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Abstract. The k-mismatch problem consists in computing the Ham-
ming distance between a pattern P of length m and every length-m
substring of a text T of length n, if this distance is no more than k. In
many real-world applications, any cyclic shift of P is a relevant pattern,
and thus one is interested in computing the minimal distance of every
length-m substring of T and any cyclic shift of P . This is the circular
pattern matching with k mismatches (k-CPM) problem. A multitude
of papers have been devoted to solving this problem but, to the best
of our knowledge, only average-case upper bounds are known. In this
paper, we present the first non-trivial worst-case upper bounds for the
k-CPM problem. Specifically, we show an O(nk)-time algorithm and an
O(n+ n

m
k5)-time algorithm. The latter algorithm applies in an extended

way a technique that was very recently developed for the k-mismatch
problem [Bringmann et al., SODA 2019].

1 Introduction

Pattern matching is a fundamental problem in computer science [15]. It consists
in finding all substrings of a text T of length n that match a pattern P of length
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m. In many real-world applications, a measure of similarity is usually introduced
allowing for approximate matches between the given pattern and substrings of
the text. The most widely-used similarity measure is the Hamming distance
between the pattern and all length-m substrings of the text.

Computing the Hamming distance between P and all length-m substrings of
T has been investigated for the past 30 years. The first efficient solution requir-
ing O(n

√
m log m) time was independently developed by Abrahamson [1] and

Kosaraju [30] in 1987. The k-mismatch version of the problem asks for finding
only the substrings of T that are close to P , specifically, at Hamming distance
at most k. The first efficient solution to this problem running in O(nk) time
was developed in 1986 by Landau and Vishkin [31]. It took almost 15 years
for a breakthrough result by Amir et al. improving this to O(n

√
k log k) [2].

More recently, there has been a resurgence of interest in the k-mismatch prob-
lem. Clifford et al. gave an O((n/m)(k2 log k) + npolylogn)-time algorithm [13],
which was subsequently improved further by Gawrychowski and Uznański to
O((n/m)(m + k

√
m)polylogn) [21]. In [21], the authors have also provided evi-

dence that any further progress in this problem is rather unlikely.
The k-mismatch problem has also been considered on compressed represen-

tations of the text [10,11,19,37], in the parallel model [18], and in the streaming
model [13,14,35]. Furthermore, it has been considered in non-standard stringol-
ogy models, such as the parameterized model [23] and the order-preserving
model [20].

In many real-world applications, such as in bioinformatics [4,7,22,25] or in
image processing [3,32–34], any cyclic shift (rotation) of P is a relevant pattern,
and thus one is interested in computing the minimal distance of every length-m
substring of T and any cyclic shift of P , if this distance is no more than k. This is
the circular pattern matching with k mismatches (k-CPM) problem. A multitude
of papers [5,6,8,9,17,24] have thus been devoted to solving the k-CPM problem
but, to the best of our knowledge, only average-case upper bounds are known;
i.e. in these works the assumption is that text T is uniformly random. The main
result states that, after preprocessing pattern P , the average-case optimal search
time of O(nk+logm

m ) [12] can be achieved for certain values of the error ratio k/m
(see [9,17] for more details on the preprocessing costs).

In this paper, we draw our motivation from (i) the importance of the k-
CPM problem in real-world applications and (ii) the fact that no (non-trivial)
worst-case upper bounds are known. Trivial here refers to running the fastest-
known algorithm for the k-mismatch problem [21] separately for each of the m
rotations of P . This yields an O(n(m+k

√
m)polylogn)-time algorithm for the k-

CPM problem. This is clearly unsatisfactory: it is a simple exercise to design an
O(nm)-time or an O(nk2)-time algorithm. In an effort to tackle this unpleasant
situation, we present two much more efficient algorithms: a simple O(nk)-time
algorithm and an O(n + n

m k5)-time algorithm. Our second algorithm applies in
an extended way a technique that was developed very recently for k-mismatch
pattern matching in grammar compressed strings by Bringmann et al. [11].



