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Abstract 
The desire to understand and exploit the structure of continuous surfaces 

is common to researchers in a range of disciplines. Few examples of the 

varied surfaces forming an integral part of modern subjects include 

terrain, population density, surface atmospheric pressure, physico-

chemical surfaces, computer graphics, and metrological surfaces. 

 

The focus of the work here is a group of data structures called 

Surface Networks, which abstract 2-dimensional surfaces by storing only 

the most important (also called fundamental, critical or surface-specific) 

points and lines in the surfaces. Surface networks are intelligent and 

“natural” data structures because they store a surface as a framework of 

“surface” elements unlike the DEM or TIN data structures. This report 

presents an overview of the previous works and the ideas being developed 

by the authors of this report. The research on surface networks has four 

main focus areas namely, data structure model, automated extraction, 

generalisation, and applications. The report is also organised into these 

research themes.  

 

Despite their immense analytical potential, there have been a 

number of limitations to date, which need to be tackled: 

 

- Due to their design requirements, current implementations of 

Surface networks have been restricted to surfaces with fluvial 

features (i.e., must have ridges, channels, peaks, passes, and 

pits). However, a number of surfaces have biased topography 

such as in glaciated or karstic terrains or features may be absent 

e.g., flat surfaces. 

 

- The feature detection methods are scale dependent. In other 

words, in any one run, our computing routines detect features 

that fit into the fixed search window (kernel etc.). An incorrect 

feature detection method causes loss of the topological 



properties, essential for the construction of a consistent surface 

network. 

 

- Although the topological generalisation of surface networks is well 

understood, there has been no proposal on the regeneration of 

the topographical details in the generalised area of the surface 

networks. 

 

- Surface networks are “believed” to be useful for the visualisation 

of complex surfaces, optimising visibility and accessibility routines 

and performing landscape evolution. However, like any other 

abstraction of surfaces, surface networks also carry a level of 

uncertainty.  

 

This report describes the results of the research carried out by the 

reports’ authors on the following issues: 

 

- Surface network model: A comprehensive review of the surface 

network model was done, which revealed some acute limitations 

of the surface network data model. It was observed that the 

surface network data model requires significant development to 

take into account the varied surface forms and the scale issues of 

terrain data structures. 

 

- Automated extraction: A survey of the algorithms for the 

automated extraction of surface network revealed that none of 

the automated extraction methods could extract both a 

topologically-consistent and complete (taking into account scale-

issues) surface network. 

 

- Generalisation: The study of the research on the generalisation of 

surface networks revealed that the potential of the generalisation 

is hardly addressed. This work has proposed some alternative 

methods for the generalisation of surface networks. 

 



- Applications: A survey of the applications of surface network data 

structure revealed its use in the computer science field mainly for 

visualisation. This work proposes the use of surface network for 

optimising viewshed computation and surface evolution studies. 

 

A platform has been to set up to conduct experiments and further 

investigation on surface networks.  
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Chapter 1 

Introduction  
 

 

 

1.1 Surface Information Encapsulation 

The desire to understand and exploit the structure of continuous surfaces is a 

common aim to researchers in a range of disciplines. A few examples of the 

varied surfaces forming an integral part of modern subjects include terrain, 

population density, surface atmospheric pressure, physico-chemical surfaces, 

computer graphics, and metrological surfaces. However, with an increasingly 

multispectral and highly dense data (surfaces in this case), researchers want 

to be able to filter out redundant observations. These aims (more information 

but less data volume) seem to contradict each other. However, a right 

balance between the volume of the data and the information content in the 

data is an essential requirement to make our analyses (human or robotic) 

fast and to keep our data storage usage to a minimum.  In addition to the 

understanding, considerable efforts are also spent to produce computing 

methods to perform data processing automatically.  

In general, for practical reasons, more than one kind of data 

representation is often applied to arrive at a suitable Information in Data (DI) 

to Data volume (DV) ratio. Sometimes even layers with different DI/DV ratios 

(i.e., different data structures) are used for the same information. A typical 

example is the difference between the internal representation of digital 

images compared to their own optimised file formats. A proper treatment of 

this issue is beyond the scope of this work but for interested readers 

literature on data compression, information theory and data structures 
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contains more information. What is important to note here is that there is an 

inevitable demand for data structure designs and computing algorithms to 

achieve a satisfactory DI/DV.  

It will not be an exaggeration to assume that there could be many ways 

to achieve a suitable DI/DV for surfaces. The focus of this work is a data 

structure, which achieves a DI/DV encapsulation in surfaces by storing only 

the most important (also called fundamental, critical, surface-specific) points 

and lines in the surfaces. In the Geographic Information (GI) science, such 

important points and lines have been variously named as landform elements 

(Speight, 1976), surface specific features (Fowler and Little, 1979), symbolic 

surface features (Palmer, 1984), surface patches (Feuchtwanger and 

Peucker, 1987), critical surface features (Wolf, 1992), and specific 

geomorphological elements (Tang, 1992) amongst others. Most other 

subjects use the words “critical points” and “critical lines”. This work will use 

the words “critical points” and “critical lines” to represent these features.  

