system instead of over the Internet. Further

implications of these assumptions are discussed in Chapter 4. Multiple query result

caches or table caches can be duplicated over the Internet to further reduce the user

response time. Multiple query result caches or table caches can also be deployed as

a content distribution network to serve Web user requests. However, the duplication

or distribution of caches does not introduce data contention between the cache since
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all the updating queries are forwarded to the database server. This thesis focuses

on the effect that caching has on the database server workload. Duplication or

distribution of caches over the Internet can reduce user response time and network

bandwidth utilization more than a single cache sitting in the infrastructure of an

E-commerce system, but it does not make much difference at the workload seen

by the database server. A detailed description of cache duplication and content

distribution network is beyond the scope of this thesis.

1.6 Thesis Statement

The presence of dynamic caching mechanisms may significantly affect the workload

characteristics of the database server. Understanding the workload characteristics of

the database server is a prerequisite for studying its performance. As new dynamic

caching techniques emerge, understanding the effect of the dynamic caching on the

database server workload is of paramount importance to the design, configuration,

and tuning of the database server. Unfortunately, this issue has not been well

addressed by previous research.

Although different dynamic caching policies have been proposed, the details of

their effect on database workloads remains unknown. The design and tuning of a

database server depends on the changes of workload characteristics after deploying

dynamic caching. In this thesis, the database server workloads are characterized in

an E-commerce environment with the presence of various dynamic caching mecha-

nisms by using a benchmark workload specifically designed to provide performance

results for E-commerce systems.

In this thesis, two generalized dynamic caching policies, query result cache and

table cache, are emulated. The TPC-W4 benchmark is configured to drive a real

database server under the three different dynamic caching policies. TPC-W is a

Web E-commerce benchmark from transaction processing performance council. It

simulates a breadth of activities of a retail store, specifically an on-line bookstore.

4http://www.tpc.org/tpcw/

9



A trace tool in the DBMS is implemented and traces of database page references

to the buffer pool (an in-memory buffer that caches database pages) are collected.

Traces are then analyzed in terms of a variety of system characteristics. For example,

the sequentiality of the requests is studied to examine how the database server can

benefit from prefetching. Three TPC-W workload profiles are also examined under

caching to investigate if caching changes the classification of these profiles.

1.7 Contributions

This thesis combines a variety of analysis techniques: simulation, real time mea-

surement and data mining. This thesis also reveals some interesting effects that

the dynamic caching has on the database server workload characteristics. The main

observations include: (a) dynamic cache can considerably reduce the response time

of the database server and the number of database page references when it is heavily

loaded; (b) dynamic cache can also reduce the database reference locality; (c) table

cache does a better job than query result cache in reducing the database server load.

The data classification in this thesis shows that with dynamic cache, the database

server sees different categories of workload profiles from those under no-cache con-

figuration.

1.8 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 gives the background

of this study. Chapter 3 presents the related work. Chapter 4 describes the exper-

imental parameters and methodology used to conduct this study. Chapter 5 and

Chapter 6 present the experimental results concerning different dynamic caching

approaches and their influence on database server workloads with respect to general

workload characterization and workload classification. The conclusions and future

work are presented in Chapter 7.
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Chapter 2

Background

Several components of background material are presented in this chapter. An out-

line of DBMS components, buffer pool management, and workload characterization

methodologies is presented in Section 2.1. A discussion of caching in E-commerce

systems is presented in Section 2.2. An overview of the TPC-W benchmark used in

this study is presented in Section 2.3.

2.1 DBMS

The database server machine in E-commerce systems is a specially designed com-

puter that holds the actual data and runs only the database management system

(DBMS) and related software. A DBMS [37] is designed to facilitate the storage,

access, and management of the data, such as achieving efficient data access, data

integrity, concurrent access, and recovery from crashes. The most typical DBMS is

a relational DBMS. In a relational database system, the data is placed on disk(s) in

the form of tables. A table consists of a set of fields and any number of rows. Certain

fields are defined as keys to facilitate linking records of related tables. Applications

create, update, extract, and administer the data via the DBMS. The Structured

Query Language (SQL) is generally used as a standard programming language for

the communication between applications and the DBMS.
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2.1.1 DBMS Components and Buffer Pool Management

A relational DBMS usually consists of several core components: application in-

terface, query processing, storage management, concurrency control, and recovery

management [37]. The application interface passes the requests from normal users

or the database administrator to the query processing component, which parses the

requests, optimizes and converts them to logical read/write requests upon the ta-

ble/index files stored on disks. The storage management component receives the

logical read/write requests, and translates them into physical read/write operations

if necessary. When a logical/physical read/write is performed, concurrency control

mechanisms and recovery management techniques are used to achieve data shar-

ing and transaction processing properties of atomicity, consistency, isolation, and

durability (ACID) [37].

Storage management is essential to the performance of a DBMS, and it is the

component of interest in this study. A DBMS manages the reading and writing of

data pages to and from disk, called disk input/output (I/O), and a special memory

area, named buffer pool. Although its function is similar to that of the file system

cache in operating systems, the database buffer pool is maintained as a separate

cache by the DBMS to reduce the performance overhead of the file system cache

and facilitate crash recovery in a database environment [39]. Data pages from disks

are held, read, and modified in the buffer pool to improve the database performance

by allowing data to be accessed from memory instead of from disks, since disk access

is of several magnitude slower than memory access.

Upon a data page reference, if the page is already in the buffer pool (called a

buffer hit), no disk access is required; otherwise a buffer miss occurs and the disk

device must be accessed. The buffer hit ratio is the ratio of the number of buffer

hits to the number of total references (# of buffer hits + # of buffer misses), and

the buffer miss ratio is the ratio of the number of buffer misses to the number of

total references (1 − hit ratio). A buffered page is accessed much faster than if it

had to be read from disk.
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It is ideal to keep all the data pages in the buffer pool to get a buffer hit. In

many database systems however, the buffer size is much smaller than the database

size. A small buffer size is cost effective since memory is more expensive than disks.

Moreover, a much smaller buffer pool than the database size can still keep a very

low buffer miss ratio due to the locality of data references [35]. In such systems, the

buffer pool management policy maintains the buffer pool to minimize buffer misses.

The buffer pool management policy depends on three fundamental techniques: page

replacement, page cleaning, and page prefetching, to score more buffer hits.

Page Replacement. If the buffer pool is already full and a new page needs to

be buffered, the page replacement algorithm kicks a target page out of the buffer pool

to make room for the new page based on its policy. The DBMS page replacement

algorithms are similar to the general buffer replacement approaches that have been

used in virtual memory, file system, and CPU cache management. The goal of buffer

pool replacement algorithms is to maximize the buffer hit ratio so as to minimize

the physical I/Os for a given buffer size.

Three basic buffer page replacement algorithms are the following: first-in first-

out (FIFO), least recently used (LRU), and least frequently used (LFU). When a

new page requests buffer space and the buffer pool is already full, FIFO evicts the

page that has stayed in the buffer for the longest time, while LRU selects the page

that has not been referenced for the longest time, and LFU kicks out the one that

has lowest reference frequency.

The FIFO algorithm is easy to implement and has low overhead, but it does

not perform well since it cannot recognize any locality or frequency characteristics

of the workload references. Although the LRU algorithm is simple and shows good

performance for many workloads, it has many disadvantages. It is unable to capture

the frequency feature of a workload and its performance can degenerate dramatically

upon a big scan, which is a sequence of successive page requests with only one-time

use. On every page reference, the LRU algorithm needs to update its most recently

used position. This updating work may cause unacceptably high contention in a

multiple threads environment [10]. The LFU algorithm may never replace some
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buffered pages with high reference frequency even though those pages will not be

referenced in the future.

The DBMS uses a special FIX-UNFIX mechanism to prevent unexpected re-

placement [14]. If any page in the buffer pool is requested, a FIX operation is

performed on the page, and an UNFIX is performed on the page after the request.

During the FIX-UNFIX interval, that page cannot be replaced from the buffer pool.

This mechanism guarantees the page is addressable for the duration of a query.

Page Cleaning. The data pages that have been modified after being fetched

into the buffer pool are called dirty pages. If a dirty page is the target replacement

page, the buffer pool manager first writes that dirty page back to the disk (called page

cleaning) before it is evicted from the buffer pool. An asynchronous page cleaning

mechanism is generally deployed to reduce the waiting time of writing back the dirty

pages. It writes back the dirty pages before they become target replacement pages.

Page Prefetching. To further reduce the time spent waiting for disk I/Os to

complete, the buffer pool manager also prefetches some pages into the buffer pool

before they are requested. For example, if a scan through large volumes of data pages

is predicted, the page prefetching policy will prefetch the corresponding pages to the

buffer pool before the actual references arrive. An effective page prefetching policy

depends on accurately anticipating the application’s data referencing patterns.

2.1.2 Parallel DBMS and Distributed DBMS

As the amount of data and the number of concurrent users handled by a DBMS

increase, the scalability of traditional DBMS that resides on a single powerful ma-

chine becomes a challenge. It is hard for a traditional DBMS to meet the response

time requirement while searching terabytes of data and processing queries from tens

of thousands of simultaneous users. A traditional DBMS can be replaced with two

types of extended DBMSs to address the scalability challenge: parallel DBMS and

distributed DBMS. Although a detailed investigation of parallel DBMS and dis-

tributed DBMS is beyond the scope of this study, a brief description of these two
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techniques is presented in this section to make this thesis self-contained.

Parallel DBMS. A parallel DBMS is a DBMS implemented on a tightly

coupled multiprocessor [34]. The system architecture for a parallel DBMS can range

among shared-memory, shared-disk, and shared-nothing architectures, based on how

a processor shares the memory and disks among its peers. Multiple processors share

memory and disks via fast interconnects in the shared-memory architecture. This

architecture is used in this study for experiments. In the shared-disk architecture,

each processor shares disks, but has its own protected memory. In the shared-

nothing architecture, each processor has its own memory and disks, which makes

this architecture highly scalable. For a shared-nothing architecture model, a parallel

DBMS is quite similar to a distributed DBMS. The only possible distinction is that

a distributed DBMS supposes each processor runs its own operating system while all

the processors run on a single operating system in a parallel DBMS environment [34].

Distributed DBMS. A distributed DBMS is a DBMS implementation that

manages a collection of multiple, logically interrelated databases distributed over

a computer network [34]. For a distributed DBMS, the data is partitioned hori-

zontally and/or vertically to fragments across geographically distributed data sites.

Such systems usually involve heterogeneous hardware/software. Data can also be

replicated at a number of sites to make it close to applications.

To provide applications with transparent functionalities as a centralized DBMS

does, parallel and distributed DBMSs face many challenges, such as query opti-

mization and concurrency control [34]. Due to the parallel processing and/or the

distribution of the data, these challenges are more difficult to attack than in a cen-

tralized DBMS. Further discussions on the open issues about parallel DBMS and

distributed DBMS are beyond the scope of this study.

2.1.3 DBMS Workload Characterization

A DBMS needs to be tuned to handle its workloads with a good performance [15,

19, 37]. Knowing what kind of workload a DBMS must support can provide insights
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for database administrators and guide their decisions on configuring a DBMS to get

good performance. For example, workload characterization can help to determine

how much computing power is required for a DBMS and identify the relationship

between the workload and the Quality of Service (QoS) a DBMS can provide [31].

2.2 Caching in E-commerce System

For E-commerce systems, two general caching mechanisms exist: traditional static

caching and dynamic caching. These two caching techniques are introduced in this

section.

