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Abstract

On account of recent technological advancements, Deep Learning (DL) systems have been used

to solve a large variety of challenging engineering tasks, ranging from image classification and

segmentation, to biomedical signal processing for epileptic seizure prediction. In contrast to tra-

ditional Machine Learning (ML) algorithms, DL systems do not usually require features to be

manually extracted prior to data processing, and can be trained with relative ease; greatly reducing

the time to deployment for novel applications and scenarios. However, compared to traditional

ML algorithms, DL systems commonly consume significantly more power and introduce addi-

tional latency. Consequently, they are difficult to deploy in resource-constrained environments

and on resource-constrained devices; especially when they are implemented using Central Process-

ing Units (CPUs) and Graphics Processing Units (GPUs). Of late, significant efforts have been

made to study and implement low-power and high-speed DL systems suitable for deployment

on resource-constrained devices. In this thesis, both traditional synchronous and brain-inspired

asynchronous architectures were investigated, and novel hardware architectures were designed,

simulated, and/or implemented for traditional synchronous DL systems. Two specific device tech-

nologies were investigated: memristors, and Field Programmable Gate Arrays (FPGAs). The key

findings of this thesis, all of which have been disseminated in peer reviewed publications, demon-

strate that novel mixed signal memristive-Complementary Metal–Oxide–Semiconductor (CMOS)

and FPGA architectures can be used to reduce the power and resource requirements of DL sys-

tems, both during inference and training. Moreover, it was demonstrated through the development

of an open-source simulation framework for memristive DL systems and an empirical Metal-

Oxide Resistive Random-Access Memory (RRAM) device model, that specifically for mixed sig-

nal memristive-CMOS architectures, current design flows could be improved upon. Disruptive

software hardware co-optimization design methodologies, such as those explored in this thesis,

can be used to facilitate the design of next-generation novel hardware architectures for DL accel-

eration.

xiv
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Chapter 1

Introduction

1.1 Background and Motivation

Recent technological advancements have resulted in the large scale availability of increasingly

powerful CPU and GPU devices, which have revolutionized and dominated the ML domain by

enabling the research and development of DL systems, that loosely mimic the functionality of the

brain [36]. These systems are often comprised of millions to billions of floating-point parameters,

and can be used to solve many challenging engineering tasks [37]. In contrast to traditional ML

algorithms, DL systems do not usually require manual feature extraction, and they have a higher

degree of task flexibility [36]. These major advantages have led to their widespread adoption

across diverse research domains [38].

As the number of interconnected smart IoT devices continues to increase [39], the volume of

data required to be processed by these systems is forecast to also increase, albeit, at an exponential

rate [39]. Currently, in the IoT, most data is sent from edge devices and nodes to higher levels to be

stored and/or processed using DL algorithms in large batches. This process consumes a significant

amount of power and resources; in addition to introducing additional latency and privacy concerns,

especially when sensitive data needs to be sent away to be processed. Consequently, there is a great

demand for performant hardware capable of executing DL system workloads efficiently near the

source of data collection, i.e., near-sensor or in-sensor computing systems [40]. Such systems

would drastically reduce the amount of data required to be sent to and processed at higher levels

of the IoT, and would reduce the amount of data required to be processed by power- and resource-

hungry server farms.

Current traditional computing architectures are unsuitable to process data near- or in-sensor with

low latency, due to the von Neumann bottleneck. The von Neumann bottleneck [41], or so-called

memory wall problem, is a limitation on throughput of traditional computing architectures caused

by implications of performance gaps between processor and memory units. If memory latency and

bandwidth become insufficient to provide processors with enough instructions and data to continue

computation, processors will effectively always be stalled waiting on memory. For conventional

computing systems, this is predicted to increase in severity [42], as Moore’s law, which observes

that the number of transistors in a dense Integrated Circuit (IC) doubles about every two years,
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inevitably fails [43].

Significant research efforts have been made of late to develop novel DL hardware architectures

for IoT devices which are capable of operating on resource-constrained devices. These architec-

tures usually offer improved resource efficiency at the cost of the reduced ability to be customized

for general-purpose operation [1]. Moreover, at the cost of a marginal reduction in accuracy, using

approximate and stochastic computing techniques, the resource consumption of these architectures

can be further reduced [44, 45].

The primary motivation of this thesis is to contribute in-part to this collective effort [35] by lever-

aging software hardware co-optimization for the simulation and implementation of novel hardware

architectures using two alternate technologies: memristive devices and FPGAs. Memristive de-

vices can be arranged in crossbar architectures to avoid the memory wall issue in part by replacing

Processing Elements (PEs) in the memory domain, unlike in digital In-Memory Computing (IMC)

processors, whereas FPGAs can be used to deploy customized computation pipelines at reduced

precisions.

Detailed motivations can be summarized as follows: (i) To reduce the power and resource con-

sumption of DL accelerators to facilitate operation in resource-constrained environments. (ii) To

reduce the amount of data required to be processed by higher-level layers of the IoT. (iii) To im-

prove current design flows of DL systems using emerging technologies through the use of novel

software hardware co-optimization methodologies. (iv) To investigate alternative computing ap-

proaches including brain-inspired neuromorphic and IMC for practical engineering tasks.

1.2 Research Questions

The background and motivation, as discussed and presented in Section 1.1, was used to formulate

the following three research questions, which this thesis addresses:

1. How novel FPGA and Memristive hardware arcitectures can reduce the power and resource

requirements of DL systems/accelerators?

2. Specifically, for mixed-signal hybrid CMOS-Memristive architectures, can current design

flows be improved upon?

3. How can these technologies be used to solve practical engineering problems in resource-

constrained environments, such as on IoT devices?

In the following sections, a summary of the original contributions of this thesis is provided. In

addition, the organization of this thesis is discussed and related to the aforementioned research

questions.
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1.3 Original Contributions

This thesis comprises of seven significant original research contributions:

1. In [1], a tutorial was provided, which described how various technologies including emerg-

ing memristive devices, FPGAs, and CMOS can be used to develop efficient DL accelera-

tors to solve a wide variety of diagnostic, pattern recognition, and signal processing prob-

lems in healthcare. The tutorial also explored how spiking neuromorphic processors can

complement their DL counterparts for processing biomedical signals. Different hardware

platforms were bench-marked by performing a sensor fusion signal processing task com-

bining Electromyography (EMG) signals with computer vision. Novel comparisons were

made between dedicated neuromorphic processors and embedded AI accelerators in terms

of inference latency and energy. Finally, an analysis of the field was provided, and perspec-

tive was shared on the advantages, disadvantages, challenges, and opportunities that various

accelerators and neuromorphic processors introduce to healthcare and biomedical domains.

2. In [2], a survey of existing simulation frameworks and related tools used to model large-

scale MDLS was provided. Direct performance comparisons of both traditional and mod-

ernized open-source simulation frameworks were performed, and insights were provided

into future modeling and simulation strategies and approaches.

3. In [3], a novel low-latency parallel CNN architecture that has between 2-2,800x fewer net-

work parameters compared to State-Of-The-Art (SOTA) CNN architectures was proposed.

The proposed system was implemented onto analog crossbar arrays comprising RRAM de-

vices, and a comprehensive benchmark was provided by simulating, laying out, and deter-

mining hardware requirements of the CNN component of the system. The proposed sys-

tem is the first to parallelize the execution of convolution layer kernels on separate analog

crossbars to enable 2 orders of magnitude reduction in latency compared to SOTA hybrid

Memristive-CMOS DL accelerators. Furthermore, effects of non-idealities were investi-

gated, and QAT was used to mitigate the performance degradation due to low ADC/Digital-

to-Analog Converter (DAC) resolution. In addition, a stuck weight offsetting methodol-

ogy was presented to mitigate performance degradation due to stuck RON/ROFF memristor

weights, recovering up to 32% accuracy, without requiring retraining.

4. In [4], the stochasticity during switching of probabilistic CBRAM devices was exploited to

efficiently generate stochastic bit streams in order to perform DL parameter optimization,

reducing the size of MAC units by 5 orders of magnitude. It was demonstrated that in

using a 40-nm CMOS process, the proposed architecture occupies 1.55mm2 and consumes

approximately 167µW when optimizing parameters of a CNN while it is being trained for

a character recognition task. This is a significant improvement compared to other related

works in the literature; at the cost of a marginal reduction in accuracy.
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5. In [5], an open-source framework, entitled MemTorch, was developed for customized large-

scale memristive DL simulations, with a refined focus on the co-simulation of device non-

idealities. MemTorch was the first open-source framework to model various non-linear de-

vice and circuit aspects, including passive crossbars, which were modeled using customized

Compute Unified Device Architecture (CUDA) kernels. MemTorch adopted a modernized

software engineering methodology and integrates directly with the well-known PyTorch ML

library, and has been downloaded over 1,000 times.

6. In [6], a novel generalized empirical Metal-Oxide RRAM endurance and retention model

for use in large-scale DL simulations was proposed. The presented model was the first to

unify retention-endurance modeling while taking into account time, energy, SET-RESET

cycles, device size, and temperature. The model was compared to other models in the litera-

ture, and its versatility was demonstrated by applying it to experimental data from a number

of fabricated devices. Furthermore, the model was used for CIFAR-10 dataset classification

using a large-scale MDLS implementing the MobileNetV2 architecture. Results demon-

strated that, even when ignoring other device non-idealities, retention and endurance losses

significantly affect the performance of DL networks.

7. In [7], the first FPGA-accelerated deterministically binarized DNNs, tailored toward weed

species classification for robotic weed control were introduced. It was demonstrated that

the presented networks significantly outperformed their GPU-accelerated counterparts when

they were trained and benchmarked using a publicly available weed species dataset, named

DeepWeeds, which includes close to 18,000 weed images. A >7-fold decrease in power

consumption was reported, while performing inference on weed images 2.86 times faster

compared to the best performing baseline full-precision GPU implementation. These sig-

nificant benefits were gained whilst losing only 1.17% of accuracy.

It is noted that not all research outputs as a result of research conducted during my PhD can-

didature are included in this thesis document. A complete list of publications is included in non-

numbered Section located prior to the thesis abstract entitled List of Publications Not Included in

This Thesis.

1.4 Thesis Organization

As illustrated in Fig 1.1, this thesis is organized into nine chapters to convey all of the original

research contributions in a coherent way. The current Chapter, i.e., the Introduction, highlighted

in magenta, introduces the research background and motivation. In addition, research questions

are formulated, and the key original contributions of this thesis are summarized.

The literature review component of this thesis is presented in Chapter 2 and Chapter 3, which are

highlighted in gold in Fig 1.1. Chapter 2 investigates the use of neuromorphic asynchronous pro-
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cessors, in addition to traditional synchronous DL accelerators, for healthcare and biomedical ap-

plications; a domain where IoT devices are commonly used to process data in resource-constrained

environments. Different hardware technologies, including memristors and FPGAs are investigated

and compared. Chapter 3 investigates research efforts in modeling in-memory MDLSs, i.e., DL

systems that perform in-memory computing operations using memristors. It was determined that

(i) for complex engineering tasks, currently, traditional synchronous DL accelerators outperform

neuromorphic asynchronous processors; and (ii) a greater improvement in performance can be

gained by using memristive technologies, rather than FPGAs, for DL systems/accelerators. This

motivated the key findings of this thesis, which are presented in Chapters 4-8.

For sake of clarity, each research question is highlighted using a different color, and chapters

are categorized using the aforementioned formulated research questions. In addition, the terms

FPGA, Memristive, and RRAM are bolded. In lieu of an abstract at the beginning of each Chapter,

a short text passage is included introducing the Chapter and relating it to the formulated research

questions.

As can be seen in Fig 1.1, Chapters 4, 5, and 8 address the first research question. In these

chapters, many different approaches are investigated and proposed for reducing the power and re-

source requirements of deep learning systems and architectures. These include the parallelization

of operations using memristive devices, the exploitation of the stochasticity of memristive devices

to perform random number generation, and the use of FPGA devices to execute DL workloads at

a reduced level of precision using customized digital hardware.

Chapters 6 and 7 address the second research question. Chapter 6 investigates design flow

improvements, and how the current design flows have been improved by developing a compre-

hensive simulation framework for MDLS, whereas Chapter 7 contributes improvements using a

computationally efficient empirical device model designed for use in large DL simulations.

The third and last research question is addressed in Chapters 4 and 8. Both of these Chapters

also addressed the first research question, i.e., they have novel aspects in (i) architecture and (ii)

application. In Chapter 4, memristors were used within a MDLS to perform epileptic seizure

prediction and detection tasks. In Chapter 8, FPGAs were used to perform low-power and high-

speed DL inference for a weed species classification task.

Finally, the thesis is concluded in Chapter 9, Conclusion and Future Work. In Fig 1.1, this

Chapter is highlighted in the same color as the Introduction to indicate a strong link/connection.

In the Conclusion, the findings in other chapters are summarized with respect to the research

questions formulated in the Introduction, and future research directions are discussed.
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Chapter 2

Hardware Implementation of Deep Network
Accelerators Towards Healthcare and
Biomedical Applications

The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought

on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to a

variety of healthcare and biomedical applications. This can facilitate the advancement of medical

Internet of Things (IoT) systems and Point of Care (PoC) devices in resource-constrained envi-

ronments, such as on IoT devices. In this Chapter, the first part of the literature review component

of this thesis is presented. A tutorial is provided describing how various technologies including

emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary

Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a

wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. In

addition, direct comparisons of different hardware technologies are made, and insights are pre-

sented. The investigations performed and reported in this Chapter motivated the refined focus of

this thesis on synchronous DL accelerators in Chapters 3-8.

2.1 Introduction

Artificial intelligence is uniquely poised to cope with the growing demands of the universal health-

care system [46]. The healthcare industry is projected to reach over 10 trillion dollars by 2022, and

the associated workload on medical practitioners is expected to grow concurrently [47]. As the

reliability of DL improves, it has pervaded various facets of healthcare from monitoring [48, 49],

to prediction [50], diagnosis [51], treatment [52], and prognosis [53]. Fig. 2.1(a) shows how data

collected from the patient, which may be a combination of bio-samples, medical images, temper-

ature, movement, etc., can be processed using a smart DL system that monitors the patient for

anomalies and/or to predict diseases. DL systems can be used to recommend treatment options

and prognosis, which further affect monitoring and prediction in a closed-loop scenario.

The capacity of Artificial Intellegence (AI) to meet or exceed the performance of human experts
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Biomedical Applications

Figure 2.1: A depiction of (a) the usage of DL in a smart healthcare setting, which typically in-
volves monitoring, prediction, diagnosis, treatment, and prognosis. The various parts
of the DL-based healthcare system can run on (b) the three levels of the IoT, i.e. edge
devices, edge nodes, and the cloud. However, for healthcare IoT and PoC processing,
edge learning and inference is preferred.

in medical-data analysis [54–56] can, in part, be attributed to the continued improvement of high-

performance computing platforms such as GPUs [57] and customized ML hardware [58]. These

can now process and learn from a large amount of multi-modal heterogeneous general and medical

data [59]. This was not readily achievable a decade ago.

While the field of DL has been growing at an astonishing rate in terms of performance, net-

work size, and training run time, the development of dedicated hardware to process DL algorithms

is struggling to keep up. Concretely, the compute loads of DL have doubled every 3.4 months

since 2012. Moore’s Law targets the doubling of compute power every 18-24 months, and ap-

pears to be slowing down [60]. The progress in hardware accelerator development currently relies

on advances by a handful of technology companies, most notably Nvidia and its GPUs [61, 62]

and Google and its Tensor Processing Units (TPUs) [58], in addition to new startups and research

groups developing Application-Specific Integrated Circuits (ASICs) for DL training and acceler-

ation. While there are significant advances in tailoring deep network models and algorithms for

various healthcare and biomedical applications [63], most computationally expensive deep net-

works are trained on either GPUs or in data centers [57,64]. The latter typically requires access to

cloud computing services which is not only costly and comes with high power demands, but also

compromises data privacy. This is distinct to the effective deployment of DL at the edge on an

increasing number of medical IoT devices [65] and PoC systems [66], as illustrated in Fig. 2.1(b).

Edge learning and inference enables the option to move processing away from the cloud. This

is critical for highly sensitive medical data and offline operation. Edge-based processing must

combine compactness, low-power, and rapid (high throughput) at a low-cost, to make smart health

monitoring viable and affordable for integration into human life [67].

Specialized embedded DL accelerators, such as the Nvidia Jetson and Xavier series [68], and
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Figure 2.2: Popular ANN structures. MLP/Dense/Fully Connected are typically well-suited for
cross-sectional quantitative data, whereas RNNs and LSTMs networks are optimized
for sequential data. CNNs are equipped for both types.

the Movidius Neural Compute Stick [69, 70], have shown the promise of edge computing. More

recently, the Nvidia Clara Embedded was released as a healthcare-specific edge accelerator. This

is a computing platform for edge-enabled AI on the Internet of Medical Things (IoMT). However,

embedded devices remain relatively power hungry and costly, and many state-of-the-art algo-

rithms far exceed the memory bandwidth of resource-constrained devices. They are not yet ideal

learning/inference engines for ambient-assisted precision medicine systems. There is a need for

innovative systems which can satisfy the stringent requirements of healthcare edge devices to be

made affordable to the community at large scales.

To that end, in this Chapter, we focus on the use of three various hardware technologies to de-

velop dedicated deep network accelerators which will be discussed from a biomedical and health-

care application point-of-view. The three technologies that we cover here are CMOS, memristors,

and FPGAs. It is worth noting that, while our focus targets edge inference engines in the biomed-

ical domain, the techniques and hardware advantages discussed here are likely to be useful for

efficient offline deep network learning, or online on-chip learning. Herein, the term DL ‘accelera-

tor’ is used to refer to a device that is able to perform DL inference and potentially training.

This tutorial on DL accelerators within the biomedical sphere commences with a brief introduc-

tion to artificial and spiking neural networks. Next, we introduce the computational demands of

DL by shedding light on why they are power- and resource-intensive. This will justify the need for

application specific hardware platforms. After that, we discuss recent hardware advances which

have led to improvements in training and inference efficiency. These improvements ultimately

guide us to viable edge inference engine options.

After reviewing the literature on these DL accelerators, we quantify the performance of various

algorithms on different types of DL processors. The results allow us to draw a perspective on

the potential future of spike-based neuromorphic processors in the biomedical signal processing

domain. Based on our analysis and perspective, we conjecture that, for edge processing, neuro-

morphic computing and SNNs [71] will likely complement DL inference engines, either through
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signaling anomalies in the data or acting as ‘intelligent always-on watchdogs’ which continuously

monitor the data being recorded, but only activate further processing stages if and when necessary.

We expect this tutorial, review, and perspective to provide guidance on the history and future

of DL accelerators, and the potential they hold for advancing healthcare. Our contributions are

summarized as follows:

1. We are the first to discuss the use of three different emerging and established hardware

technologies for facilitating DL acceleration, with a focus on biomedical applications;

2. We provide tutorial sections on how one may implement a typical biomedical task on FPGAs

or simulate it for deployment on memristive crossbars;

3. We are the first to discuss how event-based neuromorphic processors can complement DL

accelerators for biomedical signal processing;

4. We provide open-source code and data to enable the reproduction of our results.

The remainder of this Chapter is organized as follows. In Section 2.2, we define the technical

terminology that is used throughout this Chapter and cover the working principles of artificial and

spiking neural networks. We also introduce a biomedical signal processing task for hand-gesture

classification, which is used for benchmarking the different technologies and algorithms discussed

in this Chapter. In Section 2.3, we step through the design, simulation, and implementation of

DNNs using different hardware technologies. We show sample cases of how they have been

deployed in healthcare settings. Furthermore, we demonstrate the steps and techniques required

to simulate and implement hardware for the benchmark hand-gesture classification task using

memristive crossbars and FPGAs.

In Section 2.4, we provide our perspective on the challenges and opportunities of both DNNs

and SNNs for biomedical applications and shed light on the future of spiking neuromorphic hard-

ware technologies in the biomedical domain. Section 2.5 concludes the Chapter.

2.2 Deep Artificial and Spiking Neural Networks

2.2.1 Nomenclature of Neural Network Architectures

Although most DNNs reported in literature are ANNs, DNNs refer to more than one hidden layer,

independently of whether the architecture is fully connected, convolutional, recurrent, ANN or

SNN, or of any other structure. For example, the most widely used DNN type in image processing,

i.e. a CNN, can be physically implemented as an ANN or SNN, and in both cases it would be

‘deep’. However, in this Chapter, whenever we use the terms ‘deep’, DL, or deep network, we

refer to Deep Artificial Neural Networks. For Deep Spiking Neural Networks, we simply use the

term SNN.

10



Chapter 2 Hardware Implementation of Deep Network Accelerators Towards Healthcare and

Biomedical Applications

2.2.2 Deep Artificial Neural Networks

Traditional ANNs and their learning strategies that were first developed several decades ago [72]

have, in the past several years, demonstrated unprecedented performance in a plethora of chal-

lenging tasks which are typically associated with human cognition. These have been applied to

medical image diagnosis [73] and medical text processing [74], using DNNs.

Fig. 2.2 illustrates a simplified overview of the structure of some of the most widely-used DNNs.

The most conventional form of these architectures is the Multi-Layer Perceptron (MLP). Increas-

ing the number of hidden layers of perceptron cells is widely regarded to improve hierarchical

feature extraction which is exploited in various biomedical tasks, such as seizure detection from

EEG [75, 76]. CNNs introduce convolutional layers, which use spatial filters to encourage spatial

invariance. CNNs often include pooling layers to downsample their outputs to reduce the search

space for subsequent convolutional layers. CNNs have been widely used in medical and healthcare

applications, as they are very well-suited for spatially structured data. Their use in medical image

analysis [77] will form a major part of our discussions in subsequent sections.

RNNs are another powerful network architecture recently used both individually [78], and in

combination with CNNs [79], in biomedical applications. RNNs introduce recurrent cells with a

feedback loop, and are especially useful for processing sequential data such as temporal signals

and time-series data, e.g. Electrocardiography (ECG) [79], and medical text [80]. The feedback

loop in recurrent cells gives them a memory of previous steps and builds a dynamic awareness

of changes in the input. The most well-known type of RNNs are LSTMs which are designed

to mine patterns in data sequences using their short-term memory of distant events stored in their

memory cells. LSTMs have been widely used for processing biomedical signals such as ECGs [78,

81]. Although there are many other variants of DNN architectures, we will focus on these most

commonly used types.

Automatic hierarchical feature extraction

The above mentioned DNNs learn intricate features in data through multiple computational layers

across various levels of abstraction [36]. The fundamental advantage of DNNs is that they mine

the input data features automatically, without the need for human knowledge in their supervised

learning loop. This allows deep networks to learn complex features by combining a hierarchy of

simpler features learned in their hidden layers [36].

Learning algorithms

Learning features from data in a DNN, e.g. the networks shown in Fig. 2.2, is typically achieved

by minimizing a loss function. In most cases, this is equivalent to finding the maximum likelihood

using the cross-entropy between training data and the learned model distribution. Loss function

minimization is achieved by optimizing the network parameters (weights and biases). This opti-
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mization process minimizes the loss function from the final network layer backward through all the

network layers and is therefore called backpropagation. Widely used optimization algorithms in

DNNs include Stochastic Gradient Descent (SGD) and those that use adaptive learning rates [36].

Backpropagation in DNNs is computationally expensive

Despite the continual improvement of hardware platforms for running and training DNNs, reduc-

ing their power consumption is a computationally formidable task. One of the dominant reasons

is the feed-forward error backpropagation algorithm, which depends on thousands of epochs of

computationally intensive VMM operations [72], using huge datasets that can exceed millions of

data points. These operations, if performed on a conventional von Neumann architecture which

has separate memory and processing units, will have a time and power complexity of orderO(N2)

for multiplying a vector of length N in a matrix of dimensions N ×N .

In addition, an artificial neuron in DNNs calculates a sum-of-products of its input-weight ma-

trix pairs. For instance, a CNN spatially structures the sum-of-products calculation into a VMM

operation. In digital logic, an adder tree can be used to accumulate a large number of values. This,

however, becomes problematic in DNNs when one considers the sheer number of elements that

must be summed together, as each addition requires one cycle.

Transfer learning

A major assumption when training DNNs is that both training and test samples are drawn from the

same feature space and distribution. When the feature space and/or distribution changes, DNNs

should be retrained. Rather than training a new model from scratch, trained parameters from an

existing model can be fixed, tuned, or adapted [82]. This process of transfer learning can be used

to greatly reduce the computational expense of training DNNs.

In the medical imaging domain, transfer learning from natural image datasets, particularly Im-

ageNet [83], using standard large models and corresponding pretrained weights has become a

de-facto method to speed up training convergence and to improve accuracy [84]. Transfer learning

Table 2.1: Number of weights and MAC operations in various CNN architectures for a single
image and for video processing at 25 frames per second.

Network Architecture Weights MACs @ 25 FPS

AlexNet 61 M 725 M 18 B
ResNet-18 11 M 1.8 B 45 B
ResNet-50 23 M 3.5 B 88 B
VGG-19 144 M 22 B 550 B
OpenPose 46 M 180 B 4500 B
MobileNet 4.2 M 529 M 13 B
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can also be used to leverage personalized anatomical knowledge accumulated over time to im-

prove the accuracy of pre-trained CNNs for specific patients [85], i.e., to perform patient-specific

model tuning. This is an important topic in biomedical application domains, which will be further

discussed in Section 2.4.6.

2.2.3 DL Accelerators

In Table 2.1, we depict some popular CNN architectures, accompanied with the total number

of weights, and MAC operations that must be computed for a single image (input resolutions

of 656×468 for OpenPose, 224×224 for the rest). This table highlights two key facts. Firstly,

MACs are the dominant operation of DNNs. Therefore, hardware implementations of DNNs

should strive to parallelize a large number of MACs to perform effectively. Secondly, there are

many predetermined weights that must be called from memory. Reducing the energy and time

consumed by reading weights from memory provides another opportunity to improve efficiency.

Consequently, significant research has been being conducted to achieve massive parallelism

and to reduce memory access in DNN accelerators, using different hardware technologies and

platforms as depicted in Fig. 2.3. Although these goals are towards general DL applications, they

can significantly facilitate fast and low-power smart PoC devices [66] and healthcare IoT systems.

In addition to conventional DL accelerators, there have been significant research efforts to utilize

biologically plausible SNNs for learning and cognition [86]. Spiking neuromorphic processors

have also been used for biomedical signal processing [21, 22, 87]. Below, we provide a brief

introduction to SNNs, which will be discussed as a method complementary to DL accelerators

for efficient biomedical signal processing later in this Chapter. We will also perform comparisons

among SNNs and DNNs in performing an EMG processing task.

2.2.4 Spiking Neural Networks

SNNs are neural networks that typically use Integrate-and-Fire neurons to dynamically process

temporally varying signals (see Fig. 2.4(j)). By integrating multiple spikes over time, it is possible

to reconstruct an analog value that represents the mean firing rate of the neuron. The mean firing

rate is equivalent to the value of the activation function of ANNs. So in the mean firing rate limit,

there is an equivalence between ANNs and SNNs. By using spikes as all-or-none digital events

(Fig. 2.4(i)), SNNs enable the reliable transmission of signals across long distances in electronic

systems. In addition, by introducing the temporal dimension, these networks can efficiently en-

code and process sequential data and temporally changing inputs [88]. SNNs can be efficiently

interfaced with event-based sensors since they only process events as they are generated. An ex-

ample of such sensors is the DVS, which is an event-based camera shown in Fig. 2.4(h). The

DVS consists of a logarithmic photo-detector stage followed by an operational transconductance

amplifier with a capacitive-divider gain stage, and two comparators. The ON/OFF spikes are gen-

erated every time the difference between the current and previous value of the input exceeds a
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Figure 2.3: Typical hardware technologies for DNN acceleration. In this Chapter, we cover the top
two layers of the pyramid, which include specialized hardware technologies for high-
performance training and inference of DNNs. While the apex is labelled RRAM, this is
intended to broadly cover all programmable non-volatile resistive switching memories
e.g. CBRAM, MRAM, PCM, etc.

pre-defined threshold. The sign of the difference corresponds to the ON or OFF channel where the

spike is produced. This is different to conventional cameras (Fig. 2.4(f)), which produce image

frames (Fig. 2.4(g)). Intuitively, it makes sense to use asynchronous event-based sensor data in

asynchronous SNNs, and synchronously generated frames (i.e., all pixels are given at a regular

clock interval) through synchronous ANNs. But it is worth noting that conventional frames can

be encoded as asynchronous spikes with frequencies that vary based on pixel intensity, and event

streams can be integrated over time into synchronously generated time-surfaces [89, 90]. Event-

based sensors have been used to process biomedical signals [22, 91] (Fig. 2.4(a)), which can be

encoded to spike trains (Fig. 2.4(b)) to be processed by SNNs or be digitally sampled (Fig. 2.4(c))

for use in DNNs for learning and inference (Fig. 2.4(d)).

2.2.5 Benchmarking on a Biomedical Signal Processing Task

In Section 2.3 we will present a use-case of bio-signal processing where FPGA and memristive

DNN accelerators are implemented and simulated. These are later compared to equivalent existing

implementations1 using DNN accelerators and neuromorphic processors from [21]. To perform

comparisons, we use the same hand-gesture recognition task as in [21].

Tasks such as prosthesis control can be performed using EMG signals, hand-gesture classifi-

cation, or a combination of both. Here, the adopted hand-gesture dataset [21] is a collection of

1https://github.com/Enny1991/dvs_emg_fusion/blob/master/full_baseline.py
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Figure 2.4: DNNs and SNN neuromorphic processors adopt different operation models. In DNNs,
inputs are processed in batches which propagate serially. Consequently, they require
clocks for process synchronization. SNNs are asynchronous and process temporally
encoded inputs independently. Time series signals, such as the EMG signal presented
in (a) can be either (b) temporally encoded using spike train encoding schemes such
as [22], before being fed into (j) neuromorphic processors, or (c) digitally sampled,
before being concatenated into batches, to be fed into (d) DNNs. Similarly, pho-
tographs captured from (e) lenses can be (i) temporally encoded into spike trains using
(h) DVSs [23] or (f) digitally encoded using conventional cameras to build (g) image
frames.

5 hand gestures recorded with two sensor modalities: muscle activity from a Myo armband that

senses EMG electrical activity in forearm muscles, and a visual input in the form of DVS events.

Moreover, the dataset provides accompanying video captured from a traditional frame-based cam-

era, i.e., images from an Active Pixel Sensor (APS) to feed DNNs. Recordings were collected

from 21 subjects including 12 males and 9 females between the ages 25 and 35, and were taken

over three separate sessions.

For each implementation, we compare the mean and standard deviation of the accuracy obtained

over a 3-fold cross validation, where each fold encapsulates all recordings from a given session.

Additionally, for all implementations, we compare the energy and time required to perform infer-

ence on a single input, as well as the Energy-Delay Product (EDP), which is the average energy

consumption multiplied by the average inference time.
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2.3 DNN Accelerators towards healthcare and biomedical
Applications

In this Section, we cover the use of CMOS and memristors in DL acceleration. We discuss how

they use different strategies to achieve two of the key DNN acceleration goals, namely MAC

parallelism and reduced memory access. We also discuss and review FPGAs as an alternative

reconfigurable DNN accelerator platform, which has shown great promise in the healthcare and

biomedical domains.

2.3.1 CMOS DNN Accelerators

General edge-AI CMOS accelerator chips can be used for DNN-enabled healthcare IoT and PoC

systems. Therefore, within this Section, we first review a number of these chips and provide exam-

ples of potential healthcare applications they can accelerate. We will also explore some common

approaches to CMOS-driven acceleration of AI algorithms using massive MAC parallelism and

reduced memory access, which are useful for both edge-AI devices and offline data center scale

acceleration.

Edge-AI DNN accelerators suitable for biomedical applications

The research and market for ASICs, which focus on a new generation of microprocessor chips

dedicated entirely to machine learning and DNNs, have rapidly expanded in recent years. Table 2.2

shows a number of these CMOS-driven chips, which are intended for portable applications. There

are many other examples of AI accelerator chips (for a comprehensive survey see [92]), but here

we picked several prolific examples, which are designed specifically for DL using DNNs, RNNs,

or both. We have also included a few general purpose AI accelerators from Google [93], Intel [94],

and Huawei [95].

Although developed for general DNNs, the accelerators shown in Table 2.2 can efficiently real-

ize portable smart DL-based healthcare IoT and PoC systems for processing image-based (medical

imaging) or dynamic sequential medical data types (such as EEG and ECG). For instance, the table

shows a few exemplar healthcare and biomedical applications that are picked based on the demon-

strated capacity of these accelerators to run (or train [96]) various well-known CNN architectures

such as VGG, ResNet, MobileNet, AlexNet, Inception, or RNNs such as LSTMs, or combined

CNN-RNNs. It is worth noting that most of the available accelerators are intended for CNN infer-

ence, while only some [97–99] also include recurrent connections for RNN acceleration.

The Table shows that the total power per chip in most of these devices is typically in the range of

hundreds of mW, with a few exceptions consuming excessive power of around 10 Watts [94, 95].

This is required to avoid large heat sinks and to satisfy portable battery constraints. The Table also

shows the computing capability per unit time (column ‘Computational Power (GOP/s)’). Regard-

less of power consumption, this column reveals the computational performance and consequently
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the size of a network one can compute per unit time. It is demonstrated that several of these chips

can run large and deep CNNs such as VGG and ResNet, which enable them to perform complex

processing tasks within a constrained edge power budget.

Table 2.2: A number of recent edge-AI CMOS chips suitable for portable healthcare and biomed-
ical applications.

CMOS
Chip

Core
size
(mm2)

Tech-
nology
(nm)

Comput-
ational
Power
(GOP/s)

Power
(mW)

Power
Effic-
iency
(TOPS/W)

Potential Mobile and Edge-based
Health-care and Medical
Applications

Cambricon

-x [100]

6.38 65 544 954 0.5 Electrocorticography (ECog)

analysis using a sparse VGG [101]

for PoC diagnosis of cardiovascu-

lar diseases

Eyeriss

[102]

12.25 65 17-42 278 0.06–

0.15

- Mobile Image-based cancer di-

agnosis using VGG-16 [103],

- Mobile diagnosis tool based on

AlexNet for radiology, cardiology

gastroenterology imaging [77]

Origami

[104]

3.09 65 196 654 0.8 - Smart healthcare IoT edge de-

vice for heart health monitoring

using a CNN-based ECG analy-

sis [105]

- Two-stage end-to-end CNN for

human activity recognition [106]

ConvNet

proces-

sor [107]

2.4 40 102 25-287 0.3–2.7 PoC Ultrasound processing using

AlexNet [108]

Envision

[109]

1.87 28 76-408 7.5-300 0.8–10 Multi-layer CNN for EEG/ECog

feature extraction for epilepto-

genicity for epilepsy diagnosis on

edge [110]

Neural

proces-

sor [111]

5.5 8 1900-

7000

39–

1500

4.5-11.5 On edge classification of skin can-

cer using Inception V3 CNN [56]
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LNPU

[96]

16 65 600 43-367 25 - On edge learning/inference us-

ing VGG-16 for cancer diagno-

sis [103],

- On edge AlexNet learn-

ing/inference for radiology,

cardiology, gastroenterology

imaging diagnosis [77]

DNPU

[97]

16 65 300-

1200

35-279 2.1–8.1 Parallel and Cascade RNN

and CNN for acECG analysis

for Brain-Computer Inter-

face (BCI) [79]

Thinker

[98]

14.44 65 371 293 1–5 - PoC conversion of respira-

tory organ motion ultrasound into

MRI using a long-term recurrent

CNN [112]

UNPU

[99]

16 65 346-

7372

3.2-297 3.08–

50.6

- Intelligent pre-diagnosis medi-

cal support/consultation using a

CNN-RNN [80]

- A CNN-RNN for respiratory

sound classification in wearable

devices enabled by patient specific

model tuning [113]

- A CNN-LSTM for missing Pho-

toplethysmographic data predic-

tion [114]

Google

Edge

TPU [93]

25 - 4000 2000 2 - Low-cost and easy-to-access

skin cancer detection using Mo-

bileNet V1 CNN [70]

- On edge health monitoring for

fall detection using LSTMs [115]

- Robust long-term decoding

in intracortical Brain-Machine

Interfaces (BMIs) using MLP

and Extreme Learning Ma-

chine (ELM) networks [116]
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Intel

Nervana

NNP-I

- 10 48000 10000 4.8 - Diagnosis using chest X-ray

classification on ResNet CNN

family [117]

1000

(Spring

Hill) [94]

- Long term bowel sound segmen-

tation using a CNN [118]

Huawei

Ascend

310 [95]

- 12 16000 8000 2 - Cardiovascular monitoring for

arrhythmia diagnosis from ECG

using an LSTM [78]

- Health monitoring by heart

rate variability analysis using

ECG analysis by a bidirectional

LSTM [81]

For instance, it has been previously shown in [101] that VGG CNN (shown to be compati-

ble with Cambricon-x [100]), can successfully analyze ECog signals. Therefore, considering the

power efficiency of Cambricon-x, it can be used to implement a portable automatic ECog ana-

lyzer for PoC diagnosis of various cardiovascular diseases [119]. Similarly, Eyeriss [102] can run

VGG-16, which is shown to be effective in diagnosing thyroid cancer [103]. In addition, Eyeriss

can run AlexNet for several different medical imaging applications [77]. Therefore, Eyeriss can

be used as a mobile diagnostic tool that can be integrated into or complement medical imaging

systems at the PoC. Origami [104] is another CNN accelerator chip, which can be used for other

healthcare applications based on a CNN. For instance, [105] proposes a CNN-based ECG analysis

for heart monitoring, or [106] introduces a two-stage end-to-end CNN for human activity recog-

nition for elderly and rehailitation monitoring, whereas Origami can be used to develop a smart

healthcare IoT edge device. Similarly, the CNN processor proposed in [107] is shown to be able

to run AlexNet, which can be deployed in a PoC ultrasound image processing system [108]. Envi-

sion [109] is another accelerator that has the capability to run large-scale CNNs. It can also be used

as an edge inference engine for a multi-layer CNN for EEG/ECog feature extraction for epilepsy

diagnosis [110]. Neural processor [111] is another CNN accelerator that is shown to be able to run

Inception V3 CNN, which can be used for skin cancer detection [56] at the edge. LNPU [96] is

the only CNN accelerator shown in Table 2.2, which unlike the others can perform both learning

and inference of a deep network such as AlexNet and VGG-16, for applications including on edge

medical imaging [77] and cancer diagnosis [103].

Unlike the above discussed chips that are capable of running only CNNs, DNPU [97], Thinker [98],

and UNPU [99] are capable of accelerating both CNNs and RNNs. This feature makes them suit-

able for a wider variety of edge-based biomedical applications such as ECG analysis for BCI

using a cascaded RNN-CNN [79], PoC MRI construction from motion ultrasounds using a long-
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Figure 2.5: Compilation flow used to deploy an EMG classification CNN to an OpenVINO FPGA
adopting fixed-point number representations using OpenCL.

term recurrent CNN [112], intelligent medical consultation using a CNN-RNN [80], respiratory

sound classification in wearable devices enabled by patient specific model tuning using a CNN-

RNN [113], or on-chip online and personalized prediction of missing Photoplethysmographic

data [120].

Table 2.2 lists three general purpose AI accelerator chips, which have been deployed for low-

cost and easy-to-access skin cancer detection using MobileNet V1 CNN [70], on edge health

monitoring for fall detection using LSTMs [115], chest X-ray analysis using ResNet CNN [117],

long term bowel sound monitoring and segmentation using a CNN [121], cardiovascular arrhyth-

mia detection from ECG using an LSTM [78], or heart rate variability analysis from ECG signals

through a bidirectional LSTM [81], just to name a few. These general-purpose chips have the

potential to be used for other biomedical edge-based applications such as robust long-term decod-

ing in intracortical BMIs using MLP and ELM networks in a sparse ensemble machine learning

platform [122].

In addition to the edge-AI CNN and RNN acceleration chips or general ML chips mentioned in

Table 2.2, there have been other works that have developed custom CMOS platforms for biomed-

ical applications. Examples of these CMOS designs include [116] that has developed a 128-

Channel ELM-based neural decoder for BMI, and [123] that has implemented an autoencoder neu-

ral network as part of a neural interface processor for brain-state classification and programmable-

waveform neurostimulation.