Like the names, there have been many proposals for the list of the most 

important points and lines. However, the peaks (local maxima), passes (local 

saddles), and pits (local minima) are considered to be the simplest and 

sufficient set of points to characterise the surface. The topological framework 

of the surface is constructed with the addition of critical lines, which connect 

the critical points. The critical lines are ridges (lines linked from peaks to 

passes), and channels (lines linked from passes to pits). These kinds of data 

structures are used extensively in various disciplines with different names 

and construction. Some prominent types of these data structures include the 

Surface Network, Surface Tree, Critical Point Configuration Graph, Reeb 

Graph and the many unnamed ones.       Fig. 1.1 gives an example of the 

different representation of the topography in an area around the Hoover 

Dam, USA.  
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 (a) (b)

 

       

(c) (d) 

Figure 1.1 Different representations of the topography around Hoover Dam.
(a) Raster or Grid, (b) Contour, (c) Triangulated Irregular Network (TIN), and
(d) Surface Network. In the surface network, red dots are peaks, green dots
are passes, black and white dots are pits, blue lines are channels and yellow
lines are ridges. Terrains have been hill-shaded and coloured by elevation. 

 3



As mentioned earlier, these varieties of the critical point-critical line data 

structures could have different construction but their “Surface Topology” has 

the same set of components. Thus, based on this similarity between these 

data structures and for the sake of simplicity, we propose here author the 

following terms are used, 

 

- “Surface Network” for the spatial representation, and 

- “Surface Network Graph” for the graph representation,  

 

for all data structures constructed with critical points and critical lines. Note 

that this definition excludes Triangulated Irregular Networks (TIN) because 

they contain both the critical and ordinary set of points in their structure. The 

above-mentioned convention will be used in the following parts of this report. 

However, the author realises that this proposal can only be sensible if there 

were to be a universal standard on the structure and implementation of 

surface networks. A specific aim of this research is to combine the aims and 

methods of various disciplines on this subject.  

 

1.2 Fundamental issues in Surface Topology 

There are many other types of surface topological data structures in GI 

science and other subjects. Wolf (1993) has given a review of some 

prominent surface topological data structures. In order to achieve a thorough 

grounding for this work, it is essential to define rigorously those aspects of 

surface topology and topological data structures which are used to describe 

surfaces. 

 

Q1. Why should we have surface topology based data structures? 

• The data that will be needed to define the surface will be very much 

reduced. The reduction in size could be as much as 90% (Helman and 

Hesselink, 1991). 
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• Topological connections are a much more efficient way to access a spatial 

database. In this case, surface networks provide a more natural and thus 

intuitive control on the structure of the surfaces. 

• Components in a topological data structure are interdependent and linked. 

Thus, these data structures can be used for applications that require 

uniform and controlled response from the entire surface such as morphing 

in computer graphics and erosion modelling. For example, in the case of 

surface (represented as contours) generalisation, a common problem in 

approaches based on line-simplification is the intersection of contours after 

simplification. However, in the case of a surface network representation of 

the surface, the use of formal topological simplification prevents the 

generation of an unrealistic surface after generalisation (Wolf, 1984). 

• Surface topology is found more useful for the visualisation of surfaces 

especially 3D surfaces. It is because as it does not involve the 

complications of deciding the appropriate colour mapping or contour 

interval or the density of triangles (in case of TIN) (Helman and Hesselink, 

1991; Bajaj and Schikore, 1996). 

• As the surface networks are translation- and rotation- invariant they also 

forms an ideal mechanism for correlating and co-registering surfaces 

(Bajaj and Schikore, 1996). 

  

Q2. What should the data structures for the surface topology attempt 

to describe? 

Wood (1996) posed a more general form of this question about the extent of 

characterisation possible for landscape. Wood (1996) remarked that an 

objective identification of the ‘true’ landscape is not possible without a stricter 

definition of terms. It is because of the reason that the concept of ‘landscape’ 

is subjective not only to the physical geomorphological process, but is also 

defined by its use and the preconceptions of the observer. Since surface 

topology is also a characterisation of the surface therefore its shares these 

limitations. 
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• A common expectation from the topological data structures is that they 

should provide a unified global description of surface. A global description 

would ensure a sympathetic response in the whole surface if a change 

occurs in one part of the data structure. Thus, giving a formal control on 

the continuity of materials and processes that exists in nature as well. 

• The data structure should be able to represent most surfaces i.e., both 

fluvial and non-fluvial (with no or incomplete set of pits, peaks, and 

passes). 

• Though not a necessity it should have the flexibility of undergoing 

topological adjustments with formal routines such as needed for 

generalisation of terrain. 

 

Q3. Which surface features should be considered as most important 

to be included in the surface topology data structures? 

Various surface specific features have been proposed to represent the 

surface. The choice was largely based on the specific applications for which 

the surface was being modelled. The choice of surface specific features for 

the framework of surface topology is very essential, as it will decide the 

following important factors: 

• Resemblance to a real surface: The combination of surface specific 

features selected for surface topology should be able to describe most of 

the surface forms. However, the more detailed set of surface specific 

features are selected, the more difficult it will be to handle the data 

structures. 

• Potential applications based on surface topology: As stated earlier, it will 

be desired that the description of surface topology (in terms of the 

relations of the selected surface specific features) should contain adequate 

ways by which properties of surfaces such as drainage networks 

(hydrological applications), and others can be derived. 
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1.3 Outline of the Report 

Surface Networks have received intensive research inputs from researchers 

especially in computer science (vision, graphics), geographic information 

science (terrain modellers) and, to a limited extent, by social scientists. The 

research on surface networks can be broadly divided into four main areas 

namely the Design (i.e., data structure model), Extraction (Automated, 

Digital), Generalisation, and Applications. The chronological sequence of 

research in these areas is shown in Table 1.1.  The report is also divided into 

four parts based on the research areas, namely Theoretical or Design of 

Surface Networks (Chapter 2), Extraction (Chapter 3), Generalisation 

(Chapter 4), and the Applications (Chapter 5). These chapters are mostly 

self-contained description on these areas and include a conclusion either 

during the description or at the end of the chapters. This has been done to 

ensure a consistency of thoughts. 