Static Caching. The traditional static caching technique stores one entire Web

page as a data object, including the query results from the database server [43].

The query results are generated from the database server when a user performs a

Web interaction by sending out a request to the Web server, such as requesting the

homepage of a Web site. If a subsequent request is exactly the same as the previous

one, the stored page will be served instead of repeatedly sending the request to the

server.

Static caching is not a practical caching method for an E-commerce system,

since it has many drawbacks. Static caching identifies cached content (static objects

and dynamic generated data from database server) by the corresponding URL, but

even for the same URL, the dynamically generated Web pages may not be the same

because of different HTTP request headers. Static caching may also produce much

redundant data since the contents associated with different URLs can share many

components. In addition, to make the cached content consistent, static caching

needs to refresh one entire document at the highest update frequency among all of

its components. This incurs much overhead. Consequently, static caching is not

further discussed in this thesis.

Dynamic Caching. Dynamic caching, on the other hand, is widely used in E-

commerce systems, aiming at reducing the load on the database server and the Web

user response time. It stores the query results from the database server or duplicates
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some database tables at the cache for later use [32]. Dynamic caching policies can

be roughly divided into two categories from the point of view of the database server:

query result caching and table caching1. The following overview explores how these

two dynamic caching mechanisms work in an E-commerce system. It describes what

a certain dynamic caching mechanism will cache while a common user performs Web

interactions, and what are the advantages and disadvantages of this dynamic caching

mechanism.

For query result caching, the query results from the database server are cached.

These cached results can be reused if identical queries (URL and corresponding query

parameters) are sent to the dynamic cache again. These cached results become

invalid after a certain time or they can be invalidated explicitly when the data

generating these results change. The query result cache can be very simple since

it does not involve the DBMS. The query result cache can save much computation

at the database server on a cache hit when the queries are expensive. Only exactly

repeated queries can be found and served in the cache.

A table cache is a DBMS with replicated tables from the database server. The

database server periodically propagates changes to these tables to the table cache.

Only infrequently changed tables are suitable cache candidates so that the update

propagation costs do not dwarf the benefits of caching. Since the table cache has

its own DBMS, it can answer arbitrary queries involving its cached tables. Queries

partially involving the cached data can also be rewritten so that part of the query

is performed at the table cache. Compared with query result cache, however, table

cache cannot save expensive computation, and the query processing capacity of table

cache requires more computing power than query result cache.

1 To make it clear, caching is used to refer to the policies in this study, while cache is used
to refer to the software/hardware components that implement/hold the data stored by caching
policies.
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2.3 TPC-W: An E-commerce Benchmark

TPC-W [41] is a widely used benchmark to measure and compare the performance

of a transactional E-commerce Web site. It provides various system performance

metrics under different loads and hardware/software deployment platforms. The

metrics are examined to determine how the configuration of a system should change

to correspond to changes in system workload.

The TPC-W workload simulates a breadth of activities of a retail store, specif-

ically an on-line bookstore. Customers visit the bookstore Web site, browsing

through pages, looking for some books, placing an order, checking the status of an

existing order, or canceling an order. Administrations of the Web site (for example

updating a product price) are also integrated into the workload model.

2.3.1 TPC-W Database

The TPC-W database includes eight tables listed below:

• CUSTOMER: Customer personal and session data.

• ADDRESS: Customer shipping address information.

• ORDERS: Order information, including total amount and shipping data.

• ORDER LINE: One order line data per order.

• CC XACTS: Credit card transaction data.

• ITEM: Description of each item (book) in the inventory.

• AUTHOR: Author data, including first name and last name.

• COUNTRY: Country name and exchange rate.

According to the TPC-W specification, additional tables can be included in the

implementation to facilitate the execution of TPC-W workloads. A typical example

is the SHOPPING CART for the shopping cart Web interaction, which is generally
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implemented in the database to help to meet the TPC-W durability requirement [41],

so the system can preserve the effects of any committed database transaction after

recovery from any single point of failure. A customer can add a new item to his/her

shopping cart or update existing items in his/her shopping cart.

Table 2.1: TPC-W Database Scaling Rules with Example Table Sizes

Table Name Cardinality (in rows)
Typical Row

Length (bytes)
Typical Table
Size (bytes)

CUSTOMER 2880*(number of EB) 760 2,188,888k
ADDRESS 2*(CUSTOMER) 154 887,040k
ORDERS 0.9*(CUSTOMER) 220 570,240k

ORDER LINE 3*(ORDERS) 132 1,026,432k
CC XACTS 1*(ORDERS) 80 207,360k

ITEM 1k, 10k, 100k, 1M, 10M 80 207,360k
AUTHOR 0.25*ITEM 630 1,575k
COUNTRY 92 70 6.44k

The store size is expressed by the number of items in the ITEM table and the

number of emulated browsers (EBs), which emulate users using Web browsers to

interact with an E-commerce Web site. The database scaling for TPC-W is defined

by the size of the supported customers and the cardinality (number of rows) of the

ITEM table [41]. The scaling rules are illustrated in Table 2.1, along with typical

row lengths and table size estimates for 10,000 items and 1,000 EBs.

2.3.2 TPC-W Workload Profiles

Based on the user traversal probabilities defined in TPC-W [41], an emulated browser

goes through one or more of 14 Web interactions to communicate with the E-

commerce Web site. A Web interaction is a complete cycle of communication be-

tween the EB and the E-commerce system. It starts when the EB requests a Web

page and finishes when the last byte of data from the response page has been received

by the EB. The 14 Web interactions defined in TPC-W are: Home, New Products,

Product Detail, Best Sellers, Search Request, Search Results, Customer Registration,

Shopping Cart, Order Inquiry, Order Display, Buy Request, Buy Confirm, Admin
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Request, and Admin Confirm.

Table 2.2: TPC-W Workload Profiles

Web Interaction Browsing Mix Shopping Mix Ordering Mix
Browse 95% 80% 50%

Best Sellers 11.00% 5.00% 0.46%
Home 29.00% 16.00% 9.12%
New Products 11.00% 5.00% 0.46%
Product Detail 21.00% 17.00% 12.35%
Search Request 12.00% 20.00% 14.53%
Search Results 11.00% 17.00% 13.08%

Order 5% 20% 50%
Admin Confirm 0.09% 0.09% 0.11%
Admin Request 0.10% 0.10% 0.12%
Buy Confirm 0.69% 1.20% 10.18%
Buy Request 0.75% 2.60% 12.73%
Customer Registration 0.82% 3.00% 12.86%
Order Display 0.25% 0.66% 0.22%
Order Inquiry 0.30% 0.75% 0.25%
Shopping Cart 2.00% 11.60% 13.53%

TPC-W classifies the 14 Web interactions into two groups: browse and or-

der. The browse Web interactions involve browsing the Web site and searching

the database (e.g., querying new products, best sellers, and product details). The

order Web interactions update the database, e.g., loading shopping carts, and reg-

istering customers. By varying the ratio of the browse to order Web interactions,

TPC-W simulates three kinds of workloads: browsing, shopping, and ordering, which

have been shown to be common Web use profiles [44]. Table 2.2 summarizes the ex-

act Web interactions frequencies in each type of workload. The performance metric

reported by TPC-W is the number of Web interactions per second (WIPS).

2.4 Summary

In this chapter, some DBMS related issues are discussed: DBMS components, paral-

lel DBMS and distributed DBMS, and DBMS workload characterization. A general

description of static caching and dynamic caching in E-commerce systems is also
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presented, and dynamic caching is shown as a suitable solution to E-commerce sys-

tems. The widely used TPC-W benchmark is introduced in the last section from

both database point of view and workload point of view.
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Chapter 3

Related Work

This chapter covers the related work of this study. First, caching effects in the con-

text of file systems, Web systems, and storage systems are presented in Section 3.1.

The previous research in dynamic caching mechanisms in E-commerce systems is

then presented in Section 3.2. Third, the related studies in DBMS buffer pool and

workload are given in in Section 3.3. Finally, the questions that remain unanswered

with the previous research are listed.

3.1 Caching Effects

It has been shown that caching is an effective technique to reduce client access delays

and network load as well as CPU utilization at the server side in a distributed file

system [33]. Similarly, traditional static Web caching is designed to reduce Web

latency, network traffic, and Web server load [43]. Previous studies have found

that Web caching mechanisms can alter the Web workload characteristics, such as

request arrival rate [4], object concentration [28], and object popularity [48]. This

is because only the requests that cannot be served by a Web cache are forwarded to

its server-side systems.

Further research [13, 16] has found that Web caching mechanisms reduce the

temporal locality of workloads. Similar effects of reducing the temporal locality of

workloads have also been found in the context of distributed file systems [17] and

CPU caching systems [47]. Some studies [49, 54] have found that a higher level
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cache makes the LRU cache replacement algorithm inappropriate for the lower level

cache system. As a result, the designers of lower level caching mechanisms for Web

systems [7] and storage systems [8, 51, 55] must keep the caching effects of the higher

level caching in mind.

This study is similar to the above research with respect to investigating the effects

of caching. It examines how various caching mechanisms change the workload. It

also analyzes what degree the workload should influence the design and tuning of

the lower system. However, it differs from the above research in two ways. First, the

caching under investigation in this study is dynamic caching, instead of traditional

static caching. Second, the underlying system under study is a database server,

instead of file servers, Web servers, or storage systems.

3.2 Dynamic Caching Mechanisms

Various dynamic caching mechanisms have been proposed to reduce Web user re-

sponse time, network bandwidth load, and Web/application/database server load [32].

This section gives a brief overview of the recently proposed dynamic caching poli-

cies and classifies them into two general categories: query result caching and table

caching. In this study, these two types of dynamic caching approaches are emulated

based on their respective characteristics.

A query result cache stores Web page layout fragments and content components

from database server independently [3, 11, 12, 27]. The cached content components

can be shared among different layout fragments. Upon receiving a request, the re-

lated layout fragments and content components are built together to form a full Web

page. Query result caches require simple computation and avoid re-computation for

the repeated queries at the database server. A materialized view can also be cached

to speed up query processing [52]. A view is a virtual table that consists of data

that is pulled out of one or more existing tables by a query. If stored as a file, a

view is called a materialized view.

Caching a materialized view is classified as a query result caching method in

23



this thesis because it works in a similar way by caching content components [52].

Upon receiving a request, the table cache mechanism checks whether the request

refers to the tables it has cached. The query result cache mechanism checks whether

the corresponding object has been cached. If the request cannot be served by the

caching mechanism, it will be forwarded to the database server.

Query result caching mechanisms can significantly reduce the user response time

by 20% to 50% [11, 27, 52]. If the cache is located near the Web users, query result

caching can save network bandwidth by about 30% when the cache hit ratio is about

40% [12]. Also, query result caching can save up to 90% of the computation at the

E-commerce site [3].

Table caching mechanisms usually store infrequently updated but frequently used

tables or even subsets of the tables from the database server [1, 40]. A table cache

demands powerful computation since it needs to analyze and answer a query in

the way as an actual DBMS does. A table cache can be implemented as either a

simplified in-memory database [40] or a full-fledged commercial DBMS [1]. Table

caching is shown effective at reducing user response time up to 100% and increase

the Web interaction throughput of the E-commerce site up to 200% [1, 2, 32].

A dynamic cache can be deployed at a proxy outside the E-commerce site infras-

tructure [3, 11, 12, 27] to move the content much closer to Web users; it can also

be implemented in the E-commerce site infrastructure [1, 40, 52] to ease the work

of maintaining the cached content. Cache location makes no difference however, on

how a dynamic caching mechanism reduces the load seen by the database server.

