
Vol.:(0123456789)1 3

Journal of Medical Systems           (2023) 47:57  
https://doi.org/10.1007/s10916-023-01941-4

ORIGINAL PAPER

Automated Medical Diagnosis of Alzheimer´s Disease Using 
an Efficient Net Convolutional Neural Network

Deevyankar Agarwal1 · Manuel Álvaro Berbís2 · Antonio Luna3 · Vivian Lipari4 · Julien Brito Ballester4 · 
Isabel de la Torre‑Díez1

Received: 9 January 2023 / Accepted: 20 March 2023 
© The Author(s) 2023

Abstract
Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using 
deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the 
EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to 
classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 
scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard 
pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task 
we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% 
AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% 
AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we 
conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.

Keywords Alzheimer´s disease · Convolutional neural network · Deep learning · EfficientNet · Mild cognitive impairment · 
MRI · MONAI · Transfer learning

Introduction

Alzheimer’s disease (AD), the most prevalent kind of 
dementia, has no recognized disease-modifying therapy to 
date. It is characterized by a silent onset, in which AD gradu-
ally advances over a number of years before any clinical 
signs appear [1]. At least fifty million people worldwide are 
thought to be affected by AD and other forms of dementia 
[2]. As of 2022, there are 7 million AD patients in the USA, 
and 14 million individuals are predicted to be affected by 
the disease by 2050 [3]. For various forms of dementia, such 
as AD or mild cognitive impairment (MCI), it is essential 
to investigate novel early diagnostic techniques to ensure 
proper treatment and halt the progression of the illness. 
Between healthy cognitive function and AD lies a condi-
tion known as MCI. A person with MCI presents cognitive 
impairment but is nevertheless capable of conducting daily 
activities. MCI affects around one-fifth of the population 
over 65 years old, and about one-third of them will develop 
AD within three to five years [3]. Subjects with MCI will 
either develop AD or remain stable. Only autopsy can certify 
an AD diagnosis [4]. Nonetheless, biological and functional 
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brain problems linked to AD may be examined and assessed 
using magnetic resonance imaging (MRI), often utilized in 
clinical practice and recognized as a helpful technique to 
identify the course of AD [4, 5].

Computer-aided machine learning (ML) techniques offer 
a systematic means to create complex, automatic classifi-
cation models to manage large amounts of data and can 
find intricate and subtle patterns. Support vector machines 
(SVMs), logistic regression (LR), and SVM-recursive fea-
ture elimination are ML pattern analysis techniques that have 
been proved successful in AD detection [6]. However, auto-
mated diagnostic ML models for neuropsychiatric disorders 
based on SVMs require hand-made features because they 
cannot pull out adaptive features [6]. When utilizing these 
ML approaches for classification, the architectural design 
must be established. In general, four phases are required: 
feature extraction, feature selection, dimension reduction, 
and implementation of a classification method. Additionally, 
this process must be optimized, and specialists need to be 
involved at every level [7]. The use of deep learning (DL) 
models to predict different AD stages was made possible 
by the growing GPU processing power. The field of ML 
known as DL simulates how the human brain finds compli-
cated patterns. DL techniques like convolutional neural net-
work (CNN) and sparse autoencoders [8–15] have recently 
surpassed statistical ML techniques. The use of CNNs has 
rapidly spread into a variety of domains, beginning with 
the outstanding performance of AlexNet in ImageNet large-
scale visual recognition challenge [16] and then expanded 
into medical image analysis, starting with 2D images, such 
as chest X-rays [17], and then progressing onto 3D images, 
including MRI. End-to-end learning (E2EL) is the central 
principle of DL. A key advantage of E2EL is that it simul-
taneously improves every stage of the processing pipeline, 
potentially resulting in an optimum performance [18].

For the analysis of MRI scans, Oh et al. [19] suggested 
an end-to-end hierarchy extending between 1 to 4 levels. 
Feature selection and extraction are carried out manually at 
Level 1 [20, 21]. Level 2 involves either the segmentation of 
3D data into ROI or their conversion into 2D slices, follow-
ing by their use as input to train the DL model, that can be 
either self-designed DL architecture or a CNN-based per-
tained transfer learning (TL) architecture like ResNet[12], 
deep ResNet [15], CaffeNet [22], DenseNet [23], etc.

According to recent research TL, which allows successful 
DL training even with limited data, is becoming a quite pop-
ular area of DL [24, 25]. TL is compared to human behavior 
as it may use the acquired information to solve new chal-
lenging situations.

When comparing stable MCI (sMCI) vs. progressive 
MCI (pMCI) or AD vs. sMCI classifications, it is simple 
enough to classify AD vs. CN, as there is a clear difference 
between the brain anatomy of AD and CN subjects and a 

sufficient availability of MRI scans [26]. Numerous stud-
ies [22, 27, 28] have also used local TL as a basis for this 
assumption. Local TL implies the classification of (sMCI, 
pMCI) or (sMCI, AD) subjects using the learning of the 
classifier that has been implemented to categorize (AD, CN) 
subjects. However, no studies using 3D pertained TL archi-
tecture have been found.

Preprocessed 3D MRI scans are fed into DL networks at 
Level 3. MRI scans must be preprocessed for any analytical 
analysis method to be effective [29]. During preprocessing, 
methods for noise removal, inhomogeneity correction, brain 
extraction, registration, leveling, and flattening are used to 
improve the quality of the image and make the architecture 
and brightness patterns consistent. A 3D MRI scan from 
the device is directly relayed as input into DL networks at 
Level 4; however, the authors are not aware of any studies 
utilizing this level.

Most of the published empirical studies use either Level 
1 or Level 2 learning, their performance strongly relying 
on specific software and sometimes even on manual noise 
reduction and hyper parameter setup. As a result, only a 
subset of the original datasets were used for performance 
assessment, avoiding apparent outliers and making it dif-
ficult to fairly compare performances.

Mehmood et al. extracted gray matter (GM) tissue from 
MRI scans and fed it into the VGG-19 architecture to clas-
sify different AD phases [30]. A multi-class categorization 
of AD and its related stages using rs-fMRI and ResNet18 
was done by Ramzan et al. [31]. During preprocessing, sev-
eral studies [15, 32] segment the GM area, which is there 
after used as input for CNNs. Through the use of 3D-stacked 
Convolutional Autoencoders and MRI data, Hosseini-Asl 
et al. [33], by utilizing a Level 3 approach, reported the first 
effective use of a volumetric CNN-based architecture to 
classify AD and CN subjects.

Multimodal DL  techniques [34–36] combine inputs 
from different data sources to better understand the struc-
ture and function of the brain by using several biological 
and physical properties to boost the classification accuracy 
of AD stages. Due to the limitations of the different reso-
lutions, sheer number of dimensions, heterogeneous data, 
and limited sample sizes, multimodal DL techniques are 
particularly difficult to deploy at Level 3 learning [37]. In 
addition, we found that studies utilizing Level 2 learning 
mainly employed multimodal DL approaches. A unique 
deep neural network (DNN)-based approach was presented 
by Lu et  al. [38] with multi modalities FDG-PET and 
T1-MRI to classify sMCI and pMCI subjects.Song et al. 
[39] created the "GM-PET" fused modality by combining 
the GM tissue region of MRI scans with FDG-PET images 
utilizing mask encoding and registration to aid in the diag-
nosis of AD. Only a small number of investigations uti-
lized Level 3 architecture. The AD-NET was presented by 
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Gao et al. [28], with the pre-training model performing the 
dual functions of extracting and transferring features as 
well as learning and transferring information. VoxCNN, 
based on deep 3D CNN, was proposed by Korolev et al. 
[40] for AD early detection. A multimodal DL framework 
based on multi-task CNN and 3D DenseNet was proposed 
by Liu et al. [41] for concurrent hippocampus segmenta-
tion and AD classification.

