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The streaming k-mismatch problem

Raphaël Clifford∗ Tomasz Kociumaka† Ely Porat‡

Abstract
We consider the streaming complexity of a fundamental task
in approximate pattern matching: the k-mismatch problem.
In this problem, we must compute Hamming distances
between a pattern of length n and all length-n substrings
of a text for which the Hamming distance does not exceed
a given threshold k. In our problem formulation, we report
not only the Hamming distance but also, on demand, the
full mismatch information, that is the list of mismatched
pairs of symbols and their indices. The twin challenges of
streaming pattern matching derive from the need both to
achieve small working space and also to guarantee that every
arriving input symbol is processed quickly.

We present a streaming algorithm for the k-mismatch
problem which uses O(k logn log n

k
) bits of space and spends

O(log n
k

(
√
k log k+log3 n)) time on each symbol of the input

stream. In our formulation, the pattern is also in the stream,
arriving directly before the text. The running time almost
matches the classic offline solution [5] and the space usage is
within a logarithmic factor of optimal. Our new algorithm
therefore effectively resolves and also extends a problem first
introduced in FOCS’09 [38]. En route to this solution, we
also give a deterministic O(k(log n

k
+ log |Σ|))-bit encoding

of all the alignments with Hamming distance at most k
of a length-n pattern within a text of length O(n). This
secondary result provides an optimal solution to a natural
encoding problem which may be of independent interest.

1 Introduction

Combinatorial pattern matching has formed a corner-
stone of both the theory and practice of algorithm de-
sign over a number of decades. Despite this long his-
tory, there has been a recent resurgence of interest
in the complexity of the most basic problems in the
field. This has been partly been fuelled by the dis-
covery of multiple lower bounds conditioned on the
hardness of a small set of well-known problems with
naive solutions notoriously resistant to any significant
improvement [2, 3, 8, 6, 1, 9, 18]. Pattern match-
ing has also proved to be a rich ground for explor-
ing the time and space complexity of streaming algo-
rithms [38, 19, 23, 29, 7, 16, 20, 17, 22], and it is this
line of research that we follow.

We consider the most basic similarity measure
between a pattern and substrings of a longer text:
that of computing all Hamming distances between the
pattern and equal-length substrings of the text. In the
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streaming k-mismatch problem, the input strings arrive
one symbol at a time and the task is to output the
Hamming distance between the length-n pattern and
the latest length-n suffix of the text, provided that it
does not exceed a threshold k specified in advance.

The problem of computing the exact Hamming dis-
tances between a pattern and every length-n substring
of a text of lengthO(n) has been studied in the standard
offline model for over 30 years. In 1987, O(n

√
n log n)-

time solutions were first developed [4, 33]. Motivated
by the need to find close matches quickly, from there
the focus moved to the bounded k-mismatch version
of the problem. For many years, the fastest solution
ran in O(nk) time [35]. It was not until SODA’00,
when a breakthrough result gave O(n

√
k log k) time [5].

Much later, an O(k2 log k + npolylog n)-time solution
was developed [17], and in parallel to our work the
running time was subsequently improved to O((n +
k
√
n) polylog n) [25]. The latter paper also provides

some evidence that further progress in the offline model
may be difficult to achieve.

Considered as an online or streaming problem with
one text symbol arriving at a time, the k-mismatch
problem admits a linear-space solution running in
O(
√
k log k+log n) worst-case time per arriving symbol,

as shown in 2010 [19]. Porat and Porat at FOCS’09 [38]
gave an O(k3 polylog n)-space and O(k2 polylog n)-time
streaming solution, showing for the first time that the
k-mismatch problem could be solved in sublinear space
for particular ranges of k. Prior to our work, the
state-of-the-art complexity for streaming k-mismatch
had two different time-space trade-offs. The prob-
lem can be solved in either O(k2 polylog n) space and
O(
√
k log k + polylog n) time per arriving symbol [17]

or, as shown very recently, in O(k polylog n) time and
space [26]. As we describe below, our solution not only
achieves the best of both of these complexities1 but it
also tackles a harder version of the k-mismatch problem.

In our problem formulation, we add two generalisa-
tions. First, our algorithm reports not only the Ham-
ming distance but also the full mismatch information—
the list of mismatched pairs of symbols and their in-

1Our algorithm also improves the complexities of both by
polylogn factors
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dices. The best previous streaming k-mismatch algo-
rithm with this extra feature is an O(k2 polylog n)-space
and O(k polylog n)-time solution given at DCC’17 [39].
Second, and uniquely amongst existing streaming ap-
proximate pattern matching algorithms, our algorithm
requires no offline and potentially expensive preprocess-
ing of the pattern. We assume that the pattern pre-
cedes the text in the input stream and we process it in
a streaming fashion.

The twin challenges of streaming pattern matching
stem from the need to optimise both working space and
worst-case running time for every arriving symbol of the
text. An important feature of the streaming model is
that we must account for all the space used and cannot,
for example, store a copy of the pattern. The question
therefore naturally arises of what the minimum space is
that one needs to solve the problem.

One can derive a space lower bound for any stream-
ing problem by looking at a related encoding or one-
way communication problem. The randomised one-
way communication complexity of determining if the
Hamming distance between two strings is greater than
k is known to be Ω(k) bits with an upper bound of
O(k log k) bits [28]. In our problem formulation, how-
ever, we report not only the Hamming distance but also
the full mismatch information—the list of mismatched
pairs of symbols and their indices. In this situation,
one can derive a slightly higher space lower bound of
Ω(k(log n

k + log |Σ|)) bits2.

1.1 Our Result In this paper, we take a significant
step towards resolving the time and space complexity of
the streaming k-mismatch pattern matching problem.

Problem 1.1. (Streaming k-mismatch problem)
Consider a pattern of length n and a longer text which
arrive in a stream one symbol at a time. The streaming
k-mismatch problem asks after each arriving symbol
of the text whether the current suffix of the text has
Hamming distance at most k with the pattern and if
so, it also asks to return the corresponding mismatch
information.

Our main result is an algorithm for the streaming
k-mismatch problem which uses nearly optimal work-
ing space and matches within log factors the running
time of the fastest online linear-space solution as well

2For a single alignment with Hamming distance k, log2

(n
k

)
=

Ω(k log n
k

) bits are required to represent the set of mismatch

indices, and each of the k mismatched symbols requires Ω(log |Σ|)
bits to be represented, where Σ denotes the input alphabet. From
this, we derive the same lower bound for the space required by any

streaming k-mismatch algorithm. We assume throughout that |Σ|
is bounded by a polynomial in n.

as the O(
√
k polylog n) complexity from SODA’00 [5].

As mentioned previously and unlike the previous solu-
tions for streaming k-mismatch (see e.g. [38, 17]), the
algorithm we describe also allows us to report the mis-
matched symbols (and their indices) at each k-mismatch
alignment.

Theorem 1.2. There exists a streaming k-mismatch
algorithm which uses O(k log n log n

k ) bits of space and

takes O(log n
k (
√
k log k+log3 n)) time per arriving sym-

bol. The algorithm is randomised and errs with proba-
bility inverse polynomial in n, i.e., its answers are cor-
rect with high probability. For each reported occurrence,
the mismatch information can be reported on demand in
O(k) time.

While processing the pattern, our algorithm works
under the same restrictions on space consumption and
per-symbol running time as when processing the text.

1.2 Overview of the Techniques The overall ap-
proach we take refers back to the original streaming
exact matching algorithms of [38, 7]. In particular,
we do not follow the model of the existing streaming
k-mismatch algorithms which all rely on concurrently
solving several instances of the 1-mismatch problem.
We therefore avoid the overheads and complexity as-
sociated with performing multiple stream matching in
limited space. In order to achieve our time and space
improvements, we develop a number of new ideas and
techniques which we believe may have applications more
broadly. The first is a randomised O(k log n)-bit sketch
which allows us not only to detect if two strings of the
same length have Hamming distance at most k, but if
they do, also to report the related mismatch informa-
tion. Our sketch has a number of desirable algorithmic
properties, including the ability to be efficiently main-
tained subject to concatenation and prefix removal.

Armed with such a rolling sketch, one approach to
the k-mismatch streaming problem could simply be to
maintain the sketch of the length-n suffix of the text
and to compare it to the sketch of the whole pattern.
Although this takes O(k polylog n) time per arriving
symbol, it would also require O(n log |Σ|) bits of space
to retrieve the leftmost symbol that has to be removed
from the sliding window at each new alignment. This
is the central obstacle in streaming pattern matching
which has to be overcome.

Following the model of previous work on stream-
ing exact pattern matching (see [38, 7]), we introduce a
family of O(log n) prefixes P` of the pattern with expo-
nentially increasing lengths. We organise the algorithm
into several levels, with the `th level responsible for find-
ing the k-mismatch occurrences of P`. The task of the
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next level is therefore to check, after |P`+1|−|P`| subse-
quent symbols are read, which of these occurrences can
be extended to k-mismatch occurrences of P`+1. The
key challenge is that the k-mismatch occurrences of P`
have to be stored in a space-efficient way. In the ex-
act setting, their starting positions form an arithmetic
progression, but the presence of mismatches leads to a
highly irregular structure making this challenge consid-
erably more difficult.

The task of storing k-mismatch occurrences of a
pattern in a space-efficient representation can be ex-
pressed in terms of a natural encoding problem which
may be of independent interest. Our solution for this
problem is both deterministic and asymptotically opti-
mal. One striking property of this result is that the en-
coding upper bound matches the lower bound we gave
earlier for two strings of exactly the same length. In
other words, we require no more space to report the mis-
match information at all k-mismatch alignments than
we do to report it at only one such alignment.

Theorem 1.3. Given a pattern P of length n and a
text T of length O(n), the alignments of the pattern
and the text with at most k mismatches, as well as the
applicable mismatch information, can be encoded using
O(k(log n

k +log |Σ|)) bits, where Σ is the input alphabet.

As the main conceptual step in our proof of Theo-
rem 1.3, we introduce modified versions of the pattern
and text which are highly compressible but still contain
sufficient information. More specifically, we place sen-
tinel symbols at some positions of the text and the pat-
tern, making sure that no new k-mismatch occurrences
are introduced and that the mismatch information for
the existing occurrences does not change. We then de-
velop a key data structure (specified in Lemma 5.3)
which lets us store the modified or proxy pattern in
a space-efficient way. On the other hand, the relevant
part of the text is covered by a constant number of k-
mismatch occurrences of the pattern, so the modified
text can be retrieved based on the proxy pattern and
the mismatch information for these O(1) occurrences.
We use this data to find all the k-mismatch occurrences
of the pattern in the text along with their mismatch
information.

We go on to show that both the encoding and
decoding steps can be implemented quickly and in small
space. The key tool behind the efficient decoding is a
new algorithm for the k-mismatch problem in a setting
with read-only random access to the input strings.
This is potentially easier compared to the streaming
model as maintaining the sketch of a sliding window
now requires just O(k log n) bits. This simple method
would, however, be too slow for our purposes, and so

in Theorem 5.6 we give a faster solution for the read-
only model. Then in Proposition 3.3 we use this to
give an algorithmic counterpart of Theorem 1.3, which
is not only time- and space-efficient but which also lets
us store the k-mismatch occurrences of prefixes of the
pattern and retrieve them later on when they are going
to be necessary. In our main algorithm, we apply it to
store the k-mismatch occurrences of P` until we can try
extending them to k-mismatch occurrences of P`+1.

In order to guarantee that we can always process ev-
ery symbol of the text in O(

√
k polylog n) time rather

than inO(k polylog n) time, we develop a new procedure
for matching strings with small approximate periods.
The difficulty with such strings is that their k-mismatch
occurrences may appear very frequently. Given in The-
orem 4.2, our solution is based on a novel adaptation of
Abrahamson’s algorithm [4] designed for space-efficient
convolution of sparse vectors. We apply it at the lowest
level of our streaming algorithm so that at the higher
levels we can guarantee that the k-mismatch occur-
rences of P` start at least k positions apart.

In summary, our main contribution is given by The-
orem 1.2, but in order to achieve this, we have devel-
oped a number of new tools and techniques to improve
the time and space of previous approaches. These in-
clude a new sliding window sketch in Proposition 3.1,
a new small approximate period algorithm in Theo-
rem 4.2, the small space encoding of Theorem 1.3 and,
most importantly, our key technical innovation given by
Proposition 3.3. This last result demonstrates that de-
spite few structural properties, overlapping k-mismatch
occurrences admit a very space-efficient representation
with a convenient algorithmic interface.