Chapter 2 presents a review of the various surface network data 

structures with insights into their design and applications. This chapter will 

propose properties expected in a general design of surface network in order 

to be applicable for most kinds of two-dimensional surfaces.  

Chapter 3 focuses on the automated extraction of surface networks. This 

will involve the treatment of issues such as scale, feature identification and 

generation of a consistent topology. Three techniques of the extraction 

namely manual, triangulation and surface fitting will be described in details. 

Chapter 4 describes the simplification or technically the generalisation of 

surface networks. It will explain the importance measures (weights), 

generalisation criteria and will show the results of the generalisation 

experiments on a real and a hypothetical terrain. Based on empirical 

observations, it also proposes new methods for generalisation and  
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  Surface Network Research Areas 
Researcher(s)  Design Extraction Generalisation Visualisation 

Reech (1858)*  x -- -- -- 
Cayley (1859)^  x -- -- -- 

Maxwell (1870)^  x -- -- -- 
Morse (1925)*  x -- -- -- 
Reeb (1946)*  x -- -- -- 

Warntz (1966)^  x -- -- -- 
Morse (1966)^  x -- -- -- 
Pflatz (1976)*^  x x x x 
Mark (1977)^  x ? x -- 

Nackman (1984)*  x x -- -- 
Wolf (1984)^  x -- x x 

Takahashi et. al (1995)*^  x x -- x 
Rana (2000)^  -- -- x x 

Biasotti et. al (2000)*^  x x -- x 
Wood, Rana (2000)^  x x x x 

Table 1.1 Sequence of the “interdisciplinary” research on surface networks.

^ indicates a research based on terrains as the example of surface and *

indicates a research based on a mainly mathematical treatment of surfaces. 

 

 

comments on the regeneration of the surface around the topological 

adjustments. 

Chapter 5 is largely a demonstration of the ideas and techniques 

developed in the previous sections. Case studies on the use of surface 

networks for terrains and meteorological surfaces for visibility analysis and 

visualisation are described. This chapter concludes with a brief summary of 

the report and presents the directions for future research. 
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1.4 Domain of the Report 

Until now in the report, the term surface was used loosely to indicate 

continuous surfaces in n-dimensions. However, in this research a surface has 

the following strict definition: 

 

- Surface is a twice continuously differentiable function, whose each point 

(x,y) is associated with its scalar property i.e., z = f (x,y) and 

- It is defined over a domain, which is simply connected and bounded by a 

closed contour line, therefore there are no holes in the surface. 
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Chapter 2 

The Design of Surface Networks 
 

 

 

2.1 Origins 

From early in various academic fields, attempts have been made to 

parameterise surfaces into frameworks woven around the geometrical and 

topological relationships of the fundamental features of the surface. 

Efforts have taken place in disciplines such as physical and social 

geography, computer science (particularly graphics and vision), medical 

sciences, metrology, physics and others, in which the data and output is 

often a continuous surface. The aim of this chapter is to discuss the 

various surface network data structures especially around their 

capabilities to represent the surfaces accurately. In the following text a 

brief description on the sequence of events related to the developments of 

surface networks will be given. The details on the individual events are 

provided thereafter.  

The most crucial thought, which was instrumental in the surface 

network field, was the recognition of the fundamental features. 

Fundamental features are characteristic features, which are common to all 

surfaces and contain sufficient information to construct the whole surface, 

thus taking away the need to store each point on the surface.  

Mark (1977) reported that Reech (1858) was perhaps the first to 

discuss the critical points on a closed surface. It was soon followed by         

Cayley (1859), who proposed the subdivision of topographic surface into a 

framework of summits, immits, knots, ridge lines and course lines.   

Maxwell (1870), based on purely empirical observations about 

terrains, proposed relations between the number of summits, number of 
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passes, number of immits (also called bottoms) and number of bars. He 

also described the partition the topographic surface into “Hills and Dales” 

based on these features.  

In contrast, Morse (1925) proved the same relations between the 

number of peaks (summits), number of passes (bars), and number of pits 

(immits) based on differential topology. In general, Morse proposed 

formal relations between the critical points in an n-dimensional surface, 

which is known as the Critical Point Theory or Morse Theory. The generic 

nature and wide applicability of Morse Theory led to the expansion in the 

interest in the critical points of surfaces amongst various disciplines.   

In a significant related development, Reeb (1946) proposed  

representing the splitting and merging of equi-height contours (i.e., a 

cross-section) of a surface as a graph. Now as the contours close at the 

pits and the peaks, and split at the passes, therefore the vertices of this 

graph, now called Reeb Graph, are the critical points of the surface. The 

edges of the Reeb Graph turn out to be the ridges and channels. The Reeb 

Graph was particularly useful because unlike the description of the 

relationships critical points on the surface given in the Morse Theory, it 

addressed the embedding of the critical points on the surface.  

Warntz (1966) revived the interest of geographers and social science 

researchers into critical points and lines when he applied the “Hills and 

Dales” idea for socio-economic surfaces, referred to as the Warntz 

Network (Mark, 1977).  