Literature demonstrates that early detection of AD is 
essential for the patient to obtain maximum benefit. As of 
right now, the highest accuracy level for this task utilizing 
either E2EL, local TL, or a CNN-based 2D transfer learn-
ing or ROI segmentation strategy is 86.30% [42]. There-
fore, to enhance accuracy as well as the generalization 
capability of the model, we propose a fusion of E2EL and 
TL during the training phase of the model. We trained the 
EfficientNet-b0 CNN for the AD vs. sMCI binary clas-
sification task by transferring the learning of each fold of 
fivefold stratified cross-validation to its subsequent fold, 
and so on. In the first fold, the model was trained using 
E2EL. We also trained and evaluated an E2EL-based Effi-
cientNet-b0 model for the multiclass AD vs. CN vs. sMCI 
classification task.

Preprocessed 3D T1W MRI scans were fed into the 
models. ANTsPyNet [43] was used to preprocess MRI 
scans, whereas the Medical Open Network for Artificial 
Intelligence (MONAI) was used to design and implement 
the models [44]. The entire implementation was done in 
PyTorch GPU utilizing Google CoLab Pro + . To conclude, 

the following are the main contributions made by this 
article:

• We propose a novel TL and E2EL fusion method to train 
DL models.

• We preprocessed MRI scans using ANTsPyNet.
• We implemented an EfficientNet-b0 CNN by using Level 

3 learning and preprocessed MRI scans, to classify dif-
ferent AD stages.

The rest of this article is structured as follows: research 
methodology, datasets, input management, DL models, and 
experimental setup are described in “Materials & methods” 
section, followed by results and discussion in “Experimental 
setup” section, and conclusions in “Results and discussion” 
section.

Materials & methods

We propose DL models for the classification of MRI scans 
of 1) AD and sMCI subjects, and 2) AD, sMCI, and CN 
subjects. For task one we used a novel E2EL and TL fusion 
approach, as shown in Fig. 1. During model training via 
fivefold stratified cross-validation, we trained the model 
from scratch in the first fold (E2EL), validated it, and used 
the final weights of the best epoch from fold 1 as the initial 
weights for fold 2 (TL). After training and validating the 
model in fold 2, we used the final weights of the best epoch 
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Fig. 1  Block diagram of proposed work
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from fold 2 as the initial weight for fold 3, and we repeated 
the same steps for the subsequent folds. For task 2, we used 
E2EL for all the folds. The model of the best epoch from 
each fold was used to assess external MRI scans to check 
for overfitting.

Participants

We used the Information eXtraction from Images (IXI) [45] 
and Alzheimer's Disease Neuroimaging Initiative (ADNI) 
[46] databases, both of which are freely available online. 
The goal of ADNI is to identify biomarkers that may be used 
to monitor the course of AD as well as more sensitive and 
exact approaches for early AD detection. IXI is a collection 
of more than 600 MRI scans of healthy, normal individuals. 

Participants from different hospitals in London are included 
in the IXI dataset.

One of the most widely used sequences for structural 
brain imaging in clinical and research settings is the 3D 
magnetization-prepared rapid gradient-echo (MP-RAGE) 
sequence [47]. In a brief time, the sequence captures 
good tissue contrast and offers great spatial resolution 
with coverage of the whole brain. T1-weighted (T1W) 
sequences, which are a component of MRI, are thought 
of as “the most anatomical” of scans. These sequences 
provide the most accurate representation of tissues like 
white matter (WM), GM, and cerebrospinal fluid (CSF) 
[48]. NIfTI files are a kind of neuroimaging file format 
often utilized in image analytics in neuroscience and neu-
roradiology research.

Input MRI scan 1.  After N4 Bias field correction 2. After Denoising

3. After Brain Extraction 4. After Registeration 

Fig. 2  Output of each stage of the preprocessing pipeline for a cogni-
tively normal subject {1➔2➔3➔4}. Input scan Dimensions: (256, 
256, 150) Spacing: (0.9375, 0.9375, 1.2) Origin: (88.6399, -116.532, 

-112.1136). Output scan Dimension: (182, 218, 182) Spacing: (1.0, 
1.0, 1.0) Origin: (-90.0, 126.0, -72.0)
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We used 458 MP-RAGE T1W MRIs, 229 of AD sub-
jects and 229 of sMCI subjects, all acquired in NIfTI format 
from ADNI. Only MCI scans that had been proven stable 
for at least four years and up to fifteen years were used. The 
remainder 245 scans of CN subjects were acquired from the 
IXI database.

Preprocessing pipeline

Each image underwent a common preprocessing proce-
dure using the ANtsPyNet [43] packages. The pipeline for 
Advanced Normalization Tools [49] was used. As shown in 
the Algorithm 1, a preprocessing pipeline was implemented 
for all MRI scans. Figure 2 depict the output of each stage 
for a CN subject with the corresponding dimension, spac-
ing, and origin. After preprocessing, the dimensions after 
the final stage changed to 182 × 218 × 182 from the original 
image dimensions of 256 × 256 × 150.In the anatomical coor-
dinate system, the origin is where the first voxel is located, 
and the spacing describes how far apart the voxels are along 
each axis. According to the MNI152 template specification, 
the spacing and origin values for all MRI scans also changed 
to (1.0, 1.0, 1.0) and (-90.0, 126.0, -72.0) respectively.

The preprocessing procedure comprises the following 
parallel processes: N4 bias field correction [50] to rectify 
the ferocity of a low-frequency signal irregularity, often 
known as bias field; Denoising [51] using a spatially adap-
tive filter to eliminate impulse noise; brain extraction [52] 
using a pertained U-Net model to remove non-brain tissues 
such as those found in the neck and skull; and registration 
to minimize the effects of transformations relative to a refer-
ence orientation as well as any spatial discrepancies across 

participants in the scanner. This procedure improved the 
accuracy of the classification. We affinely registered MRI 
scans to the MNI152 brain template [53], which was cre-
ated by averaging 152 structural images into one large image 
using non-linear registration. The whole procedure to pre-
process one MRI scan takes around three minutes.

Implemented CNN

In recent years, CNNs have seen a surge in popularity because 
of their impressive usefulness in high-dimensional data analy-
sis. EfficientNet models are based on simple and incredibly 
effective compound scaling methods. In many cases, Effi-
cientNet models achieve better accuracy and efficiency than 
state-of-the-art CNNs like AlexNet, ImageNet, GoogleNet, 
or MobileNetV2 [17]. EfficientNets are more compact, run 
faster, and generalize more effectively, leading to improved 
accuracy. They have often been used with TL. However, they 
have only been pre-trained on 2D images, so their learning 
cannot be transferred to 3D MRI scans. Nonetheless, they can 
be trained for 3D scans via E2EL. Models from b0 to b7 [54] 
are represented in EfficientNet, with individual parameter 
sets spanning from 4.6 to 66 million. We chose the Efficient-
Net-B0 model for the proposed classification tasks because 
it offered the best overall evaluation metrics and the lowest 
model parameters, as reported by Agarwal et al. [55] in their 
implementation and comparative analysis of eight different 
CNNs for early detection of AD.

Figure 3 depicts the implemented EfficientNet-b0 struc-
tural layout. It has a total of 295 layers, distributed as shown 
in Table 1. Six consecutive blocks with various structures 
are included, in addition to 16 MBConvBlocks.