Common approaches to CMOS-driven DL acceleration

Accelerators will typically target either data center use or embedded ‘edge-AI’ acceleration. Edge

chips, such as those discussed above, must operate under restrictive power budgets (e.g., within

thermal limits of 5 W) to cope with portable battery constraints. While the scale of tasks, input

dimension capacity, and clock speeds will differ between edge-AI and modular data center racks,

both will adopt similar principles in the tasks they seek to optimize.

Most of the accelerator chips, such as those discussed in Table 2.2, use similar optimiza-

tion strategies involving reduced precision arithmetic [96, 99, 107, 109] to improve computational

throughput. This is typically combined with architectural-level enhancements [97, 98, 100, 102,

111] to either reduce data movement (using in- or near-memory computing), heightened par-
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allelism, or both. In addition, there are many other approaches commonly used to make neu-

ral network implementations more efficient. Examples of these include tensor decomposition,

pruning, and mixed-precision data representation, which are often integrated in hardware with

in-memory and near-memory computing. A thorough review of these approaches can be found

in [124] and [125].

Sequential and combinational logic research is largely matured, so outside of emerging memory

technologies, the dominant hardware benefits are brought on by optimizing data flow and architec-

ture. An early example is the neuFlow system-on-chip (SoC) processor which relies on a grid of

processing tiles, each made up of a bank of processing operators and a multiplexer based on-chip

router [126]. The processing operator can serially perform primitive computation (MUL, DIV,

ADD, SUB, MAX), or a parallelized 1D/2D convolution. The router configures data movement

between tiles to support streaming data flow graphs.

Since the development of neuFlow, over 100 startups and companies have developed, or are

developing, machine learning accelerators. The Neural Processing Unit (NPU) [127] generalizes

the work from neuFlow by employing eight processing engines which each compute a neuron

response: multiplication, accumulation, and activation. If a program could be partitioned such

that a segment of it can be calculated using MACs, then it would be partially computed on the

NPU. This made it possible to go beyond MLP neural networks. The NPU was demonstrated to

perform Sobel edge detection and fast Fourier transforms as well.

NVIDIA coupled their expertise in developing GPUs with machine learning dedicated cores,

namely, tensor cores, which are aimed at demonstrating superior performance over regular CUDA

cores [62]. Tensor cores target mixed-precision computing, with their NVIDIA Tesla V100 GPU

combining 672 tensor cores on a single unit. By merging the parallelism of GPUs with the appli-

cation specific nature of tensor cores, their GPUs are capable of energy efficient general compute

workloads, as well as 12 Tera Floating Point Operations Per Seconds (TFLOPSs) of matrix arith-

metic.

Although plenty of other notable architectures exist (see Table 2.2), a pattern begins to emerge,

as most specialized processors rely on a series of sub-processing elements which each contribute to

increasing throughput of a larger processor [124, 125]. Whilst there are plenty of ways to achieve

MAC parallelism, one of the most renowned techniques is the systolic array, and is utilized by

Groq [128] and Google, amongst numerous other chip developers. This is not a new concept:

systolic architectures were first proposed back in the late 1970s [129, 130], and have become

widely popularized since powering the hardware DeepMind used for the AlphaGo system to defeat

Lee Sedol, the world champion of the board game Go in October 2015. Google also uses systolic

arrays to accelerate MACs in their TPUs, just one of many CMOS ASICs used in DNN processing

[58].
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2.3.2 FPGA DNNs

FPGAs are fairly low-cost reconfigurable hardware that can be used in almost any hardware pro-

totyping and implementation task, significantly shortening the time-to-market of an electronic

product. They also provide parallel computation, which is essential when simultaneous data pro-

cessing is required such as processing multiple ECG channels in parallel. Furthermore, there exists

a variety of High Level Synthesis (HLS) tools and techniques [131,132] that facilitate FPGA pro-

totyping without the need to directly develop time-consuming low-level Hardware Description

Language (HDL) codes [133]. These tools allow engineers to describe their targeted hardware in

high-level programming languages such as C to synthesize them to Register Transfer Level (RTL).

The tools then offload the computational-critical RTL to run as kernels on parallel processing plat-

forms such as FPGAs [10].

Accelerating DNNs on FPGAs

FPGAs have been previously used to realize mostly inference [11, 132, 134], and in some cases

training of DNNs with reduced-precision-data [13], or hardware-friendly approaches [9]. For a

comprehensive review of previous FPGA-based DNN accelerators, we refer the reader to [132].

Here, we demonstrate an example of accelerating DNNs to benchmark the biomedical signal

processing task explained in Section 2.2.5. For our acceleration, we use fixed-point parameter rep-

resentations on a Starter Platform for OpenVINO Toolkit FPGA using OpenCL. OpenCL [131] is

an HLS framework for writing programs that execute across heterogeneous platforms. OpenCL

specifies programming languages (based on C99 and C++11) for programming the compute de-

vices and APIs to control and execute its developed kernels on the devices, where depending on

the available computation resources, an accelerator can pipeline and execute all work items in

parallel or sequentially.

Fig. 2.5 depicts the compilation flow we adopted. The trained DNN PyTorch model is first

converted to .prototxt and .caffemodel files using Caffe. All weights and biases are then

converted to a fixed point representation using MATLAB’s Fixed-point toolbox using word length

and fractional bit lengths defined in [135], prior to being exported as a single binary .dat file for

integration with PipeCNN, which is used to generate the necessary RTL libraries, and to perform

compilation of the host executable and the FPGA bit-stream. We used Intel’s FPGA SDK for

OpenCL 19.1, and provide all files used during the compilation shown in Fig. 2.5 in a publicly

accessible complementary GitHub repository2.

2https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-Biomedical-Appli
cations/blob/master/FPGA/
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FPGA-based DNNs for biomedical applications

Despite the many FPGA-based DNN accelerators available [132], only a few have been developed

specifically for biomedical applications such as ECG anomaly detection [136], or real-time mass-

spectrometry data analysis for cancer detection [137], where the authors show that application-

specific parameter quantization and customized network design can result in significant inference

speed-up compared to both CPU and GPU. In addition, the authors in [138] have developed an

FPGA-based BCI, in which a MLP is used for reconstructing ECog signals. In [139], the authors

have implemented an EEG processing and neurofeedback prototype on a low-power but low-cost

FPGA and then scaled it on a high-end Ultra-scale Virtex-VU9P, which has achieved 215 and 8

times power efficiency compared to CPU and GPU, respectively. For the EEG processing, they

developed an LSTM inference engine.

It is projected that, by leveraging specific algorithmic design and hardware-software co-design

techniques, FPGAs can provide >10 times energy-delay efficiency compared to state-of-the-art

GPUs for accelerating DL [132]. This is significant for realizing portable and reliable healthcare

applications. However, FPGA design is not as straightforward as high-level designs conducted

for DL accelerators and requires skilled engineers and stronger tools, such as those offered by the

GPU manufacturers.

2.3.3 Memristive DNNs

To achieve the two aforementioned key DNN acceleration goals, i.e. massive MAC parallelism and

reduced memory access, many studies have leveraged memristors [140–143] as weight elements

in their DNN and SNN [144, 145] architectures. Memristors are often referred to as the fourth

fundamental circuit element, and can adapt their resistance (conductance) to changes in the applied

current or voltage. This is similar to the adaptation of neural synapses to their surrounding activity

while learning. This adaptation feature is integral to the brain’s in-memory processing ability,

which is missing in today’s general purpose computers. This in-situ processing can be utilized to

perform parallel MAC operations inside memory, hence, significantly improving DNN learning

and inference. This is achieved by developing memristive crossbar neuromorphic architectures,

which are projected to achieve approximately 2500-fold reduction in power and a 25-fold increase

in acceleration, compared to state-of-the-art specialized hardware such as GPUs [140].

Memristive crossbars for parallel MAC and VMM operations

A memristive crossbar that can be fabricated using a variety of device technologies [145, 146]

can perform analog MAC operations in a single time-step (see Fig. 2.6(a)). This reduces the time

complexity to its minimum (O(1)), and is achieved by carrying out multiplication at the place

of memory, in a non-von Neumann structure. Using this well-known approach, VMM can be

parallelized as demonstrated in Fig. 2.6(b), where the vector of size M represents input voltage
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signals ([V1..VM ]). These voltages are applied to the rows of the crossbar, while the matrix (of size

M×N ), whose elements are represented as conductances (resistances), is stored in the memristive

components at each cross point. Taking advantage of the basic Ohm’s law (I = V.G), the current

summed in each crossbar column represents one element of the resulting multiplication vector of

size N .

Mapping memristive crossbars to DNN layers

Although implementing fully-connected DNN layers is straightforward by mapping the weights

to crossbar point memristors and having the inputs represented by input voltages, implementing a

complex CNN requires mapping techniques to convert convolution operations to MAC operations.

A popular approach to perform this conversion is to use an unrolling (unfolding) operation that

transforms the convolution of input feature maps and convolutional filters to MAC operations. We

have developed a software platform named MemTorch [15], that will be introduced in subsequent

sections, to perform this mapping as well as a number of other operations, for converting DNNs

to MDNNs. The mapping process implemented in MemTorch is illustrated in the left panel in

Fig. 2.7. The figure shows that the normal input feature maps and convolutional filters (shown

in gray shaded area) are unfolded and reshaped (shown in the cyan shaded area) to be compatible

with memristive crossbar parallel VMM operations. It is worth noting that the convolutional filters

that can be applied to the input feature maps have a direct relationship with the required crossbar

sizes. Furthermore, the resulting hardware size depends on the size of the input feature maps [8].
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Figure 2.6: Memristive crossbars can parallelize (a) analog MAC and (b) VMM operations. Here,
V represents the input vector, while conductances in the crossbar represent the matrix.
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Figure 2.7: Conversion process of a DNN trained in PyTorch and mapped to a Memristive DNN
using MemTorch [15], to parallelize MVMs using 1T1R memristive crossbars and to
take into account memristor variability including finite number of conductance states
and non-ideal RON and ROFF distributions.

Peripheral circuitry for memristive DNNs

In addition to the memristive devices that are used as programmable elements in MDNN archi-

tectures, various peripheral circuitry is required to perform feed-forward error-backpropagation

learning in MDNNs [142]. This extra circuitry may include: (i) a conversion circuit to translate

the input feature maps to input voltages, which for programming memristive devices are usually

Pulse Width Modulation (PWM) circuits, (ii) current integrators or sense amplifiers, which pass

the current read from every column of the memristive crossbar to (iii) analog to digital convert-

ers (ADCs), which pass the converted voltage to (iv) an activation function circuit, for forward

propagation, and for backward error propagation (v) the activation function derivative circuit.

Other circuits required in the error backpropagation path include (vi) backpropagation values to

PWM voltage generators, (vii) backpropagation current integrators, and (viii) backpropagation

path ADCs. In addition, an update module that updates network weights based on an algorithm

such as SGD is required, which is usually implemented in software. After the update, the new

weight values should be written to the memristive crossbar, which itself requires Bit-Line (BL)

and Word-line (WL) switch matrices to address the memristors for update, as well as a circuit

to update the memristive weights. There are different approaches to implement this circuit such

as that proposed in [147], while others may use software ex-situ training where the new weight

values are calculated in software and transferred to the physical memristors through peripheral

circuitry [142].

Memristive device nonidealities

Although ideal memristive crossbars have been projected to remarkably accelerate DNN learning

and inference and drastically reduce their power consumption [140,141], device imperfections ob-

served in experimentally fabricated memristors impose significant performance degradation when
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the crossbar sizes are scaled up for deployment in real-world DNN architectures, such as those

required for healthcare and biomedical applications discussed in Section 2.3.1. These imperfec-

tions include nonlinear asymmetric and stochastic conductance (weight) update, device temporal

and spatial variations, device yield, as well as limited on/off ratios [140]. To minimize the impact

of these imperfections, specific peripheral circuitry and system-level mitigation techniques have

been used [148]. However, these techniques add significant computation time and complexity to

the system. It is, therefore, essential to take the effect of these nonidealities into consideration

before utilizing memristive DNNs for any healthcare and medical applications, where accuracy

is critical. In addition, there is a need for a unified tool that reliably simulates the conversion

of a pre-trained DNN to a MDNN, while critically considering experimentally modeled device

imperfections [15].

Conversion of DNN to MDNN while considering memristor nonidealities

Due to the significant time and energy required to train new large versions of DNNs for challeng-

ing cognitive tasks, such as biomedical and healthcare data processing [54,149], the training of the

algorithms is usually undertaken in data centers [54, 58]. The pretrained DNN can then be trans-

ferred to be used on memristive crossbars. There are several different frameworks and tools that

can be used to simulate and facilitate this transition [150]. In a recent study, we have developed

a comprehensive tool named MemTorch, which is an open source, general, high-level simulation

platform that can fully integrate any behavioral or experimental memristive device model into

crossbar architectures to design MDNNs [15].

Here, we utilize the benchmark biomedical signal processing task explained in Section 2.2.5

to demonstrate how pretrained DNNs can be converted to equivalent MDNNs, and how non-ideal

memristive devices can be simulated within MDNNs prior to hardware realization. The conversion

process, which can be generalized to other biomedical models using MemTorch, is depicted in

Fig. 2.7.

The targeted MDNNs are constructed by converting linear and convolutional layers from Py-

Torch pre-trained DNNs to memristive equivalent layers employing 1-Transistor-1-Resistor (1T1R)

crossbars. A double-column scheme, in which two crossbars are used to represent positive and

negative weight values, is used to represent network weights within memristive crossbars. The

converted MDNN models are tuned using linear regression, as described in [15]. The complete

and detailed process and the source code of the network conversion for the experiments shown in

this Section are provided in a publicly accessible complementary Jupyter Notebook3.

During the conversion, any memristor model can be used. For the benchmark task, a reference

VTEAM model [151] is instantiated using parameters from Pt/Hf/Ti RRAM devices [152], to

model all memristive devices within converted linear and convolutional layers. As already men-

3https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-Biomedical-Appli
cations/blob/master/MemTorch.ipynb
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tioned, memristive devices have inevitable variability, which should be taken into account when

implementing an MDNNs for learning and/or inference. Also, depicted in Fig. 2.7 are visualiza-

tions of two non-ideal device characteristics: the finite number of conductance states and device-

to-device variability. Using MemTorch [15], not only can we convert any DNNs to an equivalent

MDNNs utilizing any memristive device model, we are also able to comprehensively investigate

the effect of various device non-idealities and variation on the performance of a possible MDNN,

before it is physically realized in hardware.

In order to demonstrate an example which includes variability in our MDNN simulations,

device-device variability is introduced by sampling ROFF for each device from a normal distri-

bution with R̄OFF = 2,500Ω with standard deviation 2σ, and RON for each device from a normal

distribution with R̄ON = 100Ω with standard deviation σ.

In Fig. 2.8, for the converted memristive MLP and CNN that process APS hand-gesture inputs,

we gradually increase σ from 0 to 500, and compare the mean test set accuracy across the three

folds. As can be observed from Fig. 2.8, with increasing device-to-device variability, i.e. the

variability of RON and ROFF, the performance degradation increases across all networks. For all

simulations, RON and ROFF are bounded to be positive.

Memristive DNNs towards biomedical applications

Although some previous small-scale MDNNs have been simulated for biomedical tasks such as

cardiac arrhythmia classification [153], or have been implemented on a physical programmable

memristive array for breast cancer diagnosis [154], there is currently no large-scale MDNN, even

at the simulation-level, which has realized any practical biomedical processing tasks.
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Figure 2.8: Simulation results investigating the performance of MDNNs for hand gesture clas-
sification adopting non-ideal Pt/Hf/Ti ReRAM devices. Device-device variability is
simulated using MemTorch [15].
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Similar to the recent advances in CMOS-driven DNN accelerator chips discussed in Section 2.3.1,

there have been promises in partial [141] or full [142] realizations of MDNNs in hardware, which

are shown to achieve significant energy saving compared to state-of-the-art GPUs. However, un-

like their CMOS counterparts, these implementations have been only able to perform simple tasks

such as MNIST and CIFAR classification. This is, of course, not suitable for implementing large-

scale CNNs and RNNs, which as shown in Section 2.3.1 are required for biomedical and healthcare

tasks dealing with image [77] or temporal [78] data types.

In addition, following similar optimization strategies as those used in CMOS accelerators, [155]

has simulated the use of quantized and binarized MDNNs and their error tolerance in a biomedical

ECG processing task and has shown their potential to achieve significant energy savings compared

to full-precision MDNNs. However, due to the many intricacies in the design process and consid-

ering the peripheral circuitry that may offset the benefits gained by using MDNNs, full hardware

design is required before the actual energy saving of such binarized MDNNs can be verified.

In the next Section, we provide our analysis and perspective on the use of the three hardware

technologies discussed in this Section for DL-based biomedical and healthcare applications. We

also discuss how SNN-based neuromorphic processors can benefit edge-processing for biomedical

applications.

2.4 Analysis and Perspective

The use of ANNs trained with the backpropagation learning algorithm in the domain of health-

care and for biomedical applications such as cancer diagnosis [167] or ECG monitoring [168]

dates back to the early 90s. These networks, were typically small-scale networks run on normal

workstations. As they were not deep and did not have too many parameters, they did not de-

mand high-performance accelerators. However, with the resurgence of CNNs in the early 2010s

followed by the rapid spread of DNNs and large data-sets, came the need for high-speed spe-

cialized processors. This need resulted in repurposing GPUs and actively researching other hard-

ware and design technologies including ASIC CMOS chips (see Table 2.2) and platforms [58],

memristive crossbars and in-memory computing [8, 141, 142], and FPGA-based designs for DNN

training [12, 13] and inference [11]. Despite notable progress in deploying non-GPU platforms

for DL acceleration, similar to other data processing tasks, biomedical and healthcare tasks have

mainly relied on standard technologies and GPUs. Currently, depending on the size of the re-

quired DNN, its number of parameters, as well as the available training dataset size, biomedical

DL tasks are usually “trained” on high-performance workstations with one or more GPUs [57,64],

on customized proprietary processors such as Google TPU [93], or on various Infrastructure-as-

a-Service (IaaS) provider platforms, including Nvidia GPU cloud, Google Cloud, and Amazon

Web Services, among others. This is mostly due to (i) the convenience these platforms provide

using high-level languages such as Python; (ii) the availability of wide-spread and open-source

28



Chapter 2 Hardware Implementation of Deep Network Accelerators Towards Healthcare and

Biomedical Applications

Table 2.3: Existing hardware implementations and hardware-based simulations of DNN accelera-
tors used for healthcare and biomedical applications, and generic SNN neuromorphic
processors utilized for biomedical signal processing. †Simulation-based.

Biomedical or Healthcare Task DNN/SNN
Architecture

Hardware

Image-based breast cancer diagnosis [54] Ensemble of
CNNs

CMOS (Google TPU)

Motor intention decoding [116] ELM CMOS
Spatial filtering and dimensionality reduc-
tion for brain-state classification [123]

Autoencoder CMOS

Energy-efficient multi-class ECG classifica-
tion [87]

Spiking RNN CMOS

EMG signal processing [21] Spiking
CNN/MLP

CMOS

ECG signal processing [156] Spiking RNN CMOS
EMG signal processing [157] Spiking RNN CMOS
EMG signal processing [158] Feed-forward

SNN
CMOS

EMG and EEG signal processing [159] Recurrent 3D
SNN

CMOS

EEG and LFP signal processing [160] TrueNorth-
compatible
CNN

CMOS

Real-time closed loop neural decoding [161,
162]

Spiking ELM CMOS

ECG processing for cardiac arrhythmia
classification [153]

MLP Memristors†

Breast cancer diagnosis [154] MLP Programmable Memristor-
CMOS system

ECG signal processing [155] Binarized CNN Memristors†

ECG arrhythmia detection for hearth moni-
toring [136]

MLP FPGA

Mass-spectrometry for real-time cancer de-
tection [137]

MLP FPGA

ECog signal processing for BCI [138] MLP FPGA
Signal processing for fall detection [163] MLP FPGA
BCI-decoding of large-scale neural sen-
sors [164]

LTSM FPGA

EEG processing for energy-efficient Neuro-
feedback devices [139]

LTSM FPGA and CMOS

PPG signal processing for heart rate estima-
tion [165]

CNN/LTSM FPGA and CMOS

Multimodal signal classification for physi-
cal activity monitoring [166]

CNN FPGA and CMOS

29



Chapter 2 Hardware Implementation of Deep Network Accelerators Towards Healthcare and

Biomedical Applications

DL libraries such as TensorFlow and PyTorch; and (iii) strong community and/or provider support

in utilizing GPUs and IaaS for training various DNN algorithms and applications.

However, DL inference can benefit from further research and development on emerging and

mature hardware and design technologies, such as those discussed in this Chapter, to open up new

opportunities for deploying healthcare devices closer to the edge, paving the way for low-power

and low-cost DL accelerators for PoC devices and healthcare IoT. Despite this fact, hardware

implementations of biomedical and healthcare inference engines are very sparse. Table 2.3 lists

a summary of the available hardware implementations and hardware-based simulations of DNNs

used for healthcare and biomedical signal processing applications, using the three hardware tech-

nologies covered herein. In addition, the table shows existing biomedical signal processing tasks

implemented on generic low-power spiking neuromorphic processors.

2.4.1 CMOS Technology Has Been the Main Player for DL Inference in the
Biomedical Domain

Similarly to general-purpose GPUs, all other non-GPU DL inference engines at present are imple-

mented in CMOS. Therefore, it is obvious that most of the future edge-based biomedical platforms

would rely on these inference platforms. In Table 2.2, we listed a number of these accelerators

that are mainly developed for low-power mobile applications. However, before the deployment of

any edge-based DL accelerators for biomedical and healthcare tasks, some challenges need to be

overcome. A non-exhaustive list of these obstacles include: (i) the power and resource constraints

of available mobile platforms which, despite significant improvements, are still not suitable for

high-risk medical tasks; (ii) the need to verify that a DL system can generalize beyond the distri-

bution they are trained and tested on; (iii) bias that is inherent to datasets which may have adverse

impacts on classification across different populations; (iv) confusion surrounding the liability of

AI algorithms in high-risk environments [169]; and (v) the lack of a streamlined workflow between

medical practitioners and DL. While the latter challenges are matters of legality and policy, the

former issues highlight the fundamental need to understand where dataset bias comes from, and

how to improve our understanding of why neural networks learn the features they do, such that

they may generalize across populations in a manner that is safe for receivers of medical care.

In addition, to make the use of any accelerators possible for general as well as more com-

plex biomedical applications, the field requires strong hardware-software co-design to build hard-

ware that can be readily programmed for biomedical tasks. One successful co-design is the

Google TPU [58], which has successfully been used to surpass human experts in medical imaging

tasks [54]. Google has used a similar CMOS TPU technology to design inference engines [93],

which are very promising as edge hardware to enable mobile healthcare care applications. The

main reason for this promise is the availability of the established software platforms (such as

TensorFlow Light) and the community support for the Google TPU.

Overall, great advancements have happened for DL accelerators in the past several years and
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Table 2.4: Neuromorphic platforms used for biomedical signal processing.

Neuromor-
phic Chip

DYNAP-SE SpiNNaker TrueNorth Loihi ODIN

CMOS
Technology

180 nm ARM968, 130
nm

28 nm 14 nm Fin-
FET

28 nm FD-
SOI

Impl. Mixed-
signal

Digital Digital
ASIC

Digital
ASIC

Digital
ASIC

Neurons
per core

256 1000 (1M cores) 256 Max 1k 256

Synapses
per core

16k 1M 64k 114k-1M 64k

Energy per
SOP

17 pJ @
1.8V

Peak power 1W
per chip

26 pJ @
0.775

23.6 pJ @
0.75V

12.7
pJ@0.55V

Size 38.5 mm2 102 mm2 - 60 mm2 0.086 mm2

Biosignal
processing
application

EMG [158],
ECG [156],
HFO [91]

EMG and
EEG [159]

EEG and
LFP [160]

EMG [21] EMG [21]

they are currently stemming in various aspects of our life from self-driving cars to smart personal

assistants. After overcoming a number of obstacles such as those mentioned above, we may be

also able to widely integrate these DL accelerators in healthcare and biomedical applications.

However, for some medical applications such as monitoring that requires always-on processing,

we still need systems with orders of magnitude better power efficiency, so they can run on a simple

button battery for a long time. To achieve such systems, one possible approach is to process data

only when available and make our processing asynchronous. A promising method to achieve such

goals is the use of brain-inspired SNN-based neuromorphic processors.

2.4.2 Towards Edge Processing for Biomedical Applications With
Neuromorphic Processors

Although most of the efforts presented in this work focused on DNN accelerators, there are also

notable efforts in the domain of SNN processors that offer complementary advantages, such as

the potential to reduce the power consumption by multiple orders of magnitude, and to process

the data in real time. These so-called neuromorphic processors are ideal for end-to-end processing

scenarios, e.g., in wearable devices where the streaming input needs to be monitored in continuous

time in an always-on manner.

There are already some works using both mixed analog-digital and digital neuromorphic plat-

forms for biomedical tasks, showing promising results for always-on embedded biomedical sys-

tems. Table 2.4 shows a summary of today’s large scale neuromorphic processors, used for
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biomedical signal processing. The first chip presented in this table is DYNAP-SE [170], a multi-

core mixed-signal neuromorphic implementation with analog neural dynamics circuits and event-

based asynchronous routing and communication. The DYNAP-SE chip has been used to imple-

ment four of the seven SNN processing systems listed in Table 2.3. These SNNs are used for

EMG [157, 158] and ECG [87, 156] signal processing. The DYNAP-SE was also used to build a

spiking perceptron as part of a design to classify and detect High-Frequency Oscillations (HFO)

in human intracranial EEG [91].

In [87, 156, 157] a spiking RNN is used to integrate the ECG/EMG patterns temporally and

separate them in a linear fashion to be classifiable with a linear read-out. A Support Vector Ma-

chine (SVM) and linear least square approximation is used in the read out layer for [87, 156] and

overall accuracy of 91% and 95% for anomaly detection were reached respectively. In [157], the

timing and dynamic features of the spiking RNN on EMG recordings was investigated for clas-

sifying different hand gestures. In [158] the performance of a feedforward SNN and a hardware-

friendly spiking learning algorithm for hand gesture recognition using superficial EMG was inves-

tigated and compared to traditional machine learning approaches, such as SVM. Results show that

applying SVM on the spiking output of the hidden layer achieved a classification rate of 84%, and

the spiking learning method achieved 74% with a power consumption of about 0.05 mW . This

was compared to state-of-the-art embedded system showing that the proposed spiking network is

two orders of magnitude more power efficient [34, 171].

The other neuromorphic platforms listed in Table 2.4 include digital architectures such as SpiN-

Naker [172], TrueNorth [173] and Loihi [174]. SpiNNaker has been used for EMG and EEG

processing and the results show improved classification accuracy compared to traditional machine

learning methods [159]. In [160], the authors developed a framework for decoding EEG and LFP

using CNNs. The network was first developed in Caffe and the result was then used as a basis for

building a TrueNorth-compatible neural network. The TrueNorth-compatible network achieved

the highest classification, at approximately 76%. In [161, 162], the authors present a low-power

neuromorphic platform named Spike-input Extreme Learning Machine (SELMA), which performs

continuous state decoding towards fully-implantable wireless intracortical BMI. Recently, the

benchmark hand-gesture classification introduced in Section 2.2.5, was processed and compared

on two additional digital neuromorphic platforms, Loihi and ODIN/MorphIC [175,176]. A spiking

CNN was implemented on Loihi and a spiking MLP was implemented on ODIN/MorphIC [21].

The results achieved using these networks are presented in Table 2.5.

On-chip adaptation and learning mechanisms, such as those present in some of the neuromor-

phic devics listed in Table 2.4, could be a game changer for personalized medicine, where the

system can adapt to each patient’s unique bio signature and/or drift over time. However, the

challenge of implementing efficient on-chip online learning in these types of neuromorphic archi-

tectures has not yet been solved. This challenge lies on two main factors: locality of the weight

update and weight storage.
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Table 2.5: Comparison of conventional DNNs implemented on various hardware platforms with
spiking DNN neuromorphic systems on the benchmark biomedical signal processing
task of hand gesture recognition for both single sensor and sensor fusion, as explained in
Section 2.2.5. The results of the accuracy are reported with mean and standard deviation
obtained over a 3-fold cross validation. Loihi, Embedded GPU, and ODIN+MorphIC
implementation results are from [21]. The DNN architectures adopted are as follows:
⋄8c3-2p-16c3-2p-32c3-512-5 CNN. †16-128-128-5 MLP. ‡16-230-5 MLP. ∓4 × 400-
210-5 MLP. ∪EMG and APS/DVS networks are fused using a 5-neuron dense layer.

Platform Modality Accuracy
(%)

Energy (uJ) Inference
time (ms)

EDP (uJ *
s)

Loihi
(Spiking)

EMG (MLP†) 55.7 ± 2.7 173.2 ±
21.2

5.89 ± 0.18 1.0 ± 0.1

DVS (CNN⋄) 92.1 ± 1.2 815.3 ±
115.9

6.64 ± 0.14 5.4 ± 0.8

EMG+DVS
(CNN∪)

96.0 ± 0.4 1104.5 ±
58.8

7.75 ± 0.07 8.6 ± 0.5

ODIN+
MorphIC
(Spiking)

EMG (MLP‡) 53.6 ± 1.4 7.42 ± 0.11 23.5 ± 0.35 0.17 ± 0.01
DVS (MLP∓) 85.1 ± 4.1 57.2 ± 6.8 17.3 ± 2.0 1.00 ± 0.24
EMG+DVS
(MLP∪)

89.4 ± 3.0 37.4 ± 4.2 19.5 ± 0.3 0.42 ± 0.08

Embedded
GPU

EMG (MLP†) 68.1 ± 2.8 (25.5± 8.4) ·103 3.8 ± 0.1 97.3 ± 4.4
EMG (MLP‡) 67.2 ± 3.6 (23.9± 5.6) ·103 2.8 ± 0.08 67.2 ± 2.9
APS (CNN⋄) 92.4 ± 1.6 (31.7± 7.4) ·103 5.9 ± 0.1 186.9 ± 3.9
APS (MLP∓) 84.2 ± 4.3 (30.2± 7.5) ·103 6.9 ± 0.1 211.3 ± 6.1
EMG+APS
(CNN∪)

95.4 ± 1.7 (32.1± 7.9) ·103 6.9 ± 0.05 221.1 ± 4.1

EMG+APS
(MLP∪)

88.1 ± 4.1 (32.0± 8.9) ·103 7.9 ± 0.05 253 ± 3.9

FPGA

EMG (MLP†) 67.2 ± 2.3 (17.6± 1.1) 103 4.2 ± 0.1 74.1 ± 1.2
EMG (MLP‡) 63.8 ± 1.4 (13.9± 1.8) ·103 3.5 ± 0.1 48.9 ± 1.9
APS (CNN⋄) 96.7 ± 3.0 (24.0± 1.2) 103 5.4 ± 0.2 130.8 ± 1.4
APS (MLP∓) 82.9 ± 8.4 (23.1± 2.6) ·103 5.7 ± 0.2 131.4 ± 2.8
EMG+APS
(CNN∪)

94.8 ± 2.0 (31.2± 3.0) 103 6.3 ± 0.1 196.3 ± 3.1

EMG+APS
(MLP∪)

83.4 ± 2.8 (31.1 ± 1.4)
·103

7.3 ± 0.2 228.2 ± 1.6

Memristive

EMG (MLP†) 64.6 ± 2.2 0.038 6.0 ·10−4 2.38 ·10−8

EMG (MLP‡) 63.8 ± 1.4 0.026 4.0 ·10−4 1.04 ·10−8

APS (CNN⋄) 96.2 ± 3.3 4.83 1.0 ·10−3 4.83 ·10−6

APS (MLP∓) 82.4 ± 8.5 0.18 4.0 ·10−4 7.2 ·10−8

EMG+APS
(CNN∪)

94.8 ± 2.0 4.90 1.2 ·10−3 5.88 ·10−6

EMG+APS
MLP∪)

83.4 ± 2.8 0.33 6.0 ·10−4 1.98 ·10−7
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Locality There is a hardware constraint that the learning information for updating the weights

of any on-chip network should be locally available to the synapse, otherwise most of the sili-

con area would be consumed by the wires, required to route the update information to it. As

Hebbian learning satisfies this requirement, most of the available on-chip learning algorithms fo-

cus on its implementation in forms of unsupervised/semi-supervised learning [175, 177]. How-

ever, local Hebbian-based algorithms are limited in learning static patterns or using very shallow

networks [178]. There are also some efforts in the direction of on-chip gradient-descent based

methods which implement on-chip error-based learning algorithms where the least mean square

of a neural network cost function is minimized. For example, spike-based delta rule is the most

common weight update used for single-layer networks which is the base of the back-propagation

algorithm used in the vast majority of current multi-layer neural networks. Single layer mixed-

signal neuromorphic circuit implementation of the delta rule have already been designed [179] and

employed for EMG classification [158]. Expanding this to multi-layer networks involves non-local

weight updates which limits its on-chip implementation. Making the backpropagation algorithm

local is a topic of on-going research [180–182].

Weight storage The holy grail weight storage for online on-chip learning is a memory with

non-volatile properties whose state can change linearly in an analog fashion. Non-volatile mem-

ristive devices provide a great potential for this. Therefore, there is a large body of literature in

combining the maturity of CMOS technology with the potential of the emerging memories to take

the best out of the two worlds.

The integration of CMOS technology with that of the emerging devices has been demonstrated

for non-volatile filamentary switches [183] already at a commercial level [184]. There have also

been some efforts in combining CMOS and memristor technologies to design supervised local

error-based learning circuits using only one network layer by exploiting the properties of memris-

tive devices [179, 185, 186].

Apart from the above-mentioned benefits in utilizing memristive devices for online learning

in SNN-based neuromorphic chips, as discussed in Section 2.3.3, memristive devices have also

shown interesting features to improve the power consumption and delay of conventional DNNs.

However, as shown in Table 2.3, memristor-based DNNs are very sparse in the biomedical domain,

and existing works are largely based only on simulation.

2.4.3 Why Is the Use of MDNNs Very Limited in the Biomedical Domain?

Currently there are very few hardware implementations of biomedical MDNNs that make use of

general programmable memristive-CMOS, and only one programmed to construct an MLP for

cancer diagnosis. We could also find two other memristive designs in literature for biomedical

applications (shown in Table 2.3), but they are only simulations considering memristive crossbars.

This sparsity is despite the significant advantages that memristors provide in MAC paralleliza-
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tion and in-memory computing paradigm, while being compatible with CMOS technology [187].

These features make memristors ideal candidates for DL accelerators in general, and for portable

and edge-based healthcare applications in particular, because they have stringent device size and

power consumption requirements. To be able to use memristive devices in biomedical domain,

though, several of their shortcomings such as limited endurance, mismatch, and analog noise ac-

cumulation must be overcome first. This demands further research in the materials, as well as

the circuit and system design side of this emerging technology, while at the same time develop-

ing facilitator open-source software [15] to support MDNNs. Furthermore, investigating the same

techniques utilized in developing CMOS-based DL accelerators such as limited precision data

representation [8, 155] and approximate computing schemes can lead to advances in developing

MDNNs and facilitate their use in biomedical domains.

2.4.4 Why and When to Use FPGA for Biomedical DNNs?

Table 2.3 shows that FPGA is a popular hardware technology for implementing simple DL net-

works such as MLPs [136–138, 188] and in a few cases, more complex LSTMs and CNNs [139,

164–166]. The table also shows that FPGAs are mainly used for signal processing tasks and have

not been widely used to run complex DL architectures such as CNNs. This is mainly because they

have limited on-chip memory and low bandwidth compared to GPUs. However, they demonstrate

notable benefits in terms of significantly shorter development time compared to ASICs, and much

lower power consumption than typical GPUs. Besides, significant power and latency improvement

can be gained by customizing the implementation of various components of a DNN on an FPGA,

compared to running it on a general-purpose CPU or GPU [137,139]. For instance, in [139], EEG

signals are processed on FPGAs using two customized hardware blocks for (i) parallelizing MAC

operations and (ii) efficient recurrent state updates, both of which are key elements of LSTMs. This

has resulted in almost an order of magnitude power efficiency compared to GPUs. This efficiency

is critical in many edge-computing applications including DNN-based point-of-care biomedical

devices [66] and healthcare IoT [65, 105].

Another benefit of FPGAs is that a customized efficient FPGA design can be directly syn-

thesized into an ASIC using a nanometer-node CMOS technology to achieve even more bene-

fits [165,166]. For instance, [139] has shown near 100 times energy efficiency improvement as an

ASIC in a 15-nm CMOS technology, compared to its FPGA counterpart.

Although low-power consumption and affordable cost are two key factors for almost any edge-

computing or near-sensor device, these are even more important for biomedical devices such as

wearables, health-monitoring systems, and PoC devices. Therefore, FPGAs present an appealing

solution, where their limitations can be addressed for a customized DNN using specific design

methods such as approximate computing [9] and limited-precision data [11,13], depending on the

cost, required power consumption, and the acceptable accuracy of the biomedical device.

Another programmable low-power device that can be used in biomedical applications are Field
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Programmable Analog Arrays (FPAAs). These are constructed using programmable Computational

Analog Blocks (CABs) and interconnects. Unlike FPGAs, FPAAs tend to be more application

driven than general purpose as they may be current mode or voltage mode devices [189]. FPAAs

have been shown to perform computation with 1000 times more power efficiency while reducing

the required area by 100 times when compared to FPGAs [189]. Therefore, they are a promising

candidate for accelerating biomedical signal processing if machine learning algorithms such as

ANNs can be implemented using them.

In 2003, [190] explored ANNs with differential feedback, and in 2006 [191] implemented an

ANN using multi-chip FPAAs. More recently, [192] have demonstrated that VMMs can be effi-

ciently computed using FPAAs, which can be used to compute linear and unrolled convolution lay-

ers within DNNs. However, while FPAAs have been used in several biomedical applications rang-

ing from knee-joint rehabilitation [193] to the amplification of various bio-electric signals [194],

the implementation of a FPAA DNN accelerator, which can be used in biomedical and general

applications, is yet to be explored.

2.4.5 Benchmarking EMG Processing Across Multiple DNN and SNN
Hardware Platforms

In Table 2.5, we compare our FPGA and memristive implementations to other DNN accelerators

and neuromorphic processors from [21]. In [21], the authors presented a sensor fusion neuro-

morphic benchmark for hand-gesture recognition based on EMG and event-based camera. Two

neuromorphic platforms, Loihi [174] and ODIN+MorphIC [175, 176], were deployed and the

results were compared to traditional machine learning baselines implemented on an embedded

GPU, the NVIDIA Jetson Nano. Loihi and ODIN+MorphIC are digital neuromorphic platforms.

Loihi is a 128-core neuromorphic chip fabricated on 14 nm FinFET process, designed by Intel

Labs. It implements adaptive self-modifying event-driven fine-grained parallel computations used

to implement learning and inference with high efficiency. ODIN (Online-learning Digital spiking

Neuromorphic) is designed using 28 nm FDSOI CMOS technology and consists of a single neu-

rosynaptic core with 256 neurons and 2562 synapses that embed a 3-bit weight and a mapping

table bit that allows enabling or disabling Spike-Timing-Dependent Plasticity (STDP). MorphIC

is a quad-core digital neuromorphic processor with 2k Leaky Integrate and Fire (LIF) neurons

and more than 2M synapses in 65 nm CMOS technology [176]. They can be either programmed

with offline-trained weights or trained online with a stochastic version of Spike-Driven Synaptic

Plasticity (SDSP).

For the spiking architectures shown in Table 2.5, the vision input and EMG data were individu-

ally processed using spiking CNN and spiking MLP respectively, and fused in the last layer. Loihi

was trained using SLAYER [195], a backpropagation framework used for evaluating the gradient

of any kind of SNN. It is a dt-based SNN backpropagation algorithm that keeps track of the inter-

nal membrane potential of the spiking neuron and uses it during gradient propagation. Both ODIN
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and Morphic training was carried out in Keras with quantization-aware stochastic gradient descent

following a standard ANN-to-SNN mapping approach.