2 Exact Streaming Pattern Matching

As a warm-up, we recall a streaming algorithm for the
exact pattern matching problem and formulate it using
our own notation. The input stream in this problem
consists of a pattern P (of length n) followed by a
text T , with a separator symbol between the two. While
scanning T , we need to decide if P matches the current
length-n suffix of T . In other words, having read the
character T [i], we verify whether P = T [i − n + 1 . . i],
that is, if P occurs in T at position i− n+ 1.

The algorithm described below uses O(log2 n) bits
of space and takes O(log n) time per arriving symbol,
which matches the original complexity by Porat and Po-
rat [38]. However, we rely on the newer implementation
by Breslauer and Galil [7, Section 3], which supports
efficient preprocessing of the pattern; its running time
can be improved to O(1), but this is out of our focus.

The constraints on the working space do not allow
storing the pattern P , so we have to use hashing
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even to to decide if T = P . The standard scheme
is based on polynomial hashes known as Karp–Rabin
fingerprints [31]. Below, we formally state some basic
properties of this scheme: the fingerprints guarantee
low collision probability and they can be efficiently
maintained subject to concatenation and the inverse
operations of prefix and suffix removal.

Fact 2.1. ([7, Theorem 2.1, Lemma 2.2, and
Corollary 2.3]) Consider positive integers n and σ
such that σ = nO(1), and a family U = {0, . . . , σ − 1}≤n
of strings of length at most n. One can assign O(log n)-
bit fingerprints Ψ(U) to all U ∈ U so that:

(a) if U, V ∈ U , then Ψ(U) = Ψ(V ) with high proba-
bility implies U = V (for any constant c fixed in
advance, Pr[Ψ(U) = Ψ(V )] ≤ 1

nc holds if U 6= V );

(b) if U, V, UV ∈ U , then each of the fingerprints Ψ(U),
Ψ(V ), or Ψ(UV ), can be constructed in O(1) time
given the other two fingerprints.

A naive streaming exact matching algorithm using
Karp–Rabin fingerprints stores Ψ(P ) and maintains the
fingerprint Ψ(T [i−n+1 . . i]) while scanning the text T .
This approach (the Karp–Rabin algorithm [31]) takes
O(log n) bits of working space if random access to T is
allowed, but it is not suitable for the streaming model
because it essentially requires storing T [i−n+ 1 . . i]. It
would be better if we were able to maintain Ψ(T [0 . . i])
and make sure that Ψ(T [0 . . i − n]) is available unless
we already know that P 6= T [i − n + 1 . . i]. From
those two fingerprints, we could compute the fingerprint
Ψ(T [i−n+1 . . i]), which could then be compared to the
fingerprint of the pattern. The challenge, of course, is
to do this quickly and in small space.

To implement this idea, the authors of [38, 7]
introduce a family of prefixes P0, . . . , PL of P so that
L = dlog ne, PL = P , and |P`| = 2` for ` < L. The
algorithm is then organised into L + 1 levels, with the
`th level responsible for locating the occurrences of P`.
The subsequent (` + 1)th level then verifies which of
these occurrences can be extended to occurrences of
P`+1. For convenience, we assume that each occurrence
of P` = T [i . . i + |P`| − 1] is reported along with the
fingerprint Ψ(T [0 . . i − 1]). In other words, the output
of the `th level simply contains the relevant fingerprints
needed to search in the next level up. This is how we
define the stream of occurrences of P` in T :

Definition 2.2. The stream of occurrences of a pat-
tern Q in a text T is a sequence OccQ such that
OccQ[i] = (i,Ψ(T [0 . . i − 1])) if Q = T [i . . i + |Q| − 1]
and OccQ[i] is empty (denoted OccQ[i] = ⊥) otherwise.

The value OccP`
[i] is very useful while processing

T [i+ |P`+1| − 1], but the `th level reports it earlier, as

soon as T [i + |P`| − 1] is read. Hence, central to the
algorithm is a sliding-window buffer that can store any
δ subsequent entries of the stream of occurrences. The
value δ is the length of the buffer and the only operation
supported by the buffer is called a push. If the buffer
stores OccQ[i], . . . ,OccQ[i+ δ − 1], then the push takes
OccQ[i + δ] from the input and reports OccQ[i] to the
output. The following fact is based on the observation
that exact match locations that are not too far apart
occur in an arithmetic sequence and hence the buffer
can be encoded efficiently.

Fact 2.3. ([7, Lemma 3.3]) The stream of exact oc-
currences of Q in T can be stored in a sliding-window
buffer of fixed length δ = O(|Q|) which uses O(log n)
bits and takes O(1) time per push.

Having described all the building blocks, we con-
clude with a complete description of the resulting al-
gorithm. In the preprocessing phase, we compute the
fingerprints Ψ(P`) for ` = 0, . . . , L with L = dlog ne.
Each level ` of the algorithm receives fingerprints from
the start of the text to the locations of the occurrences
of P`−1 and attempts to extend those occurrences to
occurrences of the longer prefix P`.

In more detail, each arriving character T [i] of
the text is processed as follows. First, the finger-
print Ψ(T [0 . . i − 1]) is extended to Ψ(T [0 . . i]) using
Fact 2.1(b). Next, the 0th level compares T [i] with
P0 = P [0] and reports OccP0 [i] ∈ {⊥, (i,Ψ(T [0 . . i−1])}
based on the outcome. The character T [i] is then pro-
cessed by subsequent levels for ` = 1 to L. Each such
level receives OccP`−1

[i− |P`−1|+ 1] and puts this value
into a buffer using the push operation of Fact 2.3. The
buffer has length |P`| − |P`−1| = O(|P`−1|) so that it
returns OccP`−1

[i−|P`|+1] in exchange. This tells us if
P`−1 occurs in T at position i− |P`|+ 1 and if so, gives
us the relevant fingerprint.

If OccP`−1
[i − |P`| + 1] is empty, then so is

OccP`
[i− |P`|+ 1] because P`−1 is a prefix of P`.

Otherwise, we use the fingerprint arithmetic of
Fact 2.1(b) to determine Ψ(T [i − |P`| + 1 . . i]) from
OccP`−1

[i− |P`|+ 1] = (i − |P`| + 1,Ψ(T [0 . . i − |P`|])
and Ψ(T [0 . . i]). Depending on the result, either ⊥ or
OccP`−1

[i − |P`| + 1] is reported as OccP`
[i− |P`|+ 1]

and so the computation for level ` is completed. By
Fact 2.1(a), the algorithm is correct with high probabil-
ity; it uses O(log2 n) bits (O(log n) bits per level) and
takes O(log n) time to process any position of the text.

3 Streaming k-Mismatch in O(k log2 n) bits and
O(k log4 n) time per symbol

In this section, we describe our first streaming algorithm
for the k-mismatch problem. It uses O(k log2 n) bits of
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space, which is optimal up to log factors, but the per-
symbol running time of O(k log4 n) is far from that of
the linear-space procedures. In contrast to the previous
streaming k-mismatch algorithms, our approach shares
its high-level structure with the classic procedures for
exact pattern matching, as described in Section 2. This
is possible due to novel tools generalising Facts 2.1
and 2.3.

Our first contribution is a rolling k-mismatch
sketch, which can be applied to check whether two given
strings are at Hamming distance k or less and, if so, to
retrieve the mismatches. We formally define the mis-
match information between two equal-length strings U
and V as MI(U, V ) = {(i, U [i], V [i]) : U [i] 6= V [i]}.
Their Hamming distance is HD(U, V ) = |MI(U, V ) |.

Proposition 3.1. Consider positive integers k, n, σ
such that k ≤ n and σ = nO(1), and a family U =
{0, . . . , σ − 1}≤n of strings of length at most n. One
can assign O(k log n)-bit sketches skk(U) to all U ∈ U
so that:

(a) if U, V ∈ U , then given sketches skk(U) and
skk(V ), in O(k log3 n) time one can decide with
high probability whether HD(U, V ) ≤ k and report
MI(U, V ) in case of a positive answer;

(b) if U, V, UV ∈ U , then each of the sketches
skk(U), skk(V ), or skk(UV ), can be constructed in
O(k log n) time given the other two.

These procedures use O(k log n) bits of working space.

Our construction is based on the ideas behind
Reed–Solomon error correcting codes [40] and resembles
earlier sketches of Clifford et al. [15]. However, the
latter are not rolling sketches—they fail to satisfy
condition (b). It turns out that to implement the
underlying procedure, we need to perform computations
in a field with a characteristic at least n, whereas the
sketches of [15] operate on fields with characteristic
two. This change also causes one extra difficulty in that
we have to use a randomised polynomial factorisation
algorithm in the implementation of operation (a). The
construction of the k-mismatch sketches, including the
proof of Proposition 3.1, is deferred to Section 6.

With sketches as a generalisation of fingerprints to
the k-mismatch setting, it is natural to define a stream of
k-mismatch occurrences in analogy with Definition 2.2.
Since we require the mismatch information to be present
in the output, we include it in this stream.

Definition 3.2. The stream of k-mismatch occur-
rences of a pattern Q in a text T is a sequence
OcckQ such that OcckQ[i] = (i,MI(Q,T [i . . i + |Q| − 1]),
Ψ(T [0 . . i− 1])) if HD(Q,T [i . . i + |Q| − 1]) ≤ k and
OcckQ[i] is empty (denoted OcckQ[i] = ⊥) otherwise.

Our central technical contribution is a counterpart
of Fact 2.3: a small sliding-window buffer for the stream
of k-mismatch occurrences. The overview of the ideas
behind this result is given in Section 5, with technical
details deferred to Sections 8 and 9.

Proposition 3.3. The stream of k-mismatch informa-
tion of Q in T can be stored in a sliding-window buffer
of fixed length δ = Θ(|Q|) which uses O(k log n) bits.
The push operation takes O(k log2 n+log3 n) time if the
pushed entry OcckQ[i+ δ] or the retrieved entry OcckQ[i]

is non-empty and O(
√
k log k + log3 n) time otherwise.

Initialisation, given skk(Q) and δ, takes O(k) time.

The structure of the algorithm of Section 2 can now
be reused to solve the streaming k-mismatch problem.
A minor difference is that the stream of k-mismatch
occurrences also contains the mismatch information,
which needs to be retrieved from Proposition 3.1(a).
Moreover, for reasons explained at the end of Section 5,
the buffer of Proposition 3.3 does not support δ =
o(|Q|), which could happen if the whole pattern P is
only slightly longer than the penultimate prefix PL−1.
We simply remove the penultimate level so that |P`| −
|P`−1| = Θ(|P`−1|) holds for each level ` > 0. At each
of the O(log n) levels, the complexity is dominated by
the cost of the sketch arithmetic of Proposition 3.1.

Corollary 3.4. There exists a streaming k-mismatch
algorithm which uses O(k log2 n) bits of space and takes
O(k log4 n) time per arriving symbol. The algorithm
is randomised and its answers are correct with high
probability. It reports all the k-mismatch occurrences
with the relevant mismatch information.

4 Streaming k-Mismatch in O(k log n log n
k ) bits

and O(log n
k (
√
k log k+ log3 n)) time per symbol

In this section, we improve the running time of the
algorithm developed in Section 3. As a side effect,
the space consumption is also slightly decreased. First,
let us discuss the bottleneck of our base solution.
Observe that when the `th level processes T [i], then it
already takes Õ(

√
k) time if OcckP`−1

[i− |P`−1|+ 1] =

OcckP`−1
[i− |P`|+ 1] = ⊥, that is when there is no

matching prefix from the level below. Hence, the
amortised running time of the `th level is Õ(

√
k) as

long as the k-mismatch occurrences of P`−1 are located
sparsely enough. Unfortunately, this condition is never
satisfied for |P`−1| ≤ k and it does not need to be
satisfied even for PL = P .

However, if a pattern Q has two nearby k-mismatch
occurrences, then we can encode it in small space
as described below. Recall that a string Q of
length m has a period p > 0 if Q[0 . .m− p− 1] =
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Q[p . .m− 1]. The d-periods describe analogous struc-
ture for the setting with mismatches: We say that
a positive integer p is a d-period of the string Q if
HD(Q[0 . .m− p− 1], Q[p . .m− 1]) ≤ d.

Observation 4.1. If a pattern Q has k-mismatch oc-
currences at positions `, `′ of T satisfying ` < `′ <
`+ |Q|, then `′ − ` is a 2k-period of Q.

A string Q with a d-period p can be stored using an
O(d log m

d + (d + p) log |Σ|)-bit periodic representation
with respect to p, which consists of MI(Q[0 . .m− p− 1],
Q[p . .m− 1]) and Q[0 . . p− 1].