Circular Pattern Matching with k Mismatches 215

Our Approach. We first consider a simple version of the problem (called
Anchor-Match) in which we are given a position in T (an anchor) which
belongs to potential k-mismatch circular occurrences of P . A simple O(k) time
algorithm is given (after linear-time preprocessing) to compute all relevant occur-
rences. By considering separately each position in T as an anchor we obtain an
O(nk)-time algorithm. The concept of an anchor is extended to the so called
matching-pairs: when we know a pair of positions, one in P and the other in T ,
that are aligned. Then comes the idea of a sample P ′, which is a fragment of P
of length Θ(m/k) which supposedly exactly matches a corresponding fragment
in T . We choose O(k) samples and work for each of them and for windows of T
of size 2m. As it is typical in many versions of pattern matching, our solution is
split into the periodic and non-periodic cases. If P ′ is non-periodic the sample
occurs only O(k) times in a window and each occurrence gives a matching-pair
(and consequently two possible anchors). Then we perform Anchor-Match for
each such anchor. The hard part is the case when P ′ is periodic. Here we com-
pute all exact occurrences of P ′ and obtain O(k) groups of occurrences, each one
being an arithmetic progression. Now each group is processed using the approach
“few matches or almost periodicity” of Bringmann et al. [11]. In the latter case
periodicity is approximate, allowing up to k mismatches.

2 Preliminaries

Let S = S[0]S[1] · · · S[n−1] be a string of length |S| = n over an integer alphabet
Σ. The elements of Σ are called letters. For two positions i and j on S, we denote
by S[i . . j] = S[i] · · · S[j] the fragment of S that starts at position i and ends at
position j (it equals the empty string ε if j < i). A prefix of S is a fragment that
starts at position 0, i.e. of the form S[0 . . j], and a suffix is a fragment that ends
at position n−1, i.e. of the form S[i . . n−1]. For an integer k, we define the kth
power of S, denoted by Sk, as the string obtained from concatenating k copies
of S. S∞ denotes the string obtained by concatenating infinitely many copies. If
S and S′ are two strings of the same length, then by S =k S′ we denote the fact
that S and S′ have at most k mismatches, that is, that the Hamming distance
between S and S′ does not exceed k.

We say that a string S has period q if S[i] = S[i+q] for all i = 0, . . . , |S|−q−1.
String S is periodic if it has a period q such that 2q ≤ |S|. We denote the smallest
period of S by per(S).

For a string S, by rotx(S) for 0 ≤ x < |S|, we denote the string that is
obtained from S by moving the prefix of S of length x to its suffix. We call the
string rotx(S) (or its representation x) a rotation of S. More formally, we have

rotx(S) = V U , where S = UV and |U | = x.

2.1 Anatomy of Circular Occurrences

In what follows, we denote by m the length of the pattern P and by n the length
of the text T . We say that P has a k-mismatch circular occurrence (in short k-
occurrence) in T at position p if T [p . . p+m−1] =k rotx(P ) for some rotation x.
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In this case, the position x in the pattern is called the split point of the pattern
and p + (m − x) mod m 1 is called the anchor in the text (see Fig. 1).

T

P
split point

anchor

Fig. 1. The anchor and the split point for a k-occurrence of P in T .

In other words, if P = UV and its rotation V U occurs in T , then the first
position of V in P is the split point of this occurrence, and the first position of
U in T is the anchor of this occurrence.

For an integer z, let us denote Wz = [z . . z + m − 1] (window of size m).
For a k-occurrence at position p with rotation x, we introduce a set of pairs of
positions in the fragment of the text and the corresponding positions from the
original (unrotated) pattern:

M(p, x) = {(i, (i − p + x) mod m) : i ∈ Wp}.

The pairs (i, j) ∈ M(p, x) are called matching pairs of an occurrence p with
rotation x. In particular, (p + ((m − x) mod m), 0) ∈ M(p, x). An example is
provided in Fig. 2.

P = a
0
a
1
b
2
b
3
b
4
b
5

split point=2

T = a
0
a
1
c
2
c
3
b
4
b
5
x
6
b
7
a
8
a
9
a
10
b
11

anchor=8

rot2(P ) = b b b b a a
2 3 4 5 0 1

Fig. 2. A 1-occurrence of P = aabbbb in text T = aaccbbxbaaab at position p = 4
with rotation x = 2; M(4, 2) = {(4, 2), (5, 3), (6, 4), (7, 5), (8, 0), (9, 1)}.

