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ABSTRACT 

Lost circulation is a challenging problem in the oil and gas industry. Each year, 

millions of dollars are spent to mitigate or stop this problem. The aim of this work is to 

utilize machine learning and other intelligent solutions to help to make better decision to 

mitigate or stop lost circulation. A detailed literature review on the applications of decision 

tree analysis, expected monetary value, and artificial neural networks in the oil and gas 

industry was provided.  Data for more than 3000 wells were gathered from many sources 

around the world. Detailed economics and probability analyses for lost circulation 

treatments’ strategies were conducted for three formations in southern Iraq which are the 

Dammam, Hartha, and Shuaiba formations. 

Multiple machine learning methods such as support vector machine, decision trees, 

logistic regression, artificial neural networks, and ensemble trees were used to create 

models that can predict lost circulation and recommend the best lost circulation treatment 

based on the type of loss and reason of loss. The results showed that the created models 

can predict lost circulation and recommend the best lost circulation strategy within a 

reasonable margin of error. The created models can be used globally which avoids the 

shortcoming in the literature. Intelligence solutions and machine learning have proven their 

applicability to solve complicated problems and make better future decisions. With the 

large data available in the oil and gas industry, these methods can help the decision-makers 

to make better future decisions that will save time and money.  
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1. INTRODUCTION 

Drilling fluid losses and problems associated with lost circulation while drilling 

represent a major expense in drilling oil and gas wells, by industry estimates, more than 2 

billion USD is spent to combat and mitigate this problem each year (Arshad et al., 2015).  

There is a wide range of lost circulation treatments available applied to control or 

eliminate lost circulation events.  These systems can be divided into conventional systems, 

which include granular, fibrous and flaky materials that are mixed with the drilling fluids 

during either the drilling phase or with the cement slurries during the drilling and primary 

cementing phases. The other approach to controlling lost circulation is specialized cement, 

dilatant slurries, soft or hard reinforcing plugs, cross-linked polymers, and silicate systems 

that are also used during the drilling/cementing phases. 

The materials of the drilling fluid are so expensive, companies spent $7.2 billion in 

2011 and it is expected to reach $12.31 billion in 2018 as the global market for drilling 

fluid indicates, which shows a vigorous yearly maximize by 10.13% (Transparency Market 

Research, 2013). The cost of the drilling mud is equivalent to averages 10% of total well 

costs; however, drilling-fluid can extremely impact the ultimate expenditure (Darley and 

Gray, 1988). Lost circulation events, defined as the loss of drilling fluids into the formation, 

are known to be one of the most challenging problems to be prevented or mitigated during 

the drilling phase. The severity of the consequences varies depending on the loss severity; 

it could start as just losing the drilling fluid and it could end in a blowout (Messenger, 

1981). Among the top ten drilling challenges facing the oil and gas industry today is the 
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problem of lost circulation. Major progress has been made to understand this problem and 

how to combat it. However, most of the products and guidelines available for combating 

lost circulation are often biased towards advertisement for service companies. 

Expected Monetary Value (EMV) is defined as “the average outcome of a random 

experiment if the experiment is conducted numerous times” (Kelkar, 2013). Decision Tree 

Analysis (DTA) is an extension of probability analysis. The combination of EMV and DTA 

is one of the most common methods used in the decision-making process. If EMV is 

positive, the decision is considered to be feasible. However, that doesn’t mean the decision 

will be successful at all times. It simply means that if a similar decision is made for a larger 

number of cases, the decision will be successful. EMV will basically account for the 

uncertainty in the probability.  

DTA and EMV have been widely used in the petroleum industry to help in the 

decision-making process. Xu (2013) used a combination of DTA and stochastic simulation 

for the decision-making process. Xu showed a real example of how to make the decision 

using DTA and stochastic simulation of an infill drilling project in a North Sea field. Xu 

concluded that the combination of DTA and stochastic simulation will deliver more 

understanding about the uncertainty which will lead to making a better decision. Sprowso 

et al. (1979) presented a model called IPEX that uses DTAs and EMV. IPEX can handle 

three types of project evaluations; Farm-In, In-House and Government Bid. DTA and EMV 

have been also used in the evaluation and materials selection for the completion process of 

a new field that is characterized by high H2S and CO2 content (Cheldi et al., 1997). Cheldi 

et al. used EMV to find the cost and implemented a Monte Carlo simulation to find the 

probability. Finally, DTA was carried out to select the best material. In addition, Gu et al. 
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(2005) utilized DTA and data mining methodology to identify the correlation between the 

presence of stress corrosion cracking and environmental/ loading conditions.  

Gatta (1999) used DTA and risk modeling to appraise investments on major oil 

filed projects. Gatta showed a real example of project development in North Kuwait 

oilfield. Gatta used Monte Carlo simulation to assess the risk and uncertainty. The 

conclusion made by Gatta is that DTA and Monte Carlo simulation each has its own 

advantages and disadvantages. A comparison between the DTA and stochastic simulation 

to optimize the decision-making process has shown that the results for the DTA and the 

stochastic simulation were different (Erdogan et al., 2001; Schulze et al., 2012). Moreover, 

DTA used to decide the best artificial lift method that should be installed in the well in 

order to help in the decision-making process (Heinze et al., 1995). 

This dissertation provides basic information on lost circulation, including an 

introduction to the problem, identifies a range of factors that affect lost circulation, and 

reviews historical work in lost circulation materials. The dissertation uses intelligent data-

driven decision-making methods to mitigate or stop mud loss and recommend the best lost 

circulation treatments’ strategies in Southern Iraq oil fields and worldwide. Lost circulation 

screening criteria are presented for these fields, based on the type of mud loss and reason 

of mud loss. 

1.1. OBJECTIVES OF THE STUDY 

There is a wide range of lost circulation treatments and materials available in the 

oil and gas industry. It is always difficult to select the best lost circulation treatments and 

materials to treat each type of mud loss. However, choosing the right treatment is subjective 
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to the decision maker's experience and knowledge. The availability of large data sets, as 

well as the revolution of data analytics, have given incentives to researchers to use data 

analytics and machine learning to help in guiding the decision-making process and to make 

better decisions in the future for the oil and gas industry. This dissertation used large real 

field data collected from multiple locations in southern Iraq and other data sets around the 

world collected from the literature. The idea is to develop a systematic approach to 

optimize the treatment strategies for the lost circulation problem based on the type of loss 

as well as other factors. 

Moreover, this work aims to provide a systematic review of the current lost 

circulation treatments and materials used by the petroleum industry in addition to 

reviewing the current machine learning and artificial intelligence methods that were 

applied by the oil and gas industry to assist in the decision-making process. 

To overcome the identified gaps in the literature, the main research objective of this 

dissertation is to use probabilities, expected monetary value (EMV), decision tree analysis 

(DTA), and applications of machine learning to recommend the best-lost circulation 

strategy for each type of loss in Southern of Iraq oil fields and worldwide.  

The main objective can be broken down to the following sub-objectives:  

1. To gather data of lost circulation events as well as data of lost circulation treatments 

and materials in Southern of Iraq oil fields.  

2. To find detailed cost and probabilities for each treatment used in Southern of Iraq 

oil fields. 

3. To find alternative approaches (using advances in drilling technology) if 

conventional treatments don’t remedy lost circulation to live with losses. 
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4. To considers economics and probability in the decision-making process (the 

concept of EMV) and recommend the best treatment strategy for lost circulation in 

Southern Iraq oil fields based on the type of losses. 

5. To collect more lost circulation events and treatments in various wells drilled 

worldwide and classify the data based on the type of losses and lithology. 

6. Use machine learning to create models to predict mud losses and recommend the 

best treatments strategy based on the lithology of the formation worldwide. 

7. To develop practical guidelines that will serve as a reference material for lost 

circulation control at the well-site for drilling personnel. 

 

 

1.2. RESEARCH METHODOLOGY 

After reading a good number of technical papers, a comprehensive literature review 

was provided for the applications of decision tree analysis (DTA) and artificial neural 

networks (ANNs) in the oil and gas industry with integrated analysis. The applications of 

DTA were separated into three categories; applications of DTA for the whole oil and gas 

prospect projects, applications of DTA for a specific operation or development, 

applications of DTA, Monte Carlo simulations, and other methods to assess the value of 

information. In addition, a detailed methodology on how to successfully apply DTA in the 

oil and gas industry was provided. In the same vein, the applications of ANNs in the oil 

and gas industry were tabulated and classified into four categories; exploration, drilling, 

production, and reservoir. Moreover, a comprehensive approach on how to successfully 

apply ANNs to any oil and gas application was conducted.  
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Lost circulation data were collected from many sources around the world such as 

the literature, daily drilling reports (DDR), daily mud reports, daily mud logging reports, 

primary cementing reports, end-of-well report and non-productive time analyses, and well 

logging data. More than 3000 wells were utilized in this study. The data first went through 

a processing step and all outliers were removed from the data. Then, the events of lost 

circulation were classified based on the type of loss to partial, severe, and complete loss. 

Probability and economics (the concept of expected monetary value (EMV)) were 

utilized to select the best lost circulation strategy based on the type of loss for the Dammam, 

Hartha, and Shuaiba formations in southern Iraq. Thousands of scenarios were considered, 

the lowest EMV scenario was selected to stop lost circulation. Two criteria were utilized 

to choose the treatment strategy for each type of loss. The first criterion is that the treatment 

strategy has to have the lowest EMV, and the second criterion is the treatment strategy has 

to be practically applicable in the field. Both criteria have to be met in order to choose the 

treatment strategy. All treatment strategies end up with liner hanger if the lost circulation 

did not stop after applying all treatments. 

Multiple machine learning methods such as support vector machine, decision trees, 

logistic regression, artificial neural networks, and ensemble trees were utilized to predict 

lost circulation prior to drilling and to recommend the best lost circulation strategy based 

on the type of loss (partial, severe, and complete ) and reason of loss (natural fractures, 

induced fractures, or vugs and caves).  

After testing the multiple machine learning algorithms, artificial neural networks 

algorithm was selected to predict mud loss, while support vector machine was chosen to 

recommend the best lost circulation strategy since they had the best performance among 
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the other algorithms. For the artificial neural networks, two models were created to predict 

lost circulation prior to drilling for natural and induced fractured formations using key 

drilling parameters (e.g. mud weight (MW) in gm/cc, equivalent circulation density (ECD) 

in gm/cc, plastic viscosity (PV) in cp, yield point (Yp) in lb/100ft2, flow rate (Q) in L/min, 

revolutions per minute (RPM), weight on bit (WOB) in Tons, nozzles total flow area (TFA) 

in inch2).  The data were divided into three sets; training (60%), verification (20%), and 

testing (20%). The training data used to develop the ANN model, the desired output is used 

to help the network adjust the weights of each input. The error will backpropagate in the 

network and adjust the weights until calibration is reached, this method is called 

feedforward backpropagation algorithm. It should be noted that the network should not be 

overtrained since the network will lose its ability to generalize. Verification set is used to 

measure the network generalization, and to stop the training when generalization stops 

improving. Testing set used to test the accuracy of the network after the training and the 

verification steps. Any neural network consists of three layers; one input layer, one or 

multiple hidden layers, and one output layer. The number of hidden layers, as well as the 

number of neurons in the hidden layer, were selected based on trial and error to minimize 

the mean square of error (MSE). 

Quadratic support vector machine algorithm had the best performance among the 

other machine learning algorithms to recommend the best lost circulation strategy based 

on the type of loss and reason of loss.  The inputs for the model were selected based on the 

trial and error to meet two goals, the first one is to have the highest accuracy, and the second 

one is to minimize the number of predictors. 5-fold cross-validation was conducted to 

ensure the model is not overtrained and can generalize to new data. 
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1.3. DATA UTILIZATION FOR LOST CIRCULATION PROBLEM ANALYSIS 

1.3.1. Extensive Literature Review. Obtaining data is very time-consuming. 

A good number of technical papers were summarized and discussed to widen the 

knowledge about the state-of-the-art of lost circulation treatments and materials. In 

addition, a large data set for the lost circulation treatments and materials was acquired 

from the literature review as well as over 3000 real field data that were collected from 

southern Iraq oilfields. 

1.3.2. Well Logging Data. Well logs were utilized to expand the understanding 

of the mud loss problem. Multiple well logs were obtained to help achieve the 

aforementioned goal. 

1.3.3. Daily Drilling Reports. This is a very time-consuming process. Each 

well had many daily drilling reports. In order to extract information from each report, 

digging each report and trying to find information was the only way to do this. It was a 

very tedious process since the format of these reports are in pdf. In addition, some of 

these reports are not searchable (scanned), that also made it more difficult to deal with 

them. 

1.3.4. Daily Mud Reports. These reports are very essential since they contain 

information about the drilling fluid properties such as mud density, yield point, plastic 

viscosity, filtration, sand content, etc. Each parameter was studied carefully since each 

property has a vital effect on the drilling operations. 
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1.3.5. Daily Mud Logging Reports. These reports were used to recognize the 

overpressurized formations.   

1.3.6. Primary Cementing Reports. To find the appropriate plug treatment, the 

cementing reports can be utilized in order to achieve this goal. 

1.3.7. End-of-Well Report and Non-Productive Time Analyses. These are 

very useful reports. Basically, they are a summary of the whole drilling operations in 

the specific field. They were used to extract valuable economical information that 

assisted in the decision-making process. 
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PAPER 

I. REVIEW OF THE APPLICATIONS OF DECISION TREE ANALYSIS IN 

PETROLEUM ENGINEERING WITH A RIGOROUS ANALYSIS 

ABSTRACT 

As oil prices are fluctuating, decision makers are challenged to make the “best” 

decisions for field’s developments. Decision Tree Analysis (DTA) can be used to guide the 

decision-making process and to reduce the risks associated with decisions since DTA 

accounts for the uncertainties.  

After reading and summarizing a good number of papers and cases history about 

the applications of DTA in petroleum engineering, it was concluded that the applications 

can be classified into three main categories; applications for whole field’s developments, 

applications for a specific operation, and applications to assess the value of information. 

Then, these applications were summarized and tabulated into various tables. 

A clear methodology accomplished by flowchart that explains how to successfully 

apply DTA for any petroleum engineering application was provided. The method consists 

of three main steps: 1) how many scenarios need to be considered 2) collection of the 

required data 3) use the visual tool (DTA) or programming to find Expected Monetary 

Value (EMV). Each of the previous steps has its own challenges, thus these challenges 

were addressed and solutions to overcome them were provided. Finally, practical 

guidelines were developed that when used with the accompanying flow chart will serve as 

a quick reference guide to apply DTA for any petroleum engineering application.  
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DTA is a very important tool for the decision makers to make the “best” decision. 

This paper provides a clear methodology on how to successfully apply DTA, which can 

serve as a reference for any future DTA applications in petroleum engineering. 

                                       1. INTRODUCTION   

Decision Tree Analysis (DTA) is a graphical diagram containing nodes and 

branches (Taylor, 2019). DTA focuses on managerial decisions, such as whether to do 

workover or not, whether the additional information will be valuable or not, should the 

field be developed or not. The DTA accounts for the uncertainty in the probability analysis 

(Galli et al., 1999). Expected Monetary Value (EMV) is defined as “the average outcome 

of a random experiment if the experiment is conducted numerous times” (Kelkar, 2013). 

The combination of EMV and DTA is one of the most common methods used in the 

decision-making process. If EMV is positive, the decision is considered to be feasible. 

However, that doesn’t mean the decision will be successful at all times. It simply means 

that if a similar decision is made for a larger number of cases, the decision will be 

successful. EMV can be calculated using the following Equation (Kelkar, 2013): 

EMV = ∑ pi(NPV)n
i=1                                                                                       Eq. 1 

Where n is the number of possible outcomes, NPV is the net present value of the outcome 

i, and pi is the probability of the outcome i. 

A simple example of the DTA analysis is shown in Figure 1. Let’s assume an 

operator wants to develop a new field. The operator has to decide between three scenarios: 

scenario 1 (install a large platform), scenario 2 (install a small platform), or scenario 3 (drill 
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appraisal well). Each scenario has its own uncertainties, if the field turned out to be large, 

then scenario 1 will be the best option. On the other hand, if the field turned out to be very 

small, then scenario 3 will be the best option. The decision maker is challenged to pick the 

“best” scenario among those three. Assuming the decision maker knows enough about the 

net present values (NPV) and the probabilities of each scenario, DTA analysis can be used 

to help the decision maker to make the “best” decision. The boxes in Figure 1 are referred 

to decision nodes, the circles are referred to probability nodes, and the triangles are referred 

to the end of the branch. The EMV should be calculated for each probability node, then the 

highest EMV scenario should be chosen. In the example in Figure 1, the decision of drilling 

an appraisal well should be carried out since it has the highest EMV. Now the question is-

did the decision maker make the right decision? The answer for this question can be 

referred back to the definition of EMV, the decision made by EMV will not always be 

successful but it simply means if a similar decision is made for a larger number of cases, 

the decision will be successful. One important point to mention is the EMV calculations 

should be performed from the far right end to the far left end. 

 
      Figure 1. Example of Decision Tree with Three Scenarios (After Galli et al., 1999) 
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2. APPLICATION OF DTA AND EMV IN PETROLEUM ENGINEERING 

DTA and EMV have been utilized in the petroleum industry to help to make 

decisions when having multiple alternatives. In this section, a comprehensive review of 

DTA and EMV applications will be presented. The applications of DTA and EMV in the 

literature can be divided into three categories: 

2.1. APPLICATIONS OF DTA AND EMV FOR THE WHOLE OIL AND GAS 

PROSPECT PROJECTS 

This means considering all the risks and uncertainties associated with the project 

exploration and developments as well as the short and long terms profits. Table 1 shows a 

summary of the applications used to evaluate oil and gas prospect projects. 

Table 1. Applications of DTA and EMV for the First Category 
Author(s) Application Notes 

Sprowso et al. 