Already in the algorithm of [17], patterns with
a small approximate period require special treatment
in order to guarantee Õ(

√
k) per-character processing

time; they also constitute the bottleneck of the solution
by Golan et al. [26]. We develop a new deterministic
procedure to deal with patterns with a d-period p such
that both d = O(k) and p = O(k). Its running
time essentially matches that of [17], but the space
consumption is improved to O(k) machine words from
O(k2). Our subroutine can also be plugged into [26]
to improve their amortised running time from Õ(k)
to Õ(

√
k). The following result gives our streaming

algorithm for the small approximate-period case.
Note that the algorithm is extended to allow for

outputting the stream OcckP with a delay δ = O(|P |) so
that OcckP [i − |P | + 1] is reported when the algorithm
reads T [i + δ]. For δ = Θ(|P |), we could achieve this
using Proposition 3.3, but in certain special cases we
need δ = o(|P |) as well.

Theorem 4.2. (Streaming algorithm for pat-
terns with a small approximate period) Suppose
that we are given an integer k and the periodic represen-
tation of a pattern P with respect to a d-period p such
that d = O(k) and p = O(k). There exists a determin-
istic algorithm, which uses O(k log n) bits of space and
takes O(

√
k log k+ log2 n) time per symbol to report the

k-mismatch occurrences of P in the streamed text T .
The stream OcckP of k-mismatch occurrences can be

outputted in O(k log2 n) extra time for each k-mismatch
occurrence. Moreover, the algorithm may report it with
any prescribed delay δ = O(|P |).

The new procedure, developed in Section 7, relies
on the observation that a function ∆p[P ], defined as
P [i+ p] − P [i] for each index i, has O(p + d) non-zero
values. Moreover, ∆p[T ] locally enjoys a similar prop-
erty for fragments containing k-mismatch occurrences
of P . It also turns out that the Hamming distances
between the subsequent alignments of P in T can be
expressed in terms of the analogous values for ∆p[P ]
and ∆p[T ]. We compute the latter based on a novel

adaptation of Abrahamson’s algorithm [4] designed for
space-efficient convolution of sparse vectors.

If the pattern P has a small approximate period,
then Theorem 4.2 solves the streaming k-mismatch
problem. Otherwise, we use it to replace the lowest
levels of the general-purpose algorithm of Section 3:
we apply it for a prefix of P which does not have
any 2k-period p ≤ k, but has an k′-period p′ ≤ k
for 2k + 1 ≤ k′ = O(k). Such a prefix needs to be
computed in the preprocessing, which motivates the
following result. Its relatively straightforward proof is
also given in Section 7.

Lemma 4.3. There exists a deterministic streaming al-
gorithm that, given positive integers p and d = O(p),
finds the longest prefix Y of the input string X which
has a d-period p′ ≤ p. It reports the periodic represen-
tation of Y with respect to p′, uses O(p) words of space,
and takes O(

√
p log p) per-symbol processing time plus

O(p
√
p log p) post-processing time.

With k-mismatch occurrences of each prefix P` at
least k-positions apart, each level now runs in Õ(

√
k)

amortised time. To achieve this bound for the whole
algorithm, we need to make sure that the sketch
skk(T [0 . . i]) is updated only when we need to verify
a potential k-mismatch occurrence of P`. We use the
following result based on efficient computation of the
sketch skk(V ) for |V | ≤ k.

Fact 4.4. There exists a streaming algorithm that pro-
cesses a string U in O(k log n) bits of space using
O(log2 n) time per character so that the sketch skk(U)
can be retrieved on demand in O(k log2 n) time.

The aforementioned tools let us transform the algo-
rithm of Section 3 so that the amortised running time
is brought down to Õ(

√
k). Processing some individual

symbols still requires Õ(k) time, but processing any sub-
sequent k symbols takes Õ(k

√
k) time, so we can think

of the algorithm as processing the input with a varying
delay between 0 and k. To achieve worst-case time per
symbol, we set the last prefix PL to be of length n− 2k
and naively check which k-mismatch occurrences of PL
extend to k-mismatch occurrences of P . The delay is
cancelled during this verification.

We can now give a complete description of our
main result, an O(log n

k (
√
k log k + log3 n))-time and

O(k log n log n
k )-bit streaming algorithm for the k-

mismatch problem.

4.1 Processing the Pattern Let us first describe
the information about the pattern that we gather. If
we discover that the pattern P has an O(k)-period
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p ≤ k, then we store P using the periodic representation
with respect to p. For the sub-case where |P | ≤ 2k,
we can trivially construct the periodic representation
of P with respect to p = 1 in order the satisfy the
requirements of Theorem 4.2. In either case this finishes
the processing of the pattern.

Otherwise, we introduce a family of O(log n
k ) pre-

fixes P0, . . . , PL chosen so that P0 is the longest prefix
of P with a (2k + 1)-period p ≤ k, |PL| = n − 2k, and
|P1|, . . . , |PL−1| are the subsequent powers of two be-
tween |P0| and 1

2 |PL| (exclusive). We store the periodic
representation of P0, the sketches skk(P`) for 1 ≤ ` ≤ L,
and P [n− 2k . . n− 1].

Because |P | > 2k no output is required for the
first 2k symbols of the text. As a result, we can start
processing the text with a delay of k symbols and catch
up while processing the subsequent k symbols of the
text. This allows for some post-processing of the pattern
before we read the text.

Lemma 4.5. The pattern P can be processed by a deter-
ministic streaming algorithm which uses O(k log n log n

k )

bits of space and takes O(
√
k log k + log2 n) time per

symbol plus O(k
√
k log k+k log2 n) post-processing time.

Proof. While scanning the pattern, we store a buffer of
2k trailing symbols and run the algorithm of Lemma 4.3
to compute the longest prefix P0 of P with a (2k + 1)-
period p ≤ k. If |P0| > n − 2k, we extend the periodic
representation of P0 to the periodic representation of
P , for which p must be a 4k-period. Otherwise, we
set P1, . . . , PL as specified above. To have skk(P`)
available, we use Fact 4.4 while scanning P and extract
the sketches of every prefix of P whose length is a power
of 2 larger than 3k (note that |P0| ≥ 3k). We run this
subroutine with a delay of 2k symbols so that skk(PL)
can be retrieved as soon as the whole pattern P is read.

4.2 Processing the Text In the small approximate
period case, we simply use Theorem 4.2 (with no delay).

Otherwise, the main component outputs the stream
OcckPL

of k-mismatch occurrences of PL. It consists of
levels ` = 0, . . . , L; as in Section 3, the `th level reports
the stream OcckP`

of k-mismatch occurrences of P` in T .
As far as the implementation is concerned, the main

difference is that level 0 uses Theorem 4.2. The sub-
sequent levels process T [i] as in Section 3: Each such
level receives OcckP`−1

[i−|P`−1|+1], puts this value into
a buffer of Proposition 3.3 (with length |P`| − |P`−1|),
and receives OcckP`−1

[i − |P`| + 1] in exchange. If the

latter value is ⊥, then also OcckP`
[i− |P`|+ 1] = ⊥.

Otherwise, skk(T [0 . . i]) is retrieved using Fact 4.4 and
skk(T [0 . . i−|P`]) is obtained from OcckP`−1

[i− |P`|+ 1].

The sketch skk(T [i − |P`| + 1 . . i]) is computed us-
ing Proposition 3.1(b) and compared to skk(P`) using
Proposition 3.1(a) to determine OcckP`

[i− |P`|+ 1].
At level 1 we may have |P1|− |P0| = o(|P0|) (only if

L = 1), so instead of using a buffer of Proposition 3.3,
we actually delay the output of level 0 exploiting the
feature built into Theorem 4.2.

The space usage of the main component is
O(k log n) bits per level and the per-symbol running
time is O(

√
k log k+ log2 n) if OcckP`−1

[i− |P`−1|+ 1] =

OcckP`−1
[i−|P`|+1] = ⊥, and O(k log3 n) otherwise. By

Observation 4.1, the latter happens O(1) times across
every k consecutive positions, so the average per-symbol
processing time is O(log n

k (
√
k log k+ log3 n)) across all

levels. Moreover, a matching worst-case complexity can
be achieved if we allow for a delay at most k, i.e., if we
store a buffer of at most k trailing characters of T which
are not yet processed by the main component.

Whenever a k-mismatch occurrence of PL at posi-
tion i is reported (along with the mismatch informa-
tion), we must check if it extends to a k-mismatch
occurrence of P . It arrives with delay at most k,
so we can naively compare P [n − 2k . . n − 1] with
T [i+n− 2k . . i+n− 1] before the algorithm completes
processing T [i+n−1]. By Observation 4.1, at most one
instance of this procedure needs to be run in parallel,
so the extra space complexity is O(k log n) bits and the
additional per-symbol running time is constant. This
completes the proof of Theorem 1.2, our main result.

Theorem 1.2. There exists a streaming k-mismatch
algorithm which uses O(k log n log n

k ) bits of space and

takes O(log n
k (
√
k log k+log3 n)) time per arriving sym-

bol. The algorithm is randomised and errs with proba-
bility inverse polynomial in n, i.e., its answers are cor-
rect with high probability. For each reported occurrence,
the mismatch information can be reported on demand in
O(k) time.

5 Encoding Nearby k-Mismatch Occurrences

In this section, we discuss the key proof ideas for our
central technical contribution, Proposition 3.3. We
focus on the space complexity claim and argue for its
correctness by proving Theorem 1.3. We conclude with
a glimpse into how we establish the running time in
Proposition 3.3, whose proof is deferred to Section 9.

5.1 Proof of Theorem 1.3

Theorem 1.3. Given a pattern P of length n and a
text T of length O(n), the alignments of the pattern
and the text with at most k mismatches, as well as the
applicable mismatch information, can be encoded using
O(k(log n

k +log |Σ|)) bits, where Σ is the input alphabet.
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Let us first recall the corresponding encoding for
k = 0. If t < t′ are subsequent starting positions of
occurrences of P in T , then the difference t′ − t either
exceeds 1

2 |P | or is equal to the shortest period per(P )
of the pattern P ; see [7, Lemma 3.1]. Consequently,
if |T | ≤ 3

2 |P |, then the starting positions of the exact
occurrences of P in T form an arithmetic progression
whose difference is per(P ). Hence, one only needs to
store the positions `, `′ of the leftmost and rightmost
occurrences as well as the period per(P ). If the actual
text is longer, it is split into substrings of length 3

2 |P |
with overlaps of length |P |; thus, we apply the encoding
a constant number of times.

In the presence of mismatches, it is actually more
convenient to make an even stronger assumption that
|T | ≤ 5

4 |P |. We analogously define ` and `′ as the posi-
tions of the first and the last k-mismatch occurrence of
P in T . Mismatches make the structure of occurrences
much more complicated, but we may still consider the
smallest arithmetic sequence containing all the positions
of k-mismatch occurrences of P in T ′. Its difference d
is the greatest common divisor of the distances between
the subsequent starting positions. We can use this arith-
metic sequence to filter out alignments which certainly
do not yield k-mismatch occurrences of P in T .

We also observe that the prefix T [0 . . `− 1] and the
suffix T [`′ + n . . |T | − 1] are irrelevant, so we may focus
on T ′ = T [` . . `′+n−1]. The pattern P may only occur
in T ′ at multiples of d, so we only attempt aligning
P [i] with T [i′] if i ≡ i′ (mod d). This motivates the
following definition.

Definition 5.1. Let X be a fixed string. For integers
i and d ≥ 0, the ith class modulo d (in X) is defined
as a multiset Cd(X, i) = {X[i′] : 1 ≤ i′ ≤ |X| and i′ ≡ i
(mod d)}. For d = 0, we assume that i′ ≡ i (mod 0)
holds if and only if i = i′.

If the multiset Cd(P, i) ∪ Cd(T ′, i) is uniform, i.e., it
contains just one character with positive multiplicity,
then these two classes do not participate in any mis-
matches within the alignments we consider. Thus,
we do not need to remember the unique character of
Cd(P, i) ∪ Cd(T ′, i). In other words, we may replace P
with a proxy pattern P# and T ′ with a proxy text T ′#
so that P [i] and T ′[i] are replaced by a sentinel sym-
bol #i mod d if Cd(P, i) ∪ Cd(T ′, i) is uniform. The main
property of these strings is that in any occurrence of P
in T ′, we have not altered the symbols involved in a mis-
match, while matching symbols could only be replaced
by sentinels in a consistent way.