Algorithm 1  MRI pre-process-
ing pipeline
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Fig. 3  Structural layout of EfficienNet-B0
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Experimental setup

The whole implementation was completed using Google 
Colab Pro + [56], which was made available to the public 
in August 2021. Some of its most notable features include 
the ability to run in the background, early access to more 
powerful GPUs, and increased memory availability. Asyn-
chronous data loading and multiprocessing are facilitated by 
GPUs. Despite not guaranteeing compatibility with a spe-
cific GPU, Colab Pro + does offer priority on the available 
options. Even with Pro + , GPU quality might decline after 
periods of intensive use. Pro + offers Tesla V100 or P100 
NVIDIA Deep Learning GPU with CUDA support. The 
"High-RAM" option of Colab runtime met its objective by 
providing 52.8 GB RAM. Runtime support is supposed to 
be 24 h as stated in Colab's specs, yet we only got assistance 
for a maximum of 8 h. For this reason, we could not run all 
the folds at the same time in this setup, as finishing a fold 
with 50 epochs requires approximately 2 h. To implement 
a fivefold, stratified cross-validation, we first created five 
data sets (DATASETS 1–5) for training and validation, with 

the same class ratio as the original dataset across all folds. 
To train and validate Fold [n], we utilized Dataset [n]. The 
MRI scans were distributed as follows:

Table 1  Summary of the 295 
layers of the model with output 
shape

Input size [2,1,182,218,182]
Layer (Type) Output Shape
ConstantPad3d [2, 1, 183, 219, 183]
Conv3d [2, 32, 91, 109, 91]
BatchNorm3d [2, 32, 91, 109, 91]
MemoryEfficientSwish-4 [2, 32, 91, 109, 91]
Sequential [0] block Contains one MBConvBlock that contains following layers
[ConstantPad3d,Conv3d, BatchNorm3d, MemoryEfficientSwish-

4,AdaptiveAvgPool3d,again have three Conv3d and one BatchNorm3d,Identity]

[2, 16, 91, 109, 91]

Sequential [1] block contains two MBConvBlocks [2, 24, 45, 54]
Sequential [2] block contains two MBConvBlocks [2, 22, 27, 40]
Sequential [3] block contains three MBConvBlocks [2,80,11,13,11]
Sequential [4] block contains three MBConvBlocks [2,112,11,13,11]
Sequential [5] block contains four MBConvBlocks [2,192,5,6,5]
Sequential [6] block contains one MBConvBlocks [2,320,5,6,5]
Conv3d [2,1280,5,6,5]
BatchNorm3d [2,1280,5,6,5]
MemoryEfficientSwish-4 [2,1280,5,6,5]
AdaptiveAvgPool3d [2,1280,1,1,1]
Operation flatten [2,1280]
Dropout(p = 0.2, inplace = False) [2,1280]
Fully Connected: Linear(in features = 1280, out_features = 2, bias = True) [2]
MemoryEfficientSwish() Output
Total params: 4,690,942
Trainable params: 4,690,942
Non-trainable params: 0
Input size (MB): 27.55
Forward/backward pass size (MB): 7754.59
Params size (MB): 17.89
Estimated Total Size (MB): 7800.03

Fig. 4  Tuning of the learning rate and number of epochs using a ran-
dom search procedure and performance evaluation
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Algorithm 2  For sMCI vs. AD 
classification task
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• AD: 160 for training, 40 for validation, 29 for testing.
• sMCI: 160 for training, 40 for validation, 29 for testing.
• CN: 160 for training, 40 for validation, 45 for testing.

All scans were prepared according to the preprocess-
ing workflow shown in Fig. 2. Following preprocessing, 
five datasets were constructed and used, respectively, in 
folds 1–5. All models were implemented using MONAI, an 
open-source, PyTorch-based DL healthcare imaging plat-
form maintained by the community. MONAI provides built-
in PyTorch support along with a set of core features suited 
for the medical imaging area. Two important hyperparam-
eters, learning rate and number of epochs, were optimized 
using the random search technique. We trained and tested 
the model on three different combinations of learning rate 
and number of epochs and, based on the comparison of their 
performances as shown in Fig. 4, learning rate was adjusted 
to 0.0001 and number of epochs to 50 for the final fivefold 
stratified CV implementation.

Adam is the first widely used "adaptive optimizer." It was 
used with a learning rate of 0.0001 and a batch size of 2. In 
the experiment, most cases converged after approximately 
50 epochs. In addition, we used the cross-entropy loss func-
tion and the area under the curve for receiver operating char-
acteristics (ROCAUC) metric to optimize the model weights 
during training and to evaluate the discriminatory abilities of 
the model across classes. The implemented method for the 
classification of sMCI vs. AD is presented in Algorithm 2. 
As indicated in steps 2 and 3, we utilized MRI scans from 
DATASET [1] for training and validation. In steps 48 and 
49, we initialized the training and validation loaders from 
DATSET [C] MRI scans to be analyzed in fold C.

In steps 43 to 46, we evaluated unseen MRI scans using 
the model with the best weights from each fold. We did not 
reset the model in step 50; conversely, we raised the coun-
ter to reflect the fold's rise since we intended to apply this 
fold's learning to the next fold. The same approach, with 
a few modifications, was applied to the AD, sMCI, and 
CN multiclassification task: i.e., there were three types of 
input MRI scans; the batch size and worker values were 
set to eight; the number of output classes was changed to 
three; and the number of epochs was increased to 100. The 
same process was used for testing, validation, and training 
inside each fold. After each fold, the model was reset to 
apply E2EL.

The research training outcomes were evaluated using 
the following five metrics, as they provide critical data for 
the thorough evaluation of models that have been put into 
use: True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN). Here, an AD patient is clas-
sified as TP or FN depending on whether they are placed 

in the AD group or not. Similarly, TN indicates the total 
number of individuals classified as presenting sMCI, and 
FP represents the total number of subjects not in the sMCI 
category. Accuracy (ACC) was defined as (TP + TN)/
(TP + TN + FN + FP), while precision was defined as TP/
(TP + FP). The positive sample prediction is more accurate 
when the precision is higher. Recall was defined as TP/
(TP + FN), and the higher the recall rate, the more accu-
rately the target sample may be predicted, and the less 
probable it is that a problematic sample will be missed. 
Precision and recall are often at odds with one another; 
hence, the F1-score is given as a composite statistic to bal-
ance their effects and evaluate classifiers more correctly. 
ROCAUC serves as a statistic to assess the ability of a 
model to distinguish between two classes. The effective-
ness of the classification approach increases with the area 
under the ROC curve.

Fig. 5  (a) Training loss of AD vs. sMCI task for fold 1 [Y axis: 
Training loss; X axis: Steps,160 batches * 50 Epochs = 8 K], (b) Vali-
dation Accuracy of AD vs. sMCI task for fold 1[Y axis: Validation 
accuracy; X axis: 50 Epochs]
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Results and discussion

Results

We analyzed the performance of EfficientNet-B0 in the pro-
posed tasks with the aim to understand its potential. Figure 5 
depicts the loss experienced during training as well as the 

changes in validation accuracy of fold 1 for the AD vs. sMCI 
task. Training loss was progressively reduced while valida-
tion accuracy peaked at 88.75% in the first fold, indicating 
that the model was learning adequately. This effect increased 
in succeeding folds because of the application of transfer 
learning from prior folds, as can be seen in Fig. 6. Maximum 
testing accuracy and AUC reached 93.10% and 93.0% in fold 

Fig. 6  Comprehensive results for the AD vs. sMCI task

Fig. 7  ROCAUC curve and the Confusion Matrix [0-sMCI,1-AD] for the optimal training fold for the AD vs. sMCI task
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5, as shown in Fig. 6, while average training accuracy over all 
folds reached 95.29%. The confusion matrix and ROCAUC 
for the optimal training and testing fold of the binary clas-
sification task are shown in Figs. 7 and 8, respectively. A 
confusion matrix (an X-by-X matrix where X is the number 
of class labels) allows the assessment of the efficacy of a 
classification model. The matrix evaluates the accuracy of 
the predictions of the DL model vs. the actual target values. 
Accuracy, precision, recall, and F1-score may all be calcu-
lated via a confusion matrix. Validation was performed on a 
total of 80 MRI scans, with 40 scans utilized for each class. 
As shown in Fig. 7, TP for AD subjects was 40 and FN was 
0, while TN for sMCI subjects was 36 and FP was 4. Due to 
the lack of information in the ADNI database regarding the 
status of each subject after x years of stability and as they 
present almost the same anatomical structures as AD scans, 
only a small number of sMCI subjects were misclassified. 
Both classes obtained an AUC of 95.0%.