The dataset used is described in Section 2.2.5. It is a collection of 5 hand gestures from sign

language (e.g. ILY)4. In the comparison proposed in Table 2.5 the input and hidden layers are

sequenced with the ReLU activation function, and output layers are fed through Softmax activation

functions to determine class probabilities. Dropout layers are used in all networks to avoid over-

fitting. The DNN architectures are determined in the table caption.

The platforms used for each system in Table 2.5 are as follows: ODIN+MorphIC [175, 176]

and Loihi [174] neuromorphic platforms were used for spiking implementations; NVIDIA Jetson

Nano was used for all embedded GPU implementations; OpenVINO Toolkit FPGA was used

for all FPGA implementations, and MemTorch [15] was used for converting the MLP and CNN

networks to their corresponding MDNNs to determine the test set accuracies of all memristive

implementations.

From Table 2.5, it can be observed that, when transitioning from generalized architectures to ap-

plication specific processors, more optimized processing of a subset of given tasks can be achieved.

Moving up the specificity hierarchy from GPU to FPGA to memristive networks shows orders of

magnitude of improvement in both MLP and CNN processing, but naturally at the expense of a

generalizable range of tasks. While GPUs are relatively efficient at training networks (compared

to CPUs), the impressive metrics presented by memristor (RRAM in this simulations) is coupled

with limited endurance. This is not an issue for read-only tasks, as is the case with inference,

but training is thwarted by the thousands of epochs of weight updates which limits broad use of

RRAMs in training. Rather, more exploration in alternative resistive-based technologies such as

Magnetoresistive Random-Access Memory (MRAM) could prove beneficial for tasks that demand

high endurance.

After determining the test set accuracy of each MDNN using MemTorch [15], we determined

the energy required to perform inference on a single input, the inference time, and the Energy

Delay Product (EDP) by adopting the metrics in [196], for a tiled memristor architecture. All

assumptions made in our calculations are listed below. Parameters are adopted from those given

in a 1T1R 65nm technology, where the maximum current during inference is 3µA per cell with

a read voltage of 0.3V. Each cell is capable of storing 8 bits with a resistance ratio of 100, and

mapping signed weights is achieved using a dual column representation. All convolutions are

performed by unrolling the kernels and performing MVMs, and the fully connected layers have

the fan-in weights for a single neuron assigned to one column. Each crossbar has an aspect ratio of

256×64 to enable more analog operations per ADC when compared to a 128×128 array. Where

there is insufficient space to map weights to a single array, they are distributed across multiple

arrays, with their results to be added digitally. Throughput can be improved at the expense of

additional arrays for convolutional layers, by duplicating kernels such that multiple inputs can

4https://zenodo.org/record/3663616#.X2m5GC2cbx4. Further implementation details can be found
in [21].
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be processed in parallel. The number of tiles used for each network is assumed to be the exact

number required to balance the processing time of each layer. The power consumption of each

current-mode 8-bit ADC is estimated to be 2×10−4 W with an operating frequency of 40 MHz (5

MHz for bit-serial operation) [196]. The ADC latency is presumed to dominate digital addition

of partial products from various tiles. The dynamic range of each ADC has been adapted to the

maximum possible range for each column, and each ADC occupies a pair of columns.

The above presumptions lead to pre-silicon results that are extremely promising for memristor

arrays, as shown in Table 2.5. But it should be clear that these calculations were performed for

network-specific architectures, rather than a more general application-specific use-case. That is,

we assume the chip has been designed for a given neural network model. The other comparison

benchmarks are far more generalizable, in that they are suited to not only handle most network

topologies, but are also well-suited for training. The substantial improvement of inference time

over other methods is a result of duplicate weights being mapped to enable higher parallelism,

which is tolerable for small architectures, but lends to prohibitively large ADC power consump-

tion for computer vision tasks which rely on deep networks and millions of parameters, such as

VGG-16. In addition, the area of each ADC is estimated to be 3×10−3mm2, which is orders

of magnitude larger than the area of each RRAM cell (1.69×10−7mm2). This disparity implies

that pitch-matching is not viable. Instead, to achieve parallelism, weights must be duplicated

across tiles which demands redundancy. This improvement in parallelism thus comes at the cost

of additional area and power consumption. The use of memristors as synapses in spike-based im-

plementations may be more appropriate, so as to reduce the ADC overhead by replacing multi-bit

ADCs with current sense amplifiers instead, and reducing the reliance on analog current summa-

tion along resistive and capacitive bit-lines.

Spike-based hardware show approximately two orders of magnitude improvement in the EDP

from Table 2.5 when compared to their GPU and FPGA counterparts, which highlights the prospec-

tive use of such architectures in always-on monitoring. This is necessary for enhancing the

prospect of ambient-assisted living, which would allow medical resources to be freed up for tasks

that are not suited for automation. In general, one would expect that data should be processed in its

naturalized form. For example, 2D CNNs do not discard the spatial relations between pixels in an

image. Graph networks are optimized for connectionist data, such as the structure of proteins. By

extension, the discrete events generated by electrical impulses such as in EMGs, EEGs and ECGs

may also be optimized for SNNs. Of course, this discounts any subthreshold firing patterns of

measured neuron populations. But one possible explanation for the suitability of spiking hardware

for biological processes stems from the natural timing of neuronal action potentials. Individual

neurons will typically not fire in excess of 100 Hz, and the average heart rate (and correspond-

ingly, ECG spiking rate) will not exceed 3 Hz. There is a clear mismatch between the clock rate

of non-spiking neural network hardware, which tend to at least be in the MHz range, and spike-

driven processes. This introduces a significant amount of wastage in processing data when there
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is no new information to process (e.g., in between heartbeats, action potentials, or neural activity).

Nonetheless, it is clear that accuracy is compromised when relying on EMG signals alone, based

on the approximately 10% decrease of classification accuracy on the Loihi chip and ODIN+MorphIC,

as against their GPU/FPGA counterparts. This could be a result of spike-based training algorithms

lagging behind in maturity compared to conventional neural network methods, or it could be an in-

dication that critical information is being discarded when neglecting the subthreshold signals gen-

erated by populations of neurons. But when EMG and DVS data are combined, this multi-sensory

data fusion of spiking signals positively reinforce upon each other with an approximately 4% ac-

curacy improvement, whereas combining non-spiking, mismatched data representations leads to

marginal improvements, and even a destructive effect (e.g., non-spiking CNN implementation on

FPGA and memristive arrays). This may be a result of EMG and APS data taking on completely

different structures. This is a possible indication that feature extraction from merging the same

structural form of data (i.e., as spikes) proves to be more beneficial than combining a pair of net-

works with two completely different modes of data (i.e., EMG signals with pixel-driven images).

This allows us to draw an important hypothesis: neural networks can benefit from a consistent rep-

resentation of data generated by various sensory mechanisms. This is supported by biology, where

all biological interpretations are typically represented by graded or spiking action potentials.

2.4.6 Deep Network Accelerators and Patient-specific Model Tuning

Given the inherent variability between patients, it is difficult to train and deploy a single model to

a large group of individuals each with unique signature(s). Consequently, significant efforts are

being made to facilitate patient-specific model tuning processes [113, 197, 198]. Patient-Specific

Modeling (PSM) is the development of computational models of human or animal pathophysiol-

ogy that are individualized to patient-specific data [197].

In the DL domain, existing ANN and neuromorphic models can be retrofitted to specific patients

using transfer learning and tuning algorithms. In this approach, the network is first trained on a

large dataset including data from various patients to acquire the domain-specific knowledge of the

targeted task. Parts of the large network are then retrained, i.e. tuned, using patient-specific data,

to produce better performance for individual patients. This way, the domain-specific features of

the large network are transferred to the smaller network that is retrained to learn patient-specific

features [113]. Depending on the availability of patient-specific data, PSM can be performed

online (on-chip) or offline (off-chip).

Online patient-specific model tuning

Considering concerns surrounding the sensitive nature of individual patient data, and the ability of

some recent edge-AI CMOS chips such as LNPU [96] to perform online training, patient-specific

model tuning can be performed online on the hardware deep learning accelerator. To achieve

this, a sufficient amount of patient data that is fed to the accelerator over time can be gathered to
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individualize the initial generic model. An accelerator that can adapt its working to the specific

needs of a patient would be highly beneficial but it may require buffering of data [199], which

needs higher on-chip memory and may introduce power overheads.

Offline patient-specific model tuning

A convenient approach to tune general models, with domain-specific knowledge, to patient-specific

data is offline off-chip transfer learning. However, unlike online tuning, the offline approach re-

quires prior patient data measurements, which may not be readily available. Besides, the offline

approach may require undesired remote storage and processing of private patient data to retrain

and tune generic models.

2.5 Conclusion

The use of DL in biomedical signal processing and healthcare promises significant utility for

medical practitioners and their patients. DNNs can be used to improve the quality of life for

chronically ill patients by enabling ambient monitoring for abnormalities, and correspondingly

can reduce the burden on medical resources. Proper use can lead to reduced workloads for medical

practitioners who may divert their attention to time-critical tasks that require a standard beyond

what neural networks can achieve at this point in time.

We have stepped through the use of various DL accelerators on a disparate range of medical

tasks, and shown how SNNs may complement DNNs where hardware efficiency is the primary

bottleneck for widespread integration. We have provided a balanced view to how memristors may

lead to optimal hardware processing of both DNNs and SNNs, and have highlighted the challenges

that must be overcome before they can be adopted at a large-scale. While the focus of this tutorial

and review is on hardware implementation of various DL algorithms, the reader should be mindful

that progress in hardware is a necessary, but insufficient, condition for successful integration of

medical-AI.

Adopting medical-AI tools is clearly a challenge that demands the collaborative attention of

healthcare providers, hardware and software engineers, data scientists, policy-makers, cognitive

neuroscientists, device engineers and materials scientists, amongst other specializations. A unified

approach to developing better hardware can have pervasive impacts upon the healthcare industry,

and realize significant payoff by improving the accessibility and outcomes of healthcare.
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Chapter 3

Modeling and Simulating In-Memory
Memristive Deep Learning Systems: An
Overview of Current Efforts

Memristive In-Memory Computing (IMC) systems for Deep Learning (DL), which are also known

as Memristive Deep Learning Systems (MDLS), can perform repetitive Multiply and Accumulate

(MAC) operations and store the results in the same physical location using emerging memory

devices. This can be used to augment the performance of traditional DL architectures, massively

reducing their power consumption and latency. However, memristive devices, such as Resistive

Random-Access Memory (RRAM) and Phase-Change Memory (PCM), are difficult and cost-

prohibitive to fabricate in small quantities, and are prone to various device non-idealities that must

be accounted for. Consequently, the popularity of simulation frameworks, used to simulate MDLS

prior to circuit-level realization, is burgeoning. In this Chapter, the second part of the literature

review component of this thesis is presented. A survey of existing simulation frameworks and

related tools used to model large-scale MDLS is provided. In addition, performance comparisons

of modernized open-source simulation frameworks are made, and insights into future modeling

and simulation strategies and approaches are presented.

3.1 Introduction

Traditionally, ML and DL systems are trained and deployed using hardware platforms adopting

the von Neumann computing architecture. While in recent years, GPUs have been used to mas-

sively parallelize and accelerate the performance of these workloads [37], they are still prone to

performance bottlenecks caused by the amount of data being moved back and forth between phys-

ically separated memory and processing units. IMC is a novel non-von Neumann approach, where

certain computational tasks are performed in the memory itself [41], which has the potential to

alleviate this bottleneck.

IMC systems can be realised by arranging memory devices in crossbar architectures, where they

can be used to perform various logical and arithmetic operations [200]. These memory devices
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Figure 3.1: (a) A modular memristive crossbar tiled architecture containing parameters from two
linear and unfolded convolutional layers; both key components of traditional CNNs.
Unique colours denote mapped parameters from different layers. (b) In a modular
crossbar tile that is used to perform the VMM operation in-memory, SLs can be used
to isolate columns of devices (BLs), in which inputs are applied to as WL voltages.
BLs currents are read out using ADCs, that can be linearly related to vector-matrix
product elements. This figure is adapted from [6].

can be fabricated using legacy charge-based memory technologies, such as Static Random-Access

Memory (SRAM), or emerging memristive device technologies, such as RRAM, which are intro-

duced and discussed in Section 3.2. Memristive devices, in particular, have shown great promise

to facilitate the acceleration and improve the power efficiency of ML and DL systems, as they can

be passive, re-programmable, and non-volatile [1, 145, 200–203].

As depicted in Fig. 3.1, crossbar architectures constructed using memristive RRAM devices can

be used to efficiently implement various in-memory computing operations, including MAC and

VMMs operations. Previous works in the literature have exploited physical properties of memris-

tive devices to realize a variety of commonly used operations and components of neuromorphic

architectures [4, 42, 144, 204, 205]. Traditionally, IMC systems have been used to implement

brain-inspired asynchronous neuromorphic architectures [206], realizing artificial synapses using

memristive devices. However, they are also capable of accelerating VMMs, the most dominant op-

erations in DNNs, in O(1), which makes them more appealing for deep learning systems [8,207].

Currently, several memristive device technologies, including RRAM and PCM, which are de-

picted in Fig. 3.2, are being actively researched [200]. However, despite continuous ongoing

efforts, they are prone to various device non-idealities, which limit their accuracy and reliability

to use in practical engineering settings [208]. Consequently, many large-scale simulations encom-

passing device and circuit non-idealities have been conducted using synaptic memristive connec-

tions for brain-inspired asynchronous neuromorphic systems [209–211] and DL systems [204].

While these simulations were traditionally performed using general purpose Simulation Program
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Figure 3.2: Typical (a) unipolar and (b) bipolar switching modes of memristive devices and
schematics of popular device technologies: (c) RRAM, (d) PCM, (e) CBRAM, and
(f) STT-MRAM.

with Integrated Circuit Emphasis (SPICE)-based simulators, as the complexity of the underlying

systems and neuromorphic architectures being simulated has increased, customized simulation

frameworks have been developed. These frameworks are used to rapidly prototype novel network

architectures as a preliminary step prior to circuit-level validation and layout using mature CAD

tools; for eventual circuit-level realization and large-scale fabrication.

In contrast to conventional SPICE-based simulation, modern CAD simulation frameworks adopt

modern software engineering methodologies. Moreover, they are able to accurately model non-

ideal device characteristics, peripheral circuitry, and modular crossbar tiles while being inter-

faceable using high-level language APIs. We confine the scope of this Chapter to MDLS, i.e.,

memristive IMC systems for DL system deployment, and provide a survey of existing simulation

frameworks and related tools used to model large-scale MDLS.

The rest of this Chapter is structured as follows. In Section 3.2, preliminaries related to mod-

eling and simulating in-memory MDLS are presented. In Section 3.3, existing CAD tools for in-

memory MDLS are over-viewed. In Section 3.4, comparisons of modern simulation frameworks

for in-memory MDLS are made, and two MDLS architectures are simulated. In Section 3.5, we

provide an outlook for MDLS simulation frameworks. Finally, in Section 3.6, this Chapter is

concluded.

3.2 Preliminaries

Memristors, commonly referred to as the fourth fundamental circuit element, are two-terminal

passive circuit elements characterized by a relationship between the charge, q(t) ≡
∫ t
−∞ i(τ)dτ

and the flux-linkage φ(t) ≡
∫ t
−∞ v(τ)dτ [212]. Memristors are capable of non-volatile storage.

We depict typical unipolar and bipolar switching I-V characteristics, and schematics of popular

memristive device technologies in Fig. 3.2.
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Unfolded convolutional layers and linear (dense) layers within DL systems can be implemented

using a series of MAC and VMM operations, which can be computed in-memory using mem-

ristive crossbar arrays, as depicted in Fig. 3.1, by encoding weights as resistance/conductance

values, and inputs as WL voltages. Tiled crossbar architectures contain several modular cross-

bar tiles connected using a shared bus. These are also connected to additional circuitry used to

realize batch-normalization, pooling, activation functions, and other computations that cannot be

performed, or are not efficient, in-memory. Modular crossbar tiles consist of crossbar arrays with

supporting peripheral circuitry. We refer the reader to [42] for a comprehensive description and

overview of IMC accelerators for DL acceleration.

In Fig. 3.2, typical switching modes and schematics of popular memristive device technolo-

gies are depicted. Memristors differ from electrical resistors, as they have a voltage or current-

dependent resistance state, which is dependent on the electric properties of the materials us-

ing which they are constructed. As depicted in Fig. 3.2(c), RRAM devices are comprised of

Metal–Insulator–Metal (MIM) stacks. The resistive state of RRAM devices can be modulated by

creating and disrupting Conductive Filaments (CFs), used to refer to localized concentrations of

defects that allow current to flow between top and bottom electrodes.

As depicted in Fig. 3.2(d), typical PCM devices have a mushroom shape (amorphous region),

where the bottom electrode confines heat and current. By crystallizing the amorphous region,

different resistive states can be obtained [200]. As shown in Fig. 3.2(e), CBRAM devices are

comprised of a thin solid state electrolyte layer sandwiched between oxidizable and inert elec-

trodes. The resistive state of CBRAM devices can be modulated by driving redox reactions in

the filament (solid state electrolyte layer) [213]. Finally, Fig. 3.2(f) shows the device structure of

STT-MRAM, which contains two ferromagnetic layers and one tunnel barrier layer. The resis-

tance of STT-MRAM devices can be modulated by modifying the orientation of a magnetic layer

in a magnetic tunnel junction or spin valve using a spin-polarized current [214].

As memristive devices can only be programmed to positive resistance states, weights can either

be represented using a dual-array scheme, a dual row scheme, where double the number of rows

are required, or a current-mirror scheme, that is capable of operation using a singular device to

represent each weight [196].

As can be observed in Fig. 3.1, in a 1T1R arrangement, SLs can be used to individually select

memristive devices. After mapping and programming weights, to perform a MAC operation,

inputs are scaled and encoded as voltages, prior to being presented to WLs. Currents from each BL

are read-out using ADCs, either in parallel using one ADC per column, or sequentially, using time-

multiplexing. Finally, BL currents can be correlated with desired deterministic output elements

using linear regression. By time multiplexing the presentation of inputs, or duplicating modular

crossbar tiles, VMMs operations can be performed in O(n), or O(1), respectively.

CAD tools can be used to convert traditional DNNs to equivalent representations using modular

tiled architectures. These tools can be used to simulate the inference and training of MDLS, and
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to estimate power/area/latency of end-to-end implementations when various memristive devices

are integrated within CMOS processes. Models are used to simulate the behavior of peripheral

circuitry and memristive devices, which can be broadly categorized as empirical or analytical

(functional). Empirical models are based on, concerned with, or verified by experimental data,

whereas analytical models are based on analysis or logic derived from fundamental physics of

the device. In this Chapter, we do not emphasize specific memristive device and crossbar circuit

models, as these have previously been surveyed in other works [215–217].

Table 3.1: Comparison of conventional simulation frameworks for MDLS simulation. †Not na-
tively supported.

Simu-
lation
frame-
work

Prog.
lan-
guage
(s)

GPU Pre-
trained
DNN

conver-
sion

TF/
Py-

Torch
Intg.⋄

Infer-
ence

Train-
ing

Peri-
pheral

cir-
cuitry

Supported
devices

Open-
sour

ce

NVM

Spice

[218]

Not

spec-

ified

(SPICE-

like)

✓† ✓† Non-volatile

memories and

legacy NAND

flash.

NVSim

[219]

C++,

C

✓† ✓† ✓ Non-volatile

memories and

legacy NAND

flash.

✓

NV

Main,

NV

Main

2.0

[220,

221]

C++,

Sys-

tem

Ver-

ilog,

Python

✓† ✓† Non-volatile

memories and

hybrid non-

volatile plus

DRAM memory

systems.

✓

MN

SIM

[222]

Not

spec-

ified

✓† ✓† ✓ Non-volatile

memories.

✓
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TxSim

[114]

Python ✓ ✓ ✓ ✓ ✓ Non-volatile

memories and

legacy NAND

flash.

Pipe

Layer

[223]

C++ ✓† ✓ ✓ ✓ ✓ Non-volatile

memories.

NRIS

DC

[224]

Python ✓ ✓ ✓ ✓ ✓ Non-volatile

memories and

legacy NAND

flash.

IAUR

RRAM

De-

vices

[225]

Python ✓ ✓ ✓ RRAM.

RxNN

[226]

C++ ✓ ✓ ✓ ✓ Non-volatile

memories.

3.3 Overview of Existing CAD Tools

In Tables 3.1 and 3.2, we present an overview of existing conventional and modernized simu-

lation frameworks that can be used to simulate MDLS and IMC systems utilizing non-volatile

memory and legacy NAND flash devices for comparison. We categorize modernized simulation

frameworks as those that support pre-trained DNN conversion and TF and/or PyTorch integra-

tion. General SPICE [227] simulation tools, such as PSPICE and LTSPICE, are not compared.

Although they are the most commonly used tools for analogue circuit simulation [228], they are

difficult to parallelize and prohibitively slow; even when simulating large crossbar arrays using

significant approximation methodologies [229, 230]. Consequently, specialized and/or paralleliz-

able CAD tools with direct integration with modern ML frameworks, such as PyTorch [231] and

Tensorflow [232], are more commonly used to simulate MDLS.

Tables 3.1 and 3.2 demonstrate that while most mature conventional SPICE-based simulation

frameworks, such as NVMSpice, NVSim, and NVMain, are CPU bound, and do not natively sup-

port pre-trained DNN conversion, inference, and training modeling, they do support a large variety

of device types. In addition, they are primarily focused on the high-precision and high-speed simu-

lation of non-volatile memories and legacy NAND flash devices. In contrast, modernized recently

developed frameworks, such as DNN+NeuroSIM, MemTorch, and the IBM Analog Hardware
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Figure 3.3: Comparison of modern simulation frameworks that support pre-trained DNN conver-
sion and TF/PyTorch integration. †Support and Accuracy. ⋄Degree of Coverage.

Acceleration Kit, abstract performance-critical operations on GPUs, integrate directly with pop-

ular ML frameworks, and have well documented APIs. Moreover, they adopt modern software

engineering methodologies, and are able to accurately model non-ideal device and circuit char-

acteristics, peripheral circuitry, and crossbar tiles. They are also directly interfaceable with other

tools using accessible, general-purpose high-level programming languages; a paradigm shift from

conventional SPICE-based simulation.

3.4 Comparison of Modern Simulation Frameworks

While modernized simulation frameworks superficially appear similar, upon closer inspection,

they are complimentary in nature. To make this clearer, in Fig. 3.3, we compare modern simulation

frameworks, i.e., those that support pre-trained DNN conversion and TF/PyTorch integration in

more detail, using radar charts. As it is shown, there is not a large overlap amongst the simulation

frameworks which have been compared: RAPIDNN, PUMA, DL-RSIM, Tiny but Accurate, Ultra-

Efficient Memristor-Based DNN, MemTorch, DNN+NeuroSIM, and the IBM Analog Hardware

Acceleration Kit.

Although many of these simulation frameworks are still under active development, and are not

fully mature, they clearly adopt different design and usability approaches. For instance, both Tiny

but Accurate and Ultra-Efficient Memristor-Based DNN are built upon NVSim, whereas all other

simulation frameworks are either written from scratch in lower level languages, or extend upon

existing high-level GPU-accelerated computing libraries to abstract performance critical opera-

tions. Moreover, while RAPIDNN, PUMA, Tiny but Accurate, Ultra-Efficient Memristor-Based
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DNN and DNN+NeuroSIM can be used to generate power/area/latency reports, MemTorch and

the IBM Analog Hardware Acceleration Kit support a large number of different layer types, and

Table 3.2: Comparison of modernized simulation frameworks for MDLS simulation. ‡Models are
shared using Google Drive without APIs. ⋄TF/PyTorch integration.
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memristive
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PUMA
[150]

C++ ✓ ✓ ✓ ✓ Non-volatile
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and legacy
NAND flash.

DL-RSIM
[234]

Python ✓ ✓ ✓ ✓ ✓ Non-volatile
memories.

Tiny but
Accu-
rate [235]

MATLAB ✓ ✓ ✓ ✓ Non-volatile
memories.

✓‡

Ultra-
Efficient
Memristor-
Based
DNN [236]

C++,
MAT-
LAB

✓ ✓ ✓ ✓ Non-volatile
memories

✓‡

MemTorch
[15, 16]

Python,
C++,

CUDA

✓ ✓ ✓ ✓ ✓ Non-volatile
memories
and legacy
NAND flash.

✓

NeuroSim
and deriva-
tives
[139, 139,
237–239]

C++,
Python

✓ ✓ ✓ ✓ ✓ ✓ Non-volatile
memories
and legacy
NAND flash.

✓

IBM
Analog
Hardware
Accel-
eration
Kit [240]

C++,
Python,
CUDA

✓ ✓ ✓ ✓ ✓ ✓ Non-volatile
memories.

✓
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can be used to accurately model device non-idealities in a robust and modular manner. By adopt-

ing different design and usability approaches, all simulation frameworks can be beneficial and

complement each other to be used by a variety of users with different requirements.

To determine the usability and performance of each modernized simulation framework, when

possible, we used each framework to simulate the training routine of the VGG-8 [241] network

architecture, and the inference routine of the GoogLeNet [242] network architecture. Both train-

ing and inference routines were evaluated using the CIFAR-10 dataset. Two separate network

architectures were used for evaluation, as larger and more complex networks could not be reli-

ably trained using existing simulation frameworks with CUDA support when utilizing a single

GPU, even with 32GB of Video Random-Access Memory (VRAM). Moreover, not all simulation

frameworks supported convolutional layers with non-zero groups (connections between inputs and

outputs), meaning that many ResNet-based architectures could not be implemented.

When possible, weights from linear and convolutional layers were mapped onto modular 1T1R

crossbar tiles of size (16 × 16) using a differential weight mapping scheme, and device-to-device

variability was modeled by sampling RON and ROFF from normal distributions with mean values of

10kΩ and 100kΩ, and standard deviation values of 1, 000 and 10, 000, respectively, i.e., ¯RON =

10kΩ, and ¯ROFF = 100kΩ. Devices were assumed to have a finite number (6) of conductance

states, and ADCs were assumed to operate at a 6-bit resolution. For inference routine simulations,

10 runs were conducted, and mean and standard deviation values were reported across all runs.

For training routine simulations, mean and standard deviation values were reported across all

training epochs. All codes used to perform comparisons are made publicly-accessible1, and can

be modified to perform comparisons using different hardware technologies, network architectures,

and hyper-parameters.

The RAPIDNN, PUMA, and DL-RSIM simulation frameworks are not open-source, so they

could not be evaluated and directly compared in more detail. Similarly, while full precision

and quantized trained models are available for the DL-RSIM and Tiny but Accurate frameworks,

codes used to simulate inference routines are not. Consequently, in Fig. 3.4, training routines of

DNN+NeuroSim and the IBM Analog Hardware Acceleration Kit are compared, and in Fig. 3.5,

inference routines of MemTorch, DNN+NeuroSim, and the IBM Analog Hardware Acceleration

Kit, are compared.

3.4.1 Simulation Configurations

All simulations were conducted using a High Performance Computing (HPC) cluster with the

following run-time hardware configuration set using the Simple Linux Utility for Resource Man-

agement (SLURM) workload manger: 1 node and 8 CPU cores (Intel Xeon 6132 series CPU

sockets), 100GB DDR4 3200MHz Random-Access Memory (RAM), and one PCI-E 32GB Volta

1https://github.com/coreylammie/Modeling-and-Simulating-In-Memory-Memristiv
e-Deep-Learning-Systems
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(d) (e) (f)

Figure 3.4: Comparison of training routines of DNN+NeuroSim and the IBM Analog Hardware
Acceleration Kit, for the VGG-8 network architecture, using the CIFAR-10 dataset.

V100 GPU. torch.cuda.Event and timer.time() were used to determine the execution

time of various simulation components. We reiterate that all scripts provided in 1 can be used

to benchmark all simulation frameworks using different software, hardware, and environmental

configurations.

MemTorch

Using MemTorch2, modular crossbars tiles of (16× 16) generic RRAM devices arranged using a

differential weight mapping scheme were simulated. For each device, device-to-device variability

was modeled by sampling RON and ROFF from normal distributions with mean values of 10kΩ and

100kΩ, and standard deviation values of 1, 000 and 10, 000, respectively. Devices were assumed

to have a finite number (6) of evenly-spaced conductance states. The operating resolution of ADCs

was set to 6-bits.

NeuroSim

Using DNN NeuroSim V2.13, modular crossbars tiles of (16 × 16) generic RRAM devices

arranged using a differential weight mapping scheme were simulated. Each device was set to have

2https://github.com/coreylammie/MemTorch
3https://github.com/neurosim/DNN_NeuroSim_V2.1
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an ¯RON/ ¯ROFF ratio of 10, with a device-to-device variation of 10%. This was done, as NeuroSim

did not have the functionality to directly set ¯RON and ¯ROFF values. The weight precision of each

device and operating resolution of ADCs were set to 6-bits.

IBM Analog Hardware Acceleration Kit

Using the IBM Analog Hardware Acceleration Kit (denoted using aihwkit4 in short-form),

modular crossbar tiles could not be simulated, as they were not supported. Instead, singular tiles

arranged using a differential weight mapping scheme were used to map weights of linear and

convolutional layers. In lieu of support for generic RRAM device modeling with arbitrary ¯RON

and ¯ROFF values and ¯RON/ ¯ROFF ratios, devices characterised in [243] were simulated with a

device-to-device variation of 10%. The weight precision of each device could not be directly set.

The operating resolution of ADCs was set to 6-bits.

Baseline

In addition to simulating training and inference routines using MemTorch, DNN NeuroSim V2.1,

and the IBM Analog Hardware Acceleration Kit, baseline training and inference routines were

simulated using the native PyTorch ML library for comparison. For all baseline implementations,

the exact same hyper-parameters were used. torch.cuda.ampwas used to quantize all network

parameters to 16-bits to improve performance.

3.4.2 Training Routine Comparison

In Fig. 3.4, the performance of training routines for the VGG-8 network architecture using the

CIFAR-10 dataset are compared. For NeuroSim and the IBM Analog Hardware Acceleration Kit,

default non-linear weight update parameters were used. All networks were trained for 256 epochs

with a batch size of 128 using SGD with momentum and cross-entropy loss. An initial learning rate

of 0.1 was used with fixed momentum value of 0.9. Optimizers that support adaptive learning rates

were not used, as these were not supported by DNN NeuroSim V2.1. Instead, during training, the

learning rate was decayed by one order of magnitude at epochs 100, 200, and 250 (these schedules

were determined empirically), to prevent stagnation.

The functionality of each simulation framework has previously been investigated and vali-

dated [16, 239, 240]. Consequently, training and test set losses and accuracies were not reported

or compared, as they have no bearing on the performance of each simulation framework. As can

be seen in Fig. 3.4, the IBM Analog Hardware Acceleration Kit consumed the most RAM and

GPU VRAM. While DNN NeuroSim V2.1 consumed more RAM than the baseline implementa-

tion, interestingly, it consumed notability less VRAM. This can be largely attributed to the large

4https://github.com/IBM/aihwkit
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(a) (c)(b)

(d) (e) (f)

Figure 3.5: Comparison of inference routines of MemTorch, DNN+NeuroSim, and the IBM Ana-
log Hardware Acceleration Kit, for the VGG-8 network architecture, using the CIFAR-
10 dataset.

number of operations being performed on CPU and/or sequentially on GPU, rather than in par-

allel, and can be used to explain the relatively large elapsed time per training epoch reported by

DNN NeuroSim V2.1, as depicted in Fig. 3.4 (c).

To quantify the performance trade-off between GPU VRAM usage and training time, Fig. 3.4 (f)

was constructed. The baseline training routine clearly exhibits the best performance trade-off. Our

findings suggest that DNN NeuroSim V2.1 is capable of simulating the training routine of larger

and more complex network architectures, however, it does not fully utilize CUDA, and is much

slower than other simulation frameworks. In contrast, the IBM Analog Hardware Acceleration Kit

fully utilizes CUDA, and is comparable in performance to the native torch library. However, the

IBM Analog Hardware Acceleration Kit consumes a large amount of VRAM, is unable to simulate

modular crossbar tiles, and is consequently unable to simulating the training routine of larger and

more complex network architectures.

3.4.3 Inference Routine Comparison

In Fig. 3.5, the performance of inference routines for the GoogLeNet network architecture using

the CIFAR-10 dataset are compared. Inference was performed using a batch size of 128. As

can be seen in Fig. 3.5 (c), the IBM Analog Hardware Acceleration Kit is capable of simulating
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inference routines significantly faster than the MemTorch and DNN NeuroSim V2.1 simulation

frameworks. This is while consuming more VRAM and approximately the same amount of RAM.

We largely attribute this to the fact that the IBM Analog Hardware Acceleration Kit is unable to

simulate modular crossbar tiles, which are difficult to parallelize using CUDA. When modular

crossbar tiles are not simulated, when sufficiently small WL voltages are used to encode inputs,

conventional VMMs can be used to determine output currents when 1T1R crossbars are modeled.

MemTorch and DNN NeuroSim V2.1 consume a similar amount of RAM and VRAM, how-

ever, MemTorch is approximately one order of magnitude slower than DNN NeuroSim V2.1,

despite having a higher GPU utilization. We believe this is largely attrbutred to MemTorch’s

inefficient default weight-mapping scheme, as depicted in Fig. 3.5 (c) and Fig. 3.5 (d). This is

especially evident when simulating large CNNs with many small convolutional layers, such as

GoogLeNet. MemTorch stores convolutional kernels in a staggered arrangement, and does not

share adjacent modular crossbar tiles between layers. DNN NeuroSim V2.1 utilizes proprietary

weight mapping and data flow schemes [244], which significantly improves performance. We note

that both DNN NeuroSim V2.1 and MemTorch under-utilize VRAM during inference, and both

perform some operations sequentially and/or on CPU.

As can be seen in Fig. 3.5 (d), our findings suggest that the IBM Analog Hardware Acceleration

Kit is able to utilize VRAM to the greatest extent, however, it is unable to simulate modular

crossbar tiles. DNN NeuroSim V2.1 is able to simulate inference routines significantly faster

than MemTorch, however, it is not as customizable, as it utilizes proprietary weight mapping and

data flow schemes, which cannot be easily modified.

3.5 Outlook

It is evident that MDLS and memristive simulation frameworks are becoming increasingly useful

and popular. While the reliable, large-scale operation of reconfigurable MDLS is still arguably

an open problem [245], modernized simulation frameworks and tools enable researchers from a

variety of disciplines to rapidly and accurately model the behavior and operation of MDLS without

specialized circuit-level SPICE simulation expertise. This is in addition to the ability to work in

tandem with existing modernized ML libraries. As these simulation frameworks and the models

used to simulate non-ideal circuit and device characteristics mature and grow in popularity, the

development cycle and production of innovative device technologies and MDLS architectures will

also continue. These new devices and architectures can be conveniently integrated into the existing

tools, facilitating their quick large-scale adoption.

An increasing number of simulation frameworks have been improved using measurements from

experimental data, validating their reliable and accurate operation. In future, we expect CAD tools

to (i) support the end-to-end characterization of memristive devices, (ii) be natively integrated

within more mature and standardized MDLS design-flows, and (iii) be capable of programming
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future physical re-programmable memristive circuits [133,246,247]. Such IMC simulation frame-

works will be instrumental to the design of next generation of AI hardware [240].

3.6 Conclusion

In this Chapter, we presented a survey of current simulation frameworks and related tools to model

and simulate IMC MDLS. In addition, we presented a detailed comparison of modern simu-

lation frameworks that support pre-trained DNN conversion and TF/PyTorch integration. This

was performed by directly comparing the training and inference routines of two popular CNN ar-

chitectures using open-source modernized simulation frameworks. Furthermore, we provided an

outlook/perspective into the future of CAD tools for modeling and simulating MDLS. We demon-

strated that modern simulation frameworks are complimentary in nature, and can be used by a

variety of users with different requirements to facilitate current research efforts in the domains of

IMC and unconventional computing.
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Chapter 4

Seizure Detection and Prediction by
Parallel Memristive Convolutional Neural
Networks

During the past two decades, epileptic seizure detection and prediction algorithms have evolved

rapidly. However, despite significant performance improvements, their hardware implementation

using conventional technologies, such as Complementary Metal–Oxide–Semiconductor (CMOS),

in power and area-constrained settings remains a challenging task; especially when many record-

ing channels are used. In this Chapter, the first and third research questions are addressed, and a

novel low-latency parallel Convolutional Neural Network (CNN) architecture that is estimated to

consume approximately 2.791W of power while occupying an area of 31.255mm2 in a 22nm

FDSOI CMOS process is presented. The proposed novel architecture achieves State-Of-The-

Art (SOTA) accuracy performance across three epileptic seizure detection and prediction datasets.

4.1 Introduction

Epilepsy is a common neurological disorder that affects approximately 1% of the world’s popula-

tion [248]. A seizure is characterized by excessive firing of neurons in the brain, while epilepsy is

a medical condition that involves recurrent seizures [249]. As the underlying occurrence mecha-

nism of epilepsy is not well understood [250–252], it requires experimental methods of treatment

that rely on accurate detection and prediction systems, as depicted in Fig. 4.1.

EEG is the most common method used to monitor the electrical activities of the brain, and can

be used to detect and predict seizures. There have been numerous applications of traditional ML

algorithms, such as SVMs, k-Nearest Neighbor (kNN), and Random Forest (RF) classifiers to

classify ictal (seizure), preictal (prior to a seizure) and non-ictal (non-seizure) signals using EEG

recordings. Despite being able to achieve high accuracies, these approaches require the manual

extraction and selection of features in the time- or frequency-domain [253]. The optimal choice

of such feature extractions are largely unknown, experimental, and dependant on specific patient

signatures, such that there is no one-fit-all solution.
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Figure 4.1: An overview of a typical epileptic seizure detection and prediction system. Acquired
EEG signals are sampled and processed near-sensor using an Analog Front End (AFE),
prior to being sent wirelessly to edge device(s) for real-time pre-processing and feature
extraction. Features can then be fed into ML and/or DL architectures, residing either
on the IoT edge or in the IoT cloud, which perform epileptic seizure detection and
prediction.

Compared to traditional seizure classification algorithms, DL-based algorithms have more ad-

vantages in complex EEG signal feature extraction, as they do not require feature engineering,

and are capable of outperforming traditional ML algorithms for epileptic seizure detection and

prediction tasks [254]. However, when these DL systems are implemented using CMOS, there are

problems such as large scale, high calculation energy consumption and high delay, which hinder

their efficacy; especially in resource-constrained environments.

In order to solve this kind of problem, this Chapter proposes a neuromorphic calculation strat-

egy based on a novel IMC RRAM architecture, which utilizes analog crossbars. Computer design-

ers have traditionally separated the role of storage and compute units. The IMC paradigm blurs

this distinction, and imposes the dual responsibility on memory substrates: storing and comput-

ing on data for massively parallel computing [255]. By exploiting the physical characteristics of

emerging analog device technologies, analog crossbars can be used to perform VMMs, the most

dominant operation in CNNs, in as little asO(1) [8,256], significantly reducing the computational

complexity during inference operations. Our specific contributions are as follows:

1. To the best of our knowledge, we are the first to parallelize the execution of convolution

layer kernels on separate analog crossbars to address the computational bottleneck of CNNs,

enabling 2 orders of magnitude reduction in latency compared to current SOTA hybrid
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Memristive-CMOS DL accelerators;

2. We reduce the number of required parameters by 2-1,600x and 5-2,800x for epileptic seizure

detection and prediction tasks using deep learning models, while still achieving SOTA per-

formance;

3. We provide a comprehensive benchmark for hardware memristor-based seizure prediction/

detection systems by simulating, laying out, and determining hardware requirements of the

CNN component of our system;

4. We propose a simplified stuck weight offsetting methodology for mitigating severe degra-

dation of system performance due to stuck RON/ROFF memristor weights. We demonstrate

that our method is capable of achieving up to 32% performance recovery, without requiring

retraining, while incurring minimal hardware and computational overhead.