Fact 5.2. The pattern P has a k-mismatch occurrence
at position j of T if and only if P# has a k-mismatch

occurrence at position j − ` of T ′#. Moreover, in that
case we have

MI(P, T [j . . j+n−1]) = MI(P#, T
′
#[j−` . . j−`+n−1]).

Proof. Suppose that P has a k-mismatch occurrence at
position j of T . By definition of P, we have ` ≤ j ≤ `′

and j ≡ ` (mod d). Consequently, P has a k-mismatch
occurrence at position j′ := j − ` of T ′ satisfying
d | j′. If P [i] 6= T ′[j′ + i], then the class Cd(P, i) ∪
Cd(T ′, i) contains at least two distinct elements, so
P#[i] = P [i] 6= T ′[j′ + i] = T ′#[j′ + i]. Otherwise,
P#[i] = T ′#[j′ + i], with both symbols equal to #i mod d

or P [i] = T ′[j′ + i]. Thus, MI(P, T [j . . j + n− 1]) =
MI(P#, T

′
#[j − ` . . j − ` + n − 1]) and thus P# has a

k-mismatch occurrence at position j′ = j − ` of T ′#.
For a proof of the converse implication, suppose P#

has a k-mismatch occurrence at position j′ of T ′#, with
j′ = j − `. If P#[i] = T ′#[j′ + i], then either P [i] =
P#[i] = T ′#[j′ + i] = T ′[j′ + i], or P#[i] = T ′#[j′ + i] =
#i mod d. In the latter case, we conclude that d | j′ and
Cd(P, i)∪Cd(T ′, i) is uniform, so P [i] = T ′[j′+i]. Hence,
P indeed has a k-mismatch occurrence at position j′ of
T ′, i.e., at position j of T .

Next, we show that P# and T ′# can be encoded in
O(k(log n

k + log |Σ|)) bits. We start with encoding the
non-uniform classes Cd(P, i). Here, we rely on the fact
that Observation 4.1 yields 2k-periods of P . Moreover,
the assumption |T | ≤ 5

4 |P | lets us focus on the family
Per≤n/4(P, 2k) of all 2k-periods p of P such that p ≤ n

4 .

Lemma 5.3. For a string X of length n and an integer
k, let P ⊆ Per≤n/4(X, k) and d = gcd(P). The
characters X[i] in non-uniform classes Cd(X, i) can be
encoded in O(k(log n

k + log |Σ|)) bits in total.

In Section 8, we prove a claim which subsumes
Lemma 5.3, so here we only illustrate the main points.

Sketch of a proof. We build a sequence 0 = d0, . . . , ds =
d of O(log n) integers such that d` = gcd(d`−1, p`) and
p` ∈ P for 1 ≤ ` ≤ s. Next, we observe that classes
modulo d` for ` = 0, . . . , s form a sequence of partitions
of {X[i] : 0 ≤ i < n}, with each partition coarser
than the previous one. We keep the majority3 of a
class modulo d` whenever it differs from the majority
of the enclosing class modulo d`+1. Due to p` ≤ n

4 ,
the majority of Cd`(i) is likely to match the majority of
Cd`(i + p`), which lets us store these characters using
run-length encoding. We also prove that the number
non-uniform classes modulo ds is O(k), which lets us
explicitly store their majorities.

3The majority element of a multiset S is an element with

multiplicity strictly greater than 1
2
|S|. We keep a sentinel

character if there is no majority. See Section 8 for details.
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We are now ready to describe the encoding behind
Theorem 1.3. If P does not occur in T with up to k-
mismatches, then we need not encode any information.
Otherwise, the encoding consists of the following data:

• the locations ` and `′ of the leftmost and the right-
most k-mismatch occurrence of P in T , along with
the mismatch information MI(P, T [` . . `+ n− 1])
and MI(P, T [`′ . . `′ + n− 1]) for both occurrences;

• the value d = gcd(P) and the data structure of
Lemma 5.3 for P consisting of distances between
locations of k-mismatch occurrences of P in T ;
P ⊆ Per≤n/4(P, 2k) due to Observation 4.1.

By Lemma 5.3 and due to the size of the mismatch in-
formation, the encoding takes O(k(log n

k +log |Σ|)) bits.
It remains to describe how to decode the k-

mismatch occurrences of P in T as well as the applicable
mismatch information. We first prove that one can re-
trieve any symbol of P# based on Lemma 5.3 (if Cd(P, i)
is non-uniform) or the mismatch information for the k-
mismatch occurrences of P as a prefix and as a suffix of
T ′ (otherwise). Similarly, one can retrieve T ′# because
T ′ is covered by these two k-mismatch occurrences of P .

Fact 5.4. Strings P# and T ′# can be retrieved from the
described encoding.

Proof. First, note that Cd(P, i) ∪ Cd(T ′, i) is uniform
if and only if Cd(P, i) is uniform and the mismatch
information for neither stored k-mismatch occurrence
contains (i′, P [i′], T [i′′]) with i′ ≡ i (mod d). This lets
us retrieve where sentinel symbols occur in P# and T ′#.

Next, we shall prove that one can retrieve P#[i] =
P [i] if Cd(P, i) ∪ Cd(T ′, i) is non-uniform. If Cd(P, i) is
non-uniform, we can simply use the data structure of
Lemma 5.3. Otherwise, mismatch information for the
k-mismatch occurrence of P as a prefix or as a suffix
of T ′ contains (i′, P [i′], T [i′′]) for some i′ ≡ i (mod d).
The class Cd(P, i) is uniform, so P [i] = P [i′].

Finally, consider retrieving T ′#[i] = T ′[i]. If i <
n, then the decoding procedure can use P [i] and the
mismatch information of the k-mismatch occurrence of
P as a prefix of T ′, which might contain (i, P [i], T ′[i]).
On the other hand, for i′ ≥ n we can use P [i − `′ + `]
and the mismatch information MI(P, T [`′ . . `′ + n− 1])
of the k-mismatch occurrence of P as a suffix of T ′.

Consequently, the decoding procedure computes the
mismatch information for all the alignments of P# in T ′#
and outputs it (with the position shifted by `) whenever
there are at most k mismatches. By Fact 5.2, such
output coincides with the k-mismatch occurrences of P
in T . This concludes the proof of Theorem 1.3.

5.2 Overview of the Proof of Proposition 3.3
Theorem 1.3 is sufficient to establish the buffer size in
Proposition 3.3 except that the stream of k-mismatch
information also includes the relevant sketches. This
increases the space complexity to O(k log n) bits.

To implement the buffer’s push operation, we need
to strengthen Lemma 5.3 by providing efficient encoding
and decoding procedures. Note the buffer receives k-
mismatch occurrences of P in T one by one. By
Observation 4.1, every two overlapping k-mismatch
occurrences yield a 2k-period of P ; combining the
mismatch information for subsequent occurrences, we
can retrieve MI(P [1 . . n − p], P [p + 1 . . n]) for this 2k-
period p. This way, our encoding algorithm extends the
family P ⊆ Per≤n/4(P, 2k). As for decoding, we simply
make sure that any character P [i] in a non-uniform class
Cd(P, 2k) can be retrieved in O(log n) time. This yields
a generalisation of Lemma 5.3 proved in Section 8.

Lemma 5.5. For a string X and an integer k, let
P ⊆ Per≤n/4(X, k) and d = gcd(P). There is a data
structure of size O(k(log n

k + log |Σ|)) bits which given
an index i retrieves X[i] in O(log n) time if Cd(X, i)
is non-uniform, and returns a sentinel symbol if the
class is uniform. The data structure can be initialised
in O(1) time with P = ∅ and updated in O(k log n) time
subject to adding a k-period p ∈ Per≤n/4(X, k) to P
given MI(X[0 . . n− p− 1], X[p . . n− 1]).

Nevertheless, we still need to retrieve the k-
mismatch occurrences of P# in T ′#. For this, we observe
that any character of P# and T ′# can be accessed in
O(log n) time. Thus, it suffices to solve the k-mismatch
problem in the read-only random-access model. Such an
algorithm is not hard to obtain from Proposition 3.1
and Theorem 4.2, but we state is a black box due to
potential applicability.

Theorem 5.6. In the read-only random-access model,
the streaming k-mismatch problem can be solved on-
line with a Monte-Carlo algorithm using O(k log n) bits
of working space and O(

√
k log k + log3 n) time per

symbol, including O(1) symbol reads. For any reported
k-mismatch occurrence, the mismatch information can
be retrieved on demand in O(k) time.

Apart from the mismatch information, the buffer
of Proposition 3.3 also requires retrieving sketches
skk(T [0 . . i − 1]) for each k-mismatch occurrence
T [i . . i + |P | − 1] of P . While locating the k-mismatch
occurrences can be performed on the proxy text T ′#,
the sketches need to be based on the original text T .
Resolving this discrepancy requires careful manipula-
tion of sketches, for which we generalise both Proposi-
tion 3.1(b) and Fact 4.4. Moreover, we need to imple-
ment a buffer as a series of components, each of which
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enters a decoding phase only after it completes encoding
and performs some relatively costly auxiliary computa-
tions. The latter is why we forbid δ = o(|P |).

6 A Rolling k-mismatch Sketch

In this section, we develop our rolling k-mismatch
sketches, thereby proving Proposition 3.1.

We also describe further efficient procedures for
efficient manipulation of our sketches, which we use
in Section 9 to prove Proposition 3.3. As announced
in Section 3, our approach extends the deterministic
sketches developed in [15] for the offline k-mismatch
with wildcards problem and combines it with the clas-
sic Karp–Rabin fingerprints for exact pattern match-
ing [31]; see Fact 2.1.

We fix an upper bound n on the length of the
compared strings and a prime number q > max(σ, nc+1)
for a sufficiently large constant exponent c (which is
used to control error probability). We will assume
throughout that all the input symbols can be treated as
elements of Fq. Recall that the Karp–Rabin fingerprints

are defined as ψr(U) =
∑|U |−1
i=0 U [i] · ri for a uniformly

random r ∈ Fq, and this value is included in our k-
mismatch sketches. The fingerprints Ψ(U) of Fact 2.1
beyond ψr(U) also contain r|U | and r−|U | to make sure
that the running time in Fact 2.1(b) is O(1) rather than
O(log n). This is not needed due to the O(k log n) time
allowed in Proposition 3.1(b).

Definition 6.1. (k-mismatch sketch) For a fixed
prime number q and for r ∈ Fq chosen uniformly at
random, the sketch skk(S) of a string S ∈ F`q is

skk(S) = (φ0(S), . . . , φ2k(S), φ′0(S), . . . , φ′k(S), ψr(S)),

where ψr(S) =
∑`−1
i=0 S[i]ri, φj(S) =

∑`−1
i=0 S[i]ij and

φ′j(S) =
∑`−1
i=0 S[i]2ij for j ≥ 0.

Observe that the sketch is a sequence of 3k + 3
elements of Fq, so it takes O(k log q) = O(k log n) bits.
The main goal of the sketches is to check whether two
given strings are at Hamming distance k or less, and
if so, to retrieve the mismatches. The following lemma
proves Proposition 3.1(a).

Lemma 6.2. Given the sketches skk(S) and skk(T ) of
two strings of length ` ≤ n, in O(k log3 n) time we can
decide (with high probability) whether HD(S, T ) ≤ k. If
so, the mismatch information MI(S, T ) is reported. The
algorithm uses O(k log n) bits of space.

Proof. First, suppose that HD(S, T ) = k′ < k. Let
x1, . . . , xk′ be the mismatch positions of S and T , and

let ri = S[xi] − T [xi] be the corresponding numerical
differences. We have:

r1 + r2 + · · ·+ rk′ = φ0(S)− φ0(T )
r1x1 + r2x2 + · · ·+ rk′xk′ = φ1(S)− φ1(T )
r1x

2
1 + r2x

2
2 + · · ·+ rk′x

2
k′ = φ2(S)− φ2(T )

...
...

r1x
2k
1 + r2x

2k
2 + · · ·+ rk′x

2k
k′ = φ2k(S)− φ2k(T )

This set of equations is similar to those appear-
ing in [15] and in the decoding procedures for Reed–
Solomon codes. We use the standard Peterson–
Gorenstein–Zierler procedure [37, 27], with subsequent
efficiency improvements. This method consists of the
following main steps:

1. Compute the error locator polynomial P (X) =∏k′

i=1(1 − xiX) from the 2k + 1 syndromes
φj(S)− φj(T ) with 0 ≤ j ≤ 2k.