Testing was performed on a total of 58 MRI scans (29 of 
AD and 29 of sMCI subjects) which had not been used dur-
ing the training or validation procedures. As shown in Fig. 8, 
TP for AD subjects was 29 and FN was 0, while TN for 
sMCI subjects was 25 and FP was 4. Both classes obtained 
an AUC of 93.0%.

Figure 9 depicts the training loss as well as variations in 
validation accuracy for the AD vs. sMCI vs. CN task. Train-
ing loss was progressively reduced, and validation accuracy 
peaked at 85.83% in the first fold, implying that the model 
was learning appropriately. As shown in Fig. 10, accuracy is 
altered in the subsequent folds due to learning from scratch 
in every fold. In fold 2, the highest testing accuracy reached 
87.38%, while average training accuracy across all folds 
reached 85.66%. The confusion matrix and ROCAUC for the 
optimal training and testing fold of the multiclassification 

task are shown in Figs. 11 and 12, respectively. Validation 
was performed on a total of 120 MRI scans, with 40 scans 
utilized for each class. As shown in Fig. 11, nearly 100% 
accuracy was achieved for CN subjects; however, because of 
their similar anatomical structures, the categorization find-
ings for the AD and sMCI participants indicated a small 
number of incorrect classifications.

Fig. 8  ROCAUC curve and the Confusion Matrix [0-sMCI,1-AD] for the optimal testing fold for the AD vs. sMCI task

Fig. 9  (a). Training loss of AD vs. sMCI vs. CN task for fold 1[Y 
axis: Training loss; X axis: Steps,60 batches * 100 Epochs = 6  K], 
(b). Validation Accuracy of AD vs. sMCI vs. CN task for fold 1 [Y 
axis: Validation accuracy; X axis: 100 Epochs]
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The corresponding AUCs for the CN, AD, and sMCI 
classes were 100.0%, 88.0%, and 84%, respectively. Testing 
was performed on a total of 103 MRI scans (29 of AD, 29 of 
sMCI, and 45 of CN subjects) which had not been used dur-
ing training or validation. As shown in Fig. 12, several sMCI 
and CN participants were incorrectly classified, while AD 
subjects were 100% correctly classified. The correspond-
ing AUCs for the CN, AD, and sMCI classes were 93.0%, 
95.0%, and 84%, respectively.

Heat map visualization through occlusion sensitivity

Occlusion sensitivity is a simple way to figure out which 
parts of an image are most important for a deep network 
to classify [57]. Using small data tweaks, we may test a 
network's susceptibility to occlusion in various parts of the 
data. We utilize occlusion sensitivity to acquire high-level 
knowledge of what MRI scan attributes models employ to 
create a certain classification. The likelihood of properly 

Fig. 10  Comprehensive results for the AD vs. CN vs. sMCI task

Fig. 11  ROCAUC curve and the Confusion Matrix [0-sMCI,1-AD,2-CN] for the optimal training fold for the AD vs. CN vs. sMCI task
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categorizing the MRI scan will decline when significant por-
tions of the MRI are obscured. Hence, larger negative values 
suggest that the decision process gave more weight to the 
associated occluded area.

By computing the occlusion map during the prediction 
using trained models, we verify the MRI scan of the AD 
patient. This task has been implemented by using Algo-
rithm 3, which is given below. Occlusion sensitivity was 
calculated by using the visualize.occlusion_sensitivity.
OcclusionSensitivity() function of MONAI. It took around 
5 h to calculate in Google CoLab Pro + .

We validate both the models. Figures 13 and 14 illustrate 
the outcomes of the binary classification model for the sMCI 
and AD classes, respectively. Compared to Fig. 14, there are 
less occulated regions in Fig. 13. It verifies that the model's 
prediction was made accurately (AD). In addition, in Fig. 14, 
we have highlighted the relevant aspects as determined by 
neuroradiologist.

Figures 15, 16, and 17 illustrate the outcomes of the multi 
class classification model for the sMCI, CN and AD classes, 
respectively. Compared to Figs. 15 and 16, there are more 
occulated regions in Fig. 17. It verifies that the model's pre-
diction was made accurately (AD). In addition, in Fig. 17, we 

have highlighted the relevant aspects as determined by a neu-
roradiologist and displayed the 20 slices to make the difference 
in atrophy clearly noticeable. The link provided in the supple-
mental material can be utilized to access the scripts developed 
for this method of creating heatmaps.

Validation of the binary classification model 
by using Spanish datasets

To prove the generalizability of the model that has been con-
structed by employing the novel approach of "fusion of E2EL 
and TL", we evaluated it for the prediction of the MRI scans 
of Spanish datasets. This dataset was collected from several 
HT Medica sites throughout Spain. The dataset includes a 
diverse community of people with varied degrees of cognitive 
impairment. The sample population is drawn from a variety 
of sources, resulting in a representative and diversified sample 
that reflects the Spanish population. It includes clinical reports 
and T1W MRI scans from 22 patients with AD and MCI.

The following details are included in reports.

1. Scan date
2. Location of the hospital in Spain

Fig. 12  ROCAUC curve and the Confusion Matrix [0-sMCI,1-AD,2-CN] for the optimal testing fold for the AD vs. CN vs. sMCI task

Fig. 13  Heat map overlayed on 
the base MRI scan based on 
the occlusion sensitivity for the 
sMCI class [Binary classifica-
tion model]
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3. Clinical information
4. Findings
5. Conclusion
6. Name of the neuroradiologist with signature and col-

legiate number.

The clinical information and conclusions were utilized to 
confirm model predictions by neuroradiologist Dr. M. Alvaro 
Berbis, Director of R&D and Innovation, HT Médica Madrid, 
Spain, who is also one of the authors. 19 predictions out of 
22 were matched with the clinical findings, yielding an accu-
racy of 86.36%. The accuracy this model attained using an 
actual dataset of Spanish patients demonstrates its relevance 
and generalizability. The results have been shown in Table 2 
along with clinical findings and details. Due to privacy issues, 
Table 2 includes the scan date, results, clinical information, 
and conclusion only. With the URL provided in the supple-
mental material, readers may get the Python script used for 
this validation procedure.

Discussion

We compared our categorization findings to those reported in the 
literature, as shown in Tables 3 and 4. As converted MCI sug-
gested AD and non-converter MCI showed stable MCI, we also 
compared the findings for sMCI vs. AD with those for ncMCI 
vs. cMCI. Most published literature regarding binary classifica-
tion tasks utilized accuracy, sensitivity (SEN), specificity (SPE), 
balanced accuracy (BA), and AUC to demonstrate their findings.

We evaluated accuracy and AUC during our experi-
ments. By using a confusion matrix of the best fold of the 
testing, we also computed SEN, SPE, and BA through the 
following formulas: TP/ (TP + FN), TN/ (TN + FP), and 
(SEN + SPE)/2, respectively.

