11,149 research outputs found

    Circular pattern matching with k mismatches

    Get PDF
    The k-mismatch problem consists in computing the Hamming distance between a pattern P of length m and every length-m substring of a text T of length n, if this distance is no more than k. In many real-world applications, any cyclic shift of P is a relevant pattern, and thus one is interested in computing the minimal distance of every length-m substring of T and any cyclic shift of P. This is the circular pattern m

    Circular pattern matching with k mismatches

    Get PDF
    We consider the circular pattern matching with k mismatches (k-CPM) problem in which one is to compute the minimal Hamming distance of every length-m substring of T and any cyclic rotation of P, if this distance is no more than k. It is a variation of the well-studied k-mismatch problem. A multitude of papers has been devoted

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    The streaming kk-mismatch problem

    Get PDF
    We consider the streaming complexity of a fundamental task in approximate pattern matching: the kk-mismatch problem. It asks to compute Hamming distances between a pattern of length nn and all length-nn substrings of a text for which the Hamming distance does not exceed a given threshold kk. In our problem formulation, we report not only the Hamming distance but also, on demand, the full \emph{mismatch information}, that is the list of mismatched pairs of symbols and their indices. The twin challenges of streaming pattern matching derive from the need both to achieve small working space and also to guarantee that every arriving input symbol is processed quickly. We present a streaming algorithm for the kk-mismatch problem which uses O(klognlognk)O(k\log{n}\log\frac{n}{k}) bits of space and spends \ourcomplexity time on each symbol of the input stream, which consists of the pattern followed by the text. The running time almost matches the classic offline solution and the space usage is within a logarithmic factor of optimal. Our new algorithm therefore effectively resolves and also extends an open problem first posed in FOCS'09. En route to this solution, we also give a deterministic O(k(lognk+logΣ))O( k (\log \frac{n}{k} + \log |\Sigma|) )-bit encoding of all the alignments with Hamming distance at most kk of a length-nn pattern within a text of length O(n)O(n). This secondary result provides an optimal solution to a natural communication complexity problem which may be of independent interest.Comment: 27 page

    Approximate Circular Pattern Matching

    Get PDF
    We investigate the complexity of approximate circular pattern matching (CPM, in short) under the Hamming and edit distance. Under each of these two basic metrics, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions (called occurrences) of fragments of T that are at distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if there is any such occurrence. All previous results for approximate CPM were either average-case upper bounds or heuristics, with the exception of the work of Charalampopoulos et al. [CKP+, JCSS'21], who considered only the Hamming distance. For the reporting version of the approximate CPM problem, under the Hamming distance we improve upon the main algorithm of [CKP+, JCSS'21] from O(n+(n/m) k4) to O(n+(n/m) k3 log log k) time; for the edit distance, we give an O(nk2)-time algorithm. Notably, for the decision versions and wide parameter-ranges, we give algorithms whose complexities are almost identical to the state-of-the-art for standard (i.e., non-circular) approximate pattern matching: For the decision version of the approximate CPM problem under the Hamming distance, we obtain an O(n + (n/m) k2 log k/ log log k)-time algorithm, which works in O(n) time whenever k = O( p mlog log m/logm). In comparison, the fastest algorithm for the standard counterpart of the problem, by Chan et al. [CGKKP, STOC'20], runs in O(n) time only for k = O(√ m). We achieve this result via a reduction to a geometric problem by building on ideas from [CKP+, JCSS'21] and Charalampopoulos et al. [CKW, FOCS'20]. For the decision version of the approximate CPM problem under the edit distance, the O(nk log3 k) runtime of our algorithm near matches the O(nk) runtime of the Landau-Vishkin algorithm [LV, J. Algorithms'89] for approximate pattern matching under edit distance; the latter algorithm remains the fastest known for k = Ω(m2/5). As a stepping stone, we propose an O(nk log3 k)-time algorithm for solving the Longest Prefix k-Approximate Match problem, proposed by Landau et al. [LMS, SICOMP'98], for all k ∈ {1, , k}. Our algorithm is based on Tiskin's theory of seaweeds [Tiskin, Math. Comput. Sci.'08], with recent advancements (see Charalampopoulos et al. [CKW, FOCS'22]), and on exploiting the seaweeds' relation to Monge matrices. In contrast, we obtain a conditional lower bound that suggests a polynomial separation between approximate CPM under the Hamming distance over the binary alphabet and its non-circular counterpart. We also show that a strongly subquadratic-time algorithm for the decision version of approximate CPM under edit distance would refute the Strong Exponential Time Hypothesis

    The Mexican pension annuity market

    Get PDF
    This paper analyzes the performance and development of the Mexican pension annuity market established as a consequence of the 1997 pension reform. The Mexican experience displays interesting characteristics providing lessons for other countries that still need to design the decumulation phase of their newly established second pillars. At the same, time it raises some technical and policy concerns that need addressing as they could hamper, in the future, the healthy development of the market. The paper concludes that: 1) general life insurance companies may better hedge longevity risk than specialized annuity companies; 2) competition should be based on prices rather than additional products; 3) better disclosure of options under the 1973 and 1997 social security laws should be given to disability and life annuitants; and 4) various measures should be taken to improve asset liability management including allowing companies to trade over the counter derivatives and substituting over time the regulatory asset liability management framework with an economic asset liability management framework.Insurance&Risk Mitigation,Markets and Market Access,Economic Theory&Research,Non Bank Financial Institutions,Pensions&Retirement Systems
    corecore