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Abstract
The successful drilling operation depends upon the achievement of target drilling attributes within the environmental and 
economic constraints but this is not possible only on the basis of laboratory testing due to the limitation of time and resources. 
The chemistry of the mud decides its rheological potential and selection of the techniques required for recycling operations. 
Conductivity, pH, and photometer testing were performed for the physio-chemical characterization of the grass to be used as 
an environmental friendly drilling mud additive. In this study, different particle sizes (75, 150, and 300 µm) of grass powder 
were mixed in mud density of 8.5, 8.6, and 8.7 ppg in the measurement of gel strength and viscosity of drilling mud. The 
grass additive was added in different weight conditions considering no additive, 0.25, 0.5, and 1 g to assess the contribu-
tion of grass on the gel strength and viscosity of the drilling mud. The machine learning techniques (Multivariate Linear 
Regression Analysis, Artificial Neural Network, Support Vector Machine Regression, k-Nearest Neighbor, Decision Stump, 
Random Forest, and Random Tree approaches) were applied to the generated rheological data. The results of the study show 
that grass can be used for the improvement of the gel strength and viscosity of the drilling mud. The highest improvement 
of the viscosity was seen when grass powder of 150 µm was added in the 8.7 ppg drilling mud in 0.25, 0.5, and 1 g weights. 
The gel strength of the drilling mud was improved when the grass additive was added to the drilling mud 8.7 ppg. Random 
forest and Artificial Neural Network had the same results of 0.72 regression coefficient  (R2) for the estimation of viscosity 
of the drilling mud. The random tree was found as the most effective technique for the modeling of gel strength at 10 min 
 (GS_10min) of the drilling mud. The predictions of Artificial Neural Network had 0.92  R2 against the measured gel strength 
at 10 s  (GS_10sec) of the drilling mud. On average, Artificial Neural Network predicted the rheological properties of the 
mud with the highest accuracy as compared to other machine learning approaches. The work may serve as a key source to 
estimate the net effect of grass additives for the improvement of the gel strength and viscosity of the drilling mud without 
the performance of any large number of laboratory tests.
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Introduction

Machine learning (ML), the subclass of artificial intelligence 
(AI), is a technique in which models are formulated based 
on data, and the models are forced to recognize the pattern 
in the data by training processes (Davenport and Kalakota 
2019). ML is based on the principles of computer science, 
statistics, and all other fields of study which can model the 
behavior of decision making in doubtful conditions. ML has 
been used efficiently in the field of automation, speech rec-
ognition, computer vision, neuroscience, and many other 
domains of life for software development concerning pre-
dictions (Jordan and Mitchell 2015; Kersting 2018). Data 
scientists consider machine learning as an important tool to 
handle large sources of data for the development of accurate 
data-driven predictive models (Provost and Fawcett 2013). 
ML is used to model the nonlinear relationships by observa-
tion of the available patterns in the data. The performance 
of machine learning depends upon the selection of the algo-
rithm used in the training phase of the model (Kotsiantis 
et al. 2007). The popularity of ML has increased because of 
recent developments in algorithms and improved computing 
facilities (Dimiduk et al. 2018; LeCun et al. 2015; Schmidt 
and Lipson 2009).

Recently, the application of AI has advanced the reser-
voir characterization in the petroleum engineering domain 
(Al-Bulushi et al. 2009; Al-Marhoun et al. 2012; Anifowose 
et al. 2014; Asadisaghandi and Tahmasebi 2011; Barros and 
Andrade 2013; Dutta and Gupta 2010; Hegde et al. 2019; 
Ismail et al. 2017a, b; Waqas et al. 2020). The reported 
influential performance of AI has enhanced the application 
of machine learning in the petroleum industry. Machine 
learning has been used in the prediction of various rock and 
fluid properties that are significant in the execution of dif-
ferent petroleum operations. Since 1970, artificial neural 
network (ANN), regression modeling, and support vector 
machine (SVM) have been used successfully in the field of 
geophysics, well logging, and production engineering. ML 
has become an important part of data analysis in all kinds 
of industries, but relatively this ML is underutilized in geo-
science (Maniar et al. 2018). The application of ML has 
improved the precision and efficiency of the drilling opera-
tion that saved the industry from excessive financial and 
technical constraints. In the oil and gas industry, machine 
learning models have improved the relationship between 
input and output variables without significantly dependent 
upon the structure of the system (Noshi and Schubert 2018). 
The prediction of accidents in directional drilling operations 
can be done by using ML techniques. The designed models 
work by comparison of real time-data with the accidents that 
happened in the past (Gurina et al. 2020). Drilling optimiza-
tion plays an important role in the economical and technical 

goals during drilling operations. The drilling optimization 
is done by identification of the optimum parameters using 
different empirical and machine learning techniques (Hegde 
and Gray 2018). The identification of the lithology and for-
mation horizons is successfully done by using the neural 
network models (Mahmoud et al. 2021).

