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Abstract 
 

 

The aging population has increased the importance of identifying and 

understanding mild cognitive impairment (MCI), particularly given that 6 – 15 % of MCI 

cases convert to Alzheimer's disease (AD) each year. The early identification of MCI has 

the potential for timely therapeutic interventions that would limit the advancement of 

MCI to AD. However, it is difficult to identify MCI-related pathology based on visual 

inspection because these changes in brain morphology are subtle and spatially distributed. 

Therefore, reliable and automated methods to identify subtle changes in morphological 

characteristics of MCI would aid in the identification and understanding of MCI. 

Meanwhile, usability becomes a major limitation in the development of clinically 

applicable classifiers. Furthermore, subject privacy is an additional issue in the usage of 

human brain images. 

To address the critical need, a complete computer aided diagnosis (CAD) system 

for automated detection of MCI from heterogeneous brain images is developed. This 

system provides functions for image processing, classification of MCI subjects from 
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control, visualization of affected regions of interest (ROIs), data sharing among different 

research sites, and knowledge sharing through image annotation.  
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Chapter 1 
 

 

Introduction 
 

 

1.1. Motivation 

Mild cognitive impairment (MCI) is the transitional phase between normal 

forgetfulness because of aging and the development of dementia [71]. This can appear in 

elderly persons from the age of 60 to 65 years. MCI subjects do not have serious 

problems in their daily lives, but their memory and cognitive functions are problematic. 

According to the study of dementia in [22], “symptoms of MCI include: taking longer to 

perform more difficult mental activities, having difficulty performing more than one task 

at a time”, etc. 

Our aging population has increased the importance of identifying and 

understanding MCI, particularly given that 6 – 15 % of MCI cases convert to Alzheimer's 
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disease (AD) each year [70]. Although no cure for MCI exists, effective treatments like 

several medications and non-medication approaches may potentially control or alleviate 

the symptoms. Therefore, in our work [52], we pointed out that it is very helpful to 

perform early detection of MCI so as to provide a time window to delay or prevent the 

progression of AD. Biomarkers that reflect the changes in brain tissues have important 

clinical relevance because they influence treatment plans, such as deciding if an 

individual with suspected MCI should receive medication or surgical planning [73]. 

However, it is difficult to identify MCI-related pathology based on visual inspection for 

the reason that these changes in brain morphology are subtle and spatially distributed [14, 

46, 69]. Not every subject exhibits all of the symptoms of MCI, and some other health 

issues may also contribute to memory loss. Furthermore, no particular test has been 

designed for the purpose of diagnosing MCI [62]. Additionally, the memory problems 

slowly and gradually appear, and people usually think that the memory loss is normal 

because of aging rather than a possible disease [62].  

Due to the limitations above, it requires a large amount of clinical judgments to 

diagnose MCI [35]. Doctors may review subjects’ health records and medications, test 

subjects’ cognitive abilities, and perform clinical observations or brain imaging, etc. 

Evidences suggest that structural magnetic resonance imaging (MRI) can show 

deterioration of brain tissue in subjects suffering from MCI to AD [88]. Therefore, the 

study on detection of MCI via analysis of MRI is meaningful and promising. Reliable, 

automated and non-invasive methods to identify subtle changes in morphological 

characteristics of MRI would aid in the identification and understanding of MCI. 
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1.2. Dissertation Overview 

In this work, we present a complete computer aided diagnosis (CAD) system for 

early and automated detection of MCI from heterogeneous brain images. This system 

provides functions for image processing, classification of MCI subjects from control, 

visualization of affected regions of interest (ROIs), data sharing among different research 

sites, and knowledge sharing through image annotation.  

We have accomplished the objective of this work by pursuing the following three 

specific aims. 

(1) Pattern classification. Develop algorithms to locate ROIs that are able to 

reflect the brain tissue damage in MCI subjects. Look for image features in the selected 

ROIs that have the best performance in discriminating MCI from control subjects. Pick 

one behavioral estimate or a combination of behavioral estimates to evaluate the idea of 

coupling imaging data and behavioral/demographic data for determination of MCI. 

Evaluate the algorithms by clinical study and machine learning experiments. 

(2) Image de-identification. Develop methods to de-identify human brain images 

for protection of subject privacy. This includes the anonymization of subject-related 

private information and de-facing of facial features (i.e. nose, eyes, and mouth). 

(3) Integrate the classifier trained by our approach for MCI classification and the 

image de-identification method into a CAD system. In the meantime, functions for image 

processing, visualization and annotation are implemented in the CAD system as well.  

This research is expected to significantly contribute to early and automated 

identification of MCI, which in turn reduces the occurrence chance of AD. The CAD 
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system is expected to help clinicians focus on the disease detection, without necessity of 

writing computer scripts or running computer programs for the brain image analysis that 

clinicians probably are not very familiar with. To the best of our knowledge, the CAD 

system will be the first one to provide clinical capability for automated detection of MCI. 

The image classification function of the system is based on our approach for MCI 

detection. This method is expected to achieve a high classification accuracy that is 

comparable to the state-of-the-art methods. The approach is innovative for two reasons. 

1) T-value from voxel-wise statistics has been used in the image segmentation. 2) The 

effect of clinical features on the classification performance has been considered in the 

study. Because of the privacy issue in Health Insurance Portability and Accountability 

Act of 1996 (HIPAA), human brain image de-identification is a preliminary requirement 

for brain imaging study. Therefore, in this work, we propose a de-identification algorithm 

and integrate it in the CAD system for the purpose of protecting subject privacy and data 

sharing among different research sites. The image de-identification function of the CAD 

system is expected to re-label the private information of each subject’s data with an 

unlinked random ID number, and crop out the facial features to obscure the face. Users of 

our CAD system can use the de-identification function to de-identify the image scans of 

their research sites on their own computers before uploading them to our system for MCI 

diagnosis. 

1.3. Dissertation Organization 

The rest of this dissertation is structured as follows. Chapter 2 provides a review 

of background and related work. Chapter 3 gives an overview of the CAD system that we 
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propose in the work. Chapter 4 describes the image processing function in the CAD 

system, and this chapter also elaborates the image processing steps that are preliminary 

and mandatory ahead of the stage of image analysis. In Chapter 5, we discuss the details 

of our method with statistical analysis and pattern classification for detection of MCI, and 

discuss its integration into the CAD system. Chapter 6 describes data sharing, knowledge 

sharing, and other functions (e.g. visualization, data storage, and data retrieval) of the 

CAD system. We finally conclude our work and list the future work in Chapter 7. 
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Chapter 2 
 

 

Background 
 

 

2.1. MRI Tools with Diagnostic Capabilities 

Image analysis methods that are based on pattern classification usually involve 

several operations, each of which requires the preparation and execution of computer 

scripts on MRI data sets. Therefore, clinicians may require a computer expert to help 

write computer programs and perform the image classification. However, the costs and 

difficulty finding a qualified computer expert would be prohibitive for a clinical facility. 

To facilitate the diagnosis and reduce the cost, a CAD system that can automatically 

process and analyze images for the purpose of disease detection is strongly expected. 

With the system, clinicians do not need to spend too much time on learning and writing 

computer scripts/programs, and therefore they can focus on the work in their knowledge 
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domain. Nevertheless, clinicians may also have problems with installing and configuring 

a CAD system on their own computers because of the lack of computer knowledge. 

Hence, an online CAD system that can be shared among clinicians is a reasonable 

solution to facilitate clinicians to do disease diagnosis. By using the online system, 

clinicians do not need to worry about how to install and how to configure the software. 

Instead, they can simply upload a subject’s MRI images and conduct the disease 

diagnosis via the Web interface of the CAD system.  

Currently, there are a few MRI-CAD systems used by physicians and researchers. 

CADstream [12] is originally a CAD system for MRI of the breast. It is now extended 

with customized applications to satisfy customer’s requirements, including applications 

for breast, liver and prostate MRI. CADstream provides multiple functions, such as 

automated analysis, 2D/3D motion correction, diffusion analysis, etc. Similarly, the use 

of Z3D software provides abilities to visualize and evaluate breast lesions by MRI, which 

improves lesion detection and provides morphological details like speculation and intra-

lesion kinetic information [50]. Syngo BRACE [79] – an MRI soft tissue motion 

correction software, is also a CAD system for MRI of the breast. It is used to remove 

motion artifacts for the purpose of more accurate diagnosis [79]. iCAD, Inc., provides 

SpectraLook with CADvue [41] as MRI CAD analysis solutions to “improve the analysis 

workflow, interventional planning and reporting of breast MR results” [17]. Another 

solution that includes VividLook analytical power with CADvue [42] is provided for 

prostate MRI analysis. In a word, the use of CAD systems with MRI significantly 
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improves the performance of classifying lesions on MRI. However, to our knowledge, 

there is no CAD system available for detection of MCI.  

