18,807 research outputs found

    A Tool for Visual Analysis of Circuit Evolution

    Get PDF
    Cílem diplomové práce je zpracovat studii o kartézském genetickém programování se zaměřením na použití v oblasti evoluce obvodů a vytvořit návrh konceptu vizualizace této evoluce. Následně je cílem vytvořit program umožňující vizualizovat evoluci obvodů kartézského genetického programování, její jednotlivé generace, stejně tak i jednotlivé chromozomy, dále umožňující zobrazovat změny mezi generacemi a chromozomy a porovnávat více chromozomů najednou. Pro výsledný program bylo rovněž zpracováno několik příkladů použití.The main goal of the master's thesis is to compose a study on cartesian genetic programming with focus on evolution of circuits and to design a concept for visualisation of this evolution. Another goal is to create a program to visualise the circuit evolution in cartesian genetic programming, its generations and chromosomes. The program is capable of visualising the changes between generations and chromosomes and comparing more chromosomes at once. Several user cases had been prepared for the resulting program.

    Mathematical modelling of the cardiovascular system

    Full text link
    In this paper we will address the problem of developing mathematical models for the numerical simulation of the human circulatory system. In particular, we will focus our attention on the problem of haemodynamics in large human arteries

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    Weighted and metric surface networks - new insights and an interactive application for their generalisation in Tcl/Tk

    Get PDF
    The idea of characterising the different forms of natural topographic surfaces by a topologicalmodel based on their fundamental surface features has attracted many proposals. In this paper, adetailed discussion and new proposals on various issues related to the concept, generation, andvisualisation of two graph theoretic based surface topology data structures ? Weighted SurfaceNetworks and their improved version, Metric Surface Networks - are presented. Also presented isan interactive Tcl/Tk application called Surface Topology Toolkit, which has been developed tosupport the discussion on aspects of their generalisation and visualisation. The highlight of theSurface Topology Toolkit is the utility to allow arbitrary contraction unlike the usual verteximportance based criterion. This paper proposes that effective automated surface topologymodelling based on these surface networks requires (a) further research in the development of?computing? algorithms that will accurately locate critical surface points, be able to establishtopological links, and also check topological consistency, (b) transforming their 2D straight linegraph like appearance to 3D to improve visualisation and contraction, and (c) assessment and userawarenessabout the effects of each type of contraction criterion on the topography

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Routing Physarum with electrical flow/current

    Full text link
    Plasmodium stage of Physarum polycephalum behaves as a distributed dynamical pattern formation mechanism who's foraging and migration is influenced by local stimuli from a wide range of attractants and repellents. Complex protoplasmic tube network structures are formed as a result, which serve as efficient `circuits' by which nutrients are distributed to all parts of the organism. We investigate whether this `bottom-up' circuit routing method may be harnessed in a controllable manner as a possible alternative to conventional template-based circuit design. We interfaced the plasmodium of Physarum polycephalum to the planar surface of the spatially represented computing device, (Mills' Extended Analog Computer, or EAC), implemented as a sheet of analog computing material whose behaviour is input and read by a regular 5x5 array of electrodes. We presented a pattern of current distribution to the array and found that we were able to select the directional migration of the plasmodium growth front by exploiting plasmodium electro-taxis towards current sinks. We utilised this directional guidance phenomenon to route the plasmodium across its habitat and were able to guide the migration around obstacles represented by repellent current sources. We replicated these findings in a collective particle model of Physarum polycephalum which suggests further methods to orient, route, confine and release the plasmodium using spatial patterns of current sources and sinks. These findings demonstrate proof of concept in the low-level dynamical routing for biologically implemented circuit design

    BacillOndex: An Integrated Data Resource for Systems and Synthetic Biology

    Get PDF
    BacillOndex is an extension of the Ondex data integration system, providing a semantically annotated, integrated knowledge base for the model Gram-positive bacterium Bacillus subtilis. This application allows a user to mine a variety of B. subtilis data sources, and analyse the resulting integrated dataset, which contains data about genes, gene products and their interactions. The data can be analysed either manually, by browsing using Ondex, or computationally via a Web services interface. We describe the process of creating a BacillOndex instance, and describe the use of the system for the analysis of single nucleotide polymorphisms in B. subtilis Marburg. The Marburg strain is the progenitor of the widely-used laboratory strain B. subtilis 168. We identified 27 SNPs with predictable phenotypic effects, including genetic traits for known phenotypes. We conclude that BacillOndex is a valuable tool for the systems-level investigation of, and hypothesis generation about, this important biotechnology workhorse. Such understanding contributes to our ability to construct synthetic genetic circuits in this organism

    Maze solvers demystified and some other thoughts

    Full text link
    There is a growing interest towards implementation of maze solving in spatially-extended physical, chemical and living systems. Several reports of prototypes attracted great publicity, e.g. maze solving with slime mould and epithelial cells, maze navigating droplets. We show that most prototypes utilise one of two phenomena: a shortest path in a maze is a path of the least resistance for fluid and current flow, and a shortest path is a path of the steepest gradient of chemoattractants. We discuss that substrates with so-called maze-solving capabilities simply trace flow currents or chemical diffusion gradients. We illustrate our thoughts with a model of flow and experiments with slime mould. The chapter ends with a discussion of experiments on maze solving with plant roots and leeches which show limitations of the chemical diffusion maze-solving approach.Comment: This is a preliminary version of the chapter to be published in Adamatzky A. (Ed.) Shortest path solvers. From software to wetware. Springer, 201
    corecore