The concern of this thesis is the impact that dynamic caching mechanisms have

on the database server instead of the network load. In this thesis, the locations of

dynamic caches are not distinguished in the simulation of dynamic caching mecha-

nisms.

24



3.3 DBMS Buffer Pool and Workload Studies

Dynamic caching mechanisms can affect the workload on the database server and

the tuning/design of the database server in many ways. In this study, the locality of

the requests, the I/O activities of the database server, the buffer pool replacement

algorithms, and the classification of the workload are considered. This section briefly

outlines the related studies on these topics.

3.3.1 DBMS Buffer Pool Replacement Algorithms

In addition to the simple buffer pool replacement algorithms such as LRU, LFU,

and FIFO, more complex algorithms have been proposed in recent work in this area.

Two representative algorithms are low inter-reference recency set (LIRS) [23] and

adaptive replacement cache (ARC) [30]. These algorithms are briefly explained in

this section.

The LIRS strategy [23] keeps track of both the reference recency and the inter-

reference recency (IRR) for each buffered page. The IRR is defined as the number

of references to other pages between the last two consecutive references to the page.

The recency is the difference between the time of the last reference and the current

time. In LIRS strategy, the buffer is divided to a large buffer known as Llirs and a

small buffer known as Lhirs. Pages with low IRR are registered in Llirs, and those

with high IRR are registered in Lhirs. The registration status of a buffered page is

switched when a page reference changes the IRR of the buffered pages to a certain

threshold level. The pages registered in Lhirs are evicted from the buffer based on

the FIFO policy.

The ARC algorithm [30] automatically balances the recency and frequency of

the page references by maintaining two LRU lists: L1 and L2. L1 contains the pages

that have been referenced only once recently, while L2 contains the pages that have

been referenced more than once recently. The p most recent pages at the top of L1

and c-p most recent pages at the top of L2 are kept in the buffer, where c is the

buffer size and p is a tunable parameter in the algorithm. The victim page is picked
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from either L1 or L2, which is based on the tunable parameter p, the number of

pages in the buffer from L1, and the number of pages in the buffer from L2. The

pages at the bottom of L1 and L2 are maintained in the buffer directory but not in

the buffer.

The performance of the proposed buffer pool replacement algorithms for some

traditional workloads is already studied in the literature. However, how they perform

for the E-commerce workloads in the presence of dynamic caching mechanisms is

not addressed. This study aims at answering the question.

3.3.2 Database Buffer Pool Simulation

Wang and Bunt [45] built a DB2 buffer pool management simulator to study buffer

pool management algorithm performance under a variety of system parameters. The

simulator includes four components: client agent, buffer pool manager, page cleaner,

and disk I/O handler. Based on the trace files it reads, the client agent sends out

page requests to the buffer pool. The buffer pool manager is responsible for placing

and replacing the buffer pool pages and requesting disk I/O. Dirty pages are cleaned

by the page cleaner, and disk I/O requests are processed by the disk I/O handler.

The TPC-C benchmark was used as the input to DB2. The page requests of

FIX/UNFIX at the database buffer pool were recorded. Comparisons of performance

metrics between the trace-driven simulation results and the real system experimen-

tal results verified the buffer pool simulator. The results show that the simulator

provides a good match with the real system. One of the example evaluations was

the buffer pool hit ratio difference between the measured result and the simulated

result. The difference reported by Wang and Bunt [45] is about 0.1%.

This simulator provides a good tool for the study of database server workload

characteristics under caching. An extended version of the simulator obtains the

information about the number of page requests, working set size, buffer pool miss

ratio, and the number of disk I/Os from the traces collected in this study.
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3.3.3 DBMS Workload Studies

Hsu et al. [19] implemented a light-weight tracing utility for DB2 at the buffer

pool level to record the requests from the buffer pool manager. Traces from ten

real production database workloads and TPC benchmarks (TPC-C and TPC-D)

are comprehensively analyzed. TPC-C simulates a complete environment where

a large number of users executes transactions against a database, while TPC-D

represents a broad range of decision support applications that require complex, long

running queries against a database1. TPC-C and TPC-D complement each other

since they represent different kinds of workloads. However, they still cannot reflect

some aspects of the real production database workloads, for example the burst of

I/O bandwidth. The tracing utility developed by Hsu et al. [19] is used in this thesis

to collect the buffer pool level traces.

Hsu et al. also studied the logical level I/O reference behaviors of production

database workloads and TPC benchmarks [20]. They investigated workloads under

different I/O optimization techniques: caching, prefetching, and write buffering. Hsu

found that the buffer pool miss ratio is approximately the inverse square root of the

ratio of buffer pool size to data size, and that TPC-C does not present any significant

sequentiality. The logical level I/O reference behaviors of TPC-W, especially under

different caching mechanisms, remain unknown. The experiments in this study will

investigate the I/O reference characteristics of TPC-W and evaluate whether the

observations in Hsu et al.’s research apply to TPC-W.

Elnaffar [15] presented a classification model to automatically categorize a DBMS

workload to be an OLTP workload or an OLAP workload. TPC-C, TPC-H, and

the TPC-W Browsing profile and the Ordering profile were used to train the classi-

fiers. The system performance snapshots that are taken during the execution of the

workloads, were used as the data objects to build the classifier. Elnaffar chose the

TPC-W Browsing profile and the Ordering profile to represent OLAP and OLTP

workloads respectively [15]. Wasserman et al. [46] revealed there are four different

1www.tpc.org
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groups of queries in a typical OLAP workload. The first group contains queries

which have trivial complexity, short run times, and high CPU utilization. The

second group is identified by simple-complexity queries that involve intensive I/O

activities. The third group is characterized by medium-complexity queries that de-

mand moderate CPU and I/O usage. The fourth group is identified by large and

complex queries that show high sequentiality and random I/O usage. Unfortunately,

dynamic caching was not considered in either study. Dynamic caching may change

the E-commerce workload profiles (Browsing, Shopping, and Ordering) as it can

filter out a large portion of queries.

3.4 Summary

In a typical E-commerce system, various dynamic caching mechanisms have been

proposed to reduce database server load and/or the network latency. The database

server scalability and better response time are achieved in the challenging environ-

ment that the database server is becoming the performance bottleneck due to the

increasing number of Web users. Related DBMS studies are also presented. How-

ever, new questions arise:

• Do the proposed dynamic caching mechanisms change the workload charac-

terization seen by the database server? If so, how? Specifically, does the

reference locality of the workload change? Among the buffer pool replacement

algorithms mentioned in this chapter, which one has the best performance

under dynamic caching? How are the I/Os affected?

• After dynamic caching, how can one classify the E-commerce workloads? Do

they behave more like OLTP?

• If the proposed dynamic caching mechanisms do change the workload charac-

terization and/or classification seen by the database server, does this have a

impact on system tuning, configuration, and design of the DBMS?
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Although a good understanding of these questions is a prerequisite for design-

ing and tuning the database server, the questions are not widely addressed in the

literature.
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Chapter 4

Methodology and Experimental Setup

This chapter contains the methods used in this study to characterize and classify the

TPC-W profiles under dynamic caching. The experimental setup for the evaluation

experiments is also described in detail.

4.1 Methodology

In this study, dynamic caching mechanisms are simulated. For the first set of exper-

iments, database traces are collected during the running of TPC-W profiles. Also,

system performance parameters are measured, such as response time and CPU uti-

lization. Then, the workload characterizations are carried out using trace-driven

simulation. For the second set of experiments, database snapshots are recorded

during the running of TPC-W profiles. The snapshots are then used as profile

classification objects.

4.1.1 Simulation of Dynamic Caching

Dynamic caching mechanisms are simulated instead of being implemented in a full-

featured dynamic cache, since the performance of the database server is the focus of

this study. This greatly simplifies the design of the dynamic cache without affect-

ing the actual workloads reaching the database server. The simulation of dynamic

caching mechanisms is implemented to represent their caching functionality.
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Two dynamic caching policies are simulated: query-result cache and table cache.

They are simulated in the Java implementation of TPC-W kit [6]. Some query

results from the database server are stored at the simulated query-result cache, and

some tables from the database server are stored at the simulated table cache.

For the simulated query-result cache, a query from the Emulated Browser is

checked to see whether a corresponding result is resident in the cache before being

sent to the database server. If a valid stored result for the query exists in the

simulated cache, the cache serves the query with the result; otherwise, the query is

forwarded to the database server.

For the simulated table cache, a query from the Emulated Browser is checked to

see if it requires the stored tables before being sent to the database server. If the

query requires the cached tables, the cache serves the query by performing the query

on the related tables; otherwise, the query is forwarded to the database server. A

query is rewritten so that only parts of the query are performed on the database

server, if it involves both cached tables and un-cached tables.

4.1.2 Workload Characterization

Trace-driven simulation is used in this study to examine the effects that dynamic

caching mechanisms have on database server workload. A trace-driven simulation

consists of two main stages: trace collection and trace processing. In the first

stage, relevant information about a system is collected while the system executes

the workload of interest, which is achieved either by using hardware probes or by

instrumenting the software. In the second stage, the resulting trace of the system is

played back to a model of the system under study. More discussions of this technique

and its strengths and weaknesses can be found in Jain [22].

In this study, the TPC-W Browsing, Shopping, and Ordering profiles under dy-

namic caching are used as workloads on a real database server, and the resulting

DBMS traces are collected. Then the traces are analyzed by feeding them to a

simulator. Although a benchmark E-commerce system is used rather than a real
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system, the analysis methodology employed in this study is general. The bench-

mark system provides a controlled environment to emulate most key features that

affect the performance of real E-commerce systems. It can be used to study general

characteristics that are not restricted to any specific system.

Some performance measurements are conducted during the running of TPC-W

profiles. The response time is measured at the emulated browsers. The cache hit

ratio is calculated at the simulated query-result cache. The CPU utilization of

database server is also recorded. Details are given later in this chapter.

4.1.3 TPC-W Profile Classification under Caching

A set of experiments are also performed to investigate the classification of TPC-

W profiles under dynamic caching. Classification is a common machine learning

and data mining task. Given “classified” cases, a classification model can build

its rules to predict new “unclassified” cases. Decision tree models are one of the

most common classification methods. A decision tree model can extract the clas-

sification rules easily and enables the user to understand and justify the results in

a more straightforward manner in comparison with other techniques such as neural

networks [50].

A decision tree model is built by analyzing training data and then the model is

used to classify target data. The decision tree is constructed in a top-down fashion

by choosing the most appropriate attribute each time. In a decision tree model, an

internal node is a test on an attribute of a case. A branch represents an outcome of

the test, and a leaf node represents a class label, i.e. a prediction result. When it is

trained with “classified” cases, a decision tree model chooses one attribute at each

internal node to split the training cases into the labelled classes. Then the trained

decision tree model classify target cases by following a matching path to a leaf node.

The classification of DBMS workloads can be viewed as a data mining process

using decision tree models [15]. The process includes two steps: training a decision

tree model using “classified” cases and applying it to target classification candidates
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to predict. Database snapshots collected during the execution of TPC-W profiles

without caching are used as data objects to train the classification model in this

study. Snapshots under caching are then used as inputs to the trained classifier for

prediction.

A database snapshot includes important performance statistics of a database

server. It records the running state of the database environment, such as queries

proportion, pages read, and rows selected. Each snapshot can be viewed as a vector

whose dimensions are the attributes that summarize the activities in the system

during the execution. More details are provided in the latter portions of this chapter.