(1979) 
Project evaluation Presented a model called IPEX to help to evaluate projects 

Gatta (1999) 

Appraise investments 

in major oil filed 

projects 

A real example of project development in North Kuwait 

Galli et al. (1999) 

Comparisons between 

three methods for 

evaluation of oil 

projects 

Compared between option pricing, EMV, and Monte Carlo simulations and 

showed the similarities and differences between these methods 

Begg et al. (2002) Investments Managing  the uncertainty in the oil and gas investments 

Floris & 

Peersmann    

(2002) 

Hydrocarbons assets Used EMV to help to make better decisions about assets of hydrocarbons 

Coopersmith et al. 

(2003) 

Appraisal and 

development strategies 
Presented a method to frame appraisal and developments strategies 

Hayashi et al. 

(2007) 

Offshore petroleum 

fields developments 

Used EMV to evaluate the value of information coming from developments of 

offshore fields 

Hayashi et al. 

(2010) 

Risk mitigation in 

petroleum field 

development 

Presented a methodology to quantify the risk of a modular implantation 

Burkholder et al. 

(2012) 

Uncertainties in the 

unconventional plays 

Used EMV to frame, evaluate, and compare appraisal strategies in 

unconventional plays 

Coopersmith et al. 

(2012) 

Uncertainty 

assessments 
Used EMV concept to assess the long-term uncertainty 

Deore (2012) 

Decision making in 

the upstream oil and 

gas industry 

Presented several methodologies (including EMV) to help to make decisions in 

the upstream oil industry 
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2.2. APPLICATIONS OF DTA AND EMV FOR A SPECIFIC OPERATION OR 

DEVELOPMENT 

Some examples include deciding whether to add additional infill wells, choose 

between artificial lift methods, completions methods, and etc. Table 2 shows examples of 

the application of EMV and DTA for specific operations or developments. 

Table 2. Applications of DTA and EMV for the Second Category 
Author(s) Application Notes 

Jensen (1979) 
Production forecast 

uncertainty 

Estimated the production forecast uncertainty for the PL018 production license 

in the Norwegian Sector 

Newendorp (1984) 
Risk analysis for 
analyzing drilling 

prospects 

Used EMV and other methodologies to assess the risk with drilling prospects 

Zammerilli (1991) 
Ranking horizontal 

well sites 

Described a method to examine the location of the new horizontal well in a 

naturally fractured shale gas basin 

Cunha (1994) Fishing operations How to optimize the fishing operation to save money and time 

Heinze et al. 

(1995) 
Artificial lift Find the best artificial lift methods 

Cheldi et al. 

(1997) 
Materials selection 

Evaluation and materials selection for the completion process of a new field 

that is characterized by high H
2
S and CO

2
 content 

Palsson et al. 

(2003) 
Water injection Showed a case history of a water injection project in the North Sea 

Gu et al. (2005) Corrosion 
Identify the correlation between the presence of stress corrosion cracking and 

environmental/ loading conditions 

Rodrigues et al. 

(2006) 

Water injection 

uncertainty 

Considered the uncertainty in the geomechanical data related to water injection 

to decide the best way to inject water into the reservoir 

Kartoatmodjo et 
al. (2007) 

Acid stimulation 
Proposed a methodology to acid stimulation candidate selection with an 

application in the Bokor field in Malaysia 

Zhu & Arcos 

(2008) 
Well completions 

Asses various alternatives in the completion of a well (e.g. vertical, horizontal 

or multilateral) 

Nogueria & 
Schiozer (2009) 

Production 
optimization 

Proposed a new methodology for production optimization 

Ordu et al. (2011) Well completions Evaluated the risk of recompleting a well in a water-flooded reservoir 

Schulze et al. 
(2012) 

Uncertainty in the 
subsurface data 

Presented a methodology of combining the DTA and Monte Carlo simulation 
to eliminate uncertainty in the decision making 

Coopersmith et al. 
(2013) 

Pilot spacing for 

unconventional 
resources 

Used EMV to help make a decision about the optimal pilot spacing for 
unconventional resources 

Ghosh & King 

(2013) 
Smart well completions 

Determining the optimal placement of interval control valves and their flow 

settings 

Xu (2013) 
Infill drilling project, 

North Sea 
Find the “best” locations of new wells 

Shrivastava et al. 
(2016) 

Decision analysis of 

complex appraisal and 

sequencing selection 

Proposed a methodology to help to make a better decision regarding  complex 
appraisal and sequencing selection with case history 

Asmandiyarov et 

al. (2017) 
Optimization Optimization of appraisal wells addition 

Santos & Schiozer 
(2017) 

Influence of well 

control parameters in 
the development of 

petroleum fields 

Performed reactive and proactive optimization under uncertainty in Namorado 
field 
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2.3. APPLICATIONS OF DTA, EMV, MONTE CARLO SIMULATIONS, AND 

OTHER METHODS TO ASSESS THE VALUE OF INFORMATION 

This is applied to assess the value coming from a specific operation such as 

reservoir surveillance, seismic data, and etc. Table 3 shows a summary of applications of 

EMV and DTA to assess the value of information. 

Table 3. Applications of DTA and EMV for the Third Category 
Author(s) Application Notes 

Lohrenz (1988) 
Determine the net value of 

information 

Showed that the value of information can have many uncertainties and 

some information can have a higher value when the oil prices are lower 

Koninx (2000) 
Assessment of the value of 

new information 

Presented a methodology to assess the value of information as well as 

cost cutting 

Mudford (2000) 
Comparison between EMV 

and simulation methodologies 

Showed an example of a typical Gulf of Mexico project from 

exploration to developments 

Coopersmith & 

Cunningham (2002) 

Value of information in the 

upstream industry 

Used EMV to help make decisions regarding the value of information 

for the upstream oil and gas industry 

Berteussen (2006) Seismic explorations  Asses the value of 4D seismic data  and decide whether to do it or not 

Coopersmith et al. 
(2006) 

Spend money to gather 
information 

Used EMV to evaluate whether seismic data and core samples are 
valuable and should the money be spent on that or not 

Coopersmith & 

Burkholder (2013) 

Valuing seismic data at the 

drilling program level 

Introduced a method to assess whether it is valuable to shot seismic at 

the drilling program level for sweet spot identifications 

Martinelli & 

Surovtsev (2014) 
Value of 3D seismic 

Analyzed the contribution of adding 3D seismic information in 

exploration prospect assessment project and showed a case history of a 

conventional onshore oil prospect 

Coopersmith et al. 
(2014) 

Assessments for the early 
production systems offshore 

Introduced a method to assess the value of early production systems 
offshore 

Ferreira (2015) 

Quantify the value of 

information of 4D seismic 

projects 

Asses the value of information coming from 4D seismic to help in 
reservoir management  

David et al. (2016) 
Value of information in a gas 

reservoir 

Presented a methodology to assess the value of information coming 

from an appraisal leg of well to test for fluid contact 

Santos & Schiozer 

(2017) 

Assessment of the value of 

information 
Used an example of the benchmark reservoir model 

 

3. HOW TO SUCCESSFULLY APPLY THE EMV AND DTA IN PETROLEUM 

ENGINEERING 

The DTA and EMV are very useful and powerful methods used to evaluate 

economic projects, asses the value of information, and for selection processes. There are 

many steps that need to be followed in order to successfully apply the DTA and EMV.  
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In this section the process of how to successfully apply the DTA and EMV will be 

presented with an arbitrary example about lost circulation. Let’s assume a decision maker 

wants to decide which lost circulation treatment strategy should be used for partial mud 

losses (Alkinani et al., 2019). The decision maker is challenged to decide the “best’ 

treatment strategy for partial mud losses, this can be done using DTA and EMV. The 

following steps have to be followed in order to successfully apply the DTA and EMV 

(Figure 2 shows a summarized workflow to successfully applying the DTA and EMV): 

3.1. HOW MANY SCENARIOS NEED TO BE CONSIDERED AND WHAT ARE 

THEY? 

This is a very important step in having a rigorous analysis. First, the decision maker 

has to decide how many scenarios should be considered. It is up to the decision maker of 

how complicated the scenarios can be. The decision maker can choose an easy path or a 

very complicated path (can be a few scenarios up to thousands of scenarios). Going back 

to the lost circulation example, let’s assume there are three partial losses treatments to 

create the “best” treatment strategy for partial losses. If the decision maker decided to make 

it simple, the repetition of the treatments will not be considered, thus the number of 

scenarios will be six. On the other hand, if the decision maker decided to go for a very 

complex path, then the repetition of the treatments will be considered, the number of 

scenarios, in this case, is twenty-seven. Hence, the decision of whether to have complex or 

simple scenarios is up to the decision maker. 
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3.2. COLLECTION OF THE REQUIRED DATA 

After deciding how many scenarios that should be considered, the second step is to 

collect the required data for each scenario. This is the hardest part of applying the DTA 

and EMV method since data collection is very time consuming and it is very challenging 

since many data that are required to do this analysis are not easy to be found. Going back 

to the lost circulation example, there are many drilling data have to be available in order to 

have a rigorous analysis such as daily drilling reports, daily mud reports, daily mud logging 

reports, primary cementing reports, end of well report and non-productive time analysis. 

These data sources are used to calculate the cost of each treatment as well as the probability 

of success and fail for each treatment. For the cost calculations part, the cost of the materials 

to prepare the treatments, as well as the non-productive time associated with the treatment 

(due to the waiting period and due to trip in and trip out), should be considered. For the 

probability part, the probability of success and failure for each treatment has to be evaluated 

and depending on how complicated the scenarios, the conditional probability may also be 

required.  

3.3. USE THE VISUAL TOOL (DTA) OR PROGRAMMING TO FIND EMV 

DTA is a visual tool that helps to decide the best scenario based on the EMV. 

However, sometimes if there are thousands of scenarios it is impossible to draw decision 

trees for all scenarios. That is when computer programming has to be used to find the EMV 

for each scenario. Thus, if there are a few scenarios, a tree can be plotted for each scenario 

to find EMV. But if there are thousands of scenarios, a generalized equation can be 

obtained and computer programming can be used to find EMV for each scenario. 
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             Figure 2. Summarized Workflow to Successfully Applying the DTA and EMV 

4. CONCLUSION 

As the petroleum engineering applications becoming more complicated nowadays, 

accomplished by the oil prices fluctuations, the decision-making processes becoming more 

difficult. The DTA is a very important tool for the decision makers to make the “best” 

decision. After reading and summarizing more than 200 papers and cases history about the 

applications of DTA and EMV in petroleum engineering accomplished by rigorous 

analysis, the following conclusions were made: 

 As the decision-making process becoming more difficult nowadays, the decision 

makers are challenged to make the “best” decisions. However, having many 

uncertainties, it is not easy to make good decisions.  

 That is why some decision-making tools such as the DTA is a very powerful tool 

to help to make decisions since it accounts for the uncertainties in the probability 

analysis.  

 The applications of DTA in the literature were divided into three categories; 

applications for whole field’s developments, applications for a specific operation, 

and applications to assess the value of information. 

 Practical guidelines have been developed that when used with the accompanying 

flow chart will serve as a quick reference guide to apply the DTA for any petroleum 
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engineering application. This paper provides a clear methodology on how to 

successfully apply the DTA which can serve as a reference for any future DTA 

applications in petroleum engineering.  

 The decisions made by EMV doesn’t mean the decision will be always successful, 

it simply means that if a similar decision is made for a larger number of cases, the 

decision will be successful.  
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II. ROBUST METHODOLOGY TO SELECT THE BEST LOST CIRCULATION 

TREATMENT USING DECISION TREE ANALYSIS  

 
 

ABSTRACT 

Lost circulation is a unique challenge unlike other factors contributing to non-

productive time (NPT). Due to the variability in the nature and type of lost circulation prone 

formations, there is no universal solution to this challenge. This publication presents a new 

approach to guide the decision-making process of which and when to apply a certain 

treatment as compared to another. If implemented correctly, a significant reduction in NPT 

related to lost circulation can be expected. In addition, examination of the cost of each 

treatment and the NPT were conducted. Lost circulation events for three carbonate 

formations which are the Dammam (dolomite), Hartha (limestone), and Shuaiba 

(limestone) were gathered from over 1000 wells. The treatments were categorized based 

on the type of loss, cost, and type of formations.  

This work uses decision tree analysis (DTA) and expected monetary value (EMV) 

in the decision-making process. Thousands of treatments scenarios were considered to treat 

partial, severe, and complete losses. Two criteria were utilized to choose the treatments 

strategy for each type of losses. The first criterion is that the treatment strategy has to have 

the lowest EMV, and the second criterion is the treatment strategy has to be practically 

applicable in the field. Both criteria have to be met in order to choose the treatment strategy. 

All treatment strategies end up with liner hanger if the lost circulation did not stop after 

applying all treatments. 
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 Moreover, this study provides comprehensive treatment strategies to handle lost 

circulation in three carbonate formations to assist the drilling personnel to deal with lost 

circulation in an efficient and cost-effective way.  

This study provides a new method to select the best lost circulation treatments 

strategy for each type of losses and three carbonate formation. Due to the inconsistency of 

methods to respond to the lost circulation problem, this study can serve a reference to 

handle lost circulation in any formation worldwide. 

1. INTRODUCTION 

Lost circulation phenomenon causes oil and gas industry unwanted problems and 

an increase in spending for operation purposes. Not only it increases the budget, but it also 

delays the duration of the planning calendar (Aadnoy et al. 2007). Lost circulation can 

occur due to highly permeable formation, depleted reservoirs, and fractured or cavernous 

formations (Moore 1986). Figure 1 shows the candidate formations for lost circulation. 

There are two conditions that can cause lost circulation downhole (Osisanya 2002): 

i. The pressure in the wellbore exceeding the pore pressure, and 

ii. There must be a flow pathway for the losses to occur 

            Depending on the rate of losses, the severity of lost circulation can be 

categorized as follows (Basra Oil Company 2007): 

 Partial loss: up to 10 m3/hr  

 Severe loss: up to 15 m3/hr  

 Complete loss: no return 
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The Dammam formation is the first formation that is prone to mud losses in Basra 

oil fields, Iraq. The top of this formation is found between 435 to 490 meters. The interval 

is composed of interbedded limestone and dolomite. The top of Dammam was eroded 

after burial and is karstified. The karst features are the reason behind lost circulation while 

drilling the Dammam formation (Arshad et al. 2015). The Hartha formation is the second 

formation that is susceptible to mud losses problems. The Hartha formation occurs 

approximately from 1530 to 1640 meters in Basra oil fields, Iraq. It is located below 

transitional formations that have abnormal pressure and H2S flow which are the Tayarat 

and Ummer-Radhuma formations. The Shuaiba formation occurs at approximately 2900 

meters and is limestone with little to no visible porosity. However, the formation is highly 

fractured and prone to more complicated lost circulation problem than the Dammam and 

Hartha formations. In some cases, lost circulation in the Shuaiba formation can lead to 

the abandonment of the entire well (Alkinani et al. 2019). Table 1 shows the lithology in 

Southern Iraq. 

 

 
         Figure 1. Candidate Formations for Lost Circulation 
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DTA and EMV have been widely used in the petroleum industry to help in the 

decision-making process for a long time. Heinze et al. (1995) utilized DTA and EMV in 

the selection of artificial lift methods to help to decide which method is the best based on 

some inputs. DTA and EMV have been used for the project evaluation to help to make 

better future decisions (Sprowso et al. 1997). DTA has been used to evaluate an investment 

in a major oil field located in Kuwait (Gatta 1999). Cheldi et al. (1997) utilized EMV and 

DTA to select the best completion method for fields with high H2S and CO2 contents. A 

comparison between DTA and stochastic simulations has been carried out and the results 

showed that both methodologies were different from each other (Schulze et al.  2012; 

Erdogan et al.  2001). DTA and data mining have been used to evaluate the relationship 

between the stress corrosion cracking and loading/environmental conditions (Gu et al. 

2005). Xu (2013) used stochastic simulations and DTA to evaluate the value of infill 

drilling project in the North Sea. Moreover, DTA and EMV have been utilized to evaluate 

the value of information coming from exploration and developments of petroleum assets 

(Ibarra et al. 2017)   

Alkinani et al. (2018a) presented an updated classification of lost circulation 

treatments and materials based on data from the literature and wells drilled in Basra oil 

fields, Iraq. Mud losses treatments strategies have been presented in the literature for the 

Dammam, Hartha, and Shuaiba formations. However, no economics was considered in the 

previous studies (Al-Hameedi et al. 2017a; Al-Hameedi et al.  2017c; Al-Hameedi et al. 

2017d; Alkinani et al. 2018b; Alkinani et al. 2019). Al-Hameedi et al. (2017b; 2018a; 

2017e) presented all mud losses treatments descriptions, mixing methods, required 

additions used in this study. 
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This paper presents a methodology to choose the best lost circulation treatment for 

partial, severe, and complete losses. Data of more than 1000 wells drilled through the 

Dammam, Hartha, and Shuaiba formations in Basra oil fields, Iraq were gathered and the 

probability of success and failure were calculated. DTA and EMV were utilized to help to 

choose the best treatment that will stop the lost circulation problem with minimum cost. 

Thus, economic and probability concepts will be both used to make decisions. 

 

Table 1. Lithology (Basra Oil Company 2011) 
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2. DATA AND METHODS 

Lost circulation treatments data were collected from many sources for each type of 

losses (e.g. partial, severe, and complete losses). EMV can be calculated using the 

following Equation (Kelkar 2013): 

𝐸𝑀𝑉 = ∑ 𝑝𝑖(𝑁𝑃𝑉)𝑛
𝑖=1                                                         Eq.1 

Where n is the number of possible outcomes, NPV is the net present value of the outcome 

i, and pi is the probability of the outcome i. 

Calculations of the total cost for partial, severe, and complete losses will be 

conducted separately since the trip in and out and the pumping method will be different 

which leads to a different NPT. Also, the calculations will be conducted for each formation 

since the depths of each formation is different, the expected losses section for each 

formation is different, and mud used to drill each formation is different. The usual drilling 

practice after pumping any lost circulation treatment is to raise the BHA to the casing shoe 

to avoid any problems that might occur due to the thickening time of the treatments (e.g. 

stuck pipe, collapse issues) (Alkinani et al. 2018c). 