The issue of whether patients with MCI can accurately 
self-diagnose their risk of developing AD remains essen-
tial to the development of viable treatments for the disease. 
Categorizing AD and sMCI is more challenging due to the 

Fig. 14  Heat map overlayed on 
the base MRI scan based on 
the occlusion sensitivity for the 
AD class [Binary classification 
model]
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subtler morphological changes that must be noticed, as dem-
onstrated by the fact that the accuracy of several of the study 
results included in Table 2 barely reached 70–80%.

The best Level 1 learning model, reported by Suk et al. [60], 
had a maximum accuracy of 74.82%. It is crucial to highlight 
that Level 1 approaches alter spatial localization in the feature 
extraction process of brain imaging data, as they rely on man-
ual feature extraction. Without taking spatial relationships into 
account, it is hard to guess how the model decides how to clas-
sify something in a reliable way. The Level 2 model proposed 
by Pan et al. [59] showed a maximum accuracy of 83.81%. 
They suggested a multi-view separable pyramid network (MiS-
ePyNet), a 2D CNN model that utilizes 18F-FDG PET images. 
MiSePyNet was built on the concept of quantized convolution 
and used independent slice and spatial-wise CNNs for each 
view. However, this Level 2 research only used a small part of 
the original datasets, thus disposing of any obvious outliers and 
making it hard to fairly compare its performance. In another 
study [42] carried out by Basaia et al., 86.30% accuracy was 
obtained using a 3D CNN. MRI scans were segmented to create 
GM, WM, and CSF tissue probability maps in the MNI space. 
It was also built on a ROI-focused strategy rather than E2EL. 

Other studies [23, 27, 60] that used 2D TL with a pretrained 
network or local TL by transferring the knowledge of the AD 
vs. CN task to predict early diagnosis of AD obtained accura-
cies up to 82%.Only two research articles regarding multiclass 
categorization tasks could be found.

One by Wu et al. [12] utilized 2D MRI slices and the 
pre-trained 2D CNN networks CaffeNet and GoogleNet, 
obtaining an average accuracy of 87.00% and 83.20%, 
respectively. However, their implementation was based on 
Level 2 learning, and only obtained a 72.04% (for Caff-
eNet) and a 67.03% (for GoogleNet) accuracy rate for the 
classification of sMCI cases. Using Level 3 E2EL,MRI 
images as input and a basic 3D CNN model, Tufali et al. 
[61] conducted experiments for multiclass classification, 
but only obtained an average accuracy of 64.33% and an 
MCI class accuracy of 51.25%.

We achieved an accuracy of 93.10%in the evalua-
tion of unseen data for the binary classification task and 
87.38%for the multiclass classification task. This is sig-
nificantly better than the early AD prediction accuracy 
reported by state-of-the-art methods in the last five years. 
Although our models are suitable to use in clinical settings 

Algorithm 3  Occlusion sensi-
tivity map

Fig. 15  Heat map overlayed on 
the base MRI scan based on 
the occlusion sensitivity for the 
sMCI class [Multi class clas-
sification model]
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Fig. 16  Heat map overlayed on 
the base MRI scan based on the 
occlusion sensitivity for the CN 
class [Multi class classification 
model]

Fig. 17  Heat map overlayed on 
the base MRI scan based on the 
occlusion sensitivity for the AD 
class [Multi class classification 
model]
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to aid neuroradiologists, further training with more high-
quality MRI scans from a diverse range of sources is 
required to ensure reproducibility.

Conclusion

Several conclusions can be extracted from the research 
presented here. Even with neuroimaging, where a limited 
number of high-dimensional scans are available, the fusion 
of E2EL with TL allows the obtaining of remarkable 
results. However, it requires the fine tuning of hyperpa-
rameters, and an appropriate 3D CNN architecture specifi-
cally designed for TL with excellent potential for gener-
alization; additionally, MRI scans must be thoroughly 
pre-processed to maintain the spatial link and enhance 
image quality.

We also observed that MONAI offers a leading frame-
work to implement DL models for medical image analysis, 
as it is simple to understand and supports a wide range of 
functions. Additionally, Google Colab Pro + offered the 
best online cloud-based resources, with access to large 
RAM and excellent GPUs, thus enabling us to achieve this 
task despite certain drawbacks such as GPU unavailability 
under heavy load.

The results obtained in our experiments utiliz-
ing the ADNI and IXI datasets demonstrated that our 
model is more effective and efficient than the current 

state-of-the-art models for both binary and multiclass 
tasks. However, there are a number of limitations to this 
study that need to be addressed in follow-up research.

Furthermore, the model must be implemented in clini-
cal settings where it can be subjected to qualitative exami-
nation to determine its robustness. The number of subjects 
utilized to foster E2EL was still quite low. We anticipate 
that, as more diverse datasets become available in the 
future, this approach will lead to more generic learning 
models.

Appendix

Visit this URL to obtain the supplementary documentation:https:// 
drive. google. com/ drive/ folde rs/ 1MFtl IitvM BnCt3 4SkCM 8ZIMb 
Z3mn5 bNT? usp= share_ link

It provide access to the scripts for MRI preprocessing, 
hyperparameter tuning, and model implementation for both 
types of tasks, with results, confusion matrices, and AUC 
graph for every fold. Additionally, the scripts used for gen-
erating heatmaps and validating Spanish datasets, can also 
be accessed.

Author contributions D.A., M.A.B., and V.L. contributed to designing 
the methodology, implementing the models, and writing the manu-
script. I.d.l.T.-D., A.L., and J.B.B. participated in the review and draft-
ing of the paper, as well as the gathering and preprocessing of data. The 
manuscript's published version was approved by all authors.

Table 3  Matching up the 
findings of the AD vs. SMCI 
task with the results of the state-
of-the-art DL models

* Proposed

DL model ACC AUC SPE SEN BA Ref

3D CNN [EfficientNet-B0] 93.10 93.00 86.20 1.00 93.10 *
3D CNN [DenseNet264] 82.50 82.50 82.50 82.50 82.50 [55]
Sparse Regression + 2D CNN 74.82 75.39 78.82 70.93 74.87 [58]
3D CNN 72.5 74.60 82.5 61.0 71.75 [8]
CAE + 3DCNN 73.95 79.11 70.71 77.46 74.08 [19]
3D CNN 86.3 - 88.7 84.0 86.35 [42]
3D CNN 76.0 81.0 76.0 71.0 73.5 [28]
2D CNN 83.81 88.89 87.50 75.76 81.63 [59]
MDNN/2D CNN 81.55 - 73.33 83.83 78.58 [27]
AlexNet + SVM 2D CNN 78.56 - 77.63 91.02 84.32 [23]
MM-SDPN 78.88 - 86.81 68.04 77.42 [60]

Table 4  Matching up the 
findings of the AD vs. CN vs. 
SMCI task with the results of 
the state-of-the-art DL models

DL model ACC AUC Precision Recall F-1 score Ref

3D CNN [EfficientNet-B0] 87.38 91.0 86.38 87.51 86.43 *
CaffeNet/2D CNN 87.00 [12]
GogleNet/2D CNN 83.20 [12]
3D CNN 64.81 55.5 44.66 41.88 [61]

https://drive.google.com/drive/folders/1MFtlIitvMBnCt34SkCM8ZIMbZ3mn5bNT?usp=share_link
https://drive.google.com/drive/folders/1MFtlIitvMBnCt34SkCM8ZIMbZ3mn5bNT?usp=share_link
https://drive.google.com/drive/folders/1MFtlIitvMBnCt34SkCM8ZIMbZ3mn5bNT?usp=share_link


 Journal of Medical Systems           (2023) 47:57 

1 3

   57  Page 20 of 22

Funding Open Access funding provided thanks to the CRUE-CSIC 
agreement with Springer Nature. 