4.2 Experiment Design

4.2.1 Experimental Architecture

Figure 4.1 shows the experimental architecture of this study. It is composed of

Emulated Browsers (EBs), application logic, dynamic cache, and database server.

The Emulated Browsers are implemented in Java and can emulate many browsers

performing Web interactions. The application logic converts Web requests to SQL

queries. The dynamic cache serves queries or forward them to the database server.

In the original implementation of the system [6], the application logic was de-

veloped as servlets that run on a real Web server (specifically Jigsaw 2.2.2). All

inventory images were stored on the Web server, while only their names were stored

in the database. In this study, the Web server is removed and the application logic is

implemented as a set of procedures called directly by EBs. The EBs do not request

inventory images nor HTML pages. The purpose of these modifications is to remove

the overhead incurred by the Web/application server and to be able to focus on the

performance of the database server alone.

Two sets of experiments are conducted in this study. The first set investi-

gates how dynamic caching mechanisms change the TPC-W workloads seen by the

database server in terms of various performance metrics. The second set examines
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Figure 4.1: The Experiment Architecture

how dynamic caching mechanisms alter the classification of TPC-W profiles.

4.2.2 Metrics for Workload Characterization

Figure 4.2 shows the metrics and the corresponding experiments in the first set. The

metrics include response time, CPU utilization, cache hit ratio, number of references,

working set size, disk I/Os, reference temporal locality, and reference spatial locality.

Multiple buffer pool replacement algorithms are also studied under dynamic caching

mechanisms. The algorithms include LRU, LIRS, and ARC. The buffer pool miss

ratio is used to study the performance of the algorithms.

Response time is a fundamental metric in E-commerce systems. In this study,

the average response time received at the EBs is used as a key metric to reflect when

the database server becomes overloaded while the number of EBs increases. The

logic behind this assumption is that if the response time is higher than a threshold,

the system is considered overloaded. In this study, the response time for every

interaction a EB performs is recorded and saved in a file (as shown in Table 4.5).

The average response time for all the EBs is then calculated by analyzing the file.
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Cache hit ratio is measured for query-result cache to reveal the relationship

between the response time and the cache hit ratio. This metric is not reported for

table caching for two reasons. First, it is difficult to calculate the number of hits for

table caching since some queries may be partially served by the table cache. Second,

cache hit ratio makes little sense for table caching from saving overall computation

and I/O point of view. Cache hit ratio for query-result cache is calculated at the

Dynamic Cache layer in Figure 4.1.

The DBMS CPU time is measured to examine how much a dynamic caching

approach can reduce the computation at the database server. In this study, the CPU

utilization of the DBMS, specifically the process of db2syscs, is recorded and saved

as a file by Windows Performance Monitor. The Windows Performance Monitor

samples and records the CPU utilization of the DBMS for every 5 seconds. Then

the average of 180 samples (15 minutes) after warmup is used.

The traces at the database buffer pool level are recorded (as shown in Figure 4.1

at the trace point). Reference characteristics of the database workloads under dy-

namic caching mechanisms are investigated by using buffer pool simulation program

35



bps and trace analysis program rl [45]. The bps program calculates the number of

references, the working set size, the number of disk I/Os, and the buffer pool miss ra-

tio for a specified trace. The rl program analyzed the spatial locality by calculating

the run length of the references in traces.

Database working set size is the size of the unique data that is accessed by users

during a certain mount of time. The data includes table pages and index pages in

the database. A large working set size during a certain time period can cause a

heavy load on database server since it generally demands more memory accesses,

I/Os, and CPU computation. If dynamic caching mechanisms can reduce working

set size of a workload, the resource requirements on database server will be reduced.

Reference temporal locality is an essential factor for managing the DBMS buffer

pool. The LRU miss ratio at the buffer pool is used as the metric to measure the

temporal locality of the workloads under caching. Several buffer pool replacement

algorithms are also evaluated using the buffer pool simulator. They include LRU,

LIRS, and ARC. The buffer pool miss ratios are measured for these algorithms.

The run length is the number of references in a sequential run, which is a sequence

of consecutive reduced page references [38]. Assume a database consists of n data

pages: p1, p2, p3, ..., pn. An example of the process converting a sequence of page

references to sequential runs is shown below.

Sequence of page references: {p1, p3, p4, p4, p5, p6, p6, p6, p7, p15, p16, p16, p2}

Reduced page references: {p1, p3, p4, p5, p6, p7, p15, p16, p2}

Sequential runs: {p1}, {p3, p4, p5, p6, p7}, {p15, p16}, {p2}

By removing immediate re-reference(s), the sequence becomes a sequence of reduced

page references. There are 4 sequential runs for the above example and the run length

for each sequential run is 1, 5, 2, 1 respectively. In each sequential run, either there

is only one page of reference or the page numbers are consecutive.

A sequential run with a long run length means the workload has good sequential-

ity. Sequential runs with short run length indicate random references. If a majority

of the sequential runs in a database workload have short run lengths, it indicates

that the references show weak sequentiality. In this study, run length is used to ex-
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amine the sequentiality of TPC-W workloads and investigate how dynamic caching

mechanisms affect the sequentiality of TPC-W workloads. More specifically, the

cumulative run length distribution is used as the indicator of sequentiality in this

study. Given reference sequence s, the cumulative run length distribution is defined

as follows:

F (s; x) = Pr{run length ≤ x in reference sequence s} [24].

4.2.3 Metrics and Procedure for TPC-W Profile Classifica-

tion

The classifier uses database snapshots for training and prediction. Distributions of

the attributes of snapshots are analyzed under caching. The attributes in a training

or target snapshot include the following measurements:

• Queries Proportion. This is the proportion of SELECT statements to UP-

DATE/INSERT/DELETE statements. It is generally higher in OLAP than

in OLTP.

• Pages Read. OLAP transactions usually access larger portions of the database

than OLTP transactions do.

• Rows Selected. OLAP applications tend to select more rows than OLTP ap-

plications.

• Number of Sorts. OLAP transactions typically perform a larger number of

sorts than OLTP transactions do.

• Ratio of Index Usage. This is the ratio of data pages obtained from indexes

to the pages obtained from tables, in order to serve a query. This ratio is

expected to be higher in an OLTP workload than in a OLAP workload since

OLTP applications do a lot of index scans while OLAP applications involve a

large number of table scans.
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• Logging. This is the number of pages read from or written to the log file of

the database. An OLTP workload generates more logging activity than an

OLAP workload does because the OLTP workload tends to have relatively

more UPDATE/INSERT/DELETE transactions.

The above attributes represent the behavioural differences between OLAP work-

loads and OLTP workloads. They help the classifier build its classification rules for

prediction. A raw database snapshot also includes other attributes such as Average

Sort Time and Number of Locks Held. Those attributes are not included in the snap-

shots used as training cases or target cases however, because they are highly system

dependent so they cannot accurately represent the distinguishable characteristics

between OLAP workloads and OLTP workloads [15].

Raw Snapshots
Under Caching

Label as OLAP
Process Snapshots;

OLAP Snapshots

Label as OLTP
Process Snapshots;

OLTP Snapshots

Classifier

Process Snapshots

Un−classified Snapshots

Trained
Classifier
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Raw Browsing Snapshots Raw Ordering Snapshots
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Trained

Predict

Figure 4.3: The Classfication of the TPC-W Profiles

Figure 4.3 shows the experimental procedure for workload classification. In the

first step, database snapshots from TPC-W Browsing profile and Ordering profile

without caching were collected. They were processed and labelled as “OLAP” work-

load and “OLTP” workload respectively. The classifier takes the labelled workloads
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as training data to help establish rules for the classification of OLAP and OLTP. In

the second step, database snapshots from TPC-W profiles under dynamic caching

mechanisms were also collected and processed. Then, the trained classifier is applied

to these “unknown” database snapshots. It predicts a snapshot either a “OLAP”

snapshot or a “OLTP” snapshot.

4.3 Experiment Configuration

In this study, the emulated browsers, application logic, dynamic cache, and database

server are all located on one server machine. This setup removes the network latency

between EBs and the database server. It is also easier to automate the experiments

since all the components are on one machine.

To get good performance at the database server, the original implementation has

been optimized. For example, optimizations have been made to some SQL queries

implemented in JDBC. Some queries selected all the fields from tables by doing

“SELECT *” even when many fields are not necessary. These queries were revised

so that they just select the necessary fields. Some queries did joining on tables first,

then sorting all the rows, but only taking a small number of the results at the end

by doing “FETCH FIRST 50 ROWS ONLY”. These queries were revised so that

they sort first, then take the necessary rows, and do the joining at the end. This

avoids accessing unnecessary rows. All experiments conducted in this study were

performed on the optimized implementation.

4.3.1 Dynamic Caching Simulation

Query-result Cache. Query-result cache stores the query results of some read-

only queries to the database. All queries to the database are analyzed. The queries

that search infrequently updated data (such as author and title search) and the

queries that are allowed to be cached for a certain time (such as best sellers search)

are identified. The query-result cache is checked for these cache-able queries when

they arrive. If the result of a query with the same parameters is already in the cache,
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the cached result is returned to the client. Otherwise, this query is first sent to the

database server and its reply is then stored in the cache. The cached query results

become invalid after a certain timeout period. When the cache is full, the LRU

replacement policy is used to evict least recently used query results of the cache

until the cache has enough free space for the new query result. The cached data is

maintained in memory as a hash table. The effectiveness of the query-result cache

can be controlled by using different cache sizes and timeout values.

Table Cache. All infrequently updated tables – CUSTOMER, ADDRESS,

ITEM, AUTHOR, and COUNTRY – are considered cache-able. If a query accesses

only these tables, it is served by the table cache, not reaching the database server.

If a query accesses both cached tables and non-cached tables, it is rewritten so that

only the part of the query on the non-cached tables is sent to the database server.

For example, to implement getMostRecentOrder(), five tables will be accessed: CUS-

TOMER, ADDRESS, COUNTRY, ORDERS, and CC XATCS. The corresponding

query is rewritten so that only the parts that access ORDERS and CC XATCS are

sent to the database server.

In the experiments of this study, the table cache serves faked results to the queries

or partial queries that involve data from the cached tables. Faking results will not

affect the workload to the database server since how the table cache responds to

queries is transparent to the database server. Also, faking results at the table cache

does not significantly affect the response time measured in this study, especially

when the database server is heavily loaded. The reason is that the table cache

is considered highly scalable compared with the database server because the table

cache can be scaled up by replication like Web/application servers.

4.3.2 TPC-W Workload Configuration

Based on the TPC-W specifications, an average think-time of no less than 7 seconds

and no more than 8 seconds for an EB performing Web interactions is required [41].

Think-time is defined as the time elapsed from the last byte received by an EB to

40



complete a Web interaction until the first byte sent by the EB to request the next

Web interaction. A think-time of 7 seconds is used in this study.

In this study, 10,000 items and 8.64 million customers (3,000EBs) are used to

build the TPC-W database, which results in the size of 17.7GB on disk, as illustrated

in Table 4.1. Indexes are built on tables to speed up locating and sorting records.

TPC-W specifications allow the use of indexes [41]. The indexes in this study are

shown in Table 4.2.