Drilling mud is a viscous and heavy fluid used in the drill-
ing operations to carry the cuttings from the borehole, main-
tenance of borehole pressure, and lubrication of the drilling 
bit. Drilling mud is considered as one of the most important 
parts of the drilling activity. A wide range of chemicals and 
polymers are used for the achievement of the required prop-
erties of the drilling fluid. The main properties of the drilling 
mud include viscosity, yield point, gel strength, mud density, 
fluid loss control property, rate of penetration, and filtra-
tion control agents (Amanullah et al. 2016; Barbosa et al. 
2019; Gul and van Oort 2020). The control of the physical 
properties of the drilling mud is very important to get its 
optimum performance. Viscosity and gel strength are two 
of the most important properties to control the drilling fluid 
(Abdou and El-Sayed Ahmed 2011). In recent years, the 
consideration of the conservation of the environment has 
also affected the selection of the muds and their additives in 
hydrocarbon drilling and production activities (Caenn et al. 
2011). The advancement in technology in the drilling indus-
try has brought a chance of the replacement of conventional 
mud additives with environmental friendly constituents. The 
preparation of the eco-friendly drilling mud is influenced by 
several factors such as the requirement of the complex mud 
treatment facility, high initial cost, and low availability of 
the raw material (Abdou and El-Sayed Ahmed 2011; Kok 
and Alikaya 2003; Lan et al. 2009; Li et al. 2002; Zhao et al. 
2009). During drilling operations, hazardous vapors emit 
from drilling mud depending upon the type of additives in 
the mud may cause very detrimental effects on human health 
if they exceed safe exposure limits. Different materials such 
as brines, cleaning agents, solvents, and other fluids associ-
ated with drilling mud may damage the skin upon contact. 
The deleterious effect of the additives such as lubricants, 
viscosities, thinners, descalers, defoamers, stabilizers, cor-
rosion inhibitors, and surfactants on living beings have been 
documented by many authors (Ameille et al. 1995; Candler 
et al. 1992; Greaves et al. 1997). The hazardous effects of 
the additives in the drilling mud give rise to a need for the 
development of environmental friendly replacements which 
may have the same efficiency as the conventional makeup 
of the drilling mud (Apaleke et al. 2012). The toxicity of 
the drilling mud depends upon the nature of the additive, 
which opens the chance of water-based drilling fluid as 
environmentally hazardous as well. The level of damage to 
the environment depends upon the proportion of the type of 
drilling fluid with a concentration of the additive and the rate 
at which consumed drilling mud is discharged open in the 
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environment. Recent research has been focused on the prepa-
ration of a substitute for oil-based drilling fluid which may 
act as more environmental friendly. The increase in environ-
mental restrictions has boosted the idea of oil-based drilling 
fluid replacement (Wajheeuddin 2014). Recent studies have 
shown that additives such as diesel-based/mineral-based 
fluids have high toxicity ranges (Dosunmu 2010; Duchemin 
et al. 2008; Rana 2008). There are five (5) drilling properties 
such as viscosity, the density of drilling mud, filter cake, sol-
ids content, and quality of water makeup which as a part of a 
drilling program are closely checked during drilling activity 
(Hossain and Wajheeuddin 2016). Support Vector Machine 
can be used for the study of metabolization in the feed of 
the animals (Ahmadi and Rodehutscord 2017). Zhang et al. 
(2018) used the computer-aided algorithm for the study of 
uncertainty analysis in managed pressure drilling (MPD). 
Bhandari et al. (2015) and Mohaghegh (2015) studied the 
application of machine learning in the prediction of blow-out 
and drilling anomalies in operations.

The concentration of the oil and gas industry has been 
diverted towards natural environmentally friendly additives 
to get rid of the hazardous effects of conventional additives 
in the drilling mud for rheological improvement. Several 
researchers have worked on the application of natural mate-
rials such as rice husk, sugar cane ash, coconut shells, cocoa 
beans shells, date seed powder, fibers, grass, and a wide 
range of other locally available materials for the improve-
ment of drilling mud properties. One of the main applica-
tions of natural materials in drilling operations is to control 
loss circulation. As shown in Table 1, many researchers have 
successfully used the environmental friendly materials as a 
source for loss circulation prevention and improvement of 

the flowing properties of the drilling mud. The natural veg-
etable is used for the improvement of resistance of drilling 
mud against temperature variations. The temperature resist-
ance of the drilling mud is enhanced by 40% with the use 
of vegetable gum as a drilling mud additive (Li et al. 2002).

Natural polymers such as carboxymethyl cellulose, guar 
gum, and starch are found in large amounts in the environ-
ment and are very cheap which can be used for reduction 
in loss circulation (Kok and Alikaya 2003). Cellulose from 
groundnut husk can be a very good material for fluid loss 
control if used in high concentrations (Dagde and Nmegb 
2014). On the other hand, the grass is the main feed for all 
animals and is present in large amounts on the earth which 
are considered as a major producer of cellulose (Nmegbu 
and Bekee 2014). The average composition of grass includes 
cellulose, hemicellulose, and lignin which are useful as an 
additive in the drilling mud while major elements are Cal-
cium, Potassium, and Chlorine as per results from XRD 
analysis (Table 2). Wajheeuddin and Hossain (2018) studied 

Table 1  Use of environmental 
friendly additives in drilling 
mud

References Natural material Function

(Nestle 1952) Tree bark (douglas fir) Filtration controlling
(Morris 1962) Ground peach seeds Filtration controlling
(Lummus and Ryals 1971) Ground nutshells and nur flour Filtration controlling
(Burts Jr 2001) Corn cob outers Filtration controlling
(Green 1984) Ground cocoa bean shells Lost circulation material
(Burts Jr 1992) Rice fractions (rice hulls, rice tips, 

rice straw, and rice bran)
Lost circulation material

(Cremeans and Cremeans 2003) Cottonseed hull Lost circulation material
(Sharma and Mahto 2006) Tamarind gum Viscosifier
(Macquoid and Skodack 2004) Coconut coir Lost circulation material
(Sampey 2006) Sugar cane ash Filtration Controlling
(Ghassemzadeh 2011) Fibers Lost Circulation material
(Okon et al. 2014) Rice husk particles Filtration controlling
(Dagde and Nmegbu 2014) Groundnut Husk Filtration controlling
(Amanullah et al. 2016) Date seed powder Filtration controlling
(Hossain and Wajheeuddin 2016) Grass Rheological improvement
(Wajheeuddin 2014) Grass Rheological improvement

Table 2  XRF analysis of grass 
(Hossain and Wajheeuddin 
2016)

Element (wt %)

Calcium 53.80
Potassium 19.83
Chlorine 15.54
Sulfur 3.89
Silicon 3.13
Iron 2.46
Phosphorus 1.24
Sulfur 0.11
Manganese 0.12
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the effects of grass as a natural additive in the drilling mud 
of 8.6 ppg and found that the flowing properties of the drill-
ing mud are improved using grass as a natural additive. It 
has been reported by Hossain and Wajheeuddin (2016) that 
grass can be used to handle fluid loss problems keeping the 
mud environmental friendly. The addition of grass in the 
drilling mud improved the viscosity and gel strength of the 
drilling mud efficiently when a particle size of 300 µm was 
used. Grass not only modifies the rheological properties but 
also acts as material for fluid loss. Starch is relatively less 
effective as compared to grass as a naturally available envi-
ronmental friendly additive. The amount of salt concentra-
tion increases with the addition of grass in the drilling mud 
that modifies the rheological properties of the drilling mud 
(Al-Hameedi et al. 2019). Al-Saba et al (2018) used many 
naturally available drilling additives to evaluate the effects of 
the rheology of the drilling mud and concluded that soybean 
skin and coconut shell powder are most effective against the 
fluid loss.