Data availability The data that underpins the study's conclusions is 
freely accessible in IXI at https:// brain devel opment. org/ ixi- datas et/ and 
in ADNI at https:// adni. loni. usc. edu. On reasonable request, the data of 
the 22 Spanish subjects, which were gathered from several HT Medica 
sites around Spain and used to validate the model's generalizability, 
may be provided.

Declarations 

Institutional review board statement Not applicable.

Informed consent statement Not applicable.

Conflicts of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hardy, J., Amyloid, the presenilins and Alzheimer’s disease. 
Trends Neurosci. 20(4):154–159, 1997. https:// doi. org/ 10. 1016/ 
S0166- 2236(96) 01030-2.

 2. Patterson, C., “World Alzheimer report 2018,” Alzheimer’s 
Disease International, Report, 2018. Accessed: Apr. 29, 2022. 
[Online]. Available: https:// apo. org. au/ node/ 260056.

 3. “Alzheimer’s Disease Facts and Figures,” Alzheimer’s Disease and 
Dementia. https:// www. alz. org/ alzhe imers- demen tia/ facts- figur es. 
(Accessed Apr. 29, 2022).

 4. Klöppel, S., et al., Accuracy of dementia diagnosis—a direct com-
parison between radiologists and a computerized method. Brain. 
131(11):2969–2974, 2008. https:// doi. org/ 10. 1093/ brain/ awn239.

 5. Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., 
and Johnson, S. C., Spatially augmented LPboosting for AD 
classification with evaluations on the ADNI dataset. NeuroIm-
age. 48(1):138–149, 2009. https:// doi. org/ 10. 1016/j. neuro image. 
2009. 05. 056.

 6. Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., and 
Davatzikos, C., A review on neuroimaging-based classification 
studies and associated feature extraction methods for Alzheimer’s 
disease and its prodromal stages. NeuroImage. 155:530–548, 
2017. https:// doi. org/ 10. 1016/j. neuro image. 2017. 03. 057.

 7. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning. Nature. 
521(7553):436–444, 2015. https:// doi. org/ 10. 1038/ natur e14539.

 8. Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., and Long, 
X., A 3D densely connected convolution neural network with 
connection-wise attention mechanism for Alzheimer’s disease 
classification. Magn. Reson. Imaging. 78:119–126, 2021. https:// 
doi. org/ 10. 1016/j. mri. 2021. 02. 001.

 9. Mehmood, A., Maqsood, M., Bashir, M., and Shuyuan, Y., A deep 
siamese convolution neural network for multi-class classification 
of Alzheimer disease. Brain Sci. 10(2):84, 2020. https:// doi. org/ 
10. 3390/ brain sci10 020084.

 10. Solano-Rojas, B., and Villalón-Fonseca, R., A low-cost three-
dimensional DenseNet neural network for Alzheimer’s disease 
early discovery. Sensors. 21(4):1302, 2021, https:// doi. org/ 10. 
3390/ s2104 1302.

 11. Odusami, M., Maskeliūnas, R., Damaševičius, R., and Krilavičius, 
T., Analysis of features of Alzheimer’s disease: Detection of 
early stage from functional brain changes in magnetic resonance 
images using a finetuned ResNet18 network. Diagn. Basel Switz. 
11(6):1071, 2021. https:// doi. org/ 10. 3390/ diagn ostic s1106 1071.

 12. Wu, C., et al., Discrimination and conversion prediction of mild 
cognitive impairment using convolutional neural networks. Quant. 
Imaging Med. Surg. 8(10):992003–991003, 2018.

 13. Ahila, A, Poongodi, M, Hamdi, M., Bourouis, S., Rastislav, K., 
and Mohmed, F., Evaluation of neuro images for the diagnosis of 
Alzheimer’s disease using deep learning neural network. Front. 
Public Health, 10, 2022. Accessed: Apr. 25, 2022. [Online]. 
Available: https:// www. front iersin. org/ artic le/ 10. 3389/ fpubh. 
2022. 834032.

 14 Goceri, E., Diagnosis of Alzheimer’s disease with Sobolev gra-
dient-based optimization and 3D convolutional neural network. 
Int. J. Numer. Methods Biomed. Eng. 35(7):e3225, 2019. https:// 
doi. org/ 10. 1002/ cnm. 3225.

 15. Abrol, A., Bhattarai, M., Fedorov, A., Du, Y., Plis, S., and Calhoun, 
V., Deep residual learning for neuroimaging: An application to 
predict progression to Alzheimer’s disease. J. Neurosci. Methods. 
339:108701, 2020. https:// doi. org/ 10. 1016/j. jneum eth. 2020. 108701.

 16. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in 
Neural Information Processing Systems. Vol. 25. 2012. Accessed: 
Oct. 11, 2022. [Online]. Available: https:// papers. nips. cc/ paper/ 
2012/ hash/ c3998 62d3b 9d6b7 6c843 6e924 a68c4 5b- Abstr act. html

 17. Marques, G., Agarwal, D., and de la Torre Díez, I., Automated 
medical diagnosis of COVID-19 through EfficientNet convo-
lutional neural network. Appl. Soft Comput. 96:106691, 2020. 
https:// doi. org/ 10. 1016/j. asoc. 2020. 106691.

 18. Glasmachers, T., Limits of End-to-End Learning. In Proceed-
ings of the Ninth Asian Conference on Machine Learning, pp. 
17–32, 2017. Accessed: Apr. 30, 2022. [Online]. Available: 
https:// proce edings. mlr. press/ v77/ glasm acher s17a. html.

 19. Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S., and Oh, I.-S., 
Classification and visualization of Alzheimer’s disease using 
volumetric convolutional neural network and transfer learn-
ing. Sci. Rep. 9(1), Art. no. 1, 2019. https:// doi. org/ 10. 1038/ 
s41598- 019- 54548-6.

 20. Vieira, S., Pinaya, W. H. L., and Mechelli, A., Using deep learning to 
investigate the neuroimaging correlates of psychiatric and neurological 
disorders: Methods and applications. Neurosci. Biobehav. Rev. 74(Pt 
A):58–75, 2017. https:// doi. org/ 10. 1016/j. neubi orev. 2017. 01. 002.

 21. Liu, M., Zhang, J., Lian, C., and Shen, D., Weakly supervised 
deep learning for brain disease prognosis using MRI and incom-
plete clinical scores. IEEE Trans. Cybern. 50(7):3381–3392, 
2020. https:// doi. org/ 10. 1109/ TCYB. 2019. 29041 86.

 22. Choi, H., Jin, K. H., and Alzheimer’s Disease Neuroimaging Ini-
tiative, Predicting cognitive decline with deep learning of brain 
metabolism and amyloid imaging. Behav. Brain Res. 344:103–
109, 2018. https:// doi. org/ 10. 1016/j. bbr. 2018. 02. 017.

 23. Yang, Z., and Liu, Z., The risk prediction of Alzheimer’s disease 
based on the deep learning model of brain 18F-FDG positron 
emission tomography. Saudi J. Biol. Sci. 27(2):659–665, 2020. 
https:// doi. org/ 10. 1016/j. sjbs. 2019. 12. 004.