2.2 Internal Queries in a Text

Let T be a string of length n called text. The length of the longest common prefix
(suffix) of strings U and V is denoted by lcp(U, V ) (lcs(U, V )). There is a well-
known efficient data structure answering such queries over suffixes (prefixes)
of a given text in O(1) time after O(n)-time preprocessing. It consists of the
suffix array and a data structure for range minimum queries; see [15]. Using
the kangaroo method [18,31], longest common prefix (suffix) queries can handle
mismatches; after an O(n)-time preprocessing of the text, longest common prefix
(suffix) queries with up to k mismatches can be answered in O(k) time.
1 The modulo operation is used to handle the trivial rotation with x = 0.
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An Internal Pattern Matching (IPM) query, for two given fragments F and G
of the text, such that |G| ≤ 2|F |, computes the set of all occurrences of F in G.
If there are more than two occurrences, they form an arithmetic sequence with
difference per(F ). For a text of length n, a data structure for IPM queries can
be constructed in O(n) time and answers queries in O(1) time (see [29] and [26,
Theorem 1.1.4]). It can be used to compute all occurrences of a given fragment
F of length p in T , expressed as a union of O(n/p) pairwise disjoint arithmetic
sequences with difference per(F ), in O(n/p) time.

3 An O(nk)-time Algorithm

We first introduce an auxiliary problem in which one wants to compute all k-
occurrences of P in T with a given anchor a.

Anchor-Match Problem

Input: Text T of length n, pattern P of length m, positive integer k, and
position a.
Output: Find all k-occurrences p of P in T with anchor a.

Lemma 1. After O(n)-time preprocessing, the answer to Anchor-Match
problem, represented as a union of O(k) intervals, can be computed in O(k)
time.

Proof. In the preprocessing we prepare a data structure for lcp and lcs queries
in P#T , for a special symbol # that does not occur in P and T .

The processing of each query is split into k + 1 phases. In the jth phase,
we compute the interval [lj . . rj ] such that for every p ∈ [lj . . rj ] there exists
a k-occurrence p in T that has an anchor at a and the number of mismatches
between T [p . . a − 1] and the suffix of P of equal length is exactly j.

Let us consider the conditions for interval [lj . . rj ] (see also Fig. 3):

C1 [lj . . rj ] ⊆ [a − m + 1 . . a) since occurrences must contain anchor a,
C2 [lj . . rj ] ⊆ [a − 1 − sj . . a − 1 − sj−1), where si is the length of the longest

common suffix of T [0 . . a−1] and P with exactly i mismatches, since we need
exactly j mismatches in T [p . . a − 1],

C3 [lj . . rj ] ⊆ [a − m . . a + pk−j − m), where pk−j is the length of the longest
common prefix of T [a . . n − 1] and P with at most k − j mismatches, since
we cannot exceed k mismatches in total.

Using the kangaroo method [18,31], the values sj , pj for all 0 ≤ j ≤ k can be
computed in O(k) time in total. Then the interval [lj . . rj ] is a simple intersection
of the above conditions, which can be computed in O(1) time. ��
Proposition 2. k-CPM can be solved in O(nk) time and O(n) space.
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T
a

lj rj
C1
a − m+ 1 a − 1

C2

sj

sj−1
C3

pk−j

m

Fig. 3. An illustration of the setting in Lemma 1.

Proof. We invoke the algorithm of Lemma 1 for all a ∈ [0 . . n − 1] and obtain
O(nk) intervals of k-occurrences of P in T . Instead of storing all the intervals,
we count how many intervals start and end at each position of the text. We can
then compute the union of the intervals by processing these counts left to right.

��

4 An O(n + n
m

k5)-time Algorithm

In this section, we assume that m ≤ n ≤ 2m and aim at an O(n + k5)-time
algorithm.

A (deterministic) sample is a short segment P ′ of the pattern P . An occur-
rence in the text without any mismatch is called exact. We introduce a problem
of Sample-Matching that consists in finding all k-occurrences of P in T such
that P ′ matches exactly a fragment of length |P ′| in T .

We split the pattern P into k + 2 fragments of length
⌊

m
k+2

⌋
or

⌈
m

k+2

⌉
each.

One of those fragments will occur exactly in the text (up to k fragments may
occur with a mismatch and at most one fragment will contain the split point).
Let us henceforth fix a sample P ′ as one of these fragments, let p′ be its starting
position in P , and let m′ = |P ′|.

We assume that the split point x in P is to the right of P ′, i.e., that x ≥
p′ + m′. The opposite case—that x < p′—can be handled analogously.

4.1 Matching Non-periodic Samples

Let us assume that P ′ is non-periodic. We introduce a problem in which, intu-
itively, we compute all k-occurrences of P in T which align T [i] with P [j].