In this study, the performance of the machine learning 
techniques has been assessed in terms of the prediction of 
the rheological properties of the drilling mud. The grass 
is used as an environment-friendly additive to improve the 
properties of the drilling mud. The characterization of the 
grass is done by physio-chemical experimentation. The 
influence of the grass as an environmental friendly addi-
tive has been studied on water-based drilling mud of 8.5, 
8.6, and 8.7 ppg. Multivariate Linear Regression Analysis, 
Artificial Neural Network, Support Vector Machine Regres-
sion, k-Nearest Neighbor, Decision Stump, Random Forest, 
and Random Tree approaches are used to predict the rheo-
logical properties of the drilling mud by application on the 
experimental data.

Statistical and machine learning models

Machine learning is divided into three classes as supervised, 
unsupervised, and reinforced learning; supervised learning 
includes the learning from target data, in unsupervised learn-
ing the model finds a pattern in the data, and the unsuper-
vised learning model is planned to make predictions without 
contribution from target data (Schmidt and Lipson 2009). 
Supervised learning estimations linked with the trained 
model which is controlled by target data. A lot of the algo-
rithms are present for the estimations based on supervised 
learning such as decision algorithms, regression analysis, 
Support Vector Machine, and kernel machines (Jordan and 
Mitchell 2015). In unsupervised learning, the target data is 
missing in the model formulation and prediction as com-
pared to supervised learning. One example of unsupervised 
learning is cluster analysis in which the algorithm clusters 
the data by identifying the distinct patterns in the input data. 

In reinforcement learning, the model takes actions grounded 
on the information acquired from the environment provided 
to maximize the accuracy (Kaelbling et al. 1996).

Multivariate linear regression analysis (MVLA) is one 
of the first approaches for the formulation of the predic-
tive model. The advantage of this technique as compared 
to simple regression is more accuracy and the capability 
to summarize more information. MVLA can reveal the 
correlation between dependent and independent vari-
ables (Eq. 1). MVLA is dependent upon the average trend 
between independent and dependent variables (Ismail 
et al. 2017a, b; Kumar et al. 2019). The regression coef-
ficient was improved by 27% when MVLA was employed 
for the prediction of shear wave velocity (Du et al. 2019). 
MVLA has been used successfully in petrophysics and 
well logging for the estimation of shear velocity

whereas Y is a dependent variable ao, a1, a2, a3, a4, are coef-
ficients determined using Multivariate Linear Regression 
modeling, and V1, V2, V3, V4 are independent variables.

Artificial neural network (ANN) is a process that is 
based on the human brain simulation in which there is 
the ability to identify the relationship between input and 
target data. ANNs can make alternations, connections, and 
predictions from the input data. The neural network is con-
sidered an important source to model the nonlinear trend 
and complexity of the data when conventional mathemati-
cal modeling fails. Neural networks are extensively used in 
the petroleum engineering domain to model fluid and rock 
properties (Noshi and Schubert 2018). The neural network 
belongs to supervised learning that is structured into mul-
tilayers which compute the functions between input data 
(Bengio 2009; Schmidhuber 2015).

The implicit relationship developed by ANN is a non-
linear function based on backpropagation modeling in 
which it is not possible to express as an explicit expression 
(Shi et al. 2004) (Eq. 2).

The architecture of the ANN consists of a large num-
ber of layered neurons with adjusted weights (Helle et al. 
2001). The working of the neural network includes the 
training and prediction phase. In training, the model is 
trained to adjust the weights between layers of neurons 
depending upon the output target data as shown in Fig. 1. 
The trained model is further applied to the input data to 
make predictions for the dependent variable. The back-
propagation learning algorithm is used for the learning 
phase in the prediction from the Artificial Neural Network 
(Haykin 1994; Lim 2003).

(1)Y = a
o
+ a1V1 + a2V2 + a3V3… a4V4

(2)
Dependent variable = ANN (variable 1, variable 2… variable n)
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K-nearest neighbor (KNN) is built by a comparison 
between training and test data set using an unsupervised 
learning approach. In KNN, the data is classified using rec-
ognized patterns into clusters which are further used for 
computations purposes (Araghinejad 2013; Cho 2018; Iman-
doust and Bolandraftar 2013). KNN can be used for regres-
sion modeling by a selection of property for each nearest 
neighbor cluster. The weight is adjusted in such a way that 
the contribution of the nearest cluster is considered greater 
as compared to far ones. The distance is measured from the 
target data to the nearest neighbor by using an appropriate 
approach. Usually, the Euclidean approach is used to meas-
ure the above-mentioned distance (Imandoust and Bolan-
draftar 2013).

Support Vector Machine is a simple nonlinear machine 
learning algorithm. The approach defines a hyper-plane 

that splits the input data into distinct classes. Hyperplane 
increases the distance between the two classes and is defined 
by the distance between input data as shown in Fig. 2. The 
separations boundaries are called a support vector. 

where SV is a support vector, and ω and b are the param-
eters of the linear function. The parameter x represents 
the relation between the training set and decision function 
margin maximization. The application of a proper kernel 
approach boosts the hyperplane margin between classifica-
tion instances (Bishop 2006; Zhang et al. 2018). Categori-
cally, the Support Vector Machine is divided into support 
vector classification and support vector regression. The 
generalized performance of the model is achieved by reduc-
ing the generalization error in the support vector regression 
approach. The application of SVM to solve problems has 
evolved in many fields of study (Awad and Khanna 2015). 
SVM is considered efficient in the classification approaches, 
but the rules obtained as a product of SVM are very difficult 
to understand (Zhang et al. 2018).

A decision tree is an approach to show an order of the 
conditions that constitute a product (Peng et al. 2009). Deci-
sion trees are structured on three parts known as the root 
node, internal node, and lead node as shown in Fig. 3. The 
startup information is known as the root node while the leaf 
node is the terminal node. The nodes located in between the 
above-mentioned nodes are called internal nodes. There is 
a lot of decision tree algorithms that are used for the clas-
sification of the data. Those algorithms include ID3, AD 
Tree, REP, J48, FT Tree, LAD Tree, decision stamp, LMT, 
random forest (Sewaiwar and Verma 2015).