Table 4.1: Database Size

Table Name Cardinality Table Size Index Size Subtotal
CUSTOMER 8,640,000 4,578MB 1,287MB 5,865MB
ADDRESS 17,280,000 2,291MB 3,278MB 5,569MB
ORDERS 7,776,000 672MB 511MB 1,183MB

ORDER LINE 23,328,000 2,340MB 1,943MB 4,283MB
CC XACTS 7,776,000 821MB 441MB 1,262MB

ITEM 10,000 6MB 4MB 10MB
AUTHOR 2,500 1,020KB 276KB 1,296KB

COUNTRY 92 8KB 24KB 32KB
Total 10.45GB 7.29GB 17.7GB

4.3.3 Buffer Pool Trace Collection and Description

During the running of the TPC-W workloads, the resulting logical page requests sent

to the DBMS buffer pool were collected (trace point in Figure 4.1) using the tool

described in the previous chapter. Each trace record in the trace file is composed

of 6 fields: client ID, request type, object type, object ID, page number, and fix mode

(used for fixes) or modified flag (used for unfixes). Short descriptions of the fields

are listed in Table 4.3.

The fix mode is a lock technique used to control the concurrent read/write access

to the requested pages in the buffer pool. If a page is fixed in the shared mode, it

can be read by multiple users at the same time during the fix period. If a page

is fixed in the exclusive mode, it can only be read/written by a single user during

the fix period. A page is generally fixed in the exclusive mode just before a write
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Table 4.2: TPC-W Database Indexes

Table Name Index Field Name Comments

CUSTOMER
C ID Unique ID per customer
C UNAME Unique user name for customer
C ADDR ID Address ID of customer

ADDRESS
ADDR ID Unique address ID
ADDR ZIP Zip code or postal code
ADDR CO ID Unique ID of country

ORDERS
O ID Unique ID per order
O C ID Customer ID of order
O DATE Order date and time

ORDERS LINE
OL ID Unique order line item ID
OL O ID Order ID of order line
OL I ID Unique item ID(I ID)

CC XACTS CX O ID Unique order ID(O ID)

ITEM

I ID Unique ID of item
I TITLE Title of item
I SUBJECT Subject of book
I A ID Author ID of item

AUTHOR
A ID Unique author ID
A LNAME Last name of author

COUNTRY
CO ID Unique country ID
CO NAME Name of country

Table 4.3: Buffer Pool Trace Fields

Field Name Description
client ID the ID of the client who sends the request

request type the type of the request, either fix or unfix
object type the type of the requested page, either data or index
object ID the ID of the requested table or index

page number the logical page number of the requested page
fix mode (0 |1) how to fix the requested page: shared - 0 or exclusive - 1

modified flag (0 |1) whether the page has been modified: clean - 0 or dirty - 1

operation, and the page is unfixed after the writing. This mechanism can prevent

other users from reading stale data and avoid possible conflicts caused by multiple

users trying to write a page at the same time.
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4.3.4 Snapshot Description and Collection

In this study, a light-weight facility (getSnapshots) is developed using C++ upon

the DB2 snapshot monitor API (sqlmon() family) to collect database snapshots.

With a snapshot interval of one second, it is observed that many SQL statements

complete within that time interval. This is not always the case, however, especially

for the workloads that contain complex queries that are too long to complete within

one second. Thus, the snapshots were dynamically resized by coalescing consecutive

one-second raw snapshots until encompassing at least one statement completion.

The consolidated snapshots are then normalized with respect to the number of SQL

statements executed within a snapshot. Consequently, each normalized snapshot

describes the characteristics of a single SQL statement.

@relation oatp-oltp-train

@attribute QueriesRatio real
@attribute PagesRead real
@attribute RowsSelected real
@attribute IndexRatio real
@attribute Sorts real
@attribute Logging real
@attribute MixType {OLAP, OLTP}

@data
0.939929, 21.6608, 4.15548, 0.213214, 0.116608 , 0.00706714, OLAP

0.931624, 24.094 , 4.66667, 0.18801 , 0.0811966, 0.0213675 , OLAP

0.961702, 24.2809, 4.64681, 0.203645, 0.144681 , 0.0170213 , OLAP

0.94375 , 23.65 , 4.56562, 0.213795, 0.159375 , 0.015625 , OLAP

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Figure 4.4: ARFF File

The snapshots were then converted to ARFF (Attribute-Relation File Format)

files after they were collected and processed. ARFF is the file format for the decision

tree model J4.8 that is used as the classification model in this study. The J4.8
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program (weka.classifiers.trees.J48 ) from Weka is a Java implementation of the

most recent version of C4.5 (C4.8) [50]. Weka is a collection of machine learning

algorithms for data mining tasks. The algorithms are implemented in Java as an

open source toolkit. The C4.5 algorithm is one of best-known and most widely-used

decision tree models.

Figure 4.4 shows an example of an ARFF file that was the training snapshots of

TPC-W Browsing profile after being labelled as OLAP. An ARFF file is an ASCII

text file that includes a list of instances sharing a set of attributes. It has two

distinct sections. The first section is the Header information, which is followed the

Data information. The Header of an ARFF file contains the name of the relation, a

list of the attributes (the columns in the data), and their types. The first 6 attributes

use real number as their datatype. The last attribute is a nominal attribute which

has two possible values: “OLAP” or “OLTP”. In a target ARFF file, the last

attribute is undecided, marked as “?”.

4.4 Experiment Parameters

4.4.1 System Platforms

The database server machine used in our experiments is IBM eServer xSeries 255

(868541X), configured with 4 Intel Xeon MP 1.5GHz CPUs, 8GB RAM, 12 34.7GB

IBM U320 hard disks attached to two IBM ServeRAID-4Lx Ultra160 SCSI con-

trollers. All disks are 15,000RPM with an average seek time of about 3.6 ms. The

operating system platform is Microsoft’s Windows 2000 Server.

The database server is IBM DB2 8.1. The database connectivity is done through

JDBC. The Java Virtual Machine is Java 2 Runtime Environment, Standard Edition

1.4.2. DB2 runs under its default settings for TPC-W in all the experiments in this

study. Some of the default parameters are shown in Table 4.4.

44



Table 4.4: DB2 Default Settings

Parameter Default Value Description
-BUFFPAGE 25000 Buffer pool size (4KB)
-NUM IOCLEANERS 5 Number of page cleaners
-APPLHEAPSZ 256 Application heap size (4KB)
-DFT PREFETCH SZ 0 Default prefetch size (4KB)
-DBHEAP 600 Database heap size (4KB)
-MON HEAP SZ 512 Database monitor heap size (4KB)
-STMTHEAP 2048 SQL statement heap size (4KB)
-STAT HEAP SZ 1096 Statistics heap size (4KB)
-LOGBUFSZ 128 Log buffer size (4KB)
-LOGFILSIZ 25000 Log file size (4KB)

4.4.2 TPC-W Running Parameters

Table 4.5 shows the TPC-W (tpcw.rbe) running parameters. The tpcw.rbe is designed

as a multithreaded program, with a single thread devoted to emulate each browser.

During the simulation, each thread generates a sequence of user sessions, and within

each user session the thread generates a sequence of Web interactions.

Table 4.5: TPC-W (tpcw.rbe) Running Parameters

Parameter Value Description
-EB 100 – 2000 Number of emulated browsers
-PROFILE B/S/O Browsing(B), shopping(S), or ordering(O)
-MN 100/1000 Measured number of interactions
-MI 1800 (seconds) Measured interval
-OUT <filename> File name for response time of interactions
-CACHE no/query/table No cache, query-result cache, or table-cache
-TIMEOUT 5/30/60 Timeout for query-result cache

Among all the parameters, the first two parameters (-EB and -PROFILE ) must

be present and one of -MN and -MI must be specified as well. They determine the

running behaviors of the emulated browsers. The -EB parameter specifies the num-

ber of emulated browsers, and the -PROFILE parameter specifies one of TPC-W

profiles, i.e. Browsing, Shopping, and Ordering. The number of interactions can

be set by the number of interactions each emulated browser will perform (-MN ) or
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the time period each emulated browser will run (-MI ). The response time file can

be specified by -OUT. The cache type can be set as no cache, query-result cache,

or table-cache by the parameter -CACHE. The -TIMEOUT value is only needed

when the -CACHE is set to “query” (query-result cache). The TPC-W database is

restored to its original state after each run. This is necessary because some interac-

tions will change database tables.

The number of EBs are set from 100 to 2000 for the measurements of response

time, number of references, disk I/Os. The number of EBs is set to 1800 for the

examination of temporal locality and spatial locality, since it has been found the

load on database server with 1800 EBs is the load condition of interest for these

characteristics in this study. The number of interactions that each EB performs is

set to 1000 when the number of EBs is less than 1000, and it is set to 100 when the

number of EBs is equal to or more than 1000.

When the number of EBs is 1800 and the number of interactions -MN is set

to 100, each run takes about 20 minutes to 50 minutes to finish. The Ordering

workload takes the longest time and the Browsing workload takes the shortest. Three

different timeouts are used: 5 seconds, 30 seconds, and 60 seconds to investigate the

performance of query-result cache. The timeout of 30 seconds is used as the default

value when studying the workload characteristics at the database server. For the

classification of TPC-W profiles, the number of EBs is set to 1800 and the time

period each emulated browser runs (-MI ) is set to 1800 seconds. In this study,

multiple runs (5 to 10) are performed to establish the degree of variance in the

results. The variance is less than 3% in all cases.

4.4.3 Buffer Pool Simulator and Classifier Parameters

Table 4.6 shows the parameters of buffer pool simulator bps. For a trace, the first

30% (-WARMUP 0.3 ) is used as the warmup period. The range of the buffer pool

size is set from 5000 to 80000 pages. LRU is used when studying the temporal

locality of the workloads under caching. Several buffer pool replacement algorithms
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are evaluated using the buffer pool simulator. They include LRU, LIRS, ARC,

Random. The Random algorithm is used as the worst case scenario.

Table 4.6: Buffer Pool Simulator (bps) Parameters

Parameter Value Description
-FILE <Trace file name> Trace file name
-ALGR LRU/ARC/LIRS/Random Buffer pool repl. algr.
-SIZE 5000 – 80000 Buffer pool size
-WARMUP 0.3 Warmup proportion

Table 4.7 shows the parameters of the classifier J4.8. In the training step, the

classifier first loads a training file with the parameter -T and saves the model by

specifying the parameter -M . In the classification step, the classifier reads in the

saved model (-L) and the target file (-C ). It predicts the column of 7 (-P 7 ) for

the target file. The classifier outputs either “OLAP” or “OLTP” for the target

cases in the file. In this study, the percentage of “OLTP” objects predicted by the

J48 classifier is used to reflect whether a dynamic caching mechanism can shift the

TPC-W workload profiles. The CDFs of the snapshots attributes are also used to

reflect how the dynamic caching mechanisms change the attributes’ distributions.

Table 4.7: Profile Classifier (weka.classifiers.trees.J48 ) Parameters

Training
Parameter Description
-T <trainFilename> Training file name
-M <modelFilename> To save the model file name

Classifying
-C <targetFilename> Target classification file name
-P <columnNumber> The column to predict (7)
-L <modelFilename> Load model file
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Chapter 5

Workload Characterization

This chapter presents the TPC-W workload characteristics under various dynamic

caching mechanisms. First, general characteristics are given. These characteristics

include response time, CPU utilization of database server, and query-result cache

hit ratio. Then, the caching effects on the following reference characteristics are

given: number of references, working set size, number of physical I/Os, temporal

locality and spatial locality. The performance of various buffer pool replacement

algorithms under caching is analyzed at the end of this chapter.

5.1 Response Time

Figure 5.1 presents the average response time as a function of the number of EBs.