Another interesting representation of topological relationships 

between the critical points of a surface is the Contour Tree (Morse, 1968, 

1969). Contour Tree represents the adjacency relations of contour loops. 

The tree like hierarchical structure develops due to the fact that each 

contour loop can enclose many other contour loops but it can itself be 

enclosed by only one contour loop. As is evident the Contour Tree is same 

as the Reeb Graph except separated by two decades. Interestingly, Kweon 

and Kanade (1994) proposed another similar idea called the Topographic 

Change Tree. Are these examples of duplicate researches?. It looks so 

because the bibliography of Kweon and Kanade (1994) does not mention 

about the Contour Tree work while Mark (1977), who discussed Contour 
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Tree in details, does not mention Reeb Graphs. As in the case of Reeb 

Graph, the vertices of such a contour tree are the peaks, pits and passes.  

After about a decade Pfaltz (1976) combined Morse Theory 

inequalities and Warntz Network in a formal graph-theoretic data 

structure called Surface Network (also called Pfaltz’s Graph - coined by 

Mark, 1977). Since he was in the computer science field, his work 

attracted the attention of researchers in three-dimensional surfaces such 

as in medical imaging, crystallography (Johnson et. al, 1999; Shinagawa 

et. al., 1991) and computer vision (Koenderink and Doorn, 1979). Pfaltz 

also proposed a graph-theoretic method called homomorphic contraction 

for generalising the Pfaltz’s graph and made the first attempt at the 

automated generation of surface networks.  

Mark (1977) proposed a pruning of the contour tree to remove the 

nodes (representing contour loops) which do not form the critical points, 

i.e., the vertices, of the contour tree, and called the resultant structure 

“Surface Tree”. This essentially reduces the contour tree to the purely 

topological state of a Pfaltz’s graph. It is easy to realise that the Reeb 

Graph, Pfaltz’s Graph and Surface Tree have fundamental similarities and 

are actually inter-convertible (Takahashi et. al, 1995).           

Nackman (1984) proposed a new construction for the graphs of 

critical points, called the “Critical Point Configuration Graph (CPCG)”, to be 

a surface network under more general conditions than those in the Pfaltz’s 

graph. In most simple terms, the CPCG is made up of four basic 

combinations of the critical points called the Slope Districts (areas of 

overlap between Hills and Dales).  

The next major work in the Pfaltz’s Graph lineage was by Wolf 

(1984), who introduced more topological constraints for the Pfaltz’s graph 

to be a consistent representation of the terrain. He proposed assigning 

weights to the critical points and lines to indicate their importance in the 

surface and thus he proposed the name “Weighted Surface Network” for 

the Pfatlz’s graph. He demonstrated new weights-based criteria and 

methods for the contraction of the surface networks. He, however, 

performed a manual extraction of surface network from contour maps.  

Feuchtwanger and Poiker (1987) proposed a topological model for 

terrains, which was essentially a combination of ideas from the 
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Interlocking Ridge and Channel Network (Werner, 1988), Hills and Dales, 

Contour Tree, Surface Tree, and Pfaltz’s Graph. Sadly, although 

interesting, the idea did not advance beyond the Entity-Relationship Model 

of the data structure.  

A major contribution in surface networks came from Takahashi et. al 

(1995), who combined the Morse Theory and the Reeb Graph ideas and 

proposed robust algorithms for the automated extraction of a consistent 

Surface Network from DEM. A unique aspect of his work was that he used 

a triangulation based feature detection method to extract the critical 

points.  

On the contrary, Wood (1998), Wood and Rana (2000) attempted to 

extract the critical points using a polynomial based feature extraction 

technique with limited success. The advantage of a polynomial-based 

detection is that it could be adjusted to extract features at various scales 

unlike the triangulation-based technique, which is restricted to a fixed 

scale. Rana (2000) discussed the characteristics of Wolf (1984)’s 

generalisation criteria and proposed an arbitrary user-defined contraction 

for surface networks.  

 

Now the stage has been set up to describe each of the above-

mentioned work in details. The work of Reech (1858) was not available to 

the author at the time of writing this report so it will not be discussed.  

 

2.2 Surface Network Data Structures 

2.2.1 Contour and Slope Lines 

Cayley (1859) described the configuration of terrains based on the 

arrangement of contour lines and slope lines.  

Let us assume a mountainous island, the exterior or sea level 

contour line is therefore a closed curve. There are three main possible 

configurations of contour lines. A contour line could enclose contour lines 

of higher elevation or lower elevation or meet contour lines of equal 

elevation. The contour line bounding an elevation would gradually get 

smaller and ultimately reduce to a point, which is called a Summit. The 

contour line bounding a depression would similarly become smaller and 
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reduce to a point, which is called Immit. At some points in the terrain, a 

contour line may meet three contour lines of the equal elevation. At these 

points, the surface is horizontal, and one descends in the backward and 

forward directions while the other ascends in right and left directions. 

These points are called Knots.  

The indicatrix at a summit and immit is an ellipse except in the case 

when the summit or immit is an umbilicus – the indicatrix then is a circle. 