All treatments scenarios are considered in the analysis to find the best scenario for 

each type of mud losses (partial, severe, and complete) with the following assumptions 

(Alkinani et al. 2018c): 

1. The treatments order is important.  

2. The repetition of the treatments is not permitted. 
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3. If partial losses occurred, it is assumed to use three partial losses treatments, if that 

did not work, then it is assumed to use three severe losses treatments. If that also 

did not work, three complete losses should be used. 

4. In the case of severe losses, four treatments of severe losses should be used. If they 

did not work, five complete losses treatments should be used.  

5. For complete losses, calculations for using three to eight treatments are considered. 

6. All scenarios end up with liner hanger if all treatments did not work. 

Permutation for all scenarios can be calculated from the following Equation (Uspensky 

1937): 

𝑃𝑘 =
𝑘!

(𝑘−𝑟)!
                                                                                                  Eq. 2 

Where Pk is the number of scenarios, k is the total number of treatment to choose from 

(e.g. six for partial losses, ten for severe losses, and eight for complete losses), and r is the 

number of treatment chosen to be used for a specific scenario (Alkinani et al. 2018c). 

MATLAB codes were utilized to conduct the treatment scenarios for each type of loss and 

for each formation (a sample of the code used to conduct the partial loss treatment scenarios 

for the Dammam formation is shown the Appendix).  

Tables 2-4 show some of the input data used to calculate the cost for the Dammam, 

Hartha, and Shuaiba formations, respectively. The average volume loss is calculated using 

the following Equation 3: 

𝐴𝑣𝑜𝑙(𝑚3) =
𝑂𝐻2

1974
∗ 𝐿                                                                             Eq. 3 
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Table 2. Some Inputs for the Total Cost (Dammam) 
Parameter Input 

Rig Rental 40,000 $/24 hrs (1667 $/hr) 

Hole Size (OH) 12.25 in 

Length of Losses Section (L) 170 m 

Average Volume Loss (Avol) 13 m3 

Cost of Liner Hanger 297,255 ($) 

Cost of OEDP 26,672 ($) 
 

 

 

Table 3. Some Inputs for the Total Cost (Hartha) 
Parameter Input 

Rig Rental 40,000 $/24 hrs (1667 $/hr) 

Hole Size (OH) 12.25 in 

Length of Losses Section (L) 150 m 

Average Volume Loss (Avol) 11 m3 

Cost of Liner Hanger 445,276 ($) 

Cost of OEDP 43,342 ($) 

 
 
 

   

Table 4. Some Inputs for the Total Cost (Shuaiba) 
Parameter Input 

Rig Rental 40,000 $/24 hrs (1667 $/hr) 

Hole Size (OH) 8.5 in 

Length of Losses Section (L) 75 m 

Average Volume Loss (Avol) 3 m3 

Cost of Liner Hanger 562,886 ($) 

Cost of OEDP 56,678 ($) 

  

 
[[  

However, since the Dammam formation is the first formation in the second hole, 

the NPT associated with raising the BHA after the pumping the treatment will not be 

considered in this analysis since it takes only a few minutes to raise the BHA to the casing 

shoe. Nevertheless, for the Hartha formation, after pumping any treatment, the BHA will 

be lifted to the casing shoe located above the Dammam formation (as shown in Table 1). 

For the Shuaiba formation, after pumping any treatment, the BHA will be lifted to the 

casing shoe located above the Sadi formation (as shown in Table 1).   

The total cost of the successful treatments will be different from the total cost of 

the failure treatments since sometimes the treatments have to be applied multiple times to 



33 
    

 

 

stop mud losses. Thus, this repetition will be considered in the total cost only since this 

analysis is done per well not per treatment. Table 5 shows an example of how the final 

cost is calculated. 

Table 5. Example of How to Calculate Final Cost 
Type of 

Loss 
Well Treatment Repetition Results Cost Final Cost 

Partial 1 X 2 Success Total cost 

*2 
Cost

Number of Wells (3)
 

Partial 2 X 3 Success Total cost 

*3 

Partial 3 X 4 Success Total cost 

*4 

 
 

 

When it comes to the probability calculations, if the treatment is used multiple times 

in the same well and it was successful, it will be considered as one successful treatment 

when calculating the probability of success since the probability is calculated per well not 

per treatment. Table 6 shows an example of how the probability of success is calculated.  

Table 6. Example of How the Calculations of the Probability 

Well Treatment Result 

Number of Successful 

Wells Used to Calculate 

Probability 

Well A X Success 
1 

Well A X Success 

Well B Y Success 
1 

Well B Y Success 

Well C Z Success 1 
 

 

2.1. DAMMAM FORMATION 

In this sub-section, the methodology of cost and probability calculations for the 

Dammam formation will be explained for partial, severe, and complete losses, respectively. 
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2.1.1. Partial Losses (1-10 m3/hr). Table 7 shows the partial losses treatments and 

their required materials addition. All partial losses treatments are pumped through the BHA 

(no need to trip out and pump through open end drill pipe (OEDP)). Thus, there is no trip 

in and trip out NPT. The final cost of success and failure for partial losses can be calculated 

using the following Equations: 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) + 𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇($)    Eq. 4 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 (
$

𝑚3) ∗ 𝐴𝑣𝑜𝑙 (𝑚3)                 Eq. 5 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇 ($) = 𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (ℎ𝑟) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)       Eq. 6 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($)∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑈𝑠𝑎𝑔𝑒

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠
    Eq. 7 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 ($) =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($)∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝑈𝑠𝑎𝑔𝑒

𝐹𝑎𝑖𝑙𝑒𝑑 𝑊𝑒𝑙𝑙𝑠
    Eq. 8 

  

Table 7. Partial Losses Treatments (Dammam Formation) 
Treatment 

Number 
Treatment Name Required Addition (kg/m3) 

1 Waiting Method None 

2 
High Viscosity 

(H.V) Mud Patch  
Bentonite (100), Caustic Soda (2), Soda Ash (2), and CMC-LV (7) 

3 
Pill of LCM (Low 

Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), CMC-LV (7), Mica Fine (15), 

Mica Medium (15), Nut Plug (15), CaCO3 Medium (15), and CaCO3 Coarse 
(15) 

4 

Plugging Materials, 

Fine and Medium 
Mica (Low 

Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and CMC-LV (7), Mica Fine 
(25), and Mica Medium (25) 

5 

Plugging Materials, 
Medium and 

Coarse CaCO3 

(Low 
Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and CMC-LV (7), Medium 
CaCO3 (25), and Coarse CaCO3 (25) 

6 

Plugging Materials 

Nut Plug (Low 
Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), CMC-LV (7), and Nut Plug 

(25) 
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Note that the cost of failure treatments will be different from the cost of successful 

treatments. That is because sometimes the treatment has to be applied multiple times to be 

successful (Equations 7 and 8 show the method of calculating the final cost of success and 

failure). For partial losses particularly, the final cost of applying a specific treatment is the 

same as the cost of repeating the treatment because all treatments are pumped through the 

BHA and there is no NPT related to trip in and out since the Dammam is the first formation 

in the second hole (Alkinani et al. 2018c). Table 8 summarizes the total cost calculations 

for partial losses. The probability of success and failure for partial, severe, and complete 

losses can be calculated using the following Equations: 

𝑃𝑠 =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠 𝑓𝑜𝑟 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑙𝑙𝑠 𝑓𝑜𝑟 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
                                                  Eq. 9 

𝑃𝑓 = 1 − 𝑃𝑠                                                               Eq. 10 
  

Where Ps and Pf are the probabilities of success and fail respectively. Note that the 

repetition of the treatments in the same well is not considered in the probability 

calculations, it is considered only in the final cost calculations. 

Table 8. Total Cost Calculation for Partial Losses Treatments (Dammam) 

Treatment 

Number 
Treatment Name 

Treatment 

Cost ($/m3) 

Cost of the 

Average 

Volume Loss ($) 

Waiting 

Period, 

(hrs) 

NPT Cost 

($/1hr) 

Total Cost 

($) 

1 Waiting Method 0.00 0.00 3 1667 5000 

2 
High Viscosity (H.V) 

Mud Patch  
58 758 2.5 1667 4925 

3 
Pill of LCM (Low 

Concentration) 
93 1205 3 1667 6205 

4 
Plugging Materials, Fine 
and Medium Mica (Low 

Concentration) 

80 1045 3 1667 6045 

5 

Plugging Materials, 
Medium and Coarse 

CaCO3 (Low 

Concentration) 

67 870 3 1667 5870 
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2.1.2. Severe Losses (1-10 m3/hr) and Complete Losses (No Return). Table 9 

shows the severe losses treatments and their required materials addition. There are two 

cases of the severe losses treatments; the first case is pumping treatment through the BHA 

(similar to the partial losses treatments). The second case is pumping through the OEDP 

(to avoid nozzles plugging) which requires tripping out of the hole and take off the BHA 

and tripping in again. In the second case, there will be NPT related to tripping in and out 

of the hole. The final cost calculation method for the severe losses treatments that pumped 

through BHA is the same as the method for calculating the final cost for partial losses 

(Equations 4-8). However, the calculation method is different for the treatments pumped 

through OEDP since three will be an additional NPT due to trip in and out of the hole 

(Alkinani et al. 2018c). 

Treatments pumped through OEDP will be different if the treatment is applied first 

versus if the treatment is applied after using any OEDP treatment. That is because the trip 

in and out will be only required when applying the first treatment, once the OEDP is in 

place, no trip in and out will be needed for the second treatment. Thus, there will be two 

costs for treatments pumped through OEDP, the first one if the treatment is applied at the 

beginning (trip in and out NPT for placing the OEDP will be included). The second one 

will not consider the NPT for placing the OEDP since it was already placed during the first 

treatment (Alkinani et al. 2018c). Table 10 shows the total cost calculations for the severe 

losses treatments. 

The following Equations are utilized to calculate the final cost for severe losses 

treatments pumped through OEDP (assuming the treatment is applied at the beginning, the 

NPT due to trip in and out is considered): 
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Table 9. Severe Losses Treatments (Dammam Formation) 
Treatment 

Number 
Treatment Name Required Addition (kg/m3) 

Pumping 

Method 

1 
Pill of LCM (High 

Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), CMC-LV 

(7), Mica Fine (30), Mica Medium (30), Nut Plug (30), 

CaCO3 Medium (30), and CaCO3 Coarse (30) 

BHA 

2 Super Stop Material 125 OEDP 

3 
H.V Mud + Blend of LCM 

(High Concentration) 

Bentonite (100), Caustic Soda (2), Soda Ash (2), and 

CMC-LV (7), and Blend LCM (45) 
BHA 

4 Cement Plug 1029 OEDP 

5 
High Filtration Spot Pills, High 

Filtration Mixtures (200-400 

cc API) 

Attapulgite (45), Bentonite (37.5), Lime (1.5), Diatomite 
(150), Mica (12.5), Granular LCM (20), and Fibrous 

LCM (6.5) 

OEDP 

6 
High Filtration Spot Pills, Very 

High Filtration Mixtures (> 

600cc API) 

Attapulgite (20), Lime (150), Diatomite (300), Lamellar 

LCM (10), Granular LCM (17.5), and Fibrous LCM (10) 
OEDP 

7 
Plugging Materials, Blend of 

Mica (High Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and 

CMC-LV (7), and Blend of Mica (50) 
BHA 

8 
Plugging Materials, Blend of 

Nut Plug (High Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and 

CMC-LV (7), and Blend of Nut Plug (50) 
BHA 

9 

Plugging Materials, Blend 

Magma Fiber (High 

Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and 
CMC-LV (7), and Blend of Magma Fiber (50) 

BHA 

10 
Plugging Materials, Blend of 

CaCO3 (High Concentration) 

Bentonite (75), Caustic Soda (2), Soda Ash (2), and 

CMC-LV (7), and Blend of CaCO3 (50) 
BHA 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) + 𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇($)              Eq. 11 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 (
$

𝑚3) ∗ 𝐴𝑣𝑜𝑙 (𝑚3)               Eq. 12 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇 ($) = [𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (ℎ𝑟) + 𝑇𝑟𝑖𝑝 𝑖𝑛 𝑎𝑛𝑑 𝑜𝑢𝑡 (ℎ𝑟)] ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)                 

Eq. 13 

 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ($) = [𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) +

𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ𝑟) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)] ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑈𝑠𝑎𝑔𝑒 Eq. 14 

 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ($) = [𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) +

𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ𝑟) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)] ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑈𝑠𝑎𝑔𝑒              Eq. 15 



38 
    

 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡∗𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠+𝐶𝑜𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠
    

                                                                                                                                     Eq. 16  

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡∗𝐹𝑎𝑖𝑙𝑒𝑑 𝑊𝑒𝑙𝑙𝑠+𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝐹𝑎𝑖𝑙𝑒𝑑 𝑊𝑒𝑙𝑙𝑠
   

                                                                                                                                      Eq.17 
 

Table 10. Total Cost Calculation for Severe Losses Treatments (Dammam) 

Treatment 

Number 
Treatment Name 

Treatment 

Cost 

($/m3) 

Cost of 

Average 

Volume 

Loss ($) 

Waiting 

Period 

(hr) 

Trip in 

and out 

(hr) 

Total 

NPT 

(hr) 

NPT 

Cost 

($/hr) 

Total 

Cost 

($) 

1 Pill of LCM 135 1756 3 0 3 1667 6756 

2 Super Stop Material 150 1950 4.5 16 20.5 1667 36117 

3 
H.V Mud + Blend of 

LCM 
99 1284 4 0 4 1667 7951 

4 Cement Plug 327 4254 10 16 26 1667 47587 

5 

High Filtration Spot 

Pills, High Filtration 

Mixtures (200-400 
cc API) 

177 2298 5 16 21 1667 37298 

6 

High Filtration Spot 

Pills, Very High 
Filtration Mixtures 

(> 600cc API) 

324 4213 5 16 21 1667 39213 

7 
Plugging Materials,  

Blend of Mica 
110 1435 3 0 3 1667 6435 

8 
Plugging Materials, 

Blend of Nut Plug 
115 1500 3 0 3 1667 6500 

    

Table 11 shows the complete losses treatments and their required materials 

addition. All complete losses treatments are pumped through the OEDP to avoid the 

nozzles plugging. The final cost calculations for complete losses are the same as the OEDP 

calculations for the severe losses (Equations 11-17). Equations 9 and 10 are utilized to 

calculate the probability of success and failure, respectively. Table 12 shows the total cost 

calculations for the complete losses treatments. 
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Table 11. Complete Losses Treatments (Dammam Formation) 
Treatment 

Number 
Treatment Name Required Addition (kg/m3) 

1 Cement Plug 1029 

2 Cement Plug + HV Mud 
Bentonite (100), Caustic Soda (2), Soda Ash (2), and CMC-

LV (7), and Cement (1029)  

3 Diesel Oil Bentonite (DOB) Plug  

The formula for 1 m3  

Oil base              0.70 m3 

Bentonite            800 kg 

4 
Diesel Oil Bentonite Cement (DOBC) 

Plug 

The formula for 1 m3  

      Oil base         0.72 m3                                                   

Bentonite        450 kg 
Cement           450 kg 

5 Gilsonite Cement Gilsonite (200) and Cement (1029)  

6 InstandSeal InstandSeal 

7 Blend of Fibers in Cement Blend of Fiber (90) and Cement (1029)  

8 
High Filtration Spot Pills, Very High 

Filtration Mixtures (> 600cc API) 

Attapulgite (20), Lime (150), Diatomite (300), Lamellar LCM 

(10), Granular LCM (17.5), Fibrous LCM (10) 

 

 

Table 12. Total Cost Calculation for Complete Losses Treatments (Dammam Formation) 

Treatment 

Number 
Treatment Name 

Treatment 

Cost 

($/m3) 

Cost of the 

Average 

Volume Loss 

($) 

Waiting 

Period 

(hr) 

Trip in 

and out 

(hr) 

Total 

NPT 

(hr) 

NPT Cost 

($/hr) 

Total 

Cost 

($) 

1 Cement Plug 327 4254 10 16 26 1667 47587 

2 Cement Plug + HV Mud 386 5012 12 16 28 1667 51678 

3 DOB Plug 604 7847 9 16 25 1667 49513 

4 DOBC Plug 646 8395 11 16 27 1667 53395 

5 Gilsonite cement 627 8154 8 16 24 1667 48154 

6 InstandSeal 475 6175 18 16 34 1667 62842 

7 
Blend of Fibers in 

Cement 
399 5190 12 16 28 1667 51857 

8 

High Filtration Spot 

Pills, Very High 

Filtration Mixtures (> 
600cc API) 

324 4213 5 16 21 1667 39213 

 

 

 
 

2.2. HARTHA AND SHUAIBA FORMATIONS 

In this sub-section, the methodology of cost and probability calculations for the 

Hartha formation will be explained for partial, severe, and complete losses, respectively. 

The calculations method of costs and probabilities for partial, severe, and complete losses 

for the Shuaiba formation is the same as the method used in the Hartha formation, the only 
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difference is the input data. Thus, only the Hartha formation calculations methodology will 

be explained in this section. 

2.2.1. Partial Losses (1-10 m3/hr). The final cost of success and failure for partial 

losses can be calculated using the following Equations: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) + 𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇($)                        Eq. 18 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 (
$

𝑚3
) ∗ 𝐴𝑣𝑜𝑙 (𝑚3)               Eq. 19 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇 ($) = [𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (ℎ𝑟) + 𝑅𝑜𝑢𝑛𝑑 𝑇𝑟𝑖𝑝 𝑡𝑜 𝐶𝑎𝑠𝑖𝑛𝑔 𝑆ℎ𝑜𝑒 (ℎ𝑟)] ∗

𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)                                                                                                             Eq. 20 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($)∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑈𝑠𝑎𝑔𝑒

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠
       Eq. 21 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 ($) =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($)∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝑈𝑠𝑎𝑔𝑒

𝐹𝑎𝑖𝑙𝑒𝑑 𝑊𝑒𝑙𝑙𝑠
          Eq. 22 

For partial losses particularly, the final cost of applying a specific treatment is the 

same as the cost of repeating the treatment because all treatments are pumped through the 

OEDP and there is no NPT related to trip in and out to replace the OEDP. The probability 

of success and failure for partial, severe, and complete losses can be calculated using 

Equations 9 and 10, respectively. Table 13 shows the total cost calculations for the partial 

losses treatments.  

