1,672 research outputs found

    A Neuroimaging Web Interface for Data Acquisition, Processing and Visualization of Multimodal Brain Images

    Get PDF
    Structural and functional brain images are generated as essential modalities for medical experts to learn about the different functions of the brain. These images are typically visually inspected by experts. Many software packages are available to process medical images, but they are complex and difficult to use. The software packages are also hardware intensive. As a consequence, this dissertation proposes a novel Neuroimaging Web Services Interface (NWSI) as a series of processing pipelines for a common platform to store, process, visualize and share data. The NWSI system is made up of password-protected interconnected servers accessible through a web interface. The web-interface driving the NWSI is based on Drupal, a popular open source content management system. Drupal provides a user-based platform, in which the core code for the security and design tools are updated and patched frequently. New features can be added via modules, while maintaining the core software secure and intact. The webserver architecture allows for the visualization of results and the downloading of tabulated data. Several forms are ix available to capture clinical data. The processing pipeline starts with a FreeSurfer (FS) reconstruction of T1-weighted MRI images. Subsequently, PET, DTI, and fMRI images can be uploaded. The Webserver captures uploaded images and performs essential functionalities, while processing occurs in supporting servers. The computational platform is responsive and scalable. The current pipeline for PET processing calculates all regional Standardized Uptake Value ratios (SUVRs). The FS and SUVR calculations have been validated using Alzheimer\u27s Disease Neuroimaging Initiative (ADNI) results posted at Laboratory of Neuro Imaging (LONI). The NWSI system provides access to a calibration process through the centiloid scale, consolidating Florbetapir and Florbetaben tracers in amyloid PET images. The interface also offers onsite access to machine learning algorithms, and introduces new heat maps that augment expert visual rating of PET images. NWSI has been piloted using data and expertise from Mount Sinai Medical Center, the 1Florida Alzheimer’s Disease Research Center (ADRC), Baptist Health South Florida, Nicklaus Children\u27s Hospital, and the University of Miami. All results were obtained using our processing servers in order to maintain data validity, consistency, and minimal processing bias

    A COMPUTATIONAL PIPELINE FOR MCI DETECTION FROM HETEROGENEOUS BRAIN IMAGES

    Get PDF
    The aging population has increased the importance of identifying and understanding mild cognitive impairment (MCI), particularly given that 6 - 15 % of MCI cases convert to Alzheimer\u27s disease (AD) each year. The early identification of MCI has the potential for timely therapeutic interventions that would limit the advancement of MCI to AD. However, it is difficult to identify MCI-related pathology based on visual inspection because these changes in brain morphology are subtle and spatially distributed. Therefore, reliable and automated methods to identify subtle changes in morphological characteristics of MCI would aid in the identification and understanding of MCI. Meanwhile, usability becomes a major limitation in the development of clinically applicable classifiers. Furthermore, subject privacy is an additional issue in the usage of human brain images. To address the critical need, a complete computer aided diagnosis (CAD) system for automated detection of MCI from heterogeneous brain images is developed. This system provides functions for image processing, classification of MCI subjects from control, visualization of affected regions of interest (ROIs), data sharing among different research sites, and knowledge sharing through image annotation

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    Decision-based data fusion of complementary features for the early diagnosis of Alzheimer\u27s disease

    Get PDF
    As the average life expectancy increases, particularly in developing countries, the prevalence of Alzheimer\u27s disease (AD), which is the most common form of dementia worldwide, has increased dramatically. As there is no cure to stop or reverse the effects of AD, the early diagnosis and detection is of utmost concern. Recent pharmacological advances have shown the ability to slow the progression of AD; however, the efficacy of these treatments is dependent on the ability to detect the disease at the earliest stage possible. Many patients are limited to small community clinics, by geographic and/or financial constraints. Making diagnosis possible at these clinics through an accurate, inexpensive, and noninvasive tool is of great interest. Many tools have been shown to be effective at the early diagnosis of AD. Three in particular are focused upon in this study: event-related potentials (ERPs) in electroencephalogram (EEG) recordings, magnetic resonance imaging (MRI), as well as positron emission tomography (PET). These biomarkers have been shown to contain diagnostically useful information regarding the development of AD in an individual. The combination of these biomarkers, if they provide complementary information, can boost overall diagnostic accuracy of an automated system. EEG data acquired from an auditory oddball paradigm, along with volumetric T2 weighted MRI data and PET imagery representative of metabolic glucose activity in the brain was collected from a cohort of 447 patients, along with other biomarkers and metrics relating to neurodegenerative disease. This study in particular focuses on AD versus control diagnostic ability from the cohort, in addition to AD severity analysis. An assortment of feature extraction methods were employed to extract diagnostically relevant information from raw data. EEG signals were decomposed into frequency bands of interest hrough the discrete wavelet transform (DWT). MRI images were reprocessed to provide volumetric representations of specific regions of interest in the cranium. The PET imagery was segmented into regions of interest representing glucose metabolic rates within the brain. Multi-layer perceptron neural networks were used as the base classifier for the augmented stacked generalization algorithm, creating three overall biomarker experts for AD diagnosis. The features extracted from each biomarker were used to train classifiers on various subsets of the cohort data; the decisions from these classifiers were then combined to achieve decision-based data fusion. This study found that EEG, MRI and PET data each hold complementary information for the diagnosis of AD. The use of all three in tandem provides greater diagnostic accuracy than using any single biomarker alone. The highest accuracy obtained through the EEG expert was 86.1 ±3.2%, with MRI and PET reaching 91.1 +3.2% and 91.2 ±3.9%, respectively. The maximum diagnostic accuracy of these systems averaged 95.0 ±3.1% when all three biomarkers were combined through the decision fusion algorithm described in this study. The severity analysis for AD showed similar results, with combination performance exceeding that of any biomarker expert alone

    Automated medical diagnosis of alzheimerÂŽs disease using an Efficient Net convolutional neural network

    Get PDF
    Producción CientíficaAlzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Texture‐based morphometry in relation to apolipoprotein Δ4 genotype, ageing and sex in a midlife population

    Get PDF
    Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle‐aged apolipoprotein Δ4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non‐carriers of the Δ4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross‐sectional study, we investigated textural properties of T1‐weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT‐Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel‐based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non‐carriers. Textural maps were generated and were subsequently harmonised using voxel‐wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non‐carriers at midlife and have established associations of textural features with ageing and sex

    Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

    Get PDF
    Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions
    • 

    corecore