In the figure, not using any dynamic cache is labeled as no-cache. The no-cache

configuration is used to gauge the load on the database server.

For the Browsing and the Shopping workloads, the figure shows that the no-

cache system is heavily loaded when the number of EBs is greater than 1, 600, as

indicated by the rapid increase in response time. The corresponding number for the

Ordering workload is 300.

Figure 5.1 shows that, in general, when the system is heavily loaded, dynamic

cache substantially reduces the database server response time. Under light load,

query-cache has little effect on reducing the database server response time, because

a cached query result often expires before the identical subsequent query is received
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Figure 5.1: Response Time
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by the cache. The figure also shows that using dynamic cache has the largest benefit

in the Browsing workload and the smallest benefit in the Ordering workload. This

is because most queries in the Browsing workload are cache-able, while the opposite

is true for the Ordering workload.

In this study, the load with 1, 800 EBs is chosen as the load of interest to inves-

tigate how dynamic caching mechanisms change database workloads. The reason is

twofold. First, the focus of this study is the performance of the system when it is

heavily loaded. Secondly, the average response time for the Browsing workload and

the Shopping workload must not exceed 5 seconds [41]. Figure 5.1 shows that the

response time of query-result cache and table cache is less than 5 seconds with the

load of 1, 800 EBs, although the response time of no cache at this load is 6.6 seconds

and 8.5 seconds for the Browsing workload and the Shopping workload respectively.

The much longer response time of the Ordering workload at the load of EB 1, 800

is acceptable since the Ordering workload includes more CPU-intensive interactions

(e.g. Buy Confirm) than the Browsing workload and the Shopping workload [41].

5.2 Cache Hit Ratio

For query-result cache, getting a high cache hit ratio is crucial. Increasing the time-

out threshold for query-result cache can get a higher hit ratio and better response

time. Table 5.1 presents hit ratios of the query-result cache and the response times

of Shopping workload under three timeout threshold values: 5 seconds, 30 seconds,

and 60 seconds. Using a longer timeout threshold allows the query-result cache to

absorb more queries, thus increasing hit ratios and reducing response times. These

results suggest that when the database server is heavily loaded, it may be beneficial

for the system to temporarily use a larger timeout threshold at the cost of more

obsolete results.

The timeout threshold of 30 seconds is used for the study of how query-result

cache affect database workloads in this thesis. It is a standard threshold specified by

the TPC-W specifications [41]. Highly frequent database updates prohibit caching a
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Table 5.1: Timeout Threshold (1, 800 EBs)

Timeout Cache Hit Ratio Response Time
5 seconds 15.2% 6.7 seconds
30 seconds 40.7% 4.6 seconds
60 seconds 49.1% 2.7 seconds

query result for a long time, so that the database updates can be reflected accordingly

at the cache.

The size of query-result cache is also an important performance factor. In the

experiments of this study, the size of each query result ranges from 20 bytes (a

customer name) to 1400 bytes (result from a function titleSearch()). The size of the

cache is set as infinite for initial testing. It is found that the size of all the cached

results is always less than 20MB, since every cached result expires after 30 seconds.

The size of query-result cache is then set to 20MB for the evaluation of caching

effects on database server workloads.

5.3 CPU Utilization

Table 5.2 shows the reductions in CPU utilization of DBMS when query-result-cache

and table-cache are employed. The use of dynamic cache considerably reduces the

CPU utilization. This is because a large number of queries from the workloads are

cache-able (for query-result-cache) or they only access the cached tables (for table-

cache). Many queries are then filtered out by cache, not demanding any computing

resource at the database server.

Table 5.2: Reductions in the CPU Utilization of DBMS

Dynamic Cache Browsing Shopping Ordering
Query-result-cache 76.8% 20.1% 18.7%

Table-cache 89.6% 55.1% 33.9%

The table also shows that the reductions in CPU utilization decrease from the

Browsing workload, to the Shopping workload and the Ordering workload. The most
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reduction, almost 90%, happens on the Browsing workload under table-cache, and

the least reduction of about 19% happens on the Ordering workload under query-

result-cache. The reason is that the Browsing workload contains more browsing

queries that can be served by cache. The Ordering workload includes the most or-

dering interactions (e.g. Shopping Cart) that generate un-cachable queries accessing

highly frequent updated table.

It is also clearly shown in the table that the table-cache is more effective than the

query-result-cache in reducing the CPU utilization. The table-cache can filter out

more queries than query-result-cache for 3 reasons. First, it can serve some queries

that the corresponding results cannot be cached, for example the query of getStock()

from the ITEM table. Second, the table-cache does not have the first-miss situation

that a new query cannot be served by the query-result-cache. Thirdly, the queries

in the query-result-cache expire after 30 seconds, but this is not an issue for the

table-cache.

5.4 Reference Characteristics

Table 5.3 summarizes the duration of the traces and the number of page requests

for the sample workload when using 1,800 EBs. It shows that the duration of traces

increases from the Browsing workload to the Ordering workload for all the three

cache conditions: no-cache, query-result-cache, and table-cache. This is because the

browse interactions are generally less CPU-intensive than the order interactions.

The table also shows that the duration of traces for each workload always decreases

from no-cache to table-cache. This implies that caching not only decreases response

time (as shown in Figure 5.1) but also the total run time of a workload.

The table shows that the Browsing workload has the most number of requests

among the three workloads when there is no cache, although each workload is con-

figured to perform the same number of interactions. This is because the Browsing

workload has more browse interactions, for example Best Seller, which usually re-

quest more pages than order interactions. It is also interesting to see that the Brows-
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Table 5.3: Buffer Pool Trace Characteristics

Workload Parameters No-cache
Query-result-

Table-cache
cache

Browsing
Duration (minutes) 22.2 20.3 16.1
Number of Requests 12.4M 1.6M 0.76M

Shopping
Duration (minutes) 28.3 22.0 20.3
Number of Requests 10.7M 3.7M 2.6M

Ordering
Duration (minutes) 51.3 50.0 48.0
Number of Requests 9.7M 7.8M 6.1M

ing workload shows the fewest requests under query-result-cache and table-cache.

The reason is that many of the queries that are generated by browse interactions are

served by cache, and those queries could request a large number of pages if there is

no cache.

The table also shows that table-cache is better than query-result-cache at reduc-

ing both the running time of a workload and the number of requests. Figure 5.2

shows how much table-cache and query-result-cache can reduce the number of re-

quests in more detail. In this figure, the number of database page requests is specifi-

cally called the number of references. Loads of EBs from 100 to 2, 000 are used. The

number of references is normalized to that without using dynamic cache (no-cache).

This figure shows that using dynamic cache can considerably reduce the number

of database page references, especially for the Browsing workload and the Shopping

workload. In this figure, from the Browsing workload (Figure 5.2(a)) to the Ordering

workload (Figure 5.2(c)), the number of references increases for both the query-

result-cache and the table-cache. This is also because that most of the queries from

the browse interactions are served by the cache but those from the order interactions

are forwarded to the database server. This figure also explains why the query-result-

cache does not reduce the response time much for the loads of EBs from 100 to 1, 600,

as shown in Figure 5.1, but it still reduces a considerable amount of CPU utilization

of the database server, as shown in Table 5.2. It this figure, it is also clearly shown

that table-cache always has a greater impact on reducing the number of references

than the query-result-cache.
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Figure 5.2: Database Page References
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5.4.1 Working Set Size

Figure 5.3 presents the number of distinct pages (i.e., the working set size) referenced

by the three workloads with different numbers of EBs. The figure shows that using

query-result-cache does not reduce the working set size to any substantial degree,

while using table-cache can substantially reduce the working set size. This is because

query-result-cache only reduces the frequency at which the cache-able queries are

sent to the DBMS, while table-cache reduces the number of distinct queries reaching

the DBMS. The table-cache removes all the distinct page accesses on the cached

tables by serving the corresponding queries in all the workloads.

The figure also shows that query-result-cache slightly reduces the working set size

for the Browsing workload and the Shopping workload when the number of EBs is

more than 1, 200. This indicates that query-result-cache provides stale cached results

to some queries which will access new distinct pages if these queries are sent to the

database server. If there is a large number of users, a new data page can be added

at the database server by buying interactions from the users, and a cached query

result from the old pages can still be valid during this period. When a subsequent

identical query arrives, the query-result-cache serves the old result instead of sending

the query to the database server to access the updated table. This implies that a

constant timeout value for query-result-cache can cause inconsistent data between

the cache and the database server when there is a large number of users.

In this figure, the working set size increases from the Browsing workload (Fig-

ure 5.3(a)) to the Ordering workload (Figure 5.3(a)). This is because there are

more order interactions in the Ordering workload, and the order interactions can

generate new pages on tables at the database server which are not cached, for ex-

ample the ORDER LINE table. Also, the Ordering workload includes fewer browse

interactions; this is why the query-result-cache does not reduce the working set size

for the Ordering workload even there are a large number of users. A cached query

result often expires before the next identical query arrives.
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5.4.2 Temporal Locality

Temporal locality describes the tendency that a page will be referenced in the near

future again if it has been referenced recently. The buffer pool miss ratio of LRU

under different buffer pool sizes shows the temporal locality of the references.

Figure 5.4 presents the overall buffer pool miss ratio as a function of the buffer

pool size when using the query-result-cache and the table-cache. In Figure 5.4(a)

and 5.4(b), the buffer pool has the lowest miss ratio when dynamic cache is not

used. This is because that the database page references under no-cache configuration

are composed of a large number of duplicated requests (comparing Figure 5.2 and

Figure 5.3). The duplicated page requests directly contribute to the high hit ratio

for the no-cache configuration. For the query-result-cache and the table-cache, some

identical page requests are filtered out and are not received at the database server.

As shown in Figure 5.4 from top to bottom, the miss ratio for the no-cache

systems increases as the proportion of cache-able queries in the workload decreases.

This suggests that the buffer pool references generated by the cache-able queries

have very good temporal locality. Most of the queries from browse interactions

are cache-able, and most of the queries from order interactions are not cache-able.

The Browsing workload has the largest proportion of browse interactions cache-able

queries, while the Ordering workload has the fewest proportion of cache-able queries.

In other words, these queries mainly consume CPU resources, but cause few disk

I/Os.

Since the query-result-cache filters out some of the cache-able queries, it always

causes higher miss ratios than not using dynamic cache for all three workloads.

Increased miss ratios are consistent with previous findings of the cache-filtering

effect in multi-layer file servers [49] and Web proxies [16]. Figure 5.4 also shows

that from the top figure to the bottom one, the gap between query-result-cache miss

ratio and no-cache miss ratio for the same buffer pool size decreases. This is because

from the Browsing workload to Ordering workload, the number of cache-able queries

decreases.

57



 0

 2

 4

 6

 8

 10

 12

 14

 0  20000  40000  60000  80000

M
is

s 
R

at
io

 (
%

)
Buffer Pool Size (pages)

no-cache
query-result-cache

table-cache

(a) Browsing

 0

 2

 4

 6

 8

 10

 12

 14

 0  20000  40000  60000  80000

M
is

s 
R

at
io

 (
%

)

Buffer Pool Size (pages)

no-cache
query-result-cache

table-cache

(b) Shopping

 0

 2

 4

 6

 8

 10

 12

 14

 0  20000  40000  60000  80000

M
is

s 
R

at
io

 (
%

)

Buffer Pool Size (pages)

no-cache
query-result-cache

table-cache

(c) Ordering

Figure 5.4: Buffer Pool Overall Miss Ratio (LRU)

58



In Figure 5.4, the miss ratio of database page references with table-cache de-

creases (i.e., towards good temporal locality) from top to bottom. In Figure 5.4(c),

the miss ratio with the table-cache is lower than that with no-cache. This is because

the miss ratio is affected by two factors: the cache filtering effect and the working

set size. The table-cache filters out cache-able queries, which decreases the temporal

locality of references (i.e., towards increasing the miss ratio). On the other hand,

as shown in Figure 5.3, the table-cache has a smaller working set size than that of

no-cache, providing a lower miss ratio given the same buffer pool size. This is also

the reason that the miss ratio of the Shopping workload with the table-cache, as

shown in Figure 5.4(b), becomes lower than that with the query-result-cache when

there are more than 20, 000 pages in the buffer pool.