2.2.2. Severe Losses (1-10 m3/hr) and Complete Losses (No Return). Table 14 

shows the total cost of the severe losses treatments.  The following Equations are utilized 

to calculate the final cost for severe losses treatments pumped through OEDP (assuming 

the treatment is applied at the beginning, the NPT due to trip in and out is considered): 
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Table 13. Total Cost Calculation for Partial Losses Treatments (Hartha) 

Treatment 

Number 

Treatment 

Name 
Required Addition (kg/m3) 

Treatment 

Cost ($/m3) 

Cost of 

Averag

e 

Volume 

Loss ($) 

Waitin

g 

Period, 

(hr) 

NPT 

Cost 

($/hr

) 

Total 

Cost ($) 

1 
Waiting 

Method 
0 0 0 8 1667 13333 

2 
H.V Mud 

Patch 

Bentonite (100), Caustic Soda (2), 

Soda Ash (2),  and CMC-LV (7) 
58.3 641 7.5 1667 13141 

3 Pill of LCM 

Bentonite (75), Caustic Soda (2), 

Soda Ash (2),  CMC-LV (7), 

Mica Fine (15), Mica Medium 
(15), Nut Plug (15), CaCO3 

Medium (15), CaCO3 Coarse (15), 

Lignosulfonate (7), and Barite 
(100) 

138.92 1528 8 1667 14861 

4 

Plugging 

Materials, 

Fine and 
Medium 

Mica 

Bentonite (75), Caustic Soda (2), 

Soda Ash (2), and CMC-LV (7), 

Mica Fine (25), Mica Medium 
(25), Lignosulfonate (7), and 

Barite (100) 

126.575 1392 8 1667 14726 

5 

Plugging 
Materials, 

Medium and 

Coarse 
CaCO3  

Bentonite (75), Caustic Soda (2), 
Soda Ash (2), and CMC-LV (7), 

Medium CaCO3 (25),  Coarse 

CaCO3 (25), Lignosulfonate (7), 
and Barite (100) 

113.15 1245 8 1667 14578 

6 

Plugging 

Materials Nut 

Plug 

Bentonite (75), Caustic Soda (2), 

Soda Ash (2),  CMC-LV (7),  Nut 
Plug (25), Lignosulfonate (7), and 

Barite (100) 

144.575 1590 8 1667 14924 

  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ($) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) + 𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇($)              Eq. 23 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 (
$

𝑚3) ∗ 𝐴𝑣𝑜𝑙 (𝑚3)               Eq. 24 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑃𝑇 ($) = [𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (ℎ𝑟) + 𝑅𝑜𝑢𝑛𝑑 𝑇𝑟𝑖𝑝 𝑡𝑜 𝐶𝑎𝑠𝑖𝑛𝑔 𝑆ℎ𝑜𝑒 (ℎ𝑟) +

𝑇𝑟𝑖𝑝 𝑜𝑢𝑡 𝑎𝑛𝑑 𝑖𝑛 𝑡𝑜 𝑃𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑂𝐸𝐷𝑃 (ℎ𝑟)] ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)                                   Eq. 25 

 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ($) = [𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) +

(𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ𝑟) + 𝑅𝑜𝑢𝑛𝑑 𝑇𝑟𝑖𝑝 𝑡𝑜 𝐶𝑎𝑠𝑖𝑛𝑔 𝑆ℎ𝑜𝑒 (ℎ𝑟)) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)] ∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑈𝑠𝑎𝑔𝑒                                                                          Eq. 26 

 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ($) = [𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 ($) +

(𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ𝑟) + 𝑅𝑜𝑢𝑛𝑑 𝑇𝑟𝑖𝑝 𝑡𝑜 𝐶𝑎𝑠𝑖𝑛𝑔 𝑆ℎ𝑜𝑒 (ℎ𝑟)) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡 (
$

ℎ𝑟
)] ∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑈𝑠𝑎𝑔𝑒                                                                                      Eq. 27                                                           
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𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑢𝑐𝑒𝑠𝑠 ($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡∗𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠+𝐶𝑜𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑊𝑒𝑙𝑙𝑠
  Eq. 28 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒($) =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡∗𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑊𝑒𝑙𝑙𝑠+𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝐹𝑎𝑖𝑙𝑒𝑑 𝑊𝑒𝑙𝑙𝑠
   

                                                                                                                                     Eq. 29 
 

Table 14. Total Cost Calculation for Severe Losses Treatments (Hartha) 

Treatment 

Number 

Treatment 

Name 

Treatment Cost 

($/m3) 

Cost of 

Average 

Volume 

Loss ($) 

Waiting 

Period 

(hr) 

Trip 

in 

and 

out 

(hr) 

Total 

NPT 

(hr) 

NPT 

Cost 

($/hr) 

Total 

Cost 

($) 

Treatment 

Number 

1 Pill of LCM 

Bentonite (75), 

Caustic Soda (2), 
Soda Ash (2),  CMC-

LV (7), Mica Fine 

(30), Mica Medium 
(30), Nut Plug (30), 

CaCO3 Medium (30), 

CaCO3 Coarse (30), 
Lignosulfonate (7), 

and Barite (100) 

181 1994 8 0 8 1667 15327 

2 
Super Stop 

Material 
125 150 1650 9 0 9 1667 16650 

3 

H.V Mud + 

Blend of 
LCM 

Bentonite (100), 

Caustic Soda (2), 

Soda Ash (2),  CMC-
LV (7),  and Blend 

LCM (45) 

99 1087 9 0 9 1667 16087 

4 
Cement 

Plug 
1029 327 3599 12 0 12 1667 23599 

5 

High 

Filtration 

Spot Pills, 
High 

Filtration 

Mixtures 
(200-400 cc 

API) 

Attapulgite (45), 

Bentonite (37.5), 

Lime (1.5), 
Diatomite (150), 

Mica (12.5), 

Granular LCM (20), 
and Fibrous LCM 

(6.5) 

177 1945 10 0 10 1667 18611 

6 

High 
Filtration 

Spot Pills, 

Very High 
Filtration 

Mixtures (> 

600cc API) 

Attapulgite (20), 
Lime (150), 

Diatomite (300), 

Lamellar LCM (10), 
Granular LCM 

(17.5), and Fibrous 

LCM (10) 

324 3565 10 0 10 1667 20231 

 

 
The final cost calculations for complete losses are the same as the OEDP 

calculations for the severe losses (Equations 23-29). Table 15 shows the total cost of the 

complete losses treatments. All complete losses treatments are pumped through the OEDP 
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to avoid the nozzles plugging. The probabilities of success and failure are calculated using 

Equations 9 and 10, respectively.  

Table 15. Total Cost Calculation for Complete Losses Treatments (Hartha) 

Treatment 

Number 

Treatment 

Name 

Treatment Cost 

($/m3) 

Cost of 

Average 

Volume 

Loss ($) 

Waiting 

Period 

(hr) 

Trip 

in 

and 

out 

(hr) 

Total 

NPT 

(hr) 

NPT 

Cost 

($/hr) 

Total 

Cost 

($) 

Treatment 

Number 

1 Cement Plug 1029 327 3599 12 0 12 1667 23599 

2 
Cement Plug + 

HV Mud 

Bentonite (100),  

Caustic Soda (2), 
Soda Ash (2), and 

CMC-LV (7),  and 

Cement (1029) 

386 4241 15 0 15 1667 29241 

3 DOB Plug 

Formula for 1 m3  

Oil base              

0.70 m3 
Bentonite            

800 kg 

604 6640 12 0 12 1667 26640 

4 DOBC Plug 

Formula for 1 m3  

Oil base         0.72 
m3                                                   

Bentonite        450 

kg 
Cement           450 

kg 

646 7103 15 0 15 1667 32103 

5 
Gilsonite 

cement 

Gilsonite (200) 

and Cement 

(1029)  

627 6899 12 0 12 1667 26899 

6 InstandSeal InstandSeal 475 5225 20 0 20 1667 38558 

7 
Blend of Fibers 

in Cement 

Blend of Fiber 
(90) and Cement 

(1029)  

399 4391 15 0 15 1667 29391 

8 

High Filtration 

Spot Pills, Very 

High Filtration 
Mixtures (> 

600cc API) 

Attapulgite (20), 
Lime (150), 

Diatomite (300), 

Lamellar LCM 
(10), Granular 

LCM (17.5), 

Fibrous LCM (10) 

324 3565 10 0 10 1667 20231 

 

3. RESULTS  

In this section, the results for the Dammam, Hartha, and Shuaiba formations will 

be presented separately.  
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3.1.  DAMMAM FORMATION  

Table 16, Table 17, and Table 18 show the final cost calculations and the 

probability of success and failure for each treatment for partial, severe, and complete 

losses, respectively.  

Table 16. Final Cost and Probability Results for Partial Losses Treatments (Dammam 

Formation) 
Treatment 

Number 
Treatment Name 

Final Total Cost ($), 

for Success 
Ps  

Final Total Cost 

($), for Failure 
Pf 

1 Waiting Method 5000 0.20 5000 0.80 

2 
High Viscosity (H.V) Mud 

Patch  
5055 0.70 5410 0.30 

3 
Pill of LCM (Low 

Concentration) 
6994 0.86 7569 0.14 

4 

Plugging Materials, Fine and 

Medium Mica (Low 
Concentration) 

6849 0.55 6463 0.45 

5 

Plugging Materials, Medium 

and Coarse CaCO3 (Low 

Concentration) 

6688 0.64 6508 0.36 

6 
Plugging Materials Nut Plug 

(Low Concentration) 
6863 0.61 7325 0.39 

Table 17. Final Cost and Probability Results for Severe Losses Treatments (Dammam 

Formation) 

Treatment 

Number 
Treatment Name 

Final Total 

Cost ($), for 

Success 

Ps  
Final Total Cost ($), for 

Failure 
Pf 

1 Pill of LCM 8061 
               

0.52  
7866 

               
0.48  

2 Super Stop Material 12150 
               

0.44  
11047 

               

0.56  

3 H.V Mud + Blend of LCM 8536 
               

0.67  
8621 

               
0.33  

4 Cement Plug 23720 
               

0.80  
23792 

               

0.20  

5 
High Filtration Spot Pills, High 
Filtration Mixtures (200-400 cc 

API) 

13599 
               

0.44  
12994 

               

0.56  
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Table 18. Final Cost and Probability Results for Complete Losses Treatments (Dammam 

Formation) 

Treatment 

Number 
Treatment Name 

Final Total Cost 

($), for Success 
Ps  

Final Total 

Cost ($), for 

Failure 

Pf 

1 Cement Plug 24509 0.56 22096 0.44 

2 Cement Plug + HV Mud 30473 0.70 27653 0.30 

3 DOB Plug 30671 0.72 31822 0.28 

4 DOBC Plug 36224 0.78 39456 0.22 

5 Gilsonite cement 32231 0.80 31254 0.20 

6 InstandSeal 56390 0.83 56846 0.17 

7 Blend of Fibers in Cement 33278 0.62 30746 0.38 

8 

High Filtration Spot Pills, 

Very High Filtration 

Mixtures (> 600cc API) 

27780 0.42 17168 0.58 

 

Due to a large number of treatments scenarios, examples of only the highest twenty 

scenarios of partial, severe, and complete losses treatments are shown in Figures 2, 3, and 

4. The consideration of 3-8 complete losses treatments scenarios is shown in Figure 4.  

 
Figure 2. Treatments Scenarios for Partial Losses (Dammam Formation) 
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Figure 3. Treatments Scenarios for Severe Losses (Dammam Formation) 

 
Figure 4. Treatments Scenarios for Complete Losses (Dammam Formation) 

 

3.2. HARTHA AND SHUAIBA FORMATIONS 

Figures 5-7 show the lowest twenty EMV scenarios for the Hartha formation for 

partial, severe, and complete losses. Figure 7 shows the EMV’s of using of 3-8 treatments 
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to stop complete loss. In the same vein, Figures 8-10 show the lowest twenty EMV 

scenarios for the Shuaiba formation for partial, severe, and complete loss, respectively. 

 
Figure 5. Treatments Scenarios for Partial Losses (Hartha Formation) 

 

Figure 6. Treatments Scenarios for Severe Losses (Hartha Formation) 

 
Figure 7. Treatments Scenarios for Complete Losses (Hartha Formation) 
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Figure 8. Treatments Scenarios for Partial Losses (Shuaiba Formation) 

 
Figure 9. Treatments Scenarios for Severe Losses (Shuaiba Formation) 

 
Figure 10. Treatments Scenarios for Complete Losses (Shuaiba Formation) 
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4. DISCUSSION 

The treatments of complete loss are the most expensive treatments among the other 

treatments. Since the costs of the treatments are incorporated in the EMV calculation, the 

decision made here is based on the cost and efficiency of the treatments. Good knowledge 

of the application of each treatment in the field is required to help to select the best lost 

circulation strategies. As an example, the waiting method treatment only used if it was the 

first treatment in the treatments strategy. In different words, it is not practical to uses other 

treatments then use waiting method. As an example, scenario 1 for partial loss treatments 

for the Dammam formation (green color) in Figure 2 suggests using the treatments shown 

in Figure 11. However, waiting methods cannot be utilized unless it is used in the 

beginning. Thus, this scenario will not be considered since it is not practically applicable 

in the field. 

 

Figure 11. Scenario # 1 for Partial Loss Treatments 
  

Thus, the decision-making process cannot be solely made based on the lowest 

EMV scenario since some scenarios are not practically applicable in the Field. 

Consequently, two criteria were utilized to select the treatment strategies: i) the treatment 

strategies has to have the lowest EMV and ii) the treatment strategies have to be practically 

applied in the field. Both criteria have to be met in order to select the best decision.  
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In Figure 11, taking scenario 1 as an example, the EMV for using 3 treatments is 

$38628, while the EMV for using 8 treatments is $40509. Only $2000 difference is not 

considered significant in the EMV between utilizing 3 and 8 treatments. The reason behind 

having close EMV between 3 and 8 treatment scenarios is because EMV does not solely 

use cost in the calculations, it uses probability as well. In addition, the EMV calculations 

are conducted with decision trees that have many branches. Thus, the $2000 difference is 

not a cost difference, it is the difference in EMV. If only the cost of using 3 versus 8 

treatments is considered, this number would be much higher. The same is true for Figure 

7 and Figure 10 since there is not a significant difference in EMV, a decision was made to 

use 8 complete loss to stop this type of loss.  

Figures 12-14 show treatment strategies for partial, severe, and complete losses for 

the Dammam formation chosen based on the two criteria mentioned earlier. All treatment 

strategies end up of liner hanger. 

 

 
Figure 12. Partial Losses Treatments Strategy (Dammam Formation) 
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Figure 13. Severe Losses Treatments Strategy (Dammam Formation) 

 
Figure 14. Complete Losses Treatments Strategy (Dammam Formation) 

Figures 15-17 show the treatment strategies for partial severe, and complete losses 

in the Hartha formation. Figures 18-20 show the selected treatment strategies that are 

practically applicable in the field and has the lowest EMV for the Shuaiba formation for 

partial, severe, and complete loss, respectively.  

 

 
Figure 15. Partial Losses Treatments Strategy (Hartha Formation) 
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Figure 16. Severe Losses Treatments Strategy (Hartha Formation) 

 

 
Figure 17. Complete Losses Treatments Strategy (Hartha Formation) 

 

 
Figure 18. Partial Losses Treatments Strategy (Shuaiba Formation) 
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Figure 19. Severe Losses Treatments Strategy (Shuaiba Formation) 

 

 

Figure 20. Complete Losses Treatments Strategy (Shuaiba Formation) 

 

5. CONCLUSION 

Lost circulation is a complicated problem in Basra oil fields, Iraq. It is not easy to 

choose which treatment to be used to stop lost circulation. Economics is a very important 

factor that has to be considered in the decision-making process. Data from over 1000 wells 

drilled in Basra oil fields, Iraq were gathered and analyzed to create the best-lost 

circulation treatment strategy for each type of mud losses with the consideration of 
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economics. The goal is to minimize non-productive time and cost. Based on this study, the 

following conclusions were made: 

 Both probability and detailed economics were considered in this study to create the 

best-lost circulation strategies for all type of mud losses. All previous studies did 

not consider economics in the decision-making process 

 Treatments scenarios with the lowest EMV and practically applicable in the field 

were chosen to stop partial, severe, and complete mud losses in the Dammam, 

Hartha, and Shuaiba formation. A formalized methodology accomplished with 

flowchart was provided for each type of mud losses for all three formations. 

 The methodology used in this study can be utilized to stop mud losses in any 

formation worldwide if the required data were available. 
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III. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN THE 

PETROLEUM INDUSTRY: A REVIEW 

 

 

ABSTRACT 

Oil/gas exploration, drilling, production, and reservoir management are challenging 

these days since most oil and gas conventional sources are already discovered and have 

been producing for many years. That is why petroleum engineers are trying to use advanced 

tools such as artificial neural networks (ANNs) to help to make the decision to reduce non-

productive time and cost.  

A good number of papers about the applications of ANNs in the petroleum literature 

were reviewed and summarized in tables. The applications were classified into four groups; 

applications of ANNs in explorations, drilling, production, and reservoir engineering. A 

good number of applications in the literature of petroleum engineering were tabulated. 

Also, a formalized methodology to apply the ANNs for any petroleum application was 

presented and accomplished by a flowchart that can serve as a practical reference to apply 

the ANNs for any petroleum application. The method was broken down into steps that can 

be followed easily. The availability of huge data sets in the petroleum industry gives the 

opportunity to use these data to make better decisions and predict future outcomes. This 

paper will provide a review of applications of ANNs in petroleum engineering as well as a 

clear methodology on how to apply the ANNs for any petroleum application. 