Hence in the case of an elliptic indicatrix, all slope lines except one 

intersect direction of least curvature of the ellipse. The remaining contour 

lines intersect the contour lines of maximum curvature of the ellipse. The 

indicatrix at a knot is a hyperbola and therefore the contour lines in the 

neighbourhood of a knot are similar and similarly situated concentric 

hyperbolas. At the knot, there are two orthogonal slope lines, which bisect 

two opposite contour line hyperbolas. This pair of slope lines is the Ridge 

and Course lines. A knot is a point of minimum elevation for a ridge line 

while it is a point of maximum elevation for a course line. A ridge line 

would reach from a knot to summit and a course line would reach from an 

immit to another immit via a single intervening knot. However, the course 

line can also arrive at the sea-level contour without reaching another 

immit. The ridge line or course line may start and end at the same summit 

or immit respectively, thus forming a closed curve.  

 

2.2.2 Hills and Dales 

Maxwell (1870) developed the Cayley (1859) description of the Surface 

Topology of terrains. Like Cayley (1859) he proposed his ideas based on 

an elevated surface surrounded by a depression.  

The regions of elevation and depression on the surface define the 

surface in mainly three ways. Firstly, two regions of depression would 

expand until they meet up at a point, which is called a Bar. It may happen 

that more than two regions of depression may meet up such as in the 

case of monkey saddles, which are called degenerate points, but these 

points are not included in the hypothesis. Secondly, two regions of 

depression may send out arms, which may meet each other, thus cut off a 

region of elevation in the middle of the region of depression. The point of 
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meeting, which is called a Pass, cuts off two regions of elevation from one 

region of depression. Thirdly, the regions of elevation and depression are 

finally reduced to points, which are called Summits or Tops and Immits or 

Bottoms respectively.  

Given the above ways of generation of the features, Maxwell (1870) 

derived relations between the number of summits, passes, immits and 

bars. Every new region of elevation produces a pass. A summit is 

produced when every new region of elevation is reduced to a point. 

Therefore, since the whole surface of the earth is a region of depression, 

the number of summits, S, is one more than the number of passes, P, i.e.,  

S = P + 1 ….(2.1) 

Similarly, with every new region of depression, a bar is produced and 

an immit develops when the region of depression is reduced to a point. 

Therefore the number of immits, I, is one more than the number of bars, 

B., i.e., 

I = B + 1 ….(2.2) 

A pass or a bar can be called a single, double, or n-ple according to 

two, three, or n+1 regions of elevations or depressions meeting at a point. 

He added that these rules apply to any function of two variables. The 

summits are the maxima and the immits are the minima. Therefore, 

based on the two eqs. 2.1 and 2.2, for this function with number of 

maxima, p, and number of minima, q, there are 

p + q – 2 ….(2.3) 

cases of stationary values, which are neither maxima nor minima. He 

extended this relation, in an interesting way, to function of three 

variables, which is beyond the scope of this report. 

 Geomorphologically and analytically (as expressed by eq. 2.3), the 

bars and passes are the same features, called saddles or passes. The 

points of stationary values which are neither maxima nor minima are in 

fact the saddles, which gives us the following important relation between 

the number of summits, S, number of immits, I, and number of passes, P, 

I – P + S = 2 ….(2.4) 

It will be shown in section 2.2.3 how this relation can be derived from 

differential topology. 

 15



 Slope lines are lines that are everywhere at right angles to the 

contour lines. All slope lines, except two, when ascending generally reach 

a summit and when descending end at an immit. The exceptional two 

slope lines reach a pass or a bar. The surface is divided into two types of 

Districts (areas of surface). These are the Dales or Basins, whose slope 

lines converge at the same immit and the Hills, whose slope lines 

originate at the same summit, which are called Hills. Dales and Hills are 

partitioned by Watersheds and Watercourses respectively. A watershed 

can be drawn from a pass or a bar by tracing the slope line from the 

maxima connected to this pass (bar) until it reaches a summit. A 

watercourse is similarly a slope line starting from the minima connected to 

a pass (bar) and ending at an immit. Lines of watershed never reach an 

immit and lines of watercourse never reach a summit. 

Based on the deductions above the total number of summits, S, on 

the whole surface is 

S = 1 + p1 + 2p2 +…+ (n-1)pn-1 ….(2.5) 

where p1 is the number of single passes, p2 is the number of double passes 

and so on, and n is the maximum number of regions of elevation meeting 

up at the summits. The total number of immits, I, is 

I = 1 + b1 + 2b2 +…+ (n-1)bn-1 ….(2.6) 

where b1 is the number of single passes, b2 is the number of double passes 

and so on, and n is the maximum number of regions of depression 

meeting up at the immits. Therefore the number of watersheds, W, will be  

W = 2 (b1 + p1) + 3 (b2 + p2) + ...+ (n+1) (bn-1 + pn-1) ….(2.7) 

where n is the order of pass and bar i.e., single, double and so on. The 

number of watercourses is similarly defined. 

 Now according to the Listing’s rule for finding the number of faces, 

P – L + F – R = 0 ….(2.8) 

where P is the number of points, L is the number of lines, F is the number 

of faces and R is the total number of regions. Here R = 2, viz. the earth and 

the surrounding spaces, hence 

F = L – P + 2 ….(2.9) 

If we assume that L represents the watersheds, thus P equals to the 

total number of summits, passes, and bars then F is the number of Dales, 

which is evidently the number of immits. But we could also assume that L 
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represents watercourses, then P will equal to the total number of immits, 

passes and bars and F will be the number of Hills or i.e., the summits. 

Finally, if we assume that L is equal to the total number of lines, and P is 

equal to the total number of points then F, the total number of natural 

districts i.e., the hills and dales together, is equal to the total number of 

watersheds and watercourses or the total number of summits, immits, 

passes and bars minus 2. 