Decision Stump is an algorithm in machine learning in which 
there is only one root node. The root node is divided into sev-
eral leaf nodes depending upon the attributes of the data. The 
complex relationship between variables can be modeled using 
Decision Stump. This algorithm also has the ability to distin-
guish the nature of variables in terms of importance and takes 

Fig. 1  Architecture of the neu-
ral network INPUT LAYER HIDDEN LAYER OUTPUT LAYER 

Density 

Particle 
Size 

Weight 
of Grass

Plastic Viscosity  

GS_10min

GS_10sec

Fig. 2  Diagrammatic representation of the Support Vector Machine 
(Cortes and Vapnik 1995)
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less time in the training phase as compared to neural networks 
(Ali et al. 2012). The Decision Stump tree is also called 1-rule 
due to one-level decision structure as shown in Fig. 4.

Random force algorithm is the ensemble process of all 
Random Trees generated from the application of attribute 
selection on samples of the training phase. The prediction 
from the Random Forest is done by cumulating the domi-
nated output from decision trees. Interpretation problems 
arise in the model due to the average of the decision trees but 
the overall performance is enhanced in the Random Forest 
algorithm (Breiman 2001).

Considering M trees, ensembling of these trees 
in the Random Forest will be as 

{

T
1
(X)…T

M
(X)

}

WhereX =
{

x1,… x
p

}

 . Due to the ensemble, we have M prod-
ucts 

{

Ŷ = T1(X),… , ŶM = TM(X) where Ŷk, k = 1̂,…M
}

 . 
The output of all trees is combined to get the final prediction ( ̂Y ). 
The prediction in classification problems is the decision by the 
majority of the trees while in regression the prediction of each 
tree is averaged (Svetnik et al. 2003).

The Random Tree belongs to supervised classification in 
which distinct learners are generated using the ensemble 
learning approach. In this technique, bootstrap aggregation 
of the decision trees is done. Random tress takes input, 

then classification is done with all the available decision 
trees, and output is decided by analyzing the majority 
trend. A Random Tree algorithm can be used for classifi-
cation as well as regression approaches (Mishra and Ratha 
2016). The Random Tree is the mixture of a single model 
tree and the Random Forest approach. Decision trees have 
a linear model which is modified according to information 
held by each leaf. The performance of the model is modi-
fied on the basis of decision tree performance (Kalmegh 
2015; Shajahaan et al. 2013). The Random Tree approach 
has been widely applied efficiently in many studies as a 
part of machine learning. The Random Tree can be used 
for classification as well as the regression of the data 
(Basak 2010).

Material and methods

The detail of the methodology followed in this research work 
is as follows;

Additive preparation

Domestic grass was selected for its potential use as an envi-
ronmental friendly additive in drilling mud. The grass was 
allowed to dry in sunlight for three days and subsequently 
ground in a food processor to make moisture-free grass pow-
der. The main purpose of using grass as an additive was to 
introduce a widely available cheap material for improvement 
in the drilling mud efficiency. The powdered grass material 
was sealed in an airtight bottle to avoid any possible contact 
with atmospheric moisture. Sieve analysis was performed on 
the prepared grass powder for particle size distribution analy-
sis. Different grades of the sizes of the grass powder were 
separated using the mesh size of sieves used in particle size 
distribution analysis. On the basis of sieve analysis, 38, 75, 

Fig. 3  Structure of Decision 
Tree (For brine-based mud as 
a target) Drilling Mud  

Brine Based 
Mud

Oil Based  

No Yes 

No 

Fresh water 
mud

Yes 

Water  
Based  
Mud 

Root Node 

Internal Node 

Leaf Node

Brine Based 
Mud

No

Fresh Water 
Based Mud

Yes 

Water  
Based 
Mud 

Root Node 

Leaf Node 

Fig. 4  Structure of Decision Stump (For brine-based mud as a target)
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and 300 µm particle sizes were used in this research as given 
in Table 3.

Mud sample preparation

A mud mixer was used to mix the bentonite with water to get 
water-based drilling mud of 8.5, 8.6, and 8.7 ppg (Table 4).

The values of the added materials used in the preparation 
of the samples (Eq. 3) are as under;

DA = 21.7 ppg (Density of bentonite).
DF = 8.5, 8.6, 8.7 ppg (Final mud density).
Do = 8.33 ppg (Density of water).

Physio‑chemical and rheological testing

In this work, Paqualab photometer and titration analysis 
were used for the estimation of chlorine, calcium, sulfate, 

(3)W =
42D

A

(

D
F
− D

o

)

D
A
− D

F

ammonia, aluminum, magnesium, and fluoride as shown in 
Table 5. The electrical conductivity of the grass extract was 
9.13mS measured with Lovibond electrical conductivity 
meter while 6.4 pH was measured using Hanna pH meter. 
Mud was prepared with densities of 8.5, 8.6, and 8.7 ppg. 
The designed density of the mud was confirmed using mud 
balance and for further adjustments. The mud was mixed 
with specific amounts of grass additive with the grain size 
of 38, 75, and 300 µm. Fann VG meter was used to measure 
the viscosity and gel strength of the prepared mud samples. 

Comparison of machine learning approaches

In this study, the performance of the machine learning tech-
niques has been assessed in terms of the prediction of the 
rheological properties of the drilling mud. Multivariate Lin-
ear Regression Analysis, Artificial Neural Network, Support 
Vector Machine Regression, k-Nearest Neighbor, Decision 
Stump, Random Forest, and Random Tree approaches are 
used to predict the rheological properties of the drilling mud 
by application on experimental data.

Computer-aided approaches have been used for the mod-
eling of the rheological behavior of the drilling mud. Super-
vised and unsupervised machine learning is used to study the 
effects of grain size and density of drilling mud on major rheo-
logical properties of the drilling mud. Interactive Petrophysics 
and Weka suite were used to conduct this study. In this study, 
30 rheological tests were performed on the grass sample with 
varying particle size and drilling mud density. A tenfold cross-
validation method was used to test the prediction performance 
of each developed machine learning model.

Results and discussions

The diverse concentrations of the grass were added in the 
drilling mud of different densities to study its effects as an 
environmental friendly additive on rheological properties of 
the drilling mud. Machine learning approaches are used to 
study the application of machine learning in the prediction of 
rheological properties.