2. Find the error locations xi by factoring the poly-
nomial P .

3. Retrieve the error values ri.

We implement the first step in O(k log n) time us-
ing the efficient key equation solver by Pan [36]. The
next challenge is to factorise P , taking advantage of the
fact that it is a product of linear factors. As we are
working over a field with large characteristic, there is
no sufficiently fast deterministic algorithm for this task.
Instead we use the randomised Cantor–Zassenhaus al-
gorithm [12], which takes O(k log3 n) time with high
probability. If the algorithm takes longer than this time,
then we stop the procedure and report a failure. Finally,
we observe that the error values ri can be retrieved by
solving a transposed Vandermonde linear system of k′

equations using the Kaltofen–Lakshman algorithm [30]
in O(k log k log n) time. Each of these subroutines uses
O(k log n) bits of working space.

Using the fact that we now have full knowledge of
the mismatch indices xi, a similar linear system lets us
retrieve the values r′i = S2[xi]− T 2[xi]:

r′1 + r′2 + · · ·+ r′k′ = φ′0(S)− φ′0(T )
r′1x1 + r′2x2 + · · ·+ r′k′xk′ = φ′1(S)− φ′1(T )
r′1x

2
1 + r′2x

2
2 + · · ·+ r′k′x

2
k′ = φ′2(S)− φ′2(T )

...
...

r′1x
k′

1 + r′2x
k′

2 + · · ·+ r′k′x
k′

k′ = φ′k′(S)− φ′k′(T )

Now, we can compute S[xi] =
r′i+r

2
i

2ri
and T [xi] =

r′i−r
2
i

2ri
.

If HD(S, T ) > k, then we may still run the proce-
dure above, but its behaviour is undefined. This issue is
resolved by using the Karp–Rabin fingerprints to help
us check if we have found all the mismatches or not.

If the algorithm fails, we may assume that
HD(S, T ) > k; otherwise, the failure probability is in-
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verse polynomial in n. A successful execution results
in the mismatch information {(xi, si, ti) : 1 ≤ i ≤ k′}.
Observe that HD(S, T ) ≤ k if and only if S[xi]−T [xi] =
si − ti and S[j] − T [j] = 0 at the remaining positions.
In order to verify this condition, we compare the Karp–
Rabin fingerprints, i.e., test whether

ψr(S)− ψr(T ) =

k′∑
i=1

(si − ti)rxi .

This verification takes O(k′ log n) time and its error
probability is at most `

q which is the collision probability
of Karp–Rabin fingerprints for strings of length `.

Unlike in [15], we also need to efficiently main-
tain sketches subject to operations listed in Proposi-
tion 3.1(b). The first claim of the lemma below imple-
ments the required procedure, while the second claim is
useful in Section 9 to prove Proposition 3.3.

Lemma 6.3. The following operations can be imple-
mented in O(k log n) time using O(k log n) bits of space,
provided that all the processed strings belong to F∗q and
are of length at most n.

(a) Construct one of the sketches skk(U), skk(V ), or
skk(UV ) given the other two sketches.

(b) Construct skk(U) or skk(Um) given the other
sketch and the integer m.

Proof. (a) First, observe that ψr(UV ) = ψr(U) +
r|U |ψr(V ). This formula can be used to retrieve one
of the Karp–Rabin fingerprints given the remaining
two ones. The running time O(log n) is dominated by
computing r|U | (or r−|U |).

Next, we express φj(UV )−φj(U) in terms of φj′(V )
for j′ ≤ j:

φj(UV )− φj(U) =

|V |−1∑
i=0

V [i](|U |+ i)j

=

|V |−1∑
i=0

j∑
j′=0

V [i]

(
j

j′

)
ij
′
|U |j−j

′

=

j∑
j′=0

(
j

j′

)
φj′(V )|U |j−j

′
.

Let us introduce an exponential generating function

Φ(S) =
∑∞
j=0 φj(S)X

j

j! and recall that the exponential
generating function of the geometric progression with

ratio r is erX =
∑∞
j=0 r

j Xj

j! . Now, the equality

above can be succinctly written as Φ(UV ) − Φ(U) =
Φ(V ) · e|U |X . Consequently, the first 2k + 1 coefficients
of Φ(U), Φ(V ), or Φ(UV ), can be computed from the

first 2k+1 terms of the other two generating functions in
O(k log n) time using efficient polynomial multiplication
over Fq [42, 32, 34]. The coefficients φ′j(U), φ′j(V ), and
φ′j(UV ), can be computed in the same way.

(b) Observe that ψr(U
m) =

∑m−1
i=0 ri|U |ψr(U) =

rm|U|−1
r|U|−1

ψr(U). Thus, ψr(U) and ψr(U
m) are easy to

compute from each other in O(log n) time. Next, re-
call that the exponential generating function Φ(S) =∑∞
j=0 φj(S)X

j

j! satisfies Φ(UV ) = Φ(U) + Φ(V ) · e|U |X .

Consequently, Φ(Um) = Φ(U) ·
∑m−1
i=0 ei|U |X = Φ(Um) ·

em|U|X−1
e|U|X−1

. Thus, Φ(U) and Φ(Um) can be computed

from each other in O(k log n) time using polynomial
multiplication over Fq. The first O(k) terms of the in-
verse of the power series (e`X − 1)/X are also retrieved
in O(k log n) time using polynomial multiplication and
Newton’s method for polynomial division; see [43].

Next, we consider the efficiency of updating a sketch
given the mismatch information.

Lemma 6.4. Let S, T ∈ F∗q be of the same length ` < n.
If HD(S, T ) = O(k), then skk(T ) can be constructed
in O(k log2 n) time and O(k log n) bits of space given
MI(S, T ) and skk(S).

Proof. Let MI(S, T ) = {(xi, si, ti) : 0 ≤ i < d}. First,
observe that the Karp–Rabin fingerprint can be updated
in O(d log n) time. Indeed, we have ψr(T ) − ψr(S) =∑d−1
i=0 (ti−si)rxi , and each power rxi can be computed in

O(log n) time. Next, we shall compute φj(T )−φj(S) =∑d−1
i=0 (ti−si)xji for j ≤ 2k. This problem is an instance

of transposed Vandermonde evaluation. Hence, this
task can be accomplished in O((d+k) log2 n) time using
O((d+k) log n) bits of space using the Canny–Kaltofen–
Lakshman algorithm [11]. The values φ′j(T )−φ′j(S) are
computed analogously.

As a result, the sketch can be efficiently updated
subject substituting characters.

Corollary 6.5. A string X ∈ F∗q with |X| ≤ n
can be stored in O(k log n) bits so that skk(X) can be
retrieved in O(k log2 n) time and the following updates
are handled in O(log2 n) time: substitute X[i] = a for
X[i] = b given the index i and the symbols a, b ∈ Fq.

Proof. We maintain the sketch skk(Y ) of a previous
version Y of X and a buffer of up to k substitutions
required to transform Y into X, i.e., the mismatch
list MI(X,Y ). If there is room in the buffer, we
simply append a new entry to MI(X,Y ) to handle a
substitution. When the buffer becomes full, we apply
Lemma 6.4 to compute skk(X) based on skk(Y ) and
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MI(X,Y ). This computation takes O(k log2 n) time, so
we run in it parallel to the subsequent k updates (so that
the results are ready before the buffer is full again).

To implement a query, we complete the ongoing
computation of skk(Y ) and use Lemma 6.4 again to
determine skk(X) (and clear the buffer as a side effect).
This takes O(k log2 n) time.

In particular, this proves Fact 4.4, where we append
characters instead of substituting them.

Fact 4.4. There exists a streaming algorithm that pro-
cesses a string U in O(k log n) bits of space using
O(log2 n) time per character so that the sketch skk(U)
can be retrieved on demand in O(k log2 n) time.

Proof. Observe that appending 0 to X does not change
the sketch, so appending a symbol a is equivalent to
substituting 0 at position |X| by a. Thus, the claim
follows from Corollary 6.5.

7 Patterns with a Small Approximate Period

In this section, we prove Theorem 4.2 and Lemma 4.3,
thereby showing how the streaming k-mismatch prob-
lem can be solved deterministically when the pattern P
has a (potentially unknown) small approximate period.
We start with the much simpler proof of Lemma 4.3.

Lemma 4.3. There exists a deterministic streaming al-
gorithm that, given positive integers p and d = O(p),
finds the longest prefix Y of the input string X which
has a d-period p′ ≤ p. It reports the periodic represen-
tation of Y with respect to p′, uses O(p) words of space,
and takes O(

√
p log p) per-symbol processing time plus

O(p
√
p log p) post-processing time.

Proof. The constraints on the time and space complex-
ity let us process X in blocks of up to p symbols, spend-
ing O(p

√
p log p) time on each block.

After reading a block, we compute the longest
prefix Y of X with a d-period p′ ≤ p, the periodic
representation of Y with respect to p′, and the values

HD(Y [0 . . |Y | − p′′ − 1], Y [p′′ . . |Y | − 1])

for 0 < p′′ ≤ p. When at some iteration we discover
that Y is a proper prefix of X, then Y cannot change
anymore, so we can ignore the forthcoming blocks.

Thus, below we assume that X = Y before a block
B is appended to X. In this case, we need to check if
B can be appended to Y as well, i.e., if Y B has any
d-period p′′ ≤ p. We rely on the formula

HD((Y B)[0 . . |Y B|− p′′− 1], (Y B)[p′′ . . |Y B|− 1]) =

= HD(Y [0 . . |Y | − p′′ − 1], Y [p′′ . . |Y | − 1])+

+ HD((Y B)[|Y | − p′′ . . |Y B| − p′′ − 1], B).

The left summand is already available, while to deter-
mine the right summand for each p′′, we use Abraham-
son’s algorithm [4] to compute the Hamming distance of
every alignment of B within the suffix of Y B of length
p+ |B|. This procedure takes O(p

√
|B| log |B|) time.

If we find out that Y B has a d-period p′′ ≤ p, we
compute the periodic representation of Y with respect
to p′′. For this, we observe that Y [i] 6= Y [i − p′′] may
only hold if i < p′ + p′′, Y [i] 6= Y [i − p′], Y [i − p′] 6=
Y [i − p′ − p′′], or Y [i − p′ − p′′] 6= Y [i − p′′]. Thus, it
takes O(d + p) = O(p) time to transform the periodic
representation of Y with respect to p′ to the one with
respect to p′′. Finally, we append B to Y and update
its periodic representation.

Otherwise, we partition B into two halves B =
BLBR and try appending the left half BL to Y using the
procedure above. We recurse on BR or BL depending
on whether the algorithm succeeds.

The running time of the ith iteration is O
(
p +

p
√

p
2i log p

2i

)
, because we attempt appending a block

of length at most d p2i e. Consequently, the overall
processing time is O(p

√
p log p).

The proof of Theorem 4.2 is based on novel ideas
and requires combining several notions. In [17], it was
proved that any k2 consecutive values HamP,T [i] :=
HD(P, T [i−|P |+1 . . i]) can be generated in O(k2 log k)
time usingO(k2) words of space if the pattern P and the
text T share a d-period p satisfying d = O(k) and p =
O(k). Below, we show how to compute k subsequent
Hamming distances in O(k

√
k log k) time using O(k)

words of space, under an additional assumption that the
preceding 2p Hamming distances are already available.

Our approach resembles Abrahamson’s algo-
rithm [4], so let us first recall how the values HamP,T [i]
can be expressed in terms of convolutions. The con-
volution of two functions f, g : Z → Z is a function
f ∗ g : Z→ Z such that

(f ∗ g)(i) =
∑
j∈Z

f(j) · g(i− j).

For a string X and a symbol a ∈ Σ, we define the
characteristic function Xa : Z → {0, 1} of positions
where a occurs in X. In other words, Xa(i) = 1 if and
only if 0 ≤ i < |X| and X[i] = a. The cross-correlation
of strings T and P is a function T ⊗ P : Z→ Z defined
as T⊗P =

∑
a∈Σ Ta∗PRa , where PR denotes the reverse

of P .

Fact 7.1. We have (T ⊗ P )(i) = |P | − HamP,T [i] for
|P | − 1 ≤ i < |T | and (T ⊗ P )(i) = 0 for i < 0 and
i ≥ |P |+ |T |.
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Proof. If |P | − 1 ≤ i < |T |, then:

|P | −HamP,T [i] = |P | −
|P |−1∑
j=0

[T [i− j] 6= P [|P | − 1− j]]

=

|P |−1∑
j=0

[T [i− j] = P [|P | − 1− j]]

=
∑
a∈Σ

|P |−1∑
j=0

Ta(i− j)Pa(|P | − 1− j)

=
∑
a∈Σ

|P |−1∑
j=0

Ta(i− j)PRa (j)

=
∑
a∈Σ

(Ta ∗ PRa )(i) = (T ⊗ P )(i).