Warntz (1966) reiterated these ideas and proposed their use in 

understanding socio-economic surfaces and spatial flows. For an example 

he used population potential surface of USA and demonstrated various 

applications of Hills and Dales in transport network density, movement of 

money etc. 

 

2.2.3 Critical Point Theory 

The first purely mathematical treatment of surface networks came from 

Morse (1925).  He considered the “critical points” of a sufficiently smooth 

function f defined over an arbitrary n-dimensional manifold M where f 

satisfies appropriate conditions on the boundary of the manifold.   

Milnor (1963) is a widely referred book for a background reading on 

Morse Theory but this book is out of print and is not available easily ( and 

was not available to the author either). Three good alternative sources are 

Pfaltz (1978), Takahashi (1996) and the Encyclopaedia Britannica. 

 

The conditions and definitions on the surface function f are: 

- f is sufficiently smooth if f ∈ C2 i.e., it has continuous 2nd derivatives. 

Thus, it is possible to calculate the curvature at each point on the 

function so cases like overhangs and lakes do not exist, 

- A point p ∈ M is a critical point of f if δf(p) = 0 i.e., the 1st partial 

derivative of f vanishes at p or f is “locally flat” at p. 

- For all points b on the boundary f(b) > f(i) where i is an interior point. 

- All critical points of f are non-degenerate i.e., the matrix H(f) of the 2nd 

derivatives, called the Hessian Matrix, at a point p(x,y) has a nonzero 

determinant (i.e., singular or regular). The Hessian matrix for p is 

defined as  
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H(x, y) = 
yx ff

f
δδ

δ  ….(2.10) 

- The index of the critical point p of f is the number of negative 

eigenvalues of the Hessian matrix at p. 

In this work, the dimension of the manifold is 2, therefore the indices 

of the critical points are from 0 to 2. It turns out that the peak of the 

function f has the index 2, a pass has the index 1 and a pit has the 

index 0. 

- The function f on M is called a Morse function if it has no degenerate 

critical point. An example of a degenerate critical point in terrain is the 

monkey saddle. A point at a monkey saddle although locally flat has a  

non-singular Hessian matrix. 

 

With these conditions and premises for the function f and its critical 

points, Morse related the number of critical points of f with the topology of 

the Manifold. The details of the comparison are not specifically relevant to 

be provided here. But the following inequalities derived by him for a 2-

dimensional sphere (f is assumed to be a part of the sphere) are 

important to be noted here: 

P0  ….(2.11) 1≥

P0 – P1  ….(2.12) 1≥

P0 – P1 + P2 = 2 ….(2.13) 

where P0, P1 and P2 denote the critical points of index 0,1 and 2 

respectively. As mentioned, earlier in the discussion, in the case of 2-

dimensional function they correspond to pits, passes and peaks 

respectively. Note the similarity between the sophisticated eq. 2.13 and 

the simpler eqs. 2.4 and 2.9.  These inequalities are a simple example of 

Critical Point Theory or Morse Theory by Morse (1925).  

 In later works, Morse demonstrated the use of these relations in the 

understanding of various surfaces such as in physics, biology, and 

economics and thus encouraged the wide spread use of the Morse Theory  

However, there are two crucial issues, which Morse did not address. 

Firstly, he did not establish various possible “configurations” of the critical 

points within the manifold (Pfaltz, 1978). The following sections will 

describe some ways of representing the configuration of the critical points. 

 18



Secondly, it is well known that surfaces, especially terrains do contain 

abundant degenerate points. Therefore, terrains are not ideally a Morse 

function by definition. However, the potential advantages of storing the 

“structure of a surface” in a critical point framework are very attractive 

and it will be shown in the next chapter that degenerate points can be 

hypothetically “decomposed” into a non-degenerate point. 

 

2.2.4 Reeb Graph and Contour Trees 

A Reeb Graph (Reeb, 1946) is a graph which represents the splitting and 

merging of equi-height contours (Takahashi et. al, 1995). The original 

article by Reeb (1946) is in French but formal discussions of his ideas in 

English are given by Takahashi et. al (1995), Takahashi (1996) and 

Biasotti et. al (2000).  

The following description of the Reeb Graph is largely taken from 

Takahashi et. al (1995). For a function f representing the height of a 

terrain, its Reeb Graph is obtained by identifying points p and q if the two 

points are contained in the same connected component on the cross-

section of the surface at the height f (p) = f (q). Thus, a cross-sectional 

contour is represented as a point of the edge of the Reeb Graph (Fig. 2.1). 

As explained in section 2.2.1 contours converge or diverge at the critical 

points, therefore the vertices of Reeb Graphs represent the critical points 

of f.  Fig. 2.1a shows an example of a mountain and its critical points and     

Fig. 2.1b is its corresponding Reeb Graph. The combination of the Reeb 

Graph with the Morse Theory could be one formal way of representing the 

topological configuration of the critical points on the surface as a single 

data structure. Biasotti et. al (2000) has developed the Reeb Graph to 

model terrains, and it is referred as the Extended Reeb Graph (ERG). One 

of the main characteristic of ERG is that it uses the areas around critical 

points, called critical areas, as that allows a better reconstruction of the 

surface. Biasotti’s work is an example of widely discussed issue in 

geomorphometry of whether a peak is actually a point or an area.  