The research that is related to clinically applicable disease diagnosis from brain 

images usually involves construction of brain image databases and development of brain 

image processing and analysis tools. Currently, as pointed out in our work [53], there are 

a few online brain image databases for public access. For instance, Open Access Series of 

Imaging Studies (OASIS) [58] is a series of MRI data sets that are publicly available for 

brain imaging study. The Whole Brain Atlas is a resource of information collected by 

Harvard medical school “for central nervous system imaging which associates clinical 

information with magnetic resonance (MR), x-ray computed tomography (CT), and 

nuclear medicine images” [85]. However, most of these image databases are designed for 

storage, retrieval or visualization of brain images. They do not provide any abilities to 

process or diagnose images. On the other hand, many brain image processing and 

analysis tools lack the associated databases for storage and retrieval of clinical and 

analysis information. For example, Stroketool is a tool “for calculation and visualization 

of perfusion- and diffusion-weighted MRI data sets in medical science” [81]. BrainStorm 

[9] is a toolkit for processing and visualizing Magnetoencephalography (MEG) and 

Electroencephalography (EEG) data. Without a database on the backend, clinical 

information cannot be effectively associated with the image processing results for 

automated disease diagnosis. 

Therefore, it is desired to combine brain image processing and diagnosis functions 

with brain image database system. A few recent projects tried to address this issue. 
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BrainMaps.org is “an interactive high-resolution digital brain atlas for querying and 

retrieving data about brain structures and functions” [61]. It provides a suite of desktop 

applications for users to analyze image data in its database. However, no application can 

be used to diagnose MCI. Moreover, those applications need to be individually installed 

on each user’s computer, which must satisfy a certain minimum system requirements. It 

is inconvenient for a clinician or a technician who probably lack necessary computing 

skills to install and configure such applications. The team of M.R. Siadat presents a 

human brain image database system [77, 78] which has a bunch of image processing and 

query tools integrated and can be used for management, navigation, and retrieval of 

medical images. However, this system is for Epilepsy detection only, and it does not 

include an image annotation tool through which users can annotate on certain regions of 

the brain image to assist clinical diagnosis.  

To sum, the systems that are mentioned above are either for data query only or for 

image processing or visualization only. Or some of them are desktop applications, which 

are difficult for clinicians to install and maintain. Additionally, these applications do not 

have a common database shared among different users so that data sharing and 

knowledge sharing can be achieved. Most importantly, no application is available for 

MCI detection. To address these issues, in this work, we propose an online automated 

system that provides users the ability to process, analyze, visualize and annotate image 

data for the purpose of MCI detection. This online CAD system addresses the challenge 

to implement CAD systems at specific medical institutions. Maintaining a CAD system 

for each medical institution may not be practical because of the considerable computing 
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cost that is necessary to develop and maintain the computing environment, and to process 

and diagnose brain images. 

 

2.2. Methodologies for Classification of MCI 

The medial temporal lobe is particularly affected in people with MCI and AD [28, 

5, 21, 83, 86, 11]. Volumetric MRI measures of the hippocampus and entorhinal cortex 

have been used to classify MCI cases from controls [5, 90]. However, the volume 

measurement of certain brain structures cannot represent the widespread pattern of brain 

atrophy in people with MCI, compared with voxel-based measures [30, 69, 84, 15, 39, 6, 

38, 87]. Since the brain atrophy in MCI is complex, subtle, and may be distributed over 

several regions or within portions of specific regions [14], operators may not be able to 

trace all of the atrophic regions. Some atrophic brain regions in MCI subjects may be 

overlooked, thereby limiting classification accuracy. Moreover, specific brain regions 

have to be outlined manually, which is time-consuming and not easily reproducible 

across operators. Recently, some studies [16, 23] have tried to solve this issue by using 

software to segment brain regions as an alternative to manual tracing. The study [10] has 

also proposed a fully automated approach for volumetric MRI acquisition to overcome 

several hurdles (e.g. “a lack of standardized MRI acquisition protocols” [10]) of its 

application in clinical practice. However, experiments [90, 48] have showed that 

volumetric measures appear more effective at predicting severe cases of AD than MCI. 

This is reasonable because the regional progression of neuropathology that results in 
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atrophy of affected structures in patients with AD is well structured [7] and can be 

detected with volumetric MRI measures [20]. 

Compared with volumetric MRI measures for the measurement of large regions, 

voxel based morphometry (VBM) [2] is able to investigate minor focal differences across 

brains. VBM analysis provides the opportunity to identify important disease features 

from across the brain and can easily be replicated across sites in a short amount of time. 

The voxel-by-voxel measurement involves a voxel-wise comparison of the brain tissue 

over the whole brain between MRI scans of patients and healthy controls. Most recent 

studies [69, 84, 15, 39, 6, 38, 87] have used this method for two reasons. (1) The method 

can identify all the brain regions that demonstrate significant tissue loss. Hence, it is not 

biased to specific brain structures and can give an unbiased assessment of structural 

differences throughout the brain [2]. (2) It does not need the delineation of specific brain 

regions, which therefore saves time and reduces the possibility of operator dependent 

errors. These studies [69, 84, 15, 39, 6, 38, 87] have found the patterns of brain atrophy in 

MCI, which mainly involve medial temporal lobe structures. Voxel-based measures of 

brain atrophy have provided modestly higher classification accuracy for MCI than gross 

volumetric measures [84, 39]. For example, 87% of early AD cases and controls were 

successfully classified using Z-score values from voxels within medial temporal lobe 

regions [39].  

Voxel-based analyses have been useful in providing greater classification 

accuracy, particularly when coupled with machine learning classifiers and pattern 

classification techniques [19, 31, 30, 49, 63]. Studies [69, 84, 15, 39, 6, 38, 87] using 
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only voxel-based analyses always use the brain regions (e.g. thalamus, hippocampus, 

etc.) that are already known beforehand. These researches study the gray matter 

(GM)/white matter (WM) intensity differences in those regions between MCI cases and 

controls to confirm the tissue loss in the regions. Or they use the intensity differences 

(usually z-score) in the well-known brain regions for classification of MCI [39]. Since the 

atrophy in patients of MCI may not exactly occur in certain pre-known brain regions, it 

may be more helpful to dynamically find the atrophic regions – regions of interest (ROIs), 

based on intensity differences of GM or WM, so as to determine the atrophic pattern of 

MCI subjects. By applying pattern classification techniques coupled with voxel-based 

analyses, some studies have already achieved impressive accuracy for classification of 

MCI. For instance, Klöppel et al. [49] achieved an 88.9% classification accuracy, and 

Davatzikos et al. [19] claimed a 90% classification accuracy in their respective articles. 

In [49], GM volumes in the whole brain and medial temporal lobe regions were used as 

the features for classification. However, taking the whole brain into consideration without 

differentiating atrophic regions from normal regions may decrease the classification 

power. Davatzikos’s method [19] is better in that it made a selection of atrophic brain 

regions. Nevertheless, it only used 15 controls and 15 MCI subjects for experiment. The 

small sample set may lead to an unreliable result that cannot be generalized to new data 

sets. Meanwhile, usability is another limitation of the classifier in Davatzikos’s method. 
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2.3. Image Segmentation  

Image segmentation is very important in image processing, because segmentation 

accuracy largely determines the results of image analysis. The goal of segmentation is to 

cluster an image into multiple regions [34]. Generally speaking, image segmentation 

algorithms are based on properties of intensity values, which are discontinuity and 

similarity [34]. The approaches that are based on the discontinuity of intensity values are 

to partition an image according to the sudden changes in intensity, such as points, lines, 

and edges [67]. On the other hand, the approaches based on similarity of intensity values 

use certain predefined criteria and the similarity of intensity to partition an image into 

regions [67]. In addition, there are some other segmentation techniques (e.g. 

morphological watershed segmentation [60]) that combine segmentation algorithms 

based on discontinuity or similarity of intensity values [34], and they are able to produce 

more stable segmentation results.  

There are several techniques for detecting discontinuities of intensity values in a 

digital image. The most common way is to run a mask, which “involves computing the 

sum of products of the coefficients with the gray levels contained in the region 

encompassed by the mask” [27]. Compared with point and line detection, edge detection 

is the most often used approach. In the category of approaches that are based on intensity 

similarity, thresholding and region growing are more popular. Using a global threshold is 

the easiest thresholding technique to partition an image. Adaptive thresholding is used in 

the situation that a fixed global threshold is not enough to effectively partition an image 

because of factors like uneven illumination [8, 75]. The thresholding can be adaptive 
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because the threshold of each pixel may be different according to the position of the 

pixel. 

Region growing procedure clusters pixels or small regions into larger regions 

according to pre-defined criteria [34]. Seeded region growing algorithm is initially 

proposed in the article [1] by R. Adams and L. Bischof. Later on, many variations [89, 76, 

18, 40, 55] of region growing algorithm have been presented to tackle the segmentation 

problems in different images or applications. The principle of seeded region growing 

segmentation is to find regions in images by growing regions centered on a bunch of 

“seed” points. Given a set of seeds, the algorithm starts from one seed, and grows a 

region around the seed by clustering its neighboring pixels that have properties similar to 

the seed. Then the algorithm basically repeats the procedure and grows other regions 

centered on the other seeds.  

The hypothesis of our research for MCI classification is that the atrophy occurs in 

regions rather than standalone voxels. Therefore, we design a region growing algorithm 

to look for the atrophic regions instead of specific voxels. However, since the atrophic 

regions are unknown beforehand and are very subtle and may be distributed, it is 

impossible to pre-determine the “seeds” and then start growing regions from the seeds. 