The second claim follows from the fact that Xa(i) = 0
if i < 0 or i ≥ |X|.

If a stringX has a d-period p, thenXa(i) is typically
equal to Xa(i + p). This property can be conveniently
formalised using a notion of finite differences. For a
function f : Z → Z and a positive integer p ∈ Z+, we
define the forward difference ∆p[f ] : Z→ Z as

∆p[f ](i) = f(i+ p)− f(i).

Observation 7.2. If a string X has a d-period p, then
the functions ∆p[Xa] have at most 2(d + p) non-zero
entries in total across all a ∈ Σ.

The following lemma reuses the idea behind the
Abrahamson’s algorithm to compute the convolution of
functions with few non-zero entries.

Lemma 7.3. Consider functions f, g : Z → Z with n
non-zero entries in total. The non-zero entries among
any δ consecutive values (f∗g)(i), . . . , (f∗g)(i+δ−1) can
be computed in O(n

√
δ log δ) time using linear working

space (with respect to the input size plus the output size).

Proof. We define the restriction of a function h : Z→ Z
to a set A ⊆ Z so that h|A(j) = h(j) if j ∈ A and
h|A(j) = 0 otherwise. Let us partition Z into blocks
Bk = {δk, . . . , δk+δ−1} for k ∈ Z. Moreover, we define
B′k = {i − (k + 1)δ + 1, . . . , i − (k − 1)δ} and observe
that (f ∗ g)(j) =

∑
k(f |Bk

∗ g|B′k)(j) for i ≤ j < i+ δ.
We say that a block Bk is heavy if f |Bk

has at least√
δ log δ non-zero entries. For each heavy block Bk, we

compute the convolution of f |Bk
∗ g|B′k using the Fast

Fourier Transform. This takes O(δ log δ) time per heavy
block, which is O(n

√
δ log δ) in total because there are

O(n/
√
δ log δ) heavy blocks.

The light blocks Bk are processed naively: we iter-
ate over non-zero entries of f |Bk

and of g|B′k . Observe
that each integer belongs to at most two blocks B′k,
so each non-zero entry of g is considered for at most
2
√
δ log δ non-zero entries of f . Hence, the running time

of this phase is also O(n
√
δ log δ).

This is very useful because the forward difference
operator commutes with the convolution:

Fact 7.4. Consider functions f, g : Z → Z with finite
support and a positive integer p. We have ∆p[f ∗ g] =
f ∗ ∆p[g] = ∆p[g] ∗ f . Consequently, ∆p[f ] ∗ ∆p[g] =
∆p[∆p[f ∗ g]].

Proof. Note that

∆p[f ∗g](i) =
∑
j∈Z

f(j)·g(i+p−j)−
∑
j∈Z

f(j)·g(i−j) =

=
∑
j∈Z

f(j) ·∆p[g](i− j) = (f ∗∆p[g])(i).

By symmetry, we also have ∆p[f ∗g] = ∆p[f ]∗g. Hence,
∆p[f ] ∗∆p[g] = ∆p[∆p[f ] ∗ g] = ∆p[∆p[f ∗ g]].

The function ∆p[∆p[h]], called the second forward
difference of h : Z → Z, is denoted ∆2

p[h]; observe that
∆2
p[h](i) = h(i+ 2p)− 2h(i+ p) + h(i).

Combining Lemma 7.3, Fact 7.4, and the notions
introduced above, we can compute the second forward
differences of the cross-correlation between P and T
efficiently and in small space:

Corollary 7.5. Suppose that p is a d-period of P and
T . Given the periodic representations of P and T with
respect to p, any δ consecutive values ∆2

p[T ⊗ P ](i),
. . . ,∆2

p[T ⊗ P ](i + δ − 1) can be computed in O(δ +

(d+ p)
√
δ log δ) time using O(d+ p+ δ) words of space.

Proof. The functions ∆p[P
R
a ] have 2(d + p) non-zero

entries in total, and the functions ∆p[Ta] enjoy the
same property. Hence, it takes O((d+ p)

√
δ log δ) time

in total to compute all the non-zero entries among
(∆p[Ta] ∗ ∆p[P

R
a ])(j) for a ∈ Σ and i ≤ j < i + δ

using Lemma 7.3. Finally, we observe that ∆2
p[T ⊗P ] =∑

a∈Σ(∆p[Ta] ∗∆p[P
R
a ]) by Fact 7.4.

Fact 7.1 and Corollary 7.5 can be applied to com-
pute the subsequent Hamming distances HamP,T [i] pro-
vided that P and T share a common d-period p. These
values can be generated in O(

√
(d+ p) log(d+ p))

amortised time using O(d + p) words of space, with
Θ(d+ p) consecutive Hamming distances actually com-
puted in every iteration. In Lemma 7.6, we adapt this
approach to the streaming setting, where HamP,T [i]
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needs to be known before T [i + 1] is revealed. To
deal with this, we use a two-part partitioning known
as the tail trick. Similar ideas have already been used
to deamortise streaming pattern matching algorithms;
see [7, 16, 17, 19].

Lemma 7.6. Let P be a pattern with a d-period p.
Suppose that p is also an O(d + p)-period of the text
T . There exists a deterministic streaming algorithm
which processes T using O(d + p) words of space and
O(
√

(d+ p) log(d+ p)) time per symbol and reports
HamT,P [i] for each position i ≥ |P | − 1.

Proof. First, we assume that blocks of d + p symbols
T [i . . i + d + p − 1] can be processed simultaneously.
We maintain the periodic representation of both P and
T with respect to p. Moreover, we store the values
(T ⊗ P )(j) for i − 2p ≤ j < i (initialised as zeroes
for i = 0; this is valid due to Fact 7.1). The space
consumption is O(d+ p).

When a block arrives, we update the periodic
representation of T and apply Corollary 7.5 to compute
∆2
p[T ⊗ P ](j) for i ≤ j < i + d + p. Based on the

stored values of T ⊗ P , this lets us retrieve (T ⊗ P )(j)
for i ≤ j < i+d+p. Next, for each position j > |P |−1,
we report HamT,P [j] = |P | − (T ⊗ P )(j). Finally, we
discard the values (T ⊗P )(j) for j < i+ d− p. Such an
iteration takes O((d + p)

√
(d+ p) log(d+ p)) time and

uses O(d+ p) working space.
Below, we apply this procedure in a streaming

algorithm which processes T symbol by symbol. The
first step is to observe that if the pattern length is O(d+
p), we can compute the Hamming distance online using
O(d + p) words of space and O(

√
(d+ p) log(d+ p))

worst-case time per arriving symbol [14]. We proceed
under the assumption that |P | > 2(d+ p).

We partition the pattern into two parts: the tail
PT—the suffix of P of length 2(d + p), and the head
PH—the prefix of P length |P | − 2(d + p). Observe
that HamP,T [j] = HamPT ,T [j]+HamPH ,T [j − 2(d+ p)].
Moreover, we can compute HamPT ,T [j] using the online
algorithm of [14]; this takes O(d+p) words of space and
O(
√

(d+ p) log(d+ p)) time per symbol.
For the second summand, we need to have

HamPH ,T [j − 2(d + p)] computed before T [j] arrives.
Hence, we partition the text into blocks of length d+ p
and use our algorithm to process a block T [i . . i + d +
p − 1] as soon as it is ready. This procedure takes
O((d + p)

√
(d+ p) log(d+ p)) time, so it can be exe-

cuted in the background while we read the next block
T [i+d+p . . i+2(d+p)−1]. Thus, HamPH ,T [j] is indeed
ready on time for j ∈ {i, . . . , i+ d+ p− 1}.

The overall space usage is O(d + p) words
and the worst-case time per arriving symbol is

O(
√

(d+ p) log(d+ p)), dominated by the online proce-
dure of [14] and by processing blocks in the background.

To prove Theorem 4.2, we need to waive the as-
sumption that p is an approximate period of the text.
Nevertheless, we note that p must be a (d+k)-period of
any fragment matching P with k mismatches. Thus, our
strategy is to identify approximately periodic fragments
of T guaranteed to contain all k-mismatch occurrences
of P ; Lemma 7.6 is then called for each such fragment.

Theorem 4.2. (Streaming algorithm for pat-
terns with a small approximate period) Suppose
that we are given an integer k and the periodic represen-
tation of a pattern P with respect to a d-period p such
that d = O(k) and p = O(k). There exists a determin-
istic algorithm, which uses O(k log n) bits of space and
takes O(

√
k log k+ log2 n) time per symbol to report the

k-mismatch occurrences of P in the streamed text T .
The stream OcckP of k-mismatch occurrences can be

outputted in O(k log2 n) extra time for each k-mismatch
occurrence. Moreover, the algorithm may report it with
any prescribed delay δ = O(|P |).

Proof. Our strategy is to partition T into overlapping
blocks for which p is an O(k)-period, making sure
that any k-mismatch occurrence of P is fully contained
within a block. Then, we shall run Lemma 7.6 for each
block to find these occurrences.

Let us first build the partition into blocks. We
shall make sure that every position of T belongs to
exactly two blocks and that p is a (4k + 2d + p)-
period of each block. While processing T , we maintain
two current blocks B,B′ (assume |B| ≥ |B′|) along
with their periodic representations. Let us denote the
number of mismatches (with respect to the approximate
period p) in B and B′ by m and m′, respectively.
These values shall always satisfy m′ ≤ d + 2k and
m ≤ m′+min(|B′|, p)+d+2k, which clearly guarantees
the claimed bound m ≤ 4k + 2d + p. Moreover, we
shall make sure that d+ 2k < m unless B is a prefix of
T . This way, if a k-mismatch occurrence of P ends at
the currently processed position, then it must be fully
contained in B, because HD(P,Q) ≤ k implies that p is
a (d+ 2k)-period of Q, for any string Q.

We start with B = B′ = ε before reading T [0].
Next, suppose that we read a symbol T [i]. If m′ < d+2k
or T [i] = T [i−p], we simply extend B and B′ with T [i].
In this case, m′ might increase but it will not exceed
d + 2k, whereas m increases only if m′ + min(|B′|, p)
increases, so the inequality m ≤ m′+min(|B′|, p)+d+2k
remains satisfied. On the other hand, if m′ = d+2k and
T [i] 6= T [i− p], then we set B := B′T [i] and B′ := T [i].
In this case, m = d+ 2k+ 1 and m′ = 0, which satisfies
the invariants as one can easily verify.
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The procedure described above outputs the blocks
as streams, which we pass to Lemma 7.6 with a delay δ.
In order to save some space, when the construction of a
block terminates and the block turns out to be shorter
than |P |, we immediately launch a garbage collector to
get rid of this block. The number of remaining blocks
contained in T [i − δ + 1 . . i] is therefore bounded by
2b δ
|P |c, because each such block is of length at least

|P | and each position is located within at most two
such blocks. Accounting for the two blocks currently
in construction and the two blocks currently processed
by Lemma 7.6, this implies that at any time we store
O(1+ δ

|P | ) = O(1) blocks in total, which means that the

overall space consumption is bounded by O(k) words.
Lemma 7.6 reports k-mismatch occurrences of P

with no delay, so the overall delay of the algorithm
is precisely δ. Requests for mismatch information are
handled in O(k) time using the periodic representations
of the pattern P and the currently processed block.

To allow for computing sketches, we also maintain
an instance of Fact 4.4 and for every block T [b . . e],
we store the sketch skk(T [0 . . b − 1]). As we stream
the block to Lemma 7.6, we process it using another
instance of Fact 4.4, with an extra delay |P | (compared
to Lemma 7.6). This way, whenever Lemma 7.6 reports
a k-mismatch occurrence T [j . . j + |P | − 1], the sketch
T [0 . . j−1] can be retrieved (on demand) in O(k log2 n)
time (by combining skk(T [0 . . b−1]) and skk(T [b . . j−1])
based on Proposition 3.1(b)). The use of Fact 4.4
increases the processing time of each position by an
additive O(log2 n) term.

Note that a combination of Lemma 4.3 and The-
orem 4.2 lets us give a deterministic streaming k-
mismatch algorithm when the pattern has a d-period
p with d = O(k) and p = O(k). The procedure
of Lemma 4.3 can be called to find an O(k)-period
p′ = O(k) of P (along with the periodic representation
of P ), and then T can be processed using Theorem 4.2.