 

 

 



59 
    

 

 

1. BACKGROUND 

The first neural networks research was by McCulloch and Pitts (1943). Rosenblatt 

(1957) invented the perceptron and proved that a perceptron would develop a weight vector 

that separates the classes. Rosenblatt (1957) believed that structures of more layers can 

overcome the limitations of the simple perceptron. However, there weren’t any learning 

algorithms that can determine the weights for a given calculation (Mohaghegh, 2000). Few 

years after, Widrow (1962) developed a network called Adeline. Minsky and Papert (1969) 

showed that the single layer perceptron can’t elementary calculations problems.  After that, 

the neural network's research stopped for 20 years (Hertz et al., 1991). Then, Hopfield 

(1982) proposed new algorithms, such as backpropagation, that brought life for the neural 

network's research. Since then, the neural networks applications has gone viral 

(Mohaghegh, 2000). 

2. NEURAL NETWORK STRUCTURE 

An artificial neural network is “an information-processing system that has certain 

performance characteristics in common with biological neural network” (Mohaghegh, 

2000). All organisms are made up from cells. Neurons are the basic building blocks of the 

nervous system. A typical biological neuron consists of a cell body, an axon, and dendrites 

as shown in Figure 1. Information in the cell body enters through the dendrites. The cell 

body then provides an output which travels through the axon then to another receiving 

neuron, the output from the first neuron becomes an input for the second neuron and so on 

(Mohaghegh, 2000). 
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             Figure 1. Two Bipolar Neurons (After Mohaghegh, 2000) 

 

The human brain contains 10-500 billion neurons (Rumelhart and McClelland, 

1986). These neurons are divided into sections, each section contains about 500 neural 

networks (Stubbs, 1988). Each neural network contains about 100,000 neurons where these 

neurons are connected to thousands of other neurons (Mohaghegh, 2000). This structure is 

behind human’s complex behavior. A simple task such as moving hands, walking, or 

catching a cup of coffee, requires very complex calculations that sophisticated computer 

can’t perform but the human brain is able to do them. Although computers are faster than 

human brains (human brain cycle is 10 to 100 milliseconds while computer chips cycle is 

in nanoseconds), the human brain can still much more perform complex activities than 

computer due to the sophisticated structures of the neurons.  

Artificial neural networks (ANNs) are a simulation for the biological process 

explained above. ANNs are developed based on mathematical models with the following 

assumptions (Mohaghegh, 2000): 

1. The information is processed through elements called neurons. 
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2. There are connections links between the neurons that let the information to pass 

through. 

3. Each connection links have their own weights. 

4. Once the inputs received by the neurons, the neurons will apply an action function 

to determine the outputs. 

Figure 2 is a schematic of an artificial neuron, the outputs from other neurons are 

multiplied by the connection links weights and enter the neuron. The inputs then are 

summed and the activation function of the neuron is applied which leads to an output. Thus, 

a neuron has multiple inputs and only one output. An artificial neural network consists of 

one input layer, one or more hidden layers, and one output layer. The input and output 

layers are obviously for inputs and outputs. The hidden layer is responsible for extraction 

the features from the data (Mohaghegh, 2000). ANNs can be simple three layers as shown 

in Figure 3, or ANNs can be more complicated as shown in Figure 4. 

 

 
Figure 2. Schematic of Artificial Neuron (After Mohaghegh, 2000) 

 



62 
    

 

 

 
Figure 3. Example of a Simple Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of a Complex Neural Network 

 

3. HOW TO SUCCESSFULLY APPLY ANNS TO ANY PETROLEUM 

APPLICATIONS 

 

In this section, a methodology of how to successfully apply ANNs to any petroleum 

applications will be presented. The focus will be on supervised ANNs since most petroleum 
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applications are based on supervised training algorithms (Mohaghegh, 2000). Figure 5 

shows a summary flowchart for how to successfully apply ANNs in the petroleum industry. 

 

 

 

 

Figure 5. Flowchart for How to Successfully Apply ANNs in the Petroleum Industry 

 

3.1. INPUT DATA SELECTION AND DATA COLLECTION 

Depending on the application, the input data for ANNs will be different. Inputs can 

be chosen based on experimental tests, modeling, simulation, sensitivity analysis, expert 

opinion, statistical analysis and etc. Once the input data are chosen, data collection is the 

next step. Since most applications of oil and gas industry are supervised, this means data 

for inputs and outputs should be obtained.   

3.2. SELECTION OF TRAINING, TESTING, AND VERIFICATION DATA  

Typically, data are divided into three sections; training, testing, and verification 

sets. The training data used to develop the ANN model, the desired output is used to help 

the network adjust the weights of each input. The error will backpropagate in the network 

and adjust the weights until calibration is reached, this method is called feedforward 

backpropagation algorithm. It should be noted that the network should not be overtrained 

since the network won’t be efficient. Testing sets are used to measure the network 

generalization and to stop the training when generalization stops improving (Demuth et al., 
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2007). Finally, the verification set (data not used to create the network) will be used to 

evaluate the performance of the network. 

 

3.3. DATA NORMALIZATION 

Sometimes, if the input or the output data are too small or too large; therefore, 

scaling of the data should be performed (Saeedi et al., 2007; Zabihi et al., 2011).  One 

method of normalizing data to have values between -1 and 1 is shown in Equation 1 

(Demuth et al., 2007). 

 Xi
′ = 2 [

Xi−Xmin

Xmax−Xmin
] − 1                                                                                                  Eq.1                                                                       

Where Xi is the original value of the parameter, X_i^' is the normalized value of Xi, Xmax 

and Xmin are the maximum and the minimum values of Xi, respectively. 

3.4. DETERMINING THE NUMBER OF HIDDEN LAYERS AND TRAINING 

FUNCTION 
   

It is important to evaluate the optimum number of hidden layers and the number of 

neurons in each hidden layers. To find the optimum number of hidden layers, iteration 

should be performed until obtaining the optimum number of hidden layers. Typically, to 

obtain the number of neurons in each hidden layer, the total average absolute deviation 

(TAAD) or mean square of error (MSE) (or any form of error calculations) should be 

calculated such that starting with one neuron until reaching a number of neurons that have 

the lowest error. 

After evaluating the optimum number of hidden layers and the number of neurons 

in each hidden layer, the training function should be chosen so that the error is minimized. 
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Examples of training function that can be tested are Variable Learning Rate 

Backpropagation (GDX), Resilient Backpropagation (RP), Fletcher-Powell Conjugate 

Gradient (CGF), Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM), 

Levenberg-Marquardt with Bayesian Regularization (BR), Quasi-Newton (BFG), and One 

Step Secant (OS) (Demuth et al., 2007). 

4. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN THE             

PETROLEUM INDUSTRY 

  

ANNs have been used to solve complicated problems in the petroleum industry. 

ANNs should not be used to solve mathematical problems or problems that can be modeled 

analytically since the purpose of neural networks is to solve complicated problems that 

can’t be solved in conventional modeling tools due to the complexity of the problem. After 

reading a good number of papers and case histories in the petroleum literature, the decision 

was made to classify the applications into four categories: applications for exploration, 

drilling, production, and reservoir. 

 
 

4.1. EXPLORATION 

This section gives examples of the applications of ANNs in exploration. This 

mainly consists of applications of ANNs of seismic data as shown in Table 1. 

 

4.2. DRILLING 

ANNs have been utilized in drilling engineering for a long time. Table 2 shows 

some applications of ANNs in drilling engineering. 
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Table 1. Application of ANNs in Exploration 

Author(s) Application Notes 

Guo et al. (1992) Feature recognition 
Used ANNs to extract structural lineaments and lithologic 

information from seismic data 

Hansen (1993) 
Primary reflection 

identifications 

Used ANNs to successfully identify the primary reflection from 

seismic data 

Karrenbach et al. 

(2000) 

Seismic data 

processing 
Used ANNs for seismic data processing 

Fogg (2000) 
Petro-seismic 

characterization 

Used ANNs for petro-seismic characterization of a 96,000 trace 3D 

seismic migrated volume 

Xiangjun et al. 

(2000) 

Hydrocarbon 

prediction 

Used ANNs to predict hydrocarbon and presented a case history 

from DaQing field 

Sun et al. (2000); 
Russell et al. 

(2002) 

Amplitude variation 

with offset (AVO) 

Used ANNs to solve the interpretation problem associated with 

AVO since it is hard to distinguish between wet sand and gas sand 

Aminzadeh  & 

deGroot (2005) 
Object detection Used ANNs to detect several seismic objects using seismic data 

Huang et al. (2006) 

Parameters 

determinations and 

seismic pattern 
detection 

Used ANNs to detect line pattern of the direct wave and hyperbola 

pattern of reflection wave in a seismogram 

Kononov et al. 

(2007) 

Travel time 

computation 

Used ANNs to compute travel times for a complete 3D volume 

model. 

Huang & Yang 
(2008) 

Seismic velocity 
picking 

Used ANNs to for velocity picking in the time-velocity semblance 
image of seismic data 

Clifford & 

Aminzadeh (2011) 
Gas detection 

Used ANNs to detect gas from absorption attributes and amplitude 

in Grand Bay field 

Aminzadeh et al. 
(2011) 

Micro-seismic Used ANNs to autopick micro-seismic earthquake data 

Verma et al. (2012) Mapping 
Used ANNs to map high frackability and high total organic content 

zones in the Barnett Shale 

Hami-Eddine et al. 

(2015) 

Amplitude variation 

with angle of 

incidence (AVA) 
prediction 

Used ANNs to predict AVA to help to evaluate the comparative risk 

between prospects for ranking purposes. 

Refunjol et al. 

(2016) 

Identifying 

unconventional 

potential 

Used ANNs to identify the unconventional potential using seismic 

inversion in the Eagle Ford 

Ross (2017) 

Improve resolution 

and clarity of seismic 

data 

Used ANNs to improve resolution and clarity of seismic data in the 

tight sand that has lower porosity, higher bulk density, and velocity. 

Also, used a practical example form the Permian Basin 

Ogiesoba & 

Ambrose (2017) 

Depositional 
environment 

investigation 

Used ANNs to instigate depositional environments and hydrocarbon 

sweet-spot distribution in Serbin field in Texas 

Canning et al. 
(2017) 

Seismic data 
enhancement 

Used ANNs for enhancing the frequency spectrum of seismic data 
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Table 2. Applications of ANNs in Drilling 

  

4.3. PRODUCTION 

ANNs have been applied in many applications of petroleum production 

engineering. Table 3 shows some applications of ANNs in petroleum production 

engineering. 

 

 

 

Author(s) Application Notes 

Arehart (1990) Drill bit diagnosis 
Used ANNs to determine the grade (state of wear) of the drill bit 

while drilling 

Dashevskiy et al. (1999) 
Real-time drilling 

dynamic 
Used ANNs to model the dynamic behavior of the non-linear, 

multi0inputs/outputs drilling system 

Bilgesu et al. (2001) Drill bit selection Used ANNs to select the “best” bit based on some inputs 

Ozbaoglu et al. (2002) 
Bed height for 

horizontal wells 

Used ANNs to predict bed heights in horizontal or highly-inclined 

wellbores 

Vassallo et al. (2004) Bit bounce detection 

Used ANNs to detect bit bounce that can be used as a proactive 

approach to prevent anomalous drilling conditions such as bit whirl 
and stick-slip 

Fruhwirth et al. (2006); 

Wang and Salehi (2015) 

Drilling hydraulics 

optimization and 

prediction 

Used ANNs to optimize and predict drilling hydraulics with a 

practical example 

Moran et al. (2010); Al-

AbdulJabbar et al. 

(2018a) 

Rate of penetration 
(ROP ) prediction 

Used ANNs to predict ROP so that the drill time can be estimated 
better 

Gidh et al. (2012) Bit wear prediction Used ANNs to predict/ manage bit wear to improve ROP 

Lind & Kabirova (2014) 
Drilling troubles 

prediction 

Used ANNs to predict troubles during the drilling process using a 

database on drilling parameters 

Okpo et al. (2016) Wellbore instability 
Used ANNs to predict wellbore instability with case history from 

the Niger Delta oil field in Nigeria 

Ahmadi et al. (2016) 

Prediction of mud 

weight at wellbore 
conditions 

Collected data from the literature 

; Elkatatny et al. (2016); 

Abdelgawad et al. (2018); 
Al-Azani et al. (2018) 

Drilling fluid rheological 

properties 
Used ANNs to predict drilling fluid rheological properties 

Cristofaro et al. (2017) Mud losses 
Used multiple artificial intelligence methods to find the best 

treatment for mud losses 

Hoffmann et al. (2018) 
Drilling reports sentence 

classifications 

Used ANNs to develop a methodology for automatic of sentences 
written in drilling reports into three tables: Events, Symptom, and 

Action. used data of 303 wells 

Li et al. (2018) Lost circulation 
Used ANNs to predict the risk level of lost circulation while 

drilling 

Al-AbdulJabbar et al. 

(2018b) 

Formation top prediction 

while drilling 
Used ANNs to predict formation tops while drilling 

Elzenary et al. (2018) 

Equivalent circulation 

density (ECD) 
prediction 

Used ANNs to predict ECD while drilling 
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Table 3. Applications of ANN in Production 
Author(s) Application Notes 

Thomas & Pointe 

(1995) 

Conductive fracture 

identification 
Used ANNs to identify conductive fractures 

Denney  (2000) 
Fracturing restimulation 

candidates 

Used ANNs to identify fracture restimulation candidates with case 

history from Red Oak field 

Faga, & Oyeneyin 

(2000) 
Gravel-pack design 

Used ANNs to obtain real-time, well specific, grain size distribution 

for gravel-pack completion. 

Al-Fattah & 

Startzman (2001) 

Natural gas production 

prediction 

Developed ANN model to forecast the United States gas production 

to the Year 2020 

Salehi et al. (2009) 
Casing collapse due to 

production 

Used ANNs to predict casing collapse issues due to reservoir 

compaction, poroelastic effects, and corrosion. Also, used an 

example from a large carbonate oil field in Iran 

Adeyemi, & 

Sulaimon (2012) 

Wax formation 

prediction 
Used ANNs to predict the wax formation 

Moradi et al. (2013) 
Wax disappearance 

temperature 
Used experimental and real data of wax precipitation 

Costa et al. (2014) History matching 
Built a reservoir simulation model and used ANN for history 

matching 

Yanfang and Salehi 

(2014) 

Re-fracture candidate 

selection 
Used real field data from Zhongyuan oilfield 

Al-Naser et al. 

(2016) 

Application of 

multiphase flow patterns 

Used “Unified Model” to generate the data and used experimental 

data for testing 

Ghahfarokhi et al. 

(2018) 

Prediction of gas 

production 
Used ANNs to predict gas production in the Marcellus Shale 

Khan et al. (2018) Oil rate prediction Used ANNs to predict the optimum production rate  

Luo et al. (2018) Production optimization Used ANNs to optimize the production in the Bakken Shale 

Nande (2018) Hydraulic fracturing 
Used ANNs to minimize the error in predicting closure pressure for 

hydraulic fracturing analysis 

Nieto et al. (2018) Completion optimization 
Used ANNs to optimize the completion and  to protect parent well 

in the Montney formation in British Columbia 

Pankaj (2018) 
Well spacing and well 

stacking 

Used ANNs to optimize well spacing and well tacking in the 

Permian Basin 

Sidaoui et al. (2018) Carbonate acidizing 
Used ANNs to predict the optimum injection rate of carbonate 

acidizing 

Tariq (2018) 
Flowing bottom hole 

pressure prediction 
Used ANNs to predict flowing bottom hole pressure 

Al-Dogail et al 

(2018); Basfar et al. 

(2018) 

Inflow performance 

(IPR) prediction 

Used ANNs to predict inflow performance of gas field and for 

vertical oil well 

 

 

 

4.4. RESERVOIR  

There are many applications of ANNs in reservoir engineering. Table 4 shows a 

summary of the main applications of ANNs in reservoir engineering.  
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Table 4. Applications of ANNs in Reservoir 
Author(s) Application Notes 

An & Moon (1993); 

Long et al. (2016) 

Reservoir 

characterization 
Used ANNs for reservoir characterization 

Yang & Kim (1996) Rock properties Used accelerated ANNs to find rock properties 

Denney (2001) Reservoir monitoring 
Used ANNs to find the optimum relationship between pressure, 

saturation, and seismic data. The model was applied to the Statfjord 

field 

Alcocer & 
Rodrigues (2001) 

Fluid properties 
Used ANNs to estimate fluid properties using nuclear magnetic 

resonance 

Denney (2003) Well testing 
Used ANNs to  analyzed pressure transient data from an anisotropic 

faulted reservoir 

Denney (2006) 
Uncertainties in reservoir 

performance 
Used ANNs in Monte Carlo simulations to eliminate to generate the 

probability distribution of possible outcomes. 

Elshafei & Hamada 

(2007) 

porosity and water 

saturation 

Used ANNs to predict formation porosity and water saturation from 

well logs 

Ayoub et al. (2007) Viscosity correlations Used ANNs to evaluate the below bubble point viscosity correlations 

Al-Bulushi et al 

(2007); Khan et al. 
(2018) 

Water saturation 

prediction 

Used ANNs to predict water saturation for sandstone reservoirs using 

conventional well logs 

Hegeman et al. 

(2009) 
Downhole fluid analysis 

Used ANNs to estimate gas/oil ratio (GOR) from real-time downhole 

fluid samples 

Zabihi et al. (2011) 
Permeability damage 

prediction 
Used experimental data of Berea sandstone cores 

Kohli & Arora 

(2014) 
Permeability prediction Used ANNs to predict permeability from well logs 

Ma and Gomez 
(2015) 

Predictions of 
hydrocarbon resource 

Used real field data with some statistical methods and ANN 

Bello et al. (2016) 
Drilling system design 

and operation 

Used multiple artificial intelligence techniques-including ANNs- to 

design drilling and operation systems 

Li et al. (2018) 
Geomechanical 

characterization 

Used ANNs to successfully synthesize compressional and shear travel 

time logs 

Dang et al. (2018) EOR 
Used ANNs to perform N-dimensional interpolation of relative 

permeability 

Rashidi et al (2018) Elastic modulus 
Used ANNs to correlate between static and dynamic modulus of 

limestone formations. Also, used an example from two formations 

Asmari and Sarvak in Iran 

Hadi & Nygaard 

(2018) 
Shear wave estimation Used ANNs to predict shear wave in carbonate reservoirs 

Rashidi & 

Asadi,(2018) 
Pore pressure estimation Used ANNs to predict formation pore pressure from drilling data 

Hamam & Ertekin 
(2018) 

CO2 injection 
Used ANNs to develop a screening tool for CO2 injection in naturally 

fractured reservoirs. 