Effect of grass as additive on rheological properties 
of the drilling mud

The chemical composition of the grass determines the effects 
on the drilling fluid as a natural additive. The grass is consid-
ered as one of the natural environmental friendly additives 

Table 3  Particle size 
distribution of grass sample

Sieve size (µm) Weight 
retained 
(%)

1190 3.29
600 8.10
425 5.05
300 6.03
250 47.14
150 22.75
75 3.50
50 1.00
38 3.14

Table 4  Composition of Bentonite in prepared samples

Density of mud (ppg) (W) Weight of 
bentonite/350 ml of 
Water (g)

8.5 16.73
8.6 26.79
8.7 37.00

Table 5  Elemental composition of the grass extract

Calcium (mg/L) Chlorine (mg/L) Sulphate (mg/L) Ammonia (mg/L) Aluminium (mg/L) Magnesium (mg/L) Flouride (mg/L)

44 444 648 0.96 3.28 23 0.4
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which improve the rheological properties of the drilling mud 
without creating toxic chemicals as a consequence (Table 1). 
The rheology of the drilling mud can be modified using grass 
as a natural additive (Hossain and Wajheeuddin 2016).In this 
study, the grass was added into mud samples of 8.6, 8.7, and 
8.8 ppg mud to study the effects of that additive on viscos-
ity and gel strength of the water-based drilling mud. For the 
assessment of the behavior of grass on the viscosity and gel 
strength, different concentration of grass was mixed in mud 
density of 8.5, 8.6, and 8.7 ppg.

The viscosity and gel strength of the drilling mud was 
measured with addition of different amount and particle size 
of grass powder in mud density of 8.5, 8.6, and 8.7 ppg as 
shown in Table 6.

Three types of particle size (75, 150, and 300 µm) of grass 
for each mud density were used as a natural additive. The 
contribution of the grass additive in the improvement of the 
viscosity was significant in water-based drilling muds with 

higher density ranges. The effect of the grass concentration 
was highest in the drilling mud with 8.7 ppg drilling mud. It 
was observed that the viscosity of the drilling mud does not 
increase exponentially with the increase of the particle size 
of the grass. In the absence of any additive, the density of 
the 8.5 ppg drilling mud was 2 cp which was increased to the 
highest value of 3 cp when 300 µm of 0.5 g grass were used 
as an additive in the drilling mud. The average of the values 
of viscosity at 150 µm particle size of grass shows that vis-
cosity is at the highest value for any density of the drilling 
mud when the grass of 150 µm particle size is used as a 
rheological modifier. The viscosity of the drilling mud was 
reduced in the presence of 75 and 300 µm in 8.7 ppg drill-
ing mud. The grass modified the gel strength of the drilling 
mud mainly at a density greater than 8.7 ppg. The viscosity 
and gel strength of the drilling mud was affected by both 
the physical and chemical properties of the grass powder. In 
all samples of drilling mud, the highest achieved viscosity 

Table 6  Effects of the weight of 
grass on rheological properties 
of drilling mud

Density Particle size Weight of 
grass (g)

R300 R600 PV =  R600-R300 GS10 sec GS10 min

(cp) (cp) (cp) (lbs/100ft2) (lbs/100ft2)

8.5 ppg – 0 2 4 2 1 1
300 µm 0.25 2 4 2 1 1

0.5 2 4 2 1 1
1 2 5 3 1 1

150 µm 0.25 2.5 5 2.5 1 1
0.5 3 5 2 1 1
1 2 5 3 1 1

75 µm 0.25 3 5 2 1 1
0.5 2 4 2 1 1
1 2 3.5 1.5 1 1

8.6 ppg – 0 2.5 4.5 2 1 1
300 µm 0.25 3 5 2 1 1

0.5 3 6 3 1 1
1 3.5 6 2.5 1 1

150 µm 0.25 3.5 6 2.5 1 1
0.5 3 5.5 2.5 1 1
1 3.5 6 2.5 1 1

75 µm 0.25 3 5 2 1 1
0.5 3 5 2 1 1.5
1 3 5 2 1 1

8.7 ppg – 0 4.5 7.5 3 1 2.5
300 µm 0.25 5 8 3 1 2.5

0.5 5 8.5 3.5 1.5 3.5
1 5 8 3 1.5 2.5

150 µm 0.25 5 9 4 1.5 3
0.5 4 8 4 1.5 2
1 4 8 4 1.5 2.5

75 µm 0.25 4 6 2 1 1.5
0.5 4 7 3 1.5 2
1 4 7 3 1 2.5



Journal of Petroleum Exploration and Production Technology 

1 3

was 4 cp for drilling mud of 8.7 ppg density (Fig. 5). The 
results of the viscosity behavior of the drilling mud showed 
that the influence of the grass powder on the viscosity of the 
drilling mud depends upon the type of grass as well because 
the viscosity of the drilling mud with 8.5 ppg density was 
nearly double in the presence of grass additive as reported by 
Wajheeuddin and Hossain (2018). The non-uniform chemi-
cal composition of the grass around the globe has a wide 

range of possibilities in terms of the improvement of the 
rheological properties of the drilling mud.

Gel strength is an important property of the drilling mud 
which plays a significant role during the tripping and makes 
connection operations for suspension of cuttings in the bore-
hole. The used grass did not affect the gel strength of the 
drilling mud of 8.5 ppg. The 10-s dial gauge reading value 
was 1 lbs/100ft2 which remained the same for 10 min read-
ing for the mud density of 8.5 ppg. Due to the low value of 
 GS_10sec, the mud falls into the flat gel mud but this will 
create the problem of the settling of solids. This same trend 
remained consistent for 8.6 ppg mud until the use of 75 µm 
particle size of grass in 0.5 g weight.

The gel strength of the 8.6 ppg mud was 1 lbs/100ft2 in 
the absence of grass additive. The addition of the grass of 
different particle sizes had no effect on the gel strength of 
the drilling mud but for the grass of particle size of 75 µm 
in 0.5 g weight (Fig. 6).

