562 research outputs found

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable

    Data-Driven Approaches Tests on A Laboratory Drilling System

    Get PDF
    In recent years, considerable resources have been invested to exploit vast amounts of data that get collected during exploration, drilling and production of oil and gas. Data-related digital technologies potentially become a game changer for the industry in terms of reduced costs through increasing operational efficiency and avoiding accidents, improved health, safety and environment through strengthening situational awareness and so on. Machine learning, an application of artificial intelligence to offer systems/processes self-learning and self-driving ability, has been around for recent decades. In the last five to ten years, the increased computational powers along with heavily digitized control and monitoring systems have made machine learning algorithms more available, powerful and accurate. Considering the state-of-art technologies that exist today and the significant resources that are being invested into the technologies of tomorrow, the idea of intelligent and automated drilling systems to select best decisions or provide good recommendations based on the information available becomes closer to a reality. This study shows the results of our research activity carried out on the topic of drilling automation and digitalization. The main objective is to test the developed machine learning algorithms of formation classification and drilling operations identification on a laboratory drilling system. In this paper, an algorithm to develop data-driven models based on the laboratory data collocated in many scenarios (for instance, drilling different formation samples with varying drilling operational parameters and running different operations) is presented. Moreover, a testing algorithm based on data-driven models for new formation detection and confirmation is proposed. In the case study, results on multiple experiments conducted to test and validate the developed machine learning methods have been illustrated and discussed.publishedVersio

    Intelligent data-driven decision-making to mitigate or stop lost circulation

    Get PDF
    ”Lost circulation is a challenging problem in the oil and gas industry. Each year, millions of dollars are spent to mitigate or stop this problem. The aim of this work is to utilize machine learning and other intelligent solutions to help to make better decision to mitigate or stop lost circulation. A detailed literature review on the applications of decision tree analysis, expected monetary value, and artificial neural networks in the oil and gas industry was provided. Data for more than 3000 wells were gathered from many sources around the world. Detailed economics and probability analyses for lost circulation treatments’ strategies were conducted for three formations in southern Iraq which are the Dammam, Hartha, and Shuaiba formations. Multiple machine learning methods such as support vector machine, decision trees, logistic regression, artificial neural networks, and ensemble trees were used to create models that can predict lost circulation and recommend the best lost circulation treatment based on the type of loss and reason of loss. The results showed that the created models can predict lost circulation and recommend the best lost circulation strategy within a reasonable margin of error. The created models can be used globally which avoids the shortcoming in the literature. Intelligence solutions and machine learning have proven their applicability to solve complicated problems and make better future decisions. With the large data available in the oil and gas industry, these methods can help the decision-makers to make better future decisions that will save time and money”--Abstract, page iv

    Hydraulic Fracturing Treatment Optimization Using Machine Learning

    Get PDF
    Friction reducers are chemicals used in hydraulic fracturing to reduce friction between fracturing fluid and the wellbore walls, helping to overcome tubular drag at high flow rates. High viscosity friction reducers are increasingly used due to operational and economic benefits, but their optimal concentration for each stage of fracturing is not well studied. As a result, oil and gas companies often use more friction reducers than necessary to ensure designed injection rates are achieved and to avoid screening out, resulting in excess use of FR and economic losses. The primary goal of this Thesis is to fully comprehend and quantify the performance of the Hydraulic Fracturing Friction Reducer in a wide range of concentrations used in the completion of eight horizontal Marcellus Shale wells, as well as to optimize the amount of friction reducer required to complete the job and reduce the cost associated with it. Several machine learning approaches have been employed and it is going to be discussed with its approach, and data from BOGGESS wells have been evaluated to optimize the amount of friction reducer. Finally, an economic analysis will determine the project\u27s net present value (NPV) and accumulated savings of FR cost per stage. Data collected from 1500 wells stimulated in Marcellus Shale. The data were reviewed to define the problem statement of using too much FR concentration. However, due to confidentiality agreement, data from Boggess pads from the MSEEL project including Boggess 1H, 3H, 5H, 9H, and 17H will be used. The collected data was the one second reading for the completion process for each stage from MSEEL project website

    Characterization based machine learning modeling for the prediction of the rheological properties of water‑based drilling mud