Hasan et al. (2018) Temperature distribution Used ANNs to predict thermal distribution in thermal EOR methods 
  

 

   

 

 
 

  

5. CONCLUSIONS 

ANNs are very useful tool which can be used to solve problems that are hard to be 

modeled analytically. ANNs have been applied to many petroleum applications and have 

shown a reasonable accuracy. After reviewing a good number of papers about the 

applications of ANNs in the petroleum industry, the following conclusions were made:  
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 Due to the availability of huge historical data in the petroleum industry, this data 

can be used for predictions of future outcomes to help to make better decisions. 

Future predictions are always challenging, due to the large uncertainties in the 

future. ANNs can be used for future prediction or real-time predictions with a good 

accuracy so that the decision makers can prepare to solve the problems ahead of 

time.  

 Some petroleum engineering problems are hard to be solved analytically. Thus, 

ANNs can be used to solve such problems with a good accuracy. 

 Many application of ANNs from the literature were summarized in this paper. 

Also, the applications were divided and tabulated into four categories; applications 

for exploration, drilling, production, and reservoir.  

 Practical guidelines have been developed that when used with the accompanying 

flow chart will serve as a quick reference guide to apply the ANNs for any 

petroleum application. This paper provides a clear methodology on how to 

successfully apply the ANNs which can serve as a reference for any future ANNs 

applications in the petroleum industry. 
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IV. ARTIFICIAL NEURAL NETWORK MODELS TO PREDICT LOST 

CIRCULATION FOR NATURAL AND INDUCED FRACTURES FORMATIONS 

 

ABSTRACT 

Lost circulation is a complicated problem to be predicted with conventional 

statistical tools. As the drilling environment is getting more complicated nowadays, more 

advanced techniques such as artificial neural networks (ANNs) are required to help 

predicting mud loss before drilling. The aim of this work is to estimate mud losses for 

natural and induced fractures formations before drilling to assist the drilling personnel in 

preparing remedies for this problem before entering the zone of losses. Once the severity 

of losses is known, the drilling parameters can be adjusted to mitigate mud loss as a 

proactive approach. Lost circulation data were gathered from over 1500 wells drilled 

worldwide. The data were separated into three sets; training, validation, and testing 

datasets. 60% of the data were utilized for training, 20% for validation, and the rest for 

testing. Any ANN consists of the following layers, the input layer, hidden layer(s), and the 

output layer. A determination of the optimum number of hidden layers and the number of 

neurons in each hidden layer is required to have the best estimation, this is done using the 

mean square of error (MSE). Two supervised ANNs were created for natural and induced 

fractures formations. For both networks, a decision was made to have one hidden layer in 

the network with ten neurons in the hidden layer. Since there are many training algorithms 

to choose from, it was necessary to choose the best algorithm for this specific dataset. Eight 

different training algorithms were tested, the Levenberg-Marquardt (LM) algorithm was 

chosen since it gave the lowest MSE and it had the highest R2. The final results showed 
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that the supervised ANN has the ability to predict lost circulation with an overall R2 of 

0.956 for natural fractures formations, and 0.925 for the induced fractures formations. This 

is a very good estimation that will help the drilling personnel prepare remedies before 

entering the losses zone as well as adjusting the drilling parameters to mitigate mud loss as 

a proactive approach. This ANN can be used globally for any natural and induced fractures 

formations that are suffering from the lost circulation problem to estimate mud losses. As 

the demand for energy increases, the drilling process is becoming more challenging. Thus, 

more advanced tools such as ANNs are required to better tackle these problems. The ANN 

built in this paper can be adapted to commercial software that predicts lost circulation for 

any natural or induced fractures formations globally. 

 

1. INTRODUCTION 

The first neural networks research was by McCulloch and Pitts (1943). Rosenblatt 

(1957) developed the perceptron and proved that a perceptron would create a vector that 

divides the classes. Rosenblatt (1957) believed that structures of more layers can conquer 

the limitations of simple perceptron. Nevertheless, there were not any learning algorithms 

that can determine the weights for a given calculation (Mohaghegh, 2000). Few years after, 

a network called Adeline was created by Widrow (1962). Minsky and Papert (1969) proved 

that the single layer perceptron cannot elementary calculations problems.  After that, the 

neural network's research stopped for 20 years (Hertz et al., 1991). Then, Hopfield (1982) 

proposed new algorithms, such as backpropagation, that brought life for the neural 
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network's research. Since then, the neural networks applications has gone viral 

(Mohaghegh, 2000). 

An artificial neural network is a mimic for the biological neuron that has the ability 

to process information. Neurons are the basic building blocks of the nervous system. A 

typical biological neuron consists of a cell body, an axon, and dendrites as shown in 

Figure 1. Information in the cell body enters through the dendrites. The cell body then 

gives an output which travels via the axon then to another receiving neuron, the output 

from the first neuron becomes an input for the second neuron and so on (Mohaghegh, 

2000). 

 
Figure 1. Two Bipolar Neurons (Mohaghegh, 2000) 

The human brain contains 10-500 billion neurons (Rumelhart & McClelland, 

1986). These neurons are separated into sections, each section contains about 500 neural 

networks (Stubbs, 1988). Every neural network contains approximately 100,000 neurons 

where these neurons are connected to thousands of other neurons (Mohaghegh, 2000). 
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This structure is behind the human’s complex behavior. A simple task such as moving 

hands, walking, or catching a cup of coffee, requires very complex calculations that 

sophisticated computer can’t perform but the human brain is able to do them. Although 

computers are faster than human brains (human brain cycle is 10 to 100 milliseconds 

while computer chips cycle is in nanoseconds), the human brain can still much more 

perform complex activities than computer due to the sophisticated structures of the 

neurons. Artificial neural networks (ANNs) are a simulation for the biological process 

explained above. ANNs are developed based on mathematical models with the following 

assumptions (Mohaghegh, 2000): 

1. The information is processed through elements called neurons. 

2. There are connections links between the neurons that let the information to pass 

through. 

3. Each connection links have their own weights. 

4. Once the inputs received by the neurons, the neurons will apply an action function 

to determine the outputs. 

Figure 2 is a schematic of an artificial neuron, the outputs from other neurons are 

multiplied by the connection links weights and enter the neuron. Then, the input data are 

summed and the activation function of the neuron is applied which leads to an output. 

Thus, a neuron has multiple inputs and only one output. An artificial neural network 

consists of one input layer, one or more hidden layers, and one output layer. The input 

and output layers are obviously for inputs and outputs. The hidden layer is responsible for 

extraction the features from the data (Mohaghegh, 2000). ANNs can be simple three 

layers as shown in Figure 3, or ANNs can be more complicated as shown in Figure 4. 
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Figure 2. Schematic of Artificial Neuron (after Mohaghegh, 2000) 

 
Figure 3. Example of a Simple Neural Network 

 
 

 

 

 

 

 

 

 

 
 

                                           Figure 4. Example of a Complex Neural Network 
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ANNs have been utilized in drilling engineering for a long time. Table 1 shows 

some applications of ANNs in drilling engineering. 

Table 1. Applications of ANNs in Drilling 
Author(s) Application Notes 

Arehart (1990) Drill bit diagnosis 
Used ANNs to determine the grade (state of wear) of the drill bit 

while drilling 

Dashevskiy et al. (1999) 
Real-time drilling 

dynamic 

Used ANNs to model the dynamic behavior of the non-linear, 

multi0inputs/outputs drilling system 

Bilgesu et al. (2001) Drill bit selection Used ANNs to select the “best” bit based on some inputs 

Ozbaoglu et al. (2002) 
Bed height for horizontal 

wells 

Used ANNs to predict bed heights in horizontal or highly-inclined 

wellbores 

Vassallo et al. (2004) Bit bounce detection 

Used ANNs to detect bit bounce that can be used as a proactive 

approach to prevent anomalous drilling conditions such as bit whirl 

and stick-slip  

Fruhwirth et al. (2006); 

Wang and Salehi (2015)  

Drilling hydraulics 

optimization and 

prediction 

Used ANNs to optimize and predict drilling hydraulics with a 

practical example 

Moran et al. (2010); Al-

AbdulJabbar et al. (2018) 

Rate of penetration (ROP 

) prediction 

Used ANNs to predict ROP so that the drill time can be estimated 

better 

Gidh et al. (2012) Bit wear prediction Used ANNs to predict/ manage bit wear to improve ROP 

Lind & Kabirova (2014) 
Drilling troubles 

prediction 

Used ANNs to predict troubles during the drilling process using a 

database on drilling parameters 

Okpo et al. (2016) Wellbore instability 
Used ANNs to predict wellbore instability with case history from 

the Niger Delta oil field in Nigeria 

Ahmadi et al. (2016) 
Prediction of mud weight 

at wellbore conditions 
Collected data from the literature 

 Elkatatny et al. (2016); 

Abdelgawad et al. 

(2018a); Al-Azani et al. 

(2018) 

The rheological 

properties of the drilling 

fluid 

Used ANNs to estimate the rheological properties of the drilling 

fluid 

Cristofaro et al. (2017) Mud losses 
Used multiple artificial intelligence methods to find the best 

treatment for mud losses 

Hoffmann et al. (2018) 
Drilling reports sentence 

classifications 

Used ANNs to develop a methodology for automatic of sentences 

written in drilling reports into three tables: Events, Symptom, and 

Action. used data of 303 wells 

Li et al. (2018) Lost circulation Used ANNs to predict the risk level of lost circulation while drilling 

Al-AbdulJabbar et al. 

(2018b) 

Formation top prediction 

while drilling 
Used ANNs to predict formation tops while drilling 

Elzenary et al. (2018) 
Equivalent circulation 

density (ECD) prediction 
Used ANNs to predict ECD while drilling 

  

Lost circulation while drilling is a major problem in the drilling operation. Millions 

of dollars are spent to stop or mitigate lost circulation worldwide (Alkinani et al., 2019; 

Alkinani et al., 2018a; Arshad et al., 2015).  Lost circulation estimation is a limited topic 

in the literature, only a few papers were published about this topic. Some shortcomings 
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were identified in the previous work as follows (Al-Hameedi et al., 2017a; Al-Hameedi et 

al., 2017b; Al-Hameedi et al., 2018a; Al-Hameedi et al., 2018b; Cristofaro et al., 2017; Li 

et al., 2018):   

1. Not enough data were used 

2. The model is applicable only in a specific area 

3. The methodologies in some papers were not explained very well 

The purpose of this paper is to build two ANNs to predict mud loss before drilling 

for natural and induced fractures formations using data of more than 1500 wells drilled 

worldwide. Also, this paper will eliminate the shortcoming mentioned earlier by using huge 

data sets, the model will be applicable globally since the data were collected globally, and 

the methodology will be explained in details.  

2. DATA AND METHODS 

In this section, various steps for creating the feedforward backpropagation 

networks for the natural and induced fractures formations will be shown. 

2.1. DATA COLLECTION, DATA PREPROCESSING, AND INPUT DATA 

SELECTION 

Data collection is the most time-consuming step of this work. Key drilling 

parameters at the time of mud losses were collected from various sources including daily 

drilling reports (DDR), technical reports, mud logging reports, final drilling reports, case 

histories, and from the petroleum literature. Red dots in Figure 5 shows the location where 

data where gathered. 
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      Figure 5. Locations where Data were Collected  

Then, the data of each key drilling parameter were tested for outliers using box plot, 

such data any data point fall outside the minimum and the maximum of the interquartile 

range (IQR) will be eliminated (Alkinani et al., 2018b).  

After finishing the data preprocessing step (identifying the outliers), the drilling 

parameters that will be used as inputs for the model should be chosen. Inputs can be chosen 

based on experimental tests, modeling, simulation, sensitivity analysis, expert opinion, 

statistical analysis and etc. The following inputs were chosen based on two criteria which 

are statistical and sensitivity analyses done by Al-Hameedi et al. (2017a and 2018a), and 

experts’ opinions: 

1. Effective circulation density (ECD) in gm/cc 

2. Flow rate (Q) in L/min 

3. Mud weight (MW) in gm/cc 

4. Nozzles total flow area (TFA ) in inch2 
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5. Plastic viscosity (PV) in cp 

6. Revolutions per minute (RPM) 

7. Weight on bit (WOB) in Tons 

8. Yield point (Yp) in Ib/100ft2 

 

2.2. DATA NORMALIZATION  

Sometimes, if the input or the output data are too small, too large or non-normally 

distributed; therefore, scaling of the data should be performed (Saeedi et al., 2007; Zabihi 

et al., 2011).  One method of normalizing data to have values between -1 and 1 is shown 

in Equation 1 (Demuth et al., 2007): 

𝑋𝑖
′ = 2 [

𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
] − 1                                                                             Eq. 1 

Where Xi
′ is the normalized value of original value (Xi), Xmax and Xmin are the maximum 

and the minimum values of Xi, respectively. 

2.3. CHOOSING THE TRANSFER FUNCTION 

Figure 6 shows an elementary neuron with R inputs. Each input will be assigned to 

a weight (w), and each layer will be assigned to biases (b). The sum of the biases and inputs 

weights will be an input for transfer function (f), which is the hidden layer. The outputs 

from the hidden layer will be assigned weights and biases as well then they will be an input 

for the output transfer function, which is the output layer (Demuth et al., 2007). 

The tan-sigmoid transfer function was chosen for the hidden layer, and a linear 

transfer function was used for the outputs layer. Using this combination will allow the 
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network to capture the nonlinear relationship between the inputs and the outputs. The linear 

transfer function was chosen for the output layer since it is suitable for fitting problems 

(regression) (Demuth et al., 2007). 

 
        Figure 6. Elementary Neuron with R Inputs (after Demuth et al., 2007) 

2.4. DIVIDING THE DATA AND FEEDFORWARD BACKPROPAGATION 

ALGORITHM 

Typically, data are divided into three sections; training, verification, testing sets. 

The training data used to develop the ANN model, the desired output is used to help the 

network adjust the weights of each input. The error will backpropagate in the network and 

adjust the weights until calibration is reached, this method is called feedforward 

backpropagation algorithm. It should be noted that the network should not be overstrained 

since the network will lose its ability to generalize. Verification set (data not used to create 

the network) is used to measure the network generalization, and to stop the training when 

generalization stops improving. Testing set (also data not used to create the network) used 

to test the accuracy of the network after the training and the verification steps.  
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Since huge data are available, 60% of the data were utilized for training, 20% used 

for verification, and the rest for testing. Thus, only 60% of the data used to train the model, 

the rest used for generalization and testing. 

2.5. CHOOSING THE OPTIMUM NUMBER OF HIDDEN LAYERS AND 

NUMBER OF NEURONS 

The optimum number of hidden layers, as well as the number of neurons in the 

hidden layer, were chosen based on an iterative process. A various number of hidden layers 

and number of neurons were tested, the goal was to build a network that has the lowest 

mean squared error (MSE) which is the average squared error between the network 

estimate outputs (a) and the real output (t).  MSE can be calculated using Equation 2 

(Demuth et al., 2007): 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑎𝑖)

2𝑁
𝑖=1                                                                                         Eq. 2 

Where N is the number of data points. Figure 7 summarizes the process of selecting the 

optimum number of hidden layers. The same process was implemented to choose the 

optimum number of neurons in the hidden layers such that starting with one neuron and 

then increase the number of neurons until reaching the lowest MSE. 

 
Figure 7. The Process of Selecting the Optimum Number of Hidden Layers 
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2.6. EX EXAMINATION OF THE TRAINING FUNCTION  

This is a very pivotal step in creating the network. There are many algorithms 

available to choose from. Table 1 summarizes the algorithms examined in this study (more 

information about each algorithm can be found in Demuth et al., (2007)). After testing all 

algorithms, the lowest MSE with the highest R2 algorithm was chosen to train the network. 

R2 can be calculated using the following Equations: 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (�̂�𝑖−�̅�)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                                                             Eq. 3 

Where SSR is the regression sum of squares, SST is the total sum of squares, �̂�𝑖 is the 

predicted data point, �̅� is the average mean of the real data, and 𝑦𝑖 is the real data point. 

Figure 8 summarizes the methodology used in this study. 

Table 2. The Algorithms Examined in this Study 

Algorithm Abbreviations 

Scaled Conjugate Gradient SCG 

Resilient Backpropagation RP 

One Step Secant OSS 

Levenberg-Marquardt LM 

Variable Learning Rate Backpropagation GDX 

Polak-Ribiére Conjugate Gradient CGP 

Fletcher-Powell Conjugate Gradient CGF 

Conjugate Gradient with Powell/Beale Restarts CGB 

Bayesian Regularization BR 

Quasi-Newton BFG 
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Figure 8. Summary for the Methodology Used in this Study 

  

3. RESULTS AND DISCUSSION 

    

Since two datasets were collected for the natural and induced fractures formations, 

two networks were created for the natural and induced fractures. The results are divided 

into natural fractures network results and induced fractures network results. 

3.1. NATURAL FRACTURE FORMATIONS NETWORK 

ANN with one input layer, one hidden layer with ten neurons, and one output layer 

was created for the natural fractures dataset. Figure 9 and 10 show the MSE and R2 for all 
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training functions examined in this study, respectively. It is clear that LM and BR 

algorithms have the lowest MSE and R2 among the other algorithms with the LM 

algorithms being slightly better than the BR algorithm ( LM has lower MSE and higher 

R2). BR algorithm is usually used for small or noisy datasets. Typical BR algorithm doesn’t 

use validation to stop the network when a generalization is reached so that the training can 

continue until an optimal combination of error and weights is found. On the other hand, 

LM usually have the fastest convergence which gives accurate training. Also, the LM 

usually perform very well in approximation (regression) problems. Training will stop in 

the LM algorithm when generalization stops improving. Thus, the LM algorithm was 

chosen to train the network (Demuth et al., 2007). 

Figure 11 shows the MSE with iterations for training, validation, and testing sets. 