To solve the issue, we design an unseeded region growing algorithm coupled with 

thresholding to determine the ROIs. Moreover, intensity similarity is not used in our 

region growing algorithm. Instead, t-values produced by voxel-wise statistics are used in 

the similarity-based search. We have used t-values to grow regions because t-values can 

reflect the statistical intensity differences of voxels across MCI subjects and control. We 
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care more about the differences of intensity that can characterize MCI subjects than the 

intensity itself.   

 

2.4. Subject Privacy and Image De-identification 

Because of the constraint of institutional review board (IRB) protocols, medical 

research usually cannot get enough data of subjects. Especially in the area of medical 

imaging, subject related information that could be used to identify a subject is highly 

protected. In our research, we also face the problem of limited data sets, although the data 

set that we use is larger than the other research in the same area. To increase the number 

of experimental data in our research, we would like to collect the brain images that are 

uploaded to the CAD system. These brain images from more people, more races and 

regions will be added to our current experimental data sets for building a more robust and 

reliable model so as to further improve the classification accuracy. We also encourage 

data sharing among various research sites to allow researchers collaboratively share 

image data of their research sites to contribute to the diagnosis of disease. The first 

problem that needs to be addressed for sharing human brain images is how to ensure that 

there will be no HIPAA violations and that image data can be appropriately de-identified. 

IRBs consider random identification numbers and the faces within images as information 

that could identify a subject. This means that each subject’s data needs to be relabeled 

with an unlinked random ID number and the facial features need to be cropped out or 

altered to obscure the face. With regard of our system, the first kind of image to be de-

identified is Digital Imaging and Communications in Medicine (DICOM) image.  
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DICOM [24] is a standard to store and transmit medical imaging data, which 

“includes a file format definition and a network communication protocol” [25]. A 

subject’s DICOM image consists of several data items, including the subject’s profile 

information such as name, ID, birthday, etc. For the purpose of sharing DICOM images 

in multisite projects, it is very important that the usage should abide by HIPAA. HIPAA 

requires that personal information of individuals who participate in the research must be 

protected. For this reason, it is essential that DICOM images are anonymized before 

being transmitted for sharing, which means that a subject’s confidential data must be 

replaced with random strings. On the other hand, one of the HIPAA-defined identifiers 

that must be removed is “full face photographic images and any comparable images” 

[82]. Regarding DICOM brain images with facial features (i.e. mouth, nose and eyes), 

although they are usually presented in 2D slices, a 3D image that explicitly shows a 

subject’s facial features can be easily rendered from 2D slices. This is why a subject’s 

DICOM brain images need to be defaced (e.g. cut out or mask or alter facial features). 

Through the anonymization and the image defacing, DICOM brain images can be de-

identified and safely shared in multisite projects. 

With respect to anonymization, consistency is a legitimate requirement. After 

anonymization, a subject’s DICOM images and the profile data in DICOM header files 

should remain connected. Additionally, a subject’s demographic and behavioral data file 

should be anonymized with the same random string as the one used to anonymize the 

subject’s DICOM images. The link between the images and the image header files as 

well as the demographic data files keeps the information of the same subject together. 
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Otherwise, a single subject’s information would be broken into unrelated pieces, thereby 

destroying the relationship between the original images and the header files and the 

demographic data [72]. As for image defacing, a key requirement for DICOM image 

defacing process is to keep the brain tissues intact while removing the facial features. 

Currently, there are a number of programs for DICOM data anonymization [29, 

33]. However, they all have some problems to be addressed. Some tools hide data items 

by simply replacing them with blank (e.g. null subject ID). Totally blanking the subject 

ID may cause all subjects having the same null ID and thus probably result in the 

information of two totally unrelated people mixed together. On the other hand, some 

tools simply delete private data items from DICOM data for the anonymization purpose. 

However, deletion of data items may lead to an invalid DICOM format. To avoid 

destroying the DICOM data format, some programs only allow the anonymization of 

certain items, such as the patient name. Obviously these programs lack the flexibility for 

DICOM data anonymization. In contrast, a few programs have made the anonymization 

flexible, by which users can select data items to be anonymized. However, these 

programs require users to write scripts using script languages, which may be difficult for 

clinicians. 

Meanwhile, there are also some tools for image defacing. Mbirn [59] is a defacer 

for structural MRI, however, it requires users to construct models of non-brain structures 

[4]. There are some other articles [74, 37, 91] on skull stripping, which can cut out the 

skull and keep the brain tissues. However, skull stripping may be too excessive to be 

applied in image defacing that only needs to take out facial features. Moreover, currently 
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there is no single tool that provides both anonymization and image defacing functions. 

Therefore, users have to employ two standalone programs for the purpose of de-

identification. Such an approach may result in losing association between images and 

their related data.  

Therefore, to solve the problems with current de-identification tools, it is 

desirable to develop a DICOM de-identification method for DICOM brain images de-

identification. With this method, image defacing does not need the construction of a brain 

mask or models of non-brain structures, and image anonymization is flexible yet simple. 

This de-identification method has been integrated in our CAD system. 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

 

 

 

Chapter 3 
 

 

Overview of the CAD System 
 

 

3.1. Introduction 

In this work, we have built an online MRI-based CAD system for early and 

automated detection of MCI. The system is expected to provide image processing, 

classification, visualization, and annotation functions through which the uploaded 

patient’s MRI scans can be automatically processed and diagnosed. In detail, the CAD 

system has five features. (1) It is Web-based so that users can use it without the necessity 

of installing and configuring software. (2) ROIs can be visualized as color map overlays 

in 2D brain image slices. Users can annotate on certain regions of the brain images. (3) It 

encourages data sharing and knowledge sharing. Image data in different research sites 

can be shared as long as users of the data are under IRB protocols and the images are de-



20 
 

identified. In addition, the system provides collaboration capabilities so that users who 

have permissions to access the image files can collaboratively visualize and annotate the 

images. (4) It has a database for storage and retrieval of image data, demographic data, 

and image analysis results. (5) It provides functions for image processing and disease 

diagnosis. To the best of our knowledge, the system will be the first one to provide the 

capability of automated computer aided diagnosis of MCI.  

 

3.2. System Architecture 

The CAD system is composed of three layers: the data access layer, the business 

logical layer and the presentation layer, as shown in Figure 3.1. The presentation layer is 

the media between user and the system, recognized as a Web-based user interface. The 

business logic layer provides the service logic, which is implemented on an Apache Web 

server. The data access layer that provides data support for the entire system is 

represented as the data server. The data server stores data and hosts programs to access 

data in the file system and the database. The major functions that the CAD system 

provides include: image processing, classification of MCI, data sharing, knowledge 

sharing, image visualization, and information storage and retrieval. Details of functions 

are described in the following chapters. 
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Figure 3.1 The three layers architecture of the CAD system 
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Chapter 4 
 

 

Image Processing 
 

 

4.1. Introduction 

Data used in this work for detection of MCI were selected from the OASIS 

database [58, 56, 66]. The OASIS images were acquired with a high-resolution T1-

weighted 3D magnetization prepared rapid gradient echo (MPRAGE) sequence [65] with 

a resolution of 1.0 × 1.0 × 1.25 mm3, TR = 20 ms, TE = 4 ms, flip angle = 10 degrees 

[58]. For each subject, 3 to 4 scans had been realigned and averaged by the OASIS group. 

We first segmented and normalized these images and performed bias field correction 

using an integrated generative model (unified segmentation) [3]. The image processing 

was conducted with statistical package SPM5 [80]. We then produced GM, WM and 

cerebrospinal fluid (CSF) study-specific a priori templates by averaging the segmented 
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and normalized images across the MCI and control datasets. After that, the unified 

segmentation was performed again for each subject using the study-specific a priori 

templates.  Modulation was conducted after image normalization. Finally, the segmented, 

normalized and modulated images were re-sliced to a 2 mm3 resolution and smoothed. 

Figure 4.1 presents an overview of the image processing in our work. The details 

of each processing step are elaborated in the following subsection. The MRI that we take 

as an example here is downloaded from OASIS database.  

 

 

 

 

 

 

 

 

 

 

 
 

          Figure 4.1 The flow chart of image processing in our work. 
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4.2. Details of Each Processing Step 

In our work, unified segmentation is used to segment brain MRI. Unified 

segmentation integrates “image registration, tissue classification, and bias correction” [3]. 

Bias field correction is used to reduce the variation of image signals that may degrade the 

performance of image segmentation. Tissue classification is based on a mixed Gaussians 

model. This model reflects the intensity probability density with Gaussian distributions. 

Rather than assuming prior proportion of voxels in each class of tissue (e.g. gray matter, 

white matter, CSF, soft tissue, etc.), tissue probability maps (TPMs) of gray matter, white 

matter and CSF are used as the prior. The template we used in this work is the ICBM 

Tissue Probabilistic Atlas [43]. In addition, after the first round of segmentation and 

normalization, in order to segment and normalize the subject images to an age-

appropriate template, we performed the unified segmentation again for each subject using 

the study-specific a priori templates. The output of image segmentation is images with 

GM, WM and CSF segmented. These segmented images as well as the inverse of affine 

and 16 iteration non-linear transformations that align the TPMs are input into the image 

normalization stage.  

After image segmentation, image normalization takes the segmented MRI and the 

inverse of transformations that aligns the TPMs as input, and then transforms MRI of all 

subjects with different sizes into MNI space. MRIs of all subjects are normalized to a size 

of 91 × 109 × 91. Because of volume displacement during image normalization, image 

modulation is required to correct voxel signal intensity. After that, image smoothing is 
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conducted to reduce noise within an image. In our study, a kernel of 10 mm is used in 

image smoothing to ensure the data are normally distributed. 