Pair-Match Problem

Input: Text T of length n, pattern P of length m, positive integer k, and
two integers i ∈ [0 . . n − 1] and j ∈ [0 . . m − 1].
Output: The set A(i, j) of all positions in T where we have a k-mismatch
occurrence of rotx(P ) for some x such that (i, j) is a matching pair.
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T
i

j

j
P 2 U U

U ′ U ′V ′ V ′

V V

P 2

Fig. 4. The two possible anchors for the matching pair of positions (i, j) are shown as
bullet points. A possible k-occurrence of P in T corresponding to the left (resp. right)
anchor is shown below T (above T , resp.).

Lemma 3. After O(n)-time preprocessing, the Pair-Match problem can be
solved in O(k) time, where the output is represented as a union of O(k) intervals.

Proof. The Pair-Match problem can be essentially reduced to the Anchor-
Match problem, since for a given matching pair of characters in P and T , there
are at most two ways of choosing the anchor depending on the relation between
j and a split point: these are i−j (if i−j ≥ 0) and i+ |P |−j (if i+ |P |−j < |T |);
see Fig. 4. We then have to take the intersection of the answer with [i−m+1 . . i]
to ensure that the k-occurrence contains position i. ��
Lemma 4. After O(n)-time preprocessing, the Sample-Matching problem for
a non-periodic sample can be solved in O(k2) time and outputs a union of O(k2)
intervals of occurrences.

Proof. If P ′ is non-periodic, then it has O(k) occurrences in T , which can be
computed in O(k) time after an O(n)-time preprocessing using IPM queries [26,
29] in P#T . Let j be the starting position of P ′ in P and i be a starting
position of an occurrence of P ′ in T . For each of the O(k) such pairs (i, j), the
computation reduces to the Pair-Match problem for i and j. The statement
follows by Lemma 3. ��

4.2 Simple Geometry of Arithmetic Sequences of Intervals

Before we proceed with showing how to efficiently handle periodic samples, we
present algorithms that will be used in the proofs for handling regular sets of
intervals. For an interval I and integer r, let I ⊕ r = { i+ r : i ∈ I }. We define

Chainq(I, a) = I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪ · · · ∪ (I ⊕ aq).

This set is further called an interval chain. Note that it can be represented in
O(1) space (with four integers: a, q, and the endpoints of I).

For a given value of q, let us fit the integers from [1 . . n] into the cells of a
grid of width q so that the first row consists of numbers 1 through q, the second
of numbers q + 1 to 2q, etc. Let us call this grid Gq. A chain Chainq can be
conveniently represented in the grid Gq using the following lemma; it was stated
in [28] and its proof can be found in the full version of that paper [27].
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Lemma 5 ([27,28]). The set Chainq(I, a) is a union of O(1) orthogonal rectan-
gles in Gq. The coordinates of the rectangles can be computed in O(1) time.

Lemma 6 can be used to compute a union of interval chains; its proof is
deferred to the full version of this paper.

Lemma 6. Assume that we are given m interval chains whose elements are
subsets of [0 . . n]. The union of these chains, expressed as a subset of [0 . . n],
can be computed in O(n + m) time.

We will also use the following auxiliary lemma.

Lemma 7. Let X and Z be intervals and q be a positive integer. Then the set
Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)}, represented as a disjoint sum of at most
three interval chains with difference q, can be computed in O(1) time.

Proof. If |X| ≥ q, then Z ′ = Z is an interval and thus an interval chain. If
|X| < q, then Z ′ can be divided into disjoint intervals of length smaller than
or equal to |X|. The intervals from the second until the penultimate one (if any
such exist), have length |X|. Hence, they can be represented as a single chain,
as the first element of each such interval is equal mod q to the first element of
X. The two remaining intervals can be treated as chains as well. ��

4.3 Matching Periodic Samples

Let us assume that P ′ is periodic, i.e., it has a period q with 2q ≤ |P ′|. A
fragment of a string S containing an inclusion-maximal arithmetic sequence of
occurrences of P ′ in a string S with difference q is called here a P ′-run. If P ′

matches a fragment in the text, then the match belongs to a P ′-run. For example,
the underlined substring of S = bbabababaa is a P ′-run for P ′ = abab.

Lemma 8. If a string P ′ is periodic, the number of P ′-runs in the text is O(k)
and they can all be computed in O(k) time after O(n)-time preprocessing.