    Get PDF
    The successful drilling operation depends upon the achievement of target drilling attributes within the environmental and economic constraints but this is not possible only on the basis of laboratory testing due to the limitation of time and resources. The chemistry of the mud decides its rheological potential and selection of the techniques required for recycling operations. Conductivity, pH, and photometer testing were performed for the physio-chemical characterization of the grass to be used as an environmental friendly drilling mud additive. In this study, different particle sizes (75, 150, and 300 Âľm) of grass powder were mixed in mud density of 8.5, 8.6, and 8.7 ppg in the measurement of gel strength and viscosity of drilling mud. The grass additive was added in different weight conditions considering no additive, 0.25, 0.5, and 1 g to assess the contribution of grass on the gel strength and viscosity of the drilling mud. The machine learning techniques (Multivariate Linear Regression Analysis, Artificial Neural Network, Support Vector Machine Regression, k-Nearest Neighbor, Decision Stump, Random Forest, and Random Tree approaches) were applied to the generated rheological data. The results of the study show that grass can be used for the improvement of the gel strength and viscosity of the drilling mud. The highest improvement of the viscosity was seen when grass powder of 150 Âľm was added in the 8.7 ppg drilling mud in 0.25, 0.5, and 1 g weights. The gel strength of the drilling mud was improved when the grass additive was added to the drilling mud 8.7 ppg. Random forest and Artificial Neural Network had the same results of 0.72 regression coefficient (R2) for the estimation of viscosity of the drilling mud. The random tree was found as the most effective technique for the modeling of gel strength at 10 min (GS_10min) of the drilling mud. The predictions of Artificial Neural Network had 0.92 R2 against the measured gel strength at 10 s (GS_10sec) of the drilling mud. On average, Artificial Neural Network predicted the rheological properties of the mud with the highest accuracy as compared to other machine learning approaches. The work may serve as a key source to estimate the net effect of grass additives for the improvement of the gel strength and viscosity of the drilling mud without the performance of any large number of laboratory tests.publishedVersio

    Rate of Penetration Prediction Utilizing Hydromechanical Specific Energy

    Get PDF
    The prediction and the optimization of the rate of penetration (ROP), an important measure of drilling performance, have increasingly generated great interest. Several empirical techniques have been explored in the literature for the prediction and the optimization of ROP. In this study, four commonly used artificial intelligence (AI) algorithms are explored for the prediction of ROP based on the hydromechanical specific energy (HMSE) ROP model parameters. The AIs explored are the artificial neural network (ANN), extreme learning machine (ELM), support vector regression (SVR), and least-square support vector regression (LS-SVR). All the algorithms provided results with accuracy within acceptable range. The utilization of HMSE in selecting drilling variables for the prediction models provided an improved and consistent methodology of predicting ROP with drilling efficiency optimization objectives. This is valuable from an operational point of view, because it provides a reference point for measuring drilling efficiency and performance of the drilling process in terms of energy input and corresponding output in terms of ROP. The real-time drilling data utilized are must-haves, easily acquired, accessible, and controllable during drilling operations

    A data-driven decision support tool for offshore oil and gas decommissioning.

    Get PDF
    A growing number of oil and gas offshore infrastructures across the globe are approaching the end of their operational life. It is a major challenge for the industry to plan and make a decision on the decommissioning as the processes are resource exhaustive. Whether a facility is completely removed, partially removed or left in-situ, each option will affect individual parties differently. Stakeholders’ concerns and needs are collected and analyzed to obtain the most compromised decommissioning decision. Engaging with hundreds of stakeholders is extremely complicated, hence time-consuming and costly. This issue can be addressed using a predictive model to provide suggested decommissioning options based on the data of previously approved projects. However, the lack of readily available relevant datasets is the main hindrance of such an approach. In this paper, we introduce a new oil and gas decommissioning dataset extensively covering all types of offshore infrastructures in the UK landscape over a 21-year period. An experimental framework using several learning algorithms on the new dataset for predicting the decommissioning option is presented. Various resampling methods were applied to tackle the imbalanced class distribution of the dataset for improved classification. Promising results were achieved despite the exclusion of some stakeholder-related features used in the traditional approach. This shows signs of a potential solution for the industry to significantly reduce time and cost spent on a decommissioning project, and encourages more efforts put into researching on this timely topic

    Intelligent Drilling and Coring Technologies for Unmanned Interplanetary Exploration

    Get PDF
    The robotic technology, especially the intelligent robotics that can autonomously conduct numerous dangerous and uncertain tasks, has been widely applied to planetary explorations. Similar to terrestrial mining, before landing on planets or building planetary constructions, a drilling and coring activity should be first conducted to investigate the in-situ geological information. Given the technical advantages of unmanned robotics, utilizing an autonomous drill tool to acquire the planetary soil sample may be the most reliable and cost-effective solution. However, due to several unique challenges existed in unmanned drilling and coring activities, such as long-distance time delay, uncertain drilling formations, limited sensor resources, etc., it is indeed necessary to conduct researches to improve system’s adaptability to the complicated geological formations. Taking drill tool’s power consumption and soil’s coring morphology into account, this chapter proposed a drilling and coring characteristics online monitoring method to investigate suitable drilling parameters for different formations. Meanwhile, by applying pattern recognition techniques to classify different types of potential soil or rocks, a drillability classification model is built accurately to identify the current drilling formation. By combining suitable drilling parameters with the recognized drillability levels, a closed-loop drilling strategy is established finally, which can be applied to future interplanetary exploration
    • …
    corecore