To avoid overfitting, The MSE in the validation set is monitored and the training will stop 

once the lowest MSE is reached. Also, the testing and the validations MSE should have 

similar characteristics in order to avoid overfitting and have a rigorous network. Figure 11 

shows the training stops after 33 iterations which when the MSE for the validation set is 

minimum. Moreover, Figure 11 clearly shows that the testing and validation sets have the 

same MSE characteristics.  

Figure 12 shows the actual and predicted mud losses for training (Figure 12a), 

validation (Figure 12b), testing (Figure 12c), and all (Figure 12d) datasets. The R2 for the 

training, validation, and testing is 0.96, 0.95, and 0.948, respectively. The network has an 

overall R2 of 0.956. With this high R2, the network can be used to predict mud losses prior 

to drilling for natural fractures formations. 
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Equation 4 can be used to estimate mud losses for natural fractures formations 

prior to drilling. 

𝐿𝑜𝑠𝑠𝑒𝑠 = [∑ 𝑤2𝑖 (
2

1+𝑒
−2(∑ 𝑤1𝑖,𝑗𝑥𝑗+𝑏1𝑖

𝐽
𝑗=1

)
− 1) + 𝑏2

𝑁
𝑖=1 ]                                        Eq. 4 

 

Where N is the number of neurons in the hidden layer which was optimized to be ten, w1 

is the hidden layer’s weight, w2 is the output layer’s weight, b1 is the hidden layer’s bias, 

b2 is the output layer bias, and x is the input variables. The j’s are associated with the input 

variables such that j=1 is MW, j=2 is ECD, j=3 is PV, j=4 is Yp, j=5 is Q, j=6 is RPM, j=7 

is WOB, and j=8 is Nozzles TFA. Table 2 summarizes the coefficients for Equation 4.  

 

 

                     

Figure 9. MSE of all Training Functions Examined in this Study (Natural Fractures) 
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Figure 10. R2 of all Training Functions Examined in this Study (Natural Fractures) 

 

 

    Figure 11. MSE vs Epochs for the LM Training Function (Natural Fractures) 
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Figure 12. Predicted and Actual Mud Losses (Natural Fractures) 

Table 3. Coefficients for Natural Fracture Formations Mud Losses (Eq. (4)) 

Weights of the Hidden Layer 
Bias of the 

Hidden 

Layer  

Output 

Layer 

Weight 
Matrix 

Output 
Layer 

Bias 

w1j    

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 b1 w2 b2 

-

2.2091 
2.7249 1.8762 0.6220 

-

0.0617 

-

1.7078 

-

0.7524 

-

1.0397 
-1.7124 0.3750 -0.2793 

-

6.9222 
3.2221 2.1353 

-

1.7348 
1.1825 

-

0.8590 
0.6850 2.7215 3.5206 -0.2016  

-

0.4195 

-

0.7027 

-

4.4217 
1.4298 

-

1.3663 
0.2557 4.9967 1.8083 4.1717 0.2147  

5.5710 1.4180 2.3832 0.8779 
-

0.7672 

-

0.1834 

-

1.0082 

-

0.0979 
-4.8003 0.3362  

-

2.3232 

-

3.2751 
1.3330 0.5541 

-

1.0229 
0.9844 

-

0.6204 

-

2.8423 
-0.5922 2.4752  

1.0026 0.1431 
-

0.1428 
1.4370 0.2717 

-
1.6094 

-
0.3796 

-
1.6778 

-2.2784 -0.7235  

1.2600 1.0021 2.5369 
-

0.1617 
5.4880 

-

0.4228 
4.0073 

-

3.1335 
-3.9646 0.1092  

3.2746 3.3977 
-

2.1981 

-

0.7570 
1.8079 

-

1.2094 
1.2321 3.5979 0.6624 1.8705  

3.3066 0.7451 
-

0.1552 
-

0.1148 
-

0.1447 
0.5618 0.3344 

-
0.0443 

2.1266 0.6306  

2.3620 
-

3.3680 

-

0.4873 

-

1.0335 

-

0.3052 
1.7558 

-

1.8901 
1.1824 3.5360 -0.5589  
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3.2. INDUCED FRACTURES FORMATIONS NETWORK 

ANN with one input layer, one hidden layer with ten neurons, and one output layer 

was created for the induced fractures dataset. Figure 13 and 14 show the MSE and R2 for 

all training functions, respectively. Although the BR algorithm has a lower MSE, the LM 

algorithm was chosen because it has a higher R2.  

 Figure 15 shows the MSE for the LM algorithm for training, validation, and testing. 

Figure 15 shows the training stops after 19 iterations which when the MSE for the 

validation set is minimum. Moreover, Figure 15 clearly shows that the testing and 

validation sets have the same MSE characteristics. Figure 16 shows the actual and 

predicted mud losses for training (Figure 16a), validation (Figure 16b), testing (Figure 

16c), and all (Figure 16d) datasets. The R2 for the training, validation, and testing is 0.928, 

0.925, and 0.91, respectively. The network has an overall R2 of 0.925. With this high R2, 

the network can be used to predict mud prior to drilling for induced fractures formations. 

Equation 5 can be used to estimate mud losses for induced fractures formations 

prior to drilling. 

𝐿𝑜𝑠𝑠𝑒𝑠 = [∑ 𝑤2𝑖 (
2

1+𝑒
−2(∑ 𝑤1𝑖,𝑗𝑥𝑗+𝑏1𝑖

𝐽
𝑗=1

)
− 1) + 𝑏2

𝑁
𝑖=1 ]                                        Eq. 5 

 

Where N is the number of neurons in the hidden layer which was optimized to be 10, w1 

is the hidden layer’s weight, w2 is the output layer’s weight, b1 is the hidden layer’s bias, 

b2 is the output layer bias, and x is the input variables. The j’s are associated with the input 

variables such that j=1 is MW, j=2 is ECD, j=3 is PV, j=4 is Yp, j=5 is Q, j=6 is RPM, j=7 

is WOB, and j=8 is Nozzles TFA. Table 3 summarizes the coefficients for Equation 5.  
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Figure 13. MSE of all Training Functions Examined in this Study (Induced Fractures) 

 

       Figure 14. R2 of all Training Functions Examined (Induced Fractures) 
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          Figure 15. MSE vs Epochs for the LM Training Function (Induced Fractures) 

 

 

 

 

 

 

 

 

 

      Figure 16. Predicted and Actual Mud Losses (Induced Fractures) 

 



100 
    

 

 

Table 4. Coefficients for Induced Fracture Formations Mud Losses (Eq. (5)) 

Hidden Layer Weight Matrix 
Hidden 

Layer Bias 

Output Layer 

Weight Matrix 

Output 
Layer 

Bias 

w1j    

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 b1 w2 b2 

-

0.0188 
0.4299 0.5094 

-

0.1200 

-

0.4728 
0.9857 

-

2.2359 

-

1.5879 
-0.9569 -0.8401 -0.0934 

-

1.2088 
0.1555 

-

0.0515 
1.6637 

-

0.4362 
0.3206 

-

1.9913 

-

0.5783 
2.0514 -0.7485  

-
1.4972 

1.1058 
-

0.3683 
-

0.0899 
-

0.2342 
-

1.1991 
1.8422 1.4864 0.2953 -0.6208  

0.3541 1.3957 0.9587 
-

2.0335 
0.6458 

-

0.2935 
0.9900 1.7517 -0.5481 0.0843  

1.0827 1.4165 4.9306 0.2243 
-

0.3265 
0.6341 

-

0.3807 
1.2828 -0.9051 0.4399  

-
0.6141 

-
0.9271 

0.7023 1.8216 
-

0.1393 
-

0.0490 
-

0.5954 
-

0.9000 
-0.5400 0.7831  

-

1.0147 

-

0.5148 

-

0.2306 
1.0537 

-

2.5582 
0.6457 

-

0.0649 

-

3.2413 
-1.0419 -1.0123  

-

0.5832 

-

0.2497 

-

2.6341 

-

0.6176 
0.2716 0.5635 0.4701 

-

0.5470 
1.2409 0.5409  

0.5697 0.3100 
-

0.3131 
0.7437 

-
2.6053 

0.4978 
-

0.1359 
-

3.0343 
0.7000 1.0956  

1.7660 0.2721 
-

0.6647 
4.0852 

-

0.5448 
0.3596 1.3750 1.0492 2.4765 -0.4157   

  

4. CONCLUSION 

Lost circulation is a complicated problem to be predicted with conventional 

statistical tools. As the drilling environment is getting more complicated nowadays, more 

advanced techniques such as artificial neural networks (ANNs) are required to predict mud 

loss. Huge data of many drilling parameters at the time of mud losses were collected 

worldwide for natural and induced fractures formations. The goal was to create two ANNs 

that can be used to predict lost circulation prior to drilling for natural and induced fractures 

formations. Based on this study, the following conclusions were made: 

 Two ANNs were created to be used to predict lost circulation prior to drilling for 

natural and induced fractures formations worldwide. The networks showed the 
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ability to predict lost circulations prior to drilling within an acceptable range of 

error. 

 After testing a various number of training algorithms, the LM algorithm was chosen 

to be used since it had the lowest MSE and the highest R2 which makes it a better 

predictive model. 

 The created neural network can be used in reverse to limit mud loss in induced and 

natural fractures formations by setting the key drilling parameters and obtaining the 

target mud loss. 

 This work overcame shortcoming in the previous studies about the estimation of 

mud loss prediction prior to drilling. This is the first study that provides a 

generalized model to estimate lost circulation prior to drilling that can be used 

worldwide. 
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V. INTELLIGENT DATA–DRIVEN DECISION–MAKING FOR LOST 

CIRCULATION TREATMENTS: A MACHINE LEARNING APPROACH 

 
ABSTRACT 

Lost circulation is an expensive and critical problem in the drilling operations. 

Millions of dollars are spent every year to mitigate or stop this problem. In this work, data 

from over 3000 wells were collected from multiple sources. The data went through a 

processing step where all outliers are removed and decision rules were set up. Multiple 

machine learning methods (support vector machine, decision trees, logistic regression, 

artificial neural networks, and ensemble trees) were used to create a model that can predict 

the best lost circulation treatment based on the type of loss and reason of loss. 5-fold cross-

validation was conducted to ensure no overfitting in the created model. After testing all the 

aforementioned machine learning methods, the results showed that the support vector 

machine had the highest accuracy among the other algorithms. Thus, it was selected to train 

the model. The created model went through quality control/quality assurance (QC/QA) to 

limit the results of the false negative rate. Two treatments were suggested to treat partial 

loss, four to treat severe loss, and seven for complete loss, based on the reason of loss. In 

addition, a formalized methodology to respond to lost circulation was provided to help the 

drilling personnel handling lost circulation in the field. 

1. INTRODUCTION 

Lost circulation is an expensive and critical problem at any point in the drilling 

operations (Xu et al., 2019; Al-Hmaeedi et al., 2017a; Al-Hmaeedi et al., 2017b; Al-
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Hmaeedi et al., 2017c; Al-Hmaeedi et al., 2018a ). Improper or untimely responses cause 

loss more drilling fluids, time, and extra cost. It can, also, bring on issues like formation 

damage caused by plugging of pore throats by mud particles, unsuccessful production tests, 

borehole instability, well control issues, substandard hydrocarbon production after well 

completion, and stuck pipe (Yang et al., 2015; Nasiri et al., 2017; Al-Hameedi et al., 

2018b). A ton of money is spent every year due to this issue. An average of 10% to 20% 

of the price of drilling under extreme temperature, extreme pressure wells is spent on mud 

losses according to the United States Department of Energy in 2010 (Mansour et al., 2017). 

Drilling fluid materials are very costly. In 2011, companies spent $7.2 billion dollars. The 

global market for drilling fluids reveals an annual maximize of 10.13% which indicates 

that in 2018, the cost of drilling fluid materials will reach $12.31 billion dollars 

(Transparency Market Research, 2013). On average 10% of the total well costs are the cost 

of drilling mud. The drilling fluid can greatly affect the overall cost as well (Darley and 

Gray, 1988). Losing drilling fluids into the formation is called lost circulation events, are 

one of the greatest challenges to be stopped throughout the drilling process. The 

seriousness of the outcomes depends on loss severity. The outcome could range anywhere 

from losing drilling fluid to ending up in a blowout (Messenger, 1981). Lost circulation is 

a major drilling challenge facing the oil and gas industry. Large progress has been made to 

learn how to combat this issue. However, many items and instructions are available for 

countering this issue are biased towards announcement for a service company. 

A major issue in fractured/cavernous formations, depleted reservoirs, and highly 

permeable formations is lost circulation (Nayberg and Petty, 1986). There are a couple of 

conditions required for lost circulation to happen downhole. First, is that the pressure in 
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the wellbore needs to be greater than the pore pressure, and second, when losses happen, 

there needs to be a flow pathway (Osisanya, 2002). Induced fractures, cavernous 

formations (crevices and channels), unconsolidated or highly permeable formations, and 

natural fractures present in the rock formations (as well as not sealed faults) are all 

examples of subsurface pathways that lead to, or cause lost circulation. Lost circulation is 

grouped by the quantity of mud or fluid lost per hour (Basra Oil Company, 2007): 

 Complete loss (no return)  

 Severe loss (loss rate goes up to 15 m3/hr) 

 Partial loss (loss rate goes up 1-10 m3/hr 

 Seepage loss (loss up to 1 m3/hr)  

A good example of complete loss is shown in Figure. The picture in Figure was 

taken from a downhole camera video taken in offshore United Arab Emirates (UAE). The 

red arrows show a 3-in channel that caused a complete loss to occur. Treating drilling fluid 

with standard lost circulation material (LCM) as concentrated pills or background 

treatments is a practice to diminish seepage or partial losses. Different solutions that need 

a greater length of time for placement and preparation can be used for extreme or absolute 

losses such as cement (Messenger and McNiel, 1952; Morita et al., 1990; Fian et al., 2004), 

cross-linked cement (Mata and Veiga, 2004), dense sand slurries (Saasen et al., 2011; 

Saasen et al., 2004), chemically initiated cross-linked pills (Caughron et al., 2002; Bruton 

et al., 2001), gunk squeezes (Bruton et al., 2001; Collins et al., 2010), deformable-viscous-

cohesive systems (Wang et al., 2008; Wang et al., 2005; Whitfill and Wang, 2005), and 

nanocomposite gel (Lecolier et al., 2005). 
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Figure 1. Downhole Camera Shows a 3-in Channel (Bijjani et al., 2018) 

Deciding which lost treatment to use is based on different factors such as type of 

loss zone, drilling fluid characteristics, the amount of lost circulation, and drilling operation 

parameters (Alkinani et al., 2019a; Alkinani et al., 2018a). Discovering an analytical 

solution to this problem is difficult because of the complexity and nonlinear behavior. Due 

to these complications, machine learning methodologies is an appealing replacement to 

model this elaborate physical procedure. Computational intelligence methods inquire from 

past experiences with sets of different learning data can help the decision-making process. 

The aim of this work is to use various pattern recognition algorithms (support vector 

machine, decision trees, logistic regression, artificial neural networks, and ensemble trees) 

to choose the best lost circulation treatment based on the type of loss and reason for lost 

circulation using historical data from 3000 wells collected from many sources. In addition, 

this work will serve as a practical guideline for lost circulation treatment strategies based 

on data-driven models. 
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2. MACHINE LEARNING 

 

An easy way to solve a problem is by having a simple and well-defined equation. 

This is very difficult in real life with so many problems. For example, it is easy for a person 

to differentiate family members by their looks, but there is no simple equation that can do 

this (Russell and Norvig, 2010). Artificial intelligence is focused on the ability of 

computes/machines to act like humans when making decisions. Machine learning is a 

subset of artificial intelligence. There are many algorithms used to implement machine 

learning. Examples include, support vector machine, artificial neural network (ANN), 

nearest neighbor, decision tree, regression, ensemble learning, and Naive Bayes (Russell 

and Norvig, 2010; Freeman and Chio, 2018). Certain machine learning algorithms have a 

better learning accuracy, but other factors such as the speed and the difficulty of 

interpreting results are all critical for considering which machine learning algorithm to use. 

The following sub-sections will briefly explain the machine learning methods used in this 

study.  

2.1. SUPPORT VECTOR MACHINE 

Support vector machine (SVM) represents the state-of-the-art in machine learning 

due to its, ease of use and performance (Haykin, 2009). The classification in SVM is 

performed by creating a decision boundary that has the largest distance from the training 

points. Data that are not linearly separable can be classified in SVM by creating a higher-

dimensional hyperspace (Cortes and Vapnik, 1995; Winston, 2010). Wang and Tao (2012) 

used SVM and ANN as well as analytical models to predict the drilling fluid density in 
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high temperature and pressure environment. The findings showed that the SVM did better 

than the other algorithms. SVM was utilized for lithology classification and permeability 

estimation by Al-Anazi and Gates (2010). They used linear discriminant analysis and 

probabilistic neural network as well as general regression neural network alongside SVM. 

The results showed that SVM outperformed other methods.  

2.2. DECISION TREE 

DT is a method used for classification by creating tree structures for the training 

data. The tree structure can consist of a few nodes for a simple tree, to hundreds for a 

complex tree. DT was utilized by Perez et al. (2005) to estimate the hydraulic flow units 

and lithofacies from well logs. Perez et al. (2005) showed that the more nodes the tree has, 

the better the estimation. However, too many nodes can lead to overfitting and complex 

interpretation for the influence of the inputs on the outputs. The benefit of DT is that it can 

present a model that can easily show the influence of the inputs on the outputs. DT can be 

combined with ANN to have the benefit of ANN and DT by forming a neural decision tree. 

Alkinani et al. (2019d) provided a summary of the applications of DT in the oil and gas 

industry. 

2.3. ENSEMBLE LEARNING (ESL) 

ESL has proven to be successful in image classification, face recognition, and 

medical image analysis. This is due to its ability to combine multiple classifiers which will 

lead to mitigating the weaknesses in those classifiers (Mao et al., 2019). There are many 

algorithms used for ESL, including but not limited to, boosted tree, bagged tree, and 
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random undersampling boosting (RUSBoost). More information about these algorithms 

and other ESL algorithms can be found in MATLAB (2019). Anifowose et al. (2017) used 

ESL in reservoir characterization modeling. Anifowose et al. (2017) showed that the 

incorrect decision from a classifier is a binomial distribution. Thus, Anifowose et al. (2017) 

showed that the uncorrelated errors from the classification can be minimized by averaging.  

