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Abstract

Mobile systems and wearable technology have developed substantially over the last decade
and provide a unique long-term and continuous insight and monitoring into medical condi-
tions in health research. The opportunities afforded by mobile health in access, scale, and
round-the-clock recording are counterbalanced by pronounced issues in areas like partici-
pant engagement, labelling, and dataset size. Throughout this thesis the different aspects of
an mHealth study are addressed, from software development and study design to data collec-
tion and analysis. Three medically relevant fields are investigated: detection of stress from
physiological signals, seizure detection in epilepsy and the characterisation and monitoring
of COVID-19 through mobile health techniques.

The first two analytical chapters of the thesis focus on models for acute stress and epilep-
tic seizure detection, two conditionswith autonomic and physiologicalmanifestations. Firstly,
a multi-modal machine learning pipeline is developed targetting focal and general motor
seizures in patients with epilepsy. The heterogenity and inter-individual differences present
in this study motivated the investigation of methods to personalise models with relatively
little data. I subsequently consider meta-learning for few-shot model personalisation within
acute stress classification, finding increased performance compared to standard methods.

As the COVID-19 pandemic gripped the world the work of this thesis reoriented around
using mHealth to understand the disease. Firstly, the study design and software develop-
ment of Covid Collab, a crowdsourced, remote-enrollment COVID-19 study, are examined.
Within these chapters, the patterns of participant enrolment and adherence in Covid Col-
lab are also considered. Adherence could impact scientific interpretations if not properly
accounted for. While basic drop-out and percent completion are often considered, a more
dynamic view of a participant’s behaviour can also be important. A hidden Markov model
approach is used to compare participant engagement over time.

Secondly, the long-term effects of COVID are investigated through data collected in the
Covid Collab study, giving insight into prevalence, risk factors, and symptom manifesta-
tion with respect to wearable-recorded physiological signals. Long-term and historical data
accessed retrospectively facilitated the findings of significant correlations between develop-
ment of long-COVID and mHealth-derived fitness and behaviour.
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Chapter 1

Introduction

1.1 Context and motivation
The intersection of medicine and technology has revolutionised the way healthcare is deliv-
ered, disease is diagnosed, and how new biological insights aremade. Broadly, mobile health
(mHealth) refers to the application of mobile technology within the medical or healthcare
domain, and includes sensing technology that can monitor data streams from our personal
devices, such as smartphones and wearables.1

The proliferation of consumer-level wearable devices containing physiological sensors
offers an unparalleled degree of continuous and pervasive health state monitoring. Addi-
tionally, these technologies are driving greater self-management and self-ownership of a
person’s own health and data. A recent YouGov poll shows 31% of the adult UK population
currently uses a wearable device.2 These vast repositories hold potential as a trove of unique
health data, but have not yet been leveraged to a great extent by health researchers. Issues
remain on how to effectively access and use shared personal health data. Privacy concerns,
bias due to ownership patterns of wearable devices3 and the quality of data from commercial
devices are some of the largest barriers to clinical and research use.

New insights into disease, progression, diagnosis, and treatment can be formed through
the unprecedented perspective that remotemonitoring technologies (RMT) provide.4 Biomed-
ical research and health informatics has historically been bottlenecked by the expense of data
collection. As next generation sequencing transformed genomics to a field awash with data,5

mHealth is driving the development of massive biomedical datasets6,7 and the development
of software platforms to support them.6,8 There have already been important contributions
to medical understanding in several fields, including cardiology,9–11 epilepsy,12 psychology,
13 pain management,14 and recently COVID-19.7,15,16
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1.2 Evaluation and limitations

1.2.1 Opportunities of mobile health
Mobile and remote sensing technology has the potential to fill a role that traditional medical
research lacks. Outcome measures are often taken at a single point, and even where a longi-
tudinal study design is used, measures are repeated at a coarse temporal resolution.17 Mobile
health can provide pervasive, continuous, and objective monitoring of a person’s health state.
18 There is therefore interest in using mHealth to measure long-term trajectories and to fill
in the gap in the time between traditional biomarker measurements.19 A move towards per-
sonalised or person-centric medicine and clinical trials20 may also be well-supported by the
deep level of data available through wearable devices.18

The real-time perspective of remote sensors also make them an attractive target for health
monitoring.21 Particularly with increased prevalence of chronic health conditions22 and an
older population, monitoring disease progression and responding to relapses or acute events
are becoming more important.

Finally, as smartphones and remote sensors become ubiquitous, they are a vector through
which under-served and hard-to-reach groups could be included in research23 and to interface
with people outside the typical medical institutions and pathways.24

1.2.2 Limitations and current challenges
Even as the field of mobile health grows, scepticism remains.25 There are a number of well-
founded concerns and limitations that have limited impact on medical delivery and health-
care.26 Two broad problems that affect mobile health research are firstly, the quality of mobile
health data,27 and secondly, how to interpret or analyse the complex data collected.

Data quality and bias

The objectivity of passive remote sensing is often touted,28,29 but in practice data is often
plagued by data quality issues, such as missingness30 and sensor accuracy.31,32 Passive met-
rics may be objective in the sense that they are free from the beliefs and attitudes, but not
in the sense that they are free from bias. Additionally, there is still often a requirement for
comparison against subjective labels in the absence of gold-standard outcomes.33

Bias in healthcare datasets can exacerbate existing inequalities34 and limit any infer-
ences to the study population, rather than more broadly.35 Remote sensing and mobile health
studies are not uniquely effected, models and findings based on relatively homogeneous and
biased datasets are a problem across healthcare,36,37 but specific aspects of mHealth studies,
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such as recruitment strategies, participant adherence, and use of secondary data sources can
introduce bias. On the other hand, remote patient monitoring has unique reach and could be
a tool for reducing inequalities in healthcare and increasing the representativeness of data.

Secondary data sources, such as those collected by commercial wearables,38 are a rich
and vast source of digital health data, but should be used carefully. Data is likely to be
biased towards sociodemographic factors that influence wearable ownership.39 Many of the
people who could most benefit from remote monitoring are the least likely to already have
wearables, such as older adults with cognitive difficulties.40 Additionally, overreliance on
single manufacturers or device may produce algorithms that do not perform well out-of-
sample data.

Issues in remote sensing analysis

A majority of studies still follow expert feature engineering followed by traditional machine
learning algorithms. Mohr et al. put forward a hierarchical model to making sense of remote
sensing data, where input from raw sensors are gradually built up to low-level features (e.g.
activity recognition, sleep times, semantic location), higher-level behavioural markers (e.g.
fatigue, circadian rhythm, stress), and finally to a clinical state such as depression.1 It is a
conceptually satisfying framework because there are similarities to the way that psycholog-
ical disorders are built on behavioural, psychological, or biological criteria,41 and it lends
itself to interpretable findings.

However, to compound the above data issues, medical conditions are often heteroge-
neous in aetiology, symptoms, and presentation. Moreover, human behaviour and response
to disease or mental health states can be complex and context dependent, context that can of-
ten be hard to determine. A combination of sparse labels, missing data, variable modalities,
biased datasets, and heterogeneous outcomes make standard machine learning approaches
difficult to apply in a way that will generalise well. The complexity of remote sensing data
arguably lends itself to deep learning approaches, which have been increasingly used in the
last decade as a data-driven approach to learning representations of data,42 as opposed to
the classic feature engineering approach. More recent developments in few-shot learning43

and self-supervised learning44 seem like natural fits to the problems of inter-individual vari-
ability, creating cross-domain or generalisable models, and making use of sparsely labelled
data.

Deep learning techniques are generally accepted as being data-hungry.45 While there are
potentially huge quantities of data, privacy concerns and commercial interests mean a lot of
it is hard to access. In practice, many existing datasets are small. Additional, label sparsity
is very common. Health outcomes are often time-consuming and expensive to record, and
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are often rare events that are not guaranteed to occur during the course of a study. Even
large unlabelled repositories that may be suitable for self-supervised learning, such as those
collected by Fitbit46 or Apple Health,47 are typically tied to a specific device or wearables
company and so may not generalise well to other and future devices.

Themultimodal nature of remote sensing offers many opportunities in the breadth of psy-
chological or physical states that are identifiable.48 For example, in seizure detection move-
ment sensors, such as an accelerometer or electromyogram, are vital for identifying motor
symptoms, while autonomic symptoms are detected through pulse monitoring, temperature,
or skin conductivity sensors.49 It also brings additional complexity to analysis. Balancing be-
tween modality-specific and cross-modality learning,50 the point at which modalities should
be aggregated,51,52 irregular sampling,53 and how to deal with the variable inclusion ofmodal-
ities51,54 have all received attention. However, differences in included sensors and the future
development of wearable devices could mean inflexible multimodal models act as a barrier
to generalisability.

1.3 Scope and research questions
This thesis concerns mHealth as it refers to the use of mobile systems to understand health,
rather than its use in the delivery of healthcare. I consider aspects from the full spectrum of
a mobile health study: study protocol design, software development, enrolment, adherence,
data processing, and two types of analysis, a machine learning approach and a statistical risk
factor analysis.

Mobile health is a broad field, covering a wide variety of technologies and data streams.
A limited set of modalities is considered here, each study uses typical worn devices with
photoplethysmography and accelerometry. Research-level devices are used in first two stud-
ies, which contain additional modalities (electrodermal activity, electrocardiography). The
latter chapters concern a bring-your-own-device study which asked for the donation of com-
mercial device wearable data.

1.3.1 Research Questions
Considering the full study pipeline reduces the depth that focusing on one aspect delivers, but
allows the illustration of the impact of study design and adherence on downstream analysis
and how particular outlooks can be applicable across disparate aspects of mHealth. In a
sentence, the overarching theme can be described as How can mobile health studies be used
to make generalisable medically-oriented inferences?. Whether that is through reducing or
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understanding bias caused by study design, or trying to model inter-individual variation, I
attempt to address this through the following research questions:

Can a multi-modal remote sensing system be used to detect focal seizures?

Seizures are characterised by bursts of electrical activity in the brain, but the physical man-
ifestations exhibit great variation, making a widely applicable seizure detection algorithm
difficult to create. One approach is to use the multiple modalities available from wearable
devices to target different potential seizure symptoms.

How can contextual baseline data be used to make more accurate predictions?

Time-consuming and costly data collection often rule out person-specific models. How-
ever, depending on the task, small amounts of baseline and even labelled data often exist.
This research question asks how that data might be used efficiently to improve individual-
level inferences and approaches it in two ways. Firstly in a few-shot machine learning stress
classification task in Chapter 4, and secondly using long-term commercial device heart rate
recordings to predict counterfactual heart rate estimates in COVID-19 positive participants
in Chapter 7.

Can a citizen science study with ’opportunistic’ historic wearable sensor data provide
novel insights into COVID-19?

Apart from providing contextual data to condition models, historic wearable data can also
provide an objective marker of fitness or health that would otherwise be vulnerable to recall
bias and subjectivity. Within the Covid Collab study, I look at the potential utility of historic
wearable fitness data.

What are the implications of participant engagement on analysis in citizen science and
mHealth studies?

There are potentially huge quantities of available personal health data collected through com-
mercial devices or that could be collected as part of routine healthcare. Citizen science initia-
tives and data donation drives have started to make some of this data available to researchers.
However, care must be taken to ensure that data quality and bias do not undermine outcomes
or generalisability.
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1.4 Chapter outlines and contributions
This thesis covers the aspects from the full lifetime of a mobile health study and the research
questions therefore cover particular aspects over different parts of a study with the overarch-
ing goal of effectively using mobile health data. That is, I attempt to opportunistically use
data to reduce bias and increase generalisability of results. For example, use of historic per-
sonal health data in the long-term sequelae following COVID-19 infection, the formulation
of stress detection models as a few-shot learning problem using small amounts of baseline
data, or considering how study protocol can reduce bias. Several chapters are included as
papers with a preamble to provide context within the thesis and a chapter summary section
following the paper to set the contributions of the paper within the theme of the thesis.

Chapter 2: Background and Methodology
Chapter 2 aims to give an overview of mHealth data, the biological background of the con-
ditions studied, and the datasets and methodology used throughout the rest of the thesis.

Chapter 3: Seizure classification
The first analysis chapter looks at the classification of epileptic seizures in the RADAR-CNS
epilepsy study.55 Many existing seizure detection algorithms and studies focus on generalised
tonic-clonic seizures and use a single signal modality. Here I use multiple modalities from a
wearable device to classify multiple types of motor seizure. The main contribution is in the
multi-modal model performance across both general and focal motor seizures.

The work was important to me specifically because it demonstrated the heterogeneity
of medical conditions and the problems of generalisability. Focal motor movements across
seizure types can be very different, and therefore it can be challenging to fit a model that
generalises well. However, the seizures of a single person are often similar. A small amount
of wearable data could be easily collected as part of a routine clinical visit. While not enough
to train a traditional machine learning classifier, efficient use of personal labelled data could
lead to more accurate, personalised models. My ability to test personalisation in this dataset
was limited due to a lack of repeat seizures, but a physiological few-shot learning approach
is considered in the following chapter.

Chapter 4: Stress classification
The work in seizure detection made clear the potential for and importance of personalised
models. Motivated by the desire to efficiently use small amounts of an individual’s data, in
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Chapter 4 I look at how a probabilistic meta-learning neural network approach to adapt a
model to a particular participant’s data in a stress classification task.

Essentially, the problem of personalisation is posed as a few-shot learning problem and
approached using a model from the neural process family in participants from two public
datasets,WESAD andDriveDB. Neural processes (NPs) are a family of latent variable neural
networks models introduced in 201856 that are designed to be capable of rapid adaption to
new data.

I compare NPs tomachine learningmodels that are traditionally used in stress and biosig-
nal classification problems. The NPs are adapted using either baseline negative-class data,
the baseline data and the first instance of a positive stress label, or random points from the
test participant. In each case the adapted model outperforms the traditional machine learning
algorithms while a NP conditioned on another participant’s data performs similarly to the
traditional methods.

Chapter 5: Mass Science and Engagement
When the COVID-19 pandemic swept the globe a lot of my work was refocused on setting
up, and later analysing the data from, a remote citizen science study aiming to learn about the
disease through historic and prospective wearable data. This chapter details the development
of the Mass Science application and backend infrastructure which were produced for the
study. Subsequently, the app has also been used in a national core study on the long term
impacts of COVID-19 and could be further used in RADAR-base studies.

I also look at the engagement and adherence of participants in the study in this chapter. I
used hiddenMarkovmodels to cluster participant’s based on their self-reported questionnaire
completion rates over time. This dynamic view of adherence shows bias in the patterns of
self-report response that may not be adequately captured by a typical dropout or missing rate.

Chapter 6: Covid Collab study protocol paper
A protocol paper for the Covid Collab study forms the content of Chapter 6. Largely this
chapter sets the scene for the following analysis chapter, but there are a couple of contribu-
tions from this work. A distinction between Covid Collab and the similar COVID-19 citizen
science wearable studies that were run around the world is the inclusion of long-term historic
data, and the succeeding chapter will help illustrate the importance of this data. Secondly,
the data from Covid Collab is in the process of being made publicly available and therefore
may be a useful source for secondary research.
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Chapter 7: Long COVID presentation and risk factors using long term
wearable data
The last analysis chapter uses statistical methods to investigate long COVID in the Covid
Collab study. The presence of long COVID itself is considered in two ways: through per-
sistent self-reported symptoms and through persistent changes to wearable-measured resting
heart rate following COVID-19 infection. Uniquely, we include historic wearable data taken
from up to several years before enrolment. This long-term data was important not only as
an objective measure of prior physical fitness, but also as a source to fit time-series models
to better estimate changes to resting heart rate.

We found significant persistent changes to the passive wearable signals and self-rated
mental health scales following COVID-19 infection in a case-control comparison. Regres-
sions showed significant protective effects against long COVID from increased historic ac-
tivity levels.

The final chapter reflects in greater detail on the contributions of the thesis, how they fit
into the wider research landscape, the limitations, and future direction.

1.5 Output and Publications
Throughout my PhD I was fortunate to work on a range of projects and software, some of
which don’t form part of the thesis but are within the realm of mobile health. Outside the
work included in the thesis, they particularly focus on mobile health analysis in major
depressive disorder and the development of aspects of the RADAR-base software platform.
A list of publications follows.

1. C. L. Stewart et al.: RADAR-base: Major Depressive Disorder and Epilepsy Case Studies.
Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. ACM. 2018,
1735–1743.

2. Z. Rashid et al.: RADAR-base: Epilepsy Case Study. Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers. ACM. 2018, 227–230.

3. Y. Ranjan et al.: RADAR-base: open source mobile health platform for collecting,
monitoring, and analyzing data using sensors, wearables, and mobile devices. JMIR mHealth
and uHealth 7(8) (2019), e11734.
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4. Y. Ranjan et al.: Challenges & solutions in a hybrid mHealth mobile app. Adjunct
Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019 ACM International Symposium on Wearable
Computers. 2019, 183–186.

5. C. L. Stewart, A. Folarin, and R. Dobson: Personalized acute stress classification from
physiological signals with neural processes. arXiv preprint arXiv:2002.04176 (2020).

6. S. Sun et al.: Using Smartphones and Wearable Devices to Monitor Behavioral Changes
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7. P. Laiou et al.: Home stay reflects symptoms severity in major depressive disorder: A
multicenter observational study using geolocation data from smartphones. medRxiv (2021).

8. Y. Zhang et al.: Relationship between major depression symptom severity and sleep
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Chapter 2

Background and Methodology

2.1 Introduction
An idea of the breadth of the mHealth field was given in the previous chapter. Necessarily,
the methods used and analysis that can be undertaken within mHealth research are equally
broad. This chapter aims to give an overview of themedical areas and corresponding datasets
that are used in this thesis and the analytical techniques that are either used in the succeeding
analysis chapters, or else commonly used within closely related research. More detailed
explanations of specific algorithms or datasets are given in the appropriate chapters.

2.2 Medical and biological background

2.2.1 Autonomic Nervous System
Before giving an overview of the three medical conditions relevant to this thesis, it is worth
briefly considering the autonomic nervous system (ANS). Several of the common physiolog-
ical signals collected in mHealth studies are indirect measures of autonomic function. Skin
conductivity, or EDA, is largely driven by one of the two autonomic pathways. The cardiac
signals, ECG and PPG, measure heart rate, which is itself partially controlled by the ANS.57

Many of the cardiac-specific features derived from those signals are directly motivated as a
biomarker for autonomic responses.58 Moreover, autonomic dysfunction or particular signa-
tures in the ANS are extremely common in a wide variety of medical conditions, including
the three here: COVID-19,59,60 epilepsy61,62 and stress.63

The ANS is one of the two major components of the peripheral nervous system and is
involved in unconscious control of many of the body’s systems.64 It is one of the crucial
systems responsible for maintaining homeostasis, including digestion, blood pressure, and
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kidney function.65 It has three major subdivisions, two of which are visualised in Figure 2.1.
The enteric nervous system is one of the components of the ANS, it deals with gastrointesti-
nal function, but it is not considered in any further detail here.

The sympathetic nervous system (SNS) governs what is called the fight or flight response
and is highly activated in stressful or emergency situations. The parasympathetic nervous
system (PNS), on the other hand, has the epithet rest and digest and is predominant in relaxed
conditions. The effect that each component has on other organs naturally follow these two
goals in an obvious way. Importantly, several of these functions can be directly observed
externally by physiological sensors. The SNS increases heart rate, causes blood vessel con-
traction, pupil dilation, contraction of piloerection muscles, and causes secretion from sweat
glands. The PNS reduces heart rate, constricts the pupils, and causes secretion from the
lacrimal and parotid glands.

Although not included in Figure 2.1 for visual clarity, all of the thoracic and lumbar spine
segments shown involved with organs through the sympathetic pathway are also involved in
sympathetic control of the blood vessels, hair follicles, and sweat glands.64

The ANS is a key mediator in many normal and abnormal physiological functions. It
would be a Herculean task to list all the ways the ANS is affected by or causes disease and
dysfunction. Suffice to say, it is involved across a wide range of conditions, including direct
disorders of the ANS,66 cardiac diseases,67 mental health conditions,68–70 neurological con-
ditions71 including epilepsy,72,73 and many more. Certain manifestations of the autonomic
nervous system can be monitored through wearable sensors including electrocardiography
(ECG), electrodermal activity (EDA), and photoplethysmography (PPG). Long-term perva-
sive monitoring through these sensors could help unlock new understanding of many of the
diseases and conditions that affect or are affected by the ANS, especially over longer time
periods than have previously been possible.

2.2.2 Stress
Stress is a person’s reaction to pressure or threat, it is also generally defined as something
that alters the homeostatic balance of the body. It is common, it can be motivating, but it is
also linked with seven of the top ten leading causes of death in the developed world and it is
a major burden to health and wellbeing.74 Stress has physiological, cognitive, emotional, and
behavioural manifestations.75 Physiologically, it is intrinsically linked to the ANS and to the
hypothalamic-pituitary-adrenal (HPA) axis. As detailed above, the ANS can be monitored
through wearable sensor signals. The increased concentration of cortisol produced by the
HPA axis is a common biomarker for stress. There are research-level devices that can moni-
tor cortisol levels non-invasively,76,77 but these are not widespread. Most real-time wearable
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Fig. 2.1 Autonomic nervous system
The highlighted nodes represent the ANS-related physiological processes that are frequently or
occasionally monitored in mHealth studies. The figure is an adaption of an image licensed from

Adobe Stock.
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stress detection research and datasets have, therefore, focused on electrodermal activity and
heart rate variability,78–81 as they are biomarkers of the ANS.

Stress is interesting as an intermediate measure because it is influential in and involved
with many diseases. Accurate detection of stress could lead to better diagnostic or detection
models for other diseases. For example, there is a strong correlation between stress and the
triggering of epileptic seizures.82 Automatic wearable-based recognition of when a person is
stressed could therefore be an important part of understanding when somebody has a higher
likelihood of having a seizure. A similar point could be made for other diseases, such as
depression,83 or risk of infection.84

2.2.3 Epilepsy
Epilepsy is a neurological condition which affects an estimated 65 million people around the
world. It is characterised by the episodic appearance of seizures, and excessive or abnormally
synchronised brain activity which can cause the presentation of a variety of psychological
and physical symptoms. Despite advances in treatment, medication, and surgery, around one
quarter to one third of patients contend with treatment-resistance epilepsy..85

Seizure classification

Seizures are perhaps most popularly imagined as the intense generalised tonic-clonic seizure
(previously known as a grand mal); loss of consciousness followed by tonic contraction
(stiffening of the muscles) and then clonic movement (rapid, repetitive jerking). However,
many types of seizures exist. Advances in the conceptualisation of epilepsy has led to re-
cent changes to the classification system of the aetiology epilepsy and the types of seizures
presented.

The International LeagueAgainst Epilepsy’s (ILAE) 2017 classification system for seizures86

splits seizures according to three main criteria: (1) the location of onset, (2) whether there
is a motor component, and (3) level of awareness in focal onset seizures. Further levels of
classification are possible through identifying specific motor or non-motor characteristics.

Location of onset is broadly split into generalised, the seizure originates in both sides
of the brain and causes unconsciousness; focal, the seizure originates in a particular region
of the brain; or unknown. More specific regions of onset in the brain can be determined.
Awareness in a focal seizure is broadly split into aware and impaired awareness, but again
more specific descriptions can be given.

Motor components include automatisms, somewhat coordinatedmotormovementwhich
may resemble a normal activity; atonic, loss of muscle tone; clonic, a regular repetitive
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jerking motion; epileptic spasms, a sudden extension or flexion of (typically truncal and
proximal) muscles; hyperkinetic, intense, complex movement of the limbs and trunk; my-
oclonic, sudden short-duration muscle contraction; tonic, sustained muscle contraction; and
tonic-clonic, a tonic contraction followed by clonic movement.

There is also an autonomic link, both during the seizure (ictal period) and at other times
(post- or inter-ictal).87 All aspects of the ANS can be involved. Ictal changes include changes
to heart rate, blood pressure, pupil dilation, gastrointestinal, diaphoresis and flushing, and
breathing rate, among others.88 Other ictal symptoms can include cognitive and emotional
manifestations.

Classifications are useful to understand shared behaviour and patterns between seizures,
but seizures are unique. More specific descriptions of the presentation of a seizure are often
given. An important caveat is that while a person with epilepsy can have multiple types of
seizure, often seizure episodes in the same person are similar to each other.

Seizures and mHealth

Automated detection and classification of seizures through recorded signals is dealt with in
more detail in Chapter 3. Hopefully it is clear that many of the physical manifestations of
a seizure could theoretically be captured by wearable device sensors; inertial sensors could
capture many of the motor components, while ECG, PPG, and EDA sensors may provide a
way of monitoring autonomic changes.

Long-term monitoring may also illuminate relationships between stress, lifestyle, or par-
ticular activities and the likelihood of having a seizure. In an optimistic case, this may even
extend to forecasting seizures or the likelihood of having a seizure ahead of time.89

2.2.4 COVID-19
Originating in December 2019 and quickly sweeping the globe, coronavirus disease 2019
(COVID-19) developed into a pandemic which defined healthcare, medical research, and
people’s lives for years following90 and has gradually become endemic. There have been
6.54 million deaths and 616 million confirmed cases of COVID-19 as of September 2022.
91 The disease is caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus.92 It is a respiratory infection with a wide range of symptoms and multi-organ
effects. Common symptoms include fever, cough, breathing difficulties, fatigue, anosmia,
sore throat, congestion, and nausea,93 although different variants have different reported rates
of symptoms.94 The majority (80%) of cases with symptoms are mild, but there moderate
(15%) and severe (5%) cases, which particularly affect older populations, and a mortality
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rate of about 1%. In addition, around 25% of people with COVID-19 are estimated to be
asymptomatic.95

Long-term sequelae following acute COVID-19 infection was brought to wider attention
by patient advocacy groups in early 2020.96 Particularly as the impact of the acute infection
has faded and public health and safety measures have decreased, the longer term impact to
health has been put in to focus. Popularly known as long COVID or post-acute COVID-19
syndrome, a wide range of symptoms and affected functions have been reported, perhaps
most commonly fatigue,97 but additionally chronic pain,97 neurological conditions,98 includ-
ing to the ANS,60,99 reduced mental wellbeing,100,101 cognitive decline,102 and long-term
decreased respiratory103,104 and cardiac105,106 function. Many studies note the continued
presence of symptoms and reduced function even at the end of the study,107 suggesting an
unknown or unbounded duration of long COVID symptoms for some people.

2.3 Mobile health data
This section will give an overview ofmobile health datatypes, nomenclature, and the datasets
used in this study.

Common modalities

Common types of data, which can be termed a modality, in remote monitoring mHealth
studies include the following:

Physiological sensors

PPG An optical sensor which measures the blood volume pulse. Additionally, a
low frequency baseline includes respiration and SNS activity components.108 They
are widely used as heart rate monitors on consumer wearable devices.

ECG A measurement of the electrical activity of the heart. Most wearable devices
with ECG require electrodes placed on the skin, reducing their viability in consumer
products. Recently ECG sensors have been included in some wearable wrist devices,
requiring the person to form a circuit by touching the device with both hands.109

Because it requires contact with both limbs, it can not continuously monitor heart
rate.

EDA A sensor to measure the electrical activity of the skin. EDA is thought to be
largely driven by SNS arousal.
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Electromyography (EMG) A sensor to measure the electrical activity of a mus-
cle. When implemented in a wearable, it is typically surface-EMG - an electrode in
surface contact with the skin

Inertial sensors

Accelerometry A sensor which measures acceleration in 3 dimensions and often
used in activity detection or classification. It is very common in both smartphones
and wearable devices.

Gyroscope A gyroscope measures angular velocity, giving the orientation of a de-
vice. While common in smartphones, a gyroscope typically has much higher power
usage than an accelerometer, so their use in wearables is restricted.

Magnetometer A compass, it measures the strength and direction of a magnetic
field.

Location Precise geolocation can be determined by Global Navigation Satellite System
(GNSS). The most well known satellite system is the Global Positioning System (GPS),
but smartphones and some wearables often work with multiple systems.

Surveys and exercises Often mHealth studies use smartphones as a delivery mecha-
nism for surveys, questionnaires, and exercises. Exercises can include cognitive tests110

or physical tests, such as a six-minute walk test.111

Audio Audio can be recorded passively or as part of an active survey or exercise. Often
audio recordings are of a person’s voice, which has relationships to many diseases and
mental states112–114

Images and video It has already foundmany uses inmHealth research, includingmelanoma
risk in a mole mapping study,115 burn severity diagnosis,116 anaemia diagnosis.117

Smartphone usage How a person interacts and uses their phone can be measured in
several ways, for example the types of apps they use, screen time, battery usage, nearby
Bluetooth devices, phone or text communications, ambient light, and keyboard use.

Processed data

In addition to the above modalities, which can more-or-less be termed ’raw’ signals, com-
binations of signals, processed signals, and contextual information can be calculated from
them. Especially when using commercial devices, it is more common to have access to these
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derived or processed signals than to the underlying raw signal. For instance, a commercial
wearable device may include a PPG sensor and an accelerometer. From these two signals,
the device or backend infrastructure belonging to a company may classify sleep periods,
level of activity, heart rate, and steps. It is often these processed signals that are available to
a researcher.

Passive and active data

An important distinction between mHealth modalities is whether they require active atten-
tion from a participant, or whether they can be collected passively without significant bur-
den. Passive RMT (pRMT) modalities include data such as the physiological sensor signals
collected from wearable devices, background geolocation collection, smartphone use, and in
some cases audio and video recordings. Active RMT (aRMT) include surveys, audio record-
ing tasks, taking a photograph, or taking part in an exercise or cognitive test. Often, but not
always, an active task forms part of an outcome measure in an mHealth study.

2.3.1 Datasets
Four datasets are used in this thesis. The epilepsy data comes from Remote Assessment of
Disease and Relapse—Central Nervous System (RADAR-CNS), an international research
project that had initiated data collection in 2017. There are two stress datasets, both are
publicly available. The COVID-19 data comes from Covid Collab, an mHealth study we
set up towards the beginning of the pandemic. A brief overview of each dataset follows. A
fuller description will be given in the appropriate chapters, particularly for the Covid Collab
dataset because the development of the study and data collection were direct parts of this
thesis.

RADAR-CNS

The RADAR-CNS study was a large European-wide research project assessing the clini-
cal use of smartphones and wearable devices in three disorders of the central nervous sys-
tem: major depressive disorder, multiple sclerosis, and epilepsy. Data from the epilepsy
study (RADAR-EPI) is used in this thesis. Participants were inpatients on the epilepsy mon-
itoring units at two hospitals, King’s College Hospital (KCH), London, and the Univer-
sitätsklinikum Freiburg. Continuous video-EEG monitoring with clinician-labelled seizure
events was combined with the collection of wearable sensor data through the RADAR-base
platform.
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In total, 190 participants were enrolled at Freiburg and 72 were enrolled at KCH. One,
or a combination, of three main wearables were used. The Empatica E4 wristband118 and
Biovotion vsm1 armband are wearable devices which measure PPG, EDA, acceleration, and
temperature. They are used at both study sites. In addition, some participants at KCH used
a prototype device developed by IMEC. Throughout the thesis, this device will often be
referred to as the ’IMEC device’. Rather than measuring the heart through PPG, it uses
ECG. In addition to EDA, it has an EMG sensor. The analysis in this thesis is carried out on
the IMEC dataset.

WESAD

The Wearable Stress and Affection Detection (WESAD) dataset is, as the name suggests, a
public dataset for stress and affect detection.78 Physiological sensors monitor 15 participants
under certain conditions designed to elicit an affective response or relaxation. Each recording
is roughly two hours in length, and covers a baseline period, amusement, stress, meditation,
and recovery conditions. Self-reported measures of affect are completed between tasks. Two
devices were used, a RespiBAN with ECG, EDA, EMG, and temperature sensors worn on
a chest strap, and an Empatica E4 with PPG, EDA, accelerometry, and temperature sensors
worn on a wrist. The original paper considers classification with decision trees, random
forest, AdaBoost, linear discriminant analysis, and k-Nearest Neighbours. The authors em-
phasised the future need for model personalisation because of inter-individual differences.

DriveDB

The Stress Recognition in Automobile Drivers dataset79 (drivedb) is a public collection of
physiological recordings of 17 participants driving a car along a route designed to elicit
stress. Each participant is monitored through ECG (496Hz), EMG (15.5Hz), EDA (31Hz),
and respiration(31Hz). The route protocol begins in a rest phase without driving and then
alternate between city driving (3 instances) and highway (2 instances), and a final rest phase.
The city driving segments are assumed to be more stressful. The original study included 24
participants, but only 17 are available in the public repository.119

Covid Collab

Covid Collab is a citizen science project. Participants could sign up, donate wearable data,
and fill in regular COVID-19 and mental health related surveys, but there was little to no
direct contact between researchers and participants. Since study set up as part of PhD, study
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design and software development are elaborated on in future chapters before analysis. Over
17,750 participants had enrolled as of August 2022.

2.4 Analysis pipeline
The following two chapters in this thesis concern stress classification and seizure detection.
Both rely heavily on electrical biosignals and inertial sensors. These are high frequency
signals, between 32Hz and 2048Hz in the datasets used here, and require a typical digital
signal processing pipeline to reduce noise and produce meaningful features from the raw
signal. On the other hand, data collection is under fairly controlled conditions, with smaller
cohorts, more participant oversight, and directly observed or induced outcome measures.
The reasons for incomplete data are typically known.

The latter chapters are based around Covid Collab, a remote citizen science project. Data
is collected opportunistically throughmobile-based surveys and commercial wearable fitness
devices and is largely captured in a processed or high-level form. Therefore, pre-processing
and feature extraction is often less necessary or already done by third parties. There is a high
degree of control over what is shared is given to participants, minimal oversight over individ-
ual participants, a large cohort size, and a longitudinal study design with high attrition rates,
which all lead to a heterogeneous dataset with respect to data availability and completeness.
The two types of dataset used here, therefore, lie far apart on the spectrum of mHealth data
characteristics and the analytic techniques that will need to be used. However, there are
commonalities and shared issues that should become apparent throughout the thesis.

2.4.1 Cleaning and pre-processing
Data collection

Data collection relies on a software platform to support it, particularly for large studies. The
data collection apparatus can determine how the initial dataset is stored, formatted, and in
the case of a live study, arrives. The storage and layout of a dataset is important from a
FAIR perspective — how it is made findable, accessible, interoperable, and reusable — but
also for performance. Mobile health datasets can be very large, long-term recordings of
high frequency physiological signals for example, and so data format and locality can make
order of magnitude differences in the time it takes to perform analyses. The data used in this
thesis is initially stored in a variety of formats, but is typically converted into compressed
N-dimensional arrays using the zarr library and format.120
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Missing data

Data completeness and missingness is a problem in all studies, but exasperated in longitudi-
nal mHealth studies and particularly citizen science projects. Missingness has implications
on what analysis techniques can be applied, interpretation, and can cause bias.

It is common to describe missingness as eitherMissing at random (MAR),Missing com-
pletely at random (MCAR), or Missing not at random (MNAR). The differences between
them can be subtle. MAR is not truly random, it refers to missingness which can be ex-
plained by other observed variables, for instance a younger person may be more likely to
randomly miss a prompted-for survey. MCAR refers to missing data where the missingness
does not have a relation to any of the observed data, for instance due to a random technical
failure. MNAR refers to missing data with a systemic relationship to observed data even
when taking into account other observed variables. For example, in a study of depression a
person in a depressive episode may be less likely to complete a survey measure depressive
symptoms.

If it is reasonable to assume that data is missing at random, certain techniques can be
used to increase the power of the analysis compared to only using complete data. In certain
circumstances it is possible to impute missing values. Multiple imputation121 is a popu-
lar technique in epidemiological and clinical research.122 Other techniques include coding
category indicators for missingness in a regression, replacing missing values with mean or
previous values, or by jointly modelling the reason for missingness and the outcome variable.
123

Typically, these techniques envisage amatrix of covariates with individualmissing points.
Mobile health studies often record data persistently and so missing data can correspond to
periods of time. Taking the case of a wearable that measures ECG at 256Hz, if a partici-
pant does not wear the device for several hours there will be millions of sequential unknown
values. Imputation is clearly not possible on the actual signal, and whether it is possible
on higher level features will depend on factors like the window length used to generate the
feature of interest.

Missingness may also be informative. Above an example of a depressed participant not
completing an outcome measure on depression was given, but it has also been suggested that
that missingness could also be used as part of a predictive model, if active tasks were being
collected.
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(a) Accelerometry (b) Electromyography

(c) Electrocardiography (d) Electrodermal activity

Fig. 2.2 Example recordings of physiological signals

Implementation

To promote re-usability many of the features and preprocessing steps above were imple-
mented in a Python library named pymhealth.124 It uses Numba,125 an LLVM compiler for
Python, to produce much quicker feature extraction pipelines than were otherwise available
in Python.

Signal processing

Digital signal processing is important in studies where raw high frequency signals are col-
lected, such as ECG or accelerometry. Many of these physiological signals are well studied
and with a large body of work on their processing steps and analysis. However, typically
they were developed under very controlled circumstances with high quality sensors. Mobile
health adds a dimension of complexity because the sensors are typically constrained in size
and therefore quality, participants are often in free living or ambulatory conditions rather
than confined to a ward, and data must be collected remotely rather than offline. These
difference often lead to signals with more noise, increased motion artefacts, and potential
missingness due to technical errors, all of which can require modification to the typical pro-
cessing steps.
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An important step in signal processing is often the removal of certain frequency bands
outside the informative frequencies, or in which noise is expected. Different signals will
have different frequencies with useful information. Unless otherwise stated, all filters used
in this thesis are 5th order Butterworth filters implemented in the scipy package.126

The initial processing of ECG signals in the analyses of this thesis follows a standard
pipeline. Baseline drift and interference from electromyography are removed with a 0.5Hz
high-pass and 100Hz low-pass filter respectively. Power-line interference is removed with a
50Hz band-stop filter. The sinus rhythm produces a characteristic QRS-complex on an ECG,
where the R-peak is detected to calculate the inter-beat-interval between heartbeats. The
Hamilton-Tompkins algorithm127 is implemented in the previously mentioned pymhealth
analysis library for R-peak detection.

EDA is measured through applying two small electrodes to the skin, applying a very
low voltage, and measuring the current between them. The conductance of the skin (the
reciprocal of the resistance) is linked to the sympathetic nervous system and EDA is often
used as a marker for changes in sympathetic arousal.128 It is formed from two components, a
slowly varying baseline tonic component and transient peaks which last several seconds in
the phasic component. The peaks in the phasic component are often called the skin conduc-
tance response (SCR), and are in reaction to sporadic or event-driven sympathetic stimuli.
Although sophisticated optimisation algorithms exist to separate the tonic and phasic com-
ponents in EDA,129 specific and irreducible types of noise in some of the data used ruled
out their use. The tonic component is estimated using a 0.2Hz low-pass filter and the phasic
component by a 0.5Hz-2Hz bandpass filter.

Accelerometry is also formed of two components. The linear acceleration caused by
movement of the sensor, corresponding to whatever part of the body it is worn on, and the
constant gravitational acceleration pulling towards the ground. The gravitational component
can be roughly estimated by applying a 0.5Hz low-pass filter, while the linear component is
a high-pass filter at the same value. It is possible to roughly calculate roll and pitch, but
now yaw, from the acceleration in the x, y, and z plane of the gravitational component, the
equations are given below.130 A simple approach is taken with surface EMG signals. Only
power-line interference is removed using a bandpass filter at 50Hz.131

𝑟𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑧) (2.1)

𝑝𝑖𝑡𝑐ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑥, √𝑦2 + 𝑧2) (2.2)
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2.4.2 Feature extraction
A feature is a higher level representation or characteristic of an underlying signal. Sometimes
they are basic summary statistics, creating single values from a longer sequence: minimum,
maximum, mean, and so on. Often they are biologically motivated or designed to reflect or
capture certain physiological behaviour. Features are often task specific, even if the underly-
ing signal is the same. For example, low frequency heart rate variability might be important
if you were looking at depression,132 while short-term heart rate changes may be important
in a seizure with a tachycardia.

Typically a feature is calculated over a window, not the entire recording. Because we
are usually interested in detecting an event without prior knowledge of the time or duration,
features are extracted in a slidingwindow. Features are calculated i a window of length 𝑡𝑤 and
shifted along in steps of length 𝑡𝑠. Often the windows are overlapping. Calculating features
in a window repeatedly over the length of a signal is a problem that is easily solved by looping
over the indices of the windows, but it is a problem for which Python is notoriously slow. The
windowing loop and below features are therefore implemented in pymhealth and just-in-time
compiled to a LLVM representation using Numba, which greatly speeds up processing.