In the Browsing workload, since many queries are filtered by a cache, the cache

filtering effect substantially alters the workload seen by the server, giving higher

miss ratios than that of no-cache. In the Ordering workload, since there are very

few cache-able queries, the cache filtering effect almost vanishes. The miss ratios

for all the workloads flatten out when the buffer pool size is larger than 60, 000

pages, which is about the same size of the working set size for Browsing workload

and Ordering workload under the no-cache configuration and the query-result-cache

(as shown in Figure 5.3).

Figure 5.5 shows the write buffer pool miss ratio with LRU algorithm. Among all

the page references, read requests account for a high percentage of the total requests

in all the traces, write requests occupy a relatively small proportion (between 3.4%

and 8.1%). Comparing Figure 5.4 with Figure 5.5, it can be seen that the write

miss ratios are much higher than the corresponding overall miss ratios for all the

workloads under all the caching conditions: no-cache, query-result-cache, and table-

cache. This indicates that the write requests do not have good temporal locality in

comparison with the read requests. The difference of miss ratios in Figure 5.4 and

Figure 5.5 also indicates the degree to which read operations dominate the overall

request pattern. The difference between the overall miss ratio and the write miss

ratio suggests that a system using separate buffer for write requests can obtain
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better performance.

5.4.3 Physical I/O Operations

Figure 5.6 presents the number of disk I/Os for the three workloads under no-cache,

query-result-cache, and table-cache. The LRU algorithm is used as the replacement

algorithm at the database buffer pool. The figure shows that the number of disk

I/Os for the no-cache configuration increases from the Browsing workload to the

Ordering workload. This is because the temporal locality of the references decreases

from the Browsing workload to the Ordering workload, as shown in Figure 5.4.

In this figure, the query-result-cache generates a similar number of disk I/Os to

that in no-cache, unless the buffer pool is too small (< 10, 000 pages). Although

compared with the no-cache, the query-result-cache can eliminate a large proportion

of the database references, Figure 5.6 reveals that it cannot reduce the disk I/Os at

the database server, especially for the Browsing workload and the Shopping work-

load (shown in Figure 5.2). This implies that the database page references that are

reduced by the query-result-cache cause buffer pool hits in the no-cache environ-

ment. It also implies that the cache-able queries have a relatively small working set

compared to the buffer pool size. If the working set of cache-able queries cannot fit

in the buffer pool, these queries will generate disk I/Os in the no-cache configura-

tion. In that case, using the query-result-cache will reduce the number of disk I/Os

(as illustrated by the left-most points of the query-result-cache line in the figure).

Figure 5.6 shows that the table-cache reduces the number of disk I/Os by a

considerable amount when the buffer pool size is less than 60, 000 pages, especially

for the Shopping workload and the Ordering workload. Also, at a given buffer pool

size, more disk I/Os are removed from the Browsing (Figure 5.6(a)) workload to the

Ordering workload (Figure 5.6(c)). For example, at the buffer pool size of 30, 000

pages, the table-cache removes 14 thousands disk I/Os for the Browsing workload,

while it removes 34 thousands for the Shopping workload and 39 thousands for the

Ordering workload.
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The fact of more disk I/Os are removed from the Ordering workload than those

from the Browsing workload seems contradictory to the TPC-W specifications [41].

According to the specifications, the number of queries on the cached tables, i.e.,

read-only queries, decreases from the Browsing workload to the Ordering workload.

However, there is another important contributing factor to the number of removed

disk I/Os. It is the temporal locality of the references. The temporal locality of the

references increases from the Browsing workload to the Ordering workload under

the table-cache, as shown in Figure 5.4. More disk I/Os can be removed as the

temporal locality of references increases since less buffer misses are achieved for a

given buffer pool size.

5.4.4 Spatial Locality

Spatial locality describes how likely a page is referenced if nearby pages are refer-

enced. Good spatial locality in database page references implies that the buffer pool

can benefit from use of a large page size and/or a prefetch policy. Spatial locality

can be measured using run length [20]. A run length of n pages means that these n

pages are accessed sequentially. Figure 5.7 presents the cumulative distribution of

database page run lengths. For example, the point A in Figure 5.7(a) indicates that

40% of the references occur in sequential runs of fewer than 35 references.

Figure 5.7(a) shows that for no-cache running the browsing workload, about

50% of the references belong to sequential runs of fewer than 70 references, implying

relatively good spatial locality. Figure 5.7(a) also shows that another 50% of the

references belong to a sequential run of 244 references. A closer look at the trace

found that this run is a sequential scan of the author table. Since the queries

that invoke this sequential scan can be cached by the query-result-cache, a smaller

proportion (20%) of references are involved in this run in the query-result-cache.

This sequential run disappears in the run length distribution when using the table-

cache, since the author table is cached by the table cache server. From the top to

the bottom of Figure 5.7, the proportion of references belonging to this sequential
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run decreases as the proportion of cache-able queries in the workload decreases. In

Figure 5.7, most references occur in sequential runs of small lengths, implying that

prefetch can affect the system performance.

5.5 Buffer Pool Replacement Algorithms

Figure 5.8 shows the buffer pool miss ratio with various replacement algorithms for

the Shopping workload. The Random algorithm is used as the worst case scenario

algorithm. The miss ratio of the Random algorithm is the same as those of LRU,

ARC, and LIRS in Figure 5.8(a) when the buffer pool size is greater than 60, 000

pages. This indicates that the buffer pool can hold all the referenced pages when it

is greater than 60, 000 pages.

Figure 5.8 shows that when the buffer pool size is small, ARC and LIRS perform

better than LRU for the workloads under all the cache configurations: no-cache,

query-result-cache, and table-cache. This is because both ARC and LIRS use the

additional inter-reference information to keep records of all the references for se-

lecting the next victim page. In Figure 5.8, ARC performs similarly to LIRS. This

figure also illustrates that the temporal locality of the Shopping workload is not very

sensitive to the buffer pool replacement algorithms.

Similar results for the Browsing workload and the Ordering workload are shown

in Figure 5.9 and Figure 5.10 respectively. Figure 5.9 and Figure 5.10 also show

an interesting fact: there is no clear winner between LIRS and ARC for TPC-W

workloads. For example, LIRS has much lower miss ratio for the buffer pool size

of 20, 000 pages and 30, 000 pages for the Browsing workload with table-cache (as

in Figure 5.9(c)), but ARC shows lower miss ratio when the buffer pool size is

greater than 40, 000 pages for the Ordering workload with query-result-cache (as in

Figure 5.10(b)).
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5.6 Summary

The experimental results in this chapter show that the dynamic caching mechanisms

change the characteristics of database workloads. Using dynamic caching mecha-

nisms can get good response time and considerably reduce CPU utilization at the

database server when the database server is heavily loaded. The dynamic caching

mechanisms also alter the reference characteristics of the database workloads. They

can remove a large number of page references. They reduce the working set size, the

number of disk I/Os, and the spatial locality of workloads as well, but with various

scales. Also, they alter the temporal locality of the page references. Moreover, the

results show that the table-cache is more effective than the query-result-cache at the

caching effects. The experimental results in this chapter also show that the write

miss ratios of the workload references are relatively high, and that there are minor

performance differences among the examined replacement algorithms.

The experimental results in this chapter present several database performance

indications. If a database server in an E-commerce system becomes heavily loaded,

dynamic caching mechanisms can be deployed to reduce the load. Table cache can

reduce the database server load more effectively than query result cache. Database

buffer pool prefetching algorithms could moderately improve the system perfor-

mance. The evaluated various buffer pool replacement algorithms cannot contribute

much performance difference to the database server. A separate buffer pool for the

write pages could be a good option to improve the system performance.

69



Chapter 6

Workload Classification

This chapter shows the experimental results on workload classification at the database

server under dynamic caching mechanisms. First, the attributes of database snap-

shots with/without dynamic caching are examined in terms of their distributions.

Then, the classification results predicted by the data mining tool are presented.

6.1 Attributes Without Caching

Database snapshots collected during the execution of TPC-W profiles are used as

data objects for the classifier. A database snapshot includes important performance

data of a database server. Each snapshot can be viewed as a vector whose dimensions

are the attributes that summarize the activities in the system during the execution.

There are 6 attributes in a snapshot object for the classifier: Queries Proportion,

Pages Read, Rows Selected, Number of Sorts, Ratio of Index, and Logging. These at-

tributes can reflect the behavioural differences between OLAP workloads and OLTP

workloads [15].

Figure 6.1 shows the attribute values of the Browsing, Shopping, and Ordering

profiles. All the values for each profile are normalized with respect to the Browsing

profile. The figure shows that the snapshot attributes of the Browsing profile are

quite different from those of the Ordering profile. The Browsing profile always

gets higher values for Queries Proportion, Pages Read, Rows Selected, and Sorts,

while the ordering profile has much higher values for Index Ratio and Logging. The
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attributes of the Shopping profile always fall into the gap between the Browsing

profile and the Ordering profile. This makes sense because the ratio of request

types is between the Browsing and the Ordering profile by definition [41].
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Figure 6.1: Snapshot Attributes

To further understand the attributes shown in Figure 6.1, the distributions of

attribute values for the Browsing workload and the Ordering workload are also

plotted in Figure 6.2 in three pairs, in which 50 random attribute values are selected.

There are 12 other pairwise comparisons and they all show similar trends. The three

pairs of (Rows Selected, Index Ratio), (Pages Read, Sorts) and (Queries Proportion,

Logging) in Figure 6.2 are selected randomly.

Figure 6.2 shows that the attributes of the Browsing profile and the Ordering

profile span a relative large range within the distributions, but they are clearly in

two distinct groups. Take the Pages Read as an example, as shown in Figure 6.2(b),

it can range from 5 to 55 for the randomly selected 150 values. Most of the values

for the Browsing profile are below 20, while most of the values for the Ordering

profile are above 20. The distributions of the Shopping profile attributes mainly

stay between those of the Browsing profile and the Ordering profile, although they
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Figure 6.2: Attributes for Browsing, Shopping, and Ordering without Caching
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have some overlap with those of the other two profiles, which is also shown in

Figure 6.2.

6.2 Attributes Under Caching

The distributions of attribute values of the TPC-W Browsing and Ordering profiles

under query-result-cache and table-cache are shown in Figure 6.3 and Figure 6.4

respectively. These two figures show that query-result-cache and table-cache reduce

the Queries Proportion, Pages Read, Rows Selected, and Sorts, while increase Index

Ratio and Logging, which is towards the characteristics of OLTP workloads. In

Figure 6.3 and Figure 6.4, it is also shown that the table-cache is more effective than

the query-result-cache at changing the attributes although they alter the attributes

to the same direction.