 

4.3. Effect of Image Processing 

In order to show the effect of image processing in our work, we compare the 

output image of each processing step in Figure 4.2. Image 1 in this figure is the original 

MRI (in ANALYZE format) from OASIS database, with GM, WM and CSF not 

segmented yet. After segmentation, GM, WM and CSF are segmented to different images. 

Image 2 presents the GM segment of image 1. We only demonstrate GM segment here 

because GM is the brain tissue that we have used for image analysis in this work. 

Compared to image 2, the brain slice in image 3 has a larger size. This is the effect of 

normalization, which maps images of each subject into one standard space. If the brain of 

a subject is of comparatively bigger size (i.e. larger than the standard space), then the 

normalization process will decrease the size to fit in the standard space. The effect of 

modulation and smoothing is shown in image 4, which is slightly blurred in comparison 

with image 3.   
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The image processing steps could possibly affect the analysis results. Skull-

stripping, segmentation, and a study-specific template were used to enhance the quality of 

normalization within the framework of the widely used SPM algorithms. Spatial 

normalization error with the “unified segmentation” procedure used in this study could 

have occurred in regions of significant medial temporal atrophy in MCI subjects 

compared to control subjects. For this reason, it is possible that more recent 

normalization procedures (e.g. diffeomorphic) would yield superior classification with 

 

           Figure 4.2 The comparison of image output of each image processing step 
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better alignment between MCI and control groups. We chose the image processing in this 

study because they are easily replicated, widely used, and could more easily be 

implemented in a clinical setting compared to other procedures that would require 

technical expertise. The modulation procedure could have underestimated group 

differences in voxel intensities in regions of the hippocampus adjacent to the temporal 

horn of the lateral ventricle where modulation would increase signal intensity because the 

ventricle have to be reduced in size to fit to the template. One important point is that the 

largest source of classification error is related to brain size. Age-cohort and gender 

specific classification procedures are most likely to yield improvements in classification 

compared to smaller contributions from improvements in image processing. 

  

4.4. Function of Image Processing in the CAD System 

In our CAD system, users can start processing the uploaded image by simply 

clicking a button on the Web interface. When a user issues a request to process a 

subject’s image file, the matlab script hssc_cad.m is called for image processing. The 

flowchart of the script is shown in Figure 4.3. It takes the image file as the input and the 

output results are listed in Table 4.1. There are three kinds of processing results, gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) results which filenames 

are respectively labeled with “c1”, “c2” and “c3”.    
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Figure 4.3 The workflow of the script for image processing 
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                                                     Table 4.1 The output of image processing script 

Phase Output 

Segment c1(c2/c3)filename.hdr 

c1(c2/c3)filename.img 

Normalize wc1(wc2/wc3)filename.hdr 

wc1(wc2/wc3)filename.img 

Modulate mwc1(mwc2/mwc3)filename.hdr 

mwc1(mwc2/mwc3)filename.img 

Smooth smwc1(smwc2/smwc3)filename.hdr 

smwc1(smwc2/smwc3)filename.img 

Create 2D image slices filename(slice#).png 

Create intensity file for each slice filename(slice#).txt 
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Chapter 5 
 

 

Detection of MCI  
 

 

5.1. Introduction 

Early identification of MCI has the potential for timely therapeutic interventions 

that would limit the advancement of MCI to AD. The function for classification of MCI 

in our CAD system is based on our approach proposed for early detection of MCI 

through pattern classification of MRI data. The approach consists of image feature 

selection and support vector machine (SVM) classification. Subjects were selected from 

the OASIS database and included 89 MCI subjects and 80 controls. Voxel-by-voxel 

differences in GM intensity between the MCI and control groups were identified. Then 

ROIs and the most discriminative image features that represented the patterns in MCI 

subjects were determined for training a classifier. The classifier demonstrated high 
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classification accuracy (90%) when a behavioral estimate of MCI subjects and the ROIs 

were included as features, in comparison to the classification accuracy of using the 

behavioral estimate or the ROIs alone. The classifier has been integrated in our CAD 

system to provide classification capability of MCI. 

 

5.2. Participants 

The dataset from the OASIS database is collected under the OASIS Data Use 

Agreement. It consists of 416 participants, aged from 18 to 96, including 100 subjects 

with very mild to mild cognitive dementia. According to the article [58], “For each 

subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are 

included”. Dementia status is characterized using the Clinical Dementia Rating (CDR) 

[64]. The CDR value of 0 indicates no dementia, and CDR value of 0.5, 1 and 2 represent 

very mild-, mild-, or moderate-dementia [58]. Mini-mental state examination (MMSE) 

score is an estimate of the severity of cognitive impairment in an individual, which 

ranges from 30 (best) to 0 (worst). Compared with the subjects without dementia, the 

older subjects with dementia have lower MMSE scores [58].  

The data set in this study included 89 MCI subjects [55% female, 45% male, 

mean age = 76.6 (7.3) years] and 80 controls [65% female, 35% male, mean age = 75.2 

(8.4) years] (Table 5.1). From the 100 MCI subjects available in the OASIS database, one 

individual was excluded due to scanner artifacts in the raw images and another subject 

was excluded because of a potential lesion in lateral occipital cortex. The other 9 

participants were excluded due to segmentation error. There were no statistically 
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significant differences between the groups in gender (χ2 = 1.73, df = 1, N = 169, 0.10 < P 

< 0.20), age (t = 1.18, df = 167, N = 169, two-tailed P = 0.24) or socioeconomic status 

(SES) (t = 1.20, df = 167, N = 169, two-tailed P = 0.23). Control subjects were more 

likely to have a higher level of education than MCI subjects (t = 2.28, df = 167, N = 169, 

two-tailed P = 0.02).     

                             Table 5.1 Demographic and clinical variables of the MCI group and the control group 

               Group               MCI            Control 

No. of subjects                 89                80 

Female/Male               49/40              52/28 

No. of left-handed                  0                 0 

Age, mean [SD]            76.58 [7.28]           75.15 [8.41] 

Years of education, 

mean [SD] 

            2.82 [1.34]           3.29 [1.33] 

SES, mean [SD]             2.69 [1.17]           2.48 [1.10] 

MMSE, mean [SD]             24.4 [4.21]           28.9 [1.24] 

CDR, mean [SD]             0.70 [0.30]              0 [0] 

 

5.3. Statistical Analysis and Pattern Classification 

Voxel-wise group comparisons were performed using the GM images. This 

involved voxel-by-voxel t-test that identified GM intensity differences between the MCI 

group and the control group. Given a voxel u of an image, the t-value that measures the 

group differences of GM intensity at this voxel is calculated as follows: 
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In equation (5.2), i denotes the ith sample in the control group, and !!(!) is the GM 

intensity of voxel u in the ith sample. !"#(!(!))! is the mean of !!(!) over all samples 

in the control group, and !! is the number of subjects in this group. Similarly, in equation 

(5.3), j denotes the jth sample in the MCI group, and !!(!) is the GM intensity of voxel u 

in the jth sample. !"#(!(!))! is the mean of !!(!) over all samples in the MCI group, 

and !! is the number of subjects in this group. T-value of GM intensity at a voxel can 

reflect the voxel’s GM atrophy in a statistical manner. The larger the absolute value of a 

voxel’s t-value is, the more GM atrophy occurs at this voxel. 

To find the most discriminative voxels, we calculated t-values of all voxels, a 

total of 902629 voxels. There were 902629 voxels in each subject’s MRI because all the 

images were scaled to a dimension of 91 × 109 × 91. After computing the t-values of all 

voxels, we did not use the peak voxels from within affected brain regions (e.g. 

hippocampus, medial temporal cortex). Instead we applied pattern classification that can 

globally capture complex relationships in high-dimensional spaces among many brain 
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regions to most effectively characterize group differences between MCI subjects and 

control subjects. The idea has the following considerations. First, morphological changes 

of brain tissues usually occur in regions with irregular shapes, rather than in isolated 

voxels, and these regions are not known a priori [32]. Second, the voxel with peak t-value 

within a SPM cluster is locally extracted and thus may not be reliable because of 

registration errors or noise. In our study, the rules to locate a ROI were: 1) voxels in a 

ROI should be relevant, which means that voxel coordinates in a ROI had to be 

continuous in 3D spatial neighborhood. 2) The degree of atrophy in a ROI should be 

similar. That is to say, t-values of voxels in a ROI had to be all larger than a t-value 

threshold (explained in the next paragraph) or all smaller than the threshold. This 

prevents the possibility that only one or very few voxels in a cluster have very high t-

values with the rest of voxels in the cluster having much smaller t-values. 