Common features that are applied to a variety of signals include summary statistics
(mean, standard deviation, minimum,maximum, range, median, skew, kurtosis), zero-crossing
rate, statistics on the derivatives of a signal, Hjorth parameters, and entropy based features.
Hjorth parameters are a set of metrics developed to describe the characteristics of an EEG
trace,133 but have since found wider application. Entropy is a measure of the complexity or
information content of a signal. Approximate entropy and sample entropy are often used as
features in physiological signal analysis.134

Cardiac

Heart rate can be estimated as the reciprocal of the inter-beat-intervals estimated as the dis-
tance R-peaks. Often basic summary statistics are calculated directly on heart rate. Heart
rate variability refers to the variation in inter-beat-intervals, the duration between heart beats.
Many features are derived from the normal R-peal intervals (NNI). A list of the time domain
and some non-linear recurrence-based features is given below. Recurrence refers to features
based on the Poincaré plot — a plot of 𝑁𝑁𝐼𝑛 against 𝑁𝑁𝐼𝑛+1. Other non-specific features
are also often calculated for heart rate, including detrended fluctuation analysis and sample
entropy. Amore detailed overview is given in a paper by Shaffer &Ginsberg.135 The window
size used for cardiac features vary. For time-domain features and high-frequency frequency
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features, a window length of 60s can be adequate. Lower frequency features require a longer
time window, from 5 minutes to 24 hours.

SDNN Standard deviation of normalised R-peak intervals. Typically taken on a period
of 5 minutes or 24 hours.

SDANN The standard deviation of the mean R-peak interval in each window (typically
5 minutes) over a longer period (typically 24 hours).

SDNNI The mean of the standard deviation of the R-peak intervals in each window
(typically 5 minutes) over a longer period (typically 24 hours).

pNN50 The proportion of R-peak intervals that differ from the previous value by more
than 50ms.

RMSSD The root-mean-square of successive differences.

SSD Sum of successive differences

SD1 The width of the ellipsis on a Poincaré plot. Equivalent to the standard deviation
of successive differences times some factor.

SD2 The standard deviation of the longitudinal length of the Poincaré plot.

Frequency domain features are based around the power, peak, and relative power of dif-
ferent frequency bands in the HRV sequence. The four bands are the ultra low frequency
(ULF) band (≤ 0.003 Hz), very low frequency (VLF) band (0.003 - 0.04Hz), low frequency
(LF) band (0.04 - 0.15Hz), and high frequency (HF) (0.15-0.4 Hz) band.

Electrodermal Activity

Along with standard statistical features on the phasic SCR and tonic level, some specific
features are generated, typically in the time domain.136 Features associated with the SCR
peaks include rise time, peak amplitude, recovery time, area under the SCRs, number of
SCRs in a window, and the mean magnitude of the SCRs.137 Window length can vary, from
as little as around 10s in the literature if only single SCR are of interest. A window length of
40s is used in the stress detection classification task in this thesis, while in seizure detection
the long-term changes to tonic EDA following a seizure take several minutes to appear, and
so a window of 5 minutes is used.
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Electromyography and accelerometry

The electromyography and accelerometry features used here are fairly straightforward and
not specific to the signal. They include measures like the zero crossing count, line length,
and Hjorth parameters.133 Window lengths as low as 2s are common for electromyography,
and around 10s for accelerometry.

2.4.3 Visualisation
Visualisation is an important step in an analytic process. Data exploration can help form
impressions of new data, give an idea of the patterns present, and also help communicate
results. It is also useful as an overview of incoming data while study is running, giving a
better chance to react to missing data or technical errors.

2.4.4 Modelling
Machine learning modelling is the process of generating an algorithm or program that can
perform a task from a set of data. There are various ways to categorise types of machine
learning models and the tasks that they perform. The choice of a machine learning model is
on the basis of the type of task, the estimated or empirical performance, and the assumptions
and requirements the model has. Common tasks include:

Classification Predicting a categorical label.

Regression A regression is a prediction of a continuous outcome variable through ex-
planatory variables. Forecasting is a subset of regression, in which the future of a con-
tinuous time-series is predicted.

Clustering Group data without explicitly given labels.

Supervised and unsupervised learning

Supervised learning refers to training a model where the training instances have a known
outcome, for instance class labels. Unsupervised learning refers to training a model that does
not have a known output. For example, clustering into groups on the basis of similarities in
the input data.
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Interpretability and feature importance

There is often a trade-off between the complexity of a model and how easy it is to interpret
the results. In an ordinary least squares regression, the relationship between the explanatory
variables and the outcome is very clear - each variable has an associated coefficient, and they
are linearly related to the outcome. On the other hand, a deep neural network can model
complex non-linear behaviour, but how the inputs relate to the output in the model is hard to
determine. While there is work done to interpret neural networks,138 it is intrinsically harder
than many other models.

Evaluation

There are several metrics that can help evaluate the performance of a model. Below the per-
formance of a binary classification task is considered, which is the most commonly evaluated
task type in this thesis.

True condition

Positive Negative Total

Predicted
condition

Positive TP FP TP + FP

Negative FN TN FN + TN

Total TP + FN FP + TN N

TP: True positive FP: False positive FN: False negative TN: True
negative N: Total number of classifications

Table 2.1 Contingency Table

Sensitivity, specificity, and precision

Sensitivity, also known as the true positive rate (TPR) or recall, is the number of correct
positive predictions divided by the total number of all positive predictions.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇 𝑃 𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁
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Specificity is the number of correct negative predictions divided by the number of all
negative predictions.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇 𝑁
𝑇 𝑁 + 𝐹 𝑃

Precision, also known as the positive predict value (PPV), is the proportion of positively
classified instances that were correct.

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃 𝑃 𝑉 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃

Accuracy is the proportion of correctly predicted class labels

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑁

The harmonic mean of the sensitivity and specificity, which is called the F1-score, is
often given as a performance metric.

Receiver Operator Curve and Precision-Recall

In addition to point estimates, it is common to visualise how a model’s performance varies
as its discrimination threshold is changed. A Receiver operator curve (ROC) is a plot of the
senstivity against the false positive rate (1 - specificity). It visualises the model performance
and can be used as a tool to compare models without making a prior assumption about the
relative importance of the classes (A TP may be more or less important than a FP). The area
under the curve (AUC) of a ROC plot is often used as a performance metric in its own right.
A precision-recall plot is similar, but plots precision against sensitivity (recall). It can be a
more useful visualisation of model performance where there are large class imbalances.

How a model should be evaluated depends on the goal or task. For example, a seizure
is a rare event and a detection model with clinical or real life use would require a very high
sensitivity. The number of false alarms should be reduced, but a lower specificity could be
accepted up to a point.

Training and cross-validation

While there are methods to reduce overfitting and increase generalisability, a model is likely
to perform better on the training dataset than unseen samples from the same task. Certain
train/test methodologies can be used to estimate generalised performance. The most basic is
to hold back a proportion of ’test’ data instances which are not used during training, and to
then perform model evaluation on them. Additionally, a test dataset formed from a different
cohort or sample to the training dataset can provide a more accurate view of how the model
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will perform on new data. Cross validation is a resampling method which randomly splits
the dataset into train/test set at each iteration. It is often used either in conjunction with the
standard train/test set to fit hyperparameters or select a model before final testing, or instead
of the standard train/test if a dataset is too small to set aside a portion for testing. Leave-one-
participant-out (LOPO) or leave-n-participants-out is a modification to cross validation in
longitudinal or time-series based studies. Because data points belonging to a single partic-
ipant are not independent, the dataset can not be split randomly. Instead, all data instances
belonging to a single participant are included or not included in the training set.

2.5 Models

2.5.1 Machine and Statistical learning
Linear models

There is an expansive field of generalised linear models. Only multiple linear regression and
logistic regression are used in this thesis. The statsmodels library implementation of both
linear models is used in this thesis.139

A GLM consist of random component (distribution of outcome variable), systematic
component (explanatory variables), and a link function (a function that relates the outcome
variable to the explanatory variables).

A linear regression is a regression model which takes a linear combination of weighted
explanatory variables to predict a continuous outcome variable.

A logistic regression is a 2-class classification model (which can be extended to multi-
class). The outcome variable (random component) is assumed binomial, the link function is
the logit.140

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖) = 𝑙𝑜𝑔 (
𝜃𝑖

1 − 𝜃𝑖 )
A related technique is the proportional hazards regression, used for survival analysis with

right-censored data. A more thorough explanation is included in the appropriate chapter.

Nearest neighbours

A simple supervised algorithm that can either be used in either regression or classification
by comparing a point to the nearest labelled points according to some distance measure. For
an unlabelled point, the closed 𝐾 points are taken. In a regression the 𝐾 points are averaged.
In a classification the most common label is taken.
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Support vector machine

The support vector machine (SVM) is a common clustering and regression machine learning
algorithm.141 For classification, the aim is to fit a decision boundary (or hyperplane) such that
the margin (distance between the separating hyperplane and the closest points) is maximised.
For a one-dimensional variable, the decision boundary would be a point, for two dimensions
a line, for three a plane, and so on. The boundary fit is linear, but often a boundary between
classes will not be. To account for that fact, an SVM can apply a kernel function to the data.
The kernel function transforms, or projects, the data into a higher dimensional space in which
the SVM can fit a linear boundary that can appear non-linear in the original input dimension.
The SVM can therefore be used in classification problems with a non-linear separation in
the explanatory variable space with clever choice of a kernel function. When used in this
thesis, SVMs are fit with a radial basis function kernel using the scikit-learn python package,
142 which wraps the libsvm library.143

Decision tree

A decision tree is essentially a flow chart for classification or regression. It successively
splits data according to certain rules until the data at a split is all of one type. There are
several types of decision tree and training algorithm.144

Ensembles

An ensemble is a collection of weaker estimators, or models. The predictions from each
model are combined to produce a better estimate. One of the most popular ensembles is the
Random Forest (RF),145 a collection of decision tree predictors.

Hidden Markov models

The hidden Markov model (HMM) is a model in which ’hidden’ states are responsible for
generating the observed sequence of variables. As the name implies, the model assumes the
system is a Markov process and so the probability of being in a state is only dependent on
the previous state and the observed outcome at that time. Consider a model with 𝑁𝑆 hidden
states and a categorical outcome variable with an alphabet of length 𝑁𝑂. At each time
point 𝑡𝑖, the probability of moving to a state is defined by an 𝑁𝑆 × 𝑁𝑆 transition matrix.
Traditionally the outcome sequence is a categorical variable and so the emission probability
is defined by an 𝑁𝑆 × 𝑁𝑂 matrix, giving the probability of emitting each category for each
state. A vector gives the probability of starting the model at 𝑡0 for each state. The typical
problems solved are:
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1. Estimating the optimal sequence of hidden states given an observed sequence and
certain model parameters. Solved by the Viterbi algorithm.

2. Estimating the likelihood of a model given certain parameters and an observed se-
quence. Solved by the Forward-Backward algorithm.

3. Estimating the model parameters. Estimated with the Baum-Welch algorithm, a par-
ticular implementation of the expectation-maximisation algorithm.

2.5.2 Neural networks and Deep learning
Introduction and MLP

A neural network is a model inspired by biological neural networks. They are non-linear
models which learn to approximate a function by building together layers of connected nodes.
Each node has a set of weights 𝑤𝑖, a bias 𝑏, and activation function. It transforms an input
vector 𝑥𝑖 into a scalar output 𝑦. The output is the result of applying the activation function
to the sum of the weighted input plus the bias. An activation function is typically non-linear.
The three most common are the sigmoid, TanH, and RelU functions.

Fig. 2.3 An example neural network
A neural network with two hidden layers. The connections between each layer are only

visualised for at most 2 nodes. Typically, a node in one layer connects to every node in the
previous and subsequent layer.

A loss function is a measure of howwell a model predicts the data and is minimised when
fitting the model. The loss function used is task dependent. In a regression it is common
to use the mean squared error (MSE), and in a binary classification problem the log loss is
used (as in a logistic regression).



2.5 Models 32

Common structures

In the introduction to neural networks the fully connected layer and multilayer perceptron
(MLP) were briefly explained. The parameter space of a large or deep fully connected neural
network would become very big. There are several over structures that are commonly used
in neural networks and are relied upon in most successful modern models.

Fully connected A fully connected or linear layer was described above. It is a layer in
which all nodes are connected to all the nodes in the previous layer. A fully connected
layer is commonly used as the last layers in a model. For example, a final fully connected
layer will be used in a classification task, where each node corresponds to a class label.

Convolutional A convolutional layer is a main component of a convolutional neural
network (CNN). It consists of a learnable filter (or kernel) which is convolved with the
input.146

Pooling A convolutional layer is often combined, or interspersed, with a pooling layer.
The pooling layer is a non-trained layer which downsamples the feature maps output by a
convolutional layer. A region of a certain size and sliding across the input with a certain
stride takes an aggregation at each point. The most common aggregation is to take the
maximum value (Max pooling).

RNN Recurrent neural networks were developed to address arbitrarily length sequences
that contain a hidden unit which allows the output at a current time point to affect the
input of the same node at a future time point.

Autoencoder An autoencoder is a particular structure that learns a reduced representa-
tion of an input. It is composed of an input layer, a hidden layer, and an output layer.
Typically, the hidden layer is composed of fewer nodes than the input and output layers.
The input layer(s) take an input sequence, and gradually reduce the number of nodes at
each step until the hidden layer. The output layer reverses the process and is trained to
reconstruct the original sequence. A schema for an autoencoder is given in Figure 2.4.

Meta-learning

Meta-learning is a term which is conceptually concerned with learning to learn, or how the
process of learning a model can be improved. It refers to multiple different specific areas or
implementations within machine learning. Here we focus on the use of meta-learning within
neural networks. There are several ways in which the learning process can be improved, but
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Fig. 2.4 Autoencoder
An autoencoder learns a reduced representation 𝑧 of the input 𝑋.

Fig. 2.5 Variational autoencoder
A variational autoencoder is a generative model. Rather than a reduced representation of

fixed values, a latent probability distribution that can be sampled from is learnt.147
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in this thesis we are primarily concerned with reducing the amount of training data required
to produce a model, or in other words few-shot learning. Conceptually, few-shot learning is
attractive because many physiological processes, personal behaviours, or manifestations of a
disease can be very different depending on the individual, but can be similar over time when
considering only a single person. Therefore, a general model trained on a particular task may
not be accurate enough for certain (or any) individuals. For a medical application it is not
viable to collect enough data from every person to provide individual models. Therefore it
would be attractive if a model that could be quickly trained on only a few training instances
because a meta-learner had learnt how to quickly adapt on the basis of many similar tasks.
There are several meta-learning methods. Only the neural process,56 the implementation of
which is explained in Chapter 4, is used.



Chapter 3

Multi-modal motor seizure detection

3.1 Introduction
Epilepsy is a common neurological condition, affecting 65million peopleworldwide.85 Epilepsy
is characterised seizures cause by transient episodes of excessive activity in the brain. Around
two-thirds of people with epilepsy respond well to treatment with drugs. A small proportion
of those remaining can benefit from surgery, leaving around 25-30% with treatment-resistant
epilepsy and at the risk of seizures. In this context, there are a few ways in which automatic
detection of seizures through physiological signal monitoring can be useful. Firstly, in those
people with drug-resistant epilepsy, seizure detection could alert a caregiver that a seizure is
happening to provide timely intervention and a reduction in the risk of Sudden Unexpected
Death in Epilepsy (SUDEP). Secondly, video-EEG systems demonstrate that patients under-
report seizures148 and can be themselves unaware of a seizure.149 A detection device could
provide an objective measure of seizure frequency, which can be important in the delivery
and evaluation of treatment.

The most common and accurate seizure detection methods rely on direct recording of
brain activity by an electroencephalogram (EEG) device. However, EEG relies on either
the surgical implanting of electrodes at the surface or within the brain,150 or else attaching
multiple electrodes in proximity to the scalp.151 However, scalp EEG is not suitable for long-
term every day use because patients find them stigmatising, uncomfortable, and awkward.
151,152 Implanted EEG requires surgery, which carries risks and may not be tolerated by
patients.153 Despite the block in long-term monitoring, video-EEG monitored by a clinician,
typically in a clinical setting, still provides the gold standard in seizure detection against
which other methods are compared.

Non-EEGmonitoring covers anything from radar to sensor-equippedmattresses or seizure
alert dogs.154 Since the early 2010s there has been an increasing amount of seizure detection
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work using wearable physiological sensors; typically one or a combination of accelerom-
etry (ACC), electromyography (EMG), photoplethysmography (PPG), electrocardiography
(ECG), and electrodermal activity (EDA). These sensors are widely available, often even on
consumer wearable fitness trackers, and can be integrated into discrete or every-day devices.

Accelerometry and EMG are both sensors that could identify motor components of a
seizure. An accelerometer could theoretically recognise movements that are characteristic
of a seizure so long as the accelerometer is attached to a part of the body that is affected
by the particular seizure. Certain common types of motor patterns, e.g. tonic, clonic, and
myoclonic, leave characteristic accelerometer traces. Other types could also be recognised,
but the particular pattern may differ. An EMG is a measure of electrical activity in a muscle.
So long as the EMG sensor is in proximity of a muscle that is noticeably activated during a
seizure, it could be useful in detection.

The PPG and ECG sensors are two methods of measuring heart beats. Autonomic symp-
toms are common in seizures and those affecting cardiac function could be picked up.87 EDA
is also linked to autonomic symptoms through the sympathetic nervous system, and could
therefore provide another view of autonomic changes. Seizures aremade up of various symp-
toms or components that can occur at different points in the seizure.

Certain sensor modalities are likely to pick up different symptoms. Figure 3.1 shows the
ACC, EMG, ECG, and EDA recordings of a seizure in a participant in this study with the
components in blocks above. It is clear that different signals become recognisably different
from normal behaviour at different points in the seizure. Additionally, signal quality, outside
of ACC, can be adversely affected by motion during the seizure.

Other studies have demonstrated good results for generalised tonic-clonic seizure (GTCS)
detection and variable results for focal motor seizures. Detection algorithms are often devel-
oped on a single sensor modality, but there is also a drive for multimodal seizure detection
with the expectation that it should be more accurate and potentially cover a wider range of
seizures.

In this study the major aims were to build a multimodal seizure classification pipeline for
motor seizures, both generalised tonic-clonic and focal, and to determine the modality and
feature importance. The feature set used in this study is quite typical and based on features
described in the non-EEG seizure detection literature. The only major divergence is the use
of an approximation of the Euler angles (pitch and roll) rather than using low-pass filtered
acceleration.
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Fig. 3.1 Raw physiological signals during an example seizure
The boxes at the top show the duration of components of the seizure. Green boxes are

motoric components that could conceivably be captured by a wearable device. White boxes
are motoric components that are unlikely to be captured. The blue coloured box represents
an autonomic change. Below are four raw signals from the IMEC device: accelerometry,
ECG, EMG, and EDA. The black vertical bars represent the start and end of the seizure.
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Fig. 3.2 Preprocessed accelerometry during an example seizure
The boxes at the top show the duration of components of the seizure. Green boxes are

motoric components that could conceivably be captured by a wearable device. White boxes
are motoric components that are unlikely to be captured. The blue coloured box represents

an autonomic change. Below are the linear acceleration and roll & pitch Euler angles
generated by accelerometery preprocessing.
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3.2 Methods

3.2.1 Dataset
The dataset used here is derived from RADAR-EPI, a part of the RADAR-CNS research pro-
gramme.155 As was mentioned in the previous chapter, the study was conducted between July
2017 and February 2020 at the epilepsy monitoring units of two hospitals, King’s College
Hospital (KCH) in London and University Medical Center in Freiburg. A subset of partici-
pants in the KCH cohort used a prototype wearable device developed by IMEC, and hereafter
referred to as the IMEC device. The device records ACC, EMG, EDA, and ECG. Participants
who had a motor seizure while the device was recording are included in this study. In total
11 participants with a combined 30 motor seizures are included. Eight of these are GTCS
or FBTCS. Up to an hour either side of the seizure event is included, dependent on the data
being available. In total the dataset covers 50 hours of recording. Accelerometry, EMG, and
EDA are included. ECG is excluded because of a high level of missingness covering the
available seizures.

3.2.2 Features
Preprocessing

Accelerometry was split into two components. The gravitational component was extracted
by applying a 0.5Hz low pass 5th order Butterworth filter. The linear was extracted by a
high-pass filter of the same type. To reduce the dimensionality of the feature set, an approx-
imation of pitch and roll were derived from the gravitational accelerometry signals using the
equations given in the previous chapter.

A 70-500Hz bandpass filter was applied to the EMG. While there may be some useful
information below 70Hz, extensive ECG artefacts and power line interference on the signal
compromised the lower frequencies. In general, there is still useful information contained
above 70Hz156

The EDA signal has a major regular artefact caused by DC polarity switching (Figure
A.1) which inhibited the use of the EDA, especially with respect to the tonic level. The
artefact is introduced either once per hour or once per minute depending on the recording.
While several techniques were applied to reduce it, none were satisfactory and so a period of
5 minutes or 5 seconds was excised around the artefact. A band-pass filter from 0.1-2Hz was
applied to produce a phasic EDA signal and a 0.02Hz low pass filter was applied to produce
the tonic signal.
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Feature definitions

The features chosen were on the basis of commonly reported features in the literature. Table
3.1 gives a list of the features extracted for each signal. In total 59 features were extracted
in windows along the signal. A window step size of 2 seconds was used. The accelerometry
(linear and Euler) features were extracted in 10 second windows. The EMG features were
extracted in 2 second windows. Phasic EDA features were extracted in 30 second windows.
Tonic EDA features were extracted in 300s windows.

3.2.3 Classification
Labelling

Patients with motor seizures recorded by the IMEC device were. A binary classification is
assigned. The windows starting during the clinician-labelled motor seizures are assigned
the positive class. All other windows are assigned to the negative class. A 5-minute post-
ictal period is excluded because often the patient will interact with medical staff during this
period. Autonomic changes in this period may still be included because of the large EDA
window size.

Model

Classification is performed by a random forest model implemented in the scikit-learn library.
142 Default parameters were used except for 𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 1000, max features per tree set
to 10, and max depth set to 12. The model is trained in a leave-one-participant-out cross-
validation to produce a group-wide model. To determine the viability and performance of an
individual model, a leave-one-seizure-out model was trained on the data of P2. In addition to
point classifications, a 5-length moving average is applied to the predicted probability along
the participant’s recording.

Evaluation

Evaluation metrics were given in the methods chapter. However, there are a few slight dif-
ferences that are often used in seizure detection work. Sensitivity is the true positive rate,
how many of the positive class are correctly predicted. Within a typical machine learning
classification task, each individual data point would be considered independent. In this case,
a single seizure event is split in to many individual data points. Considering a participant
with two recorded seizures, if a model managed to correctly predict 40% of the individual
data points, it may either be the case that an alarm could be raised for both seizures, if the
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Signal Feature

Accelerometry

Mean

SD

Skewness

Kurtosis

Max

Hjorth mobility[133]

Hjorth complexity[133]

Hurst component[157]

Zero-crossing rate

Zero-crossing rate of 𝑓 ″(𝑥)

Euler angle

Mean

SD

Skewness

Kurtosis

Max

Min

Hjorth mobility

Hjorth complexity

EMG

Mean absolute value

SD

Zero-crossing rate

Zero-crossing rate of 𝑓 ″(𝑥)
Line length

Phasic EDA
Mean absolute value

SD

Tonic EDA

Mean

SD

Min

Max

Mean of 𝑓 ′(𝑥)′

SD of 𝑓 ′(𝑥)
Table 3.1 Features used in seizure detection model.
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points are spread across both events, or else only for one, if they belong predominantly or
exclusively to one event. The actual metric of success that we are interested in is the true
alarm rate, which will be referred to as sensitivity in this chapter, which is to say how often
an alarm for a seizure event could be raised from a model’s prediction.

Similarly, the standard definition for specificity, or the false positive rate, is not quite
adequate. If five data points were to be incorrectly positively labelled, an alarm could be
raised only once if they were all clustered in quick succession, or five times if they were
spread out over the recording. Instead a false alarm rate (FAR) over a certain period of time
is used. The exact circumstance under which an alarm is said to be raised or not can differ
between studies. Here, a positive label within 2 minutes of another positive label is merged
into a single alarm event.

PPV is an often used evaluation metric, but it is problematic because it depends entirely
on how often a person has a seizure. It makes more sense to evaluate whether a model would
be suitable for a participant on the basis of the sensitivity for their particular seizure type and
whether it has a false alarm rate that they are able to accept.

Feature importance

Feature importance is ranked by the Gini-impurity-based importance of the feature in the
random forest model.158 Themean of the importance across all cross-validation folds is taken.

3.3 Results

3.3.1 Classification performance
The performance of themodels across all participants for GTCS, other motor, and all seizures
is given in Table 3.2. A visualisation of the seizure events, point classification, and the 5-
point averaged probability is provided in Figure 3.3. The model correctly classifies all GTCS
but only 12/22 (54.5%) focal motor seizures. A false alarm rate of 0.3/hour is calculated
based on the number of merged predictions (Prediction are merged if they are within 2 min-
utes of each other). The distribution of false alarm events is not equal between participants.
P8 has the highest rate of false alarms and a much higher baseline probability throughout
much of the recording than other participants.
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Fig. 3.3 Random forest seizure classification across all participants
A visualisation of clinician labelled v-EEG seizures (orange), per-point random forest classifications
(red), and the 5-point moving average of the random forest prediction probability (blue). Each row

corresponds to the recording of a single participant. The time period is not equal between
participants and so the x-scale is different. The first and final seizures marked for P1 are not motor
seizures and are so not included in the classification, but are close in time to the motor seizure.
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Seizure type Sensitivity FAR (per hour)

GTCS and FBTCS 8/8 (100%) 0.3/h

Focal 12/22 (54.5%) 0.3/h

All 20/32 (62.5%) 0.3/h

FAR: False alarm rate. GTCS: generalised tonic-clonic seizure. FBTCS: focal to bilateral tonic-
clonic seizure

Table 3.2 Group-wide seizure detection model results

3.3.2 Individual model performance
A higher sensitivity (9/11 vs 5/11) is achieved by the individually trained model for P2,
compared to the group-wide model that did not include P2 data. The false alarm rate is
higher if point predictions are considered (12 false alarms vs 5), but lower if the 5-point
moving average of probability is used (2 false alarms vs 4).

3.3.3 Feature importance
The top 15 features according to the Gini-impurity-based importance measure averaged
across cross-validation models are all accelerometry (Figure 3.5). Features belonging to
both the linear accelerometry and the Euler angles (roll/pitch) are ranked highly. EMG fea-
tures do appear, and are interspersed throughout the middle of the ranking. EDA features
are resolutely at the bottom, with only two tonic features being assigned any importance.

3.4 Discussion

3.4.1 Evaluation of model performance
Motor seizure detection is viable in tonic-clonic seizures the performance in other types of
motor seizure vary. Some could be particular to the participant, and so are not detected by
a model trained in a leave-one-participant-out fashion where similar examples are not avail-
able. The dataset has multiple participants with (G)TCS, so not only are they one of the
most extreme seizure types, the model also has multiple similar instances from other partic-
ipants to train on. If the model was only trained on participants with GTCS, the FAR would
probably decrease because GTCS tend to be longer in duration and with a great amount of
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Fig. 3.4 Seizure classification in an individual model trained on P2
A visualisation of clinician labelled vEEG seizures (orange), per-point random forest classifications
(red), and the 5-point moving average of the random forest prediction probability (blue). Each row
corresponds to the recording around a single seizure belonging to participant P2. Up to one hour of

data is included either side of the seizure, based on its availability.
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Fig. 3.5 Feature importance in group-wide models
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movement. However, the GTCS classification performance is comparable already to GTCS-
only studies in the literature,159 albeit in a fairly small sample.

As well as participant-level differences in sensitivity, the false alarm rate differs be-
tween participants. P2 in particular has a high baseline prediction probability across most
the recording. This is another area in which individual or personalised models may benefit,
even if the seizure itself is detected. A high false alarm rate is likely to be intolerable, or
to reduce the attention that is paid to an actual event because of a high exposure to false
positives.

Training on a single participant in a leave-one-seizure-out manner produced amodel with
greater sensitivity. The vast majority of patients monitored in this study did not have enough
seizure events while on the ward to train individual models despite staying as an inpatient
for many days.

Important features tend to be based on the accelerometer or EMG, which is unsurprising
given that all the seizures included contained a motor component and the other signals had
data quality issues. The zero-crossing rate is highly represented at the top of the feature
importance ranking, likely because it is a good signifier for clonic, convulsive, or otherwise
highly repetitive high-frequency movement. Someone unexpectedly, the Hjorth mobility for
roll and pitch were both highly ranked (1st and 4th). How the approximated angle of rotation
changes over time might be a useful measure of slower acting epileptic movements, such as
tonic contractions. It is not clear if they are necessarily better than simply using low-pass
filtered X, Y, and Z acceleration directly, but roll and pitch are informative signals and by
using them the feature set for low pass acceleration is decreased by 33%.

3.4.2 Comparison to other work
The performance of models reported in the literature are very varied. Partly they depend on
seizure type, the sensors used, the study location, and the time period recorded (e.g. noctur-
nal only160). Generalised tonic-clonic seizures are often detected with high accuracy, up to
100% TPR with a low false alarm rate (FAR), both in studies based in hospitals and more
recently in field studies.161,162 Performance in ambulatory participants tends to be lower.162

High accuracy has been demonstrated in GTCS. An EMG-based detection algorithm
achieved a 93.8% sensitivity (30/32 seizures) with low (average 9s) latency in a hospital-
based study.159 An earlier accelerometry-based study reported an 89.7% sensitivity (35/39
seizures) and low false alarm rate (0.2 per day). It was also noted that the majority of false
alarms were restricted to only a few patients. A combined accelerometry and EDA based
classifier also achieved high GTCS classification accuracy, with 94.55% sensitivity and 0.2
FAR/day.163 Studies that try to classify other types of motor seizures have lower performance.
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Andel et al. reported an overall sensitivity of 71% and FAR of 17.7/day in a study of motor
seizures including tonic-clonic, tonic, and hypermotor seizures.164

The approach to modelling taken normally falls into one of two camps, either a typical
machine learning classifier, or a threshold or defined algorithm. Typical machine learning
classifiers, such as SVMs,165–167 random forests,168,169 LDA165 are routinely used. Some
papers explicitly define an algorithms,170 or threshold a certain feature.159,171,172 A small
number of attempts have been made using deep learning or neural networks,162 although
often the datasets are too small to reasonably train a deep network.

3.4.3 Data quality
The accelerometer and EMG were both typically good. The accelerometer is in general
robust, whereas even with better quality, the electrode-based signals would be sensitive to
motion artefacts and detachment during seizures.

The ECG had various issues that precluded its use - EMG noise, missingness due to
electrode detachment, and periods of low amplitude and high white noise. It was not used in
this study because many participants did not have usable ECG around seizures. The future
inclusion of heart rate metrics would likely lead to improvements in discrimination because
it should be able to recognise seizure components or symptoms that are invisible to a motion
sensor, such as a tachycardia, or provide the means to detect non-motor seizures.

EDA always has large artefact cause by DC polarity switching. Other devices do not
have this issue, and like the ECG it may be able to pick up on autonomic symptoms that a
motion sensor can not. It would therefore also be useful to include in future seizure detection
algorithms, but was unfortunately not viable in this particular dataset.

3.4.4 Limitations
A limitation, common to many seizure detection studies, is that the seizures were recorded
in a clinical setting, where performance likely lower in free living conditions. High perfor-
mance has been reported for tonic-clonic seizure detection in field studies,161 but it may be
expected that accuracy decrease and false-alarm rate increase when a participant can move
and act freely, rather than being restricted to a bed or ward.

Aspects of the pipeline could be improved. The pre-processing and feature set was lim-
ited by signal quality and availability, but similar recordings with better data quality could
benefit from more robust EDA pre-processing, the inclusion of ECG, and more specific fea-
tures for the EDA. Performance of a random forest model can be sensitive to hyperparameter
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tuning.173,174 Given the fairly small dataset size and the goals of the study, it was decided
that fairly default hyperparameters would be set and not fine-tuned.

Several methodological limitations of the standard windowed-feature machine learning
approach became apparent throughout this work. Firstly, classifying the segmented signal
loses any time-dependence that is not explicitly captured in the features because the model
has no concept of temporal locality. Secondly, seizures belonging to the same participant
often looked similar in the physiological signal recordings. However, if the symptom was
not of a common type, such as a GTCS, it is unlikely that a similar seizure from another
participant will form part of training set of the model. On the other hand, there is rarely
enough data from a single participant to train an individual model, with only one or two
recorded events for many participants. Personalisation strategies in the literature typically
depend on, sometimes manually, tuned thresholds in set algorithmic classifiers.175 This led
to considering seizure detection from a few-shot learning perspective and the use of meta-
learning methods in the following chapter. Neural networks are also apt at modelling time
series and so could potentially capture time-dependent information as well, addressing the
first issue.

3.5 Conclusion
In this chapter I train and evaluate seizure detection models using a multi-modal machine
learning pipeline. Accelerometry, and to a lesser extent EMG, features were important, but
with the caveat that only motor seizures were considered and the quality of the electrode-
based signals was low. Approximation of the Euler angle from the accelerometer is a poten-
tial alternative to using the 3-dimensional gravitational component of gravity that is com-
monly used in other seizure detection algorithms, but requires further validation and direct
comparison. The processing pipeline was made into pymhealth, a reusable LLVM compiled
Python library.

Epileptic seizures are an extreme example of heterogeneity and a model trained on a
certain types of seizure is unlikely to generalise well to unseen variants. Even where the dif-
ference is less extreme, inter-individual variation is a common problem in machine learning
approaches to medical machine learning tasks. While collecting enough data from a single
person is infeasible in many applications, often a small amount of labelled data could be
opportunistically collected. In the following chapter I consider a few-shot learning approach
to a similar but simpler physiological classifation problem.



Chapter 4

A Meta-Learning Approach to Model
Personalisation in Stress Detection

4.1 Preamble
The seizure classification problem illustrated the need for model personalisation. However,
despite comparing favourably in size to other studies, the dataset size available in the epilepsy
study is fairly small with limited repeat seizures. The idea of the work in this chapter was to
evaluate a meta-learning approach in a simpler physiological classification task.

Stress is a psychological and physiological response to a change in external conditions
and is critical to help the body meet external or internal challenges. However, prolongued
or particularly intense stress can become maladaptive and implicated in various health con-
ditions.176 Offline stress classification using wearable data could be a useful intermediary in
understanding the relationship between health outcomes and both acute stress events177 and
chronic activation of stress pathways.176

Stress classification has certain similarities to seizure detection. The autonomic response
to acute stress shows similarities to the autonomic manifestations of some types of seizure,
both typically activate the sympathetic nervous system. Many of the derived features used
as variables in machine learning models in the literature are also similar. Moreover, stress
is frequently reported precipitating seizures. A holistic mobile health approach to epilepsy
monitoring may therefore incorporate acute stress detection.

Detection of stress using physiological signals has a long history. Early efforts included
using monitored stress in drivers to inform road planning178 and monitoring with the goal of
adapting workload in various professions.79,179–181 More recently, with the development of
sensor and wearable technology there has been an increased focus on worn devices, longer-
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term monitoring in everyday life, and its use in healthcare. Particularly with the release of
public datasets like DriveDB79 andWESAD,78 there has been a large output of studies. There
are a couple of useful reviews that cover the published stress studies182 and the machine
learning approaches used,183 while the approaches of themost pertinent studies will be briefly
described here.

Amajor problem in stress detection is the inter-individual variation in themeasured stress
response. Several techniques to personalise models and their apparent performance increase
over general models had been reported. A common approach has been to train a separate
model for each participant.184,185 Saeed and Trajonvski used multi-task learning, using a
shared neural network connected to a subject-specific classification layer, on DriveDB and
found better performance than a single-task neural network.186 Another approach used clus-
tering to group participants are train models for each group.187 While each of these studies
reported an increased performance in their personalised models, there are important limita-
tions. Primarily, each trained their models on a random split of a participant’s data. Physio-
logical time series exhibit autocorrelation and so the improved performance may be partially
explained by correlations between the train and test data, particularly where there are over-
lapping feature windows, rather than an increased ability to differentiate stress. Secondly,
several approaches required training a personlised model in combination with the full dataset
which could make adding new people computationally expensive.

Using public stress classification datasets, in this chapter I test whether providing a small
amount of ’contextual’ data from a baseline recording can improve the classification perfor-
mance for that participant in the subsequent recording. Importantly the person-specific train-
ing samples are only taken from the beginning of the recording, reducing the confounding
effect of correlation between nearby points. Additionally, ’personalising’ a neural process
only requires a forward pass of the contextual data through an encoder network, reducing the
computational cost of adaption to new people. The aim of this study was to assess the via-
bility of a meta-learning approach in a physiological dataset and to develop a per-participant
stress classification algorithm.

The chapter is included as a pre-print of a paper that is currently under consideration.
DOI 10.48550/arXiv.2002.04176
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Abstract
Objective A person’s affective state has known relationships to physio-
logical processes which can be measured by wearable sensors. However,
while there are general trends those relationships can be person-specific.
This work proposes using neural processes as a way to address individual
differences.

Methods Stress classifiers built from classic machine learning models
and from neural processes are compared on two datasets using leave-
one-participant-out cross-validation. The neural processes models are
contextualized on data from a brief period of a particular person’s recording.

Results The neural processes models outperformed the standard ma-
chine learning models, and had the best performance when using periods
of stress and baseline as context. Contextual points chosen from other
participants led to lower performance.

Conclusion Neural processes can learn to adapt to person-specific phys-
iological sensor data. There are a wide range of affective and medical
applications for which this model could prove useful.

1 Introduction
Wearable devices are increasingly used in affective computing because they
provide continuous information on a person without requiring their attention;
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furthermore, some disorders or affective states have known relationships to
measurable physiological processes [1, 2] and are therefore candidates for remote
monitoring. However, symptoms of disease and manifestations of affect can
differ from one person to another, hindering the generalizability of models within
mobile health and affective computing.

1.1 Stress background
Stress is a natural collection of responses to a change in homeostasis or a perceived
threat. Stressful stimuli can elicit a variety of different behavioral, emotional, and
physiological responses. The physiological response is predominantly mediated
by the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous
system (ANS) [3], which in turn affect a range of physiological functions. In
particular, the correlation between stress and heart rate and galvanic skin
response (GSR) has long been known [4]. Recent developments of wearable
physiological sensors provide the ability for continuous, long-term, passive, and
remote measurement. Their use, therefore, allows for an objective measure of
systems mediated by the ANS and HPA in response to acute stress.

Accurate detection of stress has wide-ranging application. It could be used in
intelligent feedback systems, altering the system’s behavior in response to stress
[5]; as part of a system monitoring the progression of diseases or disorders with
a known relationship with stress, such as depression [6]; detecting and managing
maladaptive stress [7]; or measuring response to medication or therapy.

1.2 Machine learning personalization strategies
Model personalization acknowledges that a single medical problem can have a
diverse range of outcomes and symptoms between individuals, and attempt to
improve model performance by making it specific to an individual. This has
been approached in a number of ways; Non-exhaustively they include training
completely separate models for each individual, selecting different features,
setting personalized cut-off thresholds, additional training or hyperparameter
selection of a general model using an individual’s data, and clustering individuals
and creating a model for each cluster.

There are problems with some of the traditional personalization methods.
Most generally, a lot of relevant data can be ignored if only a subset of a cohort is
used to build a model, and the collection of adequate person-specific data is often
time-consuming and expensive. Few-shot and meta-learning techniques developed
in adjacent fields, such as image classification, offer potential frameworks to
approach the problem of personalizing models.

1.3 Meta-learning and related approaches in biomedical
datasets

Various few-shot and meta-learning techniques have been developed recently.
They are typically first used in generic open access few-shot datasets but have

2
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found some application in low-data domains like medical imaging.
Non-parametric or metric based networks, such as siamese networks and

matching networks [8], learn a distance metric or comparable embeddings between
input vectors. This method of few-shot deep learning appears to have had the
greatest uptake in biomedical problems, with applications in seizure detection,
histopathology [9], drug discovery [10], and fall detection [11], among others.

Optimization-based meta-learning, exemplified by MAML [12], aim to learn a
set of initial parameters which can be quickly adapted to a new dataset through
few additional gradient steps. They have found some promising use in low-
data medical image classification tasks [13, 14], but are typically not used for
personalizing a model to an individual in a longitudinal dataset.