It is interesting to note that the construction of Reeb Graph is very 

similar to the Contour Tree (Morse, 1968; 1969), Surface Tree          

(Mark, 1977), and Topographic Change Tree (Kweon and Kanade, 1994).  

 19



2.2.5 Surface Network or Pfaltz’s Graph 

Pfaltz (1976) was the first researcher who proposed a formal topological 

data structure for surfaces based on the combination of the Critical Point 

Theory and the theory of Hills and Dales. He essentially added the missing 

connectivity between the critical points of a surface (which is a Morse 

function) in the Critical Point Theory by using the relationships defined 

between the critical points in the theory of Hills and Dales. He proposed 

that the relationships between the critical points can be represented by a 

tripartite (three sets of critical points) directed graph, which he called the 

Surface Network, also known as Pfaltz’s Graph (Mark, 1977). For example 

for the surface in Fig. 2.1a, its surface network and Pfaltz’s Graph are 

shown in Fig. 2.1c and Fig. 2.1d respectively. However, not all such 

tripartite graphs can represent a real surface (Pfaltz, 1976; Wolf, 1984). A 

weighted, directed, tripartite graph W = (P0, P1, P2; E), where P0, P1, P2 are 

the three vertex sets representing the sets of all pits, passes and peaks, 

respectively, while E is the set of all edges, is termed a (weighted) surface 

network (WSN) if 

 

P0: W is planar.  

This means that an intersection of edges for instance an intersection of 

ridges and channels is not allowed. This is natural because except at the 

critical points, there can only be one type of slope line passing through 

one point. 

 

P1: The subgraphs [P0, P1] and [P1, P2] are connected.  

This means that channels connect pits and passes, and ridges connect 

peaks and passes. 

 

P2: |P0| - |P1| + |P2| = 2 

It states that the number of pits minus the number of pass points sum the 

number of peaks must always be two (see section 2.2.2 and section 2.2.3 

for the proof). 
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Figure 2.1 (a) A perspective view and (c) contour map of an

island with its critical points, and its (b) Reeb Graph, (c) surface

network and (d) Pfaltz’s Graph (The numbers indicate the weights).

Note that (a) also shows the reduction of contours into the peaks

(summits) and pits (minima) as explained by Cayley (1859) and

Maxwell (1870). 
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P3: For all y ∈ P1, id(y) = od(y) = 2 where y = pass, id(y) = in-degree of y,  od(y) = 

out-degree of y. 

This means that exactly two channels and exactly two ridges emanate 

thus excluding the existence of degenerate passes. As can be seen in 

nature, this property is most often violated for example in the case of 

channel junctions and ridge bifurcations. Pfaltz (1976) suggested that 

these points could be “decomposed” into normal critical points. Wolf 

(1990) and Takahashi et. al (1995) proposed solutions, which will be 

discussed later in this section and in the next Chapter. 

 

P4: val(x, yi) = val(yi, z) = 1 implies that there exists yj ≠ yi such that (x,yj),       

(yj,z) ∈ E, where x = pit, y = pass, z = peak and val = valency. 

It guarantees that if there is a path from pit x via pass yi to peak z, which 

consists only of edges with valency one, then there exists another path 

from pit x to peak z via a distinct saddle yj.  

 

P5a: (x,y) is an edge of a circuit in the bipartite graph [P0,P1] iff val(y,z) ≠ 2 for 

all z ∈ P2 

P5b: (y,z) is an edge of a circuit in the bipartite graph [P1,P2] iff val(x,y) ≠ 2 for 

all x ∈ P0 

This property asserts that a configuration as shown in Fig. 2.2 is 

impossible. 

 

y 
z 

 

 
x 

 

 
Figure 2.2 Violation of rule P5a and P5b.  

 

P6: w(ei) > 0 for all ei ∈ E 

This means that all the edge weights must be greater than zero. For 

instance, if h(x0), h(y0) and h(z0) represents the elevations of a pit, pass and 

peak, respectively, then the weight of a channel is h(y0) - h(x0) and the 

weight of a ridge is h(z0) - h(y0).  

 

 22



P7: For all x ∈ P0 , yi, yj ∈ P1 , z ∈ P2 and (x,yi), (x,yj), (yi,z),(yj, z) ∈ E holds  

w(x,yi)+ w(yi,z) = w(x,yj)+ w(yj,z) 

This means that for all paths from pit x to peak z the difference in elevation 

is the same, no matter which saddle point is passed. 

 

P8a: If val(x,y) = 2 with ei1 =(x,y) and ei2 =(x,y) then w(ei1) = w(ei2) 

P8b: If val(y,z) = 2 with ei1 =(y,z) and ei2 =(y,z) then w(ei1) = w(ei2) 

This means that all channels from a pit to a pass have the same difference 

in altitude; the same holds for ridges, too. 

 

Wolf (1984) developed Pfaltz’s Graph and proposed weights to be 

assigned to the critical points and lines to indicate their importance in the 

local or global structure of the surface. He thus called the new form a 

Weighted Surface Network (WSN). Although surface networks are an 

abstraction of surfaces, they could still have redundant information.    

Pfaltz (1976) proposed a graph-theoretic method of simplification of 

surface networks called Homomorphic Contraction, which can remove 

redundant vertices and edges but still preserve the above-mentioned 

topological properties  of the surface network. Wolf (1984) developed 

Pfaltz’s ideas on homomorphic contraction and introduced the use of 

weights and various criteria for the contraction. More information on the 

contraction is explained in Chapter 4, which describes the generalisation 

of surface networks. 

