155 research outputs found

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Noise-tolerant Modular Neural Network System for Classifying ECG Signal

    Get PDF
    Millions of electrocardiograms (ECG) are interpreted every year, requiring specialized training for accurate interpretation. Because automated and accurate classification ECG signals will improve early diagnosis of heart condition, several neural network (NN) approaches have been proposed for classifying ECG signals. Current strategies for a critical step, the preprocessing for noise removal, are still unsatisfactory. We propose a modular NN approach based on artificial noise injection, to improve the generalization capability of the resulting model. The NN classifier initially performed a fairly accurate recognition of four types of cardiac anomalies in simulated ECG signals with minor, moderate, severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively. Ultimately we discriminated normal and abnormal heartbeat patterns for single lead of raw ECG signals, obtained 95.7% of overall accuracy and 99.5% of Precision. Therefore, the propose approach is a useful tool for the detection and diagnosis of cardiac abnormalities

    A Novel Method for ECG Signal Classification Via One-Dimensional Convolutional Neural Network

    Get PDF
    This paper develops an end-to-end ECG signal classification algorithm based on a novel segmentation strategy and 1D Convolutional Neural Networks (CNN) to aid the classification of ECG signals and alleviate the workload of physicians. The ECG segmentation strategy named R-R-R strategy (i.e., retaining ECG data between the R peaks just before and after the current R peak) is used for segmenting the original ECG data into segments to train and test the 1D CNN models. The novel strategy mimics physicians in scanning ECG to a greater extent, and maximizes the inherent information of ECG segments for diagnosis. The performance of the proposed end to end ECG signal classification algorithm was verified with the ECG signals from 48 records in the MIT-BIH arrhythmia database. When the heartbeat types were divided into the five classes recommended by clinicians, i.e., normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction, and paced beat, the classification accuracy, the area under the curve (AUC), the sensitivity, and the F1-score achieved by the proposed model were 0.9924, 0.9994, 0.99 and 0.99, respectively. When the heartbeat types were divided into six classes recommended by clinicians, i.e., normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction, paced beat and other beats, the beat classification accuracy, the AUC, the sensitivity, and the F1-score achieved by the model reached 0.9702, 0.9966, 0.97, and 0.97, respectively. When the heartbeat types were divided into five classes recommended by the Association for Advancement of Medical Instrumentation (AAMI), i.e., normal beat, supraventricular ectopic beat, ventricular ectopic beat, fusion beat, and unknown beat, the beat classification accuracy, the sensitivity, and the F1-score were 0.9745, 0.97, and 0.97, respectively. Experimental results show that the proposed method achieves better performance than the state-of-the-art methods

    ECGAN: Self-supervised generative adversarial network for electrocardiography

    Full text link
    High-quality synthetic data can support the development of effective predictive models for biomedical tasks, especially in rare diseases or when subject to compelling privacy constraints. These limitations, for instance, negatively impact open access to electrocardiography datasets about arrhythmias. This work introduces a self-supervised approach to the generation of synthetic electrocardiography time series which is shown to promote morphological plausibility. Our model (ECGAN) allows conditioning the generative process for specific rhythm abnormalities, enhancing synchronization and diversity across samples with respect to literature models. A dedicated sample quality assessment framework is also defined, leveraging arrhythmia classifiers. The empirical results highlight a substantial improvement against state-of-the-art generative models for sequences and audio synthesis

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Understanding disease through remote monitoring technology:A mobile health perspective on disease and diagnosis in three conditions: stress, epilepsy, and COVID-19

    Get PDF
    Mobile systems and wearable technology have developed substantially over the last decade and provide a unique long-term and continuous insight and monitoring into medical condi- tions in health research. The opportunities afforded by mobile health in access, scale, and round-the-clock recording are counterbalanced by pronounced issues in areas like participant engagement, labelling, and dataset size. Throughout this thesis the different aspects of an mHealth study are addressed, from software development and study design to data collection and analysis. Three medically relevant fields are investigated: detection of stress from physiological signals, seizure detection in epilepsy and the characterisation and monitoring of COVID-19 through mobile health techniques.The first two analytical chapters of the thesis focus on models for acute stress and epileptic seizure detection, two conditions with autonomic and physiological manifestations. Firstly, a multi-modal machine learning pipeline is developed targetting focal and general motor seizures in patients with epilepsy. The heterogenity and inter-individual differences present in this study motivated the investigation of methods to personalise models with relatively little data. I subsequently consider meta-learning for few-shot model personalisation within acute stress classification, finding increased performance compared to standard methods.As the COVID-19 pandemic gripped the world the work of this thesis reoriented around using mHealth to understand the disease. Firstly, the study design and software development of Covid Collab, a crowdsourced, remote-enrollment COVID-19 study, are examined. Within these chapters, the patterns of participant enrolment and adherence in Covid Col- lab are also considered. Adherence could impact scientific interpretations if not properly accounted for. While basic drop-out and percent completion are often considered, a more dynamic view of a participant’s behaviour can also be important. A hidden Markov model approach is used to compare participant engagement over time.Secondly, the long-term effects of COVID are investigated through data collected in the Covid Collab study, giving insight into prevalence, risk factors, and symptom manifestation with respect to wearable-recorded physiological signals. Long-term and historical data accessed retrospectively facilitated the findings of significant correlations between development of long-COVID and mHealth-derived fitness and behaviour
    • …
    corecore