Another technique, broadly categorized as parameterizing or black-box meta-
learning, consists of a classification network and an encoder network which is
used to parameterize the classifier. An example is neural processes [15]. Neural
processes are used as personalizable models in this study. They can be thought
of as a distribution of functions, parameterised by a few ‘context’ x-y pairs. If we
consider there to be an underlying biological trend to affective states or disorders,
which manifest differently depending on the individual and their context, then
a neural process forms a distribution of functions over the general trend which
can be parameterized for a person using a small number of x-y pairs from that
individual. Once trained on a meta-training set, individualization is provided
only at the cost of a forward pass through the encoder, the original training data
is no longer required.

1.4 Study datasets and objective
This work uses meta-learning techniques developed for few-shot learning to
individualize models used for classifying periods of stress in participants from two
publicly available datasets: Stress Recognition in Automobile Drivers (drivedb)
[16] available from physiobank [17] and Wearable Stress and Affect Detection
(WESAD) [18]. Both datasets contain continuous electrocardiogram (ECG)
and galvanic skin response (GSR) recordings in healthy participants during
a series of tasks designed to elicit an affective response. WESAD is a public
dataset for affect and stress detection using motion and physiological recordings,
including ECG and GSR. In addition to a task inducing stress, it includes an
amusement task which is negatively labeled for our binary stress classification
models. Drivedb is a dataset with multiple sensor recordings, including ECG and
GSR, taken while a healthy participant drives on a predefined route containing
sections of in-city driving assumed to be stressful, and sections of highway driving
assumed to be relatively less stressful.

We investigate the applicability of neural processes (NPs), as a representa-
tive of meta-learning techniques, to personalization in a biomedical problem.
Firstly, the performance of general models built with k-Nearest Neighbors (k-
NN), support vector machine (SVM) with a radial basis function kernel, and
an L1-regularized logistic regression (Lasso), are compared against a neural
process individualized with either baseline-only or randomly chosen context
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Baseline Amusement Meditation
Trier	Social
Stress	Test

Rest Meditation

Baseline AmusementMeditation
Trier	Social
Stress	Test

Rest Meditation

Baseline City Highway City Highway City Baseline

Figure 1: Study protocols for datasets. The two protocol variations in WESAD
(top, middle) and the route driven in drivedb (bottom).

pairs. Secondly, a baseline-only personalization is compared against a neural
process which uses the first highway and city driving segments in addition to
the baseline in the drivedb dataset, which includes repeated sections intended to
induce stress (city) and relatively reduced stress (highway). The sections used
as context points are excluded from the test performance.

2 Methods
The WESAD dataset contains 15 participants (age = 27.5± 2.4) with an average
recording duration of 96 minutes. Two affective responses, stress and amusement,
are evoked in two tasks. There is a baseline period, rest period and two meditation
tasks 1. Two devices are worn by participants, but only ECG and GSR signals
from the chest-worn RespiBAN are used here. Drivedb contains recordings
of 17 participants lasting between 65 and 93 minutes, depending on the road
conditions during the test. Of these, only 13 are used (4-16) because of missing
data or unclear label markers. Again, only the ECG and GSR signals are used,
collected from a custom wearable system.

2.1 Processing and feature extraction
Manually defined features are used to facilitate comparison between general
machine learning models and the neural process models, and to evaluate whether
the neural process is able to use data representative of an individual to improve
performance rather than the ability of a neural network to learn representations
from raw or preprocessed signals.

The Hamilton-Tompkins algorithm is used to detect the R peaks in the
ECG signal [19]. Tonic and phasic GSR are filtered from the raw GSR signal
using a 0.2Hz lowpass and a 0.5-2Hz bandpass filter respectively; both are 5th
order Butterworth filters. Participants in the drivedb dataset can contain GSR
recorded at either the hand, foot, or both. Only one is used, and the hand GSR
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Signal Feature Equation / Reference
ECG HR range max(HR)−min(HR)

ECG HR mean x̄ = 1
N

∑N
i=1 xi

ECG HRV SDNN [20]
ECG HRV RMSSD [20]
ECG HRV CSI [21]
ECG HRV sample entropy [22]
ECG RQA determinism [23]
ECG RQA length entropy [23]
ECG HRV LF absolute power [20]
ECG HRV LF relative power [20]
ECG HRV LF peak frequency [20]
ECG HRV HF absolute power [20]
ECG HRV HF relative power [20]
ECG HRV HF peak frequency [20]
ECG HRV HF/LF ratio [20]
GSR tonic Mean 1

N

∑N
i=1 xi

GSR tonic SD
√

1
N−1

∑N
i=1(xi − x̄)2

GSR tonic 1st deriv. mean 1
N

∑N
i=1 x

′
i

GSR tonic 1st deriv. SD
√

1
N−1

∑N
i=1(x‘i − x̄‘)2

GSR phasic SD
√

1
N−1

∑N
i=1(xi − x̄)2

GSR phasic mean absolute value |x̄| = 1
N

∑N
i=1 |xi|

Table 1: Feature definitions

is preferred if it is available.
Typical heart rate, heart rate variability (HRV), phasic GSR, and tonic GSR

features are extracted in 40s windows with 20s overlap from each participant
2.1. The class label for the window is determined by the largest proportion
of time spent in either the stressful or relaxing task. Features are min-max
scaled between -1 and 1 for all general models, but are not scaled for the neural
processes.

2.2 General model
Both general and personalized models are trained and tested using leave-one-
participant-out cross-validation. Traditional machine learning models were built
using scikit-learn [24], using default hyperparameters. Three general models
are used: A logistic regression with l1 penalization and C = 1.0, a radial basis
function kernel SVM with gamma = 0.0526 (1/Nfeatures), and a 20-neighbor
k-NN classifier.
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Figure 2: A general view of a neural process model. The encoder (h) takes
X-y pairs and transforms them into a latent distribution. A sample from that
distribution is concatenated with unlabeled data and passed to the decoder (g)
which predicts class labels for the unlabeled data.

2.3 Personalized neural process models
A neural process is a latent variable neural network which aims to adapt to
specific context data at test-time. It is formed of three components: an encoder
h(ri|xci, yci) which transforms a set of contextual input data pairs (xc, yc) into a
representation r, an aggregator which aggregates multiple representations from
the encoder into a single vector which is used to parameterize a latent distribution
z, and a decoder g(yt|xt, z) which samples z and transforms unlabelled data xt

into a predicted value yt 2. The model is built using the pytorch library [25].
The specific architecture used here consists of an encoder of 3 dense hidden

layers each with 30 nodes, a mean aggregator and a latent variable with 15 nodes,
and a decoder with 3 dense 30 node hidden layers and a single output node. The
decoder has a dropout rate of 0.2. Each model is trained on the data of all but
one participant.

During training, the data of each training participant is looped through.
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Between 5 and 10 points are randomly chosen as the context points. All of
the data belonging to the current training participant is used as target points.
Both context (xyc) and target (xyt) x-y pairs are passed through the encoder to
create latent distributions Zc and Zt respectively. The encoded context points
(Zc) are concatenated with the unlabeled target points (xt) and passed through
the decoder to predict the target label (ŷt). As well as minimizing the binary
cross-entropy between the predicted target points (ŷt) and the true values (yt),
the Kullback Leibler divergence between the distributions of the encoded context
points (Zc) and the encoded target points (Zt) is minimized (3).

At test time the context points are unique from the target points and selected
according to the personalization strategies mentioned in the following paragraph.
In each case 6 x-y data pairs are used as the context points. Any period or task
from which the context points are chosen are not used as target points. Stress
predictions for the remaining data for the participant are calculated.

2.4 Personalization strategies
Three methods for selecting context points during testing are chosen. Firstly, each
model is personalized using context points selected only from the baseline segment.
Secondly, context points are randomly selected from the entire recording with a
uniform distribution. Thirdly, two points from each of the baseline recording
and the first occurrence of the city (stress) and highway (non-stress) driving
segments are used as context points. Data from the recording following the
sections chosen for context points; two city driving sections, a highway section,
and a relaxation section; are subsequently predicted using the personalized model.
Because the WESAD dataset only has a single stress assessment task, only the
drivedb dataset can be used in the third personalization strategy.

2.5 Performance metrics
Three performance metrics are reported here: the area under the curve (AUC) of
the receiver operating characteristic (ROC), the average precision, and the log-
loss. Because of the class imbalance in the WESAD dataset and the differences in
class proportion between datasets, the average precision may be more informative
than the AUC.

3 Results
Both the baseline-only and randomly chosen context NPs perform better than
all of the general models, with the randomly chosen context performing best
3. Randomly chosen points, while not included in the test scores themselves,
are likely to be strongly correlated with points from the surrounding time and
from the same task. The third personalization strategy, in which the context
points are selected from the baseline and first occurrence of each task, is used
to address this problem in models for drivedb participants. Similarly to the
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Figure 3: Context strategies for training and testing in each participant’s (j)
neural process model. h: Encoder, g: Decoder, BCE: Binary cross entropy,
KL: Kullback–Leibler divergence. In each case, the training loss is the sum of
the Kullback-Leibler divergence between the two distributions formed by target
and context points passing through the encoder and the log-loss between y and
y-pred. a) Context points are taken from the baseline recording, target points
are taken from the remaining data. b) Context points are randomly selected
using a uniform distribution. c) Drivedb only - Context points are taken from
the baseline, first city, and first highway sections. An equal number of points
are taken from each section.
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Model AUC Average precision Log loss
Lasso 0.954 0.881 0.222
SVC (RBF kernel) 0.943 0.882 0.234
K-Nearest Neighbors 0.870 0.740 0.563
NP (baseline) 0.970 0.924 0.182
NP (random choice) 0.984 0.957 0.133
NP (other participant) 0.880 0.780 0.470

Table 2: WESAD dataset results

Model AUC Average precision Log loss
Lasso 0.695 0.736 0.669
SVC (RBF kernel) 0.704 0.733 0.645
K-Nearest Neighbors 0.680 0.721 3.09
NP (baseline) 0.776 0.797 0.570
NP (tasks) 0.787 0.804 0.553
NP (other participant) 0.722 0.757 0.663

Table 3: Drivedb dataset results

previous results, the personalized NP models perform best and the models which
include stress-task context perform better than those which use baseline-only
data 3, although the improvement in comparison to the baseline-only models is
much slighter.

Using the neural process models with context and target points selected from
different participant results in greatly reduced performance (WESAD: 0.957
average precision, same-participant vs 0.780 other-participant, drivedb: 0.804
vs 0.757), indicating that the neural processes do rely on and gain benefit from
individual-specific data points 4. The increase in performance between the
general and personalized models appears partly due to a decrease in variance of
performance between each participant’s model 5. Each of the general models have
a subset of low-performing participants, although they do not completely overlap.
The distribution of performance over participants for the general models contains
a large number of participants with very high performance, 0.9+ accuracy, and
a tail of drastically lower performing participants. The personalized NP models
performance is mostly improved through increased performance on those lower
performing participants. Within the WESAD cohort, the average accuracy
between the NP and lasso models was increased by 0.0995 for those participants
whose accuracy was less than 0.9 in the general lasso model, compared to a
decrease of 0.002 for those above 0.9 in the lasso model. The drivedb dataset
shows a broadly similar pattern; participants with an accuracy score in the
general lasso model lower than the average across the dataset (0.66) have an
average accuracy increase of 0.117, compared to an increase of 0.035 in those
who had lasso model accuracies above the average.
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Figure 4: Receiver operating characteristic (left) and precision-recall (right) plots
for WESAD (top) and drivedb (bottom) models.

Figure 5: Precision-recall plots for each model in which models belonging to
participants from the WESAD dataset are drawn as individual lines.
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4 Discussion
Overall the personalized models performed better than the general models.
Encouragingly, the improvement between personalized and general models is
most marked in those participants with lower performance in the general models.
The improved performance of the lower performing subgroup in the NPs suggests
that by using a small amount of person-specific data, a base model can be
successfully used in a greater range of people who are dissimilar to the training
cohort or who are somehow divergent in comparison to the majority. The
demographics for the participants in the two studies was quite homogenous;
given a broader population, the usefulness of a more flexible or personalizable
model may be greater.

There are two remaining participants with low-performing personalized mod-
els, visibile in 5 and both belonging to the WESAD cohort. One has low
performance across all models, where no model can differentiate the amusement
and stress task well. The second is particular to the NP model, and appears
to be due to an atypical baseline recording, which includes a large tonic GSR
amplitude, highlighting the importance of contextual data that is typical of the
class it is representing. If the first few minutes of the recording are discarded,
and a portion of the first rest period selected as the context, the performance of
the model is similar to other participants.

Model personalization methods previously used in stress detection studies
have been typically achieved through personal feature normalization [26], training
a model on one participant’s data[27, 28, 29, 30], or training models for groups
of similar participants [27, 31]. Neural processes have a number of theoretical
advantages over these methods; they do not assume that personal differences
in features can be reduced to a linear proportion of a baseline measurement,
they can make use of the entire dataset of participants, only a small number of
labelled data points are required to personalize a model, and the computational
cost of personalization is only a single pass through the encoder network.

The importance of correct use of cross-validation or training splits is demon-
strated in the literature. High performance can be achieved when an individual
model is trained using random cross-validation [31, 30] because temporally close
data points will be highly correlated. This is also seen in the neural process
models, in which randomly sampled context data points outperform context from
a single task. For the purpose of building personalized models, it is therefore
necessary to have a dataset with multiple assessments per participant, or to
personalize based on unlabeled or negative case data.

In general, using meta learning techniques additional medical datasets with
similar tasks and signals could be incorporated. Aggregation of similar small
datasets could lead to improved performance for each individual task. To
combine multiple tasks along with personalization through meta-learning, it
may be necessary to pose the meta-learning procedure in multiple levels or
hierarchically [32], where more prior knowledge is shared between individuals in
the same task than between the different tasks.

In this study features are manually defined and extracted from the raw signals
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because the objective was to discover whether personalization through neural
processes is possible and useful, rather than looking at whether a neural network
can learn a better feature representation. However, meta-learning can allow
more sophisticated deep learning techniques and feature extraction where they
would otherwise be intractable because of small dataset sizes. Addition of a
neural network to learn features is therefore a prominent area to potentially
improve performance.

That only baseline data points used as context can improve performance
suggests that a representation built on unlabeled or weakly labeled data may be
viable. Particularly in long-duration recordings, much of the data in biomedical
datasets can be unlabeled or with a very large imbalance between positive
and negative cases. Going forward, it would therefore be useful to be able to
personalize a model based on that unlabeled data. Where the representations
from the context data points are currently mean aggregated, it may make more
sense to have an aggregation that recognizes the time-dependent nature of the
data. Additionally, in the future it would be useful to compare the performance
of different personalization techniques, both optimization-based deep learning
and classical machine learning, against the neural processes demonstrated here.

5 Conclusion
Neural processes, presented as a method to generate personalized models, outper-
form general classic machine learning algorithms in stress detection tasks across
two datasets and appear to use small amounts of person-specific context data
to improve performance. Using only baseline data as context is useful, but the
inclusion of data with the positive-label class further improves performance. The
datasets used here concern affect and stress classification, but there are applica-
tions beyond: many problems in medicine and biology have large inter-individual
differences or heterogeneity in classification which could be addressed using
neural processes or similar methods. There is also a large space for improvement
in various aspects of the modeling procedure.
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4.8 Summary 68

4.8 Summary
One of the aims of the thesis was to consider how baseline or small quantities of person-
specific data may improve performance of algorithms built for problems that exhibit inter-
individual variation. While conceptualised in the epilepsy study, where there is a larger
variety of inter-individual seizure manifestions than in stress, this study provided some evi-
dence for the use of a meta-learning based approach to model personalisation. Conditioning
a neural process on baseline data inWESAD or baseline and the first stress event in DriveDB
did improve the performance compared to general models or conditioning on other partici-
pant’s data. Importantly, the model was conditioned on contextual points that were separated
in time from the test points, which has not been common in the literature.

The use of ameta-learning neural process to address inter-individual variation in a biosig-
nal classification task was novel, but there is a large field of meta-learning and few-shot
learning methods. Gradient-based approaches, such as MAML,188 have been more widely
applied,189,190 and in the intervening period advances have been made within the neural pro-
cess family191 over the conditional neural process used in this study. In the papers that
introduce them, NPs have competitive performance with other meta-learning methods, but
a robust comparison of methods among digital health tasks would be useful. The preference
for NPs here were due to a couple of factors. Firstly, the probabilstic prediction gives an er-
ror margin which is an attractive property in medical tasks. Secondly, the task-adaption only
requires a forward-pass through an encoder, rather than additional gradient descent steps and
the storage of per-person updated weights, which may be advantageous in an environment
with constrained resources.

The following chapters change focus to a crowdsourcedCOVID-19 study, firstly the setup
and software development required and secondly looking for signs of and risk factors for long
COVID in mobile health data. While addressing separate areas of the mobile health study
pipeline, one continuing theme is the use of baseline data and is part of the reason I felt
it was important to include the retrieval of historic wearable data. While using a different
analytical approach, the



Chapter 5

Mass Science: Software Development
and Participant Engagement

5.1 Introduction
The sudden onset of the COVID-19 pandemic in late 2019 stimulated a flurry of research
across academia. It necessitated a rapid reaction to understand the disease and develop treat-
ments and management plans from the beginning of the pandemic. Prior to the pandemic,
I had considered attempting to run a citizen science project looking at depression and had
some prototype development of some of the app components necessary to support one. As
the important of COVID-19 became clear, we redeveloped that work, along with parts of
RADAR-base, to try and quickly set up a crowd-sourced COVID-19 mHealth study, which
was ultimately named Covid Collab.

Mobile health received a reinvigoration of an already upward trajectory due to the pan-
demic, both as a tool for the delivery of treatment and management of conditions in general
as well as a method for original research and investigation into COVID-19. The clear unique
advantage of /acmhealth in this context is its remote nature; at a time when people were en-
couraged to socially distance, mobile health (mHealth) was an avenue for the delivery of
care and research which did not require a person to put themselves at risk of infection. There
are, in addition, multiple other advantages. Those include the ability to engage participants
who may not be identified through clinical or other traditional recruitment practices; access
historic or baseline data from existing repositories, such as fitness tracking data, from before
enrolment or the start of the pandemic; and a continuous and ubiquitous source of data was
especially useful in a disease for which we did not have prior knowledge of progression or
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duration. Moreover, the high level of public interest in COVID-19 likely led to increased
interest in research and particularly citizen science initiatives that focused on COVID-19.

The primary aim of this chapter is to describe the rapid development of an application
in response to the COVID-19 pandemic, which included the ability for remote enrolment
and interoperability with RADAR-base components. Additionally, I investigate participant
engagement and adherence in the Covid Collab study.

5.1.1 Mass Science Application
In light of the above circumstances, we wished to run an mHealth study on COVID-19 that
was open for enrolment to the general public and could be participated in remotely and with-
out direct involvement from researchers. Covid Collab,192 the resulting study, is the subject
of subsequent chapters, but it required software development work and provided a view of
participant engagement behaviour in a remote study which are the focuses of this chapter.

The RADAR-base platform,8 used for the data collection in previous mHealth studies
including the Epilepsy dataset in this thesis, included many useful components. However,
because it was developed with in-person and clinical enrolment in mind, there were sev-
eral shortcomings which made it unsuitable for a remotely enrolled crowd-sourced study.
To address those issues in RADAR-base, the Mass Science application and accompanying
backend infrastructure were developed. The Mass Science application is a cross-platform
mobile app developed using the Flutter framework.193 It takes many of the features of the
RADAR-base active RMT app,8 such as the general structure and display of active tasks,
as well as making use of the questionnaire protocols created for RADAR-base. While de-
signed primarily with the aim of launching a COVID-19 monitoring study, it was made to be
straightforwardly used in other studies and to interoperate to some degree with components
of the RADAR-base platform. In addition to the Covid Collab study, Mass Science was later
used in the Convalescence long COVID study.194

5.1.2 Participant engagement
Attrition of users is a problem common in the mobile sphere in general,195 with fitness and
mobile health apps commonly abandoned within the first three months of use.196,197 Un-
derstanding and encouraging adherence and engagement in mHealth studies is an area of
increasing study because low adherence or abandonment can cause data quality issues that
undermine further analysis: from biasing the usable data towards diligent participants who
may not be representative of the wider population; to incomplete data requiring imputation or
pruning; and reducing study power. When participant engagement differs between groups,
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it is hard to determine whether differences to the outcome variable between groups are true
effects or whether it is due to differences in retention.

Engagement and retention in mHealth studies

Various factors are important to consider when aiming to engage and retain a representa-
tive population in an mHealth research study. The low barrier for participants to enrol in
mHealth studies can enable large, wide-ranging studies with representative populations, but
that low barrier to entry can translate to a weaker bond to the study and a lower barrier to
abandonment.

Socio-demographic characteristics often differ between recruited participants and the
general population. Age,196 gender,198 ethnicity,199 economic status, and education200 have
all been put forward as factors that may affect a person’s motivation to enrol or continue to
engage with mHealth studies and there are often discrepancies between socio-demographic
characteristics in the study population and the wider population of either people who have
the condition under study or the general population. Some differences between groups may
not be due to different underlying interest in mHealth itself, but instead through recruitment
and study design. As an example, several studies suggest men are more likely than women
to report interest in mHealth201,202 and gender imbalance is often present in mHealth stud-
ies. However, the direction of the imbalance is inconsistent, which may suggest recruitment
strategies or interest in the particular medical issue are more important than an underlying
gender-based difference caused by an interest in mHealth in general.

Disease or health outcomes, whether the primary outcome of the study or comorbidi-
ties, could directly affect a participant’s willingness to adhere to the study. A person with a
direct interest in the condition under study may have greater motivation to participate. For
example, a person undergoing a depressive episode may be less adherent.203 Depression is a
common comorbidity in many chronic diseases204 and could bias or reduce the quantity of
data in a wide range of studies. Whilst it has been suggested that missingness in mHealth
data can be informative203 it is still a source of uncertainty, particularly within studies that
aim to understand or investigate a medical issue rather than in a clinical or intervention-
based mHealth paradigm where detection itself is paramount. The impact of mental health
on attrition is something that we can investigate here because of the regular mental health
questionnaires collected throughout the Covid Collab study.

Particularly where there is little direct interaction between researchers and study partic-
ipants, self-motivation to adhere to a study’s protocol is an incredibly important factor for
continued participation and the production of useful data. However, motivation may well
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have interactions with attributes of the participant which are impactful to how the study
should be designed or how results should be interpreted.

Citizen science studies

Mobile health technologies can be used in a variety of research with differing enrolment
strategies and degree of direct contact with participants, from a supportive or marginal role
where enrolment and retention may be managed as in a traditional clinical or research trial, to
a hands-off citizen science type study in which prospective participants are directed to down-
load an application which takes them through an automated enrolment procedure. The Mass
Science appwas designed for the latermodel, andwewould expect participant engagement to
previous citizen science mHealth studies, with the caveat that interest in participation could
wax and wane with attention on the COVID-19 pandemic as opposed to the chronic condi-
tions previously studied which may, tentatively, have a more stable level of baseline interest.
In this section we will briefly consider the existing knowledge of engagement behaviours in
a number of completed studies. Some of these created their study app using the ResearchKit
framework,205 an iOS specific framework developed by Apple to create app-based surveys,
consent flows, and active tasks for research studies.

Several citizen science mHealth studies published the socio-demographic breakdown
of their participants or even detailed engagement patterns prior to the pandemic. Several
more similar studies, targeted specifically at monitoring COVID-19, were launched near the
beginning of the pandemic, alongside Covid Collab. Although engagement and attrition
are not exactly the same between all of these citizen science studies, there are some shared
patterns.

The most noticeable is a severe drop in participation at the very beginning of each study,
followed by continued attrition throughout the study. In the MyHeart Counts study mean
engagement duration was 4.1 days206 and in the Cloudy with a chance of pain study 33%
of the participants disengaged from the study immediately after enrolment (total N=13207,
2623 without baseline questionnaires and a further 1733 with the baseline questionnaire but
no further engagement). The asthma mobile health study recruited 7593 participants, with
30.5% (n=2317) completing at least 5 daily or weekly surveys and 2.3% (n=175) with a
6-month milestone survey complete.207

As in the general mHealth case, there are often reported differences in engagement and
retention in citizen science project along socio-demographic lines. The distribution of age
at enrolment is often either proportionately younger115,207,208 or thin-tailed such that the
youngest and oldest age groups are less represented.209 However, where it is noted, older
participants seem to have a higher retention rate.207
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Gender is often skewed; some studies have a predominantly female cohort14,210,211 while
others are predominantly male.115,207,212 This may be partly, but not entirely, explained by
the condition under study effecting one gender to a greater extent; for example men account-
ing for 82% of the MyHeart Counts study on cardiovascular health. The studies based on
COVID-19 research had a greater proportion of female participants210,211,213

The severity or presence of the disease under study is also occasionally mentioned as a
factor in engagement. People with worse asthma control were more likely to enrol and those
reporting more frequent symptoms were more likely to continue in the asthma mobile health
study.207

The Cloudy with a chance of pain study reported an in-depth analysis of engagement.209

In it, they devised a model for engagement based on a 3-state hidden Markov model. The
three states corresponded to high engagement, low engagement, and disengaged. This model
was used to cluster the study’s participants into four clusters, high engagement, moderate
engagement, low engagement, and tourists, where tourists are those who disengaged from
the study almost immediately.

Increasing participation

Given the proportion of people who disengage from studies after a short period there is,
understandably, a large focus on how studies and their supporting software can be designed
in a waywhich retains General recommendations to increase participation follow a fewmajor
themes.214

App design Some focus on app design; aesthetic features include a clean and consis-
tent user interface (UI), colour scheme, and a well functioning bug-free experience.215

Aspects of app design can be more or less attractive or accessible to certain groups. For
instance, legibility or complexity concerns in the older adult population.196

Study burden The instruments and tasks required to be completed require time and
place a certain level of burden on the participant. Within online studies, the relevance
and length of questionnaires is a factor in attrition,216 as is the length of the baseline
assessments.217

Value to participants Providing value to the participant through features such as feed-
back and access to their results through graphs, history, or other views, gamification
of app elements,218 and monetary compensation219,220 can increase engagement in the
study. Direct access to medical professionals is available in some mobile health apps
and likely provides value to the participant, but more oriented to intervention style apps
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with manageable cohort sizes. To some extent the value that participants perceive in the
study may be balanced against the perceived burden of taking part.

Communication Communication can cover several areas. It is important that partici-
pants fully comprehend what is required by the study and how to complete any assigned
tasks so that they are able to make an informed decision to take part and so that the data
they generate is useful. Communication is naturally limited in online or citizen science
style studies, but comprehension can be partially achieved through well designed instruc-
tions. Notifications and reminders are an important method for driving engagement221

but the desired frequency and under what circumstances they should be delivered is an
open topic, for instance large numbers of notifications can elicit a negative affective re-
sponse222

Recruitment practices It is important to try and create a representative study popula-
tion so that any results are not tainted by bias and are more likely to be generalisable. Tar-
geted recruitment of specific demographics can help ameliorate underrepresented groups
in the study population, but requires either prior knowledge of enrolment and attrition
patterns across different groups, which may differ between studies, or rapidly alter re-
cruitment targets based on incoming study data.

The focus of this chapter is to describe the development process and final state of the mo-
bile application and associated backend infrastructure made in response to the COVID-19
pandemic. Secondarily, it is to provide insights into participant engagement and retention
in Covid Collab, a remotely enrolled crowd-sourced study for which the mobile app was de-
veloped. The methods and development section is split fairly evenly between the two aims,
while the results are primarily focused around participant engagement.

5.2 Methods and Development
The first part of this methods sectionwill deal with the structure and development of theMass
Science application and backend infrastructure. The second part will present the analysis of
participant engagement in the Covid Collab study.
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5.2.1 App Structure and Functionality
The application is built up of several components: a user interface (UI) which the participant
interacts with; modules around active tasks and surveys, including the models for each task,
scheduling, and notifications; passive data collection; and flows that allow the connection of
third party accounts and services.

User Interface

The three major screens once a user is logged in are the Home, History, and Sources pages,
shown in Figure 5.1. They provide the user interface to view available tasks, visualise previ-
ously submitted data, and connecting third party wearable devices respectively. In addition,
there are screens for login, enrolment, onboarding, displaying an in-progress task, and leav-
ing the study.

Home The app is primarily a data collection platform. Therefore, the home page con-
sists of a widget at the top of the page to enter ad hoc COVID-19 related information and
a widget underneath display active tasks that are available for the participant to complete
(Figure 5.1a).

History dashboard The history dashboard displays a plot of previous self-rated happi-
ness and energy responses from the symptoms task (Figure 5.1b).

Sources The sources page allows the connection of and toggle the collection of passive
data. Currently, Fitbit and Garmin accounts can be connected. Previously it was possible
to enable and disable the collection of location data on this page. The rationale was to
allow precise control by the participant over exactly what and when data is shared.

Enrolment The enrolment and onboarding screens aim provide information so that a
person can make an informed decision on whether to take part, explain the study and
how to navigate the app, and to ensure ethical obligations (such as providing a participant
information sheet) are carried out.

Login A screen to allow a person to go into the enrolment process or log in to an existing
account.

Questionnaires and Active Tasks

The Mass Science app is designed to facilitate the collection of passive and active mobile
health data. By its nature, the passive data is collected opportunistically and with little or no
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input required from the participant. The vast majority of the functionality and experience
of the app that a participant will interact with are the active tasks that they are requested to
complete. The following section will describe the structure of an active task within the app.
A more detailed description of Covid Collab tasks is given in the following chapter, and a
full list of tables of implemented tasks is available in Appendix B.

Within the app code base, an active task consist of a Procedure and an attached Schedule.
A procedure is a collection of Tasks which may be conditionally dependent on the results of
other tasks within the same procedure, previous responses of the same survey, or values from
tasks in other procedures. Widgets are created for each task type and displayed in a sequence
to the participant within the particular active task procedure. An example of an individual
Task would be a single item of a questionnaire, while the questionnaire in its entirety is the
Protocol. The following generic task types are implemented:

Dropdown Allows the selection of a single item from a predefined list of options in a
dropdown box.

Radio / Tickbox Allows the selection of a single item (Radio) or multiple items (Tick-
box) from a list of displayed options.

Datepicker Allows the entry of date, time, or both through either text entry boxes or a
calendar and clock widget.

Listbuilder A Listbuilder task allows the construction of multiple values of another
type. For example, the COVID-19 symptom entry task is a listbuilder task in which
each item is a symptom name attached to a radio task of severity on a 4-item Likert
scale. Symptom severity scores can be added and removed from the response by the
participant.

Slider A continuous or segmented numeric scale. Optionally it can be labelled rather
than directly displaying a numeric values.

Text A text entry field that allows the participant to enter arbitrary text under certain
constraints (e.g. length, numeric or date comparisons, or pattern matching). It can also
be combined with other types, such as Dropdown or Tickbox, to allow for custom entry
if preexisting options are not sufficient.

Webview (Cognitron) A webview displays an external online web Uniform Resource
Locator (URL). It can inject JavaScript to intercept data of interest. It is currently solely
used to display Cognitron223 tests for Convalescence participants.
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A procedure can be attached to one or more Schedule. As the name suggests, a schedule
is responsible for determining when a procedure is available to complete by a participant. In
addition, schedules can be conditional on the presence of or values contained in other active
tasks. For example, in the Covid Collab study some questionnaires are only scheduled once
a positive diagnosis has been reported in the COVID diagnosis protocol.

Regular For procedures that are to be completed on a fixed frequency such as every two
weeks.

Cooldown For procedures that become available after a fixed cooldown period starting
from the point that the last response was submitted.

Oneshot A one-time schedule

AlwaysDue For procedures that should always be available to complete.

As mentioned, whether to display a task or schedule a procedure can be conditional on
other values. A condition takes an identifier of the task id (and optionally the procedure id
that the task belongs to, it is otherwise assumed to come from the same procedure) and a
comparison to run on that value. The comparison operators currently available are:

empty, notempty Whether the task value was completed or not.

gt, lt, eq, gte, lte Whether the numeric or date task value is greater than, less than, or
equal to a comparison value.

contains, containsAll, containsAny Whether a list contains a (or multiple) comparison
value.

Passive Data Collection

There is a small amount of passive data collection directly from the app. Baseline informa-
tion on the phone and operating system are taken. Originally, high-frequency raw location
data was collected. The collection of location data was discontinued after several months
due to a change in Google Play Store policy. Most passive data is collected from third-party
wearable devices through the device manufacturer’s web application programming interface
(API)s. Participants with Fitbit224 or Garmin225 devices can connect their account through
the Sources page of the Mass Science app.
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(a) Home page (b) History page (c) Sources page

Fig. 5.1 The three main pages of the Mass Science application

(a) Enrolment information (b) Enrolment key points (c) Enrolment consent page

Fig. 5.2 Part of the Covid Collab enrolment process in the Mass Science application
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(a) GAD-7 questionnaire (b) Arousal-valence scale (c) Symptom severity rating

Fig. 5.3 Questionnaire examples in the Mass Science application

5.2.2 Backend Structure
The background infrastructure supporting the app is largely based around leveraging Google
Cloud Platform components226 alongside the RADAR-base RADAR-REST-Connector.227

Google Cloud Platform and Firebase

Firebase is a framework within the Google Cloud Platform focused on enabling web and
app development. Several of the components are used within Mass Science. The most im-
portant distinction between the requirements for Mass Science and what was implemented
in RADAR-base at the time was the ability to remotely enrol and authenticate participants.
Firebase Authentication is an authentication backend which provided a few useful features:
the ability for a user to sign up and sign in with an email and password, in-built account
recovery options, and easy authorisation of users to specific parts of other Firebase services.

Receipt and storage of participant data is handled through Cloud Firestore, a NoSQL doc-
ument cloud database. Access is restricted so that participants can only read and write their
own data. Because it is a standard database that can be accessed from within the app, despite
being persisted online, providing data and visualisations directly back to the participant is
made fairly straightforward.
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Cloud Functions is a framework for running backend code written in one of several lan-
guages in response to an event, such as anHTTP request or a change to the Firestore database.
It is used for most of the remaining backend tasks: scheduling and sending notifications,
supporting participants leaving the study, linking and authenticating third party sources, and
data processing.

Notifications

Notifications to complete active tasks are sent remotely rather than fromwithin the app itself.
A server side implementation of the schedules found in the app are used to schedule reminder
notifications to be sent to the participant. To schedule a notification a document is created
within Firebase with details of the time to send, message, and associated active tasks. When
the notification is within one month of the time it is to be sent, a job is created on Cloud
Scheduler. The job ultimately runs at the time set in the document and the job triggers the
send notification cloud function with the notification document ID as an argument. The
notification document is then updated with the result of the notification.

RADAR-base components

An in-depth description of the RADAR-base platform, including the REST connector, is
available in the RADAR-base paper.8 Briefly, the REST connector takes the Garmin and
Fitbit accounts linked through the app and cloud function and uses the companies respective
REST API to request the participant’s data.

5.2.3 Enrolment and Attrition
Recruitment Strategy

Recruitment began in June 2020. The study was first publicised through newsletters, news
articles, and the university mailing list. Between August 2020 and May 2021 the study was
linked to fromwithin a section of the Fitbit app228 for users basedwithin the United Kingdom
(UK).

Length of engagement

The total duration spent in the study for a participant is defined as the time between en-
rolment and the date of completion of the last active task. There are several active tasks
available to complete with schedules of differing frequencies, the details of which are given
in the next chapter. Engagement may also differ between different active tasks because of
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the frequency of notifications, the length of the questionnaire, or the participant’s impression
of the importance of the task. However, when considering attrition, all the active tasks are
included. Passive data belonging to a participant may still be available through a previously
connected third-party wearable device manufacturer’s API after the participant has stopped
otherwise engaging with the study. While that can still provide useful information, it is not
included here for determining attrition. Up to one year of data is included for each participant
from the point that they enrol.

Factors predicting attrition

To understand how baseline characteristics of a participant might affect the rate of attrition
we use survival analysis techniques, which are commonly used where time-to-event data
with censoring is present.229 Censoring refers to the case where the exact time-to-event is
unknown because data becomes unavailable before that point (in the case of right censoring),
for example, because the study ends. The event in our case is the point that the participant
stops engaging with the study. A proportion of participants are still engaged with the study
and therefore the event, the point at which they will drop out, is right censored. The analysis
is taken up to September 2022. If a participant has submitted at least one active task in the
month prior (August 2022) they are assumed to still be engaged.

Survival probability, here the probability that a participant is still engaged in the study,
can be calculated at time 𝑡 with both censored and uncensored data using the Kaplan-Meier
(KM) method.230 To calculate the probability of survival 𝑆(𝑡𝑖) at time 𝑡𝑖 the probability of
survival from the previous time point is multiplied by the proportion of participants who
survived the current time step. The proportion who did not survive is the number who had
an event 𝑒𝑖 at time 𝑡𝑖 divided by the number of surviving participants 𝑛𝑖 directly prior to 𝑡𝑖.
The full equation is given in Eq. 5.1. KM plots are generated separately for sex and age
categories.

𝑆(𝑡𝑖) = 𝑆(𝑡𝑖−1) (1 − 𝑒𝑖
𝑛𝑖 ) (5.1)

We can visualise the probability of survival in different groups and estimate the hazard
ratio of two groups straightforwardly, but to compare multiple groups or variables we need
a more comprehensive model. A Cox proportional hazards model is a parametric regression
model.231 It is similar to a linear regression but where the outcome variable is the hazard
function at time 𝑡. The outcome is assumed to be equal to the baseline hazard function
multiplied by the exponential of a function of the covariates (Eq. 5.2). The hazard function
is the instantaneous rate of an event at a particular time.232
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𝜆𝑖(𝑡|𝑥𝑖) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛽𝑇 𝑥𝑖) (5.2)

A Cox model is fit to sociodemographic, mental wellbeing related, and historic wearable
data predictor variables. The sociodemographic variables are age, sex, employment status,
the presence of one or more mental comorbidity, and the presence of one of more physi-
cal comorbidity, smoking status, and body mass index (BMI). Additionally, depression and
anxiety are the two most commonly reported mental health related comorbidity in the so-
ciodemographic survey and are included. Where it is available, historic Fitbit data is taken
from the year 2019 to generate three predictors: historic sleep, activity, and heart rate. His-
toric activity is the average time spent per day in the ’very active’ Fitbit activity category.
Historic sleep is the average duration of each discrete sleep log. Historic heart rate is the
mean of the daily resting heart rate.

The predictors are from different sources with different data availability. There is also
a certain amount of covariance between some of the predictor variables. Therefore, several
models are fit to different groups of predictors to maximise the number of observations and
to show the effect of a group of predictors in isolation. All groups include age and sex. In
addition, the groups contain the following:

1. Employment status

2. Historic sleep, heart rate, and activity

3. The presence of physical and mental comorbidities

4. Depression and anxiety

5. Smoking status

6. BMI

Temporal behaviour pattern clusters

The total duration of engagement is not the only factor that is important when understand-
ing how different people interact with a study. There can be periods of high, low, and no
engagement, and different aspects of the study may be engaged with differently. To try and
capture some of temporal similarities between participants I aimed to cluster the sequences
of engagement for each participant into groups. To cluster, it is necessary to know the dis-
tance between the individual objects. Clearly there is not a straightforward way to calculate
distance between two temporal sequences that can take into account how it varies over time
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and where similar patterns among different sequences may not occur at the same time point.
One method, used here, is to fit a HMM to each sequence and use the likelihood of observing
other sequences under that model as the distance.

A HMM is a generative probabilistic model and are often used in time series analysis.
They provide away ofmatching an observed sequence to a hidden state, where the underlying
state may have some meaning. A model consists of 𝑁 hidden states, each with a probability
distribution 𝑏𝑖 that emits elements of an observed sequence where 𝑖 is the particular state.
There is a distribution 𝐴 for probability of transitioning between states and a distribution 𝜋
for the probability of starting in a particular state. Originally the emission or observation
sequence was typically discrete and so there was an additional parameter 𝑀 referring to the
length of the observation alphabet.233 However, the emission probability distribution can be
a distribution over a continuous variable as well. The three main questions for a HMM are:
what is the most likely sequence of hidden states for an observed sequence of emissions
given a model, what is the likelihood of an observed sequence given a model, and what are
the most likely parameters for a model given an observed sequence.

The process of generating a distance matrix between each participant’s sequence of en-
gagement is as follows:

1. Create an engagement sequence for each participant. The sequence is the number of
surveys submitted by the participant in a week for each week after enrolment for one
year, creating a 52-length vector.

2. Fit a HMM to each participant’s engagement observation sequence. Each model has 3
hidden states and a Poisson emission distribution. Models are fit using the hmmlearn
Python library.234

3. For each HMM, calculate the log likelihood of every other participant’s sequence un-
der that model.

4. Use the above log likelihoods to create a distance matrix 𝐷 of the absolute log likeli-
hood. The distance matrix is made symmetrical by taking the minimum of the two ab-
solute log likelihood values 𝑃 (𝑋𝑖|𝜃𝑗) and 𝑃 (𝑋𝑗|𝜃𝑖) where 𝑋𝑖 is the observed sequence
for the 𝑖th participant and 𝜃𝑖 are the parameters of the HMM for the 𝑖th participant (See
Eq. 5.3).