 24. Raina, R., Ng, A. Y., and Koller, D., Constructing informative priors 
using transfer learning. In Proceedings of the 23rd international 

https://braindevelopment.org/ixi-dataset/
https://adni.loni.usc.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0166-2236(96)01030-2
https://doi.org/10.1016/S0166-2236(96)01030-2
https://apo.org.au/node/260056
https://www.alz.org/alzheimers-dementia/facts-figures
https://doi.org/10.1093/brain/awn239
https://doi.org/10.1016/j.neuroimage.2009.05.056
https://doi.org/10.1016/j.neuroimage.2009.05.056
https://doi.org/10.1016/j.neuroimage.2017.03.057
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.mri.2021.02.001
https://doi.org/10.1016/j.mri.2021.02.001
https://doi.org/10.3390/brainsci10020084
https://doi.org/10.3390/brainsci10020084
https://doi.org/10.3390/s21041302
https://doi.org/10.3390/s21041302
https://doi.org/10.3390/diagnostics11061071
https://www.frontiersin.org/article/10.3389/fpubh.2022.834032
https://www.frontiersin.org/article/10.3389/fpubh.2022.834032
https://doi.org/10.1002/cnm.3225
https://doi.org/10.1002/cnm.3225
https://doi.org/10.1016/j.jneumeth.2020.108701
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1016/j.asoc.2020.106691
https://proceedings.mlr.press/v77/glasmachers17a.html
https://doi.org/10.1038/s41598-019-54548-6
https://doi.org/10.1038/s41598-019-54548-6
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1109/TCYB.2019.2904186
https://doi.org/10.1016/j.bbr.2018.02.017
https://doi.org/10.1016/j.sjbs.2019.12.004


Journal of Medical Systems           (2023) 47:57  

1 3

Page 21 of 22    57 

conference on Machine learning, New York, NY, USA, pp. 713–
720, 2006. https:// doi. org/ 10. 1145/ 11438 44. 11439 34.

 25. Mesnil, G., et al., Unsupervised and Transfer Learning Challenge: 
A Deep Learning Approach. In Proceedings of ICML Workshop 
on Unsupervised and Transfer Learning, pp. 97–110, 2012. 
Accessed: Oct. 10, 2022. [Online]. Available: https:// proce edings. 
mlr. press/ v27/ mesni l12a. html.

 26. Zhou, L., Wang, Y., Li, Y., Yap, P.-T., Shen, D., and and the A. 
D. N. Initiative (ADNI), Hierarchical anatomical brain networks 
for MCI prediction: Revisiting volumetric measures. PLOS ONE. 
6(7):e21935, 2011. https:// doi. org/ 10. 1371/ journ al. pone. 00219 35.

 27 Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., and 
Alzheimer’s Disease Neuroimaging Initiative. Multiscale deep 
neural network based analysis of FDG-PET images for the early 
diagnosis of Alzheimer’s disease. Med. Image Anal. 46:26–34, 
2018. https:// doi. org/ 10. 1016/j. media. 2018. 02. 002.

 28. Gao, F., et al., AD-NET: Age-adjust neural network for improved 
MCI to AD conversion prediction. NeuroImage Clin. 27:102290, 
2020. https:// doi. org/ 10. 1016/j. nicl. 2020. 102290.

 29. Manjón, J. V., MRI Preprocessing. In: Martí-Bonmatí, L., and 
Alberich-Bayarri, A., (Eds.), Imaging Biomarkers: Development 
and Clinical Integration. Cham: Springer International Publishing, 
pp. 53–63, 2017. https:// doi. org/ 10. 1007/ 978-3- 319- 43504-6_5.

 30. Mehmood, A., et al., A transfer learning approach for early diagnosis 
of Alzheimer’s disease on MRI images. Neuroscience. 460:43–52, 
2021. https:// doi. org/ 10. 1016/j. neuro scien ce. 2021. 01. 002.

 31. Ramzan, F., et al., A deep learning approach for automated diag-
nosis and multi-class classification of Alzheimer’s disease stages 
using resting-state fMRI and residual neural networks. J. Med. 
Syst. 44(2):37, 2019. https:// doi. org/ 10. 1007/ s10916- 019- 1475-2.

 32. Fedorov, A., et al., “Prediction of Progression to Alzheimer’s dis-
ease with Deep InfoMax.” arXiv, 2019. https:// doi. org/ 10. 48550/ 
arXiv. 1904. 10931.

 33. Hosseini-Asl, E., et al., Alzheimer’s disease diagnostics by a 3D 
deeply supervised adaptable convolutional network. Front. Biosci. 
Landmark Ed. 23(3):584–596, 2018. https:// doi. org/ 10. 2741/ 4606.

 34. Zhang, F., Li, Z., Zhang, B., Du, H., Wang, B., and Zhang, X., 
Multi-modal deep learning model for auxiliary diagnosis of Alz-
heimer’s disease. Neurocomputing. 361:185–195, 2019. https:// 
doi. org/ 10. 1016/j. neucom. 2019. 04. 093.

 35 Liu, M., Cheng, D., Wang, K., Wang, Y., and Alzheimer’s Dis-
ease Neuroimaging Initiative, Multi-modality cascaded convolu-
tional neural networks for Alzheimer’s disease diagnosis. Neu-
roinformatics 16(3–4):295–308, 2018. https:// doi. org/ 10. 1007/ 
s12021- 018- 9370-4.

 36. Xu, L., Wu, X., Chen, K., and Yao, L., Multi-modality sparse 
representation-based classification for Alzheimer’s disease and 
mild cognitive impairment. Comput. Methods Programs Biomed. 
122(2):182–190, 2015. https:// doi. org/ 10. 1016/j. cmpb. 2015. 08. 004.

 37. Uludağ, K., and Roebroeck, A., General overview on the merits 
of multimodal neuroimaging data fusion. NeuroImage. 102:3–10, 
2014. https:// doi. org/ 10. 1016/j. neuro image. 2014. 05. 018.

 38. Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., and 
Alzheimer’s Disease Neuroimaging Initiative, Multimodal and 
multiscale deep neural networks for the early diagnosis of Alzhei-
mer’s disease using structural MR and FDG-PET images. Sci. Rep. 
8(1):5697, 2018. https:// doi. org/ 10. 1038/ s41598- 018- 22871-z.

 39. Song, J., Zheng, J., Li, P., Lu, X., Zhu, G., and Shen, P., An Effective 
multimodal image fusion method using MRI and PET for Alzhei-
mer’s disease diagnosis. Front. Digit. Health. 3, 2021. Accessed: Apr. 
22, 2022. [Online]. Available: https:// www. front iersin. org/ artic le/ 10. 
3389/ fdgth. 2021. 637386.

 40. Korolev, S., Safiullin, A., Belyaev, M., and Dodonova, Y., Resid-
ual and plain convolutional neural networks for 3D brain MRI 
classification. In 2017 IEEE 14th International Symposium on 
Biomedical Imaging (ISBI 2017) pp. 835–838, 2017. https:// doi. 
org/ 10. 1109/ ISBI. 2017. 79506 47.

 41. Liu, M., et al., A multi-model deep convolutional neural network 
for automatic hippocampus segmentation and classification in 
Alzheimer’s disease. NeuroImage. 208:116459, 2020. https:// doi. 
org/ 10. 1016/j. neuro image. 2019. 116459.

 42. Basaia, S., et al., Automated classification of Alzheimer’s disease 
and mild cognitive impairment using a single MRI and deep neu-
ral networks. NeuroImage Clin. 21:101645, 2019. https:// doi. org/ 
10. 1016/j. nicl. 2018. 101645.

 43. “Welcome to ANTsPyNet’s documentation! — ANTsPyNet 0.0.1 
documentation.” https:// antsx. github. io/ ANTsP yNet/ docs/ build/ 
html/ index. html. (Accessed May 06, 2022).

 44. “MONAI - About Us.” https:// monai. io/ about. html. (Accessed 
May 05, 2022).

 45. “IXI Dataset – Brain Development.” https:// brain- devel opment. 
org/ ixi- datas et/. (Accessed May 10, 2022).