8 Proof of Lemma 5.5

In this section, we prove Lemma 5.5. We define ‖Cp(i)‖
as the number of distinct elements in Cp(i); note that a
class is uniform if ‖Cp(i)‖ = 1. The majority element
of a multiset S is an element with multiplicity strictly
greater than 1

2 |S|. We define uniform strings and
majority symbols of a string in an analogous way.

The remaining part of this section constitutes a
proof of Lemma 5.5. We start with Section 8.1, where
we introduce the main ideas, which rely on the struc-
ture of classes and their majorities. The subsequent Sec-
tion 8.2 provides further combinatorial insight necessary
to bound the size of our encoding. Section 8.3 presents

two abstract building blocks based on well-known com-
pact data structures. Next, in Section 8.4 we give a
complete description of our encoding. In Section 8.5 we
address answering queries, and in Section 8.6 we discuss
updates.

8.1 Overview Observe that if d = gcd(P) does not
change as we insert an approximate period p to P, then
we do not need to update the data structure. Hence,
let us introduce a sequence d0, . . . , ds of distinct values
gcd(P) arising as we inserted subsequent approximate
periods to P. Moreover, for 1 ≤ i ≤ s, let pi ∈ P be the
period which caused the transition from di−1 to di.

Fact 8.1. The sequences d0, . . . , ds and p1, . . . , ps sat-
isfy d0 = 0, d` = gcd(d`−1, p`) for 1 ≤ ` ≤ s, and
ds = gcd(P). Moreover, d` | d`−1 and d` ≤ n

2`+1 for
1 ≤ ` ≤ s, and therefore s = O(log n).

Proof. We start with P = ∅, so d0 = gcd(∅) = 0. If
gcd(P) | p for a newly inserted element p, we do not
update the sequence. Otherwise, we append p` := p
and d` := gcd(d`−1, p`). Note that d` is a proper divisor
of d`−1, so d` ≤ 1

2d`−1 which yields d` ≤ d1
2`−1 ≤ n

2`+1 by
induction.

Let C` be the partition of the symbols of X into
classes Cd`(i) modulo d`. Fact 8.1 lets us characterise
the sequence C0, . . . ,Cs: the first partition, C0, con-
sists of singletons, i.e., it is the finest possible partition.
Then, each partition is coarser than the previous one,
and finally Cs is the partition into classes modulo ds.

Consequently, the classes modulo Cd`(i) for 0 ≤ ` ≤
s form a laminar family, which can be represented as
a forest of depth s + 1 = O(log n); its leaves are sin-
gle symbols (classes modulo d0 = 0), while the roots
are classes modulo ds. Let us imagine that each class
stores its majority element (or a sentinel # if there is no
majority). Observe that if all the classes Cd`−1

(i′) con-
tained in a given class Cd`(i) share a common majority
element, then this value is also the majority of Cd`(i).
Consequently, storing the majority elements of all the
contained classes Cd`−1

(i′) is redundant. Now, in order
to retrieveX[i], it suffices to start at the leaf Cd0(i), walk
up the tree until we reach a class storing its majority,
and return the majority, which is guaranteed to be equal
to X[i]. This is basically the strategy of our query al-
gorithm. A minor difference is that we do not store the
majority element of uniform classes Cds(i), because our
procedure shall return # when Cds(i) is uniform. On the
other hand, we explicitly store the non-uniform classes
Cds(i) so that updates can be implemented efficiently.

In order to encode the majority symbols of classes
Cd`−1

(i′) contained in a given class Cd`(i), let us study
the structure of these classes in more detail.
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Observation 8.2. Each class modulo d` can be decom-
posed as follows into non-empty classes modulo d`−1;

Cd`(i) =

d`−1
d⋃̀
j=0

Cd`−1
(i+ jp`) if ` > 1

Cd`(i) =

dn−i
d`
e⋃

j=0

Cd`−1
(i+ jp`) if ` = 1

Motivated by this decomposition, for each class
Cd`(i) with ` ≥ 1 and 0 ≤ i < d`, we define the

majority string M`,i of length |M`,i| = d`−1

d`
for ` > 1

and |M`,i| = dn−id`
e for ` = 1. Its jth symbol M`,i[j] is

defined as the majority of Cd`−1
(i+jp`), or # if the class

has no majority. We think of M`,i as a cyclic string for
` > 1 and a linear string for ` = 1.

Since p` ∈ Per(X, k), we expect that the adjacent
symbols of the majority strings M`,i are almost always
equal. In the next section, we shall prove that the
total number of mismatches between adjacent symbols
is O(k) across all the majority strings.

8.2 Combinatorial Bounds For 1 ≤ ` ≤ s, let
N` ⊆ C` consist of non-uniform classes. Moreover, for
0 ≤ ` < s, let K` ⊆ C` consist of classes Cd`(i) such
that the majority elements of Cd`(i) and Cd`(i + p`+1)
differ.

Fact 8.3. Consider the decomposition of a class
Cd`(i) ∈ N` into classes C ∈ C`−1. At least one of
these classes satisfies C ∈ N`−1 ∪K`−1. Moreover, if
there is just one such class, then ` = 1 or this class C
satisfies C ∈ N`−1 \K`−1.

Proof. If the majority string M`,i is uniform, then one
of the classes C must contain a symbol other than its
majority; otherwise, Cd`(i) would be uniform. Such a
class C clearly belongs to N`−1 \K`−1.

Next, suppose that the majority string M`,i is non-
uniform. Each mismatch between consecutive symbols
of M`,i corresponds to a class C ∈ K`−1. If ` = 1, then
M1,i is a linear string and it may have one mismatch.
Otherwise, M`,i is circular, so there are at least two
mismatches between consecutive symbols.

Fact 8.4. If Cd`(i) ∈ K` \N` for some 0 ≤ ` < s, then
there are at least 2`−1 positions i′ ≡ i (mod d`) such
that 0 ≤ i′ < n− p`+1 and X[i′] 6= X[i′ + p`+1].

Proof. If ` = 0, then we just have C0(i) ∈ K0 if and
only if 0 ≤ i < n− p1 and X[i] 6= X[i+ p1].

Consider an alignment between X[0 . . n − p`+1 −
1] and X[p`+1 . . n − 1] and let k`,i be the number

of positions i′ specified above. Observe that exactly
b i+p`+1

d`
c symbols in Cd`(i+ p`+1) are at indices smaller

than p`+1 (and they are not aligned with any symbol
of Cd`(i)), while exactly k`,i symbols are aligned with
mismatching symbols. The remaining symbols of Cd`(i+
p`+1) are aligned with matching symbols of Cd`(i). The

class Cd`(i) is uniform, so at most k`,i+b i+p`+1

d`
c symbols

of Cd`(i+ p`+1) are not equal to the majority of Cd`(i).
Since Cd`(i + p`+1) does not share the majority with

Cd`(i), we must have k`,i+b i+p`+1

d`
c ≥ 1

2 |Cd`(i+p`+1)| =
1
2b

i+p`+1

d`
c + 1

2d
n−i−p`+1

d`
e. Due to p`+1 ≤ n

4 and d` ≤
n

2`+1 (by Fact 8.1), this yields

k`,i ≥ 1
2

⌈
n−i−p`+1

d`

⌉
− 1

2

⌊
i+p`+1

d`

⌋
≥ n−2(i+p`+1)

2d`
=

= 2n−4i−4p`+1

4d`
> 2n−4d`−n

4d`
= n

4d`
− 1 ≥ 2`−1 − 1.

In short, k`,i > 2`−1 − 1, and thus k`,i ≥ 2`−1.

Lemma 8.5. We have 2|Ns| +
∑s−1
`=0 |K`| ≤ 8k. Con-

sequently, the majority strings M`,i contain in total
at most 8k mismatches between adjacent symbols and∑
C∈Nds

‖C‖ ≤ 16k.

Proof. We apply a charging argument. In the charging
phase, each mismatch X[i] 6= X[i + p`] (for 1 ≤ ` ≤ s
and 0 ≤ i < n−p`) receives a charge of 23−` units. The
total charge is therefore at most

∑s
`=1 k · 23−` < 8k.

Next, each such mismatch passes its charge to the
class Cd`(i). By Fact 8.4, each class Cd`(i) ∈ K` \ N`

receives at least 2 units of charge. Moreover, each class
Cd0(i) ∈ K0 \N0 receives exactly 4 units.

Finally, in subsequent iterations for ` = 0 to s− 1,
the classes modulo d` pass some charge to the enclosing
classes modulo d`+1: each Cd`(i) /∈ K` passes all its
charge to Cd`+1

(i), whereas each Cd`(i) ∈ K` leaves one
unit for itself and passes the remaining charge.

We inductively prove that prior to the iteration `,
each class Cd`(i) ∈ N` had at least two units of charge.
Let us fix such a class. If ` = 1, then Fact 8.3 implies
that it contains a class C ∈ K0 (as N0 = ∅). As we have
observed, it obtained 4 units of charge and passed 3 of
them to Cd`(i). Similarly, if Cd`(i) contains a class C ∈
N`−1 \K`−1, then this class obtained at least 2 units of
charge (by the inductive assumption), and passed them
all to Cd`(i). Otherwise, Fact 8.3 tells us that Cd`(i)
contains at least two classes C ∈ N`−1 ∪K`−1. Each of
them received at least 2 units of charge (directly from
the mismatches or due to the inductive assumption) and
passed at least 1 unit to Cd`(i).

In the end, each class C ∈ K` has therefore at least
one unit of charge and each class C ∈ Ns has at least 2
units. This completes the proof of the inequality.
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For the remaining two claims, observe that mis-
matches in the majority strings correspond to classes
C ∈ K`, and that if a ∈ C for C ∈ Ns, then there exists
Cd`(i) ⊆ C such that the majority string M`,i is non-
uniform and contains a. Consequently, ‖C‖ is bounded
by twice the number of mismatches in the correspond-
ing majority strings. The classes modulo ds are disjoint,
so no mismatch is counted twice.

8.3 Algorithmic Tools A run in a string S is a max-
imal uniform fragment of S, i.e., a maximal fragment of
S composed of equal letters; we denote the number of
runs in S by rle(S).

Fact 8.6. (Run-length encoding) A string S of
length n with r = rle(S) can be encoded using
O(r(log n+r

r + log |Σ|)) bits so that any given symbol
S[i] can be retrieved in O(log r) time. This represen-
tation can be constructed in O(r log n) time from the
run-length encoding of S.

Proof. Let 0 = x1 < . . . < xr < n be starting position
of each run. We store the sequence x1, . . . , xr using the
Elias–Fano representation [21, 24] (with O(1)-time data
structure for selection queries in a bitmask; see e.g. [13]).
It takes O(r log n+r

r + r) bits and allows O(1)-time
access. In particular, in O(log r) time we can binary
search for the run containing a given position i. The
valuesX[x1], . . . , X[xr] are stored usingO(r log |Σ|) bits
with O(1)-time access.

Fact 8.7. (Membership queries [10]) A set A ⊆
{0, . . . , n − 1} of size at most m can be encoded in
O(m log n+m

m ) bits so that one can check in O(1) time
whether i ∈ A for a given i ∈ {0, . . . , n − 1}. The con-
struction time is O(m log n).

8.4 Data Structure Following the intuitive descrip-
tion in Section 8.1, we shall store all the non-uniform
majority strings M`,i (for 1 ≤ ` ≤ s and 0 ≤ i < d`)
and all non-uniform classes Cds(i). We represent them
as non-overlapping factors of a single string M of length
2n, constructed as follows: Initially, M consists of blank
symbols �. Each non-uniform majority string M`,i is

placed in M at position 2d` + id`−1

d`
for ` > 1 and

2d` + id nd` e for ` = 1. Note that the positions occu-
pied by strings M`,i for a fixed level ` belong to the
range [2d`, 2d` + d`−1 − 1] ⊆ [2d`, 2d`−1 − 1] for ` > 1
and [2d1, . . . , 2d1 + d1d nd` e − 1] ⊆ [2d1, 3d1 + n − 1] ⊆
[2d1, 2n − 1] for ` = 1. These ranges are clearly
disjoint for distinct values `, so the majority strings
M`,i indeed do not overlap. Additionally, we exploit
the fact that positions within [0, . . . , ds − 1] are free,
and if Cds(i) ∈ Ns, we store its majority symbol at

M[i]. Lemma 8.5 yields that the total number of mis-
matches between subsequent symbols and the number
of non-uniform classes modulo ds are both O(k). Hence,
rle(M) = O(k) and the space required to store M us-
ing Fact 8.6 is O(k(log n+k

k + log |Σ|)) bits. On top of
that, we also store a data structure of Fact 8.7 marking
the positions in M where non-uniform majority strings
start; this component takes O(k log n+k

k ) bits.
Additionally, we keep the contents of each non-

uniform class modulo ds. We do not need to access
this data efficiently, so for each such class, we sim-
ply store the symbols and their multiplicities using
variable-length encoding. This takes O(‖C‖(log |Σ| +
log |C|+‖C‖‖C‖ )) bits for each C ∈ Ns, which is O(k(log n

k +

log |Σ|)) in total because
∑
C∈Ns

‖C‖ = O(k) (by
Lemma 8.5) and

∑
C∈Ns

|C| ≤ n.