𝐷𝑖𝑗 = 𝑚𝑖𝑛(𝑃 (𝑋𝑖|𝜃𝑗), 𝑃 (𝑋𝑗|𝜃𝑖)) (5.3)

5. Generate an affinity matrix 𝐴 from the distance matrix using Eq. 5.4
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𝐴 = 𝑒𝑥𝑝 (
−𝐷

𝜎(𝐷)) (5.4)

In a general sense, it may be expected that a participant who disengages very shortly after
enrolment would have a model in which there is a state with a low probability of emitting
a value greater than 0 and with a high probability of staying in that state. A participant
with high engagement would have a state with a high probability of emitting an observation
greater than 0. Meanwhile, a participant who submits surveys infrequently but remains in the
study may have a state which is likely to emit a value greater than 0, a state which is likely to
emit 0, and a higher probability of moving between states than the previous two theoretical
participants. An observation sequence from a participant would be expected to have a higher
likelihood under another participant’s model the more similar their engagement behaviour
is.

Given that we have the distance (and affinity) matrix, there are a number of clustering
algorithms available to us. It is likely that the clusters will have different variances and
may potentially be overlapping. To illustrate why the variance between clusters may not
be expected to be equal, consider two groups: a low and moderately engaged. A group of
participants who have very low engagement, such as dropping out after the first day, will
probably have models that have a very high likelihood across all similar participants. This
is because after the initial emitting state, the model can transition to a state with a very
high probability of emitting a 0 and then stay in that state. A moderately or highly engaged
group, however, may require more state changes and have emission distributions spread over
a greater range of values. These constraints on the way the data is expected to be clustered led
to the decision to use a spectral clustering algorithm235 implemented in the Python library
scikit-learn.142

Spectral clustering requires specifying the number of expected clusters. Since we do not
have a prior notion of how many behavioural engagement clusters there are in our dataset,
we follow the eigengap heuristic method to determine the optimal number of clusters based
on the eigenvalues of the affinity matrix.236 Firstly, the graph Laplacian is calculated from
the normalised affinity matrix using the csgraph.laplacian function in the scipy library.237

Secondly, the optimal cluster number is estimated based on the largest distance between
eigenvalues.

The resulting clusters are described qualitatively on the basis of the overall group period-
icity, engagement duration, and consistency. Several basic statistics over sociodemographics
and engagement are given for each cluster. Finally, a multinomial regression is fit with clus-
ter group as the dependent variable and age, sex, and depression as a comorbidity as the
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Fig. 5.4 Participant age and sex distribution
a) The number of female and male participants enrolled in the study. b) The age distribution of

participants in the study.

independent variables. The intention is to see whether a common coexisting mental health
concern is associated with any specific engagement pattern.

5.3 Results

5.3.1 Mass Science Application
The Mass Science application was launched on the Apple and Google app stores in May
2020. Since that date it has been downloaded over 20,000 times and has had over 17,500
enrolled participants. It has been iterated on several times. The most substantial update was
the introduction of the ability to run multiple studies and the associated changes required for
the Convalescence study.

5.3.2 Descriptive Analysis
Even at the point of enrolment there is a large imbalance across sociodemographic groups
in the Covid Collab study. Female participants (N=12137) far outnumber male partici-
pant (N=4950). There is also an under-representation of the age groups at the extremes
of those allowed to participate, 20- to 30-year-olds and those above 65, while there is an
over-representation of 50- to 60-year-olds, which can be seen in Figure 5.4. Participants
who completed the extended sociodemographic survey question on ethnicity, were also ma-
jority white British (90.2%, N=5335/5916). Additionally, the majority of participants with
location information and the majority of app downloads (roughly 90% in both cases) were
from the United Kingdom (UK).
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Fig. 5.5 Participant contribution and attrition
a) Proportion of participants remaining in the study at a certain point after enrolment. Contribution
is defined as whether the participant has contributed an active task either on the week or at a later
date. b) The number of active tasks completed per participant. The plot is truncated at 100 surveys
completed because of the small proportion above this point, but the maximum number contributed
by a participant is 889. c) Shows the proportion of participants remaining on a log scale. d) Shows

the number of completed tasks per participant on a log scale.

Within the study population there is clearly unequal levels of contribution. Figure 5.5
shows a large drop in participation in the first few weeks of study, followed by a gradual
levelling off. After the first couple of weeks during which there is increased dropout, the
rate of attrition roughly follows a power-law distribution, demonstrated by the straight line
of the log plot. There is a similar pattern in the number of surveys completed, with a small
number of participant responsible for a large number of survey responses.

5.3.3 Survival analysis
To start to understand whether those unequal levels of engagement are associated with differ-
ent sociodemographic categories,we can consider how survival (here continued engagement
in the study) differs between different groups. Figure 5.6 shows how engagement differs
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Fig. 5.6 Attrition by age and sex
Proportion of participants remaining in the study over time across (a) sex and (b) age categories.

Shaded bands represent 95% confidence intervals.

between men and women and between different age groups. Ostensibly, male participants
appear more likely to stay in the study despite forming a smaller proportion of the study.
There are also a clear increasing level of participation the older the age group, such that at
half a year around 50% of the 70+ age group are still engaged, compared to around 20% of
the 18-30 age group. The proportion of remaining participants for each group does level off
at around 15% by the end of the year for the younger groups, while the older groups are still
more engaged but continuing to decrease.

5.3.4 Proportional hazards regression
The proportional hazards model allows us to see the affect of multiple groups and continuous
variables on the hazard ratio. Figure 5.7 displays a visualisation of hazard ratios across the
different groups of predictor variables run in each proportional hazard model. A table of the
numerical results is available in the appendix Table A.1.

While on the basis of the first survival plots male sex seemed to be associated with re-
duced attrition, when taking age into account there is no longer a significant affect, and
the spurious relationship is likely due to a higher average age for male participants. Age
continues to be significantly related to the rate of attrition.

The following groups of predictors are all part of models that include age and sex, but
not the other variables. Employed participants were not significantly different to retired,
unemployed, or student participants.
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Fig. 5.7 Proportional hazards model hazard ratios for attrition in the Covid Collab study
An orange marker signifies a p-value under 0.05 while a blue marker signifies a non-significant

result.
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Of the historic wearable metrics, both an increased mean duration of sleep and an in-
creased mean duration of high activity per day caused a lower hazard ratio, 0.964 and 0.947
respectively. The wearable metrics were normalised by taking the z-score across all partici-
pants and so the hazard ratio is in reference to a change in the cohort-level standard deviation.

The presence of at least one physical comorbidity was not significantly associated with
attrition, but the presence of at least one mental comorbidity had an increased hazards ratio
(1.08). The two most common mental comorbidities in the cohort were selected. A reported
depression diagnosis had a similar hazards ratio (1.08) while anxiety was not significantly
associated.

Smokers (HR=1.20) and ex-smoker (HR=1.08) were both significantly more likely to
leave the study than their non-smoking counterparts. Finally, therewas a small but significant
increase in attrition as BMI increased (HR=1.004).

5.3.5 Engagement Clusters
The clustering of participants into engagement groups on the basis of the log likelihood of
every other participant’s engagement sequence under the parameters of a HMM fit to a par-
ticular participant was carried out on all participants with over one weeks worth of data.
Participants who immediately disengage from the study clearly form a single particular pat-
tern, and given the fairly large number of those participants (N=5034) there was a potential
to affect the clustering of other groups without providing any useful information. The clus-
tering algorithm was therefore run on the 11299 remaining participants.

The five largest differences between eigenvalues of the affinity matrix, and therefore the
five most likely to be optimum numbers of cluster were 1, 7, 5, 3, 8. The spectral cluster-
ing algorithm was therefore run with 7 groups. Figure 5.8 displays a heatmap showing the
engagement sequence for every participant ordered by their cluster. Table 5.1 provides de-
scriptive statistics of number of participants, average number of surveys completed, average
duration of study engagement, age, sex, and proportion of participants reporting depression
for each cluster.

Reducing groups of engagement behaviour into neat descriptions or values is hard, but
there do appear to be some qualitative and quantitative differences. Across clusters, and in
line with the survival analysis, more engaged groups tended to be older. The least engaged
clusters had the highest rates of depression. Roughly, clusters 1, 2, and 4 are highly engaged,
while cluster 3, 5, 6, and 7 are moderately engaged. In the following list, clusters are rated
on consistency, whether or not participants miss weeks while still in the study; contribution,
the number of surveys submitted; and duration, the total number of days in the study.
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Fig. 5.8 Participant engagement clustered into 7 groups
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Cluster 1 High consistence, extreme contribution, long duration
The smallest and most engaged group. The average amount of time spent in the study
is only the second highest, but as a group they provided almost twice the number of
surveys as the next closest group. The proportion of participants with depression (12.9%)
is noticeably lower than any other group. Although still predominantly female, it is the
group with the highest proportion of male participants (36.7%)

Cluster 2 Moderate consistency, high contribution, moderate to long duration
This group appears to be less consistent than the other two high engagement clusters.
There is a large variance in the number of days in study and while the mean number of
days is lower than clusters 1 or 4, the number of surveys submitted is equivalent to cluster
4 participants. The main distinguishing characteristic appears to be a highly engaged first
third of the study followed by a moderate amount of engagement and dropout.

Cluster 3 Moderate consistency, moderate contribution, moderate duration
Similar to cluster 2 in that the number of surveys is fairly high in relation to the to amount
of time spent in the study. Despite having an intermediate average number of days in
study (d=171) compared to cluster 5 (d=143) and 6 (d=243), there are roughly twice
as many surveys submitted. Contribution is high in the first few months, but attrition is
substantial afterwards.

Cluster 4 Extreme consistency, high contribution, long duration
Members of this group appear to stay engaged, not drop out, and consistently submit
surveys every week.

Cluster 5 Low to moderate consistency, low to moderate contribution, moderate dura-
tion
In general, participants in cluster 5 appear to start with a fairly consistent contribution,
become inconsistent, and finally drop out after, on average, 4 or 5 months. They are
similar to participants in cluster 3, but with lower rates of contribution.

Cluster 6 Low consistency, low to moderate contribution, long duration
This group is seems characterised by a pattern of irregular engagement. Participant are
often retained in the study for a long period but are likely to skip one or more weeks at
a time.

Cluster 7 High consistency, low to moderate contribution, short duration
Most participants in this group consistently provide data for a few months and then drop
out. Unlike cluster 5 or 6 participants, once they stop they do not reengage.
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Cluster N No. Surveys Days in study Age Sex=Female Depression
1 169 265.5±167.8 420.0±203.4 58.2±12.5 63.3% 12.9%
2 490 110.5±105.1 295.9±234.6 54.4±13.2 67.3% 23.3%
3 1077 62.1±74.6 171.3±147.4 51.2±13.4 73.3% 21.1%
4 793 153.5±44.4 516.3±118.6 56.4±12.2 66.5% 18.9%
5 1730 27.5±33.7 143.2±139.1 47.7±14.2 70.0% 24.6%
6 2867 38.6±30.5 243.6±152.6 50.4±13.5 74.2% 27.8%
7 4173 29.0±36.4 62.3±85.6 46.5±14.2 71.7% 28.5%

Table 5.1 Descriptive statistics for engagement clusters

In addition to the description above based on descriptive statistics and a visual inspection
of the engagement sequences belonging to each cluster, a multinomial logistic regression of
age, sex, and depression to cluster group was carried out. The results, given in Table 5.2,
take cluster group 7 as the reference group. While the majority of the results reinforce what
was demonstrated in the survival analysis, there is a significant difference in the proportion
of female participants between clusters 6 and 7. This may suggest that groups or variables
that are not significantly different when considering total engagement time may be different
when considering the pattern of engagement over time.

5.4 Discussion
This chapter focused on both the design and software development of the Mass Science ap-
plication and the patterns of adherence among participants of Covid Collab, a citizen science
study run through the Mass Science app. While on the surface the two aims do not appear
similar, design choices in an app and study can have consequences on adherence and many
of the recommendations in the literature to increase engagement are based around or rely on
app design and development. It was therefore useful to first present the Mass Science app.

5.4.1 App design
The design of Mass Science largely followed the design of the RADAR-base active RMT
app, which itself went through several design cycles with different focus groups.238 Addi-
tionally, feedback from a session with the Young People’s Mental Health Advisory Group
on the design of a citizen science app for monitoring depression before the pandemic was
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Predictor Coeff Std Err P-value
Cluster 6

age 0.022 0.003 7.54e-14
female 0.206 0.088 0.020
depression 0.029 0.089 0.745
intercept -1.09 0.169 0

Cluster 5
age 0.0033 0.004 0.392
female 0.0395 0.117 0.735
depression -0.195 0.123 0.114
intercept -1.01 0.217 0

Cluster 4
age 0.0534 0.004 4.18e-46
female 0.0676 0.104 0.514
depression -0.304 0.117 9.43e-3
intercept -3.22 0.227 0

Cluster 3
age 0.0273 0.004 8.90e-10
female 0.0164 0.129 0.899
depression -0.284 0.145 0.049
intercept -2.47 0.262 0

Cluster 2
age 0.053 0.005 4.90e-23
female -0.0332 0.144 0.818
depression -0.0271 0.16 0.866
intercept -4.18 0.331 0

Cluster 1
age 0.0626 0.007 8.01e-18
female -0.0358 0.186 0.848
depression -0.694 0.259 7.30e-3
intercept -5.25 0.46 0

Table 5.2 Multinomial logistic regression of HMM-clustered engagement groups
The regression coefficients are in comparison to Cluster 7
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considered. The key differences between RADAR-aRMT and Mass Science were the inclu-
sion of a remote enrolment flow, remote connection of third party wearables, visualisation of
participant data, and originally the inclusion of passive data collection from within the same
app. Additionally, there was a design decision to allow participants to have fine-grained con-
trol over what data they donated. It is therefore possible to individually toggle the collection
of Fitbit, Garmin, and previously location data.

Data feedback to participants, through visualisations for example, is a common sugges-
tion in focus groups. It was implemented in a limited fashion in the history screen, providing
a view of previously reported happiness and energy scales. Unfortunately there was a bal-
ance between implementing features within the app and the need to release the study as early
in the pandemic as possible. The purpose of the app is to be the patient-facing interface of
a data collection platform, and so features supporting that purpose were the focus of imple-
mentation efforts. The development of a research app that, in addition to data collection,
directly provides a useful service to participants may help to increase adherence.

5.4.2 Participant engagement
The general pattern of engagement in the Covid Collab study was similar to those in other
mHealth citizen science studies. There is a high level of attrition, particularly at the begin-
ning of the study, but with a subset of participants with long term commitment. Imbalances
in age and sex are common across studies, but not always in the same direction. Here, there
is a predominance of middle-aged and female participants. The survival analysis conducted
demonstrated the importance of including multiple predictors. The predictors significantly
associated with attrition are age, historic sleep, historic activity, mental commodities, de-
pression, BMI, and smoking status. These may often differ in study groups, particularly
in a citizen science study where participants are not directly selected. Some may also be
directly or indirectly related to the outcome measure of a study, and therefore it will be im-
portant to consider how engagement of participants might affect analysis or cause spurious
associations.

The clustering approach used on engagement data in this study produced visually distinct
and understandable groupings outside just the total time spent in the study. Clustering of en-
gagement using a HMM was previously carried out in the Cloudy with a Chance of Pain
study,209 hereafter referred to as Cloudy. However, there are a few important differences
in this study. Firstly, in Cloudy it appears that the states and associated probabilities of the
transition and emission matrices were explicitly set to high, low, and disengaged engagement
states. In this study a separate model, also consisting of three states, was fit to each partici-
pant’s sequence in a non-supervised fashion. Secondly, the observation sequence in Cloudy
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appears to be binary, whereas in this study the observation sequence is the number of sur-
veys submitted in a week and therefore a Poisson emission distribution is used. Thirdly, the
clustering in Cloudy appears to be achieved through fitting a mixture hidden Markov model
whereas in this study the log likelihood of each sequence under each participant’s model
is used as a distance matrix in a spectral clustering algorithm. Finally, participants were
split into four clusters in Cloudy and seven in this study. The increased number of clusters
used in this study possibly led to a better visual split between different types of engagement
behaviour, for example on the basis of how consistent a participant was, rather than ’high’,
’moderate’, ’low’, and ’tourist’ clusters described in Cloudy.

While it seems adequate, the clustering procedure used in this study could be improved.
Clustering appeared visually less satisfactory when participants who immediately left the
study were included (see Figure A.3 in the appendix). Short duration participants seem lit-
tered throughout several clusters without good separation. The architecture of the HMMwas
very basic, consisting of three states with no constraints on transition. It may not adequately
capture all types of engagement behaviour. The observation sequence was also the sum of all
surveys completed in a week and therefore the clustering did not consider how active tasks
with different demands or frequencies might be engaged with differently.

5.4.3 Implications
The engagement patterns elucidated in this study have some implications on the recruitment
practices of future citizen science projects. Under-represented groups may need specific
targeting, which may be achieved through strategies such as choosing where the study is
publicised or engaging with under-represented groups to understand why they may be less
likely to take part. Targets for the proportion of certain groups within the study may also be
informed by the expected rate of attrition of those groups, where you may require a higher
number of participants from a group that is more likely to drop out of the study. There are
further implications for the analysis of data from existing studies, like Covid Collab, that have
dramatic differences in adherence and engagement. Active tasks are often used as, or form
part of, an outcome variable. How that outcome variable is defined may cause it to become
associated with a variable or group purely on the basis of how engagement is correlated with
that variable or group. For example, in the paper that forms the basis of the following chapter
the method for assigning participants to the long COVID group is to take participants who
self-report at least one symptom every week for twelve weeks after a COVID-19 diagnosis.
While it is a necessity to define long COVID on something, given that it is under-diagnosed
and a true label often does not exist, the group will be biased towards consistent and engaged
participants, and it is important to keep that caveat in mind. Similar issues may be present
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in other studies. In a survey-based mHealth study long COVID groups were based on the
presence of symptoms at certain time points post-diagnosis.210 Engagement patterns in other
studies may not be exactly the same as in Covid Collab, but there is potential for spurious
associations to be found because of biases in engagement.

The point that engagement behaviour should be carefully considered is generalisable to
other medical areas. Considering psychological mHealth studies, if someone is depressed
or has another mental health issue they may be more likely to drop out or have missing data.
Although not investigated in this study, it is possible that acute periods of depression, or
relapse or remission in symptoms, are responsible for changes in engagement, rather than a
baseline change caused by the presence of a comorbidity.

For many analysis problems in mHealth, the power-law-like distribution of data over par-
ticipants may help motivate the use of models and training paradigms that can make use of
the small amount of data that is often available for individual participants, such as the meta-
learning techniques discussed earlier in the thesis. Many participants are not engaged for
long, and this pattern may carry over to studies that aim to create detection or disease clas-
sification models. Any attempt to create personalised models would be limited to methods
that can use the small amounts of data provided by many of those individual participants.

Use of passive data, rather than relying on active participant engagement, is a promising
avenue. However, it is often still necessary to have self-reported labels to properly understand
the passive data, and often passive data is still used as a predictor variable rather than being
able to be used as an outcome directly.

5.4.4 Limitations and evaluation
There are a number of limitations to this study. The study cohort may be specific to the dis-
ease and condition under study, and the COVID-19 pandemic likely motivated many people
to take part in a COVID-19 citizen science project that may not otherwise have engaged in
or come across a similar mHealth study. Specific patterns found here, such as the increased
proportion of women, may not hold across all studies. However, the general ideas and the
techniques used here may be more widely useful.

We did not systematically collect reasons for participant dropout, which is itself logis-
tically challenging in a remote study. Concrete steps to increase engagement, and whether
they would affect different clusters of participants differently, are therefore hard to deter-
mine. Understanding how study or app design could be changed would require further work
with differences in design across randomised groups, or A/B testing as an integral part of
future studies.
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5.4.5 Future work
The most immediate item of future work will be based around how acute periods of depres-
sion, anxiety, and symptoms, affect prior and post engagement. Self-rated scales for depres-
sion and anxiety were prompted for every two weeks in the Covid Collab study, and so it will
be possible to investigate acute effects within the same dataset. Longer term, further study
app development work could be focused around boosting and understanding engagement,
rather than purely as a collection platform.

5.5 Conclusion
The Mass Science app was a mobile study app developed for the Covid Collab citizen sci-
ence project. App design was considered in the context of study engagement and attrition.
Within the Covid Collab study, engagement differed dramatically between participants and
was significantly associated with sociodemographic factors and the presence of certain co-
morbidities. Clustering of participants demonstrated groups of different contribution and
attrition patterns. Participant engagement will be important to consider in the analysis of
mobile health, and particularly citizen science, studies.



Chapter 6

Covid Collab: Protocol Paper

6.1 Preamble
Following the description of the Mass Science app and supporting infrastructure in the pre-
vious chapter, the aim here is to give a more detailed look at the Covid Collab study itself,
including the collected data, questionnaire protocols, and initial goals, to provide context for
the following analysis chapter.

The idea of a remote citizen science mobile health project to collect data during the
pandemic was not unique. Several studies specifically collected commercial fitness device
wearable data. The largest was the Robert Koch Institute’s Corona-Datenspende study239

which recruited over 540,000 people240 but initially only included wearable data. There were
several studies within the USA: the DETECT study,241 the Stanford COVID-19 wearables
study,242 CovIdentify,243 and TemPredict.244

All of these citizen science studies looked at the combination of donated wearable data
and self-reported COVID-19 symptom surveys. Because the studies were launched roughly
concurrently without prior visibility, there was not any deliberate alignment in protocol.
This caused minor differences in how self-reported symptoms, diagnosis events, vaccination
status, and wearable data were collected. In contrast to Covid Collab, none of the studies
collected regular mental health questionnaires. Wearable data was typically collected either
only from the period that the participant was enrolled in the study or around specific illness
events, except the TemPredict study, which collected twelve months of baseline data. Other
citizen science initiatives included self-report-only studies such as the COVID Symptom
Study, which attracted over four million participants.245

The chapter is included as a published paper. DOI 10.2196/32587
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Abstract

Background: The ubiquity of mobile phones and increasing use of wearable fitness trackers offer a wide-ranging window into
people’s health and well-being. There are clear advantages in using remote monitoring technologies to gain an insight into health,
particularly under the shadow of the COVID-19 pandemic.

Objective: Covid Collab is a crowdsourced study that was set up to investigate the feasibility of identifying, monitoring, and
understanding the stratification of SARS-CoV-2 infection and recovery through remote monitoring technologies. Additionally,
we will assess the impacts of the COVID-19 pandemic and associated social measures on people’s behavior, physical health, and
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phone data, fitness tracking wearable data, and regular COVID-19–related and mental health–related survey data. The data
collection period will cover a continuous period (ie, both before and after any reported infections), so that comparisons to a
participant’s own baseline can be made. We plan to carry out analyses in several areas, which will cover symptomatology; risk
factors; the machine learning–based classification of illness; and trajectories of recovery, mental well-being, and activity.

Results: As of June 2021, there are over 17,000 participants—largely from the United Kingdom—and enrollment is ongoing.

Conclusions: This paper introduces a crowdsourced study that will include remotely enrolled participants to record mobile
health data throughout the COVID-19 pandemic. The data collected may help researchers investigate a variety of areas, including
COVID-19 progression; mental well-being during the pandemic; and the adherence of remote, digitally enrolled participants.
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Introduction

Background
The COVID-19 pandemic has brought about widespread and
drastic changes to people’s lives, work, and health resulting
from infection by SARS-CoV-2 as well as the public health and
social measures (PHSMs) that were introduced to limit the
disease. It is important to not only understand how and under
what circumstances the disease itself spreads but also understand
the holistic impact of the pandemic.

Although many people are resilient to the conditions imposed
by the pandemic, previous instances of disease outbreaks [1]
and quarantines [2] have been associated with negative
psychological outcomes. Postinfection conditions that followed
previous coronavirus outbreaks include posttraumatic stress
disorder, depression, anxiety, and confusion, among others.
Similarly, quarantine has been associated with several
conditions, including stress [3], posttraumatic stress disorder
[4,5], and depression [4,6]. A longer duration of quarantine is
associated with worse psychological outcomes [2]—a potentially
pertinent fact given the protracted period of the COVID-19
pandemic. Additionally, the stigma of disease and the hazards
that many face may differ among different people in different
occupations or sociodemographic groups [7].

More recently, the presence of persistent symptoms following
acute COVID-19 illness has received increased attention.
Around 20% of people in an Office for National Statistics survey
from the United Kingdom who had a positive COVID-19 test
result reported symptoms lasting at least 5 weeks, and 10%
reported symptoms lasting at least 12 weeks [8]. The
symptomatologic groups, which are formed by people with
persistent illness following SARS-CoV-2 infection, have not
been fully determined. Preliminary studies show a multitude of
symptoms with various levels of co-occurrence, including
persistent respiratory issues, fatigue, psychological and
neurological symptoms, and fever [9-11]. The presence of these
long-term symptoms is often referred to as long COVID.

Mobile health (mHealth) as a field is well suited to the unique
problems that have been encountered during the COVID-19
pandemic [12,13]. The need for social distancing and wide-scale
quarantines precludes many studies that require direct physical
contact with participants. Apart from the ability to continue
where other study and data collection methods have been
limited, mHealth technologies also offer various advantages.
The pervasive nature of mobile phones and wearable fitness
devices allows for a fine-grain, second-by-second level of detail
as well as prolonged periods of continuous monitoring, which
are useful because although the pandemic has been long in
duration, it has often been punctuated by acute events, such as
infection or the introduction of public health measures.
Moreover, the fine resolution of such data provides a more
comprehensive view of a person’s health and behavior. Historic
fitness, health, and activity records are often connected to a
person’s web-based accounts. Participants are able to donate
such data, which can be used to better understand changes
related to participants’ prepandemic activities and health, their
preinfection status, and the duration required to recover to

preinfection baseline. Finally, passive data sets collected in this
manner have the benefit of being in a standardized format,
regardless of their country or institution of origin, and larger
numbers of potential participants can be quickly reached through
digital methods compared to those reached through more
traditional recruitment strategies.

Various previous and ongoing studies have demonstrated the
ability to monitor long-term mental well-being [14,15] and track
the prevalence of flu-like disease [16] through the use of remote
monitoring technologies (RMTs). Such technologies therefore
appear to be a useful lens through which to investigate the
COVID-19 pandemic, and multiple initiatives have been set up
by several groups [17-19].

Objectives
To investigate some aspects of the COVID-19 pandemic, we
launched the Covid Collab study in April 2020. The study is a
crowdsourced initiative [20] that will involve remote enrollment.
It will use a cross-platform phone app to deliver surveys; allow
for the input of COVID-19–related data; and allow participants
to connect to third-party sources of wearable data, such as Fitbit
LLC. By prospectively collecting regular mental well-being
and COVID-19 survey data alongside historic and ongoing
health-related wearable device data, we hope to address the
following objectives.

We will determine whether remote monitoring can provide data
on COVID-19 states with objective, measurable differences.
Wearable device data have previously been used to predict the
prevalence of influenza-like illnesses [16] and can therefore
potentially be used to better understand levels of infection and
persistent postsequelae symptoms. We aim to assess the
feasibility of detecting acute infections, wellness, and long
COVID symptoms at a personal and population level.

We will also stratify and define patterns of symptoms of
COVID-19 and any postacute infection illness. Self-reported
symptoms and objective measures of activity from wearables
will be used to identify any groups or patterns of symptoms,
especially those among the nonhospitalized population, which
has been less visible and easy to recruit in many studies.

We also aim to identify risk factors and causes of COVID-19,
long COVID, and the severity of illness. The incidence of
COVID-19 and the likelihood of a person developing persistent
symptoms following infection will be investigated with respect
to a person’s state prior to enrollment, which will be based on
sociodemographic information; participants’ prior medical
histories; and wearable- and phone-derived information, such
as activity levels, heart rates, and sleeping patterns.

Finally, we will investigate mental well-being throughout the
pandemic. Alongside measures of SARS-CoV-2 infection, we
will also collect regular responses to mental well-being surveys.
We will describe trajectories of mental well-being in response
to illness and PHSMs during the pandemic as well as identify
risk and protective factors.
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Methods

Study Design
The Covid Collab study is a crowdsourced observational study
that will involve remote enrollment. Covid Collab aims to collect
wearable device data, phone data, and survey responses from a
large number of self-enrolled participants. This is an
observational population study with several structures available
for particular objectives. Cross-sectional comparisons will
involve drawing cases and controls from participants who have
and have not reported illness during the course of the study. By
conducting individual longitudinal comparisons and
participant-specific models, baseline measurements will be
compared against measurements from different stages of
COVID-19 (ie, acute infection and postinfection) or from
periods of interest (eg, vaccination periods and lockdowns).

Recruitment
Recruitment started in April 2020 on a small scale, and
large-scale recruitment began in June 2020. Given the
crowdsourced nature of the study, participants will be able to
enroll from anywhere. However, because of the location of our
research group, the majority of the promotional activities that
have been carried out have targeted people within the United
Kingdom. The study is open to enrollment for any person over
the age of 18 years who uses a smartphone and, optionally, a

wearable fitness device. Participants without a fitness device
will still be able to complete COVID-19 and mental health
surveys.

Participants will enroll within the Mass Science app—the study
app for Covid Collab. During enrollment, the participants will
be provided with in-app study information, an in-app consent
form, and a basic demographics survey. Directly following
enrollment, the participants will go through an onboarding
procedure. First, participants will complete a more in-depth
demographic survey for collecting information on age, gender,
ethnicity, height, weight, previous and existing medical
conditions, employment status and whether there has been a
change in employment status during the pandemic, and marital
status. Second, participants will receive prompts for optionally
turning on the location data sharing function in the background
of their smartphones throughout their involvement in the study.
They will also receive prompts for connecting their wearable
device accounts to facilitate wearable device data collection.

Platform and Mass Science App
To facilitate the study, we used pieces of the Remote Assessment
of Disease and Relapse (RADAR)–base mHealth data [21]
collection platform, alongside services from Google Cloud
Platform, as the data collection back end and a custom-built
app for remote enrollment and participant interaction (Figure
1).

Figure 1. An overview of the data collection platform that will be used in the Covid Collab study. API: application programming interface; IAM:
Identity and Access Management; KCL: King’s College London; OAuth: Open Authorization; PCFS: Post–COVID-19 Functional Status; REST:
Representational State Transfer.
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The Mass Science app is a cross-platform smartphone app that
was developed for the Covid Collab study using Flutter. Its key
functionalities include providing prospective participants with
the ability to enroll in the study; delivering scheduled surveys;
allowing participants to input information related to
SARS-CoV-2 infection and vaccination; collecting wearable
device data either directly from phones or by requesting access
to participants’ data through third-party application
programming interfaces (APIs); and collecting phone data,
including location information. The collection of each data type
(eg, location) will be optional. This will allow people to provide
data that they are comfortable to share.

Google Cloud Platform [22] comprises the majority of the back
end. User authentication will be managed through Firebase
Authentication (Google LLC), survey scheduling will be
managed through Cloud Functions and Firebase Cloud
Messaging (Google LLC), and the initial collection of phone
data and surveys will be conducted through Firestore (Google
LLC).

RADAR-base is a general mHealth data collection platform
that has been used in several RMT studies [14,23,24]. It
comprises several modular applications. Some wearable device
companies provide access to their customers’ data through an
API (a set of definitions and protocols that ease programmatic
access to services). We will use the RADAR-base

Representational State Transfer Connector to retrieve wearable
device data from the Fitbit Web API (Fitbit LLC) and Garmin
Health API (Garmin Ltd).

Procedures and Data Collection

Surveys
A number of baseline, on-demand, and scheduled surveys (Table
1) will be included in the study and completed by participants
through the Mass Science app. Sociodemographic and medical
information will be collected at baseline. Mental health
questionnaires—the Patient Health Questionnaire-8 (PHQ-8)
scale [25] for symptoms of depression and the General Anxiety
Disorder-7 (GAD-7) scale [26] for symptoms of anxiety—will
be made available, and participants will be prompted to complete
these questionnaires every 2 weeks. A questionnaire on
COVID-19 and long COVID symptoms and a visual analog
happiness and energy scale will also be made available. These
can be completed on demand, but participants will also be
prompted biweekly to complete them. COVID-19 diagnosis
and vaccination information can be submitted at any time.
Following a reported COVID-19 diagnosis, participants will be
prompted to fill in the Post–Covid-19 Functional Status scale
[27]. Prompts regarding when a scheduled survey is available
will be delivered through Firebase Cloud Messaging push
notifications, which will appear as notifications on participants’
phones.

Table 1. The surveys that will be collected during the study.

FrequencyPurposeQuestionnaires

Baseline questionnaires

BaselineTo collect demographic dataCovid Collab demographics (Multimedia Appendix 1)

BaselineTo collect data on disorders and comorbiditiesCovid Collab comorbidities (Multimedia Appendix 1)

Scheduled questionnaires

Fortnightly following
diagnosis

A fast ordinal scale for the evaluation of post–COVID-19
functional status

Post–COVID-19 Functional Status scale [27]

Twice weekly and on
demand

To catalog acute-phase and lingering COVID-19 symptoms
and long COVID symptoms

COVID-19 symptoms (Multimedia Appendix 1)

FortnightlyTo identify probable cases of anxiety and to determine the
severity of symptoms

General Anxiety Disorder-7 [26]

FortnightlyTo assess the severity and presence of symptoms of depressionPatient Health Questionnaire-8 [25]

On-demand questionnaires

On demandSelf-report diagnosis questionnaireDiagnosis (Multimedia Appendix 1)

On demandVaccination surveyVaccination (Multimedia Appendix 1)

Wearables
Wearable device data will be collected through 2 methods. First,
participants can connect their web-based accounts, thereby
allowing us to collect data from the wearable vendors’ HTTP
API. Both Fitbit LLC and Garmin Ltd will provide data access
through this method by allowing users to authorize Covid Collab
to access their data through the companies’ respective APIs. In
this case, data can be retrieved directly from a server. Second,
we can retrieve data via users’ smartphones by using Apple
HealthKit (Apple Inc) [28] and Google Fit (Google LLC) [29].

In this case, data will be uploaded to Firestore alongside other
phone data.

The exact data types that will be available will depend on the
devices that the participants use, what the wearable device
manufacturers make available, and what the users choose to
authorize when allowing access to their wearable data. Where
available, we will collect intraday and summary heart rate, step
count, and activity data; sleep data; and other physical and health
information, such as height and weight. If a participant does
not own a wearable device, they will still be able to provide
survey responses and phone data through the Mass Science app.
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We expect that some participants will have existing data for the
periods of time preceding enrollment and the pandemic. After
they connect their wearable device accounts, we will
retrospectively collect wearable device data from January 2019,
where available. Prospective data will be retrieved as they
become available.

Location
Geographic position data will be collected from consenting
participants’ phones. To reduce battery use, a location point
will be recorded only when movement is detected and not when
participants are stationary. Raw location data are highly
sensitive. As such, they will be stored separately, and only
deidentified features and summary statistics will be accessible
to researchers. Following a change in stance by the Google Play
Store (Google LLC) in January 2021, location collection was
discontinued in subsequent updates of the Android app.

Data Enrichment
Analyses will require the enrichment of the data through the
incorporation of publicly available data sets. Primarily, this will
be performed via the contextualization of location data by using
the CORINE (Coordination of Information on the Environment)
Land Cover data set [30] and OpenStreetMap (OpenStreetMap
Foundation) and via the incorporation of public and social
measures from the World Health Organization PHSM database
[31].

Data Management
All data will be stored and encrypted, and personal information
will be stored in a separate database. Location data will be
deidentified via the aggregation of raw geographic coordinates
into features. Access to personal information will be limited
strictly to study administrators for administration purposes (eg,
to delete data at the request of a participant). Researchers’access
to the anonymized data set will be limited through access control
lists. Participants can choose to allow us to share anonymized
versions of their data in a larger public data set, which will be
made available at a later date.

Statistical Analysis

Data Exclusion and Absence
As a crowdsourced study involving the optional sharing of
different modalities of data, we expect that there may be greater
data missingness and participant attrition than those in studies
that involve more direct patient contact and engagement.
Different objectives may require different exclusion criteria.
For example, determining wearable biomarkers for COVID-19
may only require a connected device and a single COVID-19
diagnosis survey, while characterizing trajectories of mental
well-being would require multiple PHQ-8 and GAD-7 responses
from a single participant.

Rates of participation, adherence, and dropout will be examined
with respect to sociodemographics, time points during the
pandemic, and participants’ concurrent health. Additionally,
patterns of user engagement will be characterized to show how
participants may interact in similar studies and what drives
engagement. User engagement will be determined based on
completion rates for the prompted surveys.

Characterizing COVID-19 and Long COVID
Symptomology
We will describe and define subgroups for symptoms of
COVID-19 and long COVID through the clustering of
self-reported symptoms. This will include a time-independent
view of all symptoms throughout the illness as well as
time-dependent clustering to investigate how the disease
progresses. A latent class analysis will be used to group
time-independent symptoms. A cluster analysis will be
conducted on symptom severity data (4-point Likert scale). The
optimal number of latent classes will be selected based on the
Bayesian information criterion. Time-dependent symptom
clustering will be carried out by using mixture latent Markov
models. The classes will be described with respect to the
frequency of symptoms and their prevalence in different
sociodemographic groups.

Risk Factors for Severe COVID-19 and Long COVID
Risk factors will be assessed by conducting a logistic regression
between participants with long COVID symptoms and
participants who had COVID-19 but did not experience
persistent symptoms. A logistic regression between participants
with COVID-19 who self-report severe symptoms (based on a
4-point Likert scale) and those who self-report mild symptoms
or are asymptomatic will also be conducted. Predictors will
include sociodemographics, smoking status, medical history,
and measures of health and behavior derived from the RMT
passive data streams (eg, historic and contemporary activity
levels and heart rates).

Disease State Classification
By using the identified clusters of symptoms, we will explore
RMT parameters that can be used to classify COVID-19. This
analysis will involve using conventional machine learning
methods, including support vector machines and random forests,
in combination with feature selection and fusion approaches,
as well as more contemporary deep learning methods.

Trajectories and Classification of Mental Well-being
The primary mental health outcome measures will be the PHQ-8
and GAD-7 for depression and anxiety, respectively, which
participants will be prompted to complete every 2 weeks.
Additionally, a visual analogue scale for happiness and for
energy will be included alongside the biweekly symptoms
questionnaire.

Mental well-being will be investigated from several viewpoints.
First, we will analyze how mood changes in response to and
following a SARS-CoV-2 infection. Second, we will determine
how mental well-being has been affected throughout the
pandemic for the entire cohort in relation to public health
measures and by taking into account levels of activity and
information on location (eg, time spent outside, home stay
duration, or local population density). Finally, we will assess
the feasibility of using machine learning approaches to predict
low mood on the basis of passive wearable and phone data.
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Results

The Covid Collab study began in April 2020, and large-scale
recruitment began in earnest in June 2020. As of June 2021,
there are over 17,000 participants. Of those, 11,350 have a
connected wearable device, and 16,350 have completed at least
1 survey. An interim analysis is expected to be complete by
July 2021. The publication of the final analyses is expected to
occur by December 2022 but may depend on the evolution of
the COVID-19 pandemic.

Discussion

Remote monitoring is a promising avenue for understanding
COVID-19 and the effects of the pandemic. Our study has
multiple advantages, including the availability of historic
wearable device data, the ability to reach a wide range and large
number of people, and the high resolution of data. However,
there are also a number of limitations to the study.

Although crowdsourced recruitment is technically open to all,
it is likely that there will be bias. The study is only reachable
by those who own a smartphone, and a person who already
owns a wearable device may be more likely to take part in the
study. Both of these populations may be skewed, in some
respect, relative to the general population. Moreover, different
segments of the population may be more likely to seek out and
engage with scientific studies of this kind. For example, within
our currently enrolled cohort, 68.6% (11,840/17,255) of
participants are female. It will be important to quantify the
composition of the cohort and determine how the composition
relates to the known COVID-19 incidence rates among different
groups, study adherence rates, and data completion rates within
the study.

Participant attrition is present in many internet-based studies
[32]. As previously mentioned, due to the nature of a study
involving remote enrollment and little to no personal interaction,
we may expect higher attrition rates than those in studies with
different enrollment strategies or methods for promoting

participant interaction and engagement [33]. A “history view”
screen was implemented in the app. It shows previous mood
responses to allow for the direct return of results to participants.
However, other studies have used other methods for promoting
participant engagement that are not present in our study largely
due to development time limitations. Such methods include
different notification strategies [34,35] and gamification [36,37].