To promote reproducible research, all of our simulation codes are made publicly accessible1. The

rest of this Chapter is structured as follows: In Section 4.2, we overview and discuss related work.

In Section 4.3, we present our epileptic seizure detection and prediction system. In Section 4.4,

we overview and discuss our software methodology. In Section 4.5, we overview and discuss our

hardware simulation methodology. In Section 4.6, we present and discuss our results. Finally, we

conclude this Chapter in Section 4.7.

4.2 Related Work

In this Section, we present an overview of related work using parallel CNNs and related work

using traditional and neuromorphic ML architectures for the detection and prediction of epileptic

seizures using EEG and iEEG signals.

4.2.1 Parallel CNNs

Parallel CNNs are composed of one or many convolutional layers, which are executed in parallel

and have been previously used in many applications. For example, in the ResNeXt [257] family of

architectures, parallel blocks containing convolutional layers were used to increase network width,

which can decrease the time required to train a CNN [258]. When performing multi-modal DL,

parallel convolutional layers can be used to process different inputs in parallel [259], in order to

improve network throughput. Specifically for epileptic seizure detection and prediction tasks, par-

allel convolutional layers have been used to learn high-level representations simultaneously [260].

By parallelizing convolutional operations, inference time is greatly reduced compared to current

SOTA architecture that rely on sequential convolution layers, as convolution layers form the bot-

tleneck of CNN inference.
1https://github.com/coreylammie/Memristive-Seizure-Detection-and-Prediction-b
y-Parallel-Convolutional-Neural-Networks
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Figure 4.2: A high-level system architecture overview. (a) Raw EEG signals are sampled and
digitized using ADCs. (b) Features are extracted from sampled EEG signals. (c)
Extracted features are fed into a memristive DL accelerator. (d) Accelerator outputs
are processed. Fig. 4.3 depicts the detailed hardware implementation of the acceler-
ator. (e) Processed accelerator outputs are used to determine interictal, preictal, and
ictal states. (f) The novel neural network architecture used consists of two parallel
1d-convolutional layers, one average pooling layer, and two fully connected (dense)
layers. N is used to denote the batch size, i.e., the number of batches presented to
the network in parallel. f denotes the number of filter. k determines the filter size.
s denotes the stride length. p denotes the padding. M denotes the number of output
neurons for each fully connected layer. Parts of this figure are derived from [6].

4.2.2 Traditional EEG-based Seizure Detection and Prediction Algorithms

As early as 1996, initial attempts were made to detect seizures using EEG signals and traditional

ML approaches. Using a combination of ANNs and wavelet transforms, sensitivity values of

76% [261] and 97% [262], were reported using standardized datasets. In the late 2000s and early

2010s, SVMs encountered growing interest. Namely, when using SVMs in combination with

feature extraction methods such as high-order spectra analysis, wavelet transforms, Fast Fourier

Transforms (FFTs), wavelet decomposition and least-squares parameter estimators [263–272],

promising sensitivity, specificity, and accuracy values ≥98.5% were achieved. More recently,

advances in the DL domain using CNNs and RNNs, have further benefited seizure detection al-

gorithms. Current SOTA models are capable of achieving accuracy ranging from 95-100% [118,

273–275] across multiple datasets.
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Early efforts for seizure prediction started in 1970s, where seizure warning systems were de-

signed with logic circuitry to classify extracted features from a series of filters and analog cir-

cuitry [276, 277]. To varying degrees of success, a variety of methods have been proposed,

including a rule-based method using univariate measures [278], spike rate analysis [279], posi-

tive zero-crossing intervals analysis [280], statistical dispersion measures [281], multidimensional

probability evolution [282], circadian concepts via probabilistic forecasting [283], and a combi-

nation of reinforcement learning, online monitoring and adaptive control theory [284]. Similarly

to seizure detection, many DL techniques have also been applied. Notable contributions include

the combination of CNNs and RNNs, capable of achieving 99.6% accuracy and a False Posi-

tive Rate (FPR) of 0.004 per hour [285]. Moreover, supervised deep convolutional autoencoder

and bidirectional long short-term memory networks have been used to achieve accuracy, sensi-

tivity, specificity, and precision values between 98-99%, with F1-values ≥0.98. More recently,

augmented DL network architectures have been used to reduce computational complexity for op-

eration in resource-constrained environments. One such approach, which employs CNNs with

minimizing channels, is capable of achieving 99.47% accuracy, 97.83% sensitivity, 92.36% speci-

ficity, with a FPR of 0.0764 [286]. Finally, Siamese models have been used to achieve 88-91%

accuracy on the CHB-MIT dataset [287]. We refer the reader to [288] for a comprehensive survey

of EEG seizure detection and prediction algorithms.

4.2.3 Hardware Implementations of EEG-based Seizure Detection and
Prediction Algorithms

Many hardware implementations of epileptic seizure detection and prediction algorithms have

been reported using a variety of technologies; namely FPGA, CMOS and Very-large-scale In-

tegration (VLSI) [1, 289]. Complementing traditional hardware implementations, IMC architec-

tures, which use memristive crossbar arrays to perform repetitive operations in-memory, have

gained increasing popularity in recent years. Kudithipudi et al. implemented a neuromemris-

tive reservoir computing architecture to achieve 90% accuracy and Merkel et al. achieved 85%

accuracy [290, 291]. Nature-inspired memristive Cellular Automata (CA) was implemented by

Karamani et al. to emulate epilepsy-related phenomena in the brain [292].

Recent works by Liu et al. implemented Finite Impulse Response (FIR) filter bank on mem-

ristive crossbar array to achieve 93.46% seizure detection accuracy and obtained 95% accuracy

by using a memristive crossbar based signal-processing stage combined with linear discriminant

classifier [293]. Lammie et al. pioneered the implementation of CNNs for seizure prediction us-

ing memristor arrays, achieving 77.4% sensitivity and 0.85 Area Under the Receiver Operating

Characteristic Curve (AUROC) on the CHB-MIT dataset [6].

Seizure is a chronic, recurring condition that can mostly be prevented through medication be-

fore onset [294], but even with the best medications, 30% of the patients are drug-resistant [295].

Closed-loop brain stimulation has been found to mitigate and even improve symptoms [296,297],
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but unpredictability of seizure requires a closed-loop prediction system to provide accurate warn-

ing with adequate preparation time for stimulation [298]. This calls for the need for fast, low-

latency computations, as the changes within the patients can be noticed early-on, in order to start

treatments early to improve safety and quality of life [299]. In doing so, symptoms and subsequent

effects can be minimized, including anxiety and social exposition [300]. The major limiting factor

of seizure detection and prediction algorithms is the reliance on patient specific features, leading

to undesirable results when generalized to other patients in the real world [301]. With energy effi-

cient computations, it enables the deployment of such systems within wearable devices, so that it

can be coupled with the stimulation system, as well as allowing data for a patient to be collected in

the long-term to further improve model’s predictions by fine tuning the model to better recognize

patient-specific signatures [302].

It is known that convolutional layers are the bottlenecks of CNNs. According to Cong et al.,

convolutions make up more than 90% of CNN inference [303]. Therefore, accelerating convo-

lution is pivotal to efficient CNNs for future seizure detection/prediction systems. Note that all

existing hardware implementations of CNN memristive accelerators focus on sequential CNNs.

Memristive crossbar acceleration of parallelized convolution layers and blocks, found in many

CNN architectures such as ResNeXt [257], are explored in this work to further reduce inference

latency.

4.3 Seizure Detection and Prediction System

In this Section, we present our seizure detection and prediction system. As shown in Fig. 4.2,

our system comprises of five stages, depicted using Fig. 4.2(a)-(e). As the same network ar-

chitecture, depicted in Fig. 4.2(f), is used for both detection and prediction, and networks are

bench-marked using multiple datasets, our proposed system can be reconfigured for both epileptic

seizure and prediction tasks. While we briefly detail and discuss signal acquisition and pre- and

post-processing stages, here-on-in, the scope of this Chapter will be largely confined to the accel-

erator step described in Fig. 4.2(d). We leave a detailed hardware description and evaluation of

other stages to future work.

4.3.1 Parallel Convolutional Neural Network Architecture

The primary constraint put on our design was a fixed modular tile size of 64×64. Practically,

passive memristor-based analog crossbar tiles of sizes up to 128×64 have been used to perform

VMMs [256], however such designs have only been demonstrated using pseudo-crossbars having

micron-size electrodes. Such limitations in the maximum viable size are a serious computational

scalability challenge with electrodes in the tenth of nanometer range that would prevent sinking

large currents through them [304]. Recently, a 4K memristor analog-grade passive crossbar circuit

has been fabricated [305], which comprises several modular 64 x 64 passive crossbar tiles with
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99% functional nonvolatile metal-oxide memristors. From an original exploratory investigation,

it was determined that for the RRAM device being modeled, the largest feasible modular tile size

which is able to be programmed using a write-verify scheme was 64×64. Consequently, this fixed

modular tile size was used in our designs to minimize the power and area overhead of peripheral

circuits and tile interconnects, which are much larger when smaller fixed modular tiles are used.

4.3.2 Model Search and Selection

Most current state-of-the-art CNNs employ sequential convolution layers, whereby subsequent

convolution operations are dependent on results from previous layers. However, in parallel CNNs,

convolution layers can be processed simultaneously, enabling the use of multiple crossbars at the

same time. In addition, parallel convolution layers with different kernel sizes enable the network

to extract features of varying receptive fields, providing the fully connected layers a diverse and

yet compact representation of the features for classification; enabling a reduction in network pa-

rameters required.

As shown in Fig. 4.2, our proposed CNN architecture consists of two parallel convolution ker-

nels. Algorithm 1 formalizes the methodology used to search for and select the employed model.

For our selected model, latency was minimized using OBJmin. L, D, and β were fixed to val-

ues determined empirically using a preliminary exploratory analysis, and α was optimized as per

Algorithm 1. The following additional hardware design constraints were imposed for our design:

all convolutional layers must be capable of fitting onto one modular crossbar tile, and the total

number of required modular crossbar tiles must not exceed 8.

As the convolution operation bottlenecks CNN inference, the size of kernels used in parallel

convolution layers need to be carefully considered to optimize both network performance and

latency. In our proposed architecture, shown in Fig. 4.2(f), we have two parallel convolution

layers and one average pooling layer, comprising one convolutional block. To parallelize the

two convolution layers, it would be necessary to map the weights of the two convolution layers

onto two separate crossbars. As a design choice, we wanted to retain the flexibility of mapping

both convolution layers onto the same crossbar, if space complexity is prioritized over latency.

Therefore, during the kernel size search, we imposed a constraint of 62, i.e., m − 2, for the sum

of convolution kernels, as 2 additional rows are designated for implementing the bias for both

parallel convolution layers.

When denoting the kernel size of the first parallel convolutional layer as α, the kernel size of

the second parallel convolutional layer can be expressed as 62 − α. To determine the optimal

network architecture, the University of Bonn’s EEG seizure dataset [306] was used. Specifically,

a 80:20 train validation split was employed, and EVAL(Net) was used to determine the 5-fold

cross validation accuracy. Seed values of 32 and 8 were arbitrarily set for the network architecture

search, to ensure reproducibility of results, and to reduce bias between search and validation.

Empirically, L = 1, D = 2, and β=[8,] achieved substantial performance. For the single convo-
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Algorithm 1 Model Search and Selection Methodology.
Input: Fixed modular crossbar tile size (m×n), OBJmax, objectives to minimize, OBJmin, addi-

tional hardware design constraints, w.
Output: Optimized network architecture (L,D,α,β), where L is the number of convolutional

layer blocks, D is the number of fully connected layers, α is a vector containing the sizes
of the first kernel for each convolutional layer when parallel convolutional layer execution is
performed, and β is a vector containing the number of output neurons for each fully connected
layer.
minimize OBJ(m,n,L,D,α,β) subject to w.

procedure NETWORK ARCHITECTURE(m,n,L,D,α,β)
for l = 0 to L− 1 do ▷ For each convolutional layer

Cinl = m ▷ Input channels
Coutl = floor(n / 2) ▷ Output channels
if parallel convolutional layer execution then

kl0 = αl, kl1 = m− 2−αl ▷ Set kernel sizes
else

kl = m− 1 ▷ Set kernel size
end if

end for
for d = 0 to D − 2 do ▷ For each fully connected layer

md = βl ▷ Set number of output neurons
end for
mD−1 = 2 ▷ Last layer

end procedure

function OBJ(m,n,L,D,α,β,w)
maximize EVAL(Net) and minimize PARAMS(Net), ▷ i.e., determine

L, D, α, and β, where EVAL determines the validation accuracy, and PARAMS determines the
total number of network parameters

where,
Net = NETWORK ARCHITECTURE(m,n,L,D,α,β) return OBJmin(Net)

end function

lutional block, α0 was varied between 31 and 60. A validation accuracy of 100% was achieved for

all values of α0, except for α0 = 60, which achieved an optimal validation accuracy of 99.375%.

This is not surprising, as the window size of input data is only 64. Therefore, convolution kernel

sizes of 60 and 2 provides two extreme and dramatically different receptive fields. In particular, a

kernel size of 2, which corresponds to around 10ms of data at 173.61Hz, is likely insufficient to

capture local correlation and learn seizure characteristics. The final model was chosen using Oc-

cam’s razor principle, whereby the simplest model is the best model. Consequently, a kernel size

of 32 was selected, as a kernel size 31 would be the simplest to implement due to symmetric con-

volution kernel sizes; however 32 provides a more diverse receptive field. To further demonstrate

the advantage of varied kernel size, a 5-fold cross-validation was performed using a) 64 filters of

kernel size 31 b) two parallel convolution layers each with 32 filters of kernel size 30 and 32 (see
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Figure 4.3: Architecture hierarchy of our memristive DL accelerator with (a) TDM and (b) Paral-
lelized Implementation.

Fig. 4.2). It was observed that both networks are capable of achieving accuracy varying between

99.61% to 99.83%, but varied kernel size leads to +0.03%, -0.01%, +0.02% change in performance

on Bonn, SWEC-ETHZ and CHBMIT datasets, respectively, compared to using 64 filters of kernel

size 31. Although a small degradation in performance is observed for SWEC-ETHZ dataset, im-

provements are observed for both Bonn and CHBMIT dataset. A net improvement is observed for

both seizure detection and prediction using a varied kernel size, while both experiments employ

an identical number of weights.

4.3.3 Hardware Architecture Hierarchy

In Fig 4.3, we present our hardware architecture hierarchy. The processing engines comprises 7

memristive crossbar array tiles, as well as I/O registers, eDRAM buffers, and peripheral circuits for

ReLU, subtract, and average pooling. We present two configurations for our tile, Time-Division

Multiplexing (TDM), and parallelized. In the TDM case, each tile contained a S+H and an ADC

for reading out column currents, and one DAC per row for reading inputs in parallel, as shown in

Fig. 4.3(a). In the parallelized case, each tile contains 64 ADCs, as shown in Fig. 4.3(b).

4.4 Software Methodology

To train and evaluate our epileptic seizure detection and prediction system, we benchmarked our

system using one epileptic seizure detection task and two epileptic seizure prediction tasks. For

epileptic seizure detection, the University of Bonn’s EEG seizure dataset [306] was used. For

epileptic seizure prediction, the CHB-MIT Scalp EEG [307], and the long-term SWEC-ETHZ

iEEG [308] datasets were used.
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To perform epileptic seizure detection and prediction, EEG and iEEG samples can be catego-

rized as either ictal, interictal or preictal. Ictal samples indicate the presence of a seizure, interictal

samples are periods between seizures, and preictal samples can be used to detect the onset of a

seizure. For epileptic seizure detection, binary classification is performed between ictal and inter-

ictal samples. For epileptic seizure prediction, binary classification is performed between preictal

and interictal samples. For both epileptic seizure detection and prediction tasks, on account of un-

balanced classes, 5-fold cross validation was used to train and validate our network architecture.

4.4.1 Training and Evaluation Methodologies

Epileptic Seizure Detection

The University of Bonn’s EEG seizure dataset is comprised of 5 sets (A-E), where set A is normal

with open eyes, set B is normal with closed eyes, set C and D is seizure free intervals, and set E

is seizure only activities. Each set contains 100 single-channel EEG time series of 23.6 seconds,

with 4,096 samples in each time series. All data were collected at 173.61 Hz, at a resolution of 12

bits. To perform binary classification between ictal and interictal samples, all samples from sets A

and E were used.

Both sets (A and E) were divided into samples of 64 seconds periods and randomly shuffled.

No augmentation and pre-processing techniques, such as normalization, were performed, as CNNs

are capable of automatic feature extraction from time-series data and are robust to noise. The lack

of need for pre-processing steps implies reduced hardware complexity to perform such operations.

Using the network model (with optimal kernel sizes determined in Section 4.3.2), a 5-fold cross-

validation strategy was used to determine network’s performance. To determine performance, the

mean of left out set accuracy, sensitivity, specificity, false-positive rate and the AUROC across

folds of 5-fold cross-validation were reported.

Epileptic Seizure Prediction

The CHB-MIT Scalp EEG, and the long-term SWEC-ETHZ iEEG datasets were used. The CHB-

MIT Scalp EEG dataset comprises of 23 cases, which were collected from 22 subjects (5 males,

ages 3–22; and 17 females, ages 1.5–19). The last case was obtained 1.5 years after the first, from

one of the female subjects [307]. All signals were sampled at 256Hz with 16-bit resolution, using

23-26 electrodes. During data acquisition, no augmentation steps were performed.

The long-term SWEC-ETHZ iEEG dataset comprises of 18 patients with pharmaco-resistant

epilepsy, who were evaluated for surgery at the Sleep-Wake-Epilepsy-Center (SWEC) of the Uni-

versity Department of Neurology at the Inselspital Bern [308]. All signals were sampled at either

512Hz or 1025Hz with 16-bit resolution, using 26-100 electrodes. During data acquisition, af-

ter analog-to-digital conversion, a digital band-pass filter was used to filter signals between 0.5

and 150Hz using a fourth-order Butterworth filter. Moreover, forward and backward filtering was
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Table 4.1: Overview of cases used to perform epileptic seizure prediction from the CHB-
MIT Scalp EEG (CHB-MIT) and the long-term SWEC-ETHZ iEEG (SWEC-ETHZ)
datasets.

Patient Seizures Interictal Hrs.∗ Preictal Hrs.∗ Interical Smp.† Preictal Smp.⋄ Synthetic Preictal Smp.⋄

CHB-MIT

1 7 33.74 0.43 1,898 24 42
2 3 32.85 0.14 1,848 8 14
3 7 30.86 0.39 1,736 22 37
5 5 33.85 0.30 1,904 17 30
8 5 14.93 0.36 840 20 3

SWEC-ETHZ

1 2 19.91 1.00 1,120 56 108
2 2 19.91 1.00 1,129 56 108
3 4 29.87 1.99 1,680 112 216
5 4 29.87 1.99 1,680 112 216
6 8 69.69 3.48 3,920 196 430

∗Hours. †Samples.
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Figure 4.4: Depiction of (a) our adopted overlapped sampling technique extracting n samples from
a continuous preictal segment, and (b) the SPH and SOP terms. As can be seen, con-
tinuous preictal segments are extracted during the SPH. All preictal samples that occur
during the SOP period are discarded.

applied to minimize phase distortion.

Due to computation burden of crossbar simulation, we report the performance using the first

5 viable cases of the the CHB-MIT Scalp EEG and long-term SWEC-ETHZ iEEG datasets, re-

ducing the computation required, similar to [260, 309]. In Table 4.1, we present an overview of

all cases used to perform binary classification between preictal and interictal samples. A case

was categorized as viable if it contained valid labels (namely time-stamps) and data files (i.e., no

recording files were missing or corrupt). For both datasets, the first 22 channels of each patient

were extracted and used. All signals were down-sampled to 256Hz, and a window size (batch

size) of 64s was used when extracting samples. After discarding seizures that occur in the first

20-minute monitoring period, a Seizure Occurance Period (SOP) of 30m and a Seizure Prediction

Horizon (SPH) of 5m were used to extract and label preictal samples for all cases; both of which
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have previously demonstrated significant performance [309]. These terms are defined visually

in Fig. 4.4. Interictal samples were extracted from one hour recording segments containing no

seizures (ictal samples) to reduce class inbalance during training.

Next, 176 features per sample were extracted (8 per channel per window/batch interval): the

mean, variance, skewness, kurtosis, coefficient of variation, median absolute deviation of EEG

amplitude and Root Mean Square Amplitude (RMSA), and the shannon entropy. Since the input

size of the proposed network is 64, the dimensionality of the input data needed to be reduced. A

correlation analysis was first performed across the 176 extracted features, but no particular channel

could be removed as no strongly correlated channels were discovered. Using Principal Compo-

nent Analysis (PCA), linear dimensionality reduction via Singular Value Decomposition (SVD)

enabled the projection of data to lower dimensional space of 64 principal axes. During train-

ing, synthetic preictal samples were generated using an overlapped sampling technique inspired

by [288], by sliding a 64s window with a stride of 32s across continuous preictal segments ex-

tracted during the SPH period, as depicted in Fig. 4.4. The same cross-validation training and

evaluation strategy and metrics as described in Section 4.4.1 was employed.

4.5 Hardware Methodology

In this Section, we discuss our device technology selection, memristor crossbar array implemen-

tations of CNNs, and present our adopted hardware simulation methodology.

4.5.1 Device Technology Selection

Computing with charge-based computing devices is attractive due to their technological maturity,

even though they have a relatively large area footprint even at advanced technology nodes and

face severe scaling challenges [200]. Resistance-based memory, in contrast, can be scaled to

the nanometer scale, and has the potential of forming cross-point structures without using access

devices, achieving ultra high density. RRAM devices are used in our design, as they are widely

considered to be the most promising emerging resistance-based memory technology- they operate

faster than PCM, have a simpler and smaller cell structure than MRAM and CBRAM devices, and

are made of materials that are common in semiconductor manufacturing [200].

4.5.2 Memristor Crossbar Array Implementations of Parallel CNNs

Consider the conductance values of a crossbar array as a matrix and input voltages to a crossbar as

a vector. The output current from the crossbar, determined using Kirchoff’s and Ohm’s Law rep-

resents the result of the VMM. Such operations form the core of CNNs. Being able to accelerate

and parallelize them would facilitate the real-time operation of deeper and heavier neural networks

for epileptic seziure detection and prediction in resource-constrained hardware [145].
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Figure 4.5: A comparison of possible mapping schemes. (a) visualizes the staggering mapping
of convolution weights, which is commonly adopted due to its ability to produce all
results within a single pass through the crossbar array. (b) visualizes our proposed
mapping scheme, without staggering of convolution weights and sparsity in crossbar,
at the cost of increased read/write operations. (c) provides a comparison of methods
(a) and (b), visualizing when one method should be chosen over the other.

Table 4.2: Crossbar mapping comparison for space and computation trade-off using schemes (a)
and (b) in Fig. 4.5.

Layer Number of Memristor Cell Required Number of Memristor Cell Required Inc. Sparsity

Scheme (a) Scheme (b) Area Reduction Computation Increase Scheme (a) Scheme (b) Area Reduction Computation Increase

conv1 69,696 2,112 33x 33x 133,184 2,112 63x 33x
conv2 69,440 1,984 35x 35x 145,600 1,984 73x 35x
fc1 17,424 17,424 None None 17,424 17,424 None None
fc2 36 36 None None 36 36 None None

To represent signed weight matrices on memristive crossbar arrays, as negative conductance

values cannot be expressed using analog memristive devices, a differential mapping scheme was

adopted, where two columns of memristors are chosen to represent positive and negative weights,

respectively. The signed output is thus the arithmetic difference of current from both columns. In

the case of 1D CNNs, fully connected and convolutional layers can be decomposed into a series

of dot products between inputs, represented as voltages, and weights, represented as memristive

conductance. For convolutional layers, the im2col algorithm [310] can be used to map con-

volutional kernels onto separate crossbar columns. With a single pass, m 1D convolutions can

be performed simultaneously, where m represents the number of columns. Average pooling and

ReLU operations are performed using additional digital circuitry.

4.5.3 Hardware Simulation Methodology

Based on existing literature from Section 4.2.3, all mapping of convolution kernels onto cross-

bars are sparse, whereby the convolution kernels form a sparse diagonal matrix, as depicted in

Fig. 4.5(a). This naive approach is extremely space demanding, as the kernels are staggered mul-

tiple times throughout the crossbar array, rendering a lot of memristive cells unused. To reduce
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Tile 7 Legend

First Convolutional Layer 
Weights | conv1

First Convolutional Layer 
Biases | conv1

Second Convolutional Layer 
Weights | conv2

Second Convolutional Layer 
Biases | conv2

Weights | fc1

Weights | fc2

Unused Devices

First Fully Connected Layer

Second Fully Connected Layer

Figure 4.6: The crossbar parameter mapping layout adopted. Seven 64 × 64 modular crossbar
tiles are utilized. Bias terms of fully connected layers, and the single pooling layer,
pool1, are computed using additional digital circuitry. To reduce the number of un-
used devices, parameters of different layers are shared between tiles.

the space requirement of mapping scheme (a), one possible approach is to build upon the input-

stationary concept. One may remap the crossbar weights during inference and replace them with

different kernel weights, while reusing the input fetched from memory.

On the other hand, one may build upon the weight-stationary concept, as depicted in Fig. 4.5(b).

In this scheme, convolution kernels can be mapped without staggering before inference. For ker-

nels to convolve against different parts of the signal, the input signal slides. The bottleneck of this

approach now lies within fetching input data, requiring additional read/write operations on the pe-

ripheral of the crossbar compared to mapping scheme (a). The weight-stationary approach is more

efficient compared to the input-stationary approach, as crossbar weight writes can be very time

and energy consuming, compared to fetching of inputs and staggering them with shifting circuitry.

Fig. 4.5(c) provides visualization of when one scheme should be adopted over the other.

A comparison of the naive approach and our proposed weight-stationary approach is performed

for our network architecture in Table 4.2. As can be observed, the number of memristor cells

required for scheme (b) (depicted in Fig. 4.5 (b)) is significantly smaller, due to the compact nature
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Table 4.3: 5-Fold cross-validation result for epileptic seizure detection and prediction using our
network architecture.

Dataset Bonn CHB-MIT SWEC-ETHZ

Partition Set A vs. E Patient 1 Patient 2 Patient 3 Patient 5 Patient 8 Patient 1 Patient 2 Patient 3 Patient 5 Patient 6

Accuracy 99.84 ± 0.37 99.50 ± 0.89 99.95 ± 0.11 99.95 ± 0.13 99.73 ± 0.57 98.96 ± 2.33 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.86 ± 0.22 100.00 ± 0.00
Sensitivity 99.87 ± 0.28 98.64 ± 2.79 100.00 ± 0.00 100.00 ± 0.00 99.62 ± 0.70 99.76 ± 0.54 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Specificity 99.80 ± 0.45 99.73 ± 0.37 100.00 ± 0.00 99.93 ± 0.15 99.77 ± 0.52 97.38 ± 5.85 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.77 ± 0.39 100.00 ± 0.00
FP per Hour N/A 0.13 ± 0.17 0.00 ± 0.00 0.03 ± 0.07 0.10 ± 0.22 0.53 ± 1.19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.13 0.00 ± 0.00
AUROC 99.84 ± 0.37 99.31 ± 1.06 100.00 ± 0.00 99.82 ± 0.39 99.63 ± 0.79 99.04 ± 2.15 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.84 ± 0.25 100.00 ± 0.00

of the mapping. This comes, however, at the cost of 33x increase in computation. When taking

sparsity, i.e. unused memristors depicted by the gray background in Fig. 4.5 (a), into consideration,

scheme (b) demonstrates even more significant reduction, i.e. 63x-73x fewer memristors required,

while the computation increase remains constant. Unlike convolutional layers, fully connected

layers do not involve sliding of signals, so VMMs for fully connected layers were implemented

using the naive scheme (a). Using scheme (b), we mapped convolutional kernels within our trained

network onto crossbars tiles of 64×64. While scheme (b) was chosen for our hardware design,

if scheme (a) were chosen with different nker and lker values, or the added space complexity is

not of concern, the staggered weights of scheme (a) would enable all rows of the crossbars to be

employed simultaneously. By choosing the input size of our network to be 64, we maintain the

flexibility of mapping with scheme (a) to make use of all crossbar rows simultaneously.

As Fig. 4.6 demonstrates, for parallel convolution layers to be accelerated simultaneously, it

was necessary to map the weights of the conv1 and conv2 onto two separate crossbar tiles. The

weight of the fc1 layer is a matrix of 1088×8, and using a differential weight scheme, would

require 1088×16 memristors. The weight matrix can be further divided into 17 sections of 64×16

weights. To maximize the usage of each 64×64 crossbar array, 4 sections of 64×16 weights can

be stacked horizontally onto each crossbar, requiring a total of 5 crossbar tiles.

Since there are unused memristors on the convolution tiles and fc2 layer operations are not

performed immediately after convolution operations, we decided to map the weights of fc2 onto

the convolution layer tile, instead of using another tile. Note that since the simulation serves as

a validation for proof-of-concept, we decided to use the same dimensions for all 7 crossbar tiles.

We do recognize that tile 1, 2 and 7 have many unused memristor devices, as a result, performing

small VMMs on a large switch matrix. This leads to large power overhead due to high amortized

ADC/DAC power over a small matrix and charge/discharge of long row and column wires without

using full length for computation. To address such problem in a real medical device, instead of

using square tiles, tile 1, 2 and 7 can be easily mapped onto rectangular tiles of the exact required

dimensions.

4.5.4 Impact of Device and Crossbar Non-Idealities

Memristors and memristive crossbar arrays are prone to numerous device and circuit non-idealities

which have been demonstrated to severely impact the performance of memristive DL accelera-
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tors [147]. Consequently, they should be comprehensively simulated prior to circuit-level realiza-

tion. In this Chapter, preliminary simulations were performed using the MemTorch [15] simulation

framework, and comprehensive simulations of the system using passive crossbar arrays were per-

formed using the crossbar array model provided by [311]. Non-idealities considered include input

and output resolutions, weight write resolution, weight write deviation, stuck RON/ROFF devices,

line and source resistance, and conductance range variation.

Other memristive phenomena, such as the dynamic behavior of switched memristive neural

networks after programming [312], and read disturbance [313], are not accounted for, as practical

metal-oxide memristors are endurance-limited, during programming a write-verify scheme is used,

and during inference, all BL voltages are constrained to have a maximum absolute amplitude of

0.3V [313].

4.5.5 Stuck Weight Offsetting Methodology

Stuck RON/ROFF weights are known to cause significant network performance degradation in

memristive crossbar arrays. Existing works have demonstrated performance recovery through a

variety of techniques. In 2014, Kannan et al. took inspiration from SRAM/DRAM technologies

and repaired crossbar defects using redundant rows and columns [314]. In 2017, Liu et al. pro-

posed to identify significant weights before applying a retraining and remapping algorithm [315].

In 2018, Xia et al. proposed a mapping algorithm with inner fault tolerance to leverage the differ-

ential mapping scheme of crossbar arrays to tolerate faults [316]. In 2019, Zhang et al. proposed

the use of matrix transformations to reduce the magnitude of error introduced by stuck-at-fault

devices [317]. Also in 2019, Yeo et al. modified conventional transimpedance amplifiers to de-

tect when abnormal current is detected at a particular column due to stuck-at-fault devices and

repair by retraining the network with the known defects [318]. Among those works, significant

hardware or software overhead is introduced through rewriting and tuning of weights, retraining

of networks, or using additional circuitry.

To minimize the overhead, we propose stuck weight offsetting, which improves upon the inner

fault tolerance method. Inner fault tolerance first identifies all available (non stuck-at-fault) de-

vices and initializes them to default values. Then, the scheme goes through all available devices

and adjusts each value such that the represented values cannot be made any closer to the target

matrix parameter. Intuitively, this serves to minimize the incorrect contribution of the RON/ROFF

weight. We propose to bypass the initialization of available devices to default values and to fo-

cus on the complementary weight of stuck-at-fault devices only. Before writing any weights to

the crossbar, all stuck-at-fault devices are identified. For each stuck-at-fault device, if the com-

plementary weight is not stuck-at-fault, we calculate its complementary weight to minimize the

difference between represented value and target value. All calculated values, along with normal

weights, are then written onto the crossbar. This modification reduces overhead by two means.

First, all crossbar weights are only required to be written once, as opposed to twice in the inner
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Table 4.4: Comparison of our baseline software model against SOTA for Seizure Detection using
the University of Bonn dataset.

Paper Pre-processing Method Parallelization Parameters Accuracy (%)

Ullah et al. (2018) ✓ 1D-CNN ✗ 21,436 99.90
We et al. (2018) ✓ 1D-CNN ✗ 16,778,144 92.00
Abdelhameed et al. (2018) ✓ 2D-CNN ✗ 106,388 98.00
Liu et al. (2019) ✓ 2D-CNN ✗ N/R∗ 99.60
Turk et al. (2019) ✓ 2D-CNN ✗ 1,603,080 99.45
Abdelhameed et al. (2021) ✓ 2D-CNN ✗ 10,304,467 100.00

Ours ✗ 1D-CNN ✓ 10,778 99.84

∗Not reported.

Table 4.5: Comparison against SOTA for Seizure Prediction using the SWEC-ETHZ and CHB-
MIT datasets.

Paper Method Parallelized Parameters Sensitivity (%) Specificity (%) Accuracy (%) FPR†

CHB-MIT

[309] 2D-CNN ✗ N/R⋄ 81.20 N/R⋄ N/R⋄ 0.16
[319] * 2D-CNN ✗ N/R⋄ N/R⋄ N/R⋄ 92.00 N/R⋄

[320] 2D-CNN ✗ 49,560 82.71 88.21 98.19 N/R⋄

[321] * 2D-CNN ✗ N/R⋄ 88.80 88.60 88.70 N/R⋄

[322] * 3D-CNN ✗ 28,459,615 96.66 99.14 98.33 N/R⋄

[323] * 2D-CNN ✗ 9,695,012 84.00 99.00 99.00 0.2
[260] 1D-CNN ✓ 105,538 95.55 99.68 99.64 N/R⋄

Ours 1D-CNN ✓ 10,778 99.24 98.68 99.01 0.47

SWEC-ETHZ

[324] * Ensemble HD ✗ N/R⋄ 96.38 97.31 96.85 N/R⋄

[260] 1D-CNN ✓ 105,538 94.57 99.86 99.81 N/R⋄

Ours 1D-CNN ✓ 10,778 98.22 97.02 97.54 0.99

*Indicates the results are reported across the entire dataset and patient-wise performance was
not reported. †False positive rate (per hour). ⋄Not reported.

fault tolerance method (from default to adjusted). Second, our method focuses on complementary

weights for stuck-at-fault devices only, as opposed to all available devices for all target parameters.

This method incurs minimum additional computational cost, and does not require retraining.

4.5.6 Quantization Aware Training for Lower Resolution Systems

A high resolution system is often not feasible to deploy on edge devices, given power consumption

constraints and sampling frequency requirements, which are fundamental tradeoffs for resolution

in DACs and ADCs. However, lower resolution systems with improved power and frequency

performance can exhibit performance degradation. This effect was observed for some patients, and

more details can be found in Section 4.6.3. For significant performance degradation (a degradation
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Figure 4.7: The ability of our trained networks to generalize between different datasets when per-
forming epileptic seizure prediction. The cross validation accuracy is reported for
networks which have not been retrained, and for networks that have been retrained
after 1 and 10 training epochs, respectively, when transfer learning was performed. In
addition, the standard evaluation accuracy is reported for each dataset and patient, to
facilitate comparisons.

of 5% or more compared to full resolution system), we propose to perform Quantization Aware

Training (QAT) prior to mapping the weights onto memristive crossbar arrays [325]. During

QAT, we quantized the convolutional and fully connected layers of the network to the resolution

equivalent to or even lower than that of the resolution of the crossbar weights and ADC/DAC

resolution. Quantized layers are implemented using the Brevitas library [325], which provides

PyTorch-compatible convolution and fully connected layers of specified weight resolutions. In

addition, inputs to the network were quantized, while intermediate outputs remained not quantized.

Network architecture and other training parameters remained unchanged.

4.6 Results and Discussion

Prior to the investigation of device and crossbar non-idealities, we report baseline software re-

sults for epileptic seizure detection and prediction using our network architecture, in Table 4.3.

5-fold cross-validation was performed using a different seed to eliminate bias on the first fold. To

demonstrate the generalizability of the designed network to different domains and patients, the
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same architecture was applied for seizure detection and prediction. Unlike the Bonn dataset, both

the CHB-MIT and SWEC-ETHZ datasets are multi-channel EEG datasets with larger memory and

computation requirements within the time domain. In order to reduce the time and memory com-

plexity, pre-processing steps as described in Section 4.4.1 were applied to transform the dataset

into frequency domain. The shown results suggest that the proposed network is sufficient and can

generalize well for both detection and prediction.

4.6.1 Comparisons Against SOTA Software Implementations

In Tables 4.4 and 4.5, we compare our baseline software implementations that use full precision

(32-bit) floating-point parameters against other software implementations in literature for epilep-

tic seizure detection and prediction, respectively. As shown in the Tables, for epileptic seizure

detection we achieve SOTA performance in 3/4 criteria, while for prediction we obtain SOTA per-

formance in 3/6 criteria. Specifically, for detection, our network architecture is able to achieve

an accuracy of 99.84% across all samples without any pre-processing steps, while requiring only

10,778 parameters. This is∼2x fewer parameters than the smallest model in [273], which achieved

a slightly higher accuracy of 99.90%, while employing various pre-processing steps. Except for

the model used in [326], which achieves a 100% accuracy, but requires over 10M parameters, all

the other models shown in Table 4.4, achieve lower accuracy values despite significantly higher

number of network parameters.

For epileptic seizure prediction, pre-processing is performed. Across both datasets, our network

architecture achieves the highest sensitivity while requiring the fewest number of parameters. We

report close specificity and accuracy values to [260], which has also used a 1D-CNN architecture

with parallelization, but needs ∼10x more parameters. Finally, we report the highest FPR across

both datasets, however, unlike previous works, we performed no post-processing steps, which may

cause this. Also, only two out of the nine previous works have reported their FPR, which makes

the comparison incomplete. When mapping trained parameters to ideal crossbars with fully analog

devices without any device or circuit non-idealities, the same results were achieved.

4.6.2 Generalization Between Datasets

To determine whether or not our trained networks have the ability to generalize, we evaluated the

performance of networks trained using the CHB-MIT dataset on the SWEC-ETHZ dataset, and

vice-versa in Fig. 4.7. In addition, we report the cross validation accuracy for networks which

have been retrained using transfer learning. To perform transfer learning, parameters were frozen

for all layers except the last two fully connected layers, and the weights and biases of the last

two fully connected layers were re-trained using the training set of the evaluation dataset. Direct

evaluations to/from either of these datasets and the University of Bonn dataset were not made, as

the University of Bonn dataset is used for epileptic seizure detection and not prediction, and it is

structured differently.
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University of  Bonn
Averaged Across Seeds Averaged Across Patients
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Averaged Across Patients

CHB-MIT

Figure 4.8: The impact of all (a-g) non-idealities on the University of Bonn, CHB-MIT, and
SWEC-ETHZ datasets. (h) summarizes performance recovery by applying our pro-
posed stuck weight offsetting to address the performance degradation of stuck-at fault
devices. For the University of Bonn dataset, each data-point shows the mean and stan-
dard deviation across five arbitrary seed values: 5, 6, 7, 8, and 9.

4.6.3 Quantization-Aware Training

To demonstrate the effectiveness of QAT, we evaluated the performance of our network architec-

ture when trained with and without QAT. Comparisons are made in Fig. 4.9. During QAT training,

inputs and network weights were reduced to 6-bit resolution, while network architecture and other

training parameters were held constant, as described in Fig. 4.2(f). The accuracy, sensitivity, speci-

ficity, AUROC, and FPR metrics were all reported and compared. When using 6-bit ADCs and

DACs, it can be observed that for all patients and metrics, except for specificity of patient 5 from

the CHB-MIT dataset, QAT network yields significant performance improvements.