To find out the atrophic regions in images of MCI subjects, a threshold-based 

unseeded region growing algorithm was designed to identify the regions or distributions 

of voxels affected in MCI subjects. We first sorted voxels (a total of 902629) in a 

descending order of the absolute values of the corresponding t-values, and then applied 

the unseeded region growing algorithm. Please note that the absolute value of t-value was 

used in our entire method. In later sections, when using t-value, we actually mean the 

absolute value of t-value. The flow chart of the region growing procedure was described 

in our former work [52], as shown in Figure 5.1.  
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Figure 5.1 Region growing procedure. When the procedure ends, every voxel is clustered, and voxels 
with the same cluster number are in the same region. Regions with more discriminative power are 
identified earlier. 
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Since we did not have a priori and full knowledge of which brain regions were 

abnormal, we did not start the region growing procedure with explicit seeds. Instead, the 

whole brain was searched and the seeds were automatically generated by the region 

growing procedure. Moreover, the region growing procedure started from the voxels with 

large t-values so as to make the regions with more discriminative power be identified 

earlier than the regions with less discriminative power. Also, the region segmentation 

algorithm segmented the relevant voxels in a ROI, in which the voxels were spatially 

connected and the t-value were similar. We first observed the distribution of the number 

of voxels which t-values were in the range of [0, 1), [1, 2), [2, 3), … , and chose the 

boundary t-value M which satisfied the following condition: the number of voxels which 

t-values were in the range of [M, M + 1) was dramatically smaller than the number of 

voxels which t-values were in [M – 1, M]. Two boundary t-values (M = 2, and M = 3) 

were selected in this step. As we know, changes in brain tissues that reflect the 

pathological processes of MCI are very subtle to detect. Therefore we made the selection 

based on the assumption that the number of voxels in atrophic regions, where all voxels 

have large t-values, should be much smaller than the number of voxels in normal regions 

where all voxels have small t-values. Among the two boundary t-values, we picked one 

that resulted in a good segmentation result by using this value as the pre-determined 

threshold in region segmentation. As there should be multiple regions influenced by MCI, 

a good segmentation result should get more than one region having voxels with high t-

values (i.e. atrophic regions). In our experiment, by using M = 2 as the threshold in 

region segmentation, only one region had all voxels with high t-values while other 
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regions had voxels with much smaller t-values. By using M = 3 as the threshold in region 

segmentation, voxels with large t-values were not clustered into only one region. Instead, 

they distributed over several regions. Therefore, we picked M = 3 as the pre-determined 

threshold for region segmentation. Finally, we fine-tuned the pre-determined threshold 

(M = 3) by adjusting the threshold to 2.1, 2.2, …, 2.9, 3.1, 3.2, …, 3.9. We used each of 

the values as the threshold and applied region segmentation and classification, to finally 

determine the threshold with which the region segmentation result was good and the 

classification could achieve the highest accuracy. Our experiment showed that using 3.1 

as the threshold of t-value can provide a good region segmentation and high classification 

accuracy. 

The unseeded region growing algorithm is based on an idea of “wave transition”. 

That is to say, given three voxels v1, v2 and v3, if v1 and v2 are spatially connected and 

they have similar t-values, then v1 and v2 are neighbors in the same cluster. If v2 and v3 

are also spatially connected and their t-values are similar, then v2 and v3 are neighbors in 

the same cluster. Therefore, we can infer that v1, v2 and v3 are all neighbors in the same 

cluster. The statement “two voxels have similar t-values” means the two voxel’s t-values 

are greater than or equal to the threshold of t-value or both of them are smaller than the 

threshold. Based on the “wave transition”, the algorithm starts from using the voxel that 

has the largest t-value as the center voxel of a cluster, and then looks for all the 

neighboring voxels of this center voxel. Given a voxel which coordinates are (x, y, z), we 

look for all its spatially connected voxels, 26 in total. In the same slice as the center voxel, 

there are 8 adjacent voxels, including (x - 2, y, z), (x + 2, y, z), (x - 2, y - 2, z), (x, y - 2, 
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z), (x + 2, y - 2, z), (x - 2, y + 2, z), (x, y + 2, z), (x + 2, y + 2, z). Because of the 

coordinate system of our images, the distance between two adjacent voxels with the same 

coordinates in two directions is 2 (e.g. voxel (x, y, z), and voxel (x – 2, y, z) are adjacent, 

with the same values of the y coordinate and the z coordinate). Similarly, in the slice 

ahead to the slice of the center voxel (i.e. the z coordinate of all voxels in this slice is z - 

2), there are 9 adjacent voxels, including (x - 2, y, z - 2), (x, y, z - 2), (x + 2, y, z - 2), (x - 

2, y - 2, z - 2), (x, y - 2, z - 2), (x + 2, y - 2, z - 2), (x - 2, y + 2, z - 2), (x, y + 2, z - 2), and 

(x + 2, y + 2, z - 2). There are other 9 adjacent voxels in the slice that follows the slice of 

the center voxel (i.e. the z coordinate of all voxels in this slice is z + 2). They are (x - 2, y, 

z + 2), (x, y, z + 2), (x + 2, y, z + 2), (x - 2, y - 2, z + 2), (x, y - 2, z + 2), (x + 2, y - 2, z + 

2), (x - 2, y + 2, z + 2), (x, y + 2, z + 2), and (x + 2, y + 2, z + 2). Our algorithm checks 

the validity of coordinates of these adjacent voxels (i.e. the coordinate values should not 

exceed the upper and the lower boundaries of the image). For those adjacent voxels that 

have valid coordinates, the algorithm selects the voxels which t-values are similar to the 

center voxel as the center voxel’s neighbors. This means that physically connected voxels 

are not necessarily the neighbors. Then the algorithm takes the neighboring voxels as the 

new center voxels, and starts growing regions around the new centers. This “looking for 

neighbors of neighbors” procedure repeats until no more voxels can be wrapped into the 

same cluster. At this point, we can say that the first cluster is finalized. The algorithm 

will then pick up a voxel that currently has the largest t-value and is not clustered yet. 

This voxel is used as the initial center of a new cluster, and this cluster (the 2nd one) is 

formed by following the same “looking for the neighbors” and “looking for neighbors of 



39 
 

neighbors” procedures. Similarly, the 3rd and the following clusters are formed until all 

the voxels in the image are clustered. When the algorithm terminates, voxels marked with 

the same cluster number are in the same cluster. The detail of the algorithm is described 

as follows. 

 

Data Structure 

1.  An array voxelList[N] is used to store all the voxels, where N is the number of voxels. 

A voxel has 6 fields, which structure is described below in an object-oriented manner. 

class Voxel { 

          int x, y, z; // the coordinates of this voxel 

          double tvalue; // t-value of this voxel 

          boolean isclustered; // the flag indicating whether the voxel is clustered  

          int clusternumber; // which cluster this voxel is in 

          public Voxel(int x1, y1, z1, double tvalue1) { 

                        x = x1; 

                        y = y1; 

                        z = z1; 

                        tvalue = tvalue1; 

                        isclustered = false; // initially the voxel is not clustered 

                        clusternumber = -1; // the voxel is initially in no cluster 

               } 

           } 
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2.  An array adjVoxel[M] is used to store all the voxels that have valid coordinates and 

are adjacent to the current center voxel of the cluster that is being formed. M is the 

maximum number of adjacent voxels. 

3.  A stack voxelStack is used to store the neighboring voxels of the center voxel. 

 

Algorithm 

1. 
 
// function segment(f, t) is for growing the ROIs 

// Parameter “f” is the file containing x, y, z coordinates and t-value of each  

// voxel in a descending order of t-values.  

// Parameter “t” is the pre-determined threshold of t-value.  

Segment (f, t):  

BEGIN 

        Let threshold = t and currentcluster = 0 

        Initialize voxelList[N] with voxels using the information in file f 

        Initialize “center” as the center voxel of a cluster, let center.x = center.y = center.z = 

-1 and center.tvalue = -1 

        While there are un-clustered voxels in voxelList[N] 

                     Let currentcluster = currentcluster + 1 

                     Take an un-clustered voxel “top” that has the largest t-value as the initial 

center of the new cluster, let center.x = top.x, center.y = top.y, center.z = top.z, 

center.tvalue  = top.tvalue 
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          Let center.isclustered = true // mark the center voxel as clustered 

          Let center.clusternumber = currentcluster 

          FindNeighbor(center, threshold) 

          While voxelStack is not empty 

                  Pop one voxel “oneneighbor” from voxelStack 

                  // set “oneneighbor” as the new center voxel 

                  Let center.x = oneneighbor.x, center.y = oneneighbor.y, center.z = 

oneneighbor.z, center.tvalue = oneneighbor.tvalue  

                  FindNeighbor(center, threshold) 

           Endwhile 

        Endwhile 

END 

 
Algorithm 

2. 
 