Another limitation is imposed by the evolving nature of the
pandemic and our knowledge of COVID-19; in response to new
information, we may be required to change aspects of or add to
the protocol. For example, long COVID symptoms and the
Post–COVID-19 Functional Status scale were added recently,
as more evidence of persistent impairment following
SARS-CoV-2 infection has emerged. Time constraints also
require us to balance the introduction of features with the need
to recruit participants at an earlier stage. For example, the use
of the Garmin Health API was recently included in the protocol.
This may have limited the prior recruitment of users of Garmin
devices. However, current and prospective participants with
Garmin devices will still be able to donate historic data
connected to their accounts.

There are several similar ongoing studies throughout the world.
Although our participants may overlap with those of other
studies, each study is fairly well geographically separated.
Although we are recruiting participants from throughout the
world, as a UK-based group, our outreach and ability to connect
with potential participants are greatest in the United Kingdom.
Given the similarity of the collected data and the loose alignment
of questionnaires, there is potential for collaboration or
meta-analysis.

Overall, the introduced study ought to provide an angle through
which to view the mental and physical health of a population
throughout the COVID-19 pandemic. Using historic and ongoing
wearable and mHealth data should allow for more thorough
precision health models to be built and enable us to understand
how prior lifestyles have affected the risk of developing
COVID-19, long COVID symptoms, and mental health issues.
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6.7 Summary
In this chapter the Covid Collab study protocol was presented. While the objective was to
set the scene for the following analysis chapter, there are a couple of unique aspects and
contributions.

Firstly, consent was sought to share the collected data in a public dataset. The dataset
contains extensive wearable recordings and mental health measurements and is therefore
potentially useful outside of COVID-19. Several projects have started to use data within and
outside of COVID-19 research, including a self-supervised learning approach to building a
’wearables’ foundational model, resting heart rate forecasting, and circadian rhythms.

Secondly, the inclusion of historic wearable data and mental health measures is in con-
trast to otherwise similar citizen science studies. Chapter 4 demonstrated the potential utility
of short baseline recordings and limited prior labelled data. As such, I felt it was important
to include historic data to better contextualise or correct participant’s recordings during the
pandemic, as the following chapter will help illustrate.



Chapter 7

Covid Collab: Presentation of Long
COVID and Risk Factor Analysis in a
Mobile Health Study

7.1 Preamble
As the pandemic progressed, it became clear that long-term sequelae of COVID-19 infection
was an important and under researched area. The Covid Collab study was initially set up
to monitor acute symptoms of COVID-19, but because it had continuous wearable-based
monitoring, did not limit the period in which questionnaires were prompted for, and had
frequent mental health questionnaires, it was well-placed to also study longer-term effects.

Similar citizen sciencewearable data donation studies also reoriented around post-COVID
sequelae from an earlier focus on acute detection.246 In theDETECT study, Radin et al. found
COVID-postive participants were more likely to have an increased heart rate of five or more
beats per minute after 56 days than those without an infection.15 The Corona-Datenspende
study put increased emphasis on long COVID in their 2023 roadmap240 and have demon-
strated the impact of vaccination on the recovery rate from COVID infection through wear-
ables.247 A traditionally-recruited observational study demonstrated reduced light and deep
sleep time, as measured through a Biostrap smartband, in COVID-postive participants com-
pared to a control group.248 Together these results suggested that monitoring certain long-
term damage or dysfunction following infection is possible using wearable technology.

The large self-report mobile health studies also contributed to the understanding of long
COVID. The COVID Symptom Study reported prevalence rates of 4.5% at eight weeks and
2.6% at twelve weeks, and suggested that the likelihood of developing long COVID could be
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related to symptomatology during the acute infection.210 Later meta-analyses suggests the
prevalence rate is much higher, although estimates are highly variable.249 The most com-
mon symptom, fatigue, is estimated to effect around ⅓ of people for at least twelve weeks.
250,251 Other common symptoms include anxiety and depression, cardiological impairments,
respiratory issues, and musculoskeletal pain.

The aims primary aims of this chapter are to (i) identify long-term changes to physio-
logical signals, mental health, and reported symptoms following a COVID-19 infection at a
group-wide level and (ii) to determine risk-factors for the development of long COVID from
a passive- and active-RMT perspective. A few unique aspects of the study, most notably the
historic data and the inclusion of mental health measures from the very start of the study,
set it apart from the other wearable data donation drives.

This chapter is included as a pre-print of a paper that is in the publication process. The
self-report analysis was primarily performed by Yatharth Ranjan and the text relating to that
section of work was predominantly written by him. I performed and wrote the other sections
of work, including the group-wide and passive-based long COVID cohort analysis, with
feedback and advice from the other listed authors.
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Abstract
Background The Covid Collab study was a citizen science mobile health
research project set up in June 2020 to monitor COVID-19 symptoms
and mental health through questionnaire self-reports and passive wearable
device data.
Methods Using mobile health data, we consider whether a participant is
suffering from long COVID in two ways. Firstly, by whether the participant
has a persistent change in a physiological signal commencing at a diagnosis
of COVID-19 that last for at least twelve weeks. Secondly, by whether
a participant has self-reported persistent symptoms for at least twelve
weeks. We assess sociodemographic and wearable-based risk factors for the
development of long COVID according to the above two categorisations.
Findings Persistent changes to physiological signals measured by com-
mercial fitness wearables, including heart rate, sleep, and activity, are
visible following a COVID-19 infection and may help differentiate people
who develop long COVID. Anxiety and depression are significantly and
persistently affected at a group level following a COVID-19 infection. We
found the level of activity undertaken in the year prior to illness was
protective against long COVID and that symptoms of depression before
and during the acute illness may be a risk factor.
Interpretation Mobile health and wearable devices may prove to be a
useful resource for tracking recovery and presence of long-term sequelae to
COVID-19. Mental wellbeing is significantly negatively effected on average
for an extended period of time following a COVID-19 infection.
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Introduction
There have been over 500 million confirmed severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infections as of April 2022 [1]. Despite the develop-
ment and successful rollout of vaccinations and treatments, COVID-19 remains
a danger both in terms of the acute illness, chance of death, long-term illness
following infection, and the possibility of problematic variants developing.

Persistent symptoms following a SARS-CoV-2 infection, often termed long
COVID or Post Acute COVID-19 syndrome, are thought to affect a significant
number of patients. The presence of these long-term effects was largely illumi-
nated early in the pandemic through subjective accounts from patients of the
disease [2]. While there has been a flurry of research starting to address the preva-
lence, clinical features, and risk factors [3] of long COVID, our understanding of
the condition remains sparse.

Attempts have been made to categorise long COVID (LCOVID) on the basis
of symptomatology, time periods, and aetiology, but it remains a loosely defined
syndrome with multiple associated terminologies [4]. In the United Kingdom,
the National Institute for Health and Care Excellence (NICE) suggest the use of
Acute COVID-19 for symptoms up to four weeks, Ongoing symptomatic COVID-
19 for symptoms from four to twelve weeks, and Post-COVID-19 syndrome
for symptoms continuing past twelve weeks[5]. Symptoms have been reported
across a wide range of organs and body systems, including cardiorespiratory,
neurological, psychological, musculatory, gastrointestinal, and systemic[6, 7].
Common symptoms include but are not limited to fatigue, dyspnea, anxiety,
sleep disorders, pain, dizziness, and anosmia.

Prevalence estimates for LCOVID vary, partially with respect to study cohorts,
terminology, and study design. Many studies recruit from hospitalised popula-
tions and therefore select for severe cases of COVID-19. A recent large-scale
community study on self-reported symptoms estimated [3.1-5.8]% of participants
experienced at least one persistent symptom for over 12 weeks following a COVID
infection [3].

The pandemic has been a focal point for the greater emergence of digital
health technologies in research and healthcare. Within COVID-19 research, there
are multiple large studies using digital health and ’big data’ approaches to better
understand trajectories of, diagnose, and estimate the prevalence of COVID-19
and its long-term sequelae. Mobile health (mHealth) data modalities can offer
an insight into LCOVID complementary to existing studies. As a scalable and
continuous data collection method, passive mobile health sensing provides an
objective measure of health. Additionally, long periods of historical data is often
available from wearable fitness devices. The availability of wearable data outside
of medical care pathways grants an avenue to observe people who may otherwise
be missed. For example, significant burdens to health and function in people
with flu who do not seek medical care because of the sub-clinical nature of their
illness have been demonstrated by making use of commercial wearable sensor
data [8].

Covid Collab is an observational mHealth study which began in June 2020.
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Participants enrolled through the study app, Mass Science, and were prompted
to complete regular surveys on COVID symptoms experienced, vaccination
and diagnosis status, mood, and mental well-being. Participants were able to
share existing and prospective wearable data through their Fitbit and Garmin
accounts[9]. We collect wearable data covering a period prior to the pandemic,
giving a historic baseline against which to compare. Additionally, we regularly
prompted for the completion of self-reported questionnaires on current symptoms
and mental health throughout the study, providing a contemporaneous account
of mental wellbeing and COVID-19-associated symptoms before, throughout,
and after any COVID-19 infection.

We queried Pubmed from inception up until 01 Jul 2022 for studies on
LCOVID that use wearable or mHealth technologies using the string ’((COVID*
OR SARS-COV-2) AND (long OR persistent OR hauler OR post OR sequelae))
AND (mHealth OR wearable OR telemedicine OR app)’. Of the 2144 results,
the vast majority of returned studies concerned the role of telemedicine in
delivering care of other conditions since the start of the COVID-19 pandemic.
A number of studies relate to the monitoring, detection, or diagnosis of acute
COVID-19. Others use digital technology or telemedicine in the treatment or to
assess the impact of rehabilitation courses. Eight studies investigate LCOVID
through remote digital technologies. Of those, six used self-reported questionnaire
data collected through televisits or apps to characterise symptomatology and
trajectories of LCOVID, including a large-scale community study from the
ZOE COVID Symptom app. Three studies use passively collected data from
commercial or experimental wearable sensors to describe how heart rate, sleep,
and activity change in a COVID-19 positive population following infection. Two
of those show a pattern of bradycardia and tachycardia in resting heart rate,
with a persistent change in some cases lasting over four months.

Covid Collab provides a unique viewpoint for quantifying the features and
risk factors of LCOVID. This study incorporates survey data alongside pervasive
wearable sensor data. Participant self-reported questionnaires included regular
mental health measures as well as physical COVID-19 related symptoms. The
study population was recruited remotely and openly throughout the pandemic.
It therefore includes non-hospitalised participants and those with a mild response
to acute COVID-19 infection, with data often collected prior to infection which
does not rely on participant recall and the inclusion of historic wearable data
from prior to enrolment. Software and data collection infrastructure have been
open sourced to facilitate the reuse of this system for future digital epidemiology
research or monitoring programmes.

The aims of this paper are to: (1) Quantify the prevalence and severity of
long-term symptoms across collected mHealth metrics including heart rate, sleep,
physical activity, and self-reported symptoms and mood. (2) Identify risk factors
for the severity and duration of persistent symptoms. Accordingly LCOVID
(LCOVID) is considered here as persistent changes or symptoms at and beyond
the twelfth week post-diagnosis.

3

7.3 Introduction 112



Methods
Study design and participants
The study is a longitudinal self-enrolled community study administered through
a smartphone app. As of August 2022, 17,667 participants had enrolled. Partici-
pation was open to any adult greater than or equal to 18 years of age. However,
enrolment was skewed towards those based in the United Kingdom (UK) and
of female gender (N=12137, 68.7%) [Table 1]. Recruitment was carried out via
the study app, media publications, and promotion within the UK version of the
Fitbit app between August 2020 and May 2021.

Participants were included in the analysis if they reported a COVID-19
diagnosis before 2022/02/01. In total, 1,743 participants were included. Different
numbers of participants were included in different aspects of the analysis because
of the differing rates of completion between modalities. A group of age-, sex-,
and time-matched controls (N=3,600) were selected from participants with high
questionnaire completion rates who had not reported a COVID-19 diagnosis.

A detailed explanation of the study protocol in Covid Collab has previously
been published [9]. The development of the pandemic and our changing under-
standing of the disease and requirements of the study led to some amendments to
the protocol, including an extended socio-demographics questionnaire building
on the initial registration questionnaire. Additionally, participants were able to
donate from different sources of data, but were free to provide as much as they
chose. Because of those two reasons, there are differences in data availability
between participants. Of the participants included in this study, 759 (43.5%)
had completed the extended socio-demographic questionnaire.

Study metrics
There are two major categories of data in this study: passive and active data
(Table 2). Active data refers to questionnaires delivered in-app that require
active participant engagement. The questionnaires include the PHQ-8 scale of
depression[10], the GAD-7 scale of generalised anxiety[11], a visual analog scale for
arousal and valence[12], and a COVID-19 symptoms questionnaire. In addition,
participants are able to submit COVID-19 diagnosis (antigen, PCR, or symptom
determined) and vaccination events. Passive data refers to data collected from
instruments that do not require any conscious participant involvement. In this
study, the passive metrics consist of heart rate, heart rate variability, sleep,
step counts, and activity logs provided through the participant’s sharing of
commercial wearable sensor data.

Group analysis
A comparison of passive and self-reported metrics between case and control
groups was carried out. Group-wide resting heart rate (RHR), heart rate
variability (HRV) measured as the Fitbit daily root mean square of successive
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Demographic category Cases Controls

Initial questionnaire
Age [min-max] 44.78ś13.18 [15.0-87.0] 48.30ś13.28 [15.00-88.00]
Sex = f 1247 (76.1%) 2682 (74.5%)
Height [min-max] (cm) 168.24ś9.83 [118.0-220.0] 168.59ś9.79 [100.00-212.00]
Weight [min-max] (kg) 78.45ś18.43 [26.50-146.20] 77.14ś17.57 [31.70-148.30]

Smoking
Non-smoker 917 (56.71%) 2118 (58.87%))
Ex-smoker 461 (28.51%) 1030 (28.63%))
Current smoker 239 (14.78%) 450 (12.51%))

Comorbidities (Extended questionnaire, cases n=759, control n=2229)
Asthma 173 (22.79%) 395 (17.72%)
Hypertension 83 (10.94%) 256 (11.48%)
Diabetes 31 (4.08%) 88 (3.95%)
Depression 173 (22.79%) 532 (23.87%)
Anxiety 136 (17.92%) 356 (15.97%)

Employment (Extended questionnaire)
Full time 411 (54.15%) 1079 (48.41%)
Part time 125 (16.47%) 321 (14.40%)
Retired 97 (12.78%) 448 (20.10%)
Student 22 (2.90%) 72 (3.23%)
Unemployed 19 (2.50%) 57 (2.56%)

Marital and family status (Extended questionnaire)
In a relationship 592 (78.72%) 1697 (77.17%)
Single or separated 156 (20.74%) 498 (22.65%)
Unknown 4 (0.53%) 4 (0.18%)
With children 553 (73.54%) 1413 (64.26%)

Living Situation (Extended questionnaire)
Alone 61 (8.04%) 306 (13.73%)
With partner 454 (59.82%) 1428 (64.06%)
With family 255 (33.60%) 523 (23.46%)
With children 204 (26.88%) 411 (18.44%)
With adult children 122 (16.07%) 240 (10.77%)
Houseshare 20 (2.64%) 57 (2.56%)

Sociodemographic data from initial enrolment and an extended questionnaire across the COVID-
positive cohort and the control group of COVID-negative participants.

Table 1: Sociodemographic statistics in Covid Collab
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Category Metric Frequency Description

Questionnaires PHQ-8 14 days [10]
GAD-7 14 days [11]

Arousal-Valence Ad-hoc / twice-
weekly [12]

Symptoms relating
to COVID-19

Ad-hoc / twice-
weekly

Diagnosis Ad-hoc Self report diagnosis by Antigen,
PCR, Symptom

Fitbit Heart rate Daily Daily resting heart rate provided
by Fitbit Web & API.[13]

Heart rate variabil-
ity

Daily Daily root mean square of suc-
cessive differences (RMSSD) pro-
vided by Fitbit Web API[14]

Sleep duration Per-sleep Estimated duration of a sleep[15]
Sleep efficiency Per-sleep Fitbit calculates an ’efficiency’

score for each recorded sleep.[15]
Step count Daily [15]
Activity log Ad-hoc [15]

Table 2: Passive and active mobile health metrics collected in this study.

differences (dailyRMSSD), sleep duration, sleep efficiency, step count, PHQ-8
score, GAD-7 score, and self-rated valence and arousal are compared at acute
(<4 weeks), ongoing (4-12 weeks), and post-COVID (>12 weeks) syndrome
periods, as defined in NICE guidelines[5], following a self-reported diagnosis of
COVID-19 to a time-matched group of control participants. Analysis is carried
out in Python. A Brunner-Munzul test was carried out between the two groups
for each set of metrics using the statsmodels library[16]. Self-reported symptom
counts, severity and durations were visualised to understand the symptomatology
of COVID-19 and to explore long lasting symptoms.

Risk factors for LCOVID
To test risk factors for LCOVID it is necessary to define a candidate group of
participants who are likely to have LCOVID on the basis of the data that we
have available. We consider two approaches.

Firstly, we consider using the change in resting heart rate over a period of
12 weeks post-COVID-19 infection as a proxy for LCOVID (the RHR-LCOVID
cohort), where a greater change compared to a baseline would indicate a more
likely case or greater severity of LCOVID. In this categorisation, we do not
explicitly group participants but instead use the change in heart rate as a
continuous outcome variable. To do so, we need to estimate a baseline predicted
heart rate that the participant would be expected to have if they did not have
a COVID-19 infection. To estimate an expected resting heart rate, we fit a
Bayesian structural time series model on each participant’s historic resting heart
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rate up until the date of diagnosis using the CausalImpact library[17]. The
model comprises a local-level model, a seasonal model with a period of 28 days,
and a regularised regression on a set of 500 participants who were not otherwise
involved in the analysis. The change in resting heart rate at 12 weeks is used
as the outcome in a linear regression with age, sex, historic activity, historic
sleep duration, and the change in RHR between the baseline and acute phase.
The historic activity and sleep duration are taken from Fitbit data between one
and two years prior to diagnosis. The historic activity is the average duration
of time in minutes spent in the Fitbit ’high activity’ level per day. The sleep
duration is the average time spent asleep per day. The baseline to acute change
in RHR is defined as the difference between the average RHR 1-4 weeks prior to
a COVID-19 diagnosis and 0-4 weeks after a COVID-19 diagnosis.

Secondly, we consider participants who have self-reported symptoms for
an extended period following a self-reported diagnosis of COVID-19. The
self-reported symptoms submitted by all participants who reported a positive
diagnosis were used to determine length of illness and split the diagnosed cohort
into short- and long- COVID groups. If at least one symptom was reported at
least once per week for at least twelve weeks, the participant is assigned to the
symptom-based LCOVID group (Lsymp). Participants were otherwise assigned
to the symptom-based short COVID group (Ssymp). Risk factor assessment
using logistic regression was performed on the Ssymp and Lsymp groups based on
demographics, baseline passive data, and mental health scores during the acute
phase of COVID infection.

Results
Group-wide analysis
Passive wearable device metrics and self-reported mental health survey scores
were compared between case (COVID-19+) and control groups at three time
points (Table 3). The ’acute’ period was defined as between the date of diagnosis
and four weeks post-diagnosis. The ’ongoing’ period took values between four
weeks and eight weeks post-diagnosis. The ’post-COVID’ period took values
between twelve and sixteen weeks post-diagnosis. For each period and metric, a
comparison of the case and control distributions of the mean values for each of
the constituent participants was carried out. A Brunner-Munzul two group non-
parametric test[18] was calculated to compare each distribution. Significance was
determined with a p-value cutoff of 0.05 after Benjamini-Hochberg correction[19].

Considering first the passive metrics, resting heart rate significantly increased
in the COVID-19 positive case group compared to the control group in every
period. The difference in heart rate in the acute phase (0.58bpm) is less than the
following ’ongoing’ period (1.1bpm) and similar to the post-COVID syndrome
period after twelve weeks (0.46bpm). This apparent subdued change during
the acute infection is because taking the mean does not properly reflect the
non-monotonic changes to resting heart rate during this period. The general
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group-wide pattern is a peak during the first week of infection, followed by a
trough in heart rate during the second week, and finally another, longer lasting,
increase (Figure 1). This may imply two acute sub-phases on a shorter timescale
than 4 weeks. Step count is also significantly negatively affected during the acute
period, but is not significantly changed afterwards. The two sleep metrics show
an increase in sleep duration and decrease in efficiency in both case and control
groups. There is not a significant difference in duration, but sleep efficiency is
significantly decreased throughout all three periods.

All of the self-reported measures of mental health were significantly negatively
affected during every period. The mean difference between case and controls
for each mental health metric did decrease over time. For example, from a
+2.74 (<4 weeks) to +0.98 (>12 week) difference in the average PHQ-8 score.
The increased average level and high variance suggests a subset of people suffer
persistent symptoms of depression, anxiety, and fatigue (inferred from arousal)
for at least twelve weeks.

Metric Acute (<4w) Ongoing (4-12w) Post-COVID (>12w)
Case Control p-value Case Control p-value Case Control p-value

RHR 0.69
± 3.44

0.11
± 3.15

6.97e-05 1.17
± 3.35

0.07
± 3.19

1.17e-16 0.63
± 3.44

0.17
± 3.28

3.62e-04

RMSSD 13.58
± 0.38

13.58
± 0.39

0.79
13.67
± 0.43

13.68
± 0.44

0.75
13.62
± 0.39

13.62
± 0.39

0.99

Steps −1478
± 3635

39.44
± 3572

6.74e-37 −49.2
± 3820

128
± 3630

0.42
288
± 3828

464
± 3691

0.93

Sleep
efficiency

−1.34
± 7.09

−0.83
± 6.30

5.05e-06 −1.11
± 6.75

−0.81
± 6.47

0.03 −1.23
± 7.72

−0.98
± 6.58

1.29e-03

Sleep
duration

5.98
± 63.06

4.88
± 56.07

0.67
6.90
± 65.34

4.53
± 59.25

0.73
2.81
± 70.34

2.49
± 60.78

0.90

PHQ-8 7.96
± 6.00

5.22
± 5.30

4.90e-29 6.98
± 6.00

5.29
± 5.35

1.13e-07 6.21
± 5.57

5.23
± 5.48

1.53e-03

GAD-7 5.88
± 5.36

4.49
± 5.02

1.03e-10 5.34
± 5.27

4.60
± 5.07

1.47e-03 5.10
± 5.37

4.39
± 4.97

0.03

Arousal −0.18
± 0.44

0.13
± 0.41

5.57e-68 0.01
± 0.45

0.13
± 0.41

5.15e-07 0.05
± 0.44

0.14
± 0.44

1.42e-03

Valence −0.003
± 0.36

0.18
± 0.39

3.18e-35 0.11
± 0.41

0.17
± 0.39

3.07e-03 0.15
± 0.40

0.21
± 0.40

0.01

Mean value comparison between case and control groups at acute (up to 4 weeks), ongoing (4-12 weeks after diagnosis), and post-COVID
(over 12 weeks after diagnosis) time points. There is no significant difference between case and control groups in any metrics in the period
8 weeks to 4 weeks before diagnosis. Resting heart rate (RHR), sleep efficiency, sleep duration, and step count were calculated relative
to a baseline level taken as a mean 12 weeks prior to diagnosis. Uncorrected p-values are reported, but emboldened p-values indicate
significance after Benjamini/Hochberg correction.

Table 3: Group-wide Comparisons

Risk factors for LCOVID
LCOVID through passive wearable data

A multiple linear regression was carried out to determine whether pre-pandemic
historic fitness wearable data could be used as a risk factor for persistent

8

7.5 Results 117



Figure 1: Passive and self-reported measures of mental health across the COVID
positive cohort
Dates range from 16 weeks prior to 24 weeks post diagnosis of COVID-19. The shaded area

corresponds to the 95% confidence interval taken over 14-day windows.
a) Daily resting heart rate provided through Fitbit Web API. b) Heart rate variability. c)
Change to daily step count from baseline. d) Change in sleep duration from baseline. e-f)

PHQ-8 and GAD-7 scores respectively. g-h) Arousal and valence scores, which are reported on
a visual analogue scale and range from -1 to +1.

HRV: Heart rate variability. RHR: Resting heart rate
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elevated RHR at 12 weeks post diagnosis (as a proxy for LCOVID). In total, 597
participants had sufficient passive data available across the whole time period.
The outcome variable was the change in resting heart rate between baseline (-4
to -1 weeks) and 12-weeks post-diagnosis among the COVID-positive cohort.
The change in RHR between the baseline and acute phase was included as an
independent variable to account for the initial change. That is, given a certain
change in the acute phase, what variables are significantly associated with that
change persisting. Greater historic activity, the mean duration of time spent
taking part in heavy activity between one and two years prior to diagnosis, was
negatively correlated with an increase in the outcome variable. These results
suggest a slight protective effect against LCOVID for younger and more active
people. Female sex was positively associated with persistent LCOVID but not
significantly so.

Variable Coefficient Std Err p-value [0.025 0.975] CI

Intercept -1.9786 1.078 0.067 [-4.097 0.139]
Age 0.0274 0.011 0.017 * [ 0.005 0.050]
Female sex 0.5577 0.337 0.098 [-0.104 1.219]
Historic activity -0.0166 0.007 0.015 * [-0.030 -0.003]
Historic sleep 0.0027 0.002 0.160 [-0.001 0.007]
Acute ∆RHR 0.2805 0.039 1.80e-12* [ 0.204 0.357]

A linear regression of change in heart rate between baseline and 12 weeks post-diagnosis against age,
sex, historic activity, historic sleep, and change in resting heart rate between baseline and acute.
P-values are reported uncorrected, but significant results after Benjamini-Hochberg correction are
emboldened and marked with an ’*’

Table 4: Risk factor regression of Long-COVID based on passive wearable data

Long COVID through self-reported symptoms

Self-reported symptoms data are visualised using a heatmap in Figure 2. The
colourbar on 0.10, the heatmap represents counts (number of reports) while the
severity is denoted by the 3 levels (mild, moderate, severe) on the right y-axis.
While most symptoms have highest counts and severity around the diagnosis,
some symptoms, such as fatigue, persist for longer with a moderate to high
severity. Cough and breathing problems also persist for longer periods but with
mild severity.

To further explore how chronic or acute symptoms of COVID-19 and subse-
quently how these may relate to LCOVID, durations of various symptoms were
plotted (Figure 3). This shows fatigue is typically the longest-lasting symptom,
with some exceptional cases reporting fatigue for more than 140 days. The
duration of the combined category of any symptom shows that some participants
have symptoms lasting over 300 days.
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Figure 2: Self-reported symptom heatmap
A heatmap showing counts of self-reported symptom severity among the COVID positive

cohort around the date of diagnosis. The count is limited at 100 to better visualise
longer-term trends and rarer symptoms.
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Figure 3: Self-reported symptom duration
A box plot representing average duration of symptoms (from the diagnosis date) for

participants diagnosed with COVID-19. For clarity 13 most reported symptoms are included.
The Any Symptom is an occurrence of any one of the symptoms. LS
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Symptom stratification
As discussed in the methods section, the Lsymp and Ssymp groups were derived
using symptom data, with Lsymp participants defined as having reported per-
sistent symptoms for at least 12 weeks. Of the 1327 total diagnosis reported
12.13% (161) reported persistent symptoms and were classified as Lsymp, with
the remaining participants (1104, 83.19%) classified as Ssymp.

Stratification of the symptom-based cohorts over various socio-demographic
factors was carried out (Table 5). There is a significant difference in age between
the two cohorts, with the Lsymp cohort associated with the older age group.
The percentage of participants with certain comorbidities, including asthma,
hypertension, diabetes and depression, was higher in the Lsymp group, but not
significantly so. A higher percentage of people in the Lsymp group were employed
in part-time roles or were retired while the Ssymp cohort had a higher percentage
of participants with full-time employment. Lsymp also had a higher percentage
of participants who were married and had children compared to Ssymp. No
differences can be seen in smoking between the two cohorts.

To visualise the differences between the Ssymp and Lsymp cohorts around
diagnosis, various metrics were plotted as shown in Figure 4. Resting Heart Rate
(RHR) was significantly higher in the Lsymp cohort and stayed high for a longer
period. Tachycardia and bradycardia are also more pronounced in the Lsymp

cohort. There appear to be some inherent differences in step count between
Lsympand Ssymp (<100 days before). Interestingly, the Lsymp cohort has a
greater step count and the difference in the rate of drop in steps approaching
the diagnosis date, whereas the recovery of steps appear more similar. Sleep
duration was higher in the Ssymp cohorts over the whole time period but the
difference in durations between Lsymp and Ssymp peaked close to the diagnosis
date.

A series of Multiple Logistic Regressions were performed to establish the
likelihood of having LCOVID based on the effects of sociodemographic, wearable,
and mental health survey covariates. Each regression was on a single explanatory
variable and adjusted for age, gender and ethnicity. The p-values were adjusted
using the Benjamini-Hochberg correction for multiple testing.

Features for various independent variables were calculated based on the mean
value over the year prior to diagnosis, the mean value during the acute phase
(diagnosis + 14 days). Of the 1327 participants with a positive COVID diagnosis,
1213 [1060 Ssymp and 153 Lsymp] were included after exclusion of participants
with missing data for the required variables. The inclusion criteria for continuous
variables was based on a completion rate of at least 60% in the baseline and
acute phases. More participants may have been excluded in different regressions
because of missing data per variable.

The logistic regression results are given in Table 6. The significant Benjamini-
Hochberg corrected p-values (p-value < 0.05) are marked with a * and in bold.
Furthermore, a forest plot was generated to visualise the effects of the variables
(Figure 5) with significant effects shown in orange. Age ranges were used to assess
the effect of age on developing LCOVID and these were the most prominent
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Variable Short Covid (>3d) Long Covid (>12w)

General demographics
Gender [%F, %M] [76.23, 23.03] [75.16, 24.84]
Age (Mean, std, [IQR]) 43.85 ± 12.52 [34.0 53.0] 49.51 ± 10.47 [41.3 57.8]
Bmi (Mean, std, [IQR]) 27.26 ± 4.84 [23.5 30.9] 28.29 ± 5.48 [24.3 32.9]

Mental Health
Depression (%) 19.87 25.66
Anxiety, nerves, or generalised anxiety
disorder (%)

8.27 6.64

Physical Health
Asthma (%) 17.01 23.45
Hypertension or high blood pressure (%) 6.04 8.41
Obesity (%) 3.66 3.98
Diabetes (Type 2) (%) 2.86 4.87
Cancer (%) 3.66 0.44

Employment
Full time (%) 54.21 47.79
Part time (%) 12.08 19.03
Retired (%) 9.54 15.49
Self employed (%) 5.88 7.08
At home carer (%) 2.54 3.54
Unemployed (%) 2.23 2.21

Marriage and children
Married (%) 53.42 61.06
Single (%) 13.67 17.7
Living with partner (%) 13.99 10.62
Living apart from partner (%) 3.34 3.1
Divorced (%) 3.82 2.21
Separated (%) 3.18 1.77
Children - y (%) 65.59 74.34
Children - n (%) 28.46 22.12

Smoking
Smoker - never (%) 55.03 56.52
Smoker - ex (%) 30.04 31.06
Smoker - 1-10 (%) 2.93 2.48
Smoker - ecig (%) 3.02 2.48
Smoker - 11-20 (%) 1.46 1.86
Smoker - <1 (%) 1.74 0.62

Table 5: Sociodemographic stratification for S-LCOVID and S-SCOVID cohorts
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Figure 4: Passive metrics across symptom-based short and LCOVID cohorts
Comparison of passive and self-reported symptom measures for Ssymp and Lsymp cohorts,

ranging from 16 weeks prior to 24 weeks post diagnosis of COVID-19. The shaded area
corresponds to the 95% confidence interval taken over 10-day windows.
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Figure 5: Logistic regression odds ratio for variables across symptom-based short
and long COVID cohorts

Odds Ratio with 95% confidence interval, adjusted for age. The red colours show that the
dependent variable has a significant effect (p-value < 0.05) on the independent variable.

16

7.5 Results 125



Dependent Variable OR P-value * 2.5% 97.5%

Age 1.03037 0.01113* 1.01262 1.04844
Bmi 1.01509 0.47034 0.98541 1.04567
Asthma 1.35638 0.37109 0.83104 2.21382
Hypertension 1.68335 0.29906 0.82024 3.45471
Diabetes 1.35638 0.37109 0.83104 2.21382
Gender Female (reference = Male) 1.08099 0.8061 0.66169 1.766
Age Range [30-40) (reference = [10-30)) 3.4188 0.16243 0.9475 12.33587
Age Range [40-50) (reference = [10-30)) 5.43478 0.04354* 1.57941 18.70117
Age Range [50-60) (reference = [10-30)) 6.57051 0.02487* 1.94017 22.25143
Age Range Above 60 (reference = [10-30)) 6.41026 0.02745* 1.83102 22.44179
Ethnicity Others (black, asian, others) (reference=White) 0.97608 0.96288 0.35207 2.70609
Current Smoker (reference = never) 0.85398 0.8061 0.35404 2.05987
Ex Smoker (reference = never) 0.89694 0.8061 0.56322 1.42839
Baseline steps 0.99999 0.8061 0.99993 1.00005
Acute phase steps 0.99997 0.47034 0.99991 1.00003
Baseline resting heart rate 1.03403 0.20396 0.99418 1.07547
Acute phase resting heart rate 1.03569 0.07045 1.00583 1.06644
Baseline activity minutes 0.99497 0.5177 0.98343 1.00665
Acute phase activity minutes 1.001 0.8061 0.99404 1.00801
Baseline sleep minutes 1.00386 0.15988 1.00003 1.00771
Acute phase sleep minutes 1.00165 0.47814 0.99818 1.00514
Baseline sleep efficiency 0.99664 0.8061 0.97753 1.01612
Acute phase sleep efficiency 0.98888 0.47034 0.96697 1.01129
Baseline PHQ8 score 1.09338 0.04436* 1.02267 1.16898
Acute phase PHQ8 score 1.09489 0.00301* 1.046 1.14606
Baseline GAD7 score 1.05617 0.29906 0.97874 1.13972
Acute phase GAD7 score 1.06283 0.05935 1.01249 1.11568
Baseline symptom severity 1.26064 0.16243 0.98573 1.61222
Acute phase symptom severity 0.93129 0.20396 0.85717 1.01181
Acute phase number of symptoms 0.86327 0.16243 0.74269 1.00342

The values in bold and marked with * show that the variable has a significant effect on the outcome of having long COVID.

Table 6: Multiple logistic regression for Lsymp.

risk factors for LCOVID. Age Range (10-30) was used as the reference for other
categories. All other age ranges had a significant effect with a rise in the odds
ratio at each level, suggesting that the odds of developing LCOVID increases
with an increase in age. The 50-60 age group was 6.5 times more likely and
the oldest group (60+) was 6.4 more likely to have LCOVID than the reference
group. Female gender (with reference as male) did not show a significant effect.
Comorbidities, such as asthma, hypertension, and diabetes, did not show a
significant effect (p-value < 0.05) on the presence of LCOVID, but the odds ratio
were greater than one. Passive features and self-reported questionnaires were
also considered as risk factors for LCOVID. Acute and Baseline phase PHQ8
scores had a significant effect.
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Discussion
In this study we investigate persistent symptoms of and recovery from COVID-19
through the lens of mobile health data. We find a signal for LCOVID in both
passive and active metrics, as well as associates to comorbidities, physiological
metrics, and prior behaviour.

At a group-wide level, several wearable and mental health metrics are sig-
nificantly changed during the acute COVID infection, some of which remain
significantly different from the control group for longer than twelve weeks (Figure
1). Resting heart rate is the wearable metric with the longest lasting noticeable
change. We estimate the proportion of participants with a long-term change to
their heart rate coinciding with COVID-19 infection to be 7% on the basis of
the BSTS model fit of heart rate data prior to infection, somewhat less than
another study in which 13.4% of participants had a RHR of five bpm or more
at twelve weeks [20]. Depression, anxiety, and self-rated arousal-valence remain
negatively affected in the LCOVID phase.

As has previously been reported[20, 21], we observe a pattern of transient
tachycardia from COVID-19 infection onset for a week, followed by a period
of transient bradycardia from the second to third week, and finally a chronic
or long-lasting increase in resting heart rate in some participants which can
last several months or longer (Fig 4. This pattern of acute tachycardia and
subsequent bradycardia is more prominent in the LCOVID cohort compared to
the short COVID cohort, as shown in Figure 4.

The changing nature of the pandemic not only led to a changing understanding
of what should be monitored in a study of this type, but importantly led to large
societal and public health interventions. Many of those will also have had an
effect on mental well-being and physical health. For instance, lockdown measures
coincide with increased infection levels and also have an effect on activity[22,
23], sleep[24, 25], heart rate[25], and mental health[24, 26]. Therefore, when
monitoring recovery in COVID-19 through mobile health, we should also consider
the wider societal context. By time matching the control group we try to account
for those changes, however, the impact of events concurrent to COVID-19
infection could be investigated in more detail.

An advantage of requesting existing wearable data from users of commercial
fitness wearables is the ability to create a longitudinal dataset covering a period
prior to enrolment, in some cases for many years. A higher level of historic
physical activity is negatively correlated with development of the passive marker
of LCOVID, the persistent increased RHR at twelve weeks post-diagnosis. To
our knowledge, no other study considers the effect of historic activity or fitness
level on LCOVID, but it has been demonstrated to reduce the severity and
risk of hospitalisation in acute COVID[27]. Sleep duration was not significantly
associated, but may be worth further investigation alongside other markers of
historic health in larger datasets. Age was significantly positively associated, in
agreement with multiple other studies[3, 28, 29] and the symptom-based findings
in this study. Female sex was not significantly different to male sex, but did have
a positive coefficient and a fairly low p-value. It seems likely that in a larger or
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more powerful dataset, female sex would be a risk factor for LCOVID, in line
with previously published research[3, 28–30].

Symptom Findings
The estimated prevalence of LCOVID in the literature is diverse. Our finding
of the proportion of people in the Lsymp group, after reporting a diagnosis and
having persistent symptoms for 12 weeks (12.13%), is consistent with results
from UK government Office for National Statistics (13.7%) in a study involving
20,000 participants[31]. However, studies have reported different prevalence
rates for LCOVID at twelve weeks, from 2.6%[29] to 14.8% [32] and 37% [3].
Variance could be explained through sociodemographic differences across cohorts,
methodological differences in the collection of symptom data, or how LCOVID
is defined based on collected symptom data.

Our results show fatigue is the longest lasting symptom, with several par-
ticipants experiencing fatigue for more than 140 days, which is consistent with
previously published research[3, 29, 33, 34].

In agreement with previous studies[3, 28, 29] and the RHR-based regression,
age was found to be a significant risk factor for LCOVID (Lsymp cohort) with
ages greater than 50 at very high risk. BMI (and obesity) was not a significant
factor in our study. Other studies have shown that the female sex had a positive
association with LCOVID[3, 28–30] but this was inconclusive in our study. A lack
of power in this cohort reduces our ability to educe significance. Comorbidities like
asthma, hypertension, and diabetes are potential risk factors for LCOVID, with
non-significant p-values, which would agree with previous findings[28, 29]. This
is not conclusive, as the Lsymp cohort was defined through persistent symptoms
which could also be caused by chronic illnesses, not necessarily COVID-19.

Investigation of passive metrics from wearables and self-reported question-
naires revealed that while a depression comorbidity was not significantly associ-
ated, the average PHQ8 score over the year prior to a COVID-19 diagnosis and
during the acute phase of the disease was positively associated with LCOVID,
indicating that a period of low mood before and during the disease could be
a risk factor for LCOVID. Further resting heart rate in the acute phase of the
disease also had a positive relation to LCOVID, with a low but non-significant
p-value of 0.07, and could be a potential risk factor. The persistently increased
RHR in the Lsymp cohort, as visualised in Figure 4, also demonstrates a level of
coherence between the two approaches to determining LCOVID.

Strengths and weaknesses
This study brings together COVID-19 self-reported symptoms, passive wearable
data, and regular mental health surveys in a population who are not necessarily
hospitalised. Both the symptom and passive approaches demonstrate that age
is a risk factor for LCOVID. The availability of historic wearable data enabled
the development of a long duration baseline with which to compare subsequent
changes during COVID-19 infection. Increased historic activity, which suggests
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a participant who had previously engaged in more exercise, is protective against
the passive-based proxy for LCOVID.