4.6.4 Effects of Non-Idealities on System Performance

Fig. 4.8 provides a summary of the impact of non-idealities on our system for epileptic detection

and prediction. For the University of Bonn dataset, as samples between patients are not explicitly

distinguished, the mean and standard deviation of test set accuracy is reported across samples using

five arbitrarily chosen seed values. For the CHB-MIT and SWEC-ETHZ datasets, the mean and

standard deviation of test set accuracy is reported across samples for the first five viable patients

of each dataset, respectively. Across datasets, some patients were observed to be more robust

to non-idealities than others. This was observed in our investigations for patients 1, 2, 3 from
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(a) (c) (d)(b) (e)

Without QAT With QAT

Figure 4.9: The impact of QAT on our network architecture tasked for epileptic seizure predic-
tion (a-e) evaluated using the CHB-MIT and SWEC-ETHZ datasets when network
parameters are quantized to 6-bit fixed-point resolution. Only patients that exhibited a
degradation of 5% or more when quantized to 6-bit fixed-point resolution (from full-
precision floating-point) were investigated.

Table 4.6: Power, area, and latency metrics for the simulated memristive DL accelerator using a 22
nm CMOS process. Using our TDM architecture, VMMs are performed inO(n), where
n is the number of columns of the output vector. Using our parallelized architecture,
VMMs are performed in O(1).

Component Params.
Time-Division Multiplexing (TDM) Parallelized

Specification Area
(mm2)

Power
(mW)

Latency
(us)*

Total Latency
(us)

Energy
(uJ) Specification Area

(mm2)
Power
(mW)

Latency
(us)*

Total Latency
(us)

Energy
(uJ)

DAC
Resolution 6 bits

2.58E+01 2.69E+03 8.00E-04 2.15E+00 5.78E+00
6 bits

2.58E+01 2.69E+03 8.00E-04 3.36E-02 9.03E-02
Number 7x64 7x64

ADC
Resolution 6 bits

4.62E+00 7.00E+01 1.00E-01 2.69E+02 1.88E+01
6 bits

2.96E+02 4.48E+03 1.00E-01 6.00E-01 2.69E+00Number 7 7x64
Frequency 10MHz 10MHz

ReLU Number 2 9.60E-03 3.28E-02 9.80E-02 9.80E-02 3.22E-06 2 9.60E-03 3.28E-02 9.80E-02 9.80E-02 3.22E-06

Average Pool Number 1 3.83E-04 1.59E+00 8.49E-05 8.49E-05 1.35E-07 1 3.83E-04 1.59E+00 8.49E-05 8.49E-05 1.35E-07

Adder Number 10 5.34E-03 1.74E-02 3.06E-04 6.13E-04 1.06E-08 10 5.34E-03 1.74E-02 3.06E-04 6.13E-04 1.06E-08

Subtractor Number 7 2.46E-04 2.87E-01 3.34E-04 1.28E-01 3.69E-05 7x32 7.88E-03 9.20E+00 3.34E-04 2.01E-03 1.85E-05

S+H† Number 7x64 8.98E-06 3.81E-03 8.33E-04 5.00E-03 1.90E-08 7x64 8.98E-06 3.81E-03 8.33E-04 5.00E-03 1.90E-08

eDRAM Buffer
Size 2KB

4.72E-03 1.81E+01 1.15E-04 2.30E-04 4.17E-06
2KB

4.72E-03 1.81E+01 1.15E-04 2.30E-04 4.17E-06
Bus Width 128 128

eDRAM-Tile Bus Number 192 4.50E-03 3.5E+00 9.02E-05 9.02E-05 3.16E-07 192 4.50E-03 3.5E+00 9.02E-05 9.02E-05 3.16E-07

IR† Size 1KB 8.10E-01 6.74E-01 8.21E-05 1.64E-04 1.11E-07 1KB 8.10E-01 6.74E-01 8.21E-05 1.64E-04 1.11E-07

OR† Size 512B 8.70E-04 4.18E-01 8.21E-05 1.64E-04 6.87E-08 512B 8.70E-04 4.18E-01 8.21E-05 1.64E-04 6.87E-08

Scenario: ¯RON

Crossbar
Number 7

2.87E-04 8.67E+00 2.03E-03 5.82E+01 5.06E-01
7

2.87E-04 8.69E+00 2.03E-03 1.30E-01 1.13E-03Size 64x64 64x64
Bits per cell 32 32

Total 3.13E+01 2.79E+03 3.29E+02 9.19E+02 3.22E+02 7.21E+03 8.70E-01 6.27E+00

Scenario: ( ¯RON + ¯ROFF)/2

Crossbar
Number 7

2.87E-04 4.35E+00 6.07E-03 1.74E+02 7.58E-01
7

2.87E-04 4.35E+00 6.07E-03 3.88E-01 1.69E-03Size 64x64 64x64
Bits per cell 32 32

Total 3.13E+01 2.79E+03 4.45E+02 1.24E+03 3.22E+02 7.21E+03 1.13E+00 8.12E+00

∗The latency is listed as individual element. †S+H = Sample and Hold, IR = Input Register,
OR = Output Register.

the SWEC-ETHZ dataset, and patient 2 from the CHB-MIT dataset, for which non-idealities have

minimal impact. For the rest of the patients, however, no clear pattern was established with regards

to robustness against non-idealities. We attribute the varying degree of effectiveness between

patients to underlying patient specific signatures.
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4.6.5 Stuck Weight Offsetting

As observed in Fig. 4.8(d), stuck RON/ROFF devices lead to severe performance degradation.

At 1% stuck-at fault and above, system performance can drop below 50% accuracy, rendering the

system ineffective. In response to such degradation, we apply our proposed simplified stuck weight

offsetting method. Comparing Fig. 4.8(h) against (d), it is evident that the stuck weight offsetting

method improves the average accuracy across all stuck device percentages and datasets. At 1%

stuck-at fault, the average accuracy improved by as much as 20% for the Bonn dataset and more

than 10% for SWEC-ETHZ and CHB-MIT. The largest improvement was found for the CHB-MIT

dataset at 5% stuck-at fault, improving accuracy by 32.11%. At higher stuck device percentages,

reduced accuracy recovery is observed. This can be explained by the fact that at higher stuck

device percentages, more network information cannot be recovered. Minimizing the contribution

of stuck weight cannot fully retrieve the missing information, thereby leading to reduced accuracy

recovery. In addition, the proposed method greatly reduces the standard deviation across patients

and seeds, thanks to reduced contribution of stuck RON/ROFF devices to final output.

The limitation of this method lies within its inability to deal with both elements of the com-

plementary weight being stuck RON and ROFF simultaneously. If a positive (negative) weight is

stuck RON and negative (positive) weight is stuck ROFF, stuck weight offsetting cannot provide

any further adjustment to minimize the error. Meanwhile, if both weights are stuck RON or ROFF,

the lost weights cannot be recovered, contributing nothing to the final output.

4.6.6 Power, Area, and Latency Requirements

The following assumptions, all supported by SOTA DL accelerators, are made when estimating

the power, area and latency requirements of our proposed memristive DL accelerator depicted

in Fig. 4.3, targeting a 22nm CMOS process with device integration at the Back-End-Of-The-

Line (BEOL). A memristive device has a fixed area of 100 × 100 nm2 [335, 336] and the device

read latency is 6 ns [208]. An ADC operating frequency is 10 MHz [208], with a power consump-

tion of 10 mW [208] and a device area of 1.1× 0.6 mm2 [336, 337]. A DAC operating frequency

is 1.25 GHz, with per unit power consumption of 6 mW and a device area of 0.0576 mm2 [338].

Other peripheral circuitry with different purposes, including the activation function [339], aver-

age pooling layer made up from 4-to-1 multiplexers [340, 341], Sample and Hold (S+H) [342],

subtractor [343], and adder [344] circuits, were listed with more detail in Table 4.6.

All the peripheral components are scaled to 22nm technology by factors introduced in [345] and

all buffers with their associated connections have energy, area and latency estimated by CACTI

7.0 [346]. For all calculations, the source resistance and line resistance of 20 Ω and 2 Ω are

used respectively. To account for RC delays within crossbars when signals are propagated, the

methodology presented in [347] was used, with CSA, Tsettling, and Cwrite parameters from [348].

The largest total device latency was used for all devices.

In Table 4.6, four scenarios are considered: two where the resistance of all active (utilized)
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Table 4.7: Performance summary and comparison of our simulated system and existing seizure
detection/prediction system implementations in the literature.

Paper Technology Algorithm(s) No.
Channels

Analog
Front-End∗

Feature
Extract.†

Area
(mm2)

Latency
(s)

Power
(mW)

Energy
(uJ) Pred.⋄ Eval.

Task(s)

ML-Based

[199] CMOS (180nm)
BPF,
LSVM

8 ✓ ✓ 25.00 2.00 N/R◦ N/R◦ ✗ CHB-MIT

[327] CMOS (180nm) BPF, NL−SVM 8 ✓ ✓ 25.00 2.00 N/R◦ N/R◦ ✗ CHB-MIT
[328] CMOS (130nm) NL−SVM 18 ✗ ✓ N/R◦ 4.80 N/R◦ N/R◦ ✗ CHB-MIT

[329] CMOS (180nm)
FFT,
ApEn,
LLS

8 ✓ ✓ 13.47 0.8 2.80
2.24E

+03
✗ In Vivo

[198] CMOS (180nm)
BPF,
D2A−LSVM

16 ✓ ✓ 25.0 1.0 N/R◦ N/R◦ ✗ CHB-MIT

[330] CMOS (180nm)
BPF,
NL−SVM

8 ✓ ✓ 25.0 2.0 0.23 460.00 ✗ CHB-MIT

[289] CMOS (130nm) FIR, PLV 64 ✓ ✓ 3.86 N/R◦ 1.07 N/R◦ ✓ In Vivo

[123] CMOS (130nm)
FIR, PLV/
SE/CFC

32 ✓ ✓ 7.59 0.25 0.71 177.50 ✓ In Vivo

[?] CMOS (180nm)
DWT,
KDE,
SVM

8 ✓ ✓ 5.83 N/R◦ 0.67 N/R◦ ✓ CHB-MIT

[331] CMOS (40nm)
FFT,
NL−SVM

14 ✗ ✓ 4.50 0.71 1.90
1.35E

+03
✗ CHB-MIT

[332] CMOS (65nm)
CHT,
XGBoost−DT

16 ✓ ✓ 0.38 N/R◦ 0.40 N/R◦ ✗ CHB-MIT, iEEG.org

[234] CMOS (180nm) FFT 1 ✓ ✓ N/R◦ N/R◦ ✗.89 N/R◦ ✗ CHB-MIT

[?] CMOS (90nm) ICA 8 ✗ ✓ 0.4 0.1
8.16E

-02
8.16 ✗ In Vivo

[311] CMOS (180nm) LLS 1 ✓ ✓ 10.41 0.72
2.86E

-02
20.59 ✗ In Vivo

DL-Based

[139] CMOS (65nm) RNN 8 ✗ ✗ 10.15 N/R◦ 1✗.80 N/R◦ ✗ N/R◦

[333]
FPGA
(M2GL 025-VF256)

MLP 1 ✗ ✓ N/R◦ N/R◦ 159.70 N/R◦ ✗ Bonn

[334] CMOS (180nm) SNN 1 ✗ ✓ 0.15
64.98E

-03
5.40E

-03
0.35 ✓ In Vivo

Ours (TDM) CMOS (22nm)/
RRAM (BEOL)

Manual feature
extraction,
CNN

22 ✗ ✗
31.25 4.45E

-04
2.79E

+03
1.24E

+03
✓

Bonn,
CHB-MIT,

ETHZ-
SWECOurs (Par.) 322.31 1.13E

-06
7.20E

+03 8.12

∗Reported power, area, and latency requirements include the analog front end/signal acquisi-
tion component. †Reported power, area, and latency requirements include feature extraction
component(s). ⋄Denotes whether systems are able to perform epileptic detection and/or pre-
diction. ◦Not reported.

devices was fixed to ¯RON ≈ 10 kΩ, while considering either TDM or parallel use of ADC, and

two where the average resistance of all active devices was assumed to be ( ¯RON + ¯ROFF)/2 ≈ 55

kΩ, again for either TDM or parallelized ADC. These resistance values are representative of

two weight distributions: uniform, where all weights are zero, and normal, where all weights

are centered around zero. The first distribution was used to report the maximum possible power

consumption of our system, and the second distribution was used to report the power consumption

of a typical CNN trained using L2-regularization. Considering the marginal impact on total power

consumption, ( 0.16% and 0.06% for TDM and parallelized configurations, respectively), the

power of each individual trained CNN was not determined or reported.

For all scenarios, constant operation at 0.3V per cell [313] was assumed. Neither RRAM cross-

bar tiles nor peripheral circuitry was assumed to be stacked vertically. Consequently, the circuit

area consumption was computed as the summation of all individual elements. Both ADCs and
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DACs were assumed to operate at 6-bit resolution, as stated in Section 4.6.3, for the best perfor-

mance with QAT.

As can be observed in Table 4.6, TDM implementations consume significantly less power than

parallelized implementations due to the smaller number of required ADCs. For the worst case

TDM scenario, i.e, when all active devices are programmed to R−
ON with a constant 0.3V read

voltage, our proposed memristive DL accelerator has a latency of 445.22 µs, and consumes ap-

proximately 2.79W and 31.255 mm2 of power and area. This is fairly low power consumption for

a DL accelerator to reside on a separate chip from the neural implant, whereby the implant uses

thermal energy to wirelessly communicate with the accelerator [349], for reduced latency.

It is noted that we have chosen to optimize the latency of our system at the cost of higher power

consumption for multiple reasons. Firstly, analog crossbars which are used to perform IMC op-

erations, in particular VMMs, require peripheral circuitry which is power- and area-hungry. Con-

sequently, independent of the latency of the system, when inference is being performed, a large

proportion of the total system’s area and power is consumed by peripheral circuitry, registers, and

buffers. While TDM ADCs can be used to reduce the total power consumption by increasing

latency, other peripheral circuits, registers, and buffers, are still required for operation. Counter-

intuitively, in certain instances, the energy of the system can be reduced by minimizing system

latency during active operation. In other instances, the performance of the system can greatly be

improved at the cost of increased power consumption.

Secondly, RRAM devices suffer from conductance drift induced by read disturbances, which

may aggregate, as the analog current is summed up along each WL during inference [313]. To

mitigate this behavior, we have constrained the absolute amplitude of BL voltages to 0.3V and

minimized the duration in which a voltage is applied to each device, i.e., latency is minimized to

avoid read disturbances, and to prolong the lifespan of RRAM devices, at the cost of increased

power consumption. Lastly, as RRAM devices are non-volatile, gating circuitry can be used to

reduce the energy consumption of both TDM and parallelized architectures, as both of our archi-

tectures have a critical delay path which is much shorter than typical signal acquisition sampling

rate periods. This also allows for input buffering to be performed, so that constant operation is not

required.

4.6.7 Comparison to Existing Hardware Implementations

In Table 4.7, we compare the performance of hardware implementations of notable epileptic

seizure detection and/or prediction hardware systems in the literature. As many different eval-

uation tasks were used, we did not report performance metrics. Hardware implementations are

broadly categorized as either ML- or DL-based. As can be observed, both of our implementations

(reported for the ( ¯RON + ¯ROFF)/2 scenario in Table 4.6) have significantly reduced inference la-

tency, at the cost of higher power consumption, compared to traditional CMOS and FPGA-based

implementations. It is worth noting that, most of the previous designs have not reported a com-
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plete power consumption analysis, are not capable of seizure prediction, and use fewer channels,

which can lead to lower power consumption and silicon area.

While, compared to prior work, our proposed system is competitive in resource-constrained

environments, it consumes a relatively large area and more power. This results in significantly

higher power consumption compared to neuromorphic processors, such as that presented in [334].

It is noted that our design is primarily intended to be used as a reference design for future works

implementing epileptic seizure detection and prediction systems using CMOS and memristors.

Using analog SRAM, vertical stacking of crossbars and CMOS components, and partial sensing

approaches, the power and area requirements of our simulated system could be greatly reduced.

We aim to investigate these in our future research.

4.7 Conclusion

We proposed a parallel CNN architecture that can be used to perform both epileptic seizure de-

tection and prediction rapidly. Compared to other works in literate, our architecture requires

significantly fewer parameters, and demonstrates competitive performance on the University of

Bonn, CHB-MIT, and SWEC-ETHZ datasets. Using emerging memristive devices and software-

hardware optimization methodologies, we demonstrated, through comprehensive simulations, that

our memristive DL accelerator is capable of performing real-time operation, and consuming rea-

sonable power in real-world conditions. We also proposed and investigated a new simplified stuck

weight offsetting method to improve the robustness of our system to non-idealities. This Chapter

sets a clear path towards the eventual circuit-level realization of a memristive epileptic seizure

detection and prediction system.
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Chapter 5

Memristive Stochastic Computing for Deep
Learning Parameter Optimization

Stochastic Computing (SC) is a computing paradigm that allows for the low-cost and low-power

computation of various arithmetic operations using stochastic bit streams and digital logic. In con-

trast to conventional representation schemes used within the binary domain, the sequence of bit

streams in the stochastic domain is inconsequential, and computation is usually non-deterministic.

In this Chapter, the first research question is addressed. The stochasticity during switching of

probabilistic Conductive Bridging Random-Access Memory (CBRAM) devices is exploited to

efficiently generate stochastic bit streams in order to perform Deep Learning (DL) parameter op-

timization, reducing the size of Multiply and Accumulate (MAC) units by 5 orders of magnitude.

It is demonstrated that in using a 40-nm Complementary Metal–Oxide–Semiconductor (CMOS)

process, the proposed architecture occupies 1.55mm2 and consumes approximately 167µW when

optimizing parameters of a Convolutional Neural Network (CNN) while it is being trained for a

character recognition task, observing no notable reduction in accuracy post-training.

5.1 Introduction

Embedded RRAM-based neuromorphic and DL accelerators have attracted significant attention

due to their promise to revolutionize computing [145]. Such devices are capable of in-memory

computation, and can be used to perform near-sensor high-speed and low-power computation at

the IoT edge [350].

Current research efforts are primarily focused towards the realization of scalable and reliable

memristive architectures for in-memory computing applications [42, 145]. For example, memris-

tive crossbar architectures can be used to efficiently implement MAC or dot-product accelerators

to perform 2D VMMs, which are prominent in both neuromorphic and DL systems, in O(1) [8].

Resistive memories, however, are still considered an emerging technology [351] that are prone

to device-to-device variability, endurance challenges, and stochastic behavior [256], which make

reaching the maximum gain of RRAM technology, currently infeasible.

While the commercial long-term viability of using RRAM devices for such purposes is yet to
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Figure 5.1: Conceptual difference between classical and stochastic computing in terms of proba-
bility density functions. (a) Classical or deterministic computing requires well-defined
margins. (b) Stochastic computing is error-tolerant, and can thus exploit quantum
models of uncertainty that occur at the particle level. This simplifies the hardware re-
quired for downstream processing. In our case, a large arithmetic logic unit containing
a multiplier can be replaced by a single logic gate.

be properly determined [352], rather than treating the non-ideal stochastic behavior of RRAM de-

vices as a hindrance, some researchers have sought to exploit the well-characterized stochasticity

of RRAM devices for alternative applications such as chaos [353,354] and random number gener-

ation [101,355]. Traditionally, large hardware costs associated with stochastic number generation

have hindered stochastic processors, as they require large bit stream lengths to mitigate undesirable

computational errors [356], rendering them largely ineffective for most applications. In [357], a

hybrid CMOS-memristor stochastic processor was proposed, which used digital CBRAM devices

for efficient stochastic number generation. It was demonstrated that when using large bit-stream

lengths, the processor was able to perform gradient descent optimization and k-means clustering

in a low-power and high-speed mode of operation.

In this Chapter, we expand upon efforts in [357], and exploit the well characterized switching

stochasticity of probabilistic CBRAM devices to efficiently generate stochastic bit streams in or-

der to perform deep learning parameter optimization using a hybrid CMOS-memristor stochastic

processor. By nature, such a processor is highly tolerant to external noise and relaxes many of

the stringent hardware requirements needed in generating distinct voltage levels (Fig. 5.1). While

most prior DL-based SC research applies SC to the feed-forward processing (inference) stage, as it

is known to be tolerant to noise, we instead explore if it is at all possible to perform parameter opti-

mization, that typically requires high precision, using probabilistic bits. Our specific contributions

are as follows:

1. We are the first to exploit the switching stochasticity of CBRAM devices to perform deep

learning parameter optimization using SC;

81



Chapter 5 Memristive Stochastic Computing for Deep Learning Parameter Optimization

2. We evaluate our architecture by training a DNN for the MNIST character recognition task

using Mini-Batch SGD and Mini-Batch SGD with Momentum;

3. We investigate the tradeoff between latency, area and power consumption, and demonstrate

that our architecture can be used to reduce the size of MAC units.

5.2 Preliminaries

5.2.1 Stochastic Computing

In SC, numbers are represented using bit streams. The frequency of 0s and 1s in stochastic bit

streams determines their value depending on a range, R, denoted as the priori. The priori can be

unipolar, i.e., R ∈ [0, 1] to represent unsigned operands, or bipolar to represent signed operands,

i.e., R ∈ [−1, 1]. The value represented by unipolar bit streams can be determined using the

mean, x, whereas the value represented by bipolar bit streams can be determined using 2x − 1.

Conventional SC circuits use Linear-Feedback Shift Registers (LFSRs) to generate pseudo-random

numbers for stochastic bit stream generation, and popcount and up-down counter circuits to decode

bit streams. SC blocks for bit stream generation, addition, multiplication, and stochastic bit stream

to binary converters are depicted in Fig. 5.2.

Figure 5.2: Stochastic computing blocks for (a) bit stream generation, (b) stochastic bit stream to
binary converter, (c) multiplication, and (d) scaled addition.
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5.2.2 Memristor-based Native Stochastic Computing

Digital memristor devices have a large dynamic range between logic levels that is associated with

the formation and rupture of a dominant, nanoscale conducting filament [24]. On account of

device-device variation, experimental studies have demonstrated that the switching time between

logic levels is stochastic, and that the time-to-switch can be accurately modelled using a Poisson

distribution [224, 358], as depicted in Fig. 5.3. By exploiting this property, both unipolar and

bipolar stochastic bit streams can be efficiently generated using digital memristors by applying

programming pulses with variable pulse widths to memristor cells. Memristor-based native SC

systems can be realized by using memristor cells for stochastic bit stream generation, and using

CMOS for stochastic arithmetic circuits.

5.2.3 Deep Learning Parameter Optimization

SGD [359] is a parameter optimization method that is described by (5.1), which is commonly used

to train DNNs.

θn = θn−1 − η∇θJ(θ, y
′
i, yi), (5.1)

where, η is the learning rate, θ denotes a trainable parameter, yi represents the class label, y′i de-

notes the predicted class label, and J(θ, y′i, yi) describes the objective function. Momentum [360],

or SGD with momentum, described by (5.2), is a method that improves SGD and accelerates gra-

dients in relevant directions towards a local minima by dampening oscillations using γ and v, i.e.,

Time to Switch (ms)

Figure 5.3: Distribution of switching time of a fabricated CBRAM device [24] under an applied
voltage of 4.5 V. Switching events (red circles) fit a Poisson distribution (blue line),
P (t) = (∆t/τ)e−t/τ for ∆t = 0.5, V = 0.4 and τ = 0.38ms.
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Figure 5.4: Native stochastic parameter update process. (a) The word line (WL) is activated to
open one row at a time. A pulse train is applied to induce stochastic switching in
the RRAM. The current sense amplifiers are used to sense which devices are drawing
current, indicating which cells have been switched on. (b) The parallel-generated bit
stream is XNOR multiplied by the negative learning rate and added to the previous
weights to perform a single parameter update. The overhead of requiring an additional
array to compute the weight bit stream is partially offset by removing the need for
ADCs.

momentum and velocity parameters.

vn = γvn−1 + η∇θJ(θ, y
′
i, yi),

θn = θn−1 − vn
(5.2)

Mini-Batch SGD and Mini-Batch Momentum are variations of the SGD and Momentum op-

timization algorithms which split training datasets into small batches that are used to perform

parameter optimization. From this stage forward, we implicitly refer to mini-batch variations.

Table 5.1: Adopted network architecture.

Layer Output Shape

Convolutional, f = 10, k = 5, s = 1, p = 0 (10× 24× 24)
Max Pooling, k = 2, p = 2 (10× 12× 12)
Convolutional, f = 20, k = 5, s = 1, p = 0 (20× 8× 8)
Max Pooling, k = 2, p = 2 (20× 4× 4)
Fully Connected, N = 50 (50)
Fully Connected, N = 10 (10)
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5.3 Proposed Architecture

A block diagram of our proposed architecture is depicted in Fig. 5.4. We confine operating in the

stochastic domain to the parameter update stage during training. The architecture consists of scal-

able crossbar tiles of probabilistic CBRAM devices (RRAM input and weight arrays) and CMOS

systolic stochastic arithmetic circuits (multipliers and scaled adders). Stochastic bit streams are

generated by writing pulse trains to columns of 2D crossbar architectures. Given an applied volt-

age, V , and a programming pulse width, t, the switching probability can be expressed using (5.3)

P (t, V ) = 1− e(−teV/V0 )/τ0 , (5.3)

where V0 and τ0 are fitting parameters [357]. By fixing the applied voltage and varying the

programming pulse width applied to each column, bipolar bit streams can be efficiently gener-

ated in-memory. The bits are read out from the array in parallel using current sense amplifiers

(Fig. 5.4(a)). Depending on task-specific requirements, crossbar tiles can either be duplicated to

increase throughput and to reduce latency, or time-multiplexing can be used to decrease power and

area.

5.4 Training and Validation Methodologies

To evaluate our architecture, we trained a CNN described in Table 5.1 using MNIST. All convo-

lutional, and the first fully connected layer were sequenced with batch normalization layers, and

the ReLU activation function was used for all layers. All networks were trained for 10 epochs

with a batch size of 256 and a fixed learning rate. Gradients were clipped between -1.0 and 1.0.

Cross entropy loss was used in conjunction with SGD and SGD with momentum. For all networks

trained using momentum, Nesterov was disabled, and a fixed momentum value of 0.9 was used,

which has demonstrated significant performance for a variety of DL tasks [360].

5.5 Results

5.5.1 Performance

The MNIST test set accuracy for all training epochs, and the MNIST test set accuracy and train-

ing loss for all mini-batches during the first training epoch are reported in Fig. 5.5, for network

architectures trained using our native SC-based parameter optimization with SGD and SGD with

momentum. These are also shown for a baseline implementation using conventional training. The

learning rate was varied from 0.01 – 0.5 and the stochastic bit stream length (Nbit) was varied

from 2-Kbits – 64-Kbits, near the range investigated in [357]. Each training instance was repeated

0For each convolutional and pooling layer, f denotes the number of filters, k determines the filter size, s is the stride
length, and p denotes the padding. N is the number of output neurons for each fully connected layer.
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Figure 5.5: The MNIST test set accuracy across seperate training instances of 10 epochs (a–d) and
234 mini-batches (1 epoch) (e–h), respectively, for CNNs trained using our native SC-
based parameter optimization with different learning rates for (a) SGD, and (b) SGD
with momentum; for a fixed learning rate with (c) SGD, and (d) SGD with momentum;
for a fixed learning rate with (e) SGD, and (f) SGD with momentum. The training loss
during the first training epoch for (g) SGD, and (h) SGD with momentum. In (c–h) a
learning rate of 0.5 was used. Each baseline implementation uses 32-bit floating point
weights.

10 times, and the mean and standard deviation across instances were determined. From Fig. 5.5,

it can be observed that for both SGD and SGD with momentum a bit stream length larger than

8-Kbit and a learning rate of ≥0.1 is required for stable training performance. We attribute the

performance degradation when smaller learning rates are used to the fact that positive values near

zero can be encoded negatively in the stochastic domain, and note that such implementations may

eventually converge if trained for≫10 epochs.

5.5.2 Power and Area Requirements

Power and area estimates were calculated based on a 40 nm CMOS process integrated with RRAM

in the back end of the line [196]. Specifically, a pre-configured IP is used for the encoder and

decoder, and a full-custom approach was taken to laying out the RRAM array, sense-amplifiers,

registers, MUX-based scaled adder, and XNOR accumulator, with verified DRC/LVS compliance.

Power draw is modified to suit the device distribution in Fig. 5.3. The area of each 128×128

RRAM tile is 2.77×103µm2. Assuming that the entire bit stream must be accessible at once, and

that only one row may be read out at a time, a bit stream length of 16-Kbits requires 27 tiles. The

gradient bit stream is multiplied by a learning rate bit stream of equivalent length and subtracted

from the weight. To improve throughput, the number of arrays is doubled to allocate half of the

tiles to be reset while the other half are generating bit streams. This gives a total of 29=512 RRAM

tiles, occupying a total area of 1.42mm2.
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Static power consumption is estimated based on the presumption that half of the tiles are gen-

erating bit-streams while the other half are being reset, one row at a time. Balancing the latency

between reading and resetting is feasible because reading requires stochastic programming. As

a conservative estimate, we assume an input voltage of 4.5V, which is tolerable at 40nm using

Laterally-Diffused Metal Oxide Semiconductor (LDMOS) transistors, that draw approximately

10nA from a device that is on, and 100pA from a device that is off [361]. The corresponding static

power dissipation is 45nW and 0.45nW, respectively. The power consumed for one read out can

be measured by (5.4):

Pread = Nbit[PonE(∇θJ) + Poff(1−E(∇θJ))], (5.4)

where Nbit is the bit stream length, Pon and Poff are the power dissipated from an on and off device,

and E(∇θJ) is the expected value of the gradient ∇θJ(θ, y
′
i, yi). We measured E(∇θJ)=0.5367

at the start of the training process. Gradient updates are generally larger at the start of training

than at convergence. Therefore, more cells are switched on for steeper gradients. This means

that worst-case power consumption should be measured at the start of training. For normalized

bipolar weights, E(θ)=0.5. Power dissipation from the RRAM array is estimated to be 43.0 µW

per gradient, and 40.6 µW per weight. These estimates are doubled to account for additional tiles

used for resetting and enhancing throughput, giving a total result of 167 µW.

The layout of the peripheral CMOS circuitry was used to generate accurate area and power

estimates. The area of a single XNOR gate is 670nm×355nm. The pitch of the RRAM array

is approximately 410nm. The XNOR multiplier can be oriented such that it is pitch-matched

to the RRAM columns. It can then fit under the bottom row without additional area overhead.

The total area occupation of the XNOR gate of 0.031mm2 can thus be merged with the RRAM

area. The total area overhead from accumulation consists of the MUX-based scaled adder and

a register which consume 0.0735mm2. Each sense-amplifier built from a pair of cross-coupled

inverters occupy 0.41µm2. Although the shorter dimension can be optimized to be pitch-matched

to the array, a reference signal is required to distinguish on and off cells. This reference must

be obtained from an adjacent column, which requires time multiplexing the bit stream generation

process into two steps. With pairwise column sharing, the total area of all current sense amplifiers

is 0.0267mm2. Time multiplexing also halves the maximum static power dissipation to 83.5 µW.

Total static power dissipation of the CMOS elements is from subthreshold current draw, and thus

dominated by resistive dissipation.

5.6 Discussion

The length of the parallel-generated bit stream may cause large power draw as throughput is in-

creased. But this drawback is offset by three factors. Firstly, the MAC process of non-quantized

weights can now be completed in one single step using an XNOR gate and a multiplexer (with a
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simulated post-layout delay of 58 ps). A 16-bit MAC unit designed in a comparable process [362]

is approximately five orders of magnitude larger and two orders slower than an XNOR gate and

a MUX. Secondly, the power estimates are derived from the peak value at the end of bit stream

generation. All devices are initialized to be off and only switch on during the course of the time

to switch (Fig. 5.3). This peak only occurs at the end of the read out process. Finally, sampling

inputs and weights from a normal distribution tracks gradient descent pathways that avoid saddle

points that riddle high-dimensional problems. While not evident on a task as simple as MNIST,

we expect this advantage to manifest on more practical problems with deeper networks.

Numerous options are available to further optimize the power dissipation. Significant resources

have been dedicated to developing low-voltage memristors well below the supply limitation of the

40nm process used. At one extreme end, the work in [53] uses 100 mV programming pulses. This

would reduce resistive dissipation by a larger factor, though must be balanced with the average

switching time. Our work has shown that lengthy bit streams are required to obtain acceptable

convergence in the training process. This is on par with literature [357], however, we expect that

the use of quantization-aware training can effectively place a constraint upon the set of permissible

values, thus reducing the bit length.

Alternatively, the generation of long bit streams can be time multiplexed to free up arrays to

increase throughput. Although this slows down bit stream generation, we have eliminated the

large delays associated with MAC operations by one order of magnitude [362]. SC also uses noise

to avoid being trapped by saturated gradients during training, known to significantly slow down the

training process in conventional computing. Endurance concerns can be overcome by substituting

RRAM for MRAM, which exhibits endurance of over 1015 cycles, compared to that of RRAM

(≈ 105 − 1012 cycles) with faster write times, at the cost of increased fabrication complexity.

5.7 Conclusion

In this Chapter, we demonstrated that it is indeed possible to perform DL parameter optimization

using stochastic bits by exploiting the stochasticity during switching of probabilistic CBRAM

devices to efficiently generate stochastic bit streams. This new insight to stochastic computing is

valuable for the following reasons:

1. For an end-to-end stochastic computing system, the gradient update step can share resources

with the feed-forward step; the alternative to long bit-streams would be a floating point unit,

which offsets this disadvantage;

2. The multiply-and-accumulate steps now rely only on two combinational logic gates. This

means the propagation delay for MAC is reduced by orders of magnitude. Therefore, the

number of registers can be significantly reduced by distributing computation over additional

cycles, without increasing the total computation time.
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While in this Chapter, memristive SC was solely used for DL parameter optimization, SC has

been proposed and projected at almost all levels of the computing stack, due to its ability to be

used to perform basic arithmetic operations. Practical engineering applications that could make

use of the proposed architecture include, but are not limited to image processing, vector quantiza-

tion, machine control, and error correction decoding. Investigation surrounding these alternative

applications, switching probability variation on account of device-to-device variation, and an end-

to-end timing analysis at the circuit and system level for a variety of configurations to train more

complex networks using larger datasets, forms the basis of future work.
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Chapter 6

MemTorch: An Open-source Simulation
Framework for Memristive Deep Learning
Systems

Memristive devices have shown great promise to facilitate acceleration and improve the power

efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Re-

sistive Random-Access Memory (RRAM) devices can be used to efficiently implement vari-

ous in-memory computing operations, such as Multiply and Accumulate (MAC) and unrolled-

convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional

Neural Networks (CNNs). However, memristive devices face concerns of aging and non-idealities,

which limit the accuracy, reliability, and robustness of Memristive Deep Learning Systems (MDLS).

These limitations should be considered prior to circuit-level realization. This Chapter, which ad-

dresses the second research question, presents MemTorch, an open-source1 framework for cus-

tomized large-scale memristive DL simulations, with a refined focus on the co-simulation of de-

vice non-idealities. It is noted that this Chapter arguably presents the most significant contribution

of this thesis. MemTorch enabled, and was used to conduct, many studies, which are presented in

other Chapters.

6.1 Introduction

Memristive crossbar architectures [363] have been used to reduce the time complexity of VMMs

used in DNNs from O(n2) to O(n), and in extreme cases to O(1) [11], facilitating the accel-

eration and improving the power efficiency of DL systems [145]. However, memristors are still

considered an emerging technology, where their reliable manufacturing processes are yet to be

achieved. As a result, DL architectures realized using memristor crossbars are putative to be prone

to severe errors due to a number of device limitations including: finite discrete conductance states,

device I/V non-linearity, failure, aging, cycle-to-cycle and device-to-device variability [352, 364].

Consequently, significant research efforts are being made to improve the reliability and robust-

1https://github.com/coreylammie/MemTorch
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ness of memristive, or RRAM crossbars, used to perform in-situ learning [4, 147, 223, 365] and

inference [11, 45, 150, 223, 225, 366] in DL systems. A general cross-platform, heterogeneous,

high-level, customizable and open-source simulation framework with a refined focus on the co-

simulation of device non-idealities could be used to conveniently build, rapidly prototype, and

investigate device non-idealities in customized large-scale MDNNs and MDLSs. In this Chapter,

we present such a framework, entitled MemTorch, for deep memristive learning using crossbar

architectures. MemTorch is an open-source [367] simulation framework that integrates directly

with the open-source PyTorch ML library that:

1. Facilitates the cross-platform development and distribution of large-scale passive 0-Transistor

1-Resistor (0T1R) and active 1T1R memristive deep learning systems;

2. Places a large emphasis on modeling non-ideal, but inevitable, device characteristics in

arbitrary and customizable device models;

3. Supports heterogeneous platforms such as CPUs and GPUs;

4. Has a high-level API, which is able to abstract performance-critical tasks described in vari-

ous low-level languages.

6.2 Related Work

We compare MemTorch to other memristor-based DNN frameworks and inference accelerators,

which are software-based and do not rely on SPICE modeling, in Table 6.1. More exhaustive

comparisons are performed in [2]. Software-based frameworks and inference accelerators use a

combination of programming languages to simulate the behavior of memristive devices. Among

previous works, DNN+NeuroSim [237,238] and the IBM Analog Hardware Acceleration Kit [240]

are the most similar offerings, which integrate with both PyTorch and/or Tensorflow, and can be

used to account for non-ideal device characteristics. However, they are largely concerned with

algorithm-to-hardware mapping, and are designed to evaluate training and inference accuracy with

hardware constraints. They are not designed to model any arbitrary device non-idealities for any

behavioral device model. MemTorch, on the other hand, emphasizes the co-simulation of non-

ideal device characteristics and generic behavioral device models with stochastic parameters for

higher flexibility to simply account for process variance.

6.3 Software Framework

The MemTorch simulation framework is programmed in C++, CUDA and Python, with a Python

interface. Performance critical tasks are performed using either C++ or CUDA, for CPU or GPU

execution, respectively; otherwise Python is used. MemTorch relies heavily on the open source

91



Chapter 6 MemTorch: An Open-source Simulation Framework for Memristive Deep Learning

Systems

Table 6.1: Comparison of MemTorch to other memristor-based DNN simulation frameworks and
inference accelerators.∗Does not support GPU-accelerated inference and/or parameter
mapping.†Models are shared using Google Drive without Application Programming
Interfaces (APIs).

Simulation framework Open-source GPU Pretrained DNN conversion Programming language(s)

RAPIDNN [368] ✓∗ ✓ C++
MNSIM [222] ✓ Not Specified
PUMA [150] ✓ C++
DL-RSIM [234] ✓ ✓ Python
PipeLayer [223] ✓∗ ✓ C++
Tiny but Accurate [235] ✓† ✓ MATLAB
Ultra-Efficient Memristor-Based DNN Framework [236] ✓† ✓ C++, MATLAB
Non-ideal Resistive Synaptic Device Characteristic Simulation Framework [224] ✓ ✓ Python

Neurosim [139], NeuroSim+ [369], and DNN+NeuroSim [237, 238] ✓ ✓ ✓ C++, Python
IBM Analog Hardware Acceleration Kit [240] ✓ ✓ ✓ Python, C++, CUDA
MemTorch ✓ ✓ ✓ Python, C++, CUDA

PyTorch [231] ML framework, and uses the C++ and Python PyTorch APIs extensively to abstract

low-level operations. Consequently, it supports native CPU and GPU operations.

6.3.1 Software Architecture

MemTorch is made up of seven distinct sub-modules. General utility functions, such as data

loaders or generic functions, are grouped within memtorch.utils. The memtorch.bh sub-

module encapsulates all crossbar models, crossbar mapping and programming methods, crossbar

tile mapping and programming methods, memristor models, memristor model window functions,

models for all non-ideal device characteristics, quantization methods, and methods to generate

stochastic parameters. The memtorch.mn sub-module mimics torch.nn and defines equiv-

alent memristivetorch.nn.Module layers. memtorch.mn currently extends torch.nn.