The major improvement of the gel strength was seen 
in the drilling mud of 8.7 ppg density. The  GS_10sec and 
 GS_10min were 1 lbs/100ft2 and 2.5 lbs/100ft2, respectively 
in the absence of any additive addition in the drilling mud. 
No significant effect on the  GS_10sec was seen with the 
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addition of grass as additive with the particle size of 75, 
150, and 300 µm. The highest improvement in the  GS_10min 
was up to the value of 3.5 lbs/100ft2 when 0.5 g of grass with 
300 µm particle size was used as an additive in the drilling 
mud (Fig. 7). The low 10 s values and  GS_10min with no 
significant increase in the values show that the drilling mud 
is low flat gel mud, which is most desirable. The improve-
ment in the gel strength of the mud was increasing with the 
increase in the density of drilling mud with the use of grass 
as an environmental friendly additive.

Application of machine learning in rheological 
properties of drilling mud

Machine learning and regression modeling are widely used 
for the forecasting and modeling of complex engineering 
problems in the industry. Neural networks are considered an 
important tool for the selection of bit and drilling fluid prob-
lems. In this study, Multivariate Linear Regression Analysis, 
Artificial Neural Network, Support Vector Machine Regres-
sion, k-Nearest Neighbor, Decision Stump, Random Forest, 
and Random Tree were used to model the effect of grass 
as an additive to improve the rheological properties of the 
drilling mud.

Multivariate linear regression analysis

In Multivariate Linear Regression Analysis, the density of 
mud, the particle size of grass, and the weight of the grass 
are related to plastic viscosity,  GS_10sec, and  GS_10min. The 
confidence interval of 95% was selected for the statistical 
model formulation. It was seen that adjusted  R2 for the sta-
tistical model of the plastic viscosity was 42% confirming 
low reliability of the estimation of PV in terms of density, 
particle size, and weight of the grass. The regression con-
stant was also low (0.48). It was found that density was the 
major contributing variable in the relationship, having more 
than 95% contribution in the estimation of the plastic viscos-
ity (Eq. 4).

The statistical analysis of the  GS_10sec with the density of 
drilling mud, particle size, and weight of the grass showed 
that independent variables have very low capacity to esti-
mate the gel strength. The adjusted  R2 for the relationship 
was 34% which is a very low for a moderate to a good statis-
tical model. The major reasons for this behavior are due to 
the lack of data points, absence of any average trend in the 
independent variables corresponding to dependent variable 

(4)

Plastic Viscosity = −42.9 + 5.25 Density

+ 0.0013 Particle Size

+ 0.264 Weight of Grass;R2 = 0.48

gel strength. These statistical models show the limitation of 
the regression analysis in such cases (Eq. 5).

The regression model of the  GS_10min had a relatively 
good-adjusted  R2 of 60% as compared to GS10sec and plas-
tic viscosity. The statistical model is shown in Eq. 5 reveals 
that the independent variables were predicting the depend-
ent variable with 64% accuracy. The multiple  R2 was high 
as compared to adjusted  R2 and  R2 because the adjusted 
 R2 penalized the variables which do not contribute posi-
tively to the model. The  R2 assumes that every variable is 
contributing to the statistical model but adjusted  R2 only 
improves if the added variables in the model are improving 
the prediction strength of the model. The standard error of 
this relationship is 47.3%.

The regression coefficient of all the regression models was 
low (Eqs. 5–6). Multivariate Linear Regression modeling is 
not a suitable methodology for the prediction of rheologi-
cal properties of the drilling mud when the number of data 
points is low. This happens because the model is unable to 
mimic the true average relationship between independent and 
dependent variables for generalization. Linear regression fails 
if there exists a nonlinear relationship between independent 
and dependent variables. The performance of linear regres-
sion analysis is more affected by outliers as compared to 
machine learning approaches. In this study, due to the lack 
of a proper linear relationship between regression variables, 
the overall regression coefficients were low. Hence, suitable 
machine learning approaches need to be applied for the pre-
diction of the rheological behavior of drilling mud.

Artificial neural network

Virtual approaches such as artificial neural network (ANN) are 
possible replication of the working of the brain. The set of layers 
of information is called artificial neurons which are roughly the 
neurons of the human brain. The information is propagated from 
one layer to another. In ANN, only the information of input and 
output layers are assessable, but the hidden layer is not clear in 
the model. The training pass defines how many times the neural 
network will be trained each time the training phase of the model 
is done. In each training run, the neural network can sometimes 
get ‘stuck’ with what it (erroneously) thinks are the best results. 
In the used software (Interactive Petrophysics suite), the value 
of 3 was selected to avoid this problem. 100 epochs per pass 
were selected to present the training data to neural networks 

(5)

GS_10sec = −11.87 + 1.5 Density + 0.00022 Particle Size

+ 0.06 Weight of Grass;R2 = 0.34

(6)

GS_10min = −60.95 + 7.25 Density + 0.00072 Particle Size

− 0.02 Weight ofGrass;R2 = 0.64
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during each training phase. The magnitude of the closeness of 
fit (Cfit_nn) values shows the difference between target data and 
predicted data. One hidden layer was used in neural network 
modeling for the prediction of the rheological properties of the 
drilling mud. The consideration of the high number of hidden 
layers for a low non-linearity behavior may cause the problem of 
overfitting. Keeping the simple trend of the input layers into con-
sideration, a shallow neural network (hidden layer = 1) was used 
in this study. Hit and trial methodology was used in the training 
phase to match the training neural network with target data.

In this approach, firstly the model is forced to learn the 
behavior of the target data against independent variables in 
the training phase, and weight is assigned to each neuron. The 
training model is based upon the discrete attributes of each data 
point corresponding to target data. In this study, the density of 
drilling mud, the particle size of grass, and the weight of the 

grass are related to the plastic viscosity of the drilling mud 
using a backpropagation neural network. The training intervals 
are shown in the second track of Fig. 8. From Cfit_nn, it can 
be assessed that the difference between the predicted plastic 
viscosity and target plastic viscosity is varying between 0–1 cp.

In this study, 70% of the data was used for the model 
formulation and 30% of the data was used for validation of 
the ANN models. It was seen that there was good agreement 
between independent parameters and target parameters in 
the training phase of the model which can be assessed by 
close values of target data (PV) and trained data (PV_nnt). 
The Artificial Neural Network has successfully predicted the 
plastic viscosity (PV_nn) of the drilling mud in the predic-
tion zone. The accuracy of the ANN model was assessed 
by the bivariate regression model between measured plastic 
viscosity and predicted plastic viscosity of the test data set. 