The passive data approach uses existing data which is highly available
among those who own wearable devices, is unbiased by subjective rating and
identification of symptoms, and doesn’t burden participants, but is limited in
symptom scope to what a wearable device can measure. Meanwhile, the symptom
self-report based methodology allows reporting of a wider range of symptoms
than would be captured through wearable sensors and more concrete labels in
the absence of a robust LCOVID classification algorithm for passive data, but
relies on engaged and persistent participants.

There are multiple limitations to this study. Firstly, the definition of a
LCOVID group on the basis of self-reported symptoms or by using resting heart
rate as a proxy measure are weak approximations of a true diagnosis label. While
we were able to show group-wide differences during the post-COVID period in
self-reported mental health measures and passive wearable device biosignals,
the use of the change in resting heart rate in the post-COVID period is non-
specific and the effect of COVID-19 can be overwhelmed by natural variability
in the individual case. Self-reported symptom monitoring requires time and
commitment on the part of the person monitoring their COVID-19 recovery,
which may be unrealistic to expect, especially given the increased prevalence of
depression and fatigue. In both cases we assume a consistent deviation from a
healthy baseline. However, symptoms of LCOVID may fluctuate or show signs
of relapse and remission. Developing a model to identify LCOVID in mobile
health data using another, labelled, dataset to then stratify COVID-19 recovery
in datasets without explicit labelling may be an approach worth following, with
a similar approach demonstrated recently in an electronic health records study
of LCOVID[35].

Secondly, the nature of mobile health studies in general and of a community-
sourced study, which relies on motivation and interest by participants, can lead
to sporadic completion rates. Data completeness is reliant on what a participant
is able and willing to share and on their continued engagement with the study.
Meanwhile, the open remote enrolment paradigm biases the groups participating
to those who have the studies published in a way that reaches them and that are
self-motivated to take part. For example, the proportion of female participants
is notably higher, a pattern that is seen across similar studies [23, 36]. This may
be partially addressed through larger-scale studies or a meta-analysis including
the similar studies that are running across various countries.

Conclusion
In conclusion, we demonstrate a measurable difference in measures of mental
wellbeing and in biosignals from commercial wearable devices between COVID-
19 positive and non-diagnosed participants during the sixteen weeks following
diagnosis. Two methods of inferring the presence of LCOVID are compared.
One method is based on persistent changes in resting heart rate and the other on
persistent self-reported symptoms of COVID-19. For the self-reported symptoms
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method, the LCOVID risk factors were explored using demographics, self-reports
and passive wearable data, and compared with results from existing literature.
In the future we plan to assess the feasibility of combining studies to create
larger datasets or meta-analyses, to develop a LCOVID detection algorithm
for use in mobile health data, and to investigate the additional effect of public
health and safety measures.
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7.7 Summary 133

7.7 Summary
In this final analysis chapter I firstly investigated the presentation of post-COVID syndrome
throughwearable data and self-reportedmood questionnaires and secondly looked at whether
historic wearable metrics were predictive of developing long COVID according to a per-
sistent change in resting heart rate. Group-wide differences between COVID-positive and
negative participants showed significant negative effects in the infected group in wearable
signals (increased heart rate, decreased sleep efficiency), mental health (increased PHQ-8
and GAD-7), and affective state (reduced valence and arousal) at 12 weeks. The primary
novelty was in the use of historic wearable data, which allowed us to show that increased
activity in the years prior to a COVID-19 infection was protective against developing post-
COVID syndrome. We also noted a particular pattern of relative resting heart rate elevation,
reduction, and subsequent elevation during the acute phase of the disease, which had also
been reported in other studies.15,16

The findings of this study must be viewed through the biased engagement and adherence
reported in chapter 5. Particularlywhen considering self-reported data, increased completion
rates and higher consistency among older aged adults, increased enrolment rates of women,
and the interplay between engagement and health status all potentially confound findings
relating to those factors. In line with prior studies,210 the self-report-based long COVID def-
inition classified participants based on sustained symptom reports and subsequently looked
for risk factors. However, putative risk factors such as age and sex are also related to consis-
tency of participation, which will have a confounding effect. The passively-defined resting
heart rate definition of long COVID may be less biased. However, not all cases of post-
COVID syndrome will include cardiac symptoms or be reflected in heart rate.

Baseline recordings were used in a very different way to the meta-learning approach
of chapter 4, but benefits are still present. Conditioning resting heart rate forecasting on the
participant’s long term data improved the heart rate prediction at 12-weeks and accounted for
the effects of lockdown and seasonality. Similar work has taken a simple difference between
mean heart rate directly prior to infection and at the later timepoint.15 However, the group-
wide effect sizes are reasonably small and could have been explained through seasonal heart
rate trends given that COVID-19 infection rates also follow a seasonal pattern.

As will be discussed further in the following chapter, commercial data donation initia-
tives have drawbacks, but provide consistent monitoring and unique objective, if basic, his-
toric measures of fitness and health, and is a source of information that would be impossible
to derive outside unreliable retrospective self-reports.



Chapter 8

Discussion

Through this thesis I have tried to demonstrate the value of mHealth in scientific under-
standing, characterise common features of mHealth studies, and argue for the importance of
contextual data in broad strokes across different parts of the mobile health study lifecycle.
If nothing else, I hope to have argued for using all the data available to a problem and for a
focus on generalisation.

8.1 Contributions

Can amulti-modal remote sensing systembe used to detect focal seizures?
Chapter 3 discusses detection of epileptic seizures with a motor component. Although the
dataset used was fairly small, good classification performance was demonstrated in gener-
alised tonic-clonic seizures, in line with existing research, with variable performance across
different participants and different focal seizures. The performance of the model trained
across all participants in a leave-on-participant-out cross-validationwas compared to amodel
trained on only a single participant in a leave-on-seizure-out paradigm. The personal model
had a higher performance but was unviable for many participants because of there was an
insufficient number of seizure recorded per person.

How can contextual baseline data be used to make more accurate pre-
dictions?
Motivated by a potential use-case in seizure detection, but somewhat limited by data avail-
ability, I wanted to assess the viability of applying a meta-learning approach to few-shot
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learning with the goal of personalising classification models that use physiological signal
data.

The desire for personalised models in seizure detection led to the consideration of few-
shot learning and the evaluation of a neural process model in Chapter 4. Classification of
stress was more accurate in a NP that had been provided with a labelled example of a partic-
ipant’s data from the beginning of the recording than traditional machine learning models.
Looking slightly further ahead, it would be useful to build on the stress classification work
and validate it in free-living conditions. There is a tendency to try and model complex medi-
cal and biological phenomena, such as depression, directly from low-level data. Building up
intermediate-level features, such as recognising periods of stress and quantifying the degree
of autonomic arousal, could be a more interpretable approach. Having a persistent long-term
objective measure of stress could greatly aid in understanding the relationship and causality
between disease and stress. This approach can be seen to a certain extent already, in areas
like sleep classification.

A different use of baseline data is used in Chapter 7. Rather than conditioning a machine
learning model, prior heart rate data is used to fit a structural time series model to forecast
heart rate for use as a proxy severity measure of post-COVID syndrome. The strength of rest-
ing heart rate variance and seasonal trends differed between participants. When calculating
the counterfactual heart rate at twelve weeks, the person-specific data is vital in ensuring any
apparent effects are not due to those trends.

Can a citizen science study with ’opportunistic’ historic wearable sensor
data provide novel insights into COVID-19?
Chapter 7 takes a first look at long COVID in the Covid Collab study. At a group level,
people who had an acute infection of COVID-19 were found to have a persistent significant
change in physiological function and reduced mental wellbeing. Looking at long COVID
through the change in resting heart rate following infection suggested that activity level prior
to infectionmay be protective and demonstrated the utility of historic wearable data collected
by commercial third-parties.

What are the implications of participant engagement on analysis in citi-
zen science and mHealth studies?
Chapter 5 introduces the software underlying the Covid Collab study and describes the pat-
terns of engagement and attrition of participants enrolled in it. Engagement patterns of
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participant in Covid Collab varied. Attrition was high, in line with similar citizen science
projects,209 and there were relationships to sociodemographic characteristics, comorbidities,
and potentially outcome measures. These should be considered when analysing data coming
from Covid Collab and similar mHealth studies. Most participant engagement clustering in
mHealth studies have focused on the total duration of engagement. I put forward a method of
clustering based on fitting hiddenMarkov models to each participant’s engagement sequence
and using the probability of other participants’ engagement under that model as a distance
metric for clustering. It was able to distinguish groups, visually and by according to descrip-
tive statistics of the clusters, according to length of engagement, consistency of engagement,
and the quantity of completed tasks per week. The different ways in which a participant
engages causes different patterns of data fragmentation and missingness. Several sociode-
mographic factors and mental health comorbidities were found to be significantly correlated
with the rate of dropping out of the study, suggesting potential bias and confounding effects
on the downstream analysis of citizen science project data.

8.2 Evaluation, limitations, and future direction

8.2.1 Analytical approaches
Given the breadth of this thesis’ topic, a limited number of analytical approaches were eval-
uated. The multimodal seizure detection algorithm used a classic analysis pipeline. While
I suggested the inclusion of euclidean angle-based features and the model performed com-
petively,252 it formed the argument for a personalisation approach that was then applied in
another classification task. Given the highly variable symptoms of a seizure, it would be
interesting to see whether a few-shot learning model would perform well.

The approach to model personalisation using neural processes in Chapter 4 provided
a little confirmatory evidence for itself, but was very limited in scope. Only a NP with
fully-connected layers was considered. However, more suitable architectures such as the se-
quential NP,253 which can explicitly model dynamic stochastic processes, or the inclusion of
recurrent254 or attentive255 units could improve performance. Indeed, NPs are not the most
popular meta-learning method, and should also be compared against gradient-based meth-
ods.256 However, NPs had the interesting property of being a meta-learner that approximated
a stochastic process. The ability to include a level of uncertainty in predictions seemed at-
tractive when it came to medical use-cases. Additionally, the update of context parameters
at test-time only requires a computationally cheap forward pass of task-specific data through
an encoder network, which may be advantageous in low-compute environments.
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Looking forward, the preliminary work presented here should be built on. The meta-
learning approach should be validated on a larger number of health and affective computing
tasks, and a fuller comparison of meta-learning and few-shot learning algorithms could be
undertaken, taking into account the recent advances in the field.257

Further afield, meta-learning is not the only deep learning approach to few-shot or do-
main adaption. Large pretrained foundation models258 form the backbone for downstream
tasks in speech,259 natural language processing,260 and computer vision,261 and are increas-
ingly used in health informatics applications within these domains.262,263

Work has been done on self-supervised learning and transfer learning with remote sens-
ing data. Tang et al. produced a self-supervised model trained on Fenland study accelerom-
etry data,264 which has been followed up by Yuan et al.’s model trained on 7-day accelerom-
etry recordings from 100,000 participants in UK Biobank.265 Meanwhile, the multimodal
nature of sensor data was exploited in a self-supervised contrastive learning approach266

and including affective and sleep tasks, rather than just the activity recognition common to
accelerometry models. However, it was trained on three relatively small datasets. A lack of
large public multimodal remote sensing datasets may be hampering progress.

Meta-learning algorithms not often directly compared to fine-tuning on self-supervised
models, but there is some overlap in the rationale for their use and recent papers have sug-
gested fine-tuning out-performs meta-learning in few-shot image tasks while being easier
to implement.267,268 However, other studies have used the two approaches in combination
outperform either method individually.190,269 In the future, it may not be unreasonable to use
a meta-learning personalisation approach on top of a large pretrained model.

8.2.2 COVID-19 and Covid Collab
The Covid Collab study was, to my knowledge, the largest UK wearables study monitor-
ing COVID-19. It therefore provides a unique look at both passive wearable data and self-
reported mental health during the pandemic.

Due to limited researchers on the project, there was very little ability to interact with
participants or run engagement campaigns. As such, the participation and retention rates
may have suffered. Retention was actually favourable compared to some prior citizen science
studies,270 with around 20% of participants remaining after one year, but this was likely
boosted by increased sense of obligation to COVID-19 research among the public during
the pandemic.

Only the surface of the data collected in the Covid Collab study has been scratched.
Several Master’s projects have considered symptomatology and classification in acute and
long COVID using the dataset. As well as directly looking at illness, we will consider how
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public health interventions, such as lockdowns, were reflected in mobile health and mental
health data.

More generally it is also anmHealth collection with mental health outcomes over the past
two years, with over 100,000 PHQ-8 and GAD-7 surveys and over 300,000 arousal-valence
scores, and raw geolocation. One of the near-term goals for that data is to compare the per-
formance of different meta-learning models in a prediction model for depressive symptoms
using wearable device data.

Additionally, consent was sought to publish a public anonymised dataset from the Covid
Collab study. The problem of community-level over-optimism in public datasets mentioned
above notwithstanding, I hope it will be a useful resource for remote sensing health research.

The software supporting the project, such as the Mass Science app, will be made pub-
lic, and has also been used in the Convalescence study.194 The Convalescence study is a
national long COVID project that combines clinical functional tests with a long-term wear-
able follow-up in a set of established population cohorts. The gold-standard testing and well
characterised cohort will therefore be ideal to validate the exploratory findings from Covid
Collab and other citizen science projects.

8.2.3 Mobile health datasets
Sample size was an issue across all studies. For example, Seizure detection was limited
because only certain types of seizure were present in the dataset and only a few participants
had multiple seizures, greatly reducing the ability to train individual or personalised models.
Despite a fairly large cohort at first glance (n=17,500), the Covid Collab study was arguably
under-powered when looking at the risk factors for long COVID, an issue caused in part by
high rates of attrition and fragmented contribution of different types of data depending on
participants. It may be possible to partially address data missingness through imputation, but
given the potential correlation of engagement with disease state and mental health it may be
problematic. A better approach could be to combine analyses with the similar studies that
have been carried out across various countries.

There was a lack of long term monitoring in the physiological classification datasets.
Without long term use in free-living conditions, it is hard to assess whether the models
produced would generalise outside a clinic or research setting. It is very likely that increased
activity and real-life stressors would increase motion artefacts, increase the false-positive
rate, and have greater data missingness. The stress-evoking events used in WESAD and
DriveDB can be expected to reliably activate the physiological stress response,271 but they
are in an extremely constrained environment.
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Additionally, WESAD and DriveDB are relatively small and very popular affective com-
puting datasets. As optimised hyperparameters selected through cross-validation can create
over-optimistic performance predictions when compared to out-of-sample data, so to can
large-scale collective evaluation from the research community lead to an over-optimistic bias
in published results.272 If stress classification is to be used as an intermediary step, it will be
important to keep this in mind and validate potential algorithms in true out-of-sample data.

Bring-your-own-device citizen science and large longitudinal studies

One of the key findings in the long COVID study was the potential protective effect of higher
rates of activity prior to diagnosis on the likelihood of developing persistent sequelae. It
also demonstrates the potential utility of commercial repositories of historic wearable data
that people are able to share with researchers. A lot of current mHealth research, even
when including commercial fitness wearables, restrict the period of data that they collect
to the duration of the study.273–275 However, for some participants there are long-term ob-
jective records of the rate of exercise, sleep duration and quality, heart rate, and potentially
participant-entered records of weight, height, or food consumption. This data can be used,
as it was here, as an explanatory variable outcomes measured during a study, but there are
other potential uses. Pulling in data collected prior to the study could be especially useful in
training unsupervised anomaly detection models, providing contextual data to meta-learning
models, or normalising features. It would also have a use in situations in which participants
can provide post-hoc labels or integration with other data sources, such as electronic health
records.

A bring-your-own-device study has a number of advantages. Costs can be significantly
lower, but there are also potential data quality improvements. Participant compliance may
be expected to be higher due to device familiarity and because it is already used in everyday
life. That the device is their own may also limit the Hawthorne effect, the modification of
behaviour due to the awareness of being watched.276 However, there are limitations. Studies
of this type, including Covid Collab, have all recruited highly skewed study populations.
Wearable ownership rates and interest in contributing to research studies both vary across
sociodemographic factors.276 The reliance on wearable fitness device companies also creates
a dependence on agents with a commercial interest and data that has gone through vendor-
specific proprietary processing, which is often brought to market as a fitness rather than a
medical device. Generalisation to new devices, future devices, or even differently-processed
data may be compromised if a limited set of devices are used.

Adherence and retention are also very common problems. In an analysis of 100,000 par-
ticipants across 8 studies, Pratap et al. show an 80% drop-off by the 40th day of the study.
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270 This was modified by disease state and study referral method, as well as age and sex as
in Covid Collab. Certain methods of engagement, such as questionnaire timing and mone-
tary incentives, were effective. However, no matter the approach to participant recruitment,
engagement, and the design of self-reports, it is likely that a subset of people will have a
greater drive to take part in scientific studies. Minimising the importance of adherence and
self-reported data through linking donated wearable data to other sources, for instance health
outcomes in electronic health records, may be a more constructive avenue.

There is a limit to what can be learnt and validated through the observational design that
follows citizen science data donation studies. Going forward, it will be important to follow
up on any exploratory findings with smaller randomised control studies with gold-standard
outcomes. Additionally, citizen science projects, such as Covid Collab, and donated com-
mercial wearable data could be a useful source of data for self-supervised learning. Keeping
in mind the above concerns of dependence on a particular vendor, ideally as part of a larger,
broader whole.

8.3 Conclusion
Mobile health and remote sensing have the opportunity to improve health outcomes through
access, deeper insight, real-time intervention, but care must be taken for that potential to be
realised. An increased focus on generalisable results and representative data, particularly
reflecting real-world environments, would help the translation from research to application.



References

1. D. C. Mohr, M. Zhang, and S. M. Schueller: Personal Sensing: Understanding Mental Health
Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology
13(1) (May 2017), 23–47. doi: 10.1146/annurev-clinpsy-032816-044949.

2. July 2023.
3. A. Zinzuwadia and J. P. Singh: Wearable devices—addressing bias and inequity. The Lancet

Digital Health 4(12) (Dec. 2022), e856–e857. doi: 10.1016/s2589-7500(22)00194-7.
4. B. Munos et al.: Mobile health: the power of wearables, sensors, and apps to transform

clinical trials. Annals of the New York Academy of Sciences 1375(1) (July 2016), 3–18. doi:
10.1111/nyas.13117.

5. J. Zhang, R. Chiodini, A. Badr, and G. Zhang: The impact of next-generation sequencing on
genomics. Journal of Genetics and Genomics 38(3) (Mar. 2011), 95–109. doi:
10.1016/j.jgg.2011.02.003.

6. T. Quisel, L. Foschini, A. Signorini, and D. C. Kale: Collecting and Analyzing Millions of
mHealth Data Streams. Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, Aug. 2017. doi: 10.1145/3097983.3098201.

7. C. Menni et al.: Symptom prevalence, duration, and risk of hospital admission in individuals
infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a
prospective observational study from the ZOE COVID Study. The Lancet 399(10335) (Apr.
2022), 1618–1624. doi: 10.1016/s0140-6736(22)00327-0.

8. Y. Ranjan et al.: RADAR-base: open source mobile health platform for collecting,
monitoring, and analyzing data using sensors, wearables, and mobile devices. JMIR mHealth
and uHealth 7(8) (2019), e11734.

9. M. Kozik, N. Isakadze, and S. S. Martin: Mobile health in preventive cardiology: current
status and future perspective. Current Opinion in Cardiology 36(5) (July 2021), 580–588.
doi: 10.1097/hco.0000000000000891.

10. R. W. Treskes, E. T. van der Velde, R. Barendse, and N. Bruining: Mobile health in
cardiology: a review of currently available medical apps and equipment for remote
monitoring. Expert Review of Medical Devices 13(9) (Aug. 2016), 823–830. doi:
10.1080/17434440.2016.1218277.

11. N. Singh et al.: Heart Rate Variability: An Old Metric with New Meaning in the Era of Using
mHealth technologies for Health and Exercise Training Guidance. Part Two: Prognosis and
Training. Arrhythmia & Electrophysiology Review 7(4) (2018), 1. doi:
10.15420/aer.2018.30.2.

12. M. C. Ortega, E. Bruno, and M. P. Richardson: Electrodermal activity response during
seizures: A systematic review and meta-analysis. Epilepsy & Behavior 134 (Sept. 2022),
108864. doi: 10.1016/j.yebeh.2022.108864.

https://doi.org/10.1146/annurev-clinpsy-032816-044949
https://doi.org/10.1016/s2589-7500(22)00194-7
https://doi.org/10.1111/nyas.13117
https://doi.org/10.1016/j.jgg.2011.02.003
https://doi.org/10.1145/3097983.3098201
https://doi.org/10.1016/s0140-6736(22)00327-0
https://doi.org/10.1097/hco.0000000000000891
https://doi.org/10.1080/17434440.2016.1218277
https://doi.org/10.15420/aer.2018.30.2
https://doi.org/10.1016/j.yebeh.2022.108864


References 142

13. P. N. Pfeiffer et al.: Mobile health monitoring to characterize depression symptom
trajectories in primary care. Journal of Affective Disorders 174 (Mar. 2015), 281–286. doi:
10.1016/j.jad.2014.11.040.

14. W. G. Dixon et al.: How the weather affects the pain of citizen scientists using a smartphone
app. npj Digital Medicine 2(1) (Oct. 2019). doi: 10.1038/s41746-019-0180-3.

15. J. M. Radin et al.: Assessment of Prolonged Physiological and Behavioral Changes
Associated With COVID-19 Infection. JAMA Network Open 4(7) (July 2021), e2115959.
doi: 10.1001/jamanetworkopen.2021.15959.

16. A. Natarajan, H.-W. Su, and C. Heneghan: Occurrence of Relative Bradycardia and Relative
Tachycardia in Individuals Diagnosed With COVID-19. Frontiers in Physiology 13 (May
2022). doi: 10.3389/fphys.2022.898251.

17. A. M. De Livera, S. Zaloumis, and J. A. Simpson: Models for the Analysis of Repeated
Continuous Outcome Measures in Clinical Trials. Respirology 19(2) (Feb. 2014), 155–161.
doi: 10.1111/resp.12217.

18. A. Coravos, S. Khozin, and K. D. Mandl: Developing and adopting safe and effective digital
biomarkers to improve patient outcomes. npj Digital Medicine 2(1) (Mar. 2019). doi:
10.1038/s41746-019-0090-4.

19. C.-Y. Wu et al.: Reproducibility and Replicability of High-frequency, In-home Digital
Biomarkers in Reducing Sample Sizes for Clinical Trials. Alzheimer’s & Dementia:
Translational Research & Clinical Interventions 7(1) (Jan. 2021), e12220. doi:
10.1002/trc2.12220.

20. F. A. Curro et al.: Person-Centric Clinical Trials: Defining the N-of-1 Clinical Trial Utilizing
a Practice-Based Translational Network. Clinical Investigation 5(2) (Feb. 2015), 145–159.
doi: 10.4155/cli.14.126.

21. K. Guk et al.: Evolution of Wearable Devices with Real-Time Disease Monitoring for
Personalized Healthcare. Nanomaterials 9(6) (May 2019), 813. doi: 10.3390/nano9060813.

22. A. Head et al.: Inequalities in Incident and Prevalent Multimorbidity in England, 2004–19: A
Population-Based, Descriptive Study. The Lancet Healthy Longevity 2(8) (Aug. 2021),
e489–e497. doi: 10.1016/S2666-7568(21)00146-X.

23. J. A. Levine: The Application of Wearable Technologies to Improve Healthcare in the
World’s Poorest People. Technology and Investment 08(02) (2017), 83–95. doi:
10.4236/ti.2017.82007.

24. S. Majumder, T. Mondal, and M. Deen: Wearable Sensors for Remote Health Monitoring.
Sensors 17(12) (Jan. 2017), 130. doi: 10.3390/s17010130.

25. S. C. Mathews et al.: Digital health: a path to validation. npj Digital Medicine 2(1) (May
2019). doi: 10.1038/s41746-019-0111-3.

26. K. Kolasa and G. Kozinski: How to Value Digital Health Interventions? A Systematic
Literature Review. International Journal of Environmental Research and Public Health
17(6) (Mar. 2020), 2119. doi: 10.3390/ijerph17062119.

27. R. Syed et al.: Digital Health Data Quality Issues: Systematic Review. Journal of Medical
Internet Research 25 (Mar. 2023), e42615. doi: 10.2196/42615.

28. A. Ghandeharioun et al.: Objective Assessment of Depressive Symptoms with Machine
Learning and Wearable Sensors Data. 2017 Seventh International Conference on Affective
Computing and Intelligent Interaction (ACII). San Antonio, TX: IEEE, Oct. 2017, 325–332.
doi: 10.1109/ACII.2017.8273620.

https://doi.org/10.1016/j.jad.2014.11.040
https://doi.org/10.1038/s41746-019-0180-3
https://doi.org/10.1001/jamanetworkopen.2021.15959
https://doi.org/10.3389/fphys.2022.898251
https://doi.org/10.1111/resp.12217
https://doi.org/10.1038/s41746-019-0090-4
https://doi.org/10.1002/trc2.12220
https://doi.org/10.4155/cli.14.126
https://doi.org/10.3390/nano9060813
https://doi.org/10.1016/S2666-7568(21)00146-X
https://doi.org/10.4236/ti.2017.82007
https://doi.org/10.3390/s17010130
https://doi.org/10.1038/s41746-019-0111-3
https://doi.org/10.3390/ijerph17062119
https://doi.org/10.2196/42615
https://doi.org/10.1109/ACII.2017.8273620


References 143

29. H. Motahari-Nezhad et al.: Digital Biomarker Based Studies: Scoping Review of Systematic
Reviews. JMIR mHealth and uHealth 10(10) (Oct. 2022), e35722. doi: 10.2196/35722.

30. S. B. Goldberg, D. M. Bolt, and R. J. Davidson: Data Missing Not at Random in Mobile
Health Research: Assessment of the Problem and a Case for Sensitivity Analyses. Journal of
Medical Internet Research 23(6) (June 2021), e26749. doi: 10.2196/26749.

31. S. Cho, I. Ensari, C. Weng, M. G. Kahn, and K. Natarajan: Factors Affecting the Quality of
Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic
Review. JMIR mHealth and uHealth 9(3) (Mar. 2021), e20738. doi: 10.2196/20738.

32. B. Bent, B. A. Goldstein, W. A. Kibbe, and J. P. Dunn: Investigating Sources of Inaccuracy
in Wearable Optical Heart Rate Sensors. npj Digital Medicine 3(1) (Feb. 2020), 18. doi:
10.1038/s41746-020-0226-6.

33. E. Dogan, C. Sander, X. Wagner, U. Hegerl, and E. Kohls: Smartphone-Based Monitoring of
Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We
Going? Systematic Review. Journal of Medical Internet Research 19(7) (July 2017), e262.
doi: 10.2196/jmir.7006.

34. N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, and A. Tzovara: Addressing Bias in Big Data
and AI for Health Care: A Call for Open Science. Patterns 2(10) (Oct. 2021), 100347. doi:
10.1016/j.patter.2021.100347.

35. C. R. Lesko et al.: Generalizing Study Results: A Potential Outcomes Perspective.
Epidemiology 28(4) (July 2017), 553–561. doi: 10.1097/EDE.0000000000000664.

36. L. A. Celi et al.: Sources of Bias in Artificial Intelligence That Perpetuate Healthcare
Disparities-A Global Review. PLOS Digital Health 1(3) (Mar. 2022). Ed. by H. S. Fraser,
e0000022. doi: 10.1371/journal.pdig.0000022.

37. R. Challen et al.: Artificial Intelligence, Bias and Clinical Safety. BMJ Quality & Safety
28(3) (Mar. 2019), 231–237. doi: 10.1136/bmjqs-2018-008370.

38. A.-F. Näher et al.: Secondary Data for Global Health Digitalisation. The Lancet Digital
Health 5(2) (Feb. 2023), e93–e101. doi: 10.1016/S2589-7500(22)00195-9.

39. A. Zinzuwadia and J. P. Singh: Wearable Devices—Addressing Bias and Inequity. The
Lancet Digital Health 4(12) (Dec. 2022), e856–e857. doi: 10.1016/S2589-7500(22)00194-7.

40. T.-W. Guu et al.: Wearable Devices: Underrepresentation in the Ageing Society. The Lancet
Digital Health 5(6) (June 2023), e336–e337. doi: 10.1016/S2589-7500(23)00069-9.

41. D. J. Stein et al.: What Is a Mental/Psychiatric Disorder? From DSM-IV to DSM-V.
Psychological Medicine 40(11) (Nov. 2010), 1759–1765. doi: 10.1017/S0033291709992261.

42. Y. Bengio, A. Courville, and P. Vincent: Representation Learning: A Review and New
Perspectives (2012). doi: 10.48550/ARXIV.1206.5538.

43. Y. Song, T. Wang, S. K. Mondal, and J. P. Sahoo: A Comprehensive Survey of Few-shot
Learning: Evolution, Applications, Challenges, and Opportunities (2022). doi:
10.48550/ARXIV.2205.06743.

44. X. Liu et al.: Self-Supervised Learning: Generative or Contrastive. IEEE Transactions on
Knowledge and Data Engineering (2021), 1–1. doi: 10.1109/TKDE.2021.3090866.

45. A. Adadi: A Survey on Data-efficient Algorithms in Big Data Era. Journal of Big Data 8(1)
(Jan. 2021), 24. doi: 10.1186/s40537-021-00419-9.

46. Web API. 2022. url: https://dev.fitbit.com/build/reference/web-api/ (visited on 09/19/2022).
47. iOS - Health - Apple. Oct. 2023. url: https://www.apple.com/ios/health/ (visited on

10/10/2023).

https://doi.org/10.2196/35722
https://doi.org/10.2196/26749
https://doi.org/10.2196/20738
https://doi.org/10.1038/s41746-020-0226-6
https://doi.org/10.2196/jmir.7006
https://doi.org/10.1016/j.patter.2021.100347
https://doi.org/10.1097/EDE.0000000000000664
https://doi.org/10.1371/journal.pdig.0000022
https://doi.org/10.1136/bmjqs-2018-008370
https://doi.org/10.1016/S2589-7500(22)00195-9
https://doi.org/10.1016/S2589-7500(22)00194-7
https://doi.org/10.1016/S2589-7500(23)00069-9
https://doi.org/10.1017/S0033291709992261
https://doi.org/10.48550/ARXIV.1206.5538
https://doi.org/10.48550/ARXIV.2205.06743
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1186/s40537-021-00419-9
https://dev.fitbit.com/build/reference/web-api/
https://www.apple.com/ios/health/


References 144

48. E. Garcia-Ceja et al.: Mental Health Monitoring with Multimodal Sensing and Machine
Learning: A Survey. Pervasive and Mobile Computing 51 (Dec. 2018), 1–26. doi:
10.1016/j.pmcj.2018.09.003.

49. F. S. S. Leijten and the Dutch TeleEpilepsy Consortium: Multimodal Seizure Detection: A
Review. Epilepsia 59(S1) (June 2018), 42–47. doi: 10.1111/epi.14047.

50. H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu: AttnSense: Multi-level Attention Mechanism For
Multimodal Human Activity Recognition. Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence. Macao, China: International Joint Conferences on
Artificial Intelligence Organization, Aug. 2019, 3109–3115. doi: 10.24963/ijcai.2019/431.

51. V. Radu et al.: Multimodal Deep Learning for Activity and Context Recognition.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1(4)
(Jan. 2018), 1–27. doi: 10.1145/3161174.

52. G. Muhammad et al.: A Comprehensive Survey on Multimodal Medical Signals Fusion for
Smart Healthcare Systems. Information Fusion 76 (Dec. 2021), 355–375. doi:
10.1016/j.inffus.2021.06.007.

53. C. Sun, S. Hong, M. Song, and H. Li: A Review of Deep Learning Methods for Irregularly
Sampled Medical Time Series Data (2020). doi: 10.48550/ARXIV.2010.12493.

54. S. Deldari et al.: Latent Masking for Multimodal Self-supervised Learning in Health
Timeseries (2023). doi: 10.48550/ARXIV.2307.16847.

55. E. Bruno et al.: Remote Assessment of Disease and Relapse in Epilepsy: Protocol for a
Multicenter Prospective Cohort Study. JMIR Research Protocols 9(12) (Dec. 2020), e21840.
doi: 10.2196/21840.

56. M. Garnelo et al.: Neural Processes. 2018. doi: 10.48550/ARXIV.1807.01622.
57. R. Gordan, J. K. Gwathmey, and L.-H. Xie: Autonomic and endocrine control of

cardiovascular function. World Journal of Cardiology 7(4) (2015), 204. doi:
10.4330/wjc.v7.i4.204.

58. J. Tsao et al.: Heart rate variability as a biomarker for autonomic nervous system response
differences between children with chronic pain and healthy control children. Journal of Pain
Research (June 2013), 449. doi: 10.2147/jpr.s43849.

59. M. Hassani, A. F. Jouzdani, S. Motarjem, A. Ranjbar, and N. Khansari: How COVID-19 can
cause autonomic dysfunctions and postural orthostatic syndrome? A Review of mechanisms
and evidence. Neurology and Clinical Neuroscience 9(6) (Oct. 2021), 434–442. doi:
10.1111/ncn3.12548.

60. M. Dani et al.: Autonomic dysfunction in ‘long COVID’: rationale, physiology and
management strategies. Clinical Medicine 21(1) (Nov. 2020), e63–e67. doi:
10.7861/clinmed.2020-0896.

61. R. D. Thijs, P. Ryvlin, and R. Surges: Autonomic manifestations of epilepsy: emerging
pathways to sudden death? Nature Reviews Neurology 17(12) (Oct. 2021), 774–788. doi:
10.1038/s41582-021-00574-w.

62. R. D. Thijs: The autonomic signatures of epilepsy: diagnostic clues and novel treatment
avenues. Clinical Autonomic Research 29(2) (Mar. 2019), 131–133. doi:
10.1007/s10286-019-00603-1.

63. E. Won and Y.-K. Kim: Stress, the Autonomic Nervous System, and the Immune-kynurenine
Pathway in the Etiology of Depression. Current Neuropharmacology 14(7) (Aug. 2016),
665–673. doi: 10.2174/1570159x14666151208113006.

https://doi.org/10.1016/j.pmcj.2018.09.003
https://doi.org/10.1111/epi.14047
https://doi.org/10.24963/ijcai.2019/431
https://doi.org/10.1145/3161174
https://doi.org/10.1016/j.inffus.2021.06.007
https://doi.org/10.48550/ARXIV.2010.12493
https://doi.org/10.48550/ARXIV.2307.16847
https://doi.org/10.2196/21840
https://doi.org/10.48550/ARXIV.1807.01622
https://doi.org/10.4330/wjc.v7.i4.204
https://doi.org/10.2147/jpr.s43849
https://doi.org/10.1111/ncn3.12548
https://doi.org/10.7861/clinmed.2020-0896
https://doi.org/10.1038/s41582-021-00574-w
https://doi.org/10.1007/s10286-019-00603-1
https://doi.org/10.2174/1570159x14666151208113006


References 145

64. Primer on the Autonomic Nervous System. Elsevier, 2012. doi: 10.1016/c2010-0-65186-8.
65. L. K. McCorry: Physiology of the Autonomic Nervous System. American Journal of

Pharmaceutical Education 71(4) (Sept. 2007), 78. doi: 10.5688/aj710478.
66. D. S. Goldstein: Dysautonomias: Clinical Disorders of the Autonomic Nervous System.

Annals of Internal Medicine 137(9) (Nov. 2002), 753. doi:
10.7326/0003-4819-137-9-200211050-00011.

67. J. Hadaya and J. L. Ardell: Autonomic Modulation for Cardiovascular Disease. Frontiers in
Physiology 11 (Dec. 2020). doi: 10.3389/fphys.2020.617459.

68. M. Cella et al.: Using wearable technology to detect the autonomic signature of illness
severity in schizophrenia. Schizophrenia Research 195 (May 2018), 537–542. doi:
10.1016/j.schres.2017.09.028.

69. R. M. Carney, K. E. Freedland, and R. C. Veith: Depression, the Autonomic Nervous
System, and Coronary Heart Disease. Psychosomatic Medicine 67 (May 2005), S29–S33.
doi: 10.1097/01.psy.0000162254.61556.d5.

70. Y. Wang et al.: Altered cardiac autonomic nervous function in depression. BMC Psychiatry
13(1) (July 2013). doi: 10.1186/1471-244x-13-187.

71. G. D. Femminella et al.: Autonomic Dysfunction in Alzheimer’s Disease: Tools for
Assessment and Review of the Literature. Journal of Alzheimer’s Disease 42(2) (Aug. 2014),
369–377. doi: 10.3233/jad-140513.

72. B. B. Wannamaker: Autonomic Nervous System and Epilepsy. Epilepsia 26(s1) (June 1985),
S31–S39. doi: 10.1111/j.1528-1157.1985.tb05722.x.

73. S. Vieluf et al.: Autonomic nervous system changes detected with peripheral sensors in the
setting of epileptic seizures. Scientific Reports 10(1) (July 2020). doi:
10.1038/s41598-020-68434-z.

74. C. L. Cooper and J. C. Quick, eds.: The Handbook of Stress and Health. John Wiley & Sons,
Ltd, Apr. 2017. doi: 10.1002/9781118993811.

75. L. Levi: Occupational stress: Spice of life or kiss of death? American Psychologist 45(10)
(1990), 1142–1145. doi: 10.1037/0003-066x.45.10.1142.

76. B. Wang et al.: Wearable aptamer-field-effect transistor sensing system for noninvasive
cortisol monitoring. Science Advances 8(1) (Jan. 2022). doi: 10.1126/sciadv.abk0967.

77. O. Parlak: Portable and wearable real-time stress monitoring: A critical review. Sensors and
Actuators Reports 3 (Nov. 2021), 100036. doi: 10.1016/j.snr.2021.100036.

78. P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. V. Laerhoven: Introducing
WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. Proceedings of the
20th ACM International Conference on Multimodal Interaction. ACM, Oct. 2018. doi:
10.1145/3242969.3242985.

79. J. Healey and R. Picard: Detecting Stress During Real-World Driving Tasks Using
Physiological Sensors. IEEE Transactions on Intelligent Transportation Systems 6(2) (June
2005), 156–166. doi: 10.1109/tits.2005.848368.

80. F. R. Ihmig, A. Gogeascoechea, S. Schäfer, J. Lass-Hennemann, and T. Michael:
Electrocardiogram, skin conductance and respiration from spider-fearful individuals
watching spider video clips. 2020. doi: 10.13026/SQ6Q-ZG04.

81. J. Birjandtalab, D. Cogan, M. B. Pouyan, and M. Nourani: A Non-EEG Biosignals Dataset
for Assessment and Visualization of Neurological Status. 2016 IEEE International
Workshop on Signal Processing Systems (SiPS). IEEE, Oct. 2016. doi: 10.1109/sips.2016.27.

https://doi.org/10.1016/c2010-0-65186-8
https://doi.org/10.5688/aj710478
https://doi.org/10.7326/0003-4819-137-9-200211050-00011
https://doi.org/10.3389/fphys.2020.617459
https://doi.org/10.1016/j.schres.2017.09.028
https://doi.org/10.1097/01.psy.0000162254.61556.d5
https://doi.org/10.1186/1471-244x-13-187
https://doi.org/10.3233/jad-140513
https://doi.org/10.1111/j.1528-1157.1985.tb05722.x
https://doi.org/10.1038/s41598-020-68434-z
https://doi.org/10.1002/9781118993811
https://doi.org/10.1037/0003-066x.45.10.1142
https://doi.org/10.1126/sciadv.abk0967
https://doi.org/10.1016/j.snr.2021.100036
https://doi.org/10.1145/3242969.3242985
https://doi.org/10.1109/tits.2005.848368
https://doi.org/10.13026/SQ6Q-ZG04
https://doi.org/10.1109/sips.2016.27


References 146

82. C. Espinosa-Garcia, H. Zeleke, and A. Rojas: Impact of Stress on Epilepsy: Focus on
Neuroinflammation—A Mini Review. International Journal of Molecular Sciences 22(8)
(Apr. 2021), 4061. doi: 10.3390/ijms22084061.

83. C. Hammen: Stress and depression. Annual Review of Clinical Psychology(2005) 1(1)
(2005), 293–319.

84. N. M. H. GRAHAM, R. M. DOUGLAS, and P. RYAN: STRESS AND ACUTE
RESPIRATORY INFECTION. American Journal of Epidemiology 124(3) (Sept. 1986),
389–401. doi: 10.1093/oxfordjournals.aje.a114409.

85. S. L. Moshé, E. Perucca, P. Ryvlin, and T. Tomson: Epilepsy: new advances. The Lancet
385(9971) (Mar. 2015), 884–898. doi: 10.1016/s0140-6736(14)60456-6.

86. R. S. Fisher et al.: Operational classification of seizure types by the International League
Against Epilepsy: Position Paper of the ILAE Commission for Classification and
Terminology. Epilepsia 58(4) (Mar. 2017), 522–530. doi: 10.1111/epi.13670.