 46. “ADNI | Alzheimer’s Disease Neuroimaging Initiative.” https:// 
adni. loni. usc. edu/. (Accessed May 10, 2022).

 47. Wang, J., He, L., Zheng, H., and Lu, Z.-L., Optimizing the mag-
netization-prepared rapid gradient-echo (MP-RAGE) sequence. 
PLoS ONE. 9(5):e96899, 2014. https:// doi. org/ 10. 1371/ journ al. 
pone. 00968 99.

 48. Gaillard, F., “MRI sequences (overview) | Radiology Reference 
Article | Radiopaedia.org,” Radiopaedia. https:// radio paedia. org/ 
artic les/ mri- seque nces- overv iew. (Accessed Dec. 10, 2022).

 49. Bhagwat, N., et al., Understanding the impact of preprocessing 
pipelines on neuroimaging cortical surface analyses. GigaScience. 
10(1):giaa155, 2021. https:// doi. org/ 10. 1093/ gigas cience/ giaa1 55.

 50. Tustison, N. J., et al., N4ITK: improved N3 bias correction. IEEE 
Trans. Med. Imaging. 29(6):1310–1320, 2010. https:// doi. org/ 10. 
1109/ TMI. 2010. 20469 08.

 51. “Denoise an image — denoiseImage.” https:// antsx. github. io/ ANTsR 
Core/ refer ence/ denoi seIma ge. html. (Accessed May 15, 2022).

 52. “Trained models,” Apr. 25, 2022. https:// github. com/ neuro nets/ 
train ed- models. (Accessed May 16, 2022).

 53. “Atlases – NIST.” https:// nist. mni. mcgill. ca/ atlas es/. (Accessed 
Oct. 22, 2022).

 54. Tan, M., and Le, Q. V., EfficientNet: rethinking model scaling for 
convolutional neural networks, ArXiv190511946 Cs Stat, 2020. 
Accessed: May 05, 2022. [Online]. Available: http:// arxiv. org/ abs/ 
1905. 11946.

 55. Agarwal, D., Berbis, M. A., Martín-Noguerol, T., Luna, A., Garcia, 
S. C. P., and de la Torre-Díez, I., End-to-end deep learning archi-
tectures using 3D neuroimaging biomarkers for early Alzheimer’s 
diagnosis. Mathematics. 10(15):Art. no. 15, 2022. https:// doi. org/ 
10. 3390/ math1 01525 75.

 56. Droste, B., “Google Colab Pro+: Is it worth $49.99?,” Medium, 
2022. https:// towar dsdat ascie nce. com/ google- colab- pro- is- it- 
worth- 49- 99- c5427 70b8e 56 (accessed May 22, 2022).

 57. Dyrba, M., et al., Improving 3D convolutional neural network 
comprehensibility via interactive visualization of relevance 
maps: evaluation in Alzheimer’s disease. Alzheimers Res. Ther. 
13(1):191, 2021. https:// doi. org/ 10. 1186/ s13195- 021- 00924-2.

 58 Suk, H.-I., Lee, S.-W., Shen, D., and Alzheimer’s disease neuro-
imaging initiative, Deep ensemble learning of sparse regression 
models for brain disease diagnosis. Med. Image Anal. 37:101–113, 
2017. https:// doi. org/ 10. 1016/j. media. 2017. 01. 008.

https://doi.org/10.1145/1143844.1143934
https://proceedings.mlr.press/v27/mesnil12a.html
https://proceedings.mlr.press/v27/mesnil12a.html
https://doi.org/10.1371/journal.pone.0021935
https://doi.org/10.1016/j.media.2018.02.002
https://doi.org/10.1016/j.nicl.2020.102290
https://doi.org/10.1007/978-3-319-43504-6_5
https://doi.org/10.1016/j.neuroscience.2021.01.002
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.48550/arXiv.1904.10931
https://doi.org/10.48550/arXiv.1904.10931
https://doi.org/10.2741/4606
https://doi.org/10.1016/j.neucom.2019.04.093
https://doi.org/10.1016/j.neucom.2019.04.093
https://doi.org/10.1007/s12021-018-9370-4
https://doi.org/10.1007/s12021-018-9370-4
https://doi.org/10.1016/j.cmpb.2015.08.004
https://doi.org/10.1016/j.neuroimage.2014.05.018
https://doi.org/10.1038/s41598-018-22871-z
https://www.frontiersin.org/article/10.3389/fdgth.2021.637386
https://www.frontiersin.org/article/10.3389/fdgth.2021.637386
https://doi.org/10.1109/ISBI.2017.7950647
https://doi.org/10.1109/ISBI.2017.7950647
https://doi.org/10.1016/j.neuroimage.2019.116459
https://doi.org/10.1016/j.neuroimage.2019.116459
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1016/j.nicl.2018.101645
https://antsx.github.io/ANTsPyNet/docs/build/html/index.html
https://antsx.github.io/ANTsPyNet/docs/build/html/index.html
https://monai.io/about.html
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
https://doi.org/10.1371/journal.pone.0096899
https://doi.org/10.1371/journal.pone.0096899
https://radiopaedia.org/articles/mri-sequences-overview
https://radiopaedia.org/articles/mri-sequences-overview
https://doi.org/10.1093/gigascience/giaa155
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://antsx.github.io/ANTsRCore/reference/denoiseImage.html
https://antsx.github.io/ANTsRCore/reference/denoiseImage.html
https://github.com/neuronets/trained-models
https://github.com/neuronets/trained-models
https://nist.mni.mcgill.ca/atlases/
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.3390/math10152575
https://doi.org/10.3390/math10152575
https://towardsdatascience.com/google-colab-pro-is-it-worth-49-99-c542770b8e56
https://towardsdatascience.com/google-colab-pro-is-it-worth-49-99-c542770b8e56
https://doi.org/10.1186/s13195-021-00924-2
https://doi.org/10.1016/j.media.2017.01.008


 Journal of Medical Systems           (2023) 47:57 

1 3

   57  Page 22 of 22

 59. Pan, X., et al., Multi-view separable pyramid network for AD 
prediction at MCI stage by 18F-FDG brain PET imaging. IEEE 
Trans. Med. Imaging, pp. 1–1, 2020. https:// doi. org/ 10. 1109/ TMI. 
2020. 30225 91.

 60. Shi, J., Zheng, X., Li, Y., Zhang, Q., and Ying, S., Multimodal 
neuroimaging feature learning with multimodal stacked deep 
polynomial networks for diagnosis of Alzheimer’s disease. IEEE 
J. Biomed. Health Inform. 22(1):173–183, 2018. https:// doi. org/ 
10. 1109/ JBHI. 2017. 26557 20.

 61. Tufail, A. B., Ma, Y., and Zhang, Q.-N., Multiclass classification 
of initial stages of Alzheimer’s Disease through Neuroimaging 
modalities and Convolutional Neural Networks. In 2020 IEEE 5th 
Information Technology and Mechatronics Engineering Conference 
(ITOEC), pp. 51–56, 2020. https:// doi. org/ 10. 1109/ ITOEC 49072. 
2020. 91415 53.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TMI.2020.3022591
https://doi.org/10.1109/TMI.2020.3022591
https://doi.org/10.1109/JBHI.2017.2655720
https://doi.org/10.1109/JBHI.2017.2655720
https://doi.org/10.1109/ITOEC49072.2020.9141553
https://doi.org/10.1109/ITOEC49072.2020.9141553

	Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network
	Abstract
	Introduction
	Materials & methods
	Participants
	Preprocessing pipeline
	Implemented CNN

	Experimental setup
	Results and discussion
	Results
	Heat map visualization through occlusion sensitivity
	Validation of the binary classification model by using Spanish datasets

	Discussion
	Conclusion
	Appendix
	References