Proof. We construct the data structure for IPM queries on P#T . This allows
us to compute the set of all occurrences of P ′ in T as a collection of O(k) arith-
metic sequences with difference per(P ′). We then check for every two consecutive
sequences if they can be joined together. This takes O(k) time and results in
O(k) P ′-runs. ��
For two equal-length strings S and S′, we denote the set of their mismatches by

Mis(S, S′) = {i = 0, . . . , |S| − 1 : S[i] = S′[i]}.

Let Q = S[i . . j]. We say that position a in S is a misperiod with respect to
the fragment S[i . . j] if S[a] = S[b] where b is the unique position such that
b ∈ [i . . j] and |Q| | b − a. We define the set LeftMisperk(S, i, j) as the set of k
maximal misperiods that are smaller than i and RightMisperk(S, i, j) as the set
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S Q∗ ∗ ∗

S′

i j

Q∗ ∗
X Q

Fig. 5. Let S, S′, and X be equal-length strings such that X is a factor of Q∞ and
S[i . . j] = S′[i . . j] = X[i . . j] = Q. The asterisks in S denote the positions in Mis(S, X),
or equivalently, the misperiods with respect to S[i . . j]. Similarly for S′. One can observe
that Mis(S, X) ∩ Mis(S′, X) = ∅ and that Mis(S, X) ∪ Mis(S′, X) = Mis(S, S′).

of k minimal misperiods that are greater than j. Each of the sets can have less
than k elements if the corresponding misperiods do not exist. We further define

Misperk(S, i, j) = LeftMisperk(S, i, j) ∪ RightMisperk(S, i, j)

and Misper(S, i, j) =
⋃∞

k=0 Misperk(S, i, j).
The following lemma captures the main combinatorial property behind the

new technique of Bringmann et al. [11]. Its proof is deferred to the full version
of this paper; the intuition is shown in Fig. 5.

Lemma 9. Assume that S =k S′ and that S[i . . j] = S′[i . . j]. Let

I = Misperk+1(S, i, j) and I ′ = Misperk+1(S
′, i, j).

If I∩I ′ = ∅, then Mis(S, S′) = I∪I ′, I = Misper(S, i, j), and I ′ = Misper(S′, i, j).

A string S is k-periodic w.r.t. an occurrence i of Q if |Misper(S, i, i+|Q|−1)| ≤
k. In particular, in the conclusion of the above lemma S and S′ are |I|-periodic
and |I ′|-periodic, respectively, w.r.t. Q = S[i . . j] = S′[i . . j]. This notion forms
the basis of the following auxiliary problem in which we search for k-occurrences
in which the rotation of the pattern and the fragment of the text are k-periodic
for the same period Q.

Let U and V be two strings and J and J ′ be sets containing positions in
U and V , respectively. We say that length-m fragments U [p . . p + m − 1] and
V [x . . x+m−1] are (J, J ′)-disjoint if the sets (Wp ∩J)⊕ (−p) and (Wx ∩J ′)⊕
(−x) are disjoint. For example, if J = {2, 4, 11, 15, 16, 17}, J ′ = {5, 6, 15, 18, 19},
and m = 12, then U [3 . . 14] and V [6 . . 17] are (J, J ′)-disjoint for:

U = ab• a•b abc ab• abc •••
V = abc ab• •bc abc abc •bc ••c
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Periodic-Periodic-Match Problem

Input: A string U which is 2k-periodic w.r.t. to an exact occurrence i of
a length-q string Q and a string V which is 2k-periodic w.r.t. to an exact
occurrence i′ of the same string Q such that m ≤ |U |, |V | ≤ 2m and

J = Misper(U, i, i + q − 1), J ′ = Misper(V, i′, i′ + q − 1).
(The strings U and V are not stored explicitly.)
Output: The set of positions p in U for which there exists a (J, J ′)-disjoint
k-occurrence U [p . . p + m − 1] of V [x . . x + m − 1] for x such that

i − p ≡ i′ − x (mod q).

Intuitively, the condition on the output of the problem corresponds to the fact
that the k-mismatch periodicity is aligned. We defer the solution to this problem
to Lemma 12. Let us now show how it can be used to solve Sample-Matching
for a periodic sample.

Let us define

Pairs-Match(T, I, P, J) =
⋃

i∈I,j∈J
Pair-Match(T, i, P, j).