87. O. Devinsky: Effects of Seizures on Autonomic and Cardiovascular Function. Epilepsy
Currents 4(2) (Feb. 2004), 43–46. doi: 10.1111/j.1535-7597.2004.42001.x.

88. J. M. van BUREN: SOME AUTONOMIC CONCOMITANTS OF ICTAL AUTOMATISM.
Brain 81(4) (1958), 505–528. doi: 10.1093/brain/81.4.505.

89. I. Hubbard, S. Beniczky, and P. Ryvlin: The Challenging Path to Developing a Mobile
Health Device for Epilepsy: The Current Landscape and Where We Go From Here. Frontiers
in Neurology 12 (Oct. 2021). doi: 10.3389/fneur.2021.740743.

90. T. Singhal: A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of
Pediatrics 87(4) (Mar. 2020), 281–286. doi: 10.1007/s12098-020-03263-6.

91. H. Ritchie et al.: Coronavirus Pandemic (COVID-19). Our World in Data (2020).
https://ourworldindata.org/coronavirus.

92. B. Hu, H. Guo, P. Zhou, and Z.-L. Shi: Characteristics of SARS-CoV-2 and COVID-19.
Nature Reviews Microbiology 19(3) (Oct. 2020), 141–154. doi:
10.1038/s41579-020-00459-7.

93. Symptoms of COVID-19 | CDC. Aug. 2022. url:
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (visited on
09/29/2022).

94. E. Mahase: Covid-19: Sore throat, fatigue, and myalgia are more common with new UK
variant. BMJ (Jan. 2021), n288. doi: 10.1136/bmj.n288.

95. M. Alene et al.: Magnitude of asymptomatic COVID-19 cases throughout the course of
infection: A systematic review and meta-analysis. PLOS ONE 16(3) (Mar. 2021). Ed. by
K. O. Kwok, e0249090. doi: 10.1371/journal.pone.0249090.

96. F. Callard and E. Perego: How and why patients made Long Covid. Social Science &
Medicine 268 (Jan. 2021), 113426. doi: 10.1016/j.socscimed.2020.113426.

97. R. Pellegrino, E. Chiappini, A. Licari, L. Galli, and G. L. Marseglia: Prevalence and clinical
presentation of long COVID in children: a systematic review. European Journal of
Pediatrics (Sept. 2022). doi: 10.1007/s00431-022-04600-x.

98. E. Xu, Y. Xie, and Z. Al-Aly: Long-term neurologic outcomes of COVID-19. Nature
Medicine (Sept. 2022). doi: 10.1038/s41591-022-02001-z.

99. N. W. Larsen, L. E. Stiles, and M. G. Miglis: Preparing for the long-haul: Autonomic
complications of COVID-19. Autonomic Neuroscience 235 (Nov. 2021), 102841. doi:
10.1016/j.autneu.2021.102841.

https://doi.org/10.3390/ijms22084061
https://doi.org/10.1093/oxfordjournals.aje.a114409
https://doi.org/10.1016/s0140-6736(14)60456-6
https://doi.org/10.1111/epi.13670
https://doi.org/10.1111/j.1535-7597.2004.42001.x
https://doi.org/10.1093/brain/81.4.505
https://doi.org/10.3389/fneur.2021.740743
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1038/s41579-020-00459-7
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://doi.org/10.1136/bmj.n288
https://doi.org/10.1371/journal.pone.0249090
https://doi.org/10.1016/j.socscimed.2020.113426
https://doi.org/10.1007/s00431-022-04600-x
https://doi.org/10.1038/s41591-022-02001-z
https://doi.org/10.1016/j.autneu.2021.102841


References 147

100. A. Azizi et al.: Post-COVID-19 mental health and its associated factors at 3-months after
discharge: A case-control study. Clinical Epidemiology and Global Health 17 (Sept. 2022),
101141. doi: 10.1016/j.cegh.2022.101141.

101. B. Becerra-Canales, H. M. Campos-Martínez, M. Campos-Sobrino, and
G. A. Aquije-Cárdenas: Trastorno de estrés postraumático y calidad de vida del paciente
post-COVID-19 en Atención Primaria. Atención Primaria 54(10) (Oct. 2022), 102460. doi:
10.1016/j.aprim.2022.102460.

102. A. García-Molina et al.: Neuropsychological rehabilitation for post–COVID-19 syndrome:
results of a clinical programme and six-month follow up. Neurología (English Edition) (Sept.
2022). doi: 10.1016/j.nrleng.2022.06.007.

103. E. Fraser: Long term respiratory complications of covid-19. BMJ (Aug. 2020), m3001. doi:
10.1136/bmj.m3001.

104. J. K. Hennigs et al.: Respiratory muscle dysfunction in long-COVID patients. Infection (May
2022). doi: 10.1007/s15010-022-01840-9.

105. B. A. Satterfield, D. L. Bhatt, and B. J. Gersh: Cardiac involvement in the long-term
implications of COVID-19. Nature Reviews Cardiology 19(5) (Oct. 2021), 332–341. doi:
10.1038/s41569-021-00631-3.

106. B. Siripanthong et al.: The Pathogenesis and Long-Term Consequences of COVID-19
Cardiac Injury. JACC: Basic to Translational Science 7(3) (Mar. 2022), 294–308. doi:
10.1016/j.jacbts.2021.10.011.

107. H. E. Davis et al.: Characterizing long COVID in an international cohort: 7 months of
symptoms and their impact. eClinicalMedicine 38 (Aug. 2021), 101019. doi:
10.1016/j.eclinm.2021.101019.

108. J. Allen: Photoplethysmography and its application in clinical physiological measurement.
Physiological Measurement 28(3) (Feb. 2007), R1–R39. doi: 10.1088/0967-3334/28/3/r01.

109. A. Samol et al.: Single-Lead ECG Recordings Including Einthoven and Wilson Leads by a
Smartwatch: A New Era of Patient Directed Early ECG Differential Diagnosis of Cardiac
Diseases? Sensors 19(20) (Oct. 2019), 4377. doi: 10.3390/s19204377.

110. S. Jongstra et al.: Cognitive Testing in People at Increased Risk of Dementia Using a
Smartphone App: The iVitality Proof-of-Principle Study. JMIR mHealth and uHealth 5(5)
(May 2017), e68. doi: 10.2196/mhealth.6939.

111. P. L. Enright: The six-minute walk test. Respiratory care 48(8) (2003), 783–785.
112. N. Cummins et al.: Diagnosis of depression by behavioural signals. Proceedings of the 3rd

ACM international workshop on Audio/visual emotion challenge. ACM, Oct. 2013. doi:
10.1145/2512530.2512535.

113. K. Wu, D. Zhang, G. Lu, and Z. Guo: Joint learning for voice based disease detection.
Pattern Recognition 87 (Mar. 2019), 130–139. doi: 10.1016/j.patcog.2018.09.013.

114. D. Rhonda J. Holmes Jennifer M. Oates: Voice characteristics in the progression of
Parkinsons disease. International Journal of Language & Communication Disorders 35(3)
(Jan. 2000), 407–418. doi: 10.1080/136828200410654.

115. D. E. Webster et al.: The Mole Mapper Study, mobile phone skin imaging and melanoma
risk data collected using ResearchKit. Scientific Data 4(1) (Feb. 2017). doi:
10.1038/sdata.2017.5.

116. L. Blom: mHealth for image-based diagnostics of acute burns in resource-poor settings:
studies on the role of experts and the accuracy of their assessments. Global Health Action
13(1) (Aug. 2020), 1802951. doi: 10.1080/16549716.2020.1802951.

https://doi.org/10.1016/j.cegh.2022.101141
https://doi.org/10.1016/j.aprim.2022.102460
https://doi.org/10.1016/j.nrleng.2022.06.007
https://doi.org/10.1136/bmj.m3001
https://doi.org/10.1007/s15010-022-01840-9
https://doi.org/10.1038/s41569-021-00631-3
https://doi.org/10.1016/j.jacbts.2021.10.011
https://doi.org/10.1016/j.eclinm.2021.101019
https://doi.org/10.1088/0967-3334/28/3/r01
https://doi.org/10.3390/s19204377
https://doi.org/10.2196/mhealth.6939
https://doi.org/10.1145/2512530.2512535
https://doi.org/10.1016/j.patcog.2018.09.013
https://doi.org/10.1080/136828200410654
https://doi.org/10.1038/sdata.2017.5
https://doi.org/10.1080/16549716.2020.1802951


References 148

117. T. Mazzu-Nascimento et al.: Mobile Health (mHealth) and Advances in Noninvasive
Diagnosis of Anemia: An Overview. International Journal of Nutrology 13(02) (Sept. 2020),
042–047. doi: 10.1055/s-0040-1716497.

118. E4 wristband | Real-time physiological signals | Wearable PPG, EDA, Temperature, Motion
sensors. 2022. url: https://www.empatica.com/en-gb/research/e4/ (visited on 09/24/2022).

119. A. L. Goldberger et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New
Research Resource for Complex Physiologic Signals. Circulation 101(23) (2000 (June 13)).
Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full
PMID:1085218; doi: 10.1161/01.CIR.101.23.e215, e215–e220.

120. A. Miles et al.: zarr-developers/zarr-python: v2.13.0. 2022. doi:
10.5281/ZENODO.7104413.

121. J. C. Jakobsen, C. Gluud, J. Wetterslev, and P. Winkel: When and how should multiple
imputation be used for handling missing data in randomised clinical trials – a practical guide
with flowcharts. BMC Medical Research Methodology 17(1) (Dec. 2017). doi:
10.1186/s12874-017-0442-1.

122. J. A. C. Sterne et al.: Multiple imputation for missing data in epidemiological and clinical
research: potential and pitfalls. BMJ 338(jun29 1) (June 2009), b2393–b2393. doi:
10.1136/bmj.b2393.

123. J. L. Schafer: Analysis of incomplete multivariate data. CRC press, 1997. doi:
10.1201/9780367803025.

124. pymhealth/pymhealth: A python package for mHealth data processing and feature
extraction. Mar. 2020. url: https://github.com/pymhealth/pymhealth (visited on 09/20/2022).

125. S. K. Lam, A. Pitrou, and S. Seibert: Numba. Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC - LLVM ’15. ACM Press, 2015. doi:
10.1145/2833157.2833162.

126. P. Virtanen et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17 (2020), 261–272. doi: 10.1038/s41592-019-0686-2.

127. P. S. Hamilton and W. J. Tompkins: Quantitative Investigation of QRS Detection Rules
Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering
BME-33(12) (Dec. 1986), 1157–1165. doi: 10.1109/tbme.1986.325695.

128. J. J. Braithwaite, D. G. Watson, R. Jones, and M. Rowe: A guide for analysing electrodermal
activity (EDA) & skin conductance responses (SCRs) for psychological experiments.
Psychophysiology 49(1) (2013), 1017–1034.

129. A. Greco, G. Valenza, A. Lanata, E. Scilingo, and L. Citi: cvxEDA: a Convex Optimization
Approach to Electrodermal Activity Processing. IEEE Transactions on Biomedical
Engineering (2016), 1–1. doi: 10.1109/tbme.2015.2474131.

130. Tilt sensing using Linear Accelerometers. 2013. url:
https://www.nxp.com/docs/en/application-note/AN3461.pdf (visited on 09/24/2022).

131. L. McManus, G. D. Vito, and M. M. Lowery: Analysis and Biophysics of Surface EMG for
Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation
Engineers. Frontiers in Neurology 11 (Oct. 2020). doi: 10.3389/fneur.2020.576729.

132. J. D. Blood et al.: The variable heart: High frequency and very low frequency correlates of
depressive symptoms in children and adolescents. Journal of Affective Disorders 186 (Nov.
2015), 119–126. doi: 10.1016/j.jad.2015.06.057.

https://doi.org/10.1055/s-0040-1716497
https://www.empatica.com/en-gb/research/e4/
https://doi.org/10.5281/ZENODO.7104413
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1201/9780367803025
https://github.com/pymhealth/pymhealth
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/tbme.1986.325695
https://doi.org/10.1109/tbme.2015.2474131
https://www.nxp.com/docs/en/application-note/AN3461.pdf
https://doi.org/10.3389/fneur.2020.576729
https://doi.org/10.1016/j.jad.2015.06.057


References 149

133. B. Hjorth: EEG analysis based on time domain properties. Electroencephalography and
Clinical Neurophysiology 29(3) (Sept. 1970), 306–310. doi:
10.1016/0013-4694(70)90143-4.

134. A. Delgado-Bonal and A. Marshak: Approximate Entropy and Sample Entropy: A
Comprehensive Tutorial. Entropy 21(6) (May 2019), 541. doi: 10.3390/e21060541.

135. F. Shaffer and J. P. Ginsberg: An Overview of Heart Rate Variability Metrics and Norms.
Frontiers in Public Health 5 (Sept. 2017). doi: 10.3389/fpubh.2017.00258.

136. W. Boucsein: Electrodermal Activity. Springer US, 2012. doi: 10.1007/978-1-4614-1126-0.
137. E. Lutin, R. Hashimoto, W. D. Raedt, and C. V. Hoof: Feature Extraction for Stress

Detection in Electrodermal Activity. Proceedings of the 14th International Joint Conference
on Biomedical Engineering Systems and Technologies. SCITEPRESS - Science and
Technology Publications, 2021. doi: 10.5220/0010244601770185.

138. Y.-h. Sheu: Illuminating the Black Box: Interpreting Deep Neural Network Models for
Psychiatric Research. Frontiers in Psychiatry 11 (Oct. 2020). doi:
10.3389/fpsyt.2020.551299.

139. S. Seabold and J. Perktold: statsmodels: Econometric and statistical modeling with python.
9th Python in Science Conference. 2010.

140. P. McCullagh and J. Nelder: Generalized Linear Models. Routledge, Jan. 2019. doi:
10.1201/9780203753736.

141. W. S. Noble: What is a support vector machine? Nature Biotechnology 24(12) (Dec. 2006),
1565–1567. doi: 10.1038/nbt1206-1565.

142. F. Pedregosa et al.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12 (2011), 2825–2830.

143. C.-C. Chang and C.-J. Lin: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2 (3 2011). Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

144. W.-Y. Loh: Classification and regression trees. WIREs Data Mining and Knowledge
Discovery 1(1) (Jan. 2011), 14–23. doi: 10.1002/widm.8.

145. L. Breiman: Random forests. Machine learning 45(1) (2001), 5–32.
146. Deep Learning Models for Medical Imaging. Elsevier, 2022. doi: 10.1016/c2020-0-00344-0.
147. D. P. Kingma and M. Welling: Auto-Encoding Variational Bayes. 2013. doi:

10.48550/ARXIV.1312.6114.
148. C. E. Elger and C. Hoppe: Diagnostic challenges in epilepsy: seizure under-reporting and

seizure detection. The Lancet Neurology 17(3) (Mar. 2018), 279–288. doi:
10.1016/s1474-4422(18)30038-3.

149. B. Blachut et al.: Counting seizures: The primary outcome measure in epileptology from the
patients’ perspective. Seizure 29 (July 2015), 97–103. doi: 10.1016/j.seizure.2015.03.004.

150. A. Shah and S. Mittal: Invasive electroencephalography monitoring: Indications and
presurgical planning. Annals of Indian Academy of Neurology 17(5) (2014), 89. doi:
10.4103/0972-2327.128668.

151. C. Baumgartner and J. P. Koren: Seizure detection using scalp-EEG. Epilepsia 59 (June
2018), 14–22. doi: 10.1111/epi.14052.

152. A. V. de Vel et al.: Non-EEG seizure detection systems and potential SUDEP prevention:
State of the art. Seizure 41 (Oct. 2016), 141–153. doi: 10.1016/j.seizure.2016.07.012.

https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.3390/e21060541
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1007/978-1-4614-1126-0
https://doi.org/10.5220/0010244601770185
https://doi.org/10.3389/fpsyt.2020.551299
https://doi.org/10.1201/9780203753736
https://doi.org/10.1038/nbt1206-1565
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1002/widm.8
https://doi.org/10.1016/c2020-0-00344-0
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.1016/s1474-4422(18)30038-3
https://doi.org/10.1016/j.seizure.2015.03.004
https://doi.org/10.4103/0972-2327.128668
https://doi.org/10.1111/epi.14052
https://doi.org/10.1016/j.seizure.2016.07.012


References 150

153. C. H. Wong et al.: Risk factors for complications during intracranial electrode recording in
presurgical evaluation of drug resistant partial epilepsy. Acta Neurochirurgica 151(1) (Jan.
2009), 37–50. doi: 10.1007/s00701-008-0171-7.

154. R. Ortiz and J. Liporace: “Seizure-alert dogs”: Observations from an inpatient video/EEG
unit. Epilepsy & Behavior 6(4) (June 2005), 620–622. doi: 10.1016/j.yebeh.2005.02.012.

155. RADAR-CNS: Remote Assessment of Disease and Relapse – Central Nervous System |
Radar-CNS. 2022. url: https://www.radar-cns.org/ (visited on 09/25/2022).

156. R. Martinek et al.: Advanced Bioelectrical Signal Processing Methods: Past, Present, and
Future Approach—Part III: Other Biosignals. Sensors 21(18) (Sept. 2021), 6064. doi:
10.3390/s21186064.

157. A. Carbone, G. Castelli, and H. Stanley: Time-dependent Hurst exponent in financial time
series. Physica A: Statistical Mechanics and its Applications 344(1-2) (Dec. 2004), 267–271.
doi: 10.1016/j.physa.2004.06.130.

158. B. H. Menze et al.: A comparison of random forest and its Gini importance with standard
chemometric methods for the feature selection and classification of spectral data. BMC
Bioinformatics 10(1) (July 2009). doi: 10.1186/1471-2105-10-213.

159. S. Beniczky, I. Conradsen, O. Henning, M. Fabricius, and P. Wolf: Automated real-time
detection of tonic-clonic seizures using a wearable EMG device. Neurology 90(5) (Jan.
2018), e428–e434. doi: 10.1212/wnl.0000000000004893.

160. K. Cuppens et al.: Accelerometry-Based Home Monitoring for Detection of Nocturnal
Hypermotor Seizures Based on Novelty Detection. IEEE Journal of Biomedical and Health
Informatics 18(3) (May 2014), 1026–1033. doi: 10.1109/jbhi.2013.2285015.

161. P. Meritam, P. Ryvlin, and S. Beniczky: User-based evaluation of applicability and usability
of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: A field study.
Epilepsia 59 (June 2018), 48–52. doi: 10.1111/epi.14051.

162. M. Nasseri et al.: Non-invasive wearable seizure detection using long–short-term memory
networks with transfer learning. Journal of Neural Engineering 18(5) (Apr. 2021), 056017.
doi: 10.1088/1741-2552/abef8a.

163. F. Onorati et al.: Multicenter clinical assessment of improved wearable multimodal
convulsive seizure detectors. Epilepsia 58(11) (Oct. 2017), 1870–1879. doi:
10.1111/epi.13899.

164. J. van Andel et al.: Multimodal, automated detection of nocturnal motor seizures at home: Is
a reliable seizure detector feasible? Epilepsia Open 2(4) (Sept. 2017), 424–431. doi:
10.1002/epi4.12076.

165. T. De Cooman, E. Carrette, P. Boon, A. Meurs, and S. Van Huffel: Online seizure detection
in adults with temporal lobe epilepsy using single-lead ECG. 2014 22nd European Signal
Processing Conference (EUSIPCO). 2014, 1532–1536.

166. A. V. de Vel et al.: Long-term accelerometry-triggered video monitoring and detection of
tonic–clonic and clonic seizures in a home environment: Pilot study. Epilepsy & Behavior
Case Reports 5 (2016), 66–71. doi: 10.1016/j.ebcr.2016.03.005.

167. M. Fawzy and H. Mostafa: High Accuracy Epileptic Seizure Detection System Based on
Wearable Devices Using Support Vector Machine Classifier. 2021 International Conference
on Microelectronics (ICM). IEEE, Dec. 2021. doi: 10.1109/icm52667.2021.9664898.

https://doi.org/10.1007/s00701-008-0171-7
https://doi.org/10.1016/j.yebeh.2005.02.012
https://www.radar-cns.org/
https://doi.org/10.3390/s21186064
https://doi.org/10.1016/j.physa.2004.06.130
https://doi.org/10.1186/1471-2105-10-213
https://doi.org/10.1212/wnl.0000000000004893
https://doi.org/10.1109/jbhi.2013.2285015
https://doi.org/10.1111/epi.14051
https://doi.org/10.1088/1741-2552/abef8a
https://doi.org/10.1111/epi.13899
https://doi.org/10.1002/epi4.12076
https://doi.org/10.1016/j.ebcr.2016.03.005
https://doi.org/10.1109/icm52667.2021.9664898


References 151

168. B. E. Heldberg et al.: Using wearable sensors for semiology-independent seizure detection -
towards ambulatory monitoring of epilepsy. 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Aug. 2015. doi:
10.1109/embc.2015.7319660.

169. M. Mursalin, Y. Zhang, Y. Chen, and N. V. Chawla: Automated epileptic seizure detection
using improved correlation-based feature selection with random forest classifier.
Neurocomputing 241 (June 2017), 204–214. doi: 10.1016/j.neucom.2017.02.053.

170. J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-Frederiksen: Detection
of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot.
Seizure 24 (Jan. 2015), 1–7. doi: 10.1016/j.seizure.2014.11.004.

171. I. Conradsen, S. Beniczky, K. Hoppe, P. Wolf, and H. B. D. Sorensen: Automated Algorithm
for Generalized Tonic–Clonic Epileptic Seizure Onset Detection Based on sEMG
Zero-Crossing Rate. IEEE Transactions on Biomedical Engineering 59(2) (Feb. 2012),
579–585. doi: 10.1109/tbme.2011.2178094.

172. H. Joo et al.: Spectral Analysis of Acceleration Data for Detection of Generalized
Tonic-Clonic Seizures. Sensors 17(3) (Feb. 2017), 481. doi: 10.3390/s17030481.

173. T. Trithipkaiwanpon and U. Taetragool: Sensitivity Analysis of Random Forest
Hyperparameters. 2021 18th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON). IEEE, May 2021. doi: 10.1109/ecti-con51831.2021.9454885.

174. B. F. Huang and P. C. Boutros: The parameter sensitivity of random forests. BMC
Bioinformatics 17(1) (Sept. 2016). doi: 10.1186/s12859-016-1228-x.

175. D. Cogan, J. Birjandtalab, M. Nourani, J. Harvey, and V. Nagaraddi: Multi-Biosignal
Analysis for Epileptic Seizure Monitoring. International Journal of Neural Systems 27(01)
(Nov. 2016), 1650031. doi: 10.1142/s0129065716500313.

176. A. Mariotti: The Effects of Chronic Stress on Health: New Insights into the Molecular
Mechanisms of Brain–Body Communication. Future Science OA 1(3) (Nov. 2015),
fso.15.21. doi: 10.4155/fso.15.21.

177. D. R. Garfin, R. R. Thompson, and E. A. Holman: Acute Stress and Subsequent Health
Outcomes: A Systematic Review. Journal of Psychosomatic Research 112 (Sept. 2018),
107–113. doi: 10.1016/j.jpsychores.2018.05.017.

178. M. Helander: Applicability of Drivers’ Electrodermal Response to the Design of the Traffic
Environment. Journal of Applied Psychology 63(4) (1978), 481–488. doi:
10.1037/0021-9010.63.4.481.

179. G. F. Wilson, J. D. Lambert, and C. A. Russell: Performance Enhancement with Real-Time
Physiologically Controlled Adaptive Aiding. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 44(13) (July 2000), 61–64. doi:
10.1177/154193120004401316.

180. G. F. Wilson: An Analysis of Mental Workload in Pilots During Flight Using Multiple
Psychophysiological Measures. The International Journal of Aviation Psychology 12(1)
(Jan. 2002), 3–18. doi: 10.1207/S15327108IJAP1201_2.

181. J. Veltman and A. Gaillard: Physiological Indices of Workload in a Simulated Flight Task.
Biological Psychology 42(3) (Feb. 1996), 323–342. doi: 10.1016/0301-0511(95)05165-1.

182. G. Giannakakis et al.: Review on Psychological Stress Detection Using Biosignals. IEEE
Transactions on Affective Computing 13(1) (Jan. 2022), 440–460. doi:
10.1109/TAFFC.2019.2927337.

https://doi.org/10.1109/embc.2015.7319660
https://doi.org/10.1016/j.neucom.2017.02.053
https://doi.org/10.1016/j.seizure.2014.11.004
https://doi.org/10.1109/tbme.2011.2178094
https://doi.org/10.3390/s17030481
https://doi.org/10.1109/ecti-con51831.2021.9454885
https://doi.org/10.1186/s12859-016-1228-x
https://doi.org/10.1142/s0129065716500313
https://doi.org/10.4155/fso.15.21
https://doi.org/10.1016/j.jpsychores.2018.05.017
https://doi.org/10.1037/0021-9010.63.4.481
https://doi.org/10.1177/154193120004401316
https://doi.org/10.1207/S15327108IJAP1201_2
https://doi.org/10.1016/0301-0511(95)05165-1
https://doi.org/10.1109/TAFFC.2019.2927337


References 152

183. S. Gedam and S. Paul: A Review on Mental Stress Detection Using Wearable Sensors and
Machine Learning Techniques. IEEE Access 9 (2021), 84045–84066. doi:
10.1109/ACCESS.2021.3085502.

184. O. M. Mozos et al.: Stress Detection Using Wearable Physiological and Sociometric Sensors.
International Journal of Neural Systems 27(02) (Mar. 2017), 1650041. doi:
10.1142/S0129065716500416.

185. F. I. Indikawati and S. Winiarti: Stress Detection from Multimodal Wearable Sensor Data.
IOP Conference Series: Materials Science and Engineering 771(1) (Mar. 2020), 012028.
doi: 10.1088/1757-899X/771/1/012028.

186. A. Saeed and S. Trajanovski: Personalized Driver Stress Detection with Multi-task Neural
Networks Using Physiological Signals (2017). doi: 10.48550/ARXIV.1711.06116.

187. Y. S. Can et al.: Personal Stress-Level Clustering and Decision-Level Smoothing to Enhance
the Performance of Ambulatory Stress Detection With Smartwatches. IEEE Access 8 (2020),
38146–38163. doi: 10.1109/ACCESS.2020.2975351.

188. C. Finn, P. Abbeel, and S. Levine: Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks (2017). doi: 10.48550/ARXIV.1703.03400.

189. Y. Feng et al.: Meta-Learning as a Promising Approach for Few-Shot Cross-Domain Fault
Diagnosis: Algorithms, Applications, and Prospects. Knowledge-Based Systems 235 (Jan.
2022), 107646. doi: 10.1016/j.knosys.2021.107646.

190. H.-y. Lee, S.-W. Li, and N. T. Vu: Meta Learning for Natural Language Processing: A
Survey (2022). doi: 10.48550/ARXIV.2205.01500.

191. S. Jha, D. Gong, X. Wang, R. E. Turner, and L. Yao: The Neural Process Family: Survey,
Applications and Perspectives (2022). doi: 10.48550/ARXIV.2209.00517.

192. Homepage - Covid Collab. 2020. url: https://covid-collab.org/ (visited on 08/20/2022).
193. Flutter - Build apps for any screen. 2022. url: https://flutter.dev/ (visited on 08/20/2022).
194. COVID-19 Longitudinal Health and Wellbeing National Core Study. Mar. 2022. url: https:

//www.ucl.ac.uk/covid-19-longitudinal-health-wellbeing/convalescence-long-covid-study
(visited on 08/20/2022).

195. K. L. Druce, W. G. Dixon, and J. McBeth: Maximizing Engagement in Mobile Health
Studies. Rheumatic Disease Clinics of North America 45(2) (May 2019), 159–172. doi:
10.1016/j.rdc.2019.01.004.

196. C. N. Harrington, L. Ruzic, and J. A. Sanford: Universally Accessible mHealth Apps for
Older Adults: Towards Increasing Adoption and Sustained Engagement. Universal Access in
Human–Computer Interaction. Human and Technological Environments. Springer
International Publishing, 2017, 3–12. doi: 10.1007/978-3-319-58700-4_1.

197. E. L. Murnane, D. Huffaker, and G. Kossinets: Mobile health apps. Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2015 ACM International Symposium on Wearable Computers - UbiComp
15. ACM Press, 2015. doi: 10.1145/2800835.2800943.

198. M. R. Lunn et al.: Using mobile technology to engage sexual and gender minorities in
clinical research. PLOS ONE 14(5) (May 2019). Ed. by M. H. Withers, e0216282. doi:
10.1371/journal.pone.0216282.

199. S. Callier and S. M. Fullerton: Diversity and Inclusion in Unregulated mHealth Research:
Addressing the Risks. Journal of Law, Medicine & Ethics 48(S1) (2020), 115–121. doi:
10.1177/1073110520917036.

https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1142/S0129065716500416
https://doi.org/10.1088/1757-899X/771/1/012028
https://doi.org/10.48550/ARXIV.1711.06116
https://doi.org/10.1109/ACCESS.2020.2975351
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.1016/j.knosys.2021.107646
https://doi.org/10.48550/ARXIV.2205.01500
https://doi.org/10.48550/ARXIV.2209.00517
https://covid-collab.org/
https://flutter.dev/
https://www.ucl.ac.uk/covid-19-longitudinal-health-wellbeing/convalescence-long-covid-study
https://www.ucl.ac.uk/covid-19-longitudinal-health-wellbeing/convalescence-long-covid-study
https://doi.org/10.1016/j.rdc.2019.01.004
https://doi.org/10.1007/978-3-319-58700-4_1
https://doi.org/10.1145/2800835.2800943
https://doi.org/10.1371/journal.pone.0216282
https://doi.org/10.1177/1073110520917036


References 153

200. L. Maenhout et al.: Nonusage Attrition of Adolescents in an mHealth Promotion Intervention
and the Role of Socioeconomic Status: Secondary Analysis of a 2-Arm Cluster-Controlled
Trial. JMIR mHealth and uHealth 10(5) (May 2022), e36404. doi: 10.2196/36404.

201. M. R. Hoque: An empirical study of mHealth adoption in a developing country: the
moderating effect of gender concern. BMC Medical Informatics and Decision Making 16(1)
(May 2016). doi: 10.1186/s12911-016-0289-0.

202. F. R. T. van Elburg, N. S. Klaver, A. P. Nieboer, and M. Askari: Gender differences regarding
intention to use mHealth applications in the Dutch elderly population: a cross-sectional
study. BMC Geriatrics 22(1) (May 2022). doi: 10.1186/s12877-022-03130-3.

203. S. Simblett et al.: Barriers to and Facilitators of Engagement With mHealth Technology for
Remote Measurement and Management of Depression: Qualitative Analysis. JMIR mHealth
and uHealth 7(1) (Jan. 2019), e11325. doi: 10.2196/11325.

204. S. M. Gold et al.: Comorbid depression in medical diseases. Nature Reviews Disease
Primers 6(1) (Aug. 2020). doi: 10.1038/s41572-020-0200-2.

205. ResearchKit. 2022. url: https://researchkit.org/ (visited on 08/20/2022).
206. M. V. McConnell et al.: Feasibility of Obtaining Measures of Lifestyle From a Smartphone

App. JAMA Cardiology 2(1) (Jan. 2017), 67. doi: 10.1001/jamacardio.2016.4395.
207. Y.-F. Y. Chan et al.: The Asthma Mobile Health Study, a large-scale clinical observational

study using ResearchKit. Nature Biotechnology 35(4) (Mar. 2017), 354–362. doi:
10.1038/nbt.3826.

208. G. Quer et al.: Wearable sensor data and self-reported symptoms for COVID-19 detection.
Nature Medicine 27(1) (Oct. 2020), 73–77. doi: 10.1038/s41591-020-1123-x.

209. K. L. Druce et al.: Recruitment and Ongoing Engagement in a UK Smartphone Study
Examining the Association Between Weather and Pain: Cohort Study. JMIR mHealth and
uHealth 5(11) (Nov. 2017), e168. doi: 10.2196/mhealth.8162.

210. C. H. Sudre et al.: Attributes and predictors of long COVID. Nature Medicine 27(4) (Mar.
2021), 626–631. doi: 10.1038/s41591-021-01292-y.

211. A. L. Beatty et al.: The COVID-19 Citizen Science Study: Protocol for a Longitudinal
Digital Health Cohort Study. JMIR Research Protocols 10(8) (Aug. 2021), e28169. doi:
10.2196/28169.

212. J. Prince, S. Arora, and M. de Vos: Big data in Parkinson’s disease: using smartphones to
remotely detect longitudinal disease phenotypes. Physiological Measurement 39(4) (Apr.
2018), 044005. doi: 10.1088/1361-6579/aab512.

213. D. A. Drew et al.: Rapid implementation of mobile technology for real-time epidemiology of
COVID-19. Science 368(6497) (June 2020), 1362–1367. doi: 10.1126/science.abc0473.

214. Y. Wei et al.: Design Features for Improving Mobile Health Intervention User Engagement:
Systematic Review and Thematic Analysis. Journal of Medical Internet Research 22(12)
(Dec. 2020), e21687. doi: 10.2196/21687.

215. S. Amagai, S. Pila, A. J. Kaat, C. J. Nowinski, and R. C. Gershon: Challenges in Participant
Engagement and Retention Using Mobile Health Apps: Literature Review. Journal of
Medical Internet Research 24(4) (Apr. 2022), e35120. doi: 10.2196/35120.

216. J. McCambridge et al.: Impact of Length or Relevance of Questionnaires on Attrition in
Online Trials: Randomized Controlled Trial. Journal of Medical Internet Research 13(4)
(Nov. 2011), e96. doi: 10.2196/jmir.1733.

https://doi.org/10.2196/36404
https://doi.org/10.1186/s12911-016-0289-0
https://doi.org/10.1186/s12877-022-03130-3
https://doi.org/10.2196/11325
https://doi.org/10.1038/s41572-020-0200-2
https://researchkit.org/
https://doi.org/10.1001/jamacardio.2016.4395
https://doi.org/10.1038/nbt.3826
https://doi.org/10.1038/s41591-020-1123-x
https://doi.org/10.2196/mhealth.8162
https://doi.org/10.1038/s41591-021-01292-y
https://doi.org/10.2196/28169
https://doi.org/10.1088/1361-6579/aab512
https://doi.org/10.1126/science.abc0473
https://doi.org/10.2196/21687
https://doi.org/10.2196/35120
https://doi.org/10.2196/jmir.1733


References 154

217. A. C. Villanti et al.: Impact of Baseline Assessment Modality on Enrollment and Retention
in a Facebook Smoking Cessation Study. Journal of Medical Internet Research 17(7) (July
2015), e179. doi: 10.2196/jmir.4341.

218. A. S. Mustafa, N. Ali, J. S. Dhillon, G. Alkawsi, and Y. Baashar: User Engagement and
Abandonment of mHealth: A Cross-Sectional Survey. Healthcare 10(2) (Jan. 2022), 221.
doi: 10.3390/healthcare10020221.

219. Z. Khadjesari et al.: Impact and Costs of Incentives to Reduce Attrition in Online Trials:
Two Randomized Controlled Trials. Journal of Medical Internet Research 13(1) (Mar.
2011), e26. doi: 10.2196/jmir.1523.

220. M. Mitchell et al.: Uptake of an Incentive-Based mHealth App: Process Evaluation of the
Carrot Rewards App. JMIR mHealth and uHealth 5(5) (May 2017), e70. doi:
10.2196/mhealth.7323.

221. N. Bidargaddi et al.: To Prompt or Not to Prompt? A Microrandomized Trial of
Time-Varying Push Notifications to Increase Proximal Engagement With a Mobile Health
App. JMIR mHealth and uHealth 6(11) (Nov. 2018), e10123. doi: 10.2196/10123.

222. E. Kanjo, D. J. Kuss, and C. S. Ang: NotiMind: Utilizing Responses to Smart Phone
Notifications as Affective Sensors. IEEE Access 5 (2017), 22023–22035. doi:
10.1109/access.2017.2755661.

223. A. Hampshire et al.: Cognitive deficits in people who have recovered from COVID-19.
EClinicalMedicine 39 (Sept. 2021), 101044. doi: 10.1016/j.eclinm.2021.101044.

224. Web API. 2022. url: https://dev.fitbit.com/build/reference/web-api/ (visited on 09/25/2022).
225. Health Api | Garmin Connect Developer Program | Garmin Developers. 2022. url:

https://developer.garmin.com/gc-developer-program/health-api/ (visited on 09/25/2022).
226. Cloud Computing Services | Google Cloud. Sept. 2022. url: https://cloud.google.com (visited

on 09/10/2022).
227. RADAR-base/RADAR-REST-Connector: A Kafka Source connector to receive data from

REST APIs and publish them to Kafka. It has an extended version to support FitBit APIs.
Mar. 2021. url: https://github.com/RADAR-base/RADAR-REST-Connector (visited on
09/25/2022).

228. Fitbit App. 2020. url: https://www.fitbit.com/gb/app (visited on 09/25/2022).
229. J. P. Klein and M. L. Moeschberger: Survival Analysis. Springer New York, 2003. doi:

10.1007/b97377.
230. E. L. Kaplan and P. Meier: Nonparametric Estimation from Incomplete Observations.

Journal of the American Statistical Association 53(282) (June 1958), 457–481. doi:
10.1080/01621459.1958.10501452.

231. D. R. Cox: Regression Models and Life-Tables. Journal of the Royal Statistical Society:
Series B (Methodological) 34(2) (Jan. 1972), 187–202. doi:
10.1111/j.2517-6161.1972.tb00899.x.

232. B. George, S. Seals, and I. Aban: Survival analysis and regression models. Journal of
Nuclear Cardiology 21(4) (May 2014), 686–694. doi: 10.1007/s12350-014-9908-2.

233. L. Rabiner: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2) (1989), 257–286. doi: 10.1109/5.18626.

234. hmmlearn 0.2.7.post20gd16c7c8 documentation. Feb. 2022. url:
https://hmmlearn.readthedocs.io (visited on 08/20/2022).

https://doi.org/10.2196/jmir.4341
https://doi.org/10.3390/healthcare10020221
https://doi.org/10.2196/jmir.1523
https://doi.org/10.2196/mhealth.7323
https://doi.org/10.2196/10123
https://doi.org/10.1109/access.2017.2755661
https://doi.org/10.1016/j.eclinm.2021.101044
https://dev.fitbit.com/build/reference/web-api/
https://developer.garmin.com/gc-developer-program/health-api/
https://cloud.google.com
https://github.com/RADAR-base/RADAR-REST-Connector
https://www.fitbit.com/gb/app
https://doi.org/10.1007/b97377
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1007/s12350-014-9908-2
https://doi.org/10.1109/5.18626
https://hmmlearn.readthedocs.io


References 155

235. U. von Luxburg: A tutorial on spectral clustering. Statistics and Computing 17(4) (Aug.
2007), 395–416. doi: 10.1007/s11222-007-9033-z.

236. L. Zelnik-Manor and P. Perona: Self-Tuning Spectral Clustering. Proceedings of the 17th
International Conference on Neural Information Processing Systems. NIPS’04. Vancouver,
British Columbia, Canada: MIT Press, 2004, 1601–1608.

237. P. Virtanen et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17(3) (Feb. 2020), 261–272. doi: 10.1038/s41592-019-0686-2.

238. M. Kerz: Biomedical applications in the age of mHealth. PhD thesis. King’s College
London, 2017.

239. R. Koch-Institut: Corona-Datenspende | Robert Koch-Institut - Corona-Datenspende. 2023.
url: https://corona-datenspende.de (visited on 07/14/2023).

240. D. Brockmann, M. Wiedermann, R. W. Bruckmann, and A. Rose: Our data donation
roadmap for 2023: Corona Data Donation Project: News Analyses. Feb. 2023. url:
https://corona-datenspende.de/science/en/reports/kickoff-2023/ (visited on 07/14/2023).

241. DETECT | Join the Study. Dec. 2021. url: https://detect.scripps.edu/ (visited on 07/14/2023).
242. Stanford COVID-19 Wearables Project — Stanford Healthcare Innovation Lab. 2023. url:

https://innovations.stanford.edu/wearables (visited on 07/14/2023).
243. CovIdentify - A Duke University Study. 2020. url: https://covidentify.covid19.duke.edu/

(visited on 07/14/2023).
244. A. E. Mason et al.: Detection of COVID-19 Using Multimodal Data from a Wearable

Device: Results from the First TemPredict Study. Scientific Reports 12(1) (Mar. 2022), 3463.
doi: 10.1038/s41598-022-07314-0.

245. ZOE Health Study. July 2023. url: https://health-study.zoe.com/ (visited on 08/01/2023).
246. C. P. Adans-Dester et al.: Can mHealth Technology Help Mitigate the Effects of the

COVID-19 Pandemic? IEEE Open Journal of Engineering in Medicine and Biology 1
(2020), 243–248. doi: 10.1109/OJEMB.2020.3015141.