2.4. LOGISTIC REGRESSION 

A very reliable classification technique is logistic regression. A commonly used 

instrument by most statisticians. It has an S-shaped distribution which is seen in many areas 

such as banking, marketing, demographics, psychology, and epidemiology. Because of its 

qualities, the technique is being used in supervised classification problems (Tufféry, 2011). 

It is used to show categorical dependent variables that acquire discrete outcomes. 

Independent variables can be quantitative or qualitative. It can have qualitative variables 

with more than two responses. When the response variable has 2, ≥3 nominal, ≥3 ordered 

categories, it can be categorized as ordinal logistic regression, multinomial and binary. 

Logistic regression was used for EOR applications, drilling, and rock type identification 

(Ahdaheri et al., 2017; Hegde et al., 2019; Klyuchnikov et al., 2019). 

2.5. ARTIFICIAL NEURAL NETWORKS (ANNS)  

An artificial neural network is “an information-processing system that has certain 

performance characteristics in common with biological neural network” (Mohaghegh, 

2000). The idea of neural networks is to mimic the biological neurons. An artificial neural 

network consists of three layers; one input layer where are the inputs are fed, one or 
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multiple hidden layers where the information is processed and features are extracted from 

the data, and one output layer where the results are given. ANNs can be very simple consist 

of one hidden layer, or very complex with many hidden layers. More hidden layers require 

more computational power. Alkinani et al. (2019b) used ANN to predict lost circulation 

prior to drilling. Alkinani et al. (2019c) provided a summary of ANN applications in the 

oil and gas industry.  

3. DATA AND METHODS 

In this section, the process of data collection and processing, as well as the SVM 

algorithm, will be explained in details since it is the algorithm that was selected among the 

others. The other algorithms tested in this study (decision tree, ensemble learning, ANN, 

and logistic regression) will not be explained in this paper since that is beyond the scope 

of the paper.  

3.1. DATA COLLECTION  

The data used in this study was collected from many resources including daily 

drilling report, mud logging reports, final drilling report, etc. In addition, data from the 

literature were collected. More than 3000 wells were used in this study. Rod dots in Figure 

show the location where the data were collected. Lost circulation treatment data used in 

this study are shown in the Appendix. It is worth mentioning that the data used for this 

study are up to data (up to the beginning of 2019). 
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Figure 2. Data Collection Locations 

3.2. DATA PROCESSING, ALGORITHMS TESTING, AND INPUT DATA 

SELECTION 

The data were cleaned from any outliers using box plots such that any data point 

falls outside the whiskers of the box plot was eliminated (Alkinani et al., 2018b). Once the 

data were cleaned, the data were classified based on the type of loss as partial, severe, and 

complete loss. In addition, the data were classified based on the reason for lost circulation 

as induced fractures and natural fractures as well as vugs and caves. 

To set up the data for the classification algorithms, any lost circulation treatment 

that was utilized less than 50 times was ignored.  In addition, the classification problem 

was set up to predict success or fail based on the type of loss and reason of lost circulation. 

The probability cut off for success was set to be >=75%. Thus, when the model predicts 

success, it means the probability is >=75%. Otherwise, the treatment is considered a failed 

treatment. The inputs for the models were selected based on the trial and error to meet two 

goals, the first one is to have the highest accuracy, and the second one is to minimize the 

number of predictors. Table 1 summarizes the predictors (inputs) and the response (output). 

The algorithms tested for this study are summarized in Table 2.  
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Table 1. Predictors and Response 

Predictors  Response 

Reason 
Treatment Number 

(NO) 
Type of Loss Well Type Results 

Vugs and Caves 1 to 46 Partial Vertical Fail 

Natural Fractures / Severe Deviated Success 

Induced Fractures  / Complete  / /  

  

Table 2. Summary of the Classifiers Used in This Study (MATLAB, 2019) 

Classifier Classifier Type Prediction Speed Memory Usage 

Tree 

Fine 

Fast Small Medium 

Coarse 

SVM 

Linear 
Binary: Fast Multiclass: 

Medium 
Medium 

Quadratic 

Binary: Fast Multiclass: Slow Binary: Medium Multiclass: Large 

Cubic 

Fine Gaussian 

Medium Gaussian 

Coarse Gaussian 

ANN 
Vary depends on the training 

algorithm 

Vary depends on the training 

algorithm 

Logistic Regression (LR) Fast Medium 

Ensemble 

Boosted Tree Fast Low 

Bagged Tree Medium High 

RUSBoosted Tree Fast  Low 

 

The accuracy (ACC) of each classifier was measured by the following Eq. (1) 

(Pomares et al., 2018):  

𝐴𝐶𝐶 = 100 ×
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                                         Eq.1 

Where TP is the true positive, TN is the true negative, FP is the false negative, and FN is 

the false negative.  

3.3. SVM ALGORITHM 

Support vector machine (SVM) is the state-of-the-art machine learning. SVM 

performs classification by creating a decision boundary with the largest distance to the data 
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point (Winston, 2010). Figure shows the theory of the SVM algorithm. Assume there are 

two classes " × " and " − ".  The goal is to maximize the margin between those two classes.  

 
Figure 3. SVM Algorithm 

Assume 𝑤 is a vector perpendicular to the optimal hyperplane and 𝑢 is an unknown 

vector. Then 𝑢 classified as " × " if (Cortes and Vapnik, 1995; Winston, 2010): 

𝑓(𝑢) = 𝑤 ∙ 𝑢 + 𝑏 > 0                                                                                                    Eq.2 

Then, constrain for all " × " samples vectors is: 

𝑓(𝑥×) = 𝑤 ∙ 𝑥× + 𝑏 ≥ 1                                                                                                Eq.3 

And constrain for all " − " samples vectors is: 

𝑓(𝑥−) = 𝑤 ∙ 𝑥− + 𝑏 ≤ −1                                                                                             Eq.4    

Subtracting Eq. (3) and Eq. (4) will give: 

𝑤 ∙ (𝑥× − 𝑥−) = 2                                                                                                          Eq.5                                        
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Dividing by the length of the vector 𝑤 will give the distance between the decision 

lines: 

𝑤

‖𝑤‖
∙ (𝑥× − 𝑥−) =

2

‖𝑤‖
                                                                                                    Eq.6                                       

To maximize the optimal margin (distance between the lines), Eq. (6) has to be 

maximized (length of vector 𝑤 should be minimized), while still honoring constrains (Eq. 

(3) and Eq. (4)). A possible solution is to use Lagrange’s method, to maximize the optimal 

margin, the following should be minimized: 

1

2
‖𝑤‖2                                                                                                                              Eq.7                                    

The transformation from Eq. (6) into Eq. (7) with ½ and squaring, is for 

mathematical convenience. The constrains in Eq. (3) and Eq. (4) can be written as: 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1                                                                                                            Eq.8                                

Where 𝑦𝑖 is 1 for " × " class, and -1 for " − " class. The Lagrange’s multipliers can be 

written as: 

 𝐿 =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖(𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) − 1)𝑙

𝑖=1                                                                      Eq.9    

Where 𝛼𝑖 is the multipliers for the constrains. The derivative of Eq. (9) with respect to 𝑤 

will give: 

Table 3. Values of γ for Radial Basis Kernel (MATLAB, 2019) 

Radial Basis Kernel 𝛄 

Fine Gaussian SVM 
sqrt(P)/4, where P is the 

number of predictors 

Medium Gaussian SVM sqrt(P) 

Coarse Gaussian SVM sqrt(P)*4 
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3.4. CROSS-VALIDATION 

   

Cross-validation is important to ensure the robustness of the created model. The 

problem associated with dividing the data to training and testing is that some representative 

samples may be missing during the training process. Cross-validation ensures a better 

representation of the data in the training set. In this study, 5-fold cross-validation was 

utilized to ensure a robust model. The idea of 5-fold cross-validation is that the data will 

be randomly divided into 5 equal-sized sets (5-folds). Then, in the training process, one of 

the pairs will be used for testing (the other 4 will be used for training). This is done five 

times, each time leaving another fold out of the training and used for testing. Finally, the 

average of those iterations will be taken to calculate the accuracy of the model (Alpaydin, 

2014). This will ensure that every data point is represented in the training process. 

Furthermore, cross-validation will ensure no overfitting will be presented in the model and 

generalization for new data can be achieved.  

 

4. RESULTS 

Multiple machine learning classification algorithms were tested and the algorithm 

with the highest accuracy (ACC) was selected. Figure shows the tested algorithms with 

their accuracy. Quadratic SVM showed the best performance among the other algorithms 

with an accuracy of 74%. Thus, the quadratic SVM was selected to train the model. All the 

results from the other algorithms will not be shown in this paper.  

Figure (a) and (b) show a scatter plot of the classification of the treatments based 

on reason for loss and type of loss, respectively. Orange points indicate successful results 

and blue points show failed treatments. In the same vein, dots indicate successful 
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classification and crosses show incorrect classification.  Figure can be utilized to select the 

best treatments based on the type of loss and reason for loss. For example, treatment 23 

was correctly classified as a successful treatment used to treat naturally fractured 

formations (Figurea). In the same vein, treatment 23 was correctly classified as a successful 

treatment used to treat partial loss (Figureb). Thus, it can be concluded that treatment 23 

can be used to treat partial loss in naturally fractured formations.  

 

 
Figure 4. Comparison between Different Classification Methods  

 

 

Figure shows the confusion matrix for the quadratic SVM. Confusion matrix green 

boxes show successful classification while red boxes show incorrect classification. The 

model shows a 79% successful classification rate for the fail class, and 66% successful rate 

for the success class. Figure also shows the true positive rate and the false negative rate. 
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Figure 7 and Figure 8 show the receiver operating characteristics (ROC) curve for the 

positive class being the success class and fail class being a positive class, respectively. A 

perfect ROC curve will have an area under the curve to be 1. The area under the ROC curve 

of this model is 0.77 which is considered good.  

 

 

 
Figure 5. Quadratic SVM Training Scatter Plot Based on (a) Reason of Loss and (b) Type 

of Loss 

 
Figure 6. Confusion Matrix 



121 
    

 

 

 
                 Figure 7. ROC Curve (Positive Class =Success Class) 

   

 
                  Figure 8. ROC Curve (Positive Class =Fail Class) 
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5. DISCUSSION 

     

Quadratic SVM gave the best accuracy (74%) among the other models. The closest 

model to the quadratic SVM was the ANN with an accuracy of 70%. However, the 

quadratic SVM was selected since it gave the highest accuracy. The model was cross-

validated using 5-fold cross-validation to avoid overfitting and poor generalization. Thus, 

the model is reliable and can be used for new data.  

An argument can be made about the false negative rate which is 34% for success 

class and 21% for fail class. However, quality control/ quality assurance (QC/QA) in the 

process of selecting the treatments that will prevent or minimize this false negative rate. 

This is done using the scatter plot in Figure. The way the treatments selection work is by 

looking at the correctly classified treatments (shown in dots) and recommend these 

treatments based on the type of loss and reason for loss. On the other hand, the incorrectly 

classified treatments (shown in crosses) will be avoided since the model was unable to 

classify them correctly. By doing this, the false negative rate can be minimized. Thus, 

QC/QA is very important in the process of selecting the best lost circulation treatments and 

avoiding the false negative rate. Using this criterion, Figure 9 was created that shows the 

results of the model after applying the QC/QA process.  

For severe loss due to vugs and caves, treatment 3 (Blend of Fibers in Cement) 

resulted in success. For induced fractures, there were three treatments showed successful 

results; treatment 12 (H.V Mud + Blend of LCM (High Concentration)), treatment 18 (High 

Concentration Acid Soluble LCM), and treatment 21 (High Fluid Loss Squeeze Resilient 

Graphitic Carbon + Blend of (Granules, Flakes and Fibers) (High Concentration)). All 
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those treatments have proven successful results and can be used to treat severe mud loss 

due to induced fractures. It is very hard to obtain cost data from the companies and even if 

it is available, it will be limited. The data used for this study had a total average cost for 

treatment 12 that was applied in Iraq, close to $13,000. The other two treatments costs are 

not available (Alkinani et al., 2018c). However, it will not be significant which treatment 

to choose since the cost will be close. It is recommended to use any of them and if one fails 

for some reason, then the other two treatment should be given priority in the application 

after the first one fails.  

 

 
Figure 9. Treatments Selection 

In the case of complete loss, three treatments resulted in success for complete loss 

due to vugs and caves; treatment 9 (Diesel Oil Bentonite (DOB) Plug), treatment 10 (Diesel 

Oil Bentonite Cement (DOBC) Plug), and treatment 11 (Gilsonite Cement). Treatments 9 

and 10 are difficult to be applied and they need a specialized crew to conduct the 

treatments. Cost-wise, the cost difference is not significant comparing to the entire drilling 
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operations. For instance, treatment 9 total average cost is $49,500, and treatment 10 total 

average cost is $53,000, while treatment 11 total average cost is $48,000. A couple of 

thousand dollars is not significant in comparison with the total cost of the drilling operation 

(Alkinani et al., 2018c). On the other hand, the results showed complete loss due to induced 

fractures has four successful treatments; treatment 10 (Diesel Oil Bentonite Cement 

(DOBC) Plug), treatment number 11 (Gilsonite Cement), treatment number 41 (Right 

Angle Set Polymers Cement), and treatment number 42 (Soft and Hard Plugs Special 

Fibers Cement). Once again, the cost difference is not significant and all four those 

treatments have shown successful results. Table 4 summarizes the treatments 

recommended for each type of loss.  

 

Table 4. Summary of the Recommended Treatments 

Type of Loss Reason of Loss Treatment 

Partial 

Induced Fractures 
H.V Mud + Blend of LCM (High 

Concentration) 

Natural Fractures 
High Fluid Loss Squeeze Resilient 

Graphitic Carbon + Blend of (Granules, 
Flakes and Fibers) (Low Concentration) 

Severe  

Vugs and caves Blend of Fibers in Cement 

Induced Fractures 

H.V Mud + Blend of LCM (High 
Concentration) 

High Concentration Acid Soluble LCM 

High Fluid Loss Squeeze Resilient Graphitic 

Carbon + Blend of (Granules, Flakes and 
Fibers) (High Concentration) 

Complete 

Vugs and caves 

Diesel Oil Bentonite (DOB) Plug 

Diesel Oil Bentonite Cement (DOBC) Plug 

Gilsonite Cement 

Induced Fractures 

Diesel Oil Bentonite Cement (DOBC) Plug 

Gilsonite Cement 

Right Angle Set Polymers Cement 

Soft and Hard Plugs Special Fibers Cement 
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6. CONCLUSION 
 

Lost circulation is a difficult problem that has been encountering the drilling 

operation. Choosing the best treatment for lost circulation is not a straightforward process 

and requires a high level of knowledge and experience. Large data set of 3000 wells was 

collected from many sources. Machine learning was implemented to assist in the decision-

making process. Based on this study, the following conclusions were made: 

1. After testing multiple machine learning methods, quadratic SVM was selected to 

train the model since it gave the highest accuracy. SVM has a history of great 

performance in pattern recognition problems. 5-fold cross-validation was used to 

avoid overfitting and poor generalization. 

2. QC/QA was implemented in the process of selecting the lost circulation treatments 

to limit the error due to incorrect classification. This ensures more accuracy in 

selecting the best treatment for lost circulation.   

3. The main decision-making criteria were based on whether the treatment will be 

successful or not. The cost is a pivotal parameter in the decision-making process. 

However, a couple of thousand dollars is not significant compared to the cost of the 

entire drilling operations to choose between the treatments.  

4. Two treatments recommended to stop partial loss, four for severe loss, and seven 

for complete loss, depending on the reason of loss.  

5. With the large historical data available in the oil and gas industry, machine learning 

can be utilized to make better future decisions that will optimize the drilling 

operations and save time and money. 
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SECTION 

2. CONCLUSION 

 

Based on this study, the following conclusions were made: 

• A detailed summary of the different DTA and EMV, ANNs applications from the 

literature was provided in this work. 

• EMV and DTA were utilized to select the best lost circulation treatments based on 

the type of loss for three formations; Dammam, Hartha, and Shuaiba. 

• Two supervised ANNs were created to be used to predict lost circulation prior to 

drilling for natural and induced fractured formations worldwide. The networks 

showed the ability to predict lost circulations prior to drilling within an acceptable 

range of error. 

• After testing a various number of training algorithms to train the ANN, the LM 

algorithm was chosen to be used since it had the lowest MSE and the highest R2 

which makes it a better predictive model. 

• The created neural networks can be used in reverse to limit mud loss in induced and 

natural fractured formations by setting the key drilling parameters and obtaining 

the target mud loss. 

• This work overcomes the shortcoming in the previous studies about mud loss 

prediction prior to drilling. This is the first study that provides a generalized model 

to estimate lost circulation prior to drilling that can be used worldwide. 

• After testing multiple machine learning methods to help to select the best classifier, 

quadratic SVM was selected to train the model since it gave the highest accuracy. 



132 
    

 

 

SVM has a history of great performance in pattern recognition problems. 5-fold 

cross-validation was used to avoid overfitting and poor generalization. 

• QC/QA was implemented in the process of selecting the lost circulation treatments 

to limit the error due to incorrect classification. This ensures more accuracy in 

selecting the best treatment for lost circulation.   

• The main decision-making criteria were based on whether the treatment will be 

successful or not. The cost is a pivotal parameter in the decision-making process. 

However, a couple of thousand dollars is not significant compared to the cost of the 

entire drilling operations to choose between the treatments.  

• Two treatments recommended to stop partial loss, four for severe loss, and seven 

for complete loss, depending on the reason of loss.  

• With the large historical data available in the oil and gas industry, machine learning 

can be utilized to make better future decisions that will optimize the drilling 

operations and save time and money. 
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