Fig. 8  Application of Artificial Neural Network for Prediction of Plastic Viscosity
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The bivariate correlation of the predicted plastic viscosity 
using an Artificial Neural Network showed that the model 
was predicting the plastic viscosity with 72% accuracy con-
sidering the density of mud, the particle size of grass addi-
tive, and weight of the added grass in the drilling mud to 
improve the rheological properties (Fig. 9).

For  GS_10sec, the ANN model was trained accurately to learn 
the behavior of input variables and target data. The model was 
predicting the values of  GS_10sec with the highest accuracy as 
compared to other parameters. The overlapping of the values of 
GS10sec_nn and measured GS10sec were showing very good 
agreement with each other as shown in the last track of Fig. 10. 
The application of ANN can be very effective in experimental 
studies related to drilling fluids if the model is well trained.

The ANN model successfully predicted the values of 
 GS_10sec which was validated with the accuracy plot. The 
accuracy plot showed that the model was predicting the val-
ues with 98% accuracy (Fig. 11). The higher accuracy of the 
model was driven by the accurate training of the predictive 
model.

Keeping the same parameters, backpropagation Artificial 
Neural Network was used to formulate a nonlinear neural 
network model by training on the data set shown by training 
zone 1 and training zone 2 in the second track (Fig. 12). The 
model successfully predicts the values of  GS_10min as shown 
in the last track. At 8.7 ppg density of drilling mud, the model 
was predicting the values of  GS_10min with higher accuracy as 
compared to 8.8 ppg (Fig. 12). The target data was represent-
ing the major trends in the data set; no effect on the gel strength 
and improvement in the gel strength of the drilling mud by the 
addition of grass of specific concentration.

It was seen that the ANN model of GS10Min was predict-
ing the values of the prediction interval with 76% accuracy 
(Fig. 13). The overall efficiency of the neural network is 
highly dependent upon the limit of the accuracy of the train-
ing zone, which is a very difficult job.

K‑nearest neighbor

K-nearest neighbor (kNN) is an example of supervised machine 
learning which can be easily used for classification as well as 
regression models. In this study, the selection of the number of 
neighbors (k) in each model of PV,  GS_10sec, and  GS_10min was 
based upon the highest efficiency in the prediction. The Euclid-
ian distance was used as a distance metric in the kNN approach 
methodology. The tenfold cross-validation was used to assess the 
accuracy of the kNN models. The models were assessed for differ-
ent k-values. Different models of kNN were formulated for PV for 
different values of k as shown in Table 7. It was seen that the PV 
model was predicting the plastic viscosity with 58% accuracy dur-
ing the tenfold cross-validation process when the value of 2 was 
selected for the nearest neighbor. To avoid the possible problem of 
overfitting, a higher nearest neighbor value can be selected. There 
was no significant effect on the increment of k-value on the coeffi-
cient of regression in the k-fold cross-validation process. The opti-
mum value of k = 3 was selected in the kNN model of  GS_10sec. 
The model was estimating the improvement of gel strength as a 
function of grass additive with a 64% coefficient of regression as 
evident from the cross-validation approach. The accuracy of the 
model was decreasing with an increase in the value of k greater 
than 3. ANN and kNN models of gel strength were predicting the 
gel strength of the drilling mud with the highest accuracy. The 
kNN model of  GS_10min was giving the values of  GS_10min with 
76% accuracy. The optimum value of 3 was selected in the model 
formulation of the gel strength of drilling mud as given in Table 7.

Support vector machine regression (SVMR)

The Support Vector Machine is a very popular machine learn-
ing tool for classification and regression models. It is consid-
ered a non-parametric approach due to the application of kernel 
in the development of models. In this study, a Support Vector 
Machine is used for the regression analysis of PV, GS_10Sec, 
and GS_10Min with the density of drilling mud, the particle size 
of the grass additive, and the weight of the grass additive. In this 
study, the polynomial kernel is used in the SVMR. The models 
were developed for normalized values of the parameters used 
in SVMR. The hyperplane in the SVMR is affected by the scale 
of the input feature recommending the possible normalization 
of the trained data. The regression model was made by utilizing 
the Support Vector Machine results by relating attributes of the 
grass additive with rheological properties of the drilling mud. 
The tenfold cross-validation methodology was used to check the 
accuracy of the developed models.Fig. 9  Accuracy plot of plastic viscosity ANN model
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The application of the SVMR on the test data set showed 
that the model was predicting the plastic viscosity of the drill-
ing mud with 63% accuracy. The accuracy of the SVMR for 
 GS_10sec was very low as compared to the plastic viscosity 

model. The coefficient of regression for the accuracy plot of 
GS_10sec was 29%. The prediction ability of the GS_10Min 
SVMR model was highest as compared to PV and GS_10Sec 
in the Support Vector Machine approach. The regression 
model was predicting the test data with 75% accuracy.
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Fig. 10  Application of Artificial Neural Network for the Prediction of Gel Strength at 10 s
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The normalized regression model based on the Support 
Vector Machine was predicting the rheological properties 
of the drilling mud with higher accuracy as compared 
to Multivariate Linear Regression Analysis (Eqs. 7–9). 
The regression models of GS_10Min were predicting the 
dependent variables with higher accuracy as compared to 
other developed models.

Decision stump

Decision Stump is a one-level approach used for the predic-
tion of data by splitting the parent data into different sub-
sets. The process is repeated on all subsets until no new 
information is generated or the nodes have the same attrib-
utes of parent data. In this study, Decision Stump models 
were developed by modeling the density of drilling mud 
and grass additive with rheological properties of the drilling 
fluid. The tenfold cross-validation was used to assess the 
accuracy of the Decision Stump models. The details of the 
cutoff selected in the Decision Stump modeling of the rheo-
logical properties of the drilling mud are shown in (Table 8). 
The tenfold cross-validation showed that the model for that 
was predicting the plastic viscosity with a 61% coefficient 
of regression. A decision tree is an algorithm that predicts 
the data on the basis of a single input feature. In this study, 
the Decision Stump models were based on the density of 
the drilling mud.