The distributions of most of the Shopping profile attributes under caching remain

between those of the Browsing profile and the Ordering profile under caching. De-

tailed distributions are illustrated by the CDF of the attributes in the next 6 figures.

The following 6 figures, from Figure 6.5 to Figure 6.10, further show the CDFs of the

6 attributes under query-result-cache and table-cache for all the three profiles. With

regard to Pages Read and Rows Selected, shown in Figure 6.5 and Figure 6.6, both

types of caching blur the distinction among the profiles. For Browsing and Shop-

ping profiles, the Pages Read and the Rows Selected decrease dramatically under

the query-result-cache and the table-cache. These two attributes for the Ordering

profile also decrease, but to a lesser degree. Under the query-result-cache and the

table-cache, the distributions of the Pages Read and Rows Selected for all the pro-

files shift to the direction of OLTP workload. Furthermore, table cache tends to be

more effective at the shifting of the distributions.

Figure 6.7 and Figure 6.8 also show similar results. The distributions of Queries

Proportion shift to the left in a large degree under the table-cache, and so do the

distributions of Sorts under the query-result-cache. The distributions of Queries

Proportion under the query-result-cache (Figure 6.7(b)) barely shift to the left with
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Figure 6.3: Attributes for Browsing and Ordering with Query-Result Cache
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Figure 6.4: Attributes for Browsing and Ordering with Table Cache
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a large scale. This is interesting since the query-result-cache is supposed to fil-

ter out only SELECT statements, not UPDATE/INSERT/DELETE statements.

This happens because more UPDATE/INSERT/DELETE statements from buy-

ing interactions arrive at the database server during a certain time period since

the query-result-cache improves the response time. It is also interesting that un-

der the table-cache, the distribution of Queries Proportion for the Browsing profile

(Figure 6.7(c)) falls between that of the Shopping profile and the Ordering profile.

The reason is that the Browsing profile produces more SELECT statements than

the Shopping profile does. Figure 6.7(b) and Figure 6.7(c) reveal that the value of

Queries Proportion with caching does not only depend on which profile the database

server is processing, but also how the cache filters out the queries in the profile.

Figure 6.9 and Figure 6.10 show that the query-result-cache and the table-cache

push the distributions of Index Ratio and Logging Size for all the profiles to the

right with various scales. The two figures show that the distributions of the Index

Ratio and Logging Size for the Browsing profile under the no-cache configuration,

shown in Figure 6.9(a) and Figure 6.10(a) are very close to those of the Shopping

profile. However, it is interesting to see that the distribution of Index Ratio for the

Browsing profile under the table-cache (Figure 6.9(c)) is very close to that of the

Ordering profile. The distribution of Logging Size for Browsing profile under the

table-cache also shows a similar result, which is shown in Figure 6.10(c).

The 6 figures (from Figure 6.5 to Figure 6.10) show that the query-result-cache

and the table-cache push all the snapshot attributes of the three profiles towards

those of OLTP workloads. The reason is that many OLAP queries can be served by

the query-result-cache or the table-cache, while OLTP queries (for example a query

to do the function of updateShoppingCart) cannot be served by the cache. The

figures also show that the table-cache is more effective than the query-result-cache

at the shifting. The distributions of the Shopping workload snapshot attributes

under caching still fall in between that of the Browsing profile and the Ordering

profile in most cases. The trained classifier uses these attributes under caching to

classify a snapshot to be a “OLAP” snapshot or a “OLTP” snapshot.
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Figure 6.7: Queries Proportion Cumulative Distributions
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Figure 6.8: Number of Sorts Cumulative Distributions
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Figure 6.9: Index Ratio Cumulative Distributions
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6.3 Classification Under Caching

Figure 6.11 shows the prediction results from the trained classifier J4.8. The three

profiles under the no-cache configuration are also tested. The snapshots used for the

no-cache configuration are new collected snapshots, not the training snapshots. The

y-axis is the percentage of “OLTP” predicted by the classifier over all the predicted

results from the target snapshots of a certain workload profile.
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Figure 6.11: OLTP Percentage of TPC-W Profiles

The first group shows how the trained classifier predict for the Browsing pro-

file, the Shopping profile, and the Ordering profile when there is no cache applied.

Among all the predicted results, the Browsing profile gets 0.1% of “OLTP”, while

17% for the Shopping profile and 100% for the Ordering profile. The second group

is the predicted results under the query-result-cache. In this case, the Browsing

profile gets 32% of “OLTP”, while 79% for the Shopping profile and 100% for the

Ordering profile. The third group under the table-cache shows that all the profiles

get 100% of “OLTP” among the predicted results. This clearly indicates that under

the table-cache, the Browsing profile and the Shopping profile change to “OLTP”.

This figure also shows that query-result-cache is also effective at pushing TPC-W
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Browsing profile and Shopping profile towards “OLTP” workloads.

The results suggest that if table caching is deployed, a DBMS tuned for OLAP

workloads similar to the TPC-W profiles should be adjusted to an OLTP-only

DBMS. As well, if table caching is used, the benchmarking of E-commerce workload

can just focus on the performance of the OLTP (the Ordering profile) transactions.

As E-commerce Web sites provide better searching and data mining services, the

proportion of cache-able queries may increase in future E-commerce workloads. Us-

ing dynamic caching may bring more benefits to such systems.

6.4 Summary

This chapter shows how the dynamic caching mechanisms affect the classification of

database workloads. The snapshot attributes of the TPC-W Browsing profile and

the Ordering profile have quite distinct distribution groups if there is no dynamic

caching mechanism. The table-cache and query-result-cache change the snapshot

attribute distributions of the TPC-W profiles. The dynamic caching mechanisms

decrease the values of Queries Proportion, Pages Read, Rows Selected, and Sorts,

and increase the values of Index Ratio and Logging. The trained classifier predicts

all the three TPC-W profiles as “OLTP” workloads under the table-cache.

The experimental results in this chapter indicates that dynamic caching mecha-

nisms can turn an “OLAP” workload into an “OLTP” workload seen by a database

server. If table caching is used in an E-commerce system, a DBMS tuned for OLAP

workloads similar to the TPC-W Browsing and Shopping profiles should be adjusted

to an OLTP-only DBMS.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The performance of the database server in an E-commerce system is crucial. Due

to the wide use of dynamic caching, the workload seen by the database server is

dramatically changed. Understanding these changes is important to the design,

tuning and capacity planning of the database server.

This thesis studied the workload characteristics and classification of the database

server in a benchmark E-commerce system. Two dynamic caching mechanisms are

used: query-result-cache and table-cache. The main findings about the reduction

effects of caching are: using dynamic cache can considerably reduce the response

time of the database server when it is heavily loaded; using dynamic cache can

considerably reduce the CPU usage of the database server when it is heavily loaded;

using dynamic cache can substantially reduce the number of page references; using

dynamic cache can reduce the number of disk I/Os.

The experimental results in this thesis also show that dynamic caching mecha-

nisms affect the temporal locality and spatial locality that are exhibited in the TPC-

W workload references. In most cases, the temporal locality becomes worse after

using dynamic cache, but to a smaller degree than that reported in file servers and

Web proxies. Interestingly, for workloads with few cacheable queries (i.e., the TPC-

W Ordering workload), using table-cache increases temporal locality of database

page references. This result is contrary to that in file servers and Web proxies. The
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write temporal locality exhibited in the TPC-W workload references is poor in both

systems with and without dynamic cache. The TPC-W workload references exhibit

moderate spatial locality, which can be further reduced by use of dynamic cache.

In this thesis, it is found that the snapshot attributes of the TPC-W Browsing

profile and the Ordering profile have quite distinct distribution groups if there is

no dynamic caching mechanism. Moreover, Dynamic caching mechanisms typically

blur the distinctions of the snapshot attributes among the TPC-W profiles. Dy-

namic caching mechanisms can dramatically pushes the TPC-W Browsing profile

and Shopping profile towards OLTP workloads. This suggests that if caching is

deployed, a DBMS tuned for OLAP workloads similar to TPC-W Browsing profile

or Shopping should be adjusted to an OLTP-oriented DBMS.

Another finding of this thesis is that the buffer pool replacement algorithms of

LRU, ARC, and LIRS do not show much performance difference in both systems

with and without dynamic cache. It is also found that the table-cache does a better

job than the query-result cache upon both reducing the database server load and

pushing the TPC-W Browsing profile and Shopping profile towards OLTP work-

loads. The table-cache is more effective than the query-result cache at reducing the

response time, database server CPU utilization, the number of page references, and

the number of disk I/Os.

7.2 Future Work

Future possible research directions of this study include: further configure the ex-

perimental system and investigate the characteristics and classification of database

workloads; study the effects that dynamic caching mechanisms have on database

server workloads by breaking down the response time; examine real e-commerce

workloads under dynamic caching mechanisms.

The current experimental configurations can be extended in various ways. To

simulate a real E-commerce system more closely, the table-cache in this study can

be implemented to process queries by accessing table data, not return faked results;
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also, the network latency can be configured to reflect the corresponding delays.

Buffer pool prefetching mechanisms can be implemented in the buffer pool simulator

program bp. The buffer pool miss ratio can be used to measure how prefetching

mechanisms affect the workloads under dynamic caching mechanisms. Slightly lower

miss ratios are expected since prefetched pages can serve some sequential accesses.

According to a study [53] on the bottlenecks in E-commerce system, the number

of items in the ITEM table can be an important factor for the database perfor-

mance. The number of items used in this study is 10, 000. Large numbers can

be used for future experiments, for example 100, 000 or 1, 000, 000. Also, future

experiments can be designed to investigate using parallel database and distributed

database techniques in E-commerce systems. It would be very interesting to com-

pare the performance difference between these techniques and caching mechanisms

in an E-commerce environment.

The version of the TPC-W implemented in this study is v1.8. A new TPC-W

version v2.0 is now available for public review [41]. The new TPC-W version simu-

lates the Business to Business E-commerce model. It differs from the version 1.8.

Take the Web interactions as an example, instead of including 14 Web interactions

in version 1.8, the new version has 9 different Web interactions: New Customer,

Change Payment, Create Order, Shipping, Stock Management, Order Status, New

Products, Product Detail, and Change Item. The new TPC-W version can be imple-

mented to study how dynamic caching mechanisms affect the database workloads

in a Business to Business model.

Another main direction in which this work could be taken is to study the effects

that dynamic caching mechanisms have on database response time. The response

time of a database server can be broken down to CPU time, I/O time, and Lock

time [29]. The CPU time is the time a transaction spends running on the proces-

sor and waiting for the processor. The I/O time is the time a transaction spends

issuing and waiting for synchronous I/O to complete, and the lock time is the time

a transaction spends waiting for database locks. If there is a small number of em-

ulated browsers (less than 200) and no caching is used, the CPU time accounts
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for most of the response time for a TPC-W transaction, about 80%, while the I/O

time accounts for about 15% of the response time and the lock time accounts for

5% or less [29]. It could be very interesting to study how the response time breaks

down when there are a large number of emulated browsers, for example 1, 000. The

lock time is expected to increase its percentage in the response time since a large

number of emulated browsers can cause high data contention. Also, it can be very

interesting to study how dynamic caching mechanisms affect the breakdown of the

response time when the database server is heavily loaded.

Real E-commerce workloads under dynamic caching would also be interesting

to study. Analyzing traces from real E-commerce systems under dynamic caching

mechanisms can reflect how the TPC-W workloads represent real workloads and how

the dynamic caching mechanisms affect the real workloads on the database server.

However, real database traces are hard to get since they are usually confidential for

commercial reasons.
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