Finally, we store integers n, d1, ds, as well as d`
d`+1

and r` := (p`+1

d`+1
)−1 mod d`

d`+1
for 1 ≤ ` < s. A

naive estimation of the required space is O(s log n) =
O(log2 n) bits, but variable-length encoding lets us store
the values d`

d`+1
using O(

∑s
`=1 log d`

d`+1
) = O(log n) =

O(k log n+k
k ) bits in total. Similarly, the integers r` can

be stored in O(log n) bits because 1 ≤ r` < d`
d`+1

.

This completes the description of our data struc-
ture; it takes O(k(log n+k

k + log |Σ|)) bits.

8.5 Queries In this section, we describe the query
algorithm for a given index i. We are going to iterate
for ` = 0 to s, and for each ` we will either learn X[i]
or find out that X[i] is the majority symbol of Cd`(i).
Consequently, entering iteration `, we already know that
X[i] is the majority of Cd`−1

(i). We also assume that d`
is available at that time.

We compute the starting position of M`,i mod d` in
M according to the formulae of Section 8.4. Next, we
query the data structure of Fact 8.7 to find out if the
majority string is uniform. If so, we conclude that X[i]
is the majority of Cd`(i) and proceed to the next level.
Before this, we need to compute d`+1 = d` · ( d`

d`+1
)−1.

An iteration takes O(1) time in this case.
Otherwise, we need to learn the majority of Cd`−1

(i),
which is guaranteed to be equal to X[i]. This value
is M`,i mod d` [j] where j = b id1 c for ` = 1, and j =

r`b id` c mod d`−1

d`
for ` > 1. We know the starting

position of M`,i mod d` in M, so we just use Fact 8.6
to retrieve X[i] in O(log k) time.

If the query algorithm completes all the s iterations
without exiting, then X[i] must be the majority symbol
of Cds(i). Thus, we retrieve M[i mod ds], which takes
O(log k) time due to Fact 8.6. This symbol is either the
majority of Cds(i) (guaranteed to be equal to X[i]) or
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a blank symbol. In the latter case, we know that the
class Cds(i) is uniform, so we return a sentinel #. The
overall running time is O(s+ log k) = O(log n).

8.6 Updates If ds | p, then the we do not need to
update. Otherwise, we extend our data structure with
ps+1 := p and ds+1 := gcd(ps+1, ds).

First, we detect non-uniform classes modulo ds+1.
Facts 8.3 and 8.4 imply that a class Cds+1

(i) is non-
uniform if and only if for some i′ ≡ i (mod ds+1) there is
a class Cds(i′) ∈ Ns or a position 0 ≤ i′ < n−ps+1 with
X[i′] 6= X[i′ + ps+1]. Hence, we scan the non-uniform
classes modulo ds and the mismatch information for
ps+1 grouping the entries by i′ mod ds+1.

For each Cds+1
(i) ∈ Ns+1 our goal is to construct

the underlying multiset and the corresponding majority
string Ms+1,i. For every enclosed C ∈ Ns, we use the
multiset to deduce the majority symbol and store it
at an appropriate position of Ms+1,i. Next, for every
mismatch X[i′] 6= X[i′ + ps+1] we store X[i′] in Ms+1,i

as the majority symbol of Cds(i′) if the class is uniform.
Symmetrically, if Cds(i′ + ps+1) is uniform, its majority
symbol X[i′+ ps+1] is placed in Ms+1,i. The remaining
symbols of Ms+1,i are guaranteed to be equal to their
both neighbours. This lets us retrieve the run-length
encoding ofMs+1,i. To compute the multiset of Cds+1

(i),
we aggregate the data from the enclosed non-uniform
classes, and use the majority string to retrieve for each
symbol a the total size of enclosed classes uniform in a.

Finally, we note that the data structures of Facts 8.6
and 8.7 can be reconstructed in O(k log n) time (which
is sufficient to build them from scratch).

9 Proof of Proposition 3.3

In order to prove Proposition 3.3, we first give a
new efficient algorithm for the streaming k-mismatch
problem, assuming we can maintain a read-only copy of
(the latest n symbols in) the text. Up to the additive
O(log3 n) term, the running time of our algorithm
matches that of the classic offline solution [5] despite
having guaranteed worst-case performance per arriving
symbol and using small additional space on top of the
read-only access to the last n symbols of the text.

Theorem 5.6. In the read-only random-access model,
the streaming k-mismatch problem can be solved on-
line with a Monte-Carlo algorithm using O(k log n) bits
of working space and O(

√
k log k + log3 n) time per

symbol, including O(1) symbol reads. For any reported
k-mismatch occurrence, the mismatch information can
be retrieved on demand in O(k) time.

Proof. First, we briefly sketch our strategy. If the
pattern has an O(k)-period O(k), then it suffices to

apply Lemma 4.3 and Theorem 4.2. Otherwise, we
can still use these results to filter the set of positions
where a P has k-mismatch occurrence in T , leaving at
most one candidate for each k subsequent positions.
We use sketches to verify candidates, with the tail
trick (see Lemma 7.6) employed to avoid reporting
occurrences with a delay.

More formally, while processing the pattern, we
also construct a decomposition P = PHPT into the
head PH and the tail PT with |PT | = 2k, and we
compute the sketch skk(PH) (using Fact 4.4). We also
apply Lemma 4.3 with p = k and d = 2k + 1, which
results in a prefix Q of P . This way, P is processed in
O(
√
k log k + log2 n) time per symbol using O(k log n)

bits of working space.
If |Q| > |PH |, then P has a 4k-period p′ ≤ k, and

we may just use Theorem 4.2 to report the k-mismatch
occurrences of P in T . Otherwise, Q has a (2k + 1)-
period p′ ≤ k, but no 2k-period p′′ ≤ k. In particular,
due to Observation 4.1, the k-mismatch occurrences of
Q are located more than k positions apart.

Processing the text T , we apply Fact 4.4 so that
skk(T [0 . . i]) and skk(T [0 . . i − |PH |]) can be efficiently
retrieved when T [i] is handled. Additionally, we run
the streaming algorithm of Theorem 4.2, delayed so
that a k-mismatch occurrence of Q starting at posi-
tion i − |PH | + 1 is reported while T [i] is revealed.
These components take O(k log n) bits of space and use
O(
√
k log k + log n) time per symbol of T .
If Theorem 4.2 reports a k-mismatch occurrence

of Q at position i − |PH | + 1, we shall check if PH
also has a k-mismatch occurrence there. For this,
we retrieve skk(T [0 . . i]) and skk(T [0 . . i − |PH |]) (us-
ing Fact 4.4), compute skk(T [i − |PH | + 1 . . i]) (using
Proposition 3.1(b)), and compare it to skk(PH) (us-
ing Proposition 3.1(a)). This process takes O(k log3 n)
time in total, and it can be executed while the sub-
sequent k symbols of T are revealed. If PH has a k-
mismatch occurrence at position i− |PH |+ 1, it results
in MI(PH , T [i−|PH |+1 . . i]). Then, we naively compute
MI(PT , T [i+ 1 . . i+ 2k]). Thus, as soon as T [i+ 2k] is
revealed, we know if HD(P, T [i−|PH |+1 . . i+2k]) ≤ k,
and we can retrieve the mismatch information in O(k)
time upon request.

Since Q does not have any 2k-period p′′ ≤ k, we are
guaranteed that at most two k-mismatch occurrences of
Q are processed in parallel (one is extended to PH and
another one to P ).

We are now able to prove Proposition 3.3.

Proposition 3.3. The stream of k-mismatch informa-
tion of Q in T can be stored in a sliding-window buffer
of fixed length δ = Θ(|Q|) which uses O(k log n) bits.
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The push operation takes O(k log2 n+log3 n) time if the
pushed entry OcckQ[i+ δ] or the retrieved entry OcckQ[i]

is non-empty and O(
√
k log k + log3 n) time otherwise.

Initialisation, given skk(Q) and δ, takes O(k) time.

Proof. We partition T into consecutive blocks of length
b = 1

4 min(δ, |Q|). The buffer shall be implemented as
an assembly line of components, each responsible for
k-mismatch occurrences of Q starting within a single
block, called the relevant occurrences in what follows.

The choice of b guarantees that storing O(1) com-
ponents suffices at any time. Moreover, the component
needs to output the k-mismatch occurrences Θ(|Q|)
pushes after it is fed with the last relevant occurrence,
which leaves plenty of time for reorganisation. Conse-
quently, its lifetime shall consist of three phases:

• encoding, when it is fed with relevant occurrences
of Q in T ,

• reorganisation, when it performs some computa-
tions to change its structure,

• decoding, when it retrieves the stream of k-
mismatch information of Q in T .

In the encoding phase, we essentially construct the
message as described in the proof of Theorem 1.3,
encoding the relevant occurrences of Q, i.e., the k-
mismatch occurrences of Q in the appropriate fragment
of T . The only difference is that we also store the
sketches skk(T [0 . . ` − 1]) and skk(T [0 . . `′ − 1]) corre-
sponding to the leftmost and the rightmost relevant oc-
currence.

A single relevant occurrence can be processed in
O(k log n) time, dominated by updating the data struc-
ture of Lemma 5.5, which may need to account for a
new element of P. Apart from that, we only need to re-
place the rightmost relevant occurrence, along with the
associated mismatch information and the sketch.

In the decoding phase, we apply Theorem 5.6 to
find k-mismatch occurrences of Q# in T ′#, as defined
in the proof of Theorem 1.3. To provide random ac-
cess to these strings, we just need the data structure
of Lemma 5.5 and the mismatch information for the
two extremal relevant occurrences of Q; see Fact 5.4.
To allow for O(log n)-time access, we organise the mis-
match information in two dictionaries: for each mis-
match (i, Q[i], T [i′]), we store T [i′] in a dictionary in-
dexed by i′, and Q[i] in a dictionary indexed by i mod d.
These dictionaries can be constructed in O(k log2 log k)
time (during the reorganisation phase) [41]. As a re-
sult, we can use Theorem 5.6 to report the occurrences
of Q in T in the claimed running time, along with the
mismatch information. The reorganisation phase is also
used to process the first n symbols of T ′#.

Retrieving the corresponding sketches T [0 . . i − 1]

is more involved, and here is where the reorganisation
phase is crucially needed. Based on the sketches
skk(T [0 . . `− 1]) and skk(T [0 . . `′− 1]), we can compute
skk(T [` . . `′ − 1]) = skk(T ′[0 . . `′ − ` − 1]) applying
Proposition 3.1(b). Consider the point-wise difference
D of strings T ′ and T ′#. Observe that Corollary 6.5 lets
us transform skk(T ′[0 . . `′−`−1]) into skk(D[0 . . `′−`−
1]) using random access to T ′# for listing mismatches.
Next, we observe that D is an integer power of a string
of length d, so Lemma 6.3 can be used to retrieve the
sketch skk(D[0 . . d− 1]) of its root.

During the decoding phase, we maintain the data
structure of Corollary 6.5 transforming skk(D[0 . . `′−`−
1]) back to skk(T ′[0 . . `′ − `− 1]). When a k-mismatch
occurrence of Q# is reported at position i of T ′#, we
report a k-mismatch occurrence of Q at position ` + i.
At the same time, we compute skk(D[i . . `′ − ` − 1])
(using Lemma 6.3; we are guaranteed that d | i)
and retrieve skk(T ′[0 . . i − 1]D[i . . `′ − ` − 1]) (from
Corollary 6.5). Finally, we construct skk(T [` . . `+i−1])
and skk(T [0 . . `+ i− 1]) using Proposition 3.1(b).

In the encoding phase, we need to update any-
thing only when the component is fed with a rele-
vant occurrence, and processing such an occurrence
takes O(k log n) time. The reorganisation time is
O(n(

√
k log k + log3 n)), which is O(

√
k log k + log3 n)

time per push. In the decoding phase, the running time
is O(

√
k log k + log3 n) per push (due to Theorem 5.6

and Corollary 6.5) plus O(k log2 n) time whenever a k-
mismatch occurrence of Q is reported.
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