The tenfold cross-validation approach was used to check 
the efficiency of the Decision Stump model in the prediction 
of the properties of the drilling fluid. The decision model 
of  GS_10min was predicting the rheological properties with 

an 89% coefficient of regression. The prediction scope of 
the gel strength-based decision models had almost the same 
ability to predict the properties of drilling fluid (Table 8).

Random tree

In a Random Tree approach, a tree is based on randomly 
chosen information at each node according to the feed data-
set. In this process, on pruning is done. The value of 1 was 
considered for the selection of attributes. The Random Tree 
approach was predicting the plastic viscosity with 56% of 
the coefficient of regression in the tenfold cross-validation. 
There were 35 nodes in the formulated Random Tree model 
of plastic viscosity. The accuracy of the Random Tree model 
for  GS_10sec was low as compared to plastic viscosity. The 
regression coefficient of the tenfold cross-validation was 
37%.  GS_10min Random Tree model has the highest  R2 of 
61% for the estimation of  GS_10min in the application of 
Random Tree models for the prediction of rheological prop-
erties of the mud.

Random forest

Random Forest is a group of Random Trees. Bagging with 
100 iterations was used in Random Tree modeling. The Ran-
dom Forest model of PV was predicting the plastic viscosity 
with 72% accuracy. The model for GS_10Sec was predict-
ing the gel strength with a 61% regression of coefficient. It 
was seen that the accuracy of the model for GS_10Min was 
highest among all other Random Forest tree algorithms. The 
regression coefficient of the GS_10Min model was 82% in 
the tenfold cross-validation approach.

Comparison of the machine learning approaches

In this study, it was seen that the Artificial Neural Network 
has the highest ability to predict the rheological properties 
of the drilling mud under the influence of grass additives. 
Random Forest was the second most accurate algorithm for 
the prediction of rheological properties of the drilling mud. 
The training phase is a very important part of the applica-
tion of Artificial Neural Networks because the prediction 
of the data is highly dependent on the quality of the train-
ing phase. The ANN approach was predicting the  GS_10sec 
with excellent accuracy of R2 = 0.98 while Random Forest 
was predicting the same property with moderate accuracy of 
0.61 regression coefficient. In application, Random Forests 
is an easy approach as compared to a neural network because 
there is no training required in its application. Random For-
est was estimating the  GS_10min with greater accuracy as 
compared to ANN. Most of the machine learning approaches 
were failed to model the behavior of  GS_10sec except Artifi-
cial Neural Network. Decision Stump falls in the same class 

Fig. 11  Accuracy plot of GS_10Sec ANN model
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as Random Forest but it’s a one-level decision tree. The 
overall accuracy of the Decision Stump was in third place 
in the estimation of the properties of drilling mud. After the 
Artificial Neural Network, Decision Stump was the most 
accurate in the prediction of  GS_10min. Most of the models 
were predicting the values of  GS_10min. The models based 
on Support Vector Machine and Random Tree were not able 
to predict the  GS_10sec (Table 9).

Conclusions

In this study, machine learning was used to predict the rheo-
logical properties of the drilling mud under the influence of 
grass as an environmental friendly additive. Firstly, the grass 

was characterized by the performance of physio-chemical 
laboratory testing of the grass and rheological properties of 
the drilling mud. The generated data were used to generate 
statistical and virtual models and their validation.

1. The improvement of the rheological properties of the 
drilling mud depends on the type of grass used for this 
purpose. The highest improvement in the plastic viscos-
ity was seen against the weight of grass greater than 
0.25 g of 150 µm particle size in drilling mud of 8.7 ppg. 
There was no effect of the gel strength of the drilling 
mud for densities 8.6 and 8.7 ppg but 8.7 ppg. At tested 
conditions of the weight of grass, the particle size of 
grass, and density of drilling mud, it was seen that the 

Fig. 12  Application of Artificial Neural Network for Prediction of Gel Strength at 10 min
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added grass had a significant effect on  GS_10min in 8.7 
ppg drilling mud.

2. Multivariate Linear Regression Analysis was failed to 
model the relation of plastic viscosity and gel strength 
with a density of mud, weight, and particle size of grass 
additive. All the MLRA models of rheological proper-
ties had a low regression coefficient because there was 
a lack of linear relationships between the dependent and 
independent variables.

3. Artificial Neural Network and Random Forest 
were predicting the plastic viscosity with the high-
est accuracy with  R2 of 0.72. The best approach to 
estimate the  GS_10sec is Artificial Neural Network 
which was predicting the gel strength with R2 = 0.98 
on the application on test data. Random Forest was 
the approach from machine learning which was pre-
dicting the  GS_10min of the grass additive with the 
highest accuracy evident from the regression coef-
ficient of tenfold cross-validation.

4. The Artificial Neural Network, Decision Stump, and 
Random Forest machine learning techniques were pre-
dicting the rheological properties of the drilling mud 
with acceptable accuracy but the most applicable model 
in the current study was backpropagation Artificial Neu-
ral Network.

Fig. 13  Accuracy plot of GS_10Min ANN model

Table 7  Response of  R2 against selected k in kNN models

Plastic Viscosity

K 1 2 3 4 5
R2 0.38 0.58 0.56 0.56 0.58
GS_10Sec
K 1 2 3 4 5
R2 0.34 0.58 0.64 0.55 0.56
GS_10Min
K 1 2 3 4 5
R2 0.79 0.68 0.76 0.74 0.74

Table 8  Attribute selection in Decision Stump

Rheological Property Selected Rules Coefficient 
of Regres-
sion

PV Density <  = 8.649: 2.25 Density > 8.649: 3.25 Density is missing: 2.583 R2 = 0.61
GS_10Sec Density <  = 8.649: 1.0 Density > 8.649: 1.3 Density is missing: 1.5 R2 = 0.62
GS_10Min Density <  = 8.649: 1.025 Density > 8.649: 2.45 Density is missing: 1.5 R2 = 0.89

Table 9  Comparison of the 
machine learning approaches 
used in this study

Approach Regression coefficients of validation testing

Plastic viscosity Gel strength at 
10Sec

Gel strength 
at 10Min

Artificial neural network 0.72 0.98 0.76
K-nearest neighbor regression 0.58 0.64 0.76
Support vector machine regression 0.63 0.29 0.75
Decision stump 0.61 0.62 0.89
Random tree 0.56 0.37 0.61
Random forest 0.72 0.61 0.82
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