Let A be a set of positions in a string S and m be a positive integer. We then
denote A mod m = {a mod m : a ∈ A} and by fragA(S) we denote the fragment
S[min A . . max A]. We provide a pseudocode of an algorithm that computes all
k-occurrences of P such that P ′ matches a fragment of a given P ′-run below.

Data: A periodic fragment P ′ of pattern P , a P ′-run R in
text T , q = per(P ′), and k.
Result: A compact representation of k-occurrences of P in T
including all k-occurrences where P ′ in P matches a fragment of R in T .

Let R = T [s . . s + |R| − 1];
J := Misperk+1(T, s, s + q − 1); { O(k) time }
J ′ := Misperk+1(P 2,m + p′,m + p′ + q − 1); { O(k) time }
U := fragJ(T ); V := fragJ ′(P 2);
Y := Periodic-Periodic-Match(U, V ); { O(k2) time }
Y := Y ⊕ min(J);
J ′ := J ′ mod m;
X := Pairs-Match(T, J, P, J ′); { O(k3) time }
return X ∪ Y ;

Algorithm 1. Run-Sample-Matching
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Lemma 10. After O(n)-time preprocessing, algorithm Run-Sample-Matching
works in O(k3) time and returns a compact representation that consists of O(k3)
interval chains.

Proof. See the pseudocode. The sets J and J ′ can be computed in O(k) time:

Claim. If S is a string of length n, then the sets RightMisperk(S, i, j) and
LeftMisperk(S, i, j) can be computed in O(k) time after O(n)-time preprocessing.

Proof. For RightMisperk(S, i, j), we use the kangaroo method [18,31] to compute
the longest common prefix with at most k mismatches of S[j + 1 . . n − 1] and
U∞ for U = S[i . . j]. The value lcp(X∞, Y ) for a substring X and a suffix Y
of a string S, occurring at positions a and b, respectively, can be computed in
constant time as follows. If lcp(S[a . . n−1], S[b . . n−1]) < |X| then we are done.
Otherwise the answer is given by |X| + lcp(S[b . . n − 1], S[b + |X| . . n − 1]). The
computations for LeftMisperk(S, i, j) are symmetric. ��
The O(k3) and O(k2) time complexities of computing X and Y follow from
Lemmas 3 and 12, respectively (after O(n)-time preprocessing). The sets X and
Y consist of O(k3) intervals and O(k2) interval chains. The claim follows. ��
The correctness of the algorithm follows from Lemma 9. A detailed proof of the
following lemma is deferred to the full version of this paper.

Lemma 11. Assume n ≤ 2m. Let P ′ be a periodic sample in P with smallest
period q and R be a P ′-run in T . Let X and Y be defined as in the pseudocode
of Run-Sample-Matching. Then X ∪Y is a set of k-occurrences of P in T which
is a superset of the solution to Sample-Match for P ′ in R.

4.4 Solution to Periodic-Periodic-Match Problem

Lemma 12. We can compute in O(k2) time a set of k-occurrences of P in T
represented as O(k2) interval chains that is a superset of the solution to the
Periodic-Periodic-Match problem.

Proof. We reduce our problem to the following abstract problem (see also Fig. 6).

I
I ′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W8

W6

Fig. 6. An instance of the Abstract Problem with m = 6, k = 3, q = 3, δ = 2,
I = {4, 5, 9, 15} and I ′ = {2, 5, 7, 8, 13}. 8 ∈ A, since for 6, we have that |W8 ∩ I| +
|W6 ∩ I ′| ≤ 3, 8 ≡ 2 + 6 (mod 3), W8 ⊆ (4, 15) and W6 ⊆ (2, 13).
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Abstract Problem

Input: Positive integers m, k, q, δ and two sets I and I ′ such that 2 ≤
|I|, |I ′| ≤ 2k + 4.
Output: The set A of integers z for which there exists z′ such that:

1. |Wz ∩ I| + |Wz′ ∩ I ′| ≤ k
2. z ≡ δ + z′ (mod q)
3. Wz ⊆ (min I,max I), Wz′ ⊆ (min I ′,max I ′).

Claim. Periodic-Periodic-Match can be reduced in O(k) time to the
Abstract Problem so that if z belongs to the solution to the Abstract
Problem then p = z is a solution to Periodic-Periodic-Match, which poten-
tially may not satisfy the third condition of the problem.