// function findneighbor(center, threshold) is for finding the neighbors of the  

// center voxel and push the neighboring voxels into voxelStack 

// Parameter “center” is the current center voxel 

// Parameter “threshold” is the pre-determined threshold of t-value 

FindNeighbor(center, threshold): 

BEGIN 

        Compute coordinates of all the voxels that are spatially connected to the center 

voxel 
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        For each voxel that is adjacent to the center voxel 

              If the coordinates of the voxel are valid 

                    Insert the voxel into adjVoxel[M] 

              Endif 

        Endfor 

        For each voxel “tempneighbor” in adjVoxel[M] 

              If tvalue of center voxel and “tempneighbor” are both greater than or equal to or 

both are less than the threshold 

                    // the voxel “tempneighbor” is a real neighbor 

        Let tempneighbor.isclustered = true  

        Let tempneighbor.clusternumber = center.clusternumber 

        Push the voxel “tempneighbor” into voxelStack 

              Endif 

        Endfor 

        Clear the array adjVoxel[M] 

END 

                  

After the region segmentation ended, we applied a feature ranking method [36] to 

select a small set of regions that were most relevant for classification of MCI. These most 

relevant regions were selected from the large quantities of regions determined by the 

region segmentation procedure. The rank score was the t-value of the initial center voxel 

(described in the flowchart in Figure 5.1) in each region. The GM intensities of these 
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initial center voxels were used as the features to train a classifier. According to our region 

segmentation method, we know that the initial center voxel of a region had the largest t-

value with the neighboring voxels in the same region having similar t-values and was 

thus most discriminative in this region. Also, the regions with more discriminative power 

were identified earlier. We parametrically varied the number of ROIs used for 

classification to identify the number of ROIs that provided stable classification estimates 

and were unlikely to introduce overlearning. Specifically speaking, we tried different 

number of regions that were first segmented, starting from 5, 10, 15, and go on, and then 

identified the number of regions N that resulted in relatively higher classification 

accuracy. Although a large number of regions were identified by the region segmentation 

procedure, we did not try too many numbers of regions for two reasons. (1) As for a 

classifier, too many features may raise the problem of over-fitting and lead to worse 

classification performance. (2) We limited the number of regions to be selected to speed 

up the feature selection process. We then fine-tuned the number of regions around N to 

locate the regions which features could provide the highest classification accuracy. 

LIBSVM [13, 51] was used to train a classifier with the selected features and 

evaluate the accuracy with leave-one-out cross validation. We used nonlinear SVM 

classification that constructed a hyper-plane to maximize the distance between MCI 

group and control group. The radial basis function (RBF) kernel (C = 2.0, ! = 0.125) 

was used in the work. We determined the best parameters (C, !) by trying different pairs 

of values, and we picked the pair with the highest cross-validation accuracy. 
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5.4. Results 

5.4.1. Pattern of MCI-specific Abnormalities 

In our work, 19 ROIs were identified for classification of MCI subjects. The 

comparison between MCI and control group across the 19 ROIs demonstrated 

widespread effects of MCI, with the medial temporal lobe particularly affected, which is 

in accordance with the current findings in research of MCI. The effects of MCI can be 

seen in the gray matter probabilities of individual subjects. Figure 5.2 demonstrates that 

the influence of MCI on medial temporal lobe morphology can be observed in color scale 

for an MCI case compared to a control case. Color-coded visualization of ROIs can 

reflect the pathological severity of disease and can aid clinicians to identify the patterns 

of brain tissue atrophy in MCI subjects. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 GM intensity map (slice 24 to slice 30) of the selected 19 ROIs in scans of one control (the 
upper row) and one MCI subject (the lower row). The control is female, right writing hand, age = 77, 
years of education = 1, SES = 4, MMSE = 29, CDR = 0. The MCI subject is female, right writing 
hand, age = 73, years of education = 4, SES = 3, MMSE = 27, CDR = 0.5. The color-coding shows 
the value of GM intensity for the individual subject using the color scheme represented by the color 
bar. The regions that are mostly blue in the upper row but are mostly red in the lower row are the 
atrophic regions in scans of MCI subjects. 
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5.4.2. Classification Accuracy 

In our work, SVM classification using leave-one-out cross-validation provided a 

maximal 90% classification rate when using the MMSE and ROI data together in the 

SVM model. The sensitivity of this method was 92% and the specificity was 88%. This 

maximal classification accuracy was substantially higher than when using the MMSE 

score alone (79% accuracy). Figure 5.3 demonstrates that the MMSE and ROI variables 

together achieved the maximal classification accuracy when relatively few ROIs were 

included in the model (90% correct classification for 19 ROIs). Classification accuracy 

decreased with additional ROIs. In contrast, Figure 5.3 also shows that classification 

accuracy using the ROIs alone was relatively poor with few ROIs (81% correct 

classification for 19 ROIs) but increased to a high of 89% with an increasing number of 

ROIs. 

The unexpected interaction between MMSE and the number of ROIs appeared to 

be driven by low gray matter volume in control cases and high total gray matter volume 

in MCI cases. Control cases who were misclassified with increasing ROIs were more 

likely to have lower total gray matter volumes than correctly classified control cases 

[mean of total gray matter volume for correctly classified control = 600.12 (7.71), mean 

of total gray matter volume for misclassified control = 474.11 (12.93), t = 51.06, df = 78, 

N = 80, two-tailed P < 0.0001]. MCI cases who were misclassified with increasing ROIs 

were more likely to have higher total gray matter volumes than correctly classified MCI 

cases [mean of total gray matter volume for correctly classified MCI = 518.37 (3.24), 
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mean of total gray matter volume for misclassified MCI = 591.69 (16.28), t = 14.83, df = 

87, N = 89, two-tailed P < 0.0001]. The details are shown in Table 5.2. 

 

 

 

 

 

  

 

Figure 5.3 The plot of classification accuracy and the number of ROIs. If ROIs are the only features 
for classification, the number of features = the number of selected ROIs. If MMSE is included in the 
classification, the number of features = the number of selected ROIs + 1. Note that classification 
accuracy peaks for 19 ROIs when MMSE is included in the analysis and is subsequently variable 
with increasing number of ROIs. In contrast, classification accuracy increases with increasing 
number of ROIs when MMSE is not included and peaks for 64 ROIs. However, classification 
accuracy declines when additional ROIs are included and MMSE is not included. 
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             Table 5.2 Total gray matter volume (mL) in MCI cases and control cases with increasing number of ROIs 

# of ROIs Gray matter 

volume for 

misclassified 

MCI 

Gray matter 

volume for 

correctly 

classified MCI 

Gray matter 

volume for 

misclassified 

control 

Gray 

matter 

volume for 

correctly 

classified 

control 

5 587.30 517.86 450.72 583.27 

10 586.81 514.70 443.90 589.92 

15 572.06 520.74 474.15 592.36 

20 601.00 517.32 471.09 596.82 

25 559.77 522.66 471.09 596.82 

30 610.35 516.00 470.04 599.10 

35 607.65 515.20 482.30 599.51 

40 596.19 515.94 483.13 601.18 

45 596.19 515.94 476.97 607.59 

50 615.01 516.61 476.97 607.59 

55 602.94 515.93 480.34 608.52 

60 567.30 523.75 478.50 607.01 

65 591.44 523.05 489.85 606.74 

70 589.63 521.54 488.50 605.23 



48 
 

5.5. Discussion 

MCI classification has been performed with specific brain regions (e.g. 

hippocampus) [28, 83] or several regions (patterns of the spatial distribution of brain 

tissue atrophy) [19, 31, 30, 49, 63]. An important and unique finding from this study is 

that MMSE and MRI-ROI data are relatively weak and unstable predictors of MCI when 

studied separately, but together can provide robust and stable estimates for the probability 

of having MCI. Interestingly, coupling data EEG and MRI measures has been shown to 

improve classification rates for the early diagnosis of AD [68]. This suggests that MCI 

classification with clinically sufficient sensitivity and specificity could be obtained with 

the integration of measures from across different domains. 

We observed relatively high classification accuracy using 15 – 30 ROIs, when 

coupled with the MMSE score. Interestingly, classification accuracy decreased with 

increasing number of ROIs when the MMSE score was included in the analysis. This 

result appeared to occur because of an interaction between MMSE score and brain size. 

Control cases with low total gray matter volume in control and MCI cases with high total 

gray matter volume in MCI were more likely to be misclassified when many ROIs and 

the MMSE score were included in the SVM. This result suggests that total gray matter 

volume had an increasingly strong influence on classification with increasing numbers of 

ROIs. One interpretation of these results is that classifiers for MCI should be developed 

for specific gender and age cohorts. 

Classification accuracy was high when 64 ROIs were included in the model 

without the MMSE score. This approach is sub-optimal, however, because of the 
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likelihood of over-fitting and poor generalization when many variables are included in an 

SVM model. For example, classification accuracy declined when additional ROIs were 

included (>65 ROIs). Indeed, it is well known in machine learning field that the 

dimension of multivariate space needs to be decreased if the number of samples is not 

sufficient. As we examined only 169 subjects, a relatively small number of features 

would improve the reliability of the estimate of performance, provided they can 

accurately capture the structural abnormalities in MCI subjects. 

One limitation of our results is that it is unclear which MCI cases will go on to 

develop AD, which cases may have some other forms of dementia, or which cases will 

exhibit cognitive decline that is expected for their age. Longitudinal studies [63] of MCI 

that incorporate large sample sizes will allow for cohort specific development of MCI 

classifiers, may have the most reliability, and provide greater confidence for guiding 

clinical planning than the classifier developed in this work. An additional limitation of 

classifiers for MRI data, in general, is that they are likely specific to the scanner from 

which the scans were acquired given that image intensities can vary according to 

sequence, scanner type, and head coil. For all of these reasons, the greatest clinical utility 

for these types of classification methods will be at large medical institutions where 

classifiers can be developed on the population base from that institution. 