247. M. Wiedermann et al.: Evidence for Positive Long- and Short-Term Effects of Vaccinations
against COVID-19 in Wearable Sensor Metrics. PNAS Nexus 2(7) (July 2023). Ed. by
B. Levine, pgad223. doi: 10.1093/pnasnexus/pgad223.

248. M. Mekhael et al.: Studying the Effect of Long COVID-19 Infection on Sleep Quality Using
Wearable Health Devices: Observational Study. Journal of Medical Internet Research 24(7)
(July 2022), e38000. doi: 10.2196/38000.

249. M. Woodrow et al.: Systematic Review of the Prevalence of Long COVID. Open Forum
Infectious Diseases 10(7) (July 2023), ofad233. doi: 10.1093/ofid/ofad233.

250. A. Natarajan et al.: A Systematic Review and Meta-Analysis of Long COVID Symptoms.
Systematic Reviews 12(1) (May 2023), 88. doi: 10.1186/s13643-023-02250-0.

251. F. Ceban et al.: Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A
Systematic Review and Meta-Analysis. Brain, Behavior, and Immunity 101 (Mar. 2022),
93–135. doi: 10.1016/j.bbi.2021.12.020.

252. F. Chen, I. Chen, M. Zafar, S. R. Sinha, and X. Hu: Seizures Detection Using Multimodal
Signals: A Scoping Review. Physiological Measurement 43(7) (July 2022), 07TR01. doi:
10.1088/1361-6579/ac7a8d.

253. G. Singh, J. Yoon, Y. Son, and S. Ahn: Sequential Neural Processes. 2019. doi:
10.48550/ARXIV.1906.10264.

https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1038/s41592-019-0686-2
https://corona-datenspende.de
https://corona-datenspende.de/science/en/reports/kickoff-2023/
https://detect.scripps.edu/
https://innovations.stanford.edu/wearables
https://covidentify.covid19.duke.edu/
https://doi.org/10.1038/s41598-022-07314-0
https://health-study.zoe.com/
https://doi.org/10.1109/OJEMB.2020.3015141
https://doi.org/10.1093/pnasnexus/pgad223
https://doi.org/10.2196/38000
https://doi.org/10.1093/ofid/ofad233
https://doi.org/10.1186/s13643-023-02250-0
https://doi.org/10.1016/j.bbi.2021.12.020
https://doi.org/10.1088/1361-6579/ac7a8d
https://doi.org/10.48550/ARXIV.1906.10264


References 156

254. S. Qin, J. Zhu, J. Qin, W. Wang, and D. Zhao: Recurrent Attentive Neural Process for
Sequential Data. 2019. doi: 10.48550/ARXIV.1910.09323.

255. H. Kim et al.: Attentive Neural Processes. 2019. doi: 10.48550/ARXIV.1901.05761.
256. C. Finn, P. Abbeel, and S. Levine: Model-Agnostic Meta-Learning for Fast Adaptation of

Deep Networks (2017). doi: 10.48550/ARXIV.1703.03400.
257. J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner: Fast and Flexible

Multi-Task Classification Using Conditional Neural Adaptive Processes (2019). doi:
10.48550/ARXIV.1906.07697.

258. C. Zhou et al.: A Comprehensive Survey on Pretrained Foundation Models: A History from
BERT to ChatGPT (2023). doi: 10.48550/ARXIV.2302.09419.

259. A. Baevski, H. Zhou, A. Mohamed, and M. Auli: Wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations (2020). doi:
10.48550/ARXIV.2006.11477.

260. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 2018. doi:
10.48550/ARXIV.1810.04805.

261. K. He, X. Zhang, S. Ren, and J. Sun: Deep Residual Learning for Image Recognition. 2015.
doi: 10.48550/ARXIV.1512.03385.

262. H. E. Kim et al.: Transfer Learning for Medical Image Classification: A Literature Review.
BMC Medical Imaging 22(1) (Dec. 2022), 69. doi: 10.1186/s12880-022-00793-7.

263. I. Li et al.: Neural Natural Language Processing for Unstructured Data in Electronic Health
Records: A Review. Computer Science Review 46 (Nov. 2022), 100511. doi:
10.1016/j.cosrev.2022.100511.

264. C. I. Tang et al.: SelfHAR: Improving Human Activity Recognition through Self-training
with Unlabeled Data. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5(1) (Mar. 2021), 1–30. doi: 10.1145/3448112.

265. H. Yuan et al.: Self-Supervised Learning for Human Activity Recognition Using 700,000
Person-days of Wearable Data (2022). doi: 10.48550/ARXIV.2206.02909.

266. S. Deldari et al.: Latent Masking for Multimodal Self-supervised Learning in Health
Timeseries (2023). doi: 10.48550/ARXIV.2307.16847.

267. A. Shysheya, J. Bronskill, M. Patacchiola, S. Nowozin, and R. E. Turner: FiT: Parameter
Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification
(2022). doi: 10.48550/ARXIV.2206.08671.

268. M. Patacchiola, M. Sun, K. Hofmann, and R. E. Turner: Comparing the Efficacy of
Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation (2023). doi:
10.48550/ARXIV.2306.13554.

269. S. X. Hu, D. Li, J. Stühmer, M. Kim, and T. M. Hospedales: Pushing the Limits of Simple
Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference (2022).
doi: 10.48550/ARXIV.2204.07305.

270. A. Pratap et al.: Indicators of Retention in Remote Digital Health Studies: A Cross-Study
Evaluation of 100,000 Participants. npj Digital Medicine 3(1) (Feb. 2020), 21. doi:
10.1038/s41746-020-0224-8.

271. A. P. Allen et al.: The Trier Social Stress Test: Principles and Practice. Neurobiology of
Stress 6 (Feb. 2017), 113–126. doi: 10.1016/j.ynstr.2016.11.001.

https://doi.org/10.48550/ARXIV.1910.09323
https://doi.org/10.48550/ARXIV.1901.05761
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.1906.07697
https://doi.org/10.48550/ARXIV.2302.09419
https://doi.org/10.48550/ARXIV.2006.11477
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1016/j.cosrev.2022.100511
https://doi.org/10.1145/3448112
https://doi.org/10.48550/ARXIV.2206.02909
https://doi.org/10.48550/ARXIV.2307.16847
https://doi.org/10.48550/ARXIV.2206.08671
https://doi.org/10.48550/ARXIV.2306.13554
https://doi.org/10.48550/ARXIV.2204.07305
https://doi.org/10.1038/s41746-020-0224-8
https://doi.org/10.1016/j.ynstr.2016.11.001


References 157

272. A. F. Mendelson, M. A. Zuluaga, M. Lorenzi, B. F. Hutton, and S. Ourselin: Selection Bias
in the Reported Performances of AD Classification Pipelines. NeuroImage: Clinical 14
(2017), 400–416. doi: 10.1016/j.nicl.2016.12.018.

273. F. Matcham et al.: Remote assessment of disease and relapse in major depressive disorder
(RADAR-MDD): a multi-centre prospective cohort study protocol. BMC Psychiatry 19(1)
(Feb. 2019). doi: 10.1186/s12888-019-2049-z.

274. S. Kitsiou et al.: Development of an innovative mHealth platform for remote physical
activity monitoring and health coaching of cardiac rehabilitation patients. 2017 IEEE EMBS
International Conference on Biomedical & Health Informatics (BHI). IEEE, 2017. doi:
10.1109/bhi.2017.7897223.

275. S. Shin et al.: Activity monitoring using a mHealth device and correlations with
psychopathology in patients with chronic schizophrenia. Psychiatry Research 246 (Dec.
2016), 712–718. doi: 10.1016/j.psychres.2016.10.059.

276. C. Demanuele et al.: Considerations for Conducting Bring Your Own “Device” (BYOD)
Clinical Studies. Digital Biomarkers 6(2) (July 2022), 47–60. doi: 10.1159/000525080.

277. K. Kroenke et al.: The PHQ-8 as a measure of current depression in the general population.
Journal of Affective Disorders 114(1-3) (Apr. 2009), 163–173. doi:
10.1016/j.jad.2008.06.026.

278. R. L. Spitzer, K. Kroenke, J. B. W. Williams, and B. Löwe: A Brief Measure for Assessing
Generalized Anxiety Disorder. Archives of Internal Medicine 166(10) (May 2006), 1092.
doi: 10.1001/archinte.166.10.1092.

279. M. Herdman et al.: Development and preliminary testing of the new five-level version of
EQ-5D (EQ-5D-5L). Quality of Life Research 20(10) (Apr. 2011), 1727–1736. doi:
10.1007/s11136-011-9903-x.

280. F. A. Klok et al.: The Post-COVID-19 Functional Status scale: a tool to measure functional
status over time after COVID-19. European Respiratory Journal 56(1) (May 2020),
2001494. doi: 10.1183/13993003.01494-2020.

https://doi.org/10.1016/j.nicl.2016.12.018
https://doi.org/10.1186/s12888-019-2049-z
https://doi.org/10.1109/bhi.2017.7897223
https://doi.org/10.1016/j.psychres.2016.10.059
https://doi.org/10.1159/000525080
https://doi.org/10.1016/j.jad.2008.06.026
https://doi.org/10.1001/archinte.166.10.1092
https://doi.org/10.1007/s11136-011-9903-x
https://doi.org/10.1183/13993003.01494-2020


Appendix A

Supporting Figures



159

log HR log HR SE HR t P> |t| [0.025 0.975]
sex[T.Female] -0.0047 0.0178 0.9953 -0.2634 0.7923 0.9612 1.0306
age -0.0201 0.0006 0.9801 -34.7562 0.0000 0.9790 0.9812
sex[T.Female] -0.0336 0.0320 0.9669 -1.0494 0.2940 0.9081 1.0296
employment[T.oow] -0.0083 0.0350 0.9917 -0.2381 0.8118 0.9260 1.0621
employment[T.student] 0.0098 0.2163 1.0098 0.0452 0.9639 0.6609 1.5430
age -0.0285 0.0012 0.9719 -24.4073 0.0000 0.9697 0.9741
sex[T.Female] -0.0444 0.0321 0.9565 -1.3848 0.1661 0.8982 1.0186
has_phys_comorbid 0.0380 0.0308 1.0387 1.2339 0.2173 0.9779 1.1034
has_mental_comorbid 0.0792 0.0309 1.0824 2.5672 0.0103 1.0189 1.1499
age -0.0285 0.0011 0.9719 -25.8346 0.0000 0.9698 0.9740
sex[T.Female] -0.0008 0.0286 0.9992 -0.0290 0.9768 0.9447 1.0568
age -0.0226 0.0010 0.9777 -23.2883 0.0000 0.9758 0.9795
historic_sleep_st -0.0370 0.0130 0.9637 -2.8544 0.0043 0.9395 0.9885
historic_heart_rate_st -0.0167 0.0133 0.9834 -1.2553 0.2094 0.9581 1.0094
historic_activity_st -0.0541 0.0139 0.9473 -3.9001 0.0001 0.9219 0.9734
sex[T.Female] -0.0465 0.0322 0.9546 -1.4414 0.1495 0.8961 1.0169
depression[T.True] 0.0804 0.0360 1.0838 2.2327 0.0256 1.0099 1.1631
anxiety[T.True] 0.0432 0.0418 1.0441 1.0327 0.3017 0.9620 1.1333
age -0.0281 0.0011 0.9723 -25.3302 0.0000 0.9702 0.9744
sex[T.Female] -0.0084 0.0178 0.9917 -0.4705 0.6380 0.9577 1.0269
smoker[T.Ex] 0.0788 0.0185 1.0820 4.2648 0.0000 1.0435 1.1219
smoker[T.Current] 0.1798 0.0226 1.1970 7.9506 0.0000 1.1451 1.2512
age -0.0204 0.0006 0.9798 -34.7679 0.0000 0.9787 0.9809
sex[T.Female] -0.0323 0.0220 0.9682 -1.4692 0.1418 0.9274 1.0108
age -0.0252 0.0007 0.9752 -34.1469 0.0000 0.9737 0.9766
bmi 0.0041 0.0015 1.0041 2.6815 0.0073 1.0011 1.0071

Table A.1 Proportional hazard regression results for duration of engagement
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Fig. A.1 EDA polarity change artefact at a 1 minute frequency
The polarity change causes a large spike followed by a rapid and then gradual return to a
baseline level. At the one-minute frequency changes to the tonic level are still visible.
Some higher frequency behaviour is also visible between 150 and 300 seconds. At a

one-hour frequency the artefact is much larger, both in amplitude and duration, causing
much of the tonic level to be lost.
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Fig. A.2 Participant subset clustered into 5 engagement groups
This figure contains the result of clustering the engagement sequences of all participants with more
than one weeks worth of engagement in to 5 groups.
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Fig. A.3 Participants clustered into 5 engagement groups
This figure contains the result of clustering the engagement sequences of all participants in to 5
groups, including those with data only during the first week of enrolment.
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Fig. A.4 Participants clustered into 9 engagement groups
This figure contains the result of clustering the engagement sequences of all participants in to 9
groups, including those with data only during the first week of enrolment.
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Fig. A.5 Participants clustered into 2 engagement groups
This figure contains the result of clustering the engagement sequences of all participants in to 2
groups, including those with data only during the first week of enrolment.



Appendix B

Mass Science Active Tasks

Sociodemographics

A sociodemographics questionnaire given after enrolment which builds on the initial enrolment form (which
includes age, sex, gender, and smoking status).

Task name Task type Response Task description

ethnicity Listbuilder [optionally multiple]
ethnicity

A dropdown box with the option to
choose multiple options and to enter
arbitrary text. The default choices
are
’Prefer not to say’,
’Arab’,
’Black’,
’Central Asian’,
’East Asian’,
’South Asian’,
’South-east Asian’,
’White’,
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employment Tickbox ’full_time’,
’part_time’,
’unemployed’,
’zero_hours’,
’at_home_carer’,
’self_employed’,
’freelance’,
’small_business’,
’state_income’,
’retired’, ’school’,
’university’

Employment status of the partici-
pant

employment_changeTickbox ’unchanged’,
’furlough’ ,’un-
employed’,
’hours_increase’,
’hours_reduced’,
’salary_increase’,
’salary_reduced’,
’benefits_increased’,
’benefits_reduced’,
’change_duty’,
’change_job’

Whether the participant’s employ-
ment status has changed since the
pandemic began

marital_status Dropdown ’single’, ’separated’,
’married’, ’rela-
tionship_living’,
’relationship_apart’,
’divorced’, ’wid-
owed’, ’other’, ’pnts’

Marital status

children Dropdown ’yes’, ’no’ Whether the participant has children

living_situation Tickbox ’alone’,
’family’,
’partner’,
’family_partner’,
’housemates’,
’childrenlt18’,
’childrengt18’,
’nonnormal’, ’differ-
ent_country’, ’other’,
’pnts’

Where and with whom the partici-
pant lives
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height_weight Number entry 2 floats The height and weight of the partic-
ipant

health_physical Listbuilder List of physical co-
morbidities

Pre-existing physical health ail-
ments. The participant can choose
from a dropdown menu or enter
their own.

health_mental Listbuilder List of mental comor-
bidities

Pre-existing mental health ailments.
The participant can choose from a
dropdown menu or enter their own.
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Symptoms
A questionnaire for participants to submit symptoms of COVID-19, with separate questions for acute and
long related symptoms. There is an arousal-valence scale attached as a more regular and shorter measure
of mental wellbeing than the PHQ-8 or GAD-7 questionnaires.

Task name Task type Response Task description
mood 2 Slider tasks float -1 to 1 Two sliders correspond to ’happiness’ and ’en-

ergy’ (or valence and arousal).

symptoms Listbuilder
with severity

List of symp-
tom severities

A list of acute COVID-19 related symptoms to
be rated ’None’, ’Mild’, ’Moderate’, or ’Severe’.
By default the list includes ’Fever’, ’Cough’,
’Difficulties breathing’, ’Loss of sense of smell
(anosmia)’ but the participant can add in arbi-
trary symptoms.

lcovid_symptoms Listbuilder
with severity

List of symp-
tom severities

A list of Long COVID related symptoms to be
rated ’None’, ’Mild’, ’Moderate’, or ’Severe’.
By default the list includes ’Fatigue’, ’Difficulty
thinking (brain fog)’, ’Difficulty sleeping (in-
somnia)’ but the participant can add in arbitrary
symptoms.

Diagnosis
An ad-hoc questionnaire where participants can report the date that they fell ill or were diagnosed with
COVID-19

Task name Task type Response Task description
who Radio task ’I have been

diagnosed’,
’A person
I live with
has been
diagnosed’

Whether the participant or somebody they live
with has been diagnosed with COVID-19

how Radio task ’PCR’, ’Anti-
body’, ’Self-
diagnosed
or symp-
tom based’,
’Lateral flow
test’

By what method the participant has been diag-
nosed

diagnosis_date Date picker Date The date that the participant received the diag-
nosis

illness_date Date picker Date The date that the participant first noticed symp-
toms or believe they fell ill
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Vaccination
An ad-hoc questionnaire where participants can fill when they have received a vaccination for COVID-19

Task name Task type Response Task description
vaccine_type Dropdown ’pfizer’,

’moderna’,
’oxford’,
’janssen’
,’unknown’,
’other’

The type or producer of the vaccine

vaccine_dose Radio task ’Initial dose’,
’Booster shot’

Whether the vaccination was the initial dose or
a booster

date_received Datepicker Date The date the vaccine was received

6 Minute Walk Test
The Six Minute Walk Test is a standard walking exercise test used to measure fitness[111]. The protocol
here is preceded by an information screen which includes a list of steps to be taken by the participant and a
instructional video

Task name Task type Response Task description
smwt_completed Dropdown ’yes’, ’no’ Task to determine whether the 6MWTwas com-

pleted.

smwt_not_completed_reasonDropdown ’forgot’, ’fa-
tigue’, ’short-
ness_breath’,
’too_busy’,
’too_complicated’,
’injury’,
’poor_weather’,
’other’

The reason for non-completion if
smwt_completed is ’no’

smwt_datetime Datepicker Datetime Date of the test if smwt_completed is ’yes’

smwt_completed_10 Dropdown ’yes’, ’no’ Whether the participant was able to walk for 6
minutes

smwt_number_completedDropdown ’1’, ’2’, ’3’,
’4’, ’5’

Number of minutes completed if
smwt_completed_10 is ’no’

smwt_partial_complete_reasonDropdown ’fatigue’,
’short-
ness_breath’,
’too_busy’,
’too_complicated’,
’injury’,
’poor_weather’,
’other’

The reason for partial completion if
smwt_completed_10 is ’no’

smwt_borg_scale Dropdown 1 - 10 Rating of perceived exertion from 1-10 if
smwt_completed is ’yes’
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Chair Rises test
The Chair Rises test is an exercise test in which participants stand up and sit down on a chair for ten repeti-
tions. The protocol here is preceded by an information screen which includes a list of steps to be taken by
the participant and a instructional video

Task name Task type Response Task description
chair_rises_completed Dropdown ’yes’, ’no’ A yes/no question to determine whether the

Chair Rises test was completed.

chair_rises_not_completed_reasonDropdown ’forgot’, ’fa-
tigue’, ’short-
ness_breath’,
’too_busy’,
’too_complicated’,
’injury’,
’poor_weather’,
’other’

The reason for non-completion if
chair_rises_completed is ’no’

chair_rises_datetime Datepicker Datetime Date of the test if chair_rises_completed is ’yes’

chair_rises_completed_10Dropdown ’yes’, ’no’ Whether the participant was able to walk for 6
minutes

chair_rises_number_completedDropdown ’1’, ’2’, ’3’,
’4’, ’5’

Number of minutes completed if
chair_rises_completed_10 is ’no’

chair_rises_partial_complete_reasonDropdown ’fatigue’,
’short-
ness_breath’,
’too_busy’,
’too_complicated’,
’injury’,
’poor_weather’,
’other’

The reason for partial completion if
chair_rises_completed_10 is ’no’

chair_rises_borg_scale Dropdown 1 - 10 Rating of perceived exertion from 1-10 if
chair_rises_completed is ’yes’
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PHQ-8
The PHQ-8 test is an 8-item questionnaire which measures symptoms of depression[277]. It is based on
the PHQ-9 but without the final question on suicidal ideation. The eight questions ask the participant how
many days they have noticed bothered by an indicator of depression, given in the description column below,
over the last two weeks.

Task name Task type Response Task description
phq8_1 Dropdown

’Not at all’,
’Several
days’, ’More
than half the
days’, ’Nearly
every day’

Little interest or pleasure in doing things
phq8_2 Dropdown Feeling depressed, or hopeless
phq8_3 Dropdown Trouble falling asleep or staying asleep or sleep-

ing too much
phq8_4 Dropdown Feeling tired of having little energy
phq8_5 Dropdown Poor appetite or over eating
phq8_6 Dropdown Feeling bad about yourself
phq8_7 Dropdown Trouble concentrating
phq8_8 Dropdown Moving or speaking slowly - or the opposite

GAD-7
The GAD-7 test is a 7-item questionnaire which measures symptoms of generalised anxiety[278]. The seven
questions ask the participant how many days they have noticed bothered by an indicator of anxiety, given in
the description column below, over the last two weeks.

Task name Task type Response Task description
gad7_1 Dropdown

’Not at all’,
’Several
days’, ’More
than half the
days’, ’Nearly
every day’

Feeling nervous, anxious or on edge
gad7_2 Dropdown Not being able to stop or control worrying
gad7_3 Dropdown Worrying too much about different things
gad7_4 Dropdown Having trouble relaxing
gad7_5 Dropdown Being restless
gad7_6 Dropdown Becoming annoyed or irritable
gad7_7 Dropdown Feeling afraid
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Quality of Life - EQ5D5L
A 5 item questionnaire on quality of life each wit h 5 levels of severity[279]. Each question asks the partic-
ipant to describe an aspect of quality of life on the particular day they take the test.

Task name Task type Response Task description
eq5d5l_1 Dropdown ’I have no problems in walk-

ing about’,
’I have slight problems in
walking about’,
’I havemoderate problems in
walking about’,
’I have severe problems in
walking about’,
’I am unable to walk about’

Mobility question

eq5d5l_2 Dropdown ’I have no problems washing
or dressing myself’,
’I have slight problems
washing or dressing myself’,
’I have moderate problems
washing or dressing myself’,
’I have severe problems
washing or dressing myself’,
’I am unable to wash or
dress myself’

Self-care question

eq5d5l_3 Dropdown ’I have no problems doing
my usual activities’,
’I have slight problems do-
ing my usual activities’,
’I have moderate problems
doing my usual activities’,
’I have severe problems do-
ing my usual activities’,
’I am unable to do my usual
activities’

Ability to complete normal activities

eq5d5l_4 Dropdown ’I have no pain or discom-
fort’,
’I have slight pain or discom-
fort’,
’I have moderate pain or dis-
comfort’,
’I have severe pain or dis-
comfort’,
’I have extreme pain or dis-
comfort’

Pain severity

eq5d5l_5 Dropdown ’I am not anxious or de-
pressed’,
’I am slightly anxious or de-
pressed’,
’I am moderately anxious or
depressed’,
’I am severely anxious or de-
pressed’,
’I am extremely anxious or
depressed’

Presence of anxiety or depression
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ONS-2
A 2 item questionnaire in which participants rate life satisfaction from 0 to 10, where 0 is ’not at all’ and 10
is ’completely’

Task name Task type Response Task description
ons2_1 Slider task integer 0-10 How satisfied the person is with their life

ons2_2 Slider task integer 0-10 To what extent they feel their life is worthwhile

Post Covid Functional Scale
The Post Covid Functional Scale is a flowchart or questionnaire to help determine the taker’s function and
recovery following a COVID-19 infection[280]

Task name Task type Response Task description
pcfs_1 Radio task ’Yes’, ’No’ Whether the participant can live alone

pcfs_2 Radio task ’Yes’, ’No’ Whether there are duties or activities the partic-
ipant can no longer do. Asked conditional on
pcfs_1 = ’Yes’

pcfs_3 Radio task ’Yes’, ’No’ Whether there are persistent symptoms, pain,
depression, or anxiety Asked conditional on
pcfs_2 = ’No’

pcfs_4 Radio task ’Yes’, ’No’ Whether it was necessary to reduce activities or
duties. Asked conditional on pcfs_3 = ’Yes’
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Abstract
Emerging mobile health (mHealth) and eHealth technology
could provide opportunities for remote monitoring and inter-
ventions for people with mental health and neurological dis-
orders. RADAR-base is a modern mHealth data collection
platform built around Confluent and Apache Kafka. Here we
report progress on studies into two brain disorders: major
depressive disorder and epilepsy. For depression an am-
bulatory study is being conducted with patients recruited
to three sites and for epilepsy an in-hospital study is being
carried out at two sites. Initial results show smartphones
and wearable devices have potential to improve care for
patients with depression and epilepsy.

Author Keywords
mHealth; mobile context sensing; wearable sensors; data
collection platform; mental health

ACM Classification Keywords
H.5.m [Human-centered computing (HCC)]: Ubiquitous and
mobile computing.

Introduction
There has been an enormous increase in the capability to
monitor individuals via smartphones and wearable devices
during the last decade, with a growing range of parameters
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offered by such technologies for continuous measurement
[17].

The e 22 million Innovative Medicines Initiative (IMI2) Re-
mote Assessment of Disease and Relapse - Central Ner-
vous System (RADAR-CNS) is a major research programme
aimed at developing novel methods and infrastructure for
measuring Major Depressive Disorder (MDD), Epilepsy
(EPI), and Multiple Sclerosis (MS) using wearable devices
and smartphone technology [5].

The RADAR-base platform [1] is developed to support
the three initial goals of RADAR-CNS, but importantly it
has been developed such that it can easily be adapted for
the needs of other mental and physical health disorders.
The platform enables study design and set up, active and
passive remote data collection. It provides secure data
transmission and scalable solutions for data storage, man-
agement and access. This paper will focus on the MDD
(RADAR-MDD) and EPI (RADAR-EPI) studies which use
remote and in-hospital deployments of the RADAR-base
platform respectively.

Major depressive disorder, sometimes called "clinical de-
pression" or "depression", can be triggered by a life event,
or result from stress, or happen without a specific cause. It
is the most severe form of depression where people exhibit
a sense of hopelessness and despair along with low mood
and negative thoughts. This can affect the way people eat,
sleep, feel about themselves, and think about things. With-
out treatment, the symptoms can last for weeks, months, or
even years.

The RADAR-base platform has been deployed centrally
to collect active (questionnaires) and passively generated
(wearable and smartphone sensor) data remotely for pa-
tients recruited to 3 sites of MDD study. The sites include

King’s College Hospital (KCH) London, Centro de Investi-
gacion Biomedica en Red (CIBER) Barcelona and VU Uni-
versity Medical Center Netherland. The objective being to
collect regular self reported symptoms and metrics such
as sleep and ambulatory behaviour. High resolution data
is being collected over a period of up to two years for each
participant.

Epilepsy is a neurological condition characterised by a
person’s tendency to have epileptic seizures. The global
prevalence of epilepsy is between 4-10 per 1000 people.
Those with epilepsy have a reduced life expectancy; peo-
ple with symptomatic epilepsy have a life expectancy 18
years shorter [6]. Our hypothesis is that consumer type
wearable devices have the potential to provide continuous
seizure detection which may enable more informed use of
anti-epileptic drugs, generating a more objective view of a
person’s condition.

Though current hospital observational systems (Video/
EEG/ ECG) are used in home monitoring they are not prac-
tical for long term epilepsy seizure detection within home
based settings. We are using the RADAR-base platform to
explore the feasibility of three wearable devices to detect
seizures in an ambulatory settings. Data is being collected
for a maximum of 14 days per patient.

These two studies expose the versatility of the RADAR-
base platform and generate data with very different com-
plexity, volume, velocity and durations.

Related Work
A number of relevant studies and mHealth platforms for
remote monitoring in mental health are discussed here [17].

HORYZONS is a web based interface and feedback sys-
tem to study people with first episode psychosis (FEP), a
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one month pilot study with 20 participants was conducted
[2]. The study aim was to provide an Internet-based inter-
vention to young people with psychosis, to provide cost-
effective long-term treatment to sustain the benefits of early
intervention. The majority (75%) reported that they had
a positive and constructive experience using the system,
however this was a short term pilot with limited participants
focused on young population with FEP.

Another study involves the naturalistic follow up of respon-
ders from the study entitled "Integrated biological markers
for the prediction of treatment response in depression", or
the CBN-Well study. In this study, participants who are cur-
rently responding to an oral antidepressant treatment regi-
men and/or therapeutic intervention were monitored over a
minimum period of 13 months, providing an important op-
portunity to discover near-term biomarkers of relapse [12].

OBSERVEMDD a prospective, multicenter, longitudinal,
single-cohort, observational study with MDD participants
was performed using accelerometers and smartphone de-
livered questionnaires [18]. MDD patients who responded
to, and continue to respond to an oral antidepressant treat-
ment regimen were selected. The study consisted of 2
parts: a screening phase of up to 2 weeks, and an observa-
tional phase of variable duration. A total of 350 participants
were recruited.

The RADAR-CNS programme advances the field in a num-
ber of ways. Other studies to date have made little or lim-
ited use of multi-parametric remote monitoring (RMT) by
combining different sensors to detect signatures helpful for
predicting outcomes in MDD. RADAR-MDD will take advan-
tage of the combination of multiple sensor types along with
remote data collection from a clinical population.

Detection of seizures using non-EEG wearable devices has

been reasonably well studied over the last decade [7]. How-
ever, performance of the proposed models has often been
unsatisfactory, particularly in terms of specificity, although
some studies do show some promising results for seizures
with a large motor component [3]. Additionally, few studies
have been conducted outside of an in-patient environment,
so the performance of these models in the real-world is
unknown. To address the accuracy issues of models that
only use a single sensor type, usually an accelerometer,
there has been a movement within the field towards detec-
tion using multiple modalities[7]. A few studies have used
using multiple sensors. Poh et al. used electrodermal ac-
tivity (EDA) and an accelerometer, and showed increased
GTCS detection performance when using both as opposed
to only acceleration in 7 patients[16]. Heldberg et al. also
used EDA and an accelerometer, looking at both convul-
sive and non-convulsive seizures in 8 patients [11]. Other
studies have looked at the combination of acceleration and
ECG-derived cardiac features[19, 9]. The use of multiple
sensors does not always uniformly lead to better perfor-
mance; Milosevic et al. report improved seizure detection
but lower specificity when using both accelerometers and
electromyography[15]. Finally, through the RADAR-base
platform we have developed a well engineered open source
platform with highly generalizable capabilities.

Methods
Remote Data Collection for Major Depression
RADAR-MDD, the major depression clinical substudy of
RADAR-CNS, makes use of a range of data collection in-
struments as discussed below.

Passive RMT (pRMT) app
The passive application runs in the background, requiring
minimal or no input from participants. Data is collected from
smartphone "sensors" corresponding to a range of cate-
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gories considered putatively relevant to the study, including
(i) movement sensors: acceleration, gyration, and steps,
and obfuscated relative GPS location; (ii) social character-
istics: call duration, a log of SMS communications, contact
list, and nearby Bluetooth handshakes; (iii) environmental
sensors: ambient light, battery level, magnetic field, and
weather conditions; (iv) user interaction with other applica-
tions and their phone; and (vi) keystrokes are collected in
a subsample. All the collected data is pseudonomised, for
example by hashing contacts names and phone numbers,
and by using an unknown offset to obfuscate location.

Wearable Sensors
The Fitbit Charge 2 was selected to be worn by participants
in RADAR-MDD for the duration of the study, providing
metrics derived from the watch accelerometer and pho-
toplethysmography (PPG). These data are processed on
the device by vendor algorithms to provide information on
heart rate, movement, daytime and sedentary activity, phys-
ical exercise, step count, and sleep patterns and efficiency.
Data is collected into the RADAR-base platform from the
Fitbit Web API, using the 3rd Party Data Integration service.

Active RMT (aRMT) app
Variation in the depression symptoms are measured via
the 8-item Patient Health Questionnaire (PHQ8) [13] ev-
ery 2 weeks throughout the course of follow-up. Variation in
self-esteem is measured using the Rosenberg Self-Esteem
Scale (RSES) [10]. The RSES is a widely-used 10-item
self-reported questionnaire used to quantify self-esteem
along a continuum and is administered alongside the PHQ8
every 2 weeks. As with the PHQ8 and RSES, every 2-
weeks participants are asked to complete a speech task.
This requires participants to read aloud, in a quiet area,
some excerpts from "The North Wind and the Sun", which
has been shown to be phonetically balanced across all

three languages [20]. The excerpts are offered on a random
schedule to prevent rehearsal and fluency and preserve
prosodic features. In addition to this, participants are asked
to respond to the following question: "Can you describe
something you are looking forward to this week?". The
aRMT app also delivers an Experience Sampling Method
(ESM) schedule, designed to collect brief, in-the-moment
assessments relating to several domains of interest: mood,
stress, sociability, activity and sleep. Participants will re-
ceive a series of questions intended to reflect their current
state (such as "right now, I feel content"), with 7-point Lik-
ert scale answer options (0=Not at all, 7 = Very much). The
ESM schedule consists of approximately 44 items, taking
up to 3-minutes to complete, delivered 9 random times per
day within 90-minute blocks starting from 08.30 and ending
at 22.00 for 6 consecutive days every 6 weeks.

THINC-IT app
THINC-it is a third party app used to assess cognitive func-
tion both objectively and subjectively, validated for detecting
cognitive dysfunction in patients with MDD[14]. It incorpo-
rates four game-like digital assays, variants of widely-used
cognitive assessments and a 5-item questionnaire assess-
ing perceived deficits in memory, concentration, and atten-
tion over the previous week.

In-Hospital Data Collection for Epilepsy seizure
detection
Hospital in-patient participants are recruited for the RADAR-
EPI substudy of RADAR-CNS study as part of an otherwise
typical stay at the Clinical Neurophysiology Department at
Kings’ College Hospital (KCH), London, UK or the Epilepsy
Center at the University Hospital of Freiburg, Germany. Pa-
tients are monitored by a video-EEG and seizures are an-
notated by clinicians as part of the routine clinical assess-
ment of their seizures. This provides ready-made source of
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gold-standard labels for use in developing wearable-based
seizure detection methods. In parallel, each patient wears 1
to 3 of the study wearable devices; the Empatica E4 wrist-
band, Faros 180, Biovotion VSM1, or an offline IMEC de-
vice. The IMEC device records data offline, which is rou-
tinely transferred to the RADAR-base storage server. The
other devices send data to the RADAR-base platform via a
Bluetooth-paired android device through the passive RMT
app.

Passive RMT (pRMT) app
The RADAR-base passive app (pRMT) has the capability to
quickly integrate data sources (via pRMT plugins) such as
wearable devices. The Empatica E4, Faros 180, and Biovo-
tion VSM devices have been integrated for the EPI study.
Each device was selected because of its ability to monitor
physiologically relevant parameters. Acceleration, EDA, and
heart rate. Cardiac features are measured either by PPG in
the Empatica and Biovotion devices, or by ECG in the Faros
device. The IMEC, although not integrated into the pRMT
due to unavailability of a software development kit but has
similar sensors to the Faros. Raw data is collected directly
over Bluetooth (in comparison to the Ftibit where data is
retrieved from the vendor data warehouse).

Study Population
As part of the RADAR-CNS programme RADAR-base
is deployed to carry out RADAR-CNS studies at 8 sites
across Europe, with the goal of enrolling MS (n=640), MDD
(n=500) and EPI (n=200) participants.

Current Status of the MDD and EPI Studies
At present there are 66 enrolled patients in the MDD study
at KCH. So far there has been a total of 127 patients en-
rolled in the EPI study across KCH and Freiburg.

Statistical and Analysis Plan
Preliminary analysis of the MDD dataset will investigate cor-
relations between the PHQ-8 scores and basic aggregated
features, obtained from the recording biosensors, which
should be representative of behaviours associated with de-
pression. The PHQ-8 questionnaire is taken every 2 weeks,
and so the outcome is at a much lower frequency than the
raw signals. Simple proxies for sleep, activity, sociability,
cognition, and ambulation will be used to classify current
depression, where current depression is determined by a
PHQ-8 score ≥ 10. The ability of those features both to de-
tect depressive periods between subjects and to monitor
the progression of depressive symptoms within individuals
will be explored. Rarer clinical relapse will also be reported
for the cohort over the 2 year data collection period provid-
ing more definitive outcome measure where present. It may
be necessary to design features in such a way that they are
able to deal with missing data, or else use a model that is
able to use missingness informatively [4].

The initial analysis of the epilepsy data requires a differ-
ent approach. Seizures are typically short and sparse, so
the primary challenge is to be able to detect the relatively
short periods of ictal activity between the much more com-
mon segments of interictal time, while keeping the false
positive rate at an acceptable level. Initial focus will be
on the offline detection of generalised and focal seizures
with a motor component, particularly those with tonic or
clonic movements, using a combination of the available
signals. The combination of the different signal modalities
should improve the estimation accuracy of a single rele-
vant parameter, and also allow the analysis using multiple
physiologically-relevant parameters, enabling a panoramic
view of the patient’s status.

Because a few participants have had a large number of
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seizures (n > 15) during their in-patient stay, there is an op-
portunity to measure the performance of an individualised
seizure detection algorithm as successive seizures are
added to the model. This will have application to future am-
bulatory studies, in which it will be important to know how
much data is required for an adequately accurate model.
Firstly, we will follow a analytical pipeline similar to those in
prior seizure detection work, extracting features from the
EDA, accelerometer, and heart rate signals, and classify-
ing the ictal period of focal motor seizures using a support
vector machine. Although the specificity of previous work
has been too low, the larger sample size of the EPI study
may help improve accuracy of similar models. Addition-
ally, we will try and determine feature importance with the
intention of elucidating performance gain from including ad-
ditional signal modalities. Subsequently, we will investigate
the feasibility of using deep learning techniques which may
provide better generalization. Given the relative sparsity of
ictal data, it may be necessary to use unsupervised neural
networks to extract features, or to use transfer learning from
the activity recognition domain.

Results and Discussion
A tonic EDA response during the post-ictal period has been
noted elsewhere[8], and often occurs within the RADAR-
EPI dataset. An example is given in Figure 1, showing an
Empatica E4 recording of acceleration and EDA over a
night-time 5-hour period. The convulsive seizure at 05:05
is followed by a large increase in skin conductance, with
a peak at 05:10. There are other tonic peaks in the EDA,
but they do not coincide with a seizure-like accelerometer
trace. Equally, there is not evidence accelerometer traces
with repetitive or otherwise confusable characteristics in the
inter-ictal period being succeeded by an EDA response. Al-
though not totally consistent across all participants and all
seizures, it is a general pattern that illustrates the potential

to use multiple modalities for increased specificity.

Figure 1: Data stream from a patient wearing an Empatica E4
during a night. The patient had a focal motor seizure at 05:05
(BST), corresponding to a burst of movement in the accelerometer
(top), and subsequently followed by a peak in EDA (bottom). Other
movements and peaks in EDA during the interictal periods do not
follow the same pattern.

The preliminary data from the MDD study shows a range
of depressive symptoms, with a mean PHQ-8 score of 10.4
and standard deviation of 6.2 in the 76 PHQ-8 question-
naires so far recorded. Five participants have had a de-
pressive episode, progressing from a PHQ-8 score < 10, no
depression, to a score >= 10, current depression, in the fol-
lowing questionnaires. Of those, one returned to a ’no de-
pression’ state after a week. There is, therefore, already a
small amount of intra-individual variation recorded, although
longitudinal effects should become clearer as the follow-up
data collection period continues.
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Figure 2: Activity of a participant as measured by the standard
deviation of their phone’s acceleration with corresponding PHQ-8
and RSES scores collected on the first day and every fortnight
thereafter. Each row corresponds to a day. The questionnaire
scores suggest the participant is not in a depressive mood (PHQ-8
scores < 10) and has a normal level of self-esteem (RSES scores
between 15-25). There is missing data on days 10-12.

Missing values may prove a challenge for the MDD analy-
sis. Firstly, due to technical challenges associated with a
project of this magnitude. Secondly, and more commonly,
through participant non-adherence and differing levels of
engagement with the study applications and their phone in
general. Even in patients with high adherence, there are

likely to be times during which data is not collected. Figure
2 shows the first month of accelerometer data from a par-
ticipant, alongside PHQ-8 and RSES responses. Although
overall adherence is high for this participant, there is still a
48 hour gap during which no data is available. Disentan-
gling missingness due to technical issues and missingness
due to the participant non-adherence, and then directly in-
corporating that information into a model may be important,
because depressive symptoms may affect adherence.
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