Proof. Let the parameters m, k and q remain unchanged. We set I = J ∪
{−1, |U |}, I ′ = J ′ ∪ {−1, |V |}, and δ = i − i′. ��
Claim. Abstract Problem can be solved in O(k2) time with the output rep-
resented as a collection of O(k2) interval chains.

Proof. Let us denote Z = (min I,max I − m + 1), Z ′ = (min I ′,max I ′ − m + 1).
We partition the set Z into intervals such that for all z in an interval, the set
Wz ∩ I is the same. For this, we use a sliding window approach. We generate
events corresponding to x and x − m + 1 for all x ∈ I and sort them. When
z crosses an event, the set Wz ∩ I changes. Thus we obtain a partition of Z
into intervals Z1, . . . , Zn1 for n1 ≤ 4k. We obtain a similar partition of Z ′ into
intervals Z ′

1, . . . , Z
′
n2

for n2 ≤ 4k.
Let us now fix Zj and Z ′

j′ (see also Fig. 7). First we check if condition 1 is
satisfied for z ∈ Zj and z′ ∈ Z ′

j′ . If so, we compute the set X = {(δ+z′) mod q :
z′ ∈ Z ′

j′}. It is a single circular interval and can be computed in constant time.
The sought result is {z ∈ Zj : z mod q ∈ X}. By Lemma 7, this set can be

represented as a union of three chains and, as such, can be computed in O(1)
time. The conclusion follows. ��
This completes the proof of the lemma. ��
In the solution we do not check if the sets (Wp∩J)⊕(−p) and (Wx∩J ′)⊕(−x)
are disjoint. However, a k′-occurrence is found for some k′ < k otherwise.

4.5 Main Result

The following proposition summarizes the results from the previous subsections.

Proposition 13. If m ≤ n ≤ 2m, k-CPM can be solved in O(n + k5) time.



Circular Pattern Matching with k Mismatches 225

I
I ′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z3

Z ′
3

Fig. 7. The same instance of the Abstract Problem as in Fig. 6. For Z3 = {6, 7, 8, 9}
and Z′

3 = {6, 7} we get X = {0, 2} and hence the sought result is {6, 8, 9}.

Proof. There are k + 2 ways to choose a sample P ′ in the pattern.
If the sample P ′ is not periodic, we use the algorithm of Lemma 4 for Sample

Matching in O(k2) time (after O(n)-time preprocessing). It returns a repre-
sentation of k-occurrences as a union of O(k2) intervals.

If the sample P ′ is periodic, we need to find all P ′-runs in T . By Lemma 8,
there are O(k) of them and they can all be computed in O(k) time (after
O(n)-time preprocessing). For every such P ′-run R, we apply the Run-Sample-
Matching algorithm. Its correctness follows from Lemma 11. By Lemma 10, it
takes O(k3) time and returns O(k3) interval chains of k-occurrences of P in T
(after O(n)-time preprocessing). Over all P ′-runs, this takes O(k4) time after
the preprocessing.

In total, Sample Matching takes O(k4) time for a given sample (after
preprocessing), O(n+k5) time in total, and returns O(k5) intervals and interval
chains of k-occurrences. Let us note that an interval is a special case of an interval
chain. Hence, in the end, we apply Lemma 6 to compute the union of all chains
of occurrences in O(n + k5) time. ��

We use the standard trick: splitting the text into O(n/m) fragments, each
of length 2m (perhaps apart from the last one), starting at positions equal to
0 mod m. We need to ensure that the data structures for answering lcp, lcs, and
other internal queries over each such fragment of the text can be constructed in
O(m) time in the case when our input alphabet Σ is large. As a preprocessing
step we hash the letters of the pattern using perfect hashing. For each key,
we assign a rank value from {1, . . . , m}. This takes O(m) (expected) time and
space [16]. When reading a fragment F of length (at most) 2m of the text
we look up its letters using the hash table. If a letter is in the hash table we
replace it in F by its rank value; otherwise we replace it by rank m + 1. We
can now construct the data structures in O(m) time and the whole algorithm
is implemented in O(m) space. If Σ = {1, . . . , nO(1)}, the same bounds can be
achieved deterministically using [36]. We combine Propositions 2 and 13 to get
our final result.

Theorem 14. Circular Pattern Matching with k Mismatches can be solved in
O(min(nk, n + n

m k5)) time and O(m) space.

Our algorithms output all positions in the text where some rotation of the
pattern occurs with k mismatches. It is not difficult to extend the algorithms to
output, for each of these positions, a corresponding rotation of the pattern.
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