Linear, torch.nn.Conv1d, torch.nn.Conv2d, and torch.nn.Conv3d. memtorch.

mn.Module.patch model can be used to either instantiate new layers, or to patch exist-

ing instances. memtorch.mn.Module.patch model() iterates through and patches all

named modules within classes extending from torch.nn.Module and adds a self.tune ()

method, in addition to other helper methods, to the class instance of the model that automatically

patches each selected named module.

The memtorch.cpp sub-module encapsulates all Python-wrapped C++ extensions, whereas

the memtorch.cu sub-module encapsulates all Python-wrapped CUDA extensions. Currently,

MemTorch uses C++ and CUDA bindings to perform inference for both active and passive mod-

ular tiled architectures, and to parallelize quantization operations. The use of bindings can be

disabled, and legacy python methods (developed in previous versions of MemTorch) can be used

instead using the use bindings argument, when patching torch.nn.Module instances.

memtorch.examples sub-module encapsulates general-usage examples and supporting scripts.

The memtorch.map sub-module encapsulates all mapping and tuning algorithms used when

programming and tuning memristive crossbar arrays. Finally, the memtorch.submodule sub-
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[A] [B] [C] [D]

[E] [F] [G] [H]

Figure 6.1: Simulation results when exemplar device non-idealities are considered for classifying
CIFAR-10 dataset for two different modular crossbar tile sizes, 128x128 and 256x64.
While MemTorch can be used to simulate both passive and active architectures, for
demonstration purposes, in this figure, only active architectures are considered.

module encapsulates all external git sub-modules that MemTorch uses. We review and present the

algorithms and models that are currently built into MemTorch in Section 6.6, and our approach to

modeling non-ideal device characteristics in Section 6.7.

6.3.2 Software Functionalities

Complete examples demonstrating the functionality of MemTorch are publicly accessible2. ReadThe-

Docs3 is used to explain all functionalities.

6.4 Implementation and Empirical Results

In Fig. 6.1, we present exemplar large-scale deep learning simulations to investigate the per-

formance degradation due to device-device variability, finite number of conductance states, and

device failure when two different modular crossbar sizes are considered. A separate case study

is not presented, as we have previously used MemTorch in other works to perform hand gesture

classification [1], epileptic seizure prediction [6], to develop an empirical metal-oxide device en-

durance and retention model [4], and to develop an extended Design Space Exploration (DSE)

methodology for RRAM architectures [5]. Prior to simulation, all convolutional and linear layers

from a pre-trained MobileNetV2 for CIFAR-10 were converted to memristive equivalent layers,

2https://github.com/coreylammie/MemTorch/tree/master/memtorch/examples
3https://memtorch.readthedocs.io/en/latest/
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1. Define and train, or import a pretrained torch.nn.Module 2. Convert a DNN to a MDNN 

Define a PyTorch Model
class Model(torch.nn.Module):

 def __init__(self):
 super(Model, self).__init__()
 self.layer = torch.nn.Linear(in_features=400, out_features=400)
 torch.nn.init.xavier_uniform_(self.layer.weight)

 def forward(self, input):
 return torch.functional.F.softmax(self.layer(input))

Import a Pretrained PyTorch Model
model = Model()
model = torch.nn.DataParallel(model)
model = model.load_state_dict(torch.load('trained_model.pt'), strict=False)

Train a PyTorch Model
for epoch in range(epochs):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.cuda(), target.cuda()
 optimizer.zero_grad()
 output = model(data)
 loss = criterion(output, target).backward()
 optimizer.step()

-OR-

Module Parameters to Patch
module_parameters_to_patch=[torch.nn.Linear]

Memristor Model

Crossbar Configuration
scheme=memtorch.bh.Scheme.DoubleColumn
transistor=False
tile_shape=(128, 128)
ADC_resolution=8
ADC_overflow_rate=0.
quant_method='linear'

Mapping Routine
mapping_routine=memtorch.map.Parameter.naive_map

Programming Routine
programming_routine=memtorch.bh.crossbar.Program.naive_program

Input Scaling
max_input_voltage=0.15

memtorch.mn.Module.patch_model()

PyTorch Model

reference_memristor=memtorch.bh.memristor.Stanford_PKU
reference_memristor_params={'time_series_resolution': 1e-9,
'r_on': memtorch.bh.StochasticParameter(1.4e4, std=1e5, min=2),
'r_off': memtorch.bh.StochasticParameter(5e7, std=2e5, min=1)} 

Figure 6.2: Illustration of a typical use-case workflow in MemTorch.

as explained in detail in 4, and documented in Section 6.8.

6.5 Illustrative Example

To demonstrate MemTorch’s intuitive design, we depict a typical use-case work flow in Fig. 6.2.

Here, torch.nn.Linear layers are converted to equivalent memristive layers constructed us-

ing modular crossbar tiles, that each contain (128 × 128) devices, which represent weights using

a double-column parameter representation scheme. Inputs are scaled between ±0.15V , and 8-bit

ADCs are used to read out column currents. The Stanford PKU RRAM model [370] is used to

model TiN/Hf(Al)O/Hf/TiN devices from [27]. Three other non ideal device characteristics were

also accounted for including a finite number (10) of discrete conductance states, device faults, and

non-linear I/V device behavior.

6.6 Algorithms and Models

This Section reviews and presents the algorithms and models that are currently built into Mem-

Torch.

6.6.1 Memristive Device Models

Within MemTorch, we use five base memristive device models that extend the memtorch.bh.

Memristor.Memristor base class for our simulations. These include the linear ion drift

model by [371]; the VTEAM model by [151], which is a general model for voltage-controlled

4https://github.com/coreylammie/MemTorch/tree/master/memtorch/examples/Exempl
ar_Simulations.ipynb
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In the 1T1R arrangement, memristive devices can be individually selected

A[0, :] = [WL0, WL1, WL2, ... WLM] 
B[0, :] = [g00, g01, g02 .. g0N] 
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WL2 DAC
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Figure 6.3: Depiction of an M ×N [A] 1R (0T1R) crossbar architecture and a [B] 1T1R crossbar
architecture. Matrix-vector and matrix-matrix multiplication can be performed by en-
coding and presenting a scaled input vector or matrix A as voltage signals to each row
of the crossbar’s WLs. As shown in [A], assuming a linear I/V relationship, the total
current in each column’s BL is linearly proportional with the sum of the multiplication
of the WL voltages and conductance values in that column, i.e., BL[0, :] ∝ A[0, :] ×
B. In the 1T1R arrangement [B], individual memristive devices can be selected using
SLs.

memristors that can be used to fit a large range of experimental device data; the Stanford PKU

RRAM model [370], which describes switching performance for bipolar metal oxide RRAM; and

two versions of the data-driven Verilog-A RRAM model [372], which expresses device current-

voltage characteristics and resistive switching rate as a function of the bias voltage and the initial

resistive state of each device. For each base model, finite differences is used to obtain a numerical

solution for each discretized time-step, dt. While only five base memristive models are currently

supported natively, others, which can model the equivalent conductance of a memristive device

for an arbitrary applied voltage signal, such as those modeling PCM or other device technol-

ogy behavior, can easily be integrated modularly by extending memtorch.bh.Memristor.

Memristor.

6.6.2 Window Functions

Within memristive device models, window functions are widely employed to restrict the changes

of the internal state variables to specified intervals [373]. MemTorch currently natively supports
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the Biolek [374], Jogelkar [375], and Prodromakis [376] window functions, and can easily be

extended to support others.

6.6.3 Memristive Crossbar Architectures

Memristive devices can be arranged within crossbar architectures to perform VMMs, which are

used extensively in forward and backward propagations within DNNs. There are two commonly

used crossbar architecture configurations, namely 1T1R, and 1-Resistor (1R or /0T1R), which

are both depicted in Fig. 6.3. In 1T1R arrangements, one transistor is used to select and control

each memristive device, whereas in 1R arrangements, rows and columns of memristive devices

are positioned perpendicular to each other, with memristive devices sandwiched in-between.

The product of a vector and a matrix or, in a more general form, two matrices, A of size

(M × C) and B of size (C × N), can be computed using a crossbar-architecture, as illustrated

in Fig. 6.3, where A represents input voltage signals and B is encoded within the crossbar as

memristor conductances. Separate ADCs can be used to read out the current of each column in

parallel, as depicted, or sample and hold circuits can be used in conjunction with a single ADC per

crossbar, that can be used to read out the current of each column sequentially using TDM. As the

output current of each column is linearly proportional to the elements of AB, a linear constant,

K, is used to correlate the ADC readout of each column accordingly. By separately presenting

each row of A to the crossbar through WLs, all rows of AB can be computed.

Because memristors cannot be programmed to have negative conductances, within MDNNs,

weight matrices can either be represented using two devices per weight [377], as described by

(6.1),

AB = K

C∑
i=0

A[i, :](gpos[i, j]− gneg[i, j]), for j = 0 to N, (6.1)

or using a single device per weight [96,378] using complex weight mapping algorithms or current

mirrors, as described by (6.2),

AB = K

C∑
i=0

A[i, :](g[i, j]− gm), for j = 0 to N. (6.2)

For the single-column case, the current through gm, used to mirror a current −2V/(R̄ON + R̄OFF)

to each crossbar, is copied to each column and subtracted from all memristor columns. This

current can be realized using a diode-connected NMOSFET by adjusting the NMOSFET channel

width so that it has a passive resistance gm. From this stage forward, we refer to the weight matrix

representation methodology adopted, that is, whether two devices are used to encode each weight,

i.e, differential weight mapping, one device is used to encode each weight, or another configuration

is used to encode weight matrices, as the parameter representation scheme.

96



Chapter 6 MemTorch: An Open-source Simulation Framework for Memristive Deep Learning

Systems

Modular memristive crossbar tiles

Mapping complete unrolled neural network layers into large memristive crossbar architectures

often results in poor performance. This is due to non-ideal device characteristics that introduce

substantial current variability when accumulated currents from columns with a large number of

devices are read out. When one or two large crossbars are used, for single-column and double-

column parameter representation schemes, respectively, they cannot easily be modularized be-

cause customized crossbar shapes are required to represent each individual layer. Instead of using

large crossbars, modular crossbar tiles [379] can be used that map layers into multiple uniformly

sized crossbars, commonly referred to in literature as crossbar tiles.

One large crossbar of size (M ×N ) can be mapped using ceil(M/S0)×
ceil(N/S1) crossbar tiles, each with a size of (S0×S1), where the total utilization, ρ, of all crossbar

tiles can be determined using (6.3),

ρ =
MN

ceil(M/S0)ceil(N/S1)S0S1
. (6.3)

Duplication of crossbar tiles and TDM can be used to regulate mapping to improve the array

utilization and computation time by balancing latency among layers [196].

Memristor crossbar programming

The conductance of memristive devices can be altered between a low resistance state RON and a

high resistance state ROFF, by applying programming voltage pulses with different intervals and

amplitudes. While individual devices within crossbars can be selected and programmed within

1T1R cells, in 1R arrangements, when a voltage is applied to a specific device, a non-zero voltage

(usually half that of the nominal programming pulse amplitude) is applied to all other devices in the

same row and column. Consequently, various multistage programming [380–383] and corrective

methods [11, 363, 384], which can use analog voltage wave-forms, are often used to ensure the

difference between the programmed conductance states and the conductance states-to-program

are within an acceptable tolerance.

Memristor crossbar tuning

The total current of each column in an ideal memristive crossbar is linearly proportional to the

output elements of the VMM resultant vector. Consequently, after each DNN layer’s weights

are programmed into a crossbar or group of tiles, linear regression can be used to correlate the

output current of each column with any desired output to determine K for the crossbar or group

of tiles, given a randomly generated input matrix that is sufficiently large. On account of device-

device variations and device failures, further tuning is often required to recover accuracy loss and

mitigate variances between intended and actual device conductance values. Tuning methods can

97



Chapter 6 MemTorch: An Open-source Simulation Framework for Memristive Deep Learning

Systems

Algorithm 2 Memristor crossbar programming algorithm.
Input: Array containing all continuous weights in a given layer, w, HRS/LRS ratio, pL.
Output: Equivalent memristive crossbars conductance values, g, indexed using i and j.
w = abs(w)
w = descending order(w)
s = size(w)
index = int(pL · s)
wmax = w[index]
wmin = wmax/(ROFF/RON)
w = clip(w,wmin,wmax)

g[i, j] =
(RON−ROFF)·(σ(w)[i,j]−wmin)

|w|max−wmin
+ROFF

either be used pre-programming [317], to improve robustness and reduce susceptibility to error, or

post-programming by retraining device-specific conductance values [235].

Memristor crossbar weight mapping

Weights, denoted using w, within unrolled convolutional layers [310] and linear layers can be

mapped to equivalent conductance values, g, using (6.4).

g[i, j] =
(gON − gOFF)(σ(w)[i, j]−wmin)

|w|max −wmin
+ gOFF, (6.4)

where wmin represents the minimum weight value to encode, and wmax represents the maximum

weight value to encode. gON = 1/RON and gOFF = 1/ROFF. When two crossbars are used to

represent weight, crossbars containing positive components will have σ(w) = w[w ≥ 0], while

crossbars containing negative components will have σ(w) = w[w ≤ 0]. When a single crossbar

is used to represent weights, σ(w) = w − gm.

To reduce the inner weight gap in a given device, Algorithm 2 in [225] can be used to exclude

a small proportion, pL, of weights with the absolute largest values to reduce the variability effect

of non-ideal memristive devices.

Passive memristor crossbar architectures

When modeling passive memristor crossbar architectures, source and line resistances should be

accounted for. MemTorch utilizes a comprehensive crossbar array model with solutions for source

and line resistances, as described in [311], to solve for node voltages V , within passive crossbar

architectures in each simulation time-step. Specifically, linear matrix algebra is used to solve (6.5)[
A B

C D

]
V = E, (6.5)
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where for a crossbar of size (M × N ), A, B, C, D are all (MN ×MN ) matrices, and E is

a (2MN × 1) vector. All matrices and vectors in (6.5) are derived and defined in [311]. As the

concatenated ABCD matrix is sparse, traditional linear matrix algebra methods cannot be easily

used to solve (6.5), because they require a prohibitive amount of memory. Instead, sparse supern-

odal LU factorization with partial pivoting for general matrices [385] is used, as it is parallelizable,

and has demonstrated the best empirical numerical performance, compared to related techniques,

e.g., QR decomposition [386].

6.6.4 C++ and CUDA Bindings

Numerous performance critical operations, including tiled VMMs, linear matrix algebra, and

quantization, are accelerated using C++ and CUDA bindings. PYBIND11 MODULE() is a method

within the pybind11 5 python library [387] that exposes C++ types in Python to enable seamless

operability between C++11, CUDA, and Python. This library is used within MemTorch to over-

load method pointers and to expose C++ and CUDA functions to the developed Python API. The

Eigen [388] C++ template library is used extensively to perform various linear algebra operations,

as many Eigen functions can be compiled for use within CUDA kernels using device -

host function type qualifiers.

6.7 Modeling Non-Ideal Device Characteristics

Non-ideal device characteristics can either be encapsulated within device-specific memristive

models, or introduced to base (generic) models using the memtorch.bh.nonideality sub-

module. This sub-module can currently be used to introduce four non-ideal device characteristics

to memristive device models: device-device variability, finite number of discrete conductance

states, device failure, and non-linear I/V device characteristics. We leave native support for mod-

eling other non-ideal device characteristics, such as programming non-linearity and asymmetry,

resistance state drift in time, Random Telegraph Noise (RTN), and thermal noise, to future re-

leases. Three of the non-ideal device characteristics that are currently supported by MemTorch

are shown in Fig. 6.4. Fig. 6.4[A] depicts typical non-linear I/V device characteristics using a

set-reset curve and an inset hysteresis loop. Fig. 6.4[B] demonstrates gradual switching, which is

used to achieve a finite number of stable conductance states, and Fig. 6.4[C] shows overlapping

distributions of RON and ROFF, which is caused by device-to-device variability.

6.7.1 Device-to-device Variability

Device-to-device variability is modeled stochastically using memtorch.bh.StochaticParameter.

Stochastic parameters are generated using the memtorch.bh.StochaticParameter. Stochat-

5https://github.com/pybind/pybind11
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Figure 6.4: Depiction of [A] device I/V characteristics, and [B] reset voltage double-sweeps
demonstrating gradual switching from RON to ROFF, which can be used to achieve 10
finite stable conductance states for the VTEAM model using the TEAM [25] model’s
parameters, with a linear dependence on w, achieved using sinusoidal signals with
a fixed frequency of 50 MHz. [C] shows distributions of RON and ROFF, which are
caused by device-device variability, for a memristive device with R̄ON = 100Ω and
R̄OFF = 150Ω. In [C], overlapped regions are indistinguishable from each other.

icParameter() method, which accepts an arbitrary number of keyword arguments, that are

used to sample from a torch.distributions each time a device model is instantiated. To

model device-device variability, we use stochastic parameters to sample RON and ROFF from a

normal distribution with σRON = σ and σROFF = 2σ. σROFF > σRON, as the variability of ROFF

has been demonstrated to be larger than RON [389]. As depicted in Fig. 6.4[C], device-device

variability can cause the distribution of RON and ROFF to overlap, resulting in RON and ROFF

occupying the same conductance regions.

6.7.2 Cycle-to-cycle Variability

Cycle-to-cycle (C2C) variability [390] is modeled stochastically, similarly to device-to-device

variability, using stochastic parameters for RON and ROFF. memtorch.bh.nonideality.

DeviceFaults.apply cycle variability() is used to sample RON and ROFF from a

normal distribution with σRON = σ and σROFF = 2σ after each SET RESET cycle.

6.7.3 Finite Number of Discrete Conductance States

Realistic memristive devices are non-ideal and have a finite number of stable discrete electrically

switchable conductance states, bounded by a low-conductance semiconducting state ROFF, and a

high-conductance metallic state, RON [391]. Previous works have investigated evenly spaced con-

ductance or resistance states, and have demonstrated that, assuming they are relatively uniformly

distributed, the spacing between states is not critical [225].

Therefore, deterministic discretization [392] can be used to represent a finite number of electri-

cally switchable conductance states, as depicted in Fig. 6.4[B]. In order to efficiently quantize a
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Figure 6.5: Non-linear I/V characteristics for 100 devices (instances) of the VTEAM model using
the TEAM [25] model’s parameters, with a linear dependence on w, achieved using si-
nusoidal signals with a fixed frequency of 50 MHz. RON and ROFF were stochastically
sampled from a normal distribution with x̄ = 50, σ = 25, and x̄ = 1000, σ = 50,
respectively. [A] depicts I/V characteristics for devices with an infinite number of
discrete conductance states. [B] depicts I/V characteristics for devices with a finite
number of discrete conductance states.

tensor to a defined finite number of quantization states, in which each element can have a different

range, CUDA kernels are used to perform a binary search on sorted tensors (generated using the

linspace algorithm in C++) containing defined quantization states in O(nlog(n)), where n is

the number of quantized states.

6.7.4 Device Failure

Memristive devices are susceptible to failure, by either failing to eletroform at a pristine state, or

becoming stuck at high or low resistance states [225]. MemTorch incorporates a specific function

for accounting for device failure in simulating DL systems. Given a nn.Module, memtorch.

bh.nonideality.DeviceFaults.apply device faults() sets the conductance of a

proportion of devices within each crossbar to RON or ROFF. It is assumed that the total proportion

of devices set to ROFF is equal to the proportion of devices that fail to eletroform at pristine states

plus the proportion of devices stuck at a high resistance state. However, these proportions and

the ratio of device failures can be manipulated as desired. Devices are chosen at random using

np.random.choice().

6.7.5 Non-linear I/V Characteristics

Non-ideal memristive devices have non-linear I/V device characteristics, especially at high volt-

ages, which are difficult to accurately and efficiently model [225]. We demonstrate these charac-
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teristics using Fig. 6.5[A], by depicting the I/V curve of the VTEAM model between 0–1V using

the TEAM [25] model’s parameters. The memtorch.bh.nonideality.NonLinear

.apply non linear() method can be used to efficiently model non-linear device I/V charac-

teristics during inference for devices with an infinite number of discrete conductance states, and

for devices with a finite number of conductance states. For cases where devices are not simulated

using their internal dynamics, it is assumed that the change in conductance during read cycles is

negligible.

Devices with an infinite number of discrete conductance states

The memtorch.bh.nonideality.NonLinear.apply non linear()

method uses two methods to efficiently model non-linear device I/V characteristics for devices

with an infinite number of discrete conductance states during inference:

1. During inference, each device is simulated for a single timestep,

device.time series resolution, using device.simulate();

2. Post weight mapping and programming, the I/V characteristics of each device are deter-

mined using a single reset voltage sweep. The I/V characteristics of each device are stored,

and used as Lookup Tables (LUTs) to compute device output currents during inference.

Devices with a finite number of discrete conductance states

The memtorch.bh.nonideality.NonLinear.apply non linear()

method effectively models non-linear I/V characteristics for devices with a finite number of dis-

crete conductance states by determining the I/V characteristics of each device post weight mapping

and programming during several single reset voltage sweeps. Fig. 6.5[B] depicts sweeps for 100

stochastic devices with 10 finite discrete conductance states. These are stored and used as LUTs to

compute device output currents during inference, where each I/V curve corresponds to each finite

discrete conductance state. In Fig. 6.5[B], the smallest voltage amplitude corresponds to the finite

conductance state closest to RON, whereas the largest voltage amplitude corresponds to the finite

conductance state closest to ROFF.

6.8 Exemplar Simulation Details

For all simulations performed to obtain the results presented in Fig. 6.1, we followed the following

training and test procedure. We first augmented a pretrained MobileNetV2 CNN trained using the

CIFAR-10 training set. All convolutional and linear layers within the network were sequenced

with batch-normalization layers with fixed affline parameters to normalize outputs. The network

was trained until improvement on the validation set was negligible (for 100 epochs) with a batch

size of ℑ = 256. The initial learning rate was η = 1e − 1, which was decayed by an order of
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magnitude every 40 training epochs. SGD was used to optimize network parameters and Cross

Entropy [79] was used to determine network losses. The network achieved > 90% accuracy on

the CIFAR-10 test set.

When implementing the MDNNs, each memristive layer’s weights were mapped to a double

column line crossbar architecture adopting a 1T1R arrangement. Linear regression was used to

correlate the output current of each column and its corresponding output to determine K for each

crossbar, given a randomly generated input matrix sampled from a uniform distribution between

±1.0. For linear layers, the random inputs had a size of (8 × in features), while for convo-

lutional layers the random inputs had a size of (8 × in channels × 32 × 32). Unless other-

wise stated, inputs to memristive layers were scaled from -0.3 to 0.3, to emulate voltage signals

between ±0.3V, which were applied to the word-lines of each memristive crossbar. All device

models originated from the VTEAM model, with R̄ON = 1.4e4Ω and R̄OFF = 5e7Ω, to model

TiN/Hf(Al)O/Hf/TiN devices from [27].

Implementations are investigated using modular crossbar tiles of size 128×128 and 256×64,

as these have previously been demonstrated to be effective in terms of utilization and power effi-

ciency [196]. While power and latency balancing is beyond the scope of MemTorch 1.1.5, 256×64

tile size enables higher operation throughput and more analog operations per ADC compared to

128×128 tile size [196]. However, the area utilization may be lower for arrays with more than 64

columns considering the number of output channels.

6.9 Conclusion

We presented an open-source simulation framework, entitled MemTorch, for large-scale deep

memristive crossbar architectures. We showed that MemTorch is designed with a focus to in-

tegrate any desired behavioral or experimental device model, and introduce arbitrary device non-

idealities, while co-simulating crossbar and peripheral circuitry. We compared MemTorch to sim-

ilar works, detailed its package structure, and performed exemplar simulations to demonstrate

its functionality. We hope that MemTorch will be adopted and expanded by the community to

advance memristive DL research and development endeavours.
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Chapter 7

Empirical Metal-Oxide RRAM Device
Endurance and Retention Model for Deep
Learning Simulations

In this Chapter, the second research question is addressed. A novel generalized empirical Metal-

Oxide Resistive Random-Access Memory (RRAM) endurance and retention model for use in

large-scale Deep Learning (DL) simulations is presented. The developed model is the first to unify

retention-endurance modeling while taking into account time, energy, SET-RESET cycles, device

size, and temperature. It is demonstrated that, even when ignoring other device non-idealities,

retention and endurance losses significantly affect the performance of DL networks.

7.1 Introduction

RRAM devices have attracted significant attention for use in next generation DL and neuromorphic

architectures to perform in-memory computing operations, which can reduce power usage and

time complexity, massively augmenting performance [145, 256, 352, 393]. However, RRAM is an

emerging technology with a number of limitations including endurance and retention losses, as

depicted in Fig. 7.1. Consequently, significant research efforts are being made to efficiently and

accurately model device limitations to improve the reliability and robustness of RRAM-based DL

architectures [394–396].

In this Chapter, we propose a generalized empirical Metal-Oxide RRAM device endurance and

retention model. We compare our model to related works and demonstrate its versatility by using

it to fit experimental data from several devices. We then deploy the model within large-scale DL

simulations to implement the MobileNetV2 CNN architecture to investigate how device endurance

and retention losses affect inference performance using the CIFAR-10 dataset.
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Figure 7.1: (A) The formation of a conductive filament within metal-oxide RRAM devices results
in low resistive states, whereas its partial destruction increases the resistivity to high
resistive states. (B) When a voltage is applied, defects are gradually created within the
conductive filament [26], which cause endurance losses. (C) Oxygen ions return to the
previous thermal equilibrium state during the baking process, which causes retention
losses.

7.2 Related Work

Previous works have investigated Metal-Oxide RRAM endurance and retention losses experimen-

tally [29, 397–403], numerically [404], and analytically [34, 139, 224, 237, 405–407]. Table 7.1

compares the proposed model with previous numerical and analytical RRAM device-level en-

durance and retention models. Given the increasing popularity of RRAM-based Deep Memris-

tive Neural Networks (DMNNs), a number of works [29, 139, 224, 237, 399–401, 405] specifi-

cally consider endurance and retention loss effects on DMNNs performance. While most mod-

els [34, 405–407] are inherently physics-based and model various phenomena and internal device

mechanics using fundamental physics principals, others [139, 224, 237, 404] adopt a generalized

high-level approach, and model device behavior empirically. Our model fits into the latter group,

and is the first to:

1. Accurately model device endurance and retention behavior, before and after the conductance

window begins to collapse;

2. Model both gradual and sudden window collapse;

3. Model temperature, cell size, and when modeling endurance, the voltage dependence, Vstop;

4. Model endurance and retention interchangeably using a unified methodology.
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Figure 7.2: Experimental endurance data from various Metal-Oxide RRAM device types, and the
behavior of our proposed model. (A) TiN/Hf(Al)O/Hf/TiN [27] devices with differ-
ent cell sizes, (B) Cu/HfOx/Pt [28] devices, and results from the proposed model
in gradual resistance convergence operation mode; (C) TiN/Hf(Al)O/Hf/TiN [27]
devices with different cell sizes, (D) TiN/Electro-thermal Modulation Layer
(ETML)/HfOx/TiN [29] devices, and results from the proposed model in sudden re-
sistance convergence operation mode.

The proposed model is well suited toward DL modeling using memristors, as the behavior of new

devices can easily be modeled using tools provided in our supplementary materials ‡, it is highly

integrable ‡, and it is able to capture a large range of Metal-Oxide RRAM device behavior, as

depicted in Fig. 7.2, Fig. 7.3, and Fig. 7.4.

7.3 Proposed Model

The proposed model has two modes of operation. The first mode assumes that resistance states

gradually converge after a device-specific threshold energy level is exceeded, and can be used to

model device endurance and retention, as depicted in Fig. 7.2 (A,B) and Fig. 7.3 (B,C). The second

mode, on the other hand, assumes sudden failure, and can be used to model device endurance, as

Table 7.1: Comparison of RRAM endurance and retention models. †Models are defined indepen-
dently.

Model Models
Endurance Retention

Endurance Statistical [404] ✓

Statistical State Instability and Retention [405] ✓

Reliability Perspective [139, 224, 237] ✓† ✓†

Endurance, Retention and Window Margin [406] ✓

Retention Model for High-Density RRAM [407] ✓

Voltage-Controlled Cycling Endurance [34] ✓

Proposed ✓ ✓
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Figure 7.3: Experimental retention data from various Metal-Oxide RRAM device types, and the
behavior of our proposed model. (A) Pt/Cu:MoOx/GdOx/Pt [30] devices operating
at different temperature points, and results from the proposed model in sudden resis-
tance convergence operation mode; (B) TiN/HfOx/TiN and Ti/HfAlO/TiN devices [31]
operating at different temperature points, and results from the proposed model in sud-
den resistance convergence operation mode; (C) TiN/HfOx/TiN [32] devices and re-
sults from the proposed model in gradual operation mode, where the temperature was
elevated from room temperature (25°C) to 125°C depicted using a blue background
segment between 1200s and 106s; (D) Relationship between the retention time to fail-
ure, τR, and conductive filament diameter, ϕ, of Au/NiO/Si [33] devices, and results
from the proposed model, where ϕ is substituted for the cell size, and τR ∝ eth, i.e.,
τR = p0e

p1ϕ+p2Tc .† The conductive filament size, which can be representative of de-
vice dimension, was obtained using a piecewise linear fit of the mean activation energy,
EAC , as done in [33].

depicted in Fig. 7.2 (C,D) and Fig. 7.3 (A). The gradual convergence of resistance states is modeled

as

R(x, s, T ) =


R0 x ≤ eth

10p3(p1s+p2Tc)log(x)+log(R0)

−p3(p1s+p2Tc)log(eth)
otherwise,

(7.1)

and the sudden convergence of states is modeled as

R(x, s, T ) =

R0 x ≤ eth

R∞ otherwise,
(7.2)

where the device-specific threshold energy level, eth, if exceeded, causes the resistance window

of a device to collapse either gradually or suddenly, is modeled using

eth = p0e
p1s+p2Tc . (7.3)
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The temperature constant, Tc, is expressed as

Tc = min(
Tth

T
, 1), (7.4)

which is used to introduce temperature dependence to the model. Using (7.1)–(7.4), the resistance

state of a device, R, is determined using four parameters, x, s, T , and Tth, and various fitting pa-

rameters, p. Here, R∞, the collapsed resistive state to which RON and ROFF converge, is bounded

to the range [RON, ROFF] [27, 29, 32, 34, 403, 408]. x denotes either the time (s), the energy (J), or

the number of SET-RESET cycles, s denotes the device cell size (nm), when the depth and width

are fixed, or the filament volume (nm3) when they are not, T denotes the operating temperature

(K), and Tth denotes the temperature threshold, that if exceeded, accelerates device failure. For

both modes of operation, p0 modulates the magnitude of eth, and p1 and p2 modulate the strength

of the dependence on s and T , respectively. For instances where s is fixed, p1 = 0, and for in-

stances where T is fixed, p2 = 0. When modeling the gradual convergence of resistance states, p3
is used to modulate the rate of failure once eth is exceeded. We believe that, given sufficient data,

all fitting parameters could be related to physical device parameters, such as those determined us-

ing ab initio calculations in [406], including formation enthalpy energies, ∆H , migration barriers,

Ed, and hopping distances between sites during ion migration, dh.

The parameter p0 in (7.3) can be modulated using (7.5) when modeling endurance to introduce

dependence to Vstop, the most negative voltage in the negative voltage sweep during the RESET
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Figure 7.4: The window function used to model vstop dependence. Experimental data is extracted
from TiN/HfOx/TiN devices [34].
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cycle [34].

p0 =
10K(1−(2V̄stop−1)2)

ep1s+p2Tc
(7.5)

K is used to modulate the amplitude, and Vstop is mapped to V̄stop ∈ [0, 1]. Fig. 7.4 demonstrates

the inclusion of Vstop dependence in the proposed model, where x is assumed to denote the num-

ber of SET-RESET cycles, and the model to be used will operate in sudden resistance convergence

mode. In this figure, the optimal point corresponds to the optimal Vstop value, i.e., the Vstop value

for a given device that maximizes eth. Given sufficient experimental data observing the relation-

ship between Vstop and eth, the mapping bounds of Vstop can be determined, and the K parameter

can be determined using Nonlinear Least Squares Regression (NLSR).

The following assumptions are made in our modeling:

1. The waveform used to program each device is constrained, and only Vstop is mutable; and

2. The impacts of the compliance current, Ic, and the maximum set voltage magnitude are

considered negligible [34]; and

3. Resistance states converge to R∞ when device failure occurs; and

4. Resistance states are stable until a device-specific threshold energy level, eth, is exceeded;

and

5. (7.5) is constrained to be symmetrical around the optimal point.

7.4 Model Validation

To validate the proposed model, we fit it to experimental data from various fabricated devices,

indicative of a variety of use cases, as shown in Fig. 7.2, Fig. 7.3, and Fig. 7.4. NLSR is used to fit

the model empirically to each device type. In Fig. 7.2 and Fig. 7.3 (C), two sets of parameters are

used to model ROFF and RON, respectively, for each simulated device. In Fig. 7.3 (A,B), one set

of parameters are used to model RON. To the best of our knowledge experimental data for ROFF is

currently not available in literature.

In Fig. 7.3 (D), we model the relationship between the retention time to failure, τR, and the

conductive filament diameter, ϕ, of Au/NiO/Si [33] devices. The conductive filament size, which

can be representative of device dimension, was obtained using a piecewise linear fit of the mean

activation energy, EAC , which accounts for metallic and semiconductor-like behavior, as done

in [33]. V̄stop dependence is validated in Fig. 7.4 using TiN/HfOx/TiN devices [34]. We note that

variations between experimental data and the behavior of the proposed model could be further

reduced by simulating other device non-idealities, such as conductance drift, evident in Fig. 7.2

(C) and Fig. 7.3 (A), however, this is beyond the scope of this Chapter. In favour of reproducible
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Figure 7.5: An overview of the mapping process of Linear (dense) and Conv2d (convolutional)
layers onto a 3×2 tiled architecture with tiles constructed using 128 (2×8×8) devices.
(A) Linear layers are mapped directly onto crossbar tiles. (B) Convolutional layers
are unfolded before being mapped onto crossbar tiles. (C) Tiled architectures contain
several modular crossbar tiles connected using a shared bus. (D) Modular crossbar
tiles consist of crossbar arrays with supporting peripheral circuitry, and can represent
weights using a dual-array scheme (as depicted), a dual row scheme, where double the
number of rows are required, or a current-mirror scheme, that is capable of operation
using a singular device to represent each weight [15].

research, our model, its fitting parameters, and all of the information required to reproduce the

reported results are made publicly available 1.

7.5 Large-scale Deep Learning Simulations

Exemplar large scale DL simulations were performed that modeled the gradual and sudden re-

sistance state convergence on account of endurance and retention losses of TiN/Hf(Al)O/Hf/TiN,

TiN/ETML/HfOx/TiN, and TiN/Hfx/TiN RRAM devices using the VTEAM model [151] within

layers of a DMNN employing 1T1R crossbars. These crossbars were constructed by convert-

ing linear and unfolded convolutional layers from a pre-trained MobileNetV2 CNN that achieved

91.93% accuracy on the CIFAR-10 test set. In Fig. 7.5, we overview the mapping process of linear

and convolutional layers onto a modular tiled architecture. Batch-normalization, pooling, and acti-

vation functions, which are simulated in our experiments, should be implemented using additional

circuitry to realize the other computations required for a DL task. Inputs are unfolded and scaled,

prior to being presented to the network. By generalizing this approach, modular crossbar tiles and

digital circuitry can be used to perform inference of any arbitrary DNN [196].

Algorithm 3 details our simulation methodology, in which a double-column scheme is used to

represent network weights within memristive crossbars, i.e., a dual-array scheme is adopted. All

RRAM devices are assumed to operate as fully analog devices, and other device non-idealities are

ignored. ADCs are assumed to have a bit-length of 8, and modular crossbar tiles are constructed

using two arrays of 128×128 devices, representing positive and negative parameters, respectively.

1https://github.com/coreylammie/SST-Reproducibility
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Figure 7.6: Large-scale DL simulations of TiN/Hf(Al)O/Hf/TiN, TiN/HfOx/TiN,
Pt/Cu:MoOx/GdOx/Pt, TiN/HfAlO/TiN, and Au/NiO/Si devices. (A,E) gradual
endurance failure; (B,F) sudden endurance failure; (C,G) gradual retention failure;
(D,H) sudden retention failure.

Unfolded inputs are scaled and encoded using voltage signals between ±0.3V [313].

After network parameters are mapped, to tune each memristive layer, random inputs of variable

size that are sampled from uniform distributions between ±1.0 are presented to each layer. The

readout currents of each column associated with each layer are linearly related to each layer’s

desired output. Prior to endurance and retention losses, our RRAM-based networks achieved

91.69% accuracy on the CIFAR-10 test set. We attribute the small performance degradation to

quantization noise introduced from ADCs and the non-ideal mapping and tuning methodologies

employed. The results from six exemplar large-scale DL simulations are presented in Fig. 7.6.

Each surface plot is constructed from the results of 100 individual simulations (one per point).

In Fig. 7.6 (A,B,E,F), the CIFAR-10 test set accuracy is reported after each SET-RESET cycle to

investigate the performance degradation on account of endurance losses, i.e., we assume massive

reprogramming in the DNN accelerator is performed. vstop was extrapolated using (7.5), where

max(vstop) was arbitrarily chosen to be 1.6, due to the unavailability of experimental data on vstop.

K and the mapping bounds of vstop were determined using operational points from each device.

In Fig. 7.6 (C,D,G,H), the CIFAR-10 test set accuracy is reported at each time-step to investigate

the performance degradation on account of retention losses. TiN/Hf(Al)O/Hf/TiN devices from

Fig. 7.2 (A) are modeled to achieve the results in Fig. 7.6 (A) and Fig. 7.6 (E), for devices with cell

sizes of 10nm and 20nm, respectively; TiN/Hf(Al)O/Hf/TiN devices from Fig. 7.2 (C) are modeled

to achieve the results in Fig. 7.6 (B) and Fig. 7.6 (D), for devices with cell sizes of 20nm and 40nm,

respectively; Ti/HfOx/TiN devices from Fig. 7.3 (B) are modeled to achieve the results in Fig. 7.6

(C); Pt/Cu:MoOx/GdOx/Pt devices from Fig. 7.3 (A) are modeled to achieve the results in Fig. 7.6

(D); Ti/HfAlO/TiN devices from Fig. 7.3 (B) are modeled to achieve the results in Fig. 7.6 (G),
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Algorithm 3 Adopted simulation methodology.

1. Map Network Parameters
for each convolutional and linear layer do

Wmax = descending order(abs(W )[size(W )])
Wmin = Wmax/(ROFF/RON)
Wpos = W [W ≥ 0], Wneg = W [W < 0]
for each device, Rpos[i, j], Rneg[i, j] in Wpos, Wneg do

Rpos[i, j] =
(RON−ROFF)(Wpos[i,j]−wmin)

|w|max−wmin
+ROFF

Rneg[i, j] =
(RON−ROFF)(Wneg[i,j]−wmin)

|w|max−wmin
+ROFF

end for
end for
2. Tune Memristive Layers
for each converted memristive layer do

if the layer is convolutional then
P = (8× in channels× 32× 32)

else if the layer is linear then
P = (8× in features)

end if
determine β0 for Ỹ = β0X̃ , where Ỹ denotes the legacy layer’s output and X̃ denotes the

converted layer’s output when a randomly generated tensor of size P is propagated.
end for
3. Model Device Endurance and Retention
for each value of x to simulate do

for each converted memristive layer do
for each device, Rpos[i, j], Rneg[i, j] in Wpos, Wneg do

Rpos[i, j],Rneg[i, j] = R(x, s, T, V̄stop)
end for

end for
determine the test set accuracy for the given x value

end for

and Au/NiO/Si devices from Fig. 7.3 (D) are modeled to achieve the results in Fig. 7.6 (H). From

Fig. 7.6, it can be observed that the proposed model is capable of robustly modeling endurance

and retention losses of Metal-Oxide RRAM devices within large-scale DL simulations.