In the future, our method for detection of MCI will be evaluated with larger data 

sets. Meanwhile, longitudinal studies about whether MCI cases will continue to develop 

AD or which cases may have some other forms of dementia or some other possibilities 

will be carried out. 
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5.6. Function of Image Classification in the CAD System 

The classifier trained by our approach for detection of MCI is integrated in our 

CAD system for classification of MCI. In this system, the function of image classification 

is invoked after the image processing is finished. The trained model and the file of the 19 

ROIs (with coordinates of initial center voxels of each ROI) are stored on the server to 

assist the MCI diagnosis. A script will be used to select gray matter intensity values from 

the initial center voxels of each of 19 ROIs in the uploaded image scans. The GM 

intensity of the voxels combined with MMSE score form a test file. The test file is then 

fed into the SVM classifier to predict the subject as MCI or normal by using the existing 

trained model. Finally, an email that contains the link to the probability of MCI 

classification is sent to the user. The link will direct the user to detailed information about 

the classification probability and visual summary of the affected regions.  

Figure 5.4 shows the implementation details of functions for image processing 

and MCI detection in our system. An example of the post-processing information that is 

provided for each subject is shown in Figure 5.5. 
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 Figure 5.4 Implementation of the image processing and MCI detection in the CAD system  
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Figure 5.5 An example of the post-processing information that is provided for each subject. The box 
in the center is an image slice gallery (the current slice number is displayed on the top left corner), 
which presents the 2D slices of the image. Users can browse the slices back and forth by clicking the 
left and right arrows or view a particular slice by clicking on the corresponding icon (small size slice) 
listed in the bottom row. There are 91slices for one image, but only 4 slice icons are presented in the 
row. The 4 icons are changed to the ones with smaller slice numbers when users move the mouse 
over the leftmost icon or changed to the ones with larger slice numbers when users move the mouse 
over the rightmost slice icon in the row. 
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Chapter 6 
 

 

Data Sharing and Other Functions 
 

 

In addition to the functions for image processing and image classification, the 

CAD system also provides the capability for data sharing, knowledge sharing, 

visualization, and information storage and retrieval. 

 

6.1. Data Sharing 

Although our preliminary study of MCI detection has achieved promising results, 

and the image data set used in our research is larger than the other studies in the same 

field, the data set is still limited because of subject privacy issue. A larger experimental 

data set with more people, more races, and more regions would help to achieve a more 

reliable and robust model so as to make a better prediction. To collect more experimental 
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data for MCI study, we encourage data sharing among different research sites through our 

CAD system. The image scans which are uploaded to our CAD system for detection of 

MCI will be added to the current dataset for training a more robust model. Moreover, 

researchers under IRB protocol may share the image scans in their respective research so 

as to collaboratively contribute to the diagnosis of MCI. De-identification is the first step 

for data sharing, which is a mandatory process to protect subject privacy. Two issues 

must be addressed for the purpose of image de-identification, which are anonymization 

and image defacing. The objective of anonymization is to de-identify the private subject 

information in the subject’s image and demographic data file. On the other hand, image 

defacing aims to crop out or alter or mask the facial features. To protect privacy of 

subjects whose image scans are uploaded to our CAD system for detection of MCI and 

data sharing, we design a method for DICOM brain images de-identification. This 

method was presented in our work [54], and is now integrated into the CAD system. 

Users of our CAD system can use this function to de-identify the image scans on their 

own computers before uploading these scans into our system. This method can be 

extended to de-identify genetic or other forms of brain images (NIFTI, ANALYZE, EEG, 

etc.). 

In the CAD system, the image de-identification function provides both the 

anonymization and the image defacing capabilities. Users can select the data items in the 

image header file and the demographic data file for anonymization and process them for a 

single or multiple subjects in a batch mode automatically, without the necessity of writing 

a script. Moreover, the anonymized data items are relabeled with random strings that are 
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the same as the strings for de-identifying DICOM image names. The image defacing 

function does not need the construction of a brain mask or models of non-brain structures, 

which therefore is easier to use. Visual inspection showed that the facial features were 

removed successfully and the brain tissues were intact in our work.  

 

6.1.1. Image Defacing 

The image defacing function is for removing facial features. The function was 

implemented based on the algorithm that we proposed for image defacing. Figure 6.1 

presents the flowchart of the algorithm. Although the algorithm processes 2D image 

slices, the defaced result can be rendered to 3D images with no facial features included. 

Please note that the example of DICOM brain images in this work is provided by the 

developer of DicomBrowser [26], courtesy of Denise Head. The three major steps of the 

image defacing algorithm are briefly described below. 

 

 

 

 

 

 

 

 

 

 

          Figure 6.1 The flowchart of the image defacing algorithm 
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1) Noise reduction. 

        We observed that too much noise existed in the DICOM images, thus we applied 

EdgeFilter and MinimumFilter [45] to remove the noise on the images. Figure 6.2 shows 

an example of the original image slice. The noise reduction effect on this slice is shown 

in Figure 6.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    Figure 6.2 A 2D image slice (sagittal) that explicitly shows the facial features 

        Figure 6.3 A 2D image slice (sagittal) after noise reduction 
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2) Facial features locating. 

         Firstly, after noise reduction, the image slices (sagittal) were scanned from top to 

bottom vertically, and from left to right on each horizontal plane. The scanning result is 

presented in Figure 6.4. The border of the head’s front side was then determined 

according to the RGB values of the points in the images. 

 

 

 

 

 

 

 

 

 

        Secondly, the positions of some key points on a subject’s face could be determined 

based on the scanning result. As is known, the most protruding point of a subject’s nose 

has the smallest x coordinate, which hence could be identified by the lowest point on the 

curve in Figure 6.4. Then we took the slice which the lowest point on the curve was in, 

scanned it from top to bottom and from left to right, and then watched the variance of x 

coordinates of the most left points on continuous y coordinates. With respect to the points 

located in the image slices from the head’s top to the nose, the x coordinates usually 

gradually decrease until a minimum value (i.e. the x coordinate of the most protruding 

 
Figure 6.4 The scanning result of the experimental image slices. The x-axis refers to the image 
slice number. And the y-axis is the x coordinates of the most left points in each slice. 
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point on the forehead, say point A), and then slowly increase to a maximum value (i.e. 

the top point on the bridge of the nose), and finally decrease until another minimum value 

(i.e. the x coordinate of the most protruding point of the nose, say point B). Therefore, by 

watching the variance of x coordinates, point A and point B could be identified. We then 

looked for the point C with x coordinate equaled 0 and y coordinate equaled yB. From 

point A, we drew a vertical line downwards; and from point C, we drew a horizontal line. 

The intersection point of the two lines was point D. Next, we found the mirror point E of 

point B using point D as the center. Besides, we found the point F at (xE,  !!  !  !!
!

). The 

positions of these points were determined according to the usual distance between facial 

features and the structure of brain. All these points are marked in Figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 A 2D image slice (sagittal) in which facial features have been cut out. Its original 
image (before defacing) is presented in Figure 6.2.   
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3) Facial features removing. 

        The points found in the previous step outlined the region that needed to be cut out. 

Specifically, we linked point A and point F, point A and point C. We then drew a vertical 

line e from point F through E downwards, and drew a vertical line e’ from point B 

downwards. B’ is the point with y coordinate equaled 0 on line e’, and E’ is the point 

with y coordinate equaled 0 on line e. Finally, the area ACB’E’FA (see Figure 6.5) was 

cut out. Obviously, the image was defaced by removing this area. 

 

6.1.2. Image Anonymization 

The anonymization function allows users to select data items in the image header 

files and the demographic data files, and then automatically replaces the data with 

randomly created strings. The flowchart is shown in Figure 6.6.                   

 

 

 

 

 

 

 

 

 

 

 

                       Figure 6.6 The flowchart of anonymization 
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6.1.3. Results 

The experimental results showed that the DICOM images could be anonymized 

by our method without losing connection between images and demographic/behavioral 

data of the same subject. In addition, it turned out that the images could be properly 

defaced, with no brain tissue removed. Also, our algorithm makes sure that the cutting 

point can adjust automatically according to the size of the brain. The 2D image slices can 

be rendered to a 3D image, as shown in Figure 6.7. 

 

 

 

 

 

 

 

 
 

Our method has been tested with more image data sets, however, the images and 

their results cannot be presented here due to IRB restriction. Since different researchers 

may prefer different methods for de-identifying brain images, in the future, we will 

further extend the brain image de-identification function to include other algorithms. 

There are two other options for defacing algorithm. One is replacing the approach of 

cropping out facial features with the approach of masking the facial features. Cropping 

out facial features may mistakenly cut out a portion of brain tissue. Instead, the approach 

 

Figure 6.7 Image 1 (sagittal) is the rendered 3D image before defacing. Image 2 (sagittal) is the rendered 
image after defacing. Image 3 and 4 demonstrate the image before and after defacing from other angles. 
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of masking does not have such a risk because it adds a mask over facial features. The 

other option is to cut the image with a straight line (e.g. link point A and point E’ in 

Figure 6.5) rather than curved lines. This may be simpler than the current approach, and 

may reduce the risk of cutting out the brain tissue. In addition, the de-identification 

function will be expanded to process genetic or other forms of images (e.g. ANALYZE, 

NIfTI, EEG, etc.).  

