26 research outputs found

    Very fast watermarking by reversible contrast mapping

    Full text link
    Reversible contrast mapping (RCM) is a simple integer transform that applies to pairs of pixels. For some pairs of pixels, RCM is invertible, even if the least significant bits (LSBs) of the transformed pixels are lost. The data space occupied by the LSBs is suitable for data hiding. The embedded information bit-rates of the proposed spatial domain reversible watermarking scheme are close to the highest bit-rates reported so far. The scheme does not need additional data compression, and, in terms of mathematical complexity, it appears to be the lowest complexity one proposed up to now. A very fast lookup table implementation is proposed. Robustness against cropping can be ensured as well

    Lossless Authentication Watermarking Based on Adaptive Modular Arithmetic

    Get PDF
    Reversible watermarking schemes based on modulo-256 addition may cause annoying salt-and-pepper noise. To avoid the salt-and-pepper noise, a reversible watermarking scheme using human visual perception characteristics and adaptive modular arithmetic is proposed. First, a high-bit residual image is obtained by extracting the most significant bits (MSB) of the original image, and a new spatial visual perception model is built according to the high-bit residual image features. Second, the watermark strength and the adaptive divisor of modulo operation for each pixel are determined by the visual perception model. Finally, the watermark is embedded into different least significant bits (LSB) of original image with adaptive modulo addition. The original image can be losslessly recovered if the stego-image has not been altered. Extensive experiments show that the proposed algorithm eliminates the salt-and-pepper noise effectively, and the visual quality of the stego-image with the proposed algorithm has been dramatically improved over some existing reversible watermarking algorithms. Especially, the stegoimage of this algorithm has about 9.9864 dB higher PSNR value than that of modulo-256 addition based reversible watermarking scheme

    A Survey on Recent Reversible Watermarking Techniques

    Get PDF
    Watermarking is a technique to protect the copyright of digital media such as image, text, music and movie. Reversible watermarking is a technique in which watermark can be removed to completely restore the original image. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the original image. For the last few years, reversible watermarking techniques are gaining popularity due to its applications in important and sensitive areas like military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different latest reversible watermarking techniques are discussed on the basis of various characteristics of watermarking

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    REVERSIBLE WATERMARKING APPROACH FOR HEALTH INFORMATION SYSTEM

    Get PDF
    Health Information System [HIS] are gaining augmented acceptability and wide popularity as exchange of medical information and medical images between the healthcare centres are boosted up, which makes reversible watermarking emerge as an upcoming thrust area of research. This paper presents an efficient reversible approach for interleaving patient information in the form of Electro Cardio Graph [ECG] signal and hospital logo in the medical images. The proposed approach based on Discrete Wavelet Transform [DWT], utilizes the peak point of the difference image histogram for hiding the credentials of the corresponding patients. The superiority of the proposed approach is validated using 60 case studies of various modalities (CT, MRI, MRA and US) and comparing it with the spatial domain approach. Experimental results show that the histogram based approach using DWT gives high quality of watermarked image even after hiding the ECG signal encrypted with Adaptive Delta Modulation [ADM] and binary hospital logo. The high values of PSNR ensure the perceptual integrity, authentication of the patient’s data and bandwidth reduction of the medical images as compared to the state of art methods

    Reversible watermarking scheme with image-independent embedding capacity

    Get PDF
    Permanent distortion is one of the main drawbacks of all the irreversible watermarking schemes. Attempts to recover the original signal after the signal passing the authentication process are being made starting just a few years ago. Some common problems, such as salt-and-pepper artefacts owing to intensity wraparound and low embedding capacity, can now be resolved. However, some significant problems remain unsolved. First, the embedding capacity is signal-dependent, i.e., capacity varies significantly depending on the nature of the host signal. The direct impact of this is compromised security for signals with low capacity. Some signals may be even non-embeddable. Secondly, while seriously tackled in irreversible watermarking schemes, the well-known problem of block-wise dependence, which opens a security gap for the vector quantisation attack and transplantation attack, are not addressed by researchers of the reversible schemes. This work proposes a reversible watermarking scheme with near-constant signal-independent embedding capacity and immunity to the vector quantisation attack and transplantation attack

    Reversible Watermarking by Modulation and Security Enhancement

    Full text link
    corecore