7.6 Discussion and Conclusion

We proposed a novel generalized empirical Metal-Oxide RRAM device endurance and retention

model for use in large-scale simulations. We demonstrated its versatility by fitting it to experi-

mental data from various devices, and using it for large DL simulations. Our findings show that,

even when other device non-idealities are ignored, endurance and retention losses significantly

affect the reprogrammability of DMNNs, degrading their learning and inference accuracy. A limi-

tation of the proposed model is the lack of a clear link between its parameters and physical device

112



Chapter 7 Empirical Metal-Oxide RRAM Device Endurance and Retention Model for Deep

Learning Simulations

parameters. This is mainly due to unavailability of experimental data, which resulted in develop-

ing an empirical, rather than a physics-based model. Additionally, while this work only focuses

on endurance and retention and their impact on memristive DL networks performance, future im-

provements of our model can account for modeling a finite number of conductance states and other

device non-idealities [5, 225].
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Chapter 8

Low-Power and High-Speed Deep FPGA
Inference Engines for Weed Classification
at the Edge

With recent advancements in High Level Synthesis (HLS) techniques, new methods for acceler-

ating Deep Learning (DL) systems using Field Programmable Gate Arrays (FPGAs) are emerg-

ing. FPGA-based Deep Neural Networks (DNNs) present substantial advantages in energy effi-

ciency over conventional Central Processing Unit (CPU)- and Graphics Processing Unit (GPU)-

accelerated networks. Using the Intel FPGA Software Development Kit (SDK) for OpenCL

development environment, networks described using the high-level OpenCL framework can be

accelerated targeting heterogeneous platforms including CPUs, GPUs, and FPGAs. These net-

works, if properly customized on GPUs and FPGAs, can be ideal candidates for learning and

inference in resource-constrained portable devices such as robots and resource-constrained Inter-

net of Things (IoT) devices, where power is limited and performance is critical. In this Chapter, the

first and third research questions are addressed, and the first GPU- and FPGA-accelerated deter-

ministically binarized DNNs, tailored toward weed species classification for robotic weed control,

are presented.

8.1 Introduction

The promise of robotic weed control to provide a step change in the productivity of primary in-

dustry is widely coveted [409, 410]. The rationale is clear - replace human involvement in this

time-consuming and labor-intensive undertaking with more efficient autonomous machines. In

addition, improving the efficacy of weed control would have enormous economic impact [411].

The majority of current works in this arena focus on the four core technologies of robotic weed

control: detection, mapping, guidance, and control [412]. The robust and efficient detection of

weed species remains a major obstacle to the widespread uptake of robotic weed control technolo-

gies [411].

The use of DNNs specifically tasked for plant classification has demonstrated incredible perfor-
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mance in recent works [413–415]. Using the Intel FPGA SDK for OpenCL development environ-

ment, networks described using the high-level OpenCL framework can be accelerated by targeting

heterogeneous platforms with CPUs, GPUs, and FPGAs. These developed networks are ideal can-

didates for edge computing applications, where low-power consumption and high performance are

critical.

In this Chapter, we investigate the acceleration of binarized DNNs on GPUs and FPGAs using

the high-level OpenCL framework for weed species classification targeted toward robotic weed

control, as depicted in Fig. 8.1. We demonstrate that our FPGA implementations, employing an

Intel DE1-SoC FPGA development board, customized for edge processing, exhibit compara-

ble performance to state-of-the-art hardware implementations, employing an NVIDIA Titan V

GPU and an AMD Ryzen 2700X @ 4.10 GHz Overclocked CPU, which are typically used

for conventional desktop-based processing. Our specific contributions are five-fold:

1. We implement and present the first FPGA-accelerated binarized DNN specifically tasked

for weed species classification;

2. Our complete FPGA-accelerated DNN runs on a standalone System On a Chip (SoC), re-

quiring no host computer or extra device for partial computation;

3. We investigate the effect of down-sampling input images on the DNN classification accu-

racy, and demonstrate that significantly reducing the image resolution has a marginal effect

on accuracy;

4. We thoroughly compare our efficient implementations on GPU and FPGA platforms and

demonstrate that our new binarized FPGA-accelerated DNNs offer significantly reduced

SoC [HPS + FPGA]

C/C++
Host Code

GCC C/C++
Compiler

OpenCL
Kernel Code

Intel FPGA
SDK for OpenCL

Processor
System

FPGA
Accelerator

Hard

FPGA <-> HPS Bridge

CAMERA

SPRAYERS

WEED CLASSIFICATION SYSTEM

CAMERA -> WEED CLASSIFICATION SYSTEM -> SPRAYERS
Figure 8.1: A block diagram detailing a complete robotic weed management system, where our

developed weed classification inference engine is used for low-power and real-time
weed classification, that can trigger herbicide sprayers for the detected and classified
weed species.
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power usage while lowering per-image inference times compared to their conventional

GPU-accelerated counterparts;

5. We make our software code publicly available, to provide the community with the oppor-

tunity to replicate our experimental results and to adapt our utilized techniques for their

various applications.

This Chapter is structured as follows: Section 8.2 presents related works. Section 8.3 presents

an overview of the algorithms and methods used in our designed networks. Section 8.4 presents

our new labeled version of the DeepWeeds dataset [416], DeepWeedsX. Our image pre-processing

techniques used are detailed in Section 8.5. Section 8.6 presents our developed software and hard-

ware network architectures. Section 8.7 reports the effect of image down-sampling on the network

performance. Section 8.8 presents and discusses our software and hardware results, while Sec-

tion 8.9 provides further discussions on classification and real-time performance of the proposed

design. This Chapter is concluded in Section 8.10.

8.2 Related Works

A variety of techniques have been explored to automatically detect and classify target plant life.

Means of detection can be categorised into one of three representations of the light spectrum:

image-based [413–415, 417–423], spectrum-based [290, 424] and spectral image-based [425, 426].

In [416], we have achieved and demonstrated 95.7% weed classification accuracy on our large

multiclass weed species image dataset, named DeepWeeds, using the ResNet-50 [427] CNN ar-

chitecture on a single NVIDIA GTX 1080Ti GPU.

Performing real-time learning and inference, targeted for plant classification, on high-performance

GPUs such as the NVIDIA GTX 1080Ti, is putative to consume large amounts of power, and

hence, is ill-suited to deployment in portable resource-constrained smart devices and robotic sys-

tems, which are becoming commonplace. Consequently, devising methods and hardware synthesis

techniques for reducing power consumption and for improving throughput of DNN hardware, be-

comes formidable.

While GPU-based implementations targeted towards image classification tasks are plentiful

[241, 428–432], only one recent work [433] has detailed the implementation of custom hardware

accelerators specifically tasked for agricultural purposes. [433] demonstrates real-time perfor-

mance by implementing an FPGA-based DNN on a Terasic DE1-SoC for plant detection in organic

farming. The system developed in [433] can classify a target dataset with accuracy matching that

of a state-of-the-art GPU while running at up to 42 frames per second with only 4 W of power

consumption, which is 45 times lower than an NVIDIA GTX 1080Ti.

One solution proffered by developers such as NVIDIA, are embedded GPUs for mobile applica-

tions. The Jetson family of compute modules and the NVIDIA TensorRT library provide a power-

efficient platform for accelerating deep learning architectures, some of which have already started
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being used in agriculture [416, 434–436]. Although embedded GPUs offer substantial power im-

provements over conventional GPUs, they are still relatively power hungry when compared to

FPGAs. Moreover, they are usually cost prohibitive and are not suitable for developing products

that require mass production, such as inference engines on IoT edge devices [437, 438]. Func-

tionally verified HDL implementations developed for FPGA platforms can easily be synthesized to

target ASICs, yielding considerable reductions in production costs. With recent advancements in

HLS techniques, the development of FPGA-accelerated DNNs has been greatly expedited. FPGA-

based DNNs present substantial advantages in energy efficiency over conventional GPUs acceler-

ated networks, while exhibiting marginal performance degradation [133, 439–444].

8.3 Preliminaries

This Section briefly reviews the algorithms and methods used in our developed networks for the

DeepWeeds classification benchmark.

8.3.1 Softmax Regression & Cross Entropy Loss

The Softmax model is commonly used to apply logistic regression to multinomial problems. Soft-

max regression [445] determines a discrete probability distribution of each class, ρi, for the output

of the final layer in our developed deep networks using (8.1).

ρi =
ey

′
i∑N

i=1 e
y′i
, (8.1)

where, y′i represents the predicted class. In addition,
∑N

i=1 ρi = 1 where N is the number of

classes to be distinguished. Softmax regression is commonly used in tandem with cross-entropy

loss, presented in (8.2), to enable the network to learn different classes during backward propaga-

tion where yi represents the class label.

−1
N

N∑
i=1

y′i · log(yi) + (1− y′i) · log(1− yi) (8.2)

8.3.2 Binary Weight Regularization

Since the solution space of DNNs is very broad, networks adopting gradient descent optimization

algorithms, such as stochastic gradient descent with momentum, are susceptible to overfitting to

training data. Overfitting significantly affects the generalization ability of the network and can lead

to poor performance on test data. Regularization is any modification made to a learning algorithm

to reduce its generalization error, but not its training error.

Binary weight regularization, as proposed in [446], constrains network weights to either +1 or

−1 during forward and backward propagations. The binarization operation transforms the full-
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precision weights into binary values. Deterministic binarization is based on the sign function

presented in (8.3).

wb =

{
−1 if w ≤ 0

+1 otherwise,
(8.3)

where wb is the binarized weight and w is the real-valued full-precision weight.

8.3.3 L2 and Binarynet Regularization Loss Terms

Regularization is usually added as a term to the learning loss function, to introduce another degree

of control to the network parameter growth and help avoid the network over- and under-fitting to

the training data.

Several different regularization techniques have been proposed in literature such as ℓ1 and ℓ2

regularization [447], dropout [448], and data augmentation [449]. Here, we utilize ℓ2 regulariza-

tion for implementations employing full resolution weights, and BinaryNet-regularization for our

implementations employing binarized weights. The ℓ2-regularization term is defined in (8.4).

J(w, b) = L(w, b) +D∥w∥22 = L(w, b) +
D

2

√√√√ N∑
i=1

w2
i (8.4)

Here, J(w, b) shows the overall loss function that includes a task-related loss term, L(w, b),

summed with a regularization term, in which D determines the relative significance of the reg-

ularization, N denotes the total number of trainable network parameters, w represents a weight,

and b is a bias. This regularization technique penalizes the large network weights by adding the

sum of their square to the loss function, which helps prevent over-fitting. However, as (8.4) is

differentiable at wi = 0, ℓ2-regularization has a non sparse solution, and does not perform feature

selection.

BinaryNet-regularization [450] can be defined as (8.5),

J(w, b) = L(w, b) +D

N∑
i=1

(1−w2
i ), (8.5)

where all the parameters are similar to (8.4). Using BinaryNet-regularization, the weights are

piloted to +1 or -1, rather than to 0 as in a ℓ2-regularization, which is suitable for binary networks.

8.3.4 Training Algorithm

Algorithm 4 provides a high-level overview of the training algorithm of our accelerated binarized

network architectures. Here, w, b, and η represent the weights, biases, and learning rate, while C

denotes the cost function for each mini-batch. Furthermore, wb represents binary weights and ak
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Algorithm 4 Training algorithm of the accelerated Binarized Neural Networks.

Input: a mini-batch of (inputs, targets), previous parameters wt−1 and bt−1, and a learning rate
η.

Output: updated parameters wt and bt.
1. Forward Propogation
wb ← binarize (wt−1).
for k = 1 to L do

Compute ak knowing ak−1, wb, bt−1.
end for
2. Backward Propogation
Initialize output layer’s activation gradient ∂C

∂aL
for k = L to 2 do

Compute ∂C
∂ak−1

using ∂C
∂ak

and wb.
end for
3. Parameter Update
Compute ∂C

∂wb
and ∂C

∂dbt−1
, using ∂C

∂ak
and ak−1.

wt ← clip(wt−1 − η ∂C
∂wb

)

bt ← bt−1 − η ∂C
∂bt−1

.
4. Weight Normalization
w ← clip(w)

represents the kth layer activation function, while binarize() implements (8.3), and clip()

clips values between −1 and +1.

8.4 DeepWeedsX Dataset

The images used to construct the DeepWeedsX dataset have previously been made openly acces-

sible [416], however, they have not been labeled as test and training images. Instead, they have

been used in a 5-fold cross validation configuration for training and validation in [416]. Here,

we present a labeled variant of DeepWeeds, DeepWeedsX, with clearly defined training and test

datasets. We use a splitting ratio of 6:1 (train: test), similar to the popular MNIST [451], CIFAR-

10 [452], and CIFAR-100 [452] image classification datasets.

The class distribution of the DeepWeedsX dataset is presented in Table 8.1. A validation subset

may be constructed for parameter optimization using a subset of the labeled training data. In order

to facilitate future comparisons to this work, DeepWeedsX, including all its labels and images, is

made publicly available. In addition, we have developed data-loaders for PyTorch and TensorFlow,

which are intended to assist utilizations in new deep learning experiments1. It is worth noting that,

one image was removed from the original DeepWeeds dataset 2019 to ensure the training and test

subsets have the same class distributions.
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Table 8.1: DeepWeedsX class distribution.

Class Species Label Training Test Total

0 Chinee Apple 964 161 1,125
1 Lantana 912 152 1,064
2 Parkinsonia 884 147 1,031
3 Parthenium 876 146 1,022
4 Prickly Acacia 910 152 1,062
5 Rubber Vine 865 144 1,009
6 Siam Weed 921 153 1,074
7 Snake Weed 871 145 1,016
8 Negatives 7,804 1,301 9,105

Total 15,007 2,501 17,508

8.5 Image Pre-processing

Images available from our DeepWeedsX dataset have a resolution of 256×256 pixels. In order

to enhance the testing accuracy, several pre-processing steps can be undertaken before the pre-

sentation of the images to the network. All of our implementations adopt one of two image pre-

processing techniques that are denoted using Image Pre-processing Techniques (IPT), and Further

Image Pre-processing Techniques (FIPT).

8.5.1 Image Pre-processing Techniques (IPT)

IPT down-samples input images from the native resolution of 256×256 to a resolution of 224×224,

64×64, or 32×32 pixels. No further image pre-processing techniques are performed.

8.5.2 Further Image Pre-processing Techniques

Further Image Pre-processing Techniques, similarly to [83], randomly crops all images from a

resolution of 256×256 to a resolution of 224×224 pixels. This is to ensure that the input images

have the same size as the images in well-known datasets such as ImageNet [83], which facilitates

using networks developed for those datasets to be deployed for our DeepWeeds images. After all

images are cropped, they are down-sampled to a resolution of 64×64, or 32×32 pixels. Their

Table 8.2: Color channel mean and standard deviation values used.

Image Channel Mean Standard Deviation

Red 0.485 0.229
Green 0.456 0.224
Blue 0.406 0.225
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orientation is randomly rotated between -15 and +15 degrees. Their image brightness, contrast,

and saturation are also randomly varied by 10%, and normalized between the values of 0 and

1. Finally, the color channels of each image are normalized using distinct mean and standard

deviation values as seen in Table 8.2, which have demonstrated significant performance on the

ImageNet dataset.

8.6 Network Architecture

The complete structure of the implemented networks consists of two main components: the soft-

ware and the hardware. The software architecture defines the targeted neural network structures,

which are described in C++ and OpenCL kernels. The hardware architecture describes the integra-

tion of the hardware used to run the OpenCL kernels, and a host controller, which is the program

executed on a host processor to launch OpenCL kernels and to manage available memory.

8.6.1 Software Architecture

Three popular deep network architectures, i.e. VGG-16 [241], DenseNet-128-10 [453], with 128

layers and a growth rate of 10, and Wide Residual Network (WRN)-28-10 [258], with 28 layers

and a growth rate of 10, were trained using full resolution and deterministically binarized weights

for comparison. Although networks with tuned hyper-parameters would be expected to achieve

higher validation accuracies, we present baseline implementations on our labeled dataset without

any hyper parameter tuning. The mentioned networks are chosen as they demonstrate significant

performance on the ImageNet dataset, which we believe to be indicative of high performance on

the DeepWeedsX dataset. In favour of reproducible research, we have made the specific code level

implementations of all these networks publicly available through a Github repository1.

More details on our developed software network architectures are as follows. The output of

each network’s last layer is fed through a Softmax activation layer [445], and each network’s

loss is minimized using cross-entropy. Stochastic gradient descent with momentum [454] is used

to optimize network parameters. For all networks, the momentum variable m, is set to 0.8. In

our implementations, Binarized Neural Networks (BNNs) employ a smaller initial learning rate,

η[0] = 0.001, to avoid frequent sign changes, while for conventional networks using full resolution

weights a larger initial learning rate of η[0] = 0.01 is used to speed-up learning convergence. In

addition, the regularization coefficient, D = 5e−7 for our BinaryNet-regularization terms and

D = 1e−5 for our ℓ2-regularization terms. For all BNNs, ReLU activation functions, used in

conventional networks, are replaced with the hyperbolic tangent function, tanh.

Furthermore, in order to maximize the networks’ performance, a decaying learning rate is used

during training for all networks. This learning rate, η, is decayed by a factor of ten when learning

1https://github.com/coreylammie/Low-Power-and-High-Speed-Deep-FPGA-Inference
-Engines-for-Weed-Classification
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falls stagnant, i.e. does not increase for a period of 10 epochs. Finally, the weights are randomly

uniformly distributed using the He initialization technique presented in [455] to accelerate learning

convergence for full resolution weights used for the parameter update stage.

8.6.2 Hardware Architecture

After functionally verifying our implementations using the PyTorch [231] ML library with a

state-of-the-art Titan V GPU and an AMD Ryzen 2700X @ 4.10 GHz OverclockedCPU, we

developed hardware architectures consisting of C++ host controllers and multiple OpenCL kernels,

which were accelerated using FPGAs and GPUs. For x86-based systems, OpenCL accelerated

kernels using FPGAs typically reside on an FPGA development board, which is connected to

a separate independent host system through the PCIe express interface [440]. For ARM-based

systems, the FPGA is typically connected to a Hard Processor System (HPS) on a SoC through

specialized bridges – as in the case of the Intel DE1-SoC development board used herein. This

allowed our proposed FPGA-accelerated networks to run completely independently using the SoC,

without using a separate device for computation.

Our OpenCL implementations originate from the publicly available DeepCL OpenCL ML li-

brary2. All convolutional, inner-product, activation, pooling, regularization, and batch-normalization

operations are described using single work-item kernels with an NDRange size of (1, 1, 1). Multi-

mode 3D NDRange kernels are used to fetch and store data to and from the global memory for all

computation pipelines, similarly to [440]. Consequently, our implementations operate with mini-

mal controller computation. We make these efforts toward an eventual implementation that avoids

controller computation completely, with motivations to make our future designs applicable to both

GPUs and non-SoC FPGAs, avoiding the power overhead of the host controller, that is required for

the OpenCL programming model. In the following Sections, we detail the different synthesis con-

structs, such as the loop unroll factor (#pragma unroll for GPU), and Single-Instruction-Multiple-

Data (SIMD) vectorization factor, used for our developed single work-item kernels targeted for

acceleration on heterogeneous platforms.

Convolutional Kernel

Convolutional operations were implemented by mapping 3-D convolutions as matrix multiplica-

tion operations, by flattening and rearranging the input features, similarly to [441]. Each work-

item performs either fused MAC operations, or accumulate operations, on the local memory data,

depending on whether weights are quantized to binary states or not. This process is accomplished

using the loop unrolling technique, and is repeated by sliding the convolutional window to get

the corresponding elements in the product matrix. We further detail the XNOR kernels, described

using RTL modules, utilized in our FPGA BNN implementations for convolutional and Fully

Connected (FC) kernels in Section 8.6.3.
2https://github.com/hughperkins/DeepCL
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Inner-product Kernel

Inner-product operations were implemented for FC layers using single work-item kernels, where,

similarly to our convolutional kernel, fused MAC, or accumulate operations are performed, de-

pending on whether weights are quantized to binary states or not.

Activation Kernel

All activation functions were computed at the output of convolution and inner product implemen-

tations using single work-item kernels.

Pooling, Regularization, & Batch-normalization Kernels

Pooling, regularization, optimization, and batch normalization operations were implemented using

single work-item kernels, where acceleration is achieved by unrolling the loop to generate parallel

outputs in a single cycle.

8.6.3 Platform Specific Compilation & Performance Enhancing Techniques

In this Section we detail the platform specific compilation details, libraries, and resources required

for compilation and deployment of our developed host controller and OpenCL kernels, for FPGA

and GPU platforms.

Both our GPU and FPGA implementations of BNNs are accelerated using XNOR kernels,

which enables SIMD within a register (SWAR) [446]. Here, full precision 32-bit floating point

weights are concatenated into groups of 32 binary variables into 32-bit registers, resulting in a

32-time speed-up on bitwise operations.

FPGA

To compile OpenCL kernels for FPGA, the IOC was used, as part of the Intel FPGA SDK for

OpenCL and Quartus Prime Design Suite 18.1. IOC fully supports version 1.0 of the OpenCL

specification, and has some preliminary support for newer features from version 2.0. Fig. 8.2

presents the compilation flow for the IOC. Here, inputs are a set of OpenCL kernels, and the

output is a singular .aocx image file containing the necessary information to program the FPGA at

runtime containing the FPGA image. The host application loads data that is used to create program

objects, to program the target FPGA, as required for all kernel launch operations.

SIMD Within a Register (SWAR) was also implemented using a digital logic approach, similarly

to [8], to accelerate our FPGA BNN implementations. Fig. 8.3 illustrates SIMD using 32-bit

registers. Using RTL modules, the given size of each register to store binary weights is arbitrary

and not constrained by the computer architecture. These instructions, therefore, take only four

clock cycles on FPGAs.
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Figure 8.2: Compilation flow for the IOC for our OpenCL implementations on FPGA.

We integrate our developed XNOR RTL module into the Intel FPGA SDK for OpenCL Pipeline

using the IOC. Our RTL module has a balanced latency, where its threads match the number of

pipeline stages in our design. This allows the threads of the RTL module to execute without

stalling the SDK’s pipeline and bottlenecking operational performance.

GPU

In addition to accelerating the targeted DeepWeedsX recognition networks on the Intel DE1-SoC

FPGA development board, the networks were also accelerated on a state-of-the-art Titan V GPU

to execute OpenCL kernels and an AMD Ryzen 2700X @ 4.10 GHz Overclocked CPU to drive

the host controller. We use version 419.35 of the Titan V GPU driver to launch compute kernels.

Using SWAR OpenCL kernels, on GPUs, it is possible to evaluate 32 network connections with

only 3 instructions (accumulation, popcount, and XNOR), as described in (8.6).

a l-1
00b

wl
00b

a l-1
01b,w l

00b to a l-1
30b,w l

30b↓

+al-1
31b

wl
31b

al

Figure 8.3: Schematic of the XNOR kernel implementation on FPGA with 32-bit registers con-
taining 32 binary variables. Here, vertical lines represent clock cycles. al−1 contains
binary activations, and wl contains binary weights.
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al+ = popcount(xnor(a32bl−1, w
32b
l )). (8.6)

Here, l denotes the layer number, al is the resulting weighted sum, and a32bl−1, w
32b
l are the concate-

nated inputs and weights. These instructions take 6 overall clock cycles, including 1 for accumu-

lation, 4 for popcount, and 1 for XNOR, on the NVIDIA Titan V GPU used [456].

While NVIDIA’s CUDA compiler is, presently, much more efficient and mature than their

OpenCL compiler, to advocate fair comparison, we use OpenCL implementations across FPGA

and GPU platforms. We note that enhanced timing performance is expected on NVIDIA GPUs

using CUDA alongside with NVIDIA’s Deep Neural Network library (cuDNN).

8.7 Investigating The effect of Image Down-sampling and
Preprocessing on Performance

Before gathering implementation results, VGG-16 [241], DenseNet-128-32 [453], and WRN-28-

10 [258] were trained using full resolution weights with a batch size, ℑ = 32, for input images

down-sampled to three different sizes. We restrict the batch size to 32 and below due to the harsh

real-time constraints presented by our specific edge computing use case for robotic weed control,

which is discussed further in Section 8.9.2. These sizes include dimensions of 32×32, 64×64,

and the original size of 224×224. This was performed to investigate the down-sampling effect

on the degradation of our chosen deep networks validation accuracy. Figs. 8.4, 8.5, and 8.6

demonstrate the validation accuracy of all networks over 200 training epochs. While other works

report results over a 500 epoch training routine, we observed that learning on the training set

was saturated at around 150 epochs and therefore report results over 200 epochs. The maximum

validation accuracy achieved for each implementation is presented in Table 8.3. It is worth noting

Table 8.3: Maximum validation accuracy achieved during 200 epochs of training for all baseline
implementations used to investigate down-sampling performance degradation.

Network Architecture (3, 32, 32) (3, 64, 64) (3, 224, 224)

IPT

VGG-16 86.72 89.48 91.08
DenseNet-128-32 90.08 91.52 89.40
WRN-28-10 88.88 93.36 94.82

FIPT

VGG-16 81.45 89.12 93.04
DenseNet-128-32 85.89 86.05 94.24
WRN-28-10 85.97 90.72 95.85
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Figure 8.4: Validation accuracy of all baseline implementations used to investigate down-sampling
and image pre-processing effect on performance during 200 training epochs with in-
puts down-sampled to (3, 32, 32). Solid lines represent implementations adopting IPT.
Dashed lines represent implementations adopting FIPT.
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Figure 8.5: Validation accuracy of all baseline implementations used to investigate down-sampling
and image pre-processing effect on performance during 200 training epochs with in-
puts down-sampled to (3, 64, 64). Solid lines represent implementations adopting IPT.
Dashed lines represent implementations adopting FIPT.
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Figure 8.6: Validation accuracy of all baseline implementations used to investigate down-sampling
and image pre-processing effect on performance during 200 training epochs with in-
puts down-sampled to (3, 224, 224). Solid lines represent implementations adopting
IPT. Dashed lines represent implementations adopting FIPT.

that, for the networks shown in Table 8.3, no hyper-parameter optimization is performed. In

addition, for the FIPT cases, we replicated our image pre-processing steps originally proposed

in our previous work [416], which demonstrated significant performance for input images with

a resolution of 224×224. It is expected that, hyper-parameter optimization, different types or

amounts of image pre-processing techniques, or a combination of them could lead to validation

accuracy improvement.

From Figs. 8.4, 8.5, and 8.6, it can be observed that down-sampling input images to (3, 32,

32) leads to performance degradation, compared to using images with (3, 64, 64) or those with a

native resolution of (3, 224, 224). In addition, the figures show that for low-resolution images, i.e.

(3, 32, 32) and (3, 64, 64), performing FIPT leads to lowering accuracy. FIPT is useful in the case

of the native resolution images and leads to the highest accuracy achievable.

Interestingly, it is possible to achieve >85% validation accuracy using down-sampled input im-

ages with IPT at (3, 32, 32), which can significantly improve processing speed and reduce the total

required memory utilization during inference, compared to the use of higher resolution images.

Therefore, we down-sample all images to (3, 32, 32) to obtain all our implementation results re-

ported in the following sections. This is expected to drastically reduce the training time required,

as well as the resource utilization for all networks, which have previously been demonstrated to

be governed by the total number of trainable network parameters, input image size, and network

configuration [457].
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Table 8.4: Total number of trainable network parameters for each network architecture.

Network Architecture (3, 32, 32) (3, 64, 64) (3, 224, 224)

VGG-16 33,642,569 39,934,025 49,225,881
DenseNet-128-32 7,727,065 7,757,737 8,217,817
WRN-28-10 36,478,553 36,478,553 36,478,553

Table 8.5: Implementation results obtained from our baseline implementations using full resolu-
tion weights, trained over 200 epochs with down-sampled (3, 32, 32) images. During
inference ℑ = 32.

Baseline Network Architecture Total Kernel Power Usage (W) Inference Time per Image (ms) Validation Accuracy (%)

ℑ = 32

VGG-16 41.00 5.038 86.72
DenseNet-128-32 41.00 4.398 90.08
WRN-28-10 44.67 2.535 88.88

Table 8.4 presents the total trainable network parameters for each network architecture used to

obtain our implementation results. For VGG-16 and DenseNet-128-32 architectures, additional

parameters are required for larger resolution input images to implement additional max pooling

and fully connected layers. However, the WRN-28-10 network parameter size shows no depen-

dency to the input image resolution, which could be attributed to its wide (not deep) structure.

8.8 Implementation Results

Initially, conventional networks trained using full resolution weights were all implemented on the

GPU platform (see Table 8.3). This was to have as a baseline for validation accuracy comparison

to both previous works and our binarized implementations. Direct comparison to the relevant

previous work [416] is not possible using the given labeled dataset (DeepWeedsX), because, in

[416] five-fold cross-validation is used to report accuracy, while here we obtained accuracy using

a train-test dataset split. Nonetheless, the best validation accuracy achieved here (95.85%) using

WRN-28-10 with FIPT, is marginally better than the best accuracy previously achieved using

ResNet-50 with FIPT (95.7%) as reported in [416].

In order to validate and investigate the performance of the proposed FPGA- and GPU-accelerated

BNN architectures on the DeepWeedsX dataset, the validation error rate, power consumption, and

Inference Time Per Image (ITPI) were analyzed. On both FPGA and GPU platforms, all afore-

mentioned performance metrics were determined during inference, i.e. after importing trained

weights, for different batch sizes ℑ ∈ [4, 8, 16, 32] to investigate the effect of the batch size on

inference performance. As discussed earlier, we restrict the batch size to between 4 and 32 due to

the harsh real-time constraints presented by our specific edge computing use case for robotic weed
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control (see Section 8.9.2). For FPGA implementations we also report the resource utilization,

which is an important parameter in identifying hardware cost.

The total kernel power usages were determined using the Post Place & Route Estimator for

FPGA post-synthesis, and NVIDIA-SMI for GPU. To ensure all reported power usage readings

are accurate for our GPU implementations, we artificially elongate kernel execution times when

measuring GPU kernel power utilization.

It is worth noting that, there is no need to consider the time required for image pre-processing

because for all (3, 32, 32) cases, networks employing IPT outperform their FIPT counterparts (see

Table 8.3). It is expected that during real-time inference, images are fed directly to the inference

engine after undergoing pipelined real-time image resizing similar to [458], hence, requiring no

down-sampling (IPT). There is also no need for FIPT, because FIPT is only useful for (3, 224,

224). We used images of size (3, 32, 32).

8.8.1 Baseline Implementations

Baseline implementations of VGG-16 [241], DenseNet-128-32 [453], and WRN-28-10 [258],

were trained using full resolution weights with ℑ = 32, on GPU for images of size (3, 32, 32).

The collected performance metrics are reported in Table 8.5. It can be observed that DenseNet

L=128, K=32 achieves the highest validation accuracy of 90.08%. It requires 0.64 ms less infer-

ence time per image, compared to its VGG-16 variant, while consuming the same amount of power

and yielding an increase 0f 3.36% in validation accuracy. Compared to WRN-28-10 network, the
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Figure 8.7: Validation accuracy after each epoch during 200 training epochs for our new binarized
implementations with down-sampled (3, 32, 32) images.
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Figure 8.8: Confusion matrix obtained using the DenseNet L=128, K=32 with baseline implemen-
tation. Performance is described for each individual class. Values are normalized from
0 to 1 corresponding to 0% and 100% validation accuracy, respectively.

DenseNet L=128, K=32 achieves 1.2% improvement in accuracy, while being 1.86 ms slower in

image inference, but consuming 3.67 W less power.

Furthermore, in order to determine class specific performance, a confusion matrix for the top

performing baseline implementation, DenseNet L=128, K=32, is presented in Fig. 8.8. It can

be observed that the individual class accuracy is weakly correlated to the class distribution in the

DeepWeeds dataset. Further species-specific performance discussion is presented in Section 8.9.1.

8.8.2 Binary Implementations

We implement and train our new binary networks of the selected deep architecture across GPU and

FPGA platforms. The validation accuracy for each epoch during training for each implementation

is presented in Fig. 8.7. As all networks are trained using the same NVIDIA Titan V GPU, only

one plot for each network is presented. Consequently, the validation accuracies and corresponding
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Table 8.6: Implementation results obtained from our new binarized implementations with down-
sampled (3, 32, 32) images, over 200 epochs.

Binary Implementation VGG-16 DenseNet-128-32 WRN-28-10
ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32 ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32 ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32

Total Kernel Power Usage (W)
GPU 46.16 47.10 47.39 47.69 56.78 56.83 57.47 58.71 55.64 56.68 56.72 58.07

FPGA 4.19 4.58 5.31 6.26 4.48 4.72 5.40 6.72 4.01 4.49 5.26 6.04

Inference Time per Image (ms)
GPU 9.87 5.55 4.5 3.3 7.47 3.93 2.88 2.43 4.83 2.98 2.38 1.49

FPGA 6.647 3.843 2.974 2.199 4.762 2.689 2.045 1.539 3.268 2.02 1.539 1.059
Validation Accuracy (%) 85.05 88.91 87.33

Table 8.7: Device utilization (%) comparison for the implemented FPGA-accelerated BNNs
adopting IPT. All reported hardware utilization numbers are expressed as percentages
of the total available resources on the FPGA. 1The maximum frequency for each imple-
mentation was extracted from acl quartus report.txt report, generated by the Quartus
Design Studio.

Binary Implementation VGG-16 DenseNet-128-32 WRN-28-10
ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32 ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32 ℑ = 4 ℑ = 8 ℑ = 16 ℑ = 32

Flip Flops 33.34% 48.49% 68.72% 96.17% 28.09% 36.82% 71.49% 74.67% 30.17% 43.07% 58.63% 88.96%
ALMs 58.32% 61.91% 87.46% 96.30% 35.22% 46.94% 78.49% 92.92% 50.26% 53.29% 79.74% 88.89%
DSPs 74.11% 80.14% 85.42% 95.20% 34.73% 47.26% 53.53% 68.81% 55.92% 75.29% 84.13% 90.35%
Frequency [MHz]1 52 46 43 39 58 49 43 41 51 45 44 41

confusion matrices are identical across platforms.

From Fig. 8.7, it can be observed that, similar to our baseline implementations adopting full

resolution weights, binary DenseNet L=128, K=32 achieves the highest validation accuracy, with

a degradation of only 1.17% compared to its full-resolution counterpart.

In addition, Table 8.6 reports the total kernel power usages and inference times for both GPU

and FPGA implementations for various batch sizes of ℑ ∈ [4, 8, 16, 32]. Table 8.6 demonstrates

that as the batch size, ℑ, is increased, the inference time per image is notably decreased. We

believe this is a a direct result of increased parallelism.

For all networks, the FPGA implementations require less time to perform inference despite

operating at a much lower operational frequency. Our DenseNet L=128, K=32 implementation

on FPGA reduces the inference time per image compared to its GPU counterpart by 0.89 ms for

ℑ = 32 while achieving the same validation accuracy, and by 2.86 ms compared to its baseline

implementation time reported in Table 8.5. These results and their implications are discussed in

Section 8.9.2.

Furthermore, in order to determine class specific performance of binarized networks on GPU

and FPGA, a confusion matrix for the top performing implementation, DenseNet L=128, K=32

is presented in Fig. 8.9. Interestingly, the class specific performance for binarized DenseNet

varies significantly across various weed species, while degrading only 1.17% overall. Section

8.9.1 provides further discussion on species-specific performance.

In addition, to investigate the hardware complexity of the implemented binarized networks on

FPGA and compare it to the achieved inference and power consumption figures, the device uti-
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Figure 8.9: Confusion matrix obtained using the binary DenseNet L=128, K=32 with IPT. Per-
formance is described for each individual class. Values are normalized from 0 to 1
corresponding to 0% and 100% validation accuracy, respectively.

lization of all FPGA accelerated networks were measured and presented in Table 8.7.

From Table 8.7 it can be observed that the device utilization for each network architecture

is weakly correlated with the batch size during inference. For all our implementations, as ℑ is

increased, the Flip Flops, ALMs, DSPs required for synthesis are increased and the maximum

synthesizable frequency is decreased. Our best performing implementation, DenseNet L=128,

with ℑ = 32, requires 46.58% more Flip Flops, 57.7% more ALMs, and 34.08% more DSPs than

its ℑ = 4 counterpart.

8.9 Further Discussion

In this Section, we provide further discussion of our implementation results and how they benefit

the application of robotic weed control.
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Figure 8.10: Example images from each class of the DeepWeeds dataset, including: (a) Chinee
apple, (b) Lantana, (c) Parkinsonia, (d) Parthenium, (e) Prickly acacia, (f) Rubber
vine, (g) Siam weed, (h) Snake weed and (i) Negatives. Chinee apple and Snake
weed are prone to high levels of confusion due to their very similar features.
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8.9.1 Classification Performance

Tables 8.5 and 8.6 show that our baseline and binary implementations of the DenseNet architecture

consistently outperform VGG-16 and WRN-28-10. With images drastically down-sampled to (3,

32, 32), our full precision baseline DenseNet-128-32 implementation offers a validation accuracy

of 90.1% on the DeepWeedsX dataset. This compares well with the ResNet-50 architecture used

in [416] to achieve 95.7% performance on much larger images, 224× 224 pixels in size.

However, validation accuracy is an unreliable sole metric due to the imbalanced nature of the

DeepWeeds and DeepWeedsX datasets. In the application of robotic weed control, the goal is

to maximize coverage of weed targets at the cost of collateral off-target damage. As such, it is

vitally important to consider the performance on each individual species. The confusion matrix of

the baseline implementation of DenseNet, presented in Fig. 8.8, is analogous to the classification

performance in [416]. The species with the highest recall accuracy, ranging from 87-95%, include:

Lantana, Parkinsonia, Parthenium, Prickly acacia, Rubber vine, Siam weed and negative plant

life. The species presenting the most difficult challenge for the network, ranging from 80-82%

recall accuracy, are Chinee apple and Snake weed. With the model confusing 9% of Chinee apple

as Snake weed, and 5% vice versa, we reason their respective poor performance is due to the

inherent similarity in the two plants image features. The similarity between these two classes is

made evident in Fig. 8.10, which presents an example image of each class.

Fortunately, confusing one weed target for another is inconsequential in the application of

robotic weed control. However, missed targets (i.e. false negatives) and off-target damage (i.e.

false positives) are of great consequence so we must examine the performance on the negative

class. The baseline DenseNet architecture confuses between 3-11% of each species with the neg-

ative class. This constitutes a significant number of missed targets. Also, 5% of the negative class

is falsely classified as positive species. The existence of false positives is assumed to be the result

of the massive variation of plant life in the negative class.

Table 8.6 reveals that the best performing binarized implementation is again the DenseNet-128-

32 architecture, which offers 88.9% average classification accuracy. Interestingly, the inter-species

performance is vastly different to the baseline implementation, as shown by the confusion matrix in

Fig. 8.9. Our binarized implementation of the DenseNet architecture appears to have generalized

the classification performance of the network across species. Confusions between species are

more scattered and are no longer owing to visibly discernible characteristics. The species offering

the best performance, ranging from 83-88%, include: Lantana, Prickly acacia, Siam weed and

Snake weed. While the species presenting the most difficult challenge, ranging from 74-81% are:

Chinee apple, Parkinsonia, Parthenium and Rubber vine. We believe that the extreme quantization

of weights to binary states prevented less-distinctive features to be extracted, causing a degradation

in validation accuracy for weed species with a large number of features. Species with distinctive

features, or lack thereof, demonstrated similar accuracies to our baseline implementations. For

example, in both our best performing implementations the negative class is strongly classified at
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95% with 5% false positives.

Tables 8.5 and 8.6 also show that the performance of all binarized implementations are slightly

worse than their full precision baseline counterparts. This result confirms what is seen in literature.

However, the real-time performance of these binarized networks are far greater than their full

precision counterparts and present a fruitful tradeoff for the application of robotic weed control,

as discussed below.

8.9.2 Real Time Performance

Tables 8.5 and 8.6 show that every novel binarized implementation presented here significantly

outperforms its GPU baseline implementation in terms of inference time and required power, with

only a slight degradation in validation accuracy. The WRN architecture offers the fastest inference

engine with a 1.018 ms inference time when implemented on an FPGA. While DenseNet-128-32,

our most accurate architecture, also offers a significant increase in speed, with an average inference

time of 1.539 ms per image.