 

6.1.4. Integration 

The image de-identification function, including the anonymization of data items 

in the image header files and the demographic/behavioral data files, as well as the 

defacing of facial features of a subject’s image, has been integrated in our CAD system 

for the purpose of data sharing. The function is wrapped as a tool that is embedded in the 

CAD system from which users can download the tool to their own sites for de-identifying 

images. The image de-identification cannot happen in the CAD system because of the 

safety consideration. Researchers and clinicians would like the images of their sites be 

de-identified on their local machines before they submit the images to our CAD system 

for data sharing and disease diagnosis. The function is developed with Java, and it runs 

on Windows operating system with Java Runtime Environment (JRE) installed. Users can 

start the image de-identification on their own computers by running a Windows batch file. 

Figure 6.8 and Figure 6.9 present interfaces of anonymization in the image de-

identification function, which are for the anonymization of data items in the image header 

files and the demographic/behavioral data files. Figure 6.8 shows the information in the 
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image header files. To anonymize an image, users can select the data items in the image 

header files that need to be hided and include the demographic/behavioral data, as shown 

in Figure 6.9. The subject’s ID in the DICOM image header files and the ID that labels 

the subject’s file names are replaced with the same random string. Besides, the ID in the 

subject’s demographic and behavioral data is also anonymized with the same string. In 

this way, the images, data items of the header files, and the demographic and behavioral 

information of this subject are connected together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 The interface of anonymization in the image de-identification function, for the anonymization 
of data items in the image header files. The left panel shows the cascaded structure of the image files. 
There are 3 series in the experimental data set. The right panel shows the data items in the image header of 
the current image. The first column is the tag of the data item, the second column is the item’s name, and 
the last column is the item’s value. 
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As for the image defacing in the image de-identification function, users can right 

click on a specific image slice to view an image before and after image defacing. The 

image slice is displayed with imageJ [44], as presented in Figure 6.10. In addition, users 

can deface one image or multiple images by choosing the directory of the images to be 

processed and the directory for storing the defaced images, as demonstrated in Figure 

6.11. 

 

 

 

Figure 6.9 The interface for users to select data items in the image header files and to include 
demographic data files for anonymization 
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           Figure 6.10 The screenshot of viewing an image slice with imageJ 

                                              Figure 6.11 The interface for users to do image defacing 
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6.2. Knowledge Sharing 

In the CAD system, the image annotation function is for knowledge sharing 

among researchers to collaboratively contribute to diagnosis of disease. With this 

function, clinicians can mark the brain regions that are correlated to the disease and they 

can put comments on the regions to indicate its association with the disease. Other 

researchers can read these comments so as to understand the ROIs or they can add 

comments with their understanding of the regions. Users can insert, modify or remove an 

annotation within their privilege as needed. An annotated coordinate is marked with a 

special marker. When a user clicks on a maker, annotations will be displayed in a pop-up 

window. An example of the image annotation function is shown in Figure 6.13.  

 

6.3. Visualization 

In the CAD system, the brain images will be displayed as 2D slices, and users can 

browse the image slices back and forth in the image gallery. The ROIs will be colored 

and the color coding shows the value of GM intensity using the rainbow color scheme. 

Users can adjust the threshold of GM intensity through a color bar or direct input values 

to get a different view of ROIs. Only regions with GM intensity exceeding the threshold 

will be displayed with colors. Users can also zoom into a particular image slice to 

examine the details of this slice. 
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The image visualization function and the image annotation function are 

implemented by the following 5 modules. The interaction of the 5 modules is presented 

in Figure 6.12. And an example of the image visualization function is shown in Figure 

6.13. 

            (1) Visualization module. This module implements the image visualization 

functions, including image slice navigation, zoom in/out functions and adjustment of the 

threshold of GM intensity. 

 

                       Figure 6.12 Interaction of modules in the image visualization and annotation functions 
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            (2) Module for displaying ROIs. This module changes the display of ROIs 

through a server-side PHP program based on the threshold set by users. 

             (3) Annotation module. This module implements image annotation functions. 

Users can add, delete and edit the annotation information at a certain coordinate of an 

image slice. 

             (4) Web service module. PHP programs run on the Web server to handle the 

service logic and interact with the data server. 

             (5) Data exchange module. This module handles the data exchange between the 

other modules and the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 An example of the visualization and annotation function. The left image shows the 
annotation function. When users click the “Add Note” button on the lower left corner, the annotation 
panel (the white rectangle panel), which can float over the image slice, will pop up. Users can insert, 
modify or delete the annotation as needed. The cursor on the color bar indicates the GM intensity 
threshold that can be set from 0 to 1 by sliding the cursor along the color bar or setting a value in the 
textbox on the right side of the bar. Voxels with GM intensity beyond the threshold are colored using 
the color scheme of the color bar. If the cursor is on the lower end (red), the threshold is set to 0; if it is 
on the upper end (purple), the threshold is 1. The colorful regions overlaying on the left image slice are 
the voxels with GM intensity over the threshold 0. With the same slice, these regions shrink when the 
threshold is set to 0.2, as shown on the right part of figure. 
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6.4. Information Storage and Retrieval 

Users can upload de-identified MRI scans (Analyze format) and the related 

clinical and demographic information, which will be stored in the database of the CAD 

system. After the image is processed, the processing results are physically stored in the 

file system with their paths stored in the database and associated with the patient’s 

clinical and demographic information. The image processing results include segmentation, 

normalization, modulation and smoothing results, as well as a stack of 2D image slices 

and files with intensity of voxels for each slice. Moreover, the diagnosis prediction 

(probability of MCI or normal) is saved in the database. In the CAD system, the database 

also stores the account information. Users can choose which accounts in the system to 

share the files with when they upload an image file. An image file can only be accessed, 

processed, visualized and annotated by its owner (the user who uploaded the image) and 

the users with appropriate permission levels authorized by the owner. With this scheme, 

users of the system can collaboratively analyze the brain images. Furthermore, users can 

retrieve the images and demographic information of subjects by some search options (e.g. 

age, gender, etc.). Figure 6.14 shows a search result that includes the diagnosis result and 

the subject’s clinical and demographic information and a link to the detailed information 

as well. 
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                                    Figure 6.14 An example of the search result in the CAD system 
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Chapter 7 
 

 

Conclusions and Future Work 
 

 

In this work, we propose a complete CAD system for early and automated 

detection of MCI. The CAD system can provide functions for image processing, 

classification of MCI subjects, image visualization, image annotation, image de-

identification, and data storage and retrieval. Privacy issues notwithstanding, our system 

could be implemented for multiple institutions given the increase in Internet bandwidth 

and decrease in storage costs. Compared with the desktop applications, our system would 

be easier to use because it is Web-based. Users would not need to install any software to 

use the system. Importantly, our Web-design can enable a team of physicians and 

supporting staff to access patient results and work collaboratively through the annotation 

function with the goal of increasing communication and enhancing clinical planning. To 



71 
 

the best of our knowledge, this Web-based CAD system will be the first one to provide 

the capability of CAD for MCI. The CAD system is designed to be expandable because 

of its component architecture. Hence, this system can be extended to detect other forms 

of subtle brain injury where early detection will enhance patient treatment, as long as 

scripts of image preprocessing and trained classifiers are available. Two major 

components need to be replaced for detection of other subtle diseases. One component is 

for image processing, in which scripts can be customized for different types of images. 

The other component is for disease detection, which requires the customization of scripts 

and the training of classifiers specific to certain diseases. 

The following publications have resulted from this research: 

Lin Li, James Z. Wang, Carl Lozar, and Mark A. Eckert, “Automated Detection of Mild 

Cognitive Impairment through MRI Data Analysis”, International Journal on Artificial 

Intelligence Tools, to appear. 

Lin Li, James Z. Wang, “DDIT – A Tool for DICOM Brain Images De-identification”, 

the Proceeding of the 5th International Conference on Bioinformatics and Biomedical 

Engineering, Wuhan, China, May 10 – 12nd, 2011, pp. 1 - 4. 

Lin Li, Carl Lozar, Mark A. Eckert, Dheeraj Chahal, James Z. Wang, “Detection of Mild 

Cognitive Impairment using Image Differences and Clinical Features”, the Proceeding of 

the 10th IEEE International Conference on Bioinformatics and Bioengineering, Thomas 

Jefferson University, Philadelphia, PA, USA, May 31 - June 3rd, 2010, pp. 106 - 111. 

Lin Li, Carl Lozar, Mark A. Eckert, Dheeraj Chahal, James Z. Wang, “Online Brain 

Image Database System for Diagnosis of Subtle Brain Injury”, the Proceeding of the 4th 
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International Conference on Bioinformatics and Biomedical Engineering, Chengdu, 

China, June 18 - 20th, 2010, pp. 1 - 4.  

There are several directions for the future work. The first aim is to improve the 

classification of MCI, by developing scanner specific classifiers, and validation with a 

much larger data set diversified across different regions and races. Secondly, many 

existing MRI data analysis tools are standalone or command line applications that need to 

be installed by researchers or physicians on their local computers. Most tools for 

neuroimaging studies in Biomedical Informatics Research Network (BIRN) [47], such as 

the Extensible Neuroimaging Archive Toolkit (XNAT) [57], are designed for general 

neuroimaging studies, not specifically for MCI early detection. Therefore, there is an 

urgent need to adapt the existing tools and integrate them into a community-based 

platform exclusive for MCI study. So our second goal is to build a collaborative cloud 

computing infrastructure in which researchers and physicians can share their computing 

expertise, computational resources, image data, analysis tools, and biomedical knowledge 

in MCI studies.  
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