In addition to the binarization of full precision architecture and acceleration using FPGA hard-

ware, two further methods of pushing the real-time performance were investigated: presenting a

smaller image size to the network, and reducing the amount of pre-processing or image augmenta-

tions performed. Table 8.3 reveals that down-sampling the image size from (3, 224, 224) to (3, 32,

32) only slightly decreases the average validation accuracy from 94.24% to 90.1% for DenseNet,

93.04% to 86.7% for VGG-16 and 95.85% to 88.9% for WRN. The significantly smaller image

size of (3, 32, 32) is a major reason these networks perform inference faster, compared to the (3,

224, 224) shaped architectures in [416].

Table 8.3 also shows that applying further image pre-processing techniques offers no advantage

in classification performance for the utilized down-sampled images. In fact, we observed that

validation accuracy is degraded by an average of over 4% for the binary implementations when

images are down-sampled below (3, 224, 224) when further image augmentations are applied. This

suggests that our FIPT are ill-suited to low resolution images and can only be beneficial to large-

resolution images, which we do not use here. However, as discussed in Section 8.7, these results

are expected to be significantly improved if further image preprocessing technique investigation,

and/or hyper-parameter optimization is performed, for each network, and each input image size.

Let us consider the use case of the prototype agricultural robotic spot-sprayer, AutoWeed, first

introduced in [416]. Its optical system comprises four FLIR Blackfly 23S6C high-resolution

cameras, each providing a 450 x 280 mm field of view with a maximum data rate of 41 fps.

This allows a threshold of at most 100 ms total processing time per image per camera for the

selective spot sprayer to operate at the target speed of 10 km/hr. This imposes a required frame

rate of at least 10 fps per camera to achieve target real-time performance. With simultaneous

image acquisition from four cameras, batch sizes of between 4 and 32 were considered for our

above implementations. The lower limit of 4, considers processing one frame at a time from each
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camera. While the upper limit of 32, considers waiting for the acquisition of up to 8 frames from

each camera before processing them in a batch for the apparent per image inference speed increase.

With an average inference time of 1.539 ms implemented on an FPGA, the 450× 280 mm field

of view of our specific edge device can be processed fast enough to achieve a frame rate of over

600 fps. Far exceeding the real time requirement for one camera at 10 km/hr. This efficiency would

also allow the robot to operate at a much higher vehicle speed to yield more efficient performance

in the agricultural domain.

Compared to existing full precision architectures and their power-hungry GPU implementa-

tion [416], the low-power and high-speed inference engines presented here offer an attractive

tradeoff with slightly worse classification performance for greatly increased speed and power ef-

ficiency. This tradeoff will allow researchers and developers to solve the speed and power ineffi-

ciencies in applications of precision agriculture, like robotic weed control, with software instead

of hardware. The proposed binarized solutions can also be generalized for improving the effi-

ciency of edge computing in general, where slight amounts of accuracy can be traded off for great

amounts of speed and power improvement.

8.10 Conclusion

In this Chapter, we are the first to investigate the acceleration of binarized DNNs on GPUs and

FPGAs using the high-level OpenCL framework for weed species classification targeted toward

edge computing applications and robotic weed control. We investigated the performance degra-

dation exhibited when down-sampling input images, and demonstrated that significantly reducing

the image resolution has a marginal effect on validation accuracy. After thoroughly comparing

efficient implementations on GPU and FPGA platforms, we were able to achieve a >7-fold de-

crease in power consumption, while performing inference on weed images 2.86 times faster while

degrading validation accuracy by only 1.17% on our newly labeled and publicly available dataset.

Finally, we provided further discussion pertaining to species-specific classification performance

and real time performance implications for robotic weed control. The binarized DNNs in this

Chapter represent ideal candidates for future implementation in precision agricultural robots using

edge computing devices which operate at reduced precision, including existing devices, such as

Google’s TPU [93] or IBM’s Artificial Intelligence Unit (AIU) [459], and future devices capable

of reduced precision operation, which are envisioned to burgeon in popularity [35].
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, simulations and implementations of novel DL hardware architectures for resource-

constrained devices were presented. Two specific technologies were investigated: memristors,

and FPGAs. In Chapter 2, both neuromorphic brain-inspired asynchronous and traditional syn-

chronous DL architectures were investigated for healthcare and biomedical applications. It was

determined that novel hardware architectures could greatly reduce the power consumption and la-

tency of neuromorphic processors and DL inference accelerators for numerous signal processing,

and image classification and segmentation tasks.

Additionally, it was determined that neuromorphic processors and traditional DL accelerators

are complimentary in nature, and that for some specific tasks, especially those for which data is

collected asynchronously, neuromorphic processors can outperform DL accelerators. However,

for many complex practical engineering tasks, DL accelerators are required to achieve significant

performance. For DL accelerators, in particular, memristors and FPGAs were identified to be

strong candidates for deployment in novel DL system architectures. Finally, an outlook and future

perspectives were provided.

In Chapter 3, modeling and simulation efforts related to emerging memristive devices were

over-viewed, and simulation frameworks were investigated and compared. It was determined that

modernized frameworks, which adopt a sophisticated software engineering approach, offer signif-

icant benefits over conventional SPICE simulation techniques. The run-time and memory usage

of all modernized open-source frameworks were compared when possible; both for inference and

training simulations. Finally, similarly to as done in Chapter 2, an outlook and future perspectives

were provided.

In Chapter 4, the first and third research questions were addressed. A novel hybrid CMOS-

memristive architecture was presented, which was capable of executing convolutional layers using

multiple crossbar tiles. In addition, a novel mitigation strategy was proposed for stuck at level

RRAM device faults. Comprehensive simulations of this architecture in a 22nm FDSOI CMOS

process were conducted in two different modes of operation with different latency and resource

requirements, and it was determined that SOTA performance could be achieved for both epileptic
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seizure detection and prediction tasks.

In Chapter 5, the first research question was addressed. Non-idealities of CBRAM devices

were exploited to generate pseudo-random numbers efficiently by characterizing the stochastic

switching behavior between low and high resistance states, in order to perform DL parameter

optimization using SC. It was demonstrated that the size of MAC units could be reduced by 5

orders of magnitude. Comprehensive simulations of this architecture in a 40nm CMOS process

were conducted, which determined that the architecture was capable of performing parameter

optimization for a CNN while it is being trained for a character recognition task and consuming

less than 100µW.

In Chapter 6, the second research question was addressed. MemTorch, a novel open-source

simulation framework for MDLSs, was developed with a refined focus on modeling device- and

circuit-level non-idealities. Exemplar simulations were conducted using the MobileNetV2 archi-

tecture for the CIFAR-10 image classification task, and it was demonstrated that MemTorch could

be used to perform design exploration and quantify trade-offs between resource usage and perfor-

mance during development, prior to exhaustive transistor-level simulation and validation.

In Chapter 7, the second research question was also addressed; albeit with a refined focus on

two specific device characteristics: endurance and retention. A novel generalized empirical Metal-

Oxide RRAM endurance and retention model designed for use in large-scale DL simulations was

presented. This model was the first to unify retention and endurance modeling while taking into

account time, energy SET-RESET cycles, device size, and temperature. It was compared to other

related models and used in large-scale simulations using the MobileNetV2 architecture for the

CIFAR-10 image classification task; the same task used to demonstrate the operation of MemTorch

in Chapter 6. It was determined that, even when ignoring other device non-idealities, retention

and endurance losses significantly affect the performance of DL networks. Consequently, they

should be accounted for during the development of hybrid CMOS-memristive architectures for

DL systems.

Finally, in Chapter 8, the first and third research questions were addressed. Novel FPGA de-

terministic BNN accelerators were presented, which were tailored towards weed species clas-

sification. It was demonstrated that these networks significantly outperformed equivalent GPU

accelerated networks, with minimal reduction in accuracy. Specifically, a >7-fold decrease in

power consumption was reported, with a 2.86 times improvement in processing speed using the

DeepWeeds dataset, which includes close to 18,000 weed images.

Overall, this thesis has investigated many different novel hardware architectures for DL sys-

tem acceleration on resource-constrained devices using software hardware co-optimization. A

variety of different computing approaches were investigated. Contributions have been made in

many areas, ranging from the development of customized RTL designs for FPGA architectures,

device-level modeling for RRAM devices, to DL parameter optimization using SC by exploiting

the stochastic behavior of CBRAM devices, which has traditionally been treated as a hindrance.
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Figure 9.1: Both hardware and software innovations can be used synergically to develop novel DL
hardware architectures. This figure was inspired by [35].

Clearly, there is much more work needed to be done in this exciting interdisciplinary area.

9.2 Future Work

As stated in the Introduction, the primary motivation of this thesis was to contribute, in-part, to the

collective effort of reducing the power consumption and latency of DL accelerators to enable their

use in resource-constrained devices. Both hardware and software improvements were investigated,

and used to develop novel hardware architectures using two alternate technologies: memristive

devices, and FPGAs, which were simulated and/or physically realized.

In this thesis, two types of memristive devices were investigated in detail: Metal-Oxide RRAM

and CBRAM. Many other memristive device types, such as PCM and STT-MRAM, are also

actively being researched [460], which could potentially be the key focus of future work. In

addition to more fundamental device-level, circuit-, architectural-, and simulation-level research

is being performed [42]. FPGAs, which were also investigated in this thesis, are being actively

used by many researchers to reduce the power consumption and latency of DL accelerators in

resource-constrained environments [440].

HLS, which was investigated in Chapter 8, has recently attracted significant attention in particu-

lar, as it can be used to significantly reduce the development time of digital circuits described using

HDLs [133]. FPGAs are commonly used to prototype digital circuits prior to eventual implemen-

tation using ASICs. Due to limited resources, in this thesis, synthesis (using a specific CMOS

process) and fabrication of novel digital hardware architectures was not performed. The imple-

mentation of digital circuits presented in this thesis using ASIC could potentially be an additional

key focus of future work.

While both top-down and bottom-up design approaches can be used to develop hardware ar-
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chitectures for efficient hardware implementation [461], in this thesis, a top-down approach was

used, so bottom-up design approaches could also be an additional key focus. All research findings,

and future research directions of thesis, can be broadly categorized using Fig. 9.1. As Electronic

Design Automation (EDA) tools continue to improve, and hardware architectures become increas-

ingly complex, software-hardware co-optimization approaches are becoming more popular and

widely adopted [462]. As can be seen in this figure, both hardware and software innovations can

be used synergically to develop novel DL hardware architectures. To conclude, some specific

future directions include, but are certainly not limited to:

• The synthesis and eventual tape-out of the presented novel hybrid Memristive-CMOS hard-

ware architectures using ASIC with BEOL device integration. This would enable the simu-

lations of different hardware architectures to be validated for a specific CMOS process and

for the architectures to be physically deployed;

• Further investigation of neuromorphic brain-inspired asynchronous processors for online

and continuous learning applications. While in this thesis, the scope was confined to ac-

celerating DL architectures, recent breakthroughs in the neuromorphic engineering domain,

which approximate the back-propagation algorithm, have made neuromorphic processors a

viable candidate for many of the investigated applications;

• Further investigation of novel computing architectures for more complex DL systems, such

as recurrent-based networks and transformer architectures. Recent advancements in the

DL domain, such as the attention mechanism, have greatly improved the efficacy of these

systems. However, they require more complex circuitry to implement using ASIC;

• Further architectural improvements using software-hardware co-optimization. While some

quantization and approximate computing techniques such as parameter quantization, alter-

native parameter mapping schemes, and stochastic computing were explored, they were not

done so exhaustively.
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[81] J. Laitala, M. Jiang, E. Syrjälä, E. K. Naeini, A. Airola, A. M. Rahmani, N. D. Dutt, and

P. Liljeberg, “Robust ECG R-peak detection using LSTM,” in Proceedings of the ACM

Symposium on Applied Computing (SAC), Brno, Czech Republic., Mar. 2020, pp. 1104–

1111.

[82] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge

and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[83] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A Large-scale

Hierarchical Image Database,” in Proceeding of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Miami Beach, FL., Jun. 2009.

148



Bibliography

[84] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer

Learning for Medical Imaging,” in NeurIPS, Vancouver, Canada., Dec. 2019.

[85] M. S. Elmahdy, T. Ahuja, U. A. van der Heide, and M. Staring, “Patient-specific finetun-

ing of deep learning models for adaptive radiotherapy in prostate ct,” in 2020 IEEE 17th

International Symposium on Biomedical Imaging (ISBI), 2020, pp. 577–580.

[86] G. Indiveri and S.-C. Liu, “Memory and Information Processing in Neuromorphic Sys-

tems,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1379–1397, 2015.

[87] F. Corradi, S. Pande, J. Stuijt, N. Qiao, S. Schaafsma, G. Indiveri, and F. Catthoor, “ECG-

based Heartbeat Classification in Neuromorphic Hardware,” in Proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN), Budapest, Hungary., Jul. 2019.

[88] G. Indiveri and Y. Sandamirskaya, “The importance of space and time for signal processing

in neuromorphic agents: the challenge of developing low-power, autonomous agents that

interact with the environment,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 16–28,

2019.

[89] J. K. Eshraghian, K. Cho, C. Zheng, M. Nam, H. H.-C. Iu, W. Lei, and K. Eshraghian,

“Neuromorphic vision hybrid rram-cmos architecture,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2816–2829, 2018.

[90] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman, “Hots: a hierarchy of

event-based time-surfaces for pattern recognition,” IEEE transactions on pattern analysis

and machine intelligence, vol. 39, no. 7, pp. 1346–1359, 2016.

[91] M. Sharifshazileh, K. Burelo, T. Fedele, J. Sarnthein, and G. Indiveri, “A Neuromorphic

Device for Detecting High-Frequency Oscillations in Human iEEG,” in Proceedings of

the IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genova,

Italy., Nov. 2019, pp. 69–72.

[92] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey

and Benchmarking of Machine Learning Accelerators,” arXiv preprint arXiv:1908.11348,

2019.

[93] “Edge TPU,” https://coral.ai/docs/edgetpu/faq/.

[94] J. Hruska, “Intel Nervana Inference and Training AI Cards,”

https://www.extremetech.com/computing/296990-intel-nervana-nnp-i-nnp-t-a-training-

inference.

[95] P. Kennedy, “Huawei Ascend 310,” https://www.servethehome.com/huawei-ascend-910-

provides-a-nvidia-ai-training-alternative/.

149



Bibliography

[96] J. Lee, J. K. Eshraghian, K. Cho, and K. Eshraghian, “Adaptive Precision CNN Ac-

celerator Using Radix-X Parallel Connected Memristor Crossbars,” arXiv e-prints, p.

arXiv:1906.09395, Jun. 2019.

[97] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An Energy-Efficient Deep-Learning

Processor with Heterogeneous Multi-Core Architecture,” IEEE Micro, vol. 38, no. 5, pp.

85–93, 2018.

[98] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu, and S. Wei,

“A high energy efficient reconfigurable hybrid neural network processor for deep learning

applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 968–982, 2017.

[99] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An Energy-Efficient Deep

Neural Network Accelerator With Fully Variable Weight Bit Precision,” IEEE Journal of

Solid-State Circuits, vol. 54, no. 1, pp. 173–185, 2018.

[100] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,

“Cambricon-X: An accelerator for sparse neural networks,” in Proceedings of the

IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan., Oct.

2016.

[101] J. Zhang, S. Gajjala, P. Agrawal, G. H. Tison, L. A. Hallock, L. Beussink-Nelson, E. Fan,

M. A. Aras, C. Jordan, K. E. Fleischmann et al., “A Computer Vision Pipeline for Auto-

mated Determination of Cardiac Structure and Function and Detection of Disease by Two-

Dimensional Echocardiography,” arXiv preprint arXiv:1706.07342, 2017.

[102] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Reconfig-

urable Accelerator for Deep Convolutional Neural Networks,” IEEE Journal of Solid-state

Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[103] Q. Guan, Y. Wang, B. Ping, D. Li, J. Du, Y. Qin, H. Lu, X. Wan, and J. Xiang, “Deep

Convolutional Neural Network VGG-16 Model for Differential Diagnosing of Papillary

Thyroid Carcinomas in Cytological Images: A Pilot Study,” Journal of Cancer, vol. 10,

no. 20, p. 4876, 2019.

[104] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/W Convolutional Network Accelera-

tor,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11, pp.

2461–2475, 2016.

[105] I. Azimi, J. Takalo-Mattila, A. Anzanpour, A. M. Rahmani, J.-P. Soininen, and P. Liljeberg,

“Empowering Healthcare IoT Systems with Hierarchical Edge-Based Deep Learning,” in

Proceedings of the International Conference on Connected Health: Applications, Systems

and Engineering Technologies (CHASE), Washington, DC., Sep. 2018, pp. 63–68.

150



Bibliography

[106] J. Huang, S. Lin, N. Wang, G. Dai, Y. Xie, and J. Zhou, “TSE-CNN: A Two-Stage End-

to-End CNN for Human Activity Recognition,” IEEE Journal of Biomedical and Health

Informatics, vol. 24, no. 1, pp. 292–299, 2020.

[107] B. Moons and M. Verhelst, “An Energy-Efficient Precision-Scalable ConvNet Processor in

40-nm CMOS,” IEEE Journal of Solid-state Circuits, vol. 52, no. 4, pp. 903–914, 2016.

[108] M. Blaivas and L. Blaivas, “Are All Deep Learning Architectures Alike for Point-of-Care

Ultrasound?: Evidence From a Cardiac Image Classification Model Suggests Otherwise,”

Journal of Ultrasound in Medicine, 2019.

[109] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-to-

10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable Convolutional

Neural Network processor in 28nm FDSOI,” in Proceedings of the IEEE International

Solid-State Circuits Conference (ISSCC), San Francisco, CA., Feb. 2017, pp. 246–247.

[110] M.-P. Hosseini, T. X. Tran, D. Pompili, K. Elisevich, and H. Soltanian-Zadeh, “Deep Learn-

ing with Edge Computing for Localization of Epileptogenicity Using Multimodal rs-fMRI

and EEG Big Data,” in Proceedings of the IEEE International Conference on Autonomic

Computing (ICAC), Columbus, OH., Jul. 2017, pp. 83–92.

[111] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and I. Kang, “An

11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core Sparsity-Aware Neural Processing

Unit in 8nm Flagship Mobile SoC,” in Proceedings of the IEEE International Solid-State

Circuits Conference (ISSCC), San Francisco, CA., Feb. 2019, pp. 130–132.

[112] F. Preiswerk, C.-C. Cheng, J. Luo, and B. Madore, “Synthesizing Dynamic MRI Using

Long-Term Recurrent Convolutional Networks,” in Proceedings of the International Work-

shop on Machine Learning in Medical Imaging (MLMI). Granada, Spain.: Springer, Sep.

2018, pp. 89–97.

[113] J. Acharya and A. Basu, “Deep Neural Network for Respiratory Sound Classification

in Wearable Devices Enabled by Patient Specific Model Tuning,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 14, no. 3, pp. 535–544, 2020.

[114] S. Roy, S. Sridharan, S. Jain, and A. Raghunathan, “TxSim:Modeling Training of Deep

Neural Networks on Resistive Crossbar Systems,” arXiv:2002.11151 [cs, eess, stat], Jan.

2021.

[115] J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-AI in LoRa-based Health

Monitoring: Fall Detection System with Fog Computing and LSTM Recurrent Neural Net-

works,” in Proceedings of the International Conference on Telecommunications and Signal

Processing (TSP), 2019, pp. 601–604.

151



Bibliography

[116] Y. Chen, E. Yao, and A. Basu, “A 128-Channel Extreme Learning Machine-Based Neural

Decoder for Brain Machine Interfaces,” IEEE Transactions on Biomedical Circuits and

Systems, vol. 10, no. 3, pp. 679–692, 2016.

[117] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and A. Saalbach, “Comparison of

Deep Learning Approaches for Multi-Label Chest X-Ray Classification,” Scientific Reports,

vol. 9, no. 1, pp. 1–10, 2019.

[118] W. Zhao, W. Zhao, W. Wang, X. Jiang, X. Zhang, Y. Peng, B. Zhang, and G. Zhang, “A

Novel Deep Neural Network for Robust Detection of Seizures Using EEG Signals,” Com-

putational and Mathematical Methods in Medicine, vol. 2020, p. 9689821, Apr. 2020, pub-

lisher: Hindawi.

[119] G. Zamzmi, L.-Y. Hsu, W. Li, V. Sachdev, and S. Antani, “Harnessing Machine Intelli-

gence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Di-

rections,” IEEE Reviews in Biomedical Engineering, 2020.

[120] M. S. Roy, B. Roy, R. Gupta, and K. D. Sharma, “On-device reliability assessment and pre-

diction of missing photoplethysmographic data using deep neural networks,” IEEE trans-

actions on biomedical circuits and systems.

[121] K. Zhao, H. Jiang, Z. Wang, P. Chen, B. Zhu, and X. Duan, “Long-term bowel sound mon-

itoring and segmentation by wearable devices and convolutional neural networks,” IEEE

Transactions on Biomedical Circuits and Systems, 2020.

[122] S. Shaikh, R. So, T. Sibindi, C. Libedinsky, and A. Basu, “Sparse Ensemble Machine Learn-

ing to Improve Robustness of Long-Term Decoding in iBMIs,” IEEE Transactions on Neu-

ral Systems and Rehabilitation Engineering, vol. 28, no. 2, pp. 380–389, 2020.

[123] G. O’Leary, D. M. Groppe, T. A. Valiante, N. Verma, and R. Genov, “NURIP: Neural In-

terface Processor for Brain-State Classification and Programmable-Waveform Neurostimu-

lation,” IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3150–3162, 2018.

[124] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware acceleration

for neural networks: A comprehensive survey,” Proceedings of the IEEE, vol. 108, no. 4,

pp. 485–532, 2020.

[125] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural net-

works: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,

2017.

[126] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culurciello, “NeuFlow:

Dataflow vision processing system-on-a-chip,” in Proceedings of the IEEE International

152



Bibliography

Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO., Aug. 2012,

pp. 1044–1047.

[127] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A reconfigurable fabric for accelerating

large-scale datacenter services,” in Proceedings of the ACM/IEEE International Symposium

on Computer Architecture (ISCA), Minneapolis, MN., Jun. 2014, pp. 13–24.

[128] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins, A. Bell, J. Thomp-

son, T. Kahsai, G. Kimmell et al., “Think Fast: A Tensor Streaming Processor (TSP) for

Accelerating Deep Learning Workloads,” Valencia, Spain., May 2020.

[129] H. Kung and C. E. Leiserson, “Systolic Arrays (for VLSI),” in Proceedings of Sparse Ma-

trix, vol. 1. Society for industrial and applied mathematics, 1979, pp. 256–282.

[130] H.-T. Kung, “Why systolic architectures?” Computer, no. 1, pp. 37–46, 1982.

[131] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard for het-

erogeneous computing systems,” Computing in Science & Engineering, vol. 12, no. 3, pp.

66–73, 2010.

[132] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-Based Neural Net-

work Inference Accelerator,” ACM Transactions on Reconfigurable Technology and Sys-

tems (TRETS), vol. 12, no. 1, pp. 1–26, 2019.

[133] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level

synthesis for FPGAs: From prototyping to deployment,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, apr 2011.

[Online]. Available: https://doi.org/10.1109%2Ftcad.2011.2110592

[134] M. Carreras, G. Deriu, L. Raffo, L. Benini, and P. Meloni, “Optimizing Temporal Convolu-

tional Network inference on FPGA-based accelerators,” arXiv preprint arXiv:2005.03775,

2020.

[135] D. Wang, K. Xu, and D. Jiang, “PipeCNN: An OpenCL-based open-source FPGA accel-

erator for convolution neural networks,” in Proceedings of the International Conference on

Field Programmable Technology (ICFPT), Melbourne, Australia., Dec. 2017, pp. 279–282.

[136] M. Wess, P. S. Manoj, and A. Jantsch, “Neural network based ECG anomaly detection

on FPGA and trade-off analysis,” in Proceedings of the IEEE International Symposium on

Circuits and Systems (ISCAS), Baltimore, MD., May 2017.

[137] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, and M. C. Herbordt, “Real-time data analy-

sis for medical diagnosis using FPGA-accelerated neural networks,” BMC Bioinformatics,

vol. 19, no. 18, p. 490, 2018.

153



Bibliography

[138] R. R. Shrivastwa, V. Pudi, and A. Chattopadhyay, “An FPGA-Based Brain Computer In-

terfacing Using Compressive Sensing and Machine Learning,” in Proceedings of the IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China., Jul. 2018, pp.

726–731.

[139] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A Circuit-Level Macro Model for Benchmark-

ing Neuro-Inspired Architectures in Online Learning,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, Dec.

2018.

[140] G. Burr, P. Narayanan, R. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and Y. Leblebici, “Large-

scale neural networks implemented with non-volatile memory as the synaptic weight ele-

ment: Comparative performance analysis (accuracy, speed, and power),” in Proceedings of

the IEEE International Electron Devices Meeting (IEDM), Washington, DC., Dec. 2015.

[141] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler, M. Gior-

dano, M. Bodini, N. C. Farinha et al., “Equivalent-accuracy accelerated neural-network

training using analogue memory,” Nature, vol. 558, no. 7708, p. 60, 2018.

[142] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, Nature, vol.

577, no. 7792, pp. 641–646, Jan. 2020.

[143] J. K. Eshraghian, S.-M. Kang, S. Baek, G. Orchard, H. H.-C. Iu, and W. Lei, “Analog

weights in reram dnn accelerators,” in 2019 IEEE International Conference on Artificial

Intelligence Circuits and Systems (AICAS). IEEE, 2019, pp. 267–271.

[144] M. R. Azghadi, B. Linares-Barranco, D. Abbott, and P. H. W. Leong, “A hybrid cmos-

memristor neuromorphic synapse,” IEEE Transactions on Biomedical Circuits and Systems,

vol. 11, no. 2, pp. 434–445, 2017.

[145] M. Rahimi Azghadi, Y. Chen, J. Eshraghian, J. Chen, C. Lin, A. Amirsoleimani,

A. Mehonic, A. Kenyon, B. Fowler, J. Lee, and Y. Chang, “Complementary Metal-Oxide

Semiconductor and Memristive Hardware for Neuromorphic Computing,” Advanced Intel-

ligent Systems, vol. 2, no. 5, p. 1900189, 2020.

[146] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,” Nature

Materials, vol. 18, no. 4, pp. 309–323, Apr. 2019.

[147] O. Krestinskaya, K. N. Salama, and A. P. James, “Learning in Memristive Neural Network

Architectures Using Analog Backpropagation Circuits,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 66, no. 2, pp. 719–732, Feb. 2019.

154



Bibliography

[148] S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up resistive synaptic

arrays for neuro-inspired architecture: Challenges and prospect,” in Proceedings of the

IEEE International Electron Devices Meeting (IEDM), Washington, DC., Dec. 2015.

[149] N. Bien, P. Rajpurkar, R. L. Ball, J. Irvin, A. Park, E. Jones, M. Bereket, B. N. Patel,

K. W. Yeom, K. Shpanskaya et al., “Deep-learning-assisted diagnosis for knee magnetic

resonance imaging: development and retrospective validation of MRNet,” PLoS Medicine,

vol. 15, no. 11, p. e1002699, 2018.

[150] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Faraboschi,

W.-m. W. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic, “PUMA: A Programmable Ultra-

efficient Memristor-based Accelerator for Machine Learning Inference,” in Proceedings

of the Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’19. New York, NY, USA: Association

for Computing Machinery, Apr. 2019, pp. 715–731.

[151] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM: A General Model

for Voltage-Controlled Memristors,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 62, no. 8, p. 786, 2015.

[152] E. Yalon, A. Gavrilov, S. Cohen, D. Mistele, B. Meyler, J. Salzman, and D. Ritter, “Re-

sistive switching in HfO2 probed by a metal–insulator–semiconductor bipolar transistor,”

IEEE Electron Device Letters, vol. 33, no. 1, p. 11, 2012.

[153] A. M. Hassan, A. F. Khalaf, K. S. Sayed, H. H. Li, and Y. Chen, “Real-Time Cardiac

Arrhythmia Classification Using Memristor Neuromorphic Computing System,” in Pro-

ceedings of the International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), Honolulu, HI, Jul. 2018, pp. 2567–2570.

[154] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and W. D.

Lu, “A fully integrated reprogrammable memristor–CMOS system for efficient multiply–

accumulate operations,” Nature Electronics, vol. 2, no. 7, pp. 290–299, 2019.

[155] T. Hirtzlin, M. Bocquet, B. Penkovsky, J.-O. Klein, E. Nowak, E. Vianello, J.-M. Portal, and

D. Querlioz, “Digital Biologically Plausible Implementation of Binarized Neural Networks

With Differential Hafnium Oxide Resistive Memory Arrays,” Frontiers in Neuroscience,

vol. 13, 2019.

[156] F. C. Bauer, D. R. Muir, and G. Indiveri, “Real-time ultra-low power ECG anomaly de-

tection using an event-driven neuromorphic processor,” IEEE Transactions on Biomedical

Circuits and Systems, 2019.

155



Bibliography

[157] E. Donati, M. Payvand, N. Risi, R. Krause, K. Burelo, G. Indiveri, T. Dalgaty, and

E. Vianello, “Processing EMG signals using reservoir computing on an event-based neuro-

morphic system,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference

(BioCAS), Cleveland, Ohio., Oct. 2018.

[158] E. Donati, M. Payvand, N. Risi, R. Krause, and G. Indiveri, “Discrimination of EMG Sig-

nals Using a Neuromorphic Implementation of a Spiking Neural Network,” IEEE Transac-

tions on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 795–803, 2019.

[159] J. Behrenbeck, Z. Tayeb, C. Bhiri, C. Richter, O. Rhodes, N. Kasabov, J. I. Espinosa-Ramos,

S. Furber, G. Cheng, and J. Conradt, “Classification and regression of spatio-temporal sig-

nals using NeuCube and its realization on SpiNNaker neuromorphic hardware,” Journal of

Neural Engineering, vol. 16, no. 2, p. 026014, 2019.

[160] E. Nurse, B. S. Mashford, A. J. Yepes, I. Kiral-Kornek, S. Harrer, and D. R. Freestone, “De-

coding EEG and LFP Signals using Deep Learning: Heading TrueNorth,” in Proceedings of

the ACM International Conference on Computing Frontiers (CF), Como, Italy., May 2016,

pp. 259–266.

[161] S. Shaikh, R. So, T. Sibindi, C. Libedinsky, and A. Basu, “Real-time Closed Loop Neu-

ral Decoding on a Neuromorphic Chip,” in Proceedings of the IEEE/EMBS International

Conference on Neural Engineering (NER), San Francisco, CA., Mar. 2019, pp. 670–673.

[162] ——, “Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuromorphic De-

coders That Outperform Kalman Filters,” IEEE Transactions on Biomedical Circuits and

Systems, vol. 13, no. 6, pp. 1615–1624, 2019.
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volutional neural networks for seizure onset detection using long-term scalp and intracranial

eeg,” Neurocomputing, vol. 459, pp. 212–222, 2021.

[261] W. Webber, R. P. Lesser, R. T. Richardson, and K. Wilson, “An approach to seizure detection

using an artificial neural network (ann),” Electroencephalography and clinical Neurophys-

iology, vol. 98, no. 4, pp. 250–272, 1996.

[262] N. Pradhan, P. Sadasivan, and G. Arunodaya, “Detection of seizure activity in eeg by an ar-

tificial neural network: A preliminary study,” Computers and Biomedical Research, vol. 29,

no. 4, pp. 303–313, 1996.

[263] A. M. Chan, F. T. Sun, E. H. Boto, and B. M. Wingeier, “Automated seizure onset detection

for accurate onset time determination in intracranial eeg,” Clinical Neurophysiology, vol.

119, no. 12, pp. 2687–2696, 2008.

[264] T. Netoff, Y. Park, and K. Parhi, “Seizure prediction using cost-sensitive support vector

machine,” in 2009 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. IEEE, 2009, pp. 3322–3325.

[265] K. Chua, V. Chandran, U. R. Acharya, and C. Lim, “Automatic identification of epileptic

electroencephalography signals using higher-order spectra,” Proceedings of the Institution

of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 223, no. 4, pp.

485–495, 2009.

[266] T. L. Sorensen, U. L. Olsen, I. Conradsen, J. Henriksen, T. W. Kjaer, C. E. Thomsen, and

H. B. Sorensen, “Automatic epileptic seizure onset detection using matching pursuit: a case

study,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and

Biology. IEEE, 2010, pp. 3277–3280.

[267] L. Chisci, A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, and F. Fuggetta,

“Real-time epileptic seizure prediction using ar models and support vector machines,” IEEE

Transactions on Biomedical Engineering, vol. 57, no. 5, pp. 1124–1132, 2010.

[268] E. B. Petersen, J. Duun-Henriksen, A. Mazzaretto, T. W. Kjær, C. E. Thomsen, and H. B.

Sorensen, “Generic single-channel detection of absence seizures,” in 2011 Annual Interna-

166



Bibliography

tional Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011,

pp. 4820–4823.

[269] A. Temko, E. Thomas, W. Marnane, G. Lightbody, and G. Boylan, “Eeg-based neonatal

seizure detection with support vector machines,” Clinical Neurophysiology, vol. 122, no. 3,

pp. 464–473, 2011.

[270] U. R. Acharya, S. V. Sree, and J. S. Suri, “Automatic detection of epileptic eeg signals using

higher order cumulant features,” International journal of neural systems, vol. 21, no. 05, pp.

403–414, 2011.

[271] A. Kharbouch, A. Shoeb, J. Guttag, and S. S. Cash, “An algorithm for seizure onset detec-

tion using intracranial eeg,” Epilepsy & Behavior, vol. 22, pp. S29–S35, 2011.

[272] Y. Liu, W. Zhou, Q. Yuan, and S. Chen, “Automatic seizure detection using wavelet trans-

form and svm in long-term intracranial eeg,” IEEE transactions on neural systems and

rehabilitation engineering, vol. 20, no. 6, pp. 749–755, 2012.

[273] I. Ullah, M. Hussain, E. ul Haq Qazi, and H. Aboalsamh, “An automated system for epilepsy

detection using eeg brain signals based on deep learning approach,” Expert Systems with

Applications, vol. 107, pp. 61 – 71, 2018.

[274] R. Abiyev, M. Arslan, J. Bush Idoko, B. Sekeroglu, and A. Ilhan, “Identification of epileptic

eeg signals using convolutional neural networks,” Applied Sciences, vol. 10, no. 12, 2020.

[275] P. Boonyakitanont, A. Lek-uthai, K. Chomtho, and J. Songsiri, “A comparison of deep

neural networks for seizure detection in eeg signals,” bioRxiv, 2019.

[276] S. Liss, “Method and apparatus for monitoring and counteracting excess brain electrical

energy to prevent epileptic seizures and the like,” US3850161A, 1973.

[277] S. Viglione, V. Ordon, W. Martin, and C. Kesler, “Epileptic seizure warning system,”

US3863625A, 1973.

[278] A. Aarabi and B. He, “A rule-based seizure prediction method for focal neocortical

epilepsy,” Clinical Neurophysiology, vol. 123, no. 6, pp. 1111–1122, 2012.

[279] S. Li, W. Zhou, Q. Yuan, and Y. Liu, “Seizure prediction using spike rate of intracranial

eeg,” IEEE transactions on neural systems and rehabilitation engineering, vol. 21, no. 6,

pp. 880–886, 2013.

[280] A. S. Zandi, R. Tafreshi, M. Javidan, and G. A. Dumont, “Predicting epileptic seizures in

scalp eeg based on a variational bayesian gaussian mixture model of zero-crossing inter-

vals,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 5, pp. 1401–1413, 2013.

167



Bibliography

[281] M. Bedeeuzzaman, T. Fathima, Y. U. Khan, and O. Farooq, “Seizure prediction using statis-

tical dispersion measures of intracranial eeg,” Biomedical Signal Processing and Control,

vol. 10, pp. 338–341, 2014.

[282] P. E. McSharry, T. He, L. A. Smith, and L. Tarassenko, “Linear and non-linear methods

for automatic seizure detection in scalp electro-encephalogram recordings,” Medical and

Biological Engineering and Computing, vol. 40, no. 4, pp. 447–461, 2002.

[283] B. Schelter, H. Feldwisch-Drentrup, M. Ihle, A. Schulze-Bonhage, and J. Timmer, “Seizure

prediction in epilepsy: From circadian concepts via probabilistic forecasting to statistical

evaluation,” in 2011 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. IEEE, 2011, pp. 1624–1627.

[284] S. Wang, W. A. Chaovalitwongse, and S. Wong, “A novel reinforcement learning frame-

work for online adaptive seizure prediction,” in 2010 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM). IEEE, 2010, pp. 499–504.

[285] H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learn-

ing,” IEEE transactions on biomedical circuits and systems, vol. 13, no. 5, pp. 804–813,

2019.

[286] R. Jana and I. Mukherjee, “Deep learning based efficient epileptic seizure prediction with

eeg channel optimization,” Biomedical Signal Processing and Control, vol. 68, p. 102767,

2021.

[287] T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Patient-

independent epileptic seizure prediction using deep learning models,” arXiv preprint

arXiv:2011.09581, 2020.

[288] T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and F. E. Abd El-Samie, “Eeg

seizure detection and prediction algorithms: a survey,” EURASIP Journal on Advances in

Signal Processing, vol. 2014, no. 1, p. 183, Dec. 2014.

[289] H. Kassiri, M. T. Salam, M. R. Pazhouhandeh, N. Soltani, J. L. Perez Velazquez, P. Carlen,

and R. Genov, “Rail-to-rail-input dual-radio 64-channel closed-loop neurostimulator,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2793–2810, 2017.

[290] D. Kudithipudi, Q. Saleh, C. Merkel, J. Thesing, and B. Wysocki, “Design and analysis of

a neuromemristive reservoir computing architecture for biosignal processing,” Frontiers in

Neuroscience, vol. 9, p. 502, 2016.

[291] C. Merkel, Q. Saleh, C. Donahue, and D. Kudithipudi, “Memristive reservoir computing

architecture for epileptic seizure detection,” Procedia Computer Science, vol. 41, pp. 249 –

168



Bibliography

254, 2014, 5th Annual International Conference on Biologically Inspired Cognitive Archi-

tectures, 2014 BICA.

[292] R.-E. Karamani, I.-A. Fyrigos, V. Ntinas, I. Vourkas, G. C. Sirakoulis, and A. Rubio, “Mem-

ristive cellular automata for modeling of epileptic brain activity,” in 2018 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[293] Z. Liu, J. Tang, B. Gao, P. Yao, X. Li, D. Liu, Y. Zhou, H. Qian, B. Hong, and H. Wu,

“Neural signal analysis with memristor arrays towards high-efficiency brain–machine in-

terfaces,” Nature communications, vol. 11, no. 1, pp. 1–9, 2020.

[294] S. M. Usman, M. Usman, and S. Fong, “Epileptic seizures prediction using machine learn-

ing methods,” Computational and mathematical methods in medicine, vol. 2017, 2017.

[295] K. Fujiwara, M. Miyajima, T. Yamakawa, E. Abe, Y. Suzuki, Y. Sawada, M. Kano, T. Mae-

hara, K. Ohta, T. Sasai-Sakuma et al., “Epileptic seizure prediction based on multivariate

statistical process control of heart rate variability features,” IEEE Transactions on Biomed-

ical Engineering, vol. 63, no. 6, pp. 1321–1332, 2015.

[296] M. Zanghieri, A. Burrello, S. Benatti, K. Schindler, and L. Benini, “Low-latency detec-

tion of epileptic seizures from ieeg with temporal convolutional networks on a low-power

parallel mcu,” in 2021 IEEE Sensors Applications Symposium (SAS). IEEE, 2021, pp. 1–6.

[297] C. N. Heck, D. King-Stephens, A. D. Massey, D. R. Nair, B. C. Jobst, G. L. Barkley,

V. Salanova, A. J. Cole, M. C. Smith, R. P. Gwinn et al., “Two-year seizure reduction in

adults with medically intractable partial onset epilepsy treated with responsive neurostimu-

lation: final results of the rns system pivotal trial,” Epilepsia, vol. 55, no. 3, pp. 432–441,

2014.

[298] M. Nasseri, T. Pal Attia, B. Joseph, N. M. Gregg, E. S. Nurse, P. F. Viana, G. Worrell,
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