It is evident from Fig. 2.1c,d that the surface networks are purely a 

topological data structure. However, as Wolf (1993) commented an ideal 

data structure for a surface should be able to describe both the topological 

and geometrical properties of the surface. This issue has been addressed 

in mainly two ways.  

Wolf (1990) proposed the addition of geographic co-ordinates to the 

critical points, thus the surface network could be triangulated to represent 

the “topography” of the surface. He termed the new surface network a 

Metric Surface Network (MSN).  With MSN, he was also able to provide 

solutions for the problem of the absence of representation for the two 

important topographic points - the channel junctions and the ridge 

bifurcations. He proposed that channel junction and ridge bifurcation could 
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be represented as an infinitesimally close pair of pit-pass and pass-peak, 

respectively (Fig. 2.3). In the case of junctions and bifurcations, an 

arbitrary low weight can be assigned to indicate their proximity, for 

example Wolf (1990) used a value of 2.  

 

 

Bifurcation Junction

(b)(a) 

Peak 

Pass 

Pit 

Channel 

Ridge 

Figure 2.3 (a) Channel junction and (b) Ridge bifurcation. 

Takahashi et. al (1995) proposed the use of Reeb Graphs to 

reconstruct the topography as they store information about the hierarchy 

of the contours. He found that it was easy to construct the Reeb Graph 

from the surface network, as it will be very time consuming to detect the 

topological changes in the cross-sectional contours.  

The next chapter will present the slope lines (ridges and channels) 

based approach (Wood and Rana, 2000) to maintain the topographic 

appearance and the topological virtues of the surface networks. 

 

2.2.6 Critical Point Configuration Graph 

Nackman (1984) also proposed a graph-theoretic based topological data 

structure, called Critical Point Configuration Graphs (CPCG), for surface 

(assumed to be a Morse function) based on the combination of the Critical 

Point Theory and the theory of Hills and Dales. He was motivated by the 

idea of surface networks (Pfaltz, 1976) but instead of partitioning a 

surface in a single framework of critical points and lines, he proposed the 

subdivision of surfaces, especially terrains, into slope districts. Slope 

districts are regions where Hills and Dales overlap (Fig. 2.4a,c). He proved  
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Figure 2.4 Two examples of slope districts - (a) and (c) and their

Critical Point Configuration Graph - (b) and (d) respectively.  (e)

and (f) are the two other basic types of CPCG. 
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using differential equations and Morse Theory that the surface i.e., the 

CPCG, under reasonable assumption, contains four basic cycle types or 

slope districts (Fig. 2.4b,d,e,f). Nackman, however, did not propose how 

these slope districts could be conglomerated or paste together to form a 

single representation of the surface. This was perhaps one of the main 

reason for the lack of wide interest in CPCG (Recently revived by Rosin, 

1995; Scott, 1998). In addition, as can be seen in the slope district at 

lower right (Fig. 2.4f), a pass can connect to pass with no intervening 

peaks or pits, which violates the rules laid by the theory of Hills and Dales 

for the ridge lines and course lines. Pfaltz  (1978) reported that it is easy 

to create such surfaces mathematically (Morse, 1964) but remained 

uncertain if they could be used for terrains. 

 

2.3 Summary 

In conclusion for this chapter, it has been found that a generic treatment 

is still required to promote the surface network for wide and indiscriminate 

use. The following issues need to be addressed: 

 

- Due to their design requirements, current implementations of Surface 

Networks have been restricted to surfaces with fluvial features (i.e., 

must have ridges, channels, peaks, passes, and pits). However, a 

number of surfaces have biased topography such as in glaciated or 

karstic terrains or features may be absent e.g., flat surfaces. 

Takahashi (1996) believes that the biased surfaces are cases of 

degenerate critical points and the presence of degenerate points leads 

to the violation of Euler criterion or Mountaineer’s equation. His 

approach for handling degenerate points has been discussed in the 

next chapter. 

- Points on the surface are classified as important points (pits, passes, 

and peaks) and lines (channels and ridges) based on the local slope or 

gradient around the points. This requirement restricted the 

implementation of surface networks on discrete surface data such as 

generated in social sciences. For this reason the triangulated irregular 

network (TIN) data structure will have to be used in these cases 
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although unlike surface network it would not provide any insights into 

the structure of the surface. However, it is also important to note that 

the approximation uncertainty will also usually be higher with the use 

of surface networks for discrete data. 

 

In general, the absence of a general model is perhaps the reason for 

the existence of the nebula of different forms of surface networks 

mentioned in the last section. An aim of this is to bring together these 

ideas and propose a more general model of surface networks, which could 

then be implemented for most surfaces. 
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Chapter 3 

Extraction of Surface Networks 
 

 

 

3.1 Introduction 

The process of accurate and indiscriminate extraction of a surface network 

from its surface lies in the middle of the surface network model and its 

use in practise. Therefore, the extraction will set the potential usability of 

the surface network data structures.   In fact, the original motivation of 

this PhD was the opportunity of new ideas in the automated extraction of 

surface networks. It is well known that the theoretical ideas are often not 

easy to be implemented in practical computing.  There is generally some 

level of compromise between the accuracy and the processing efficiency. 

For example, in the case of surfaces, a discrete DEM is a preferable 

representation against a realistic polynomial representation because it is 

easier to manage and generate it, although the uncertainties with the 

discrete representation could be significant.   

The methods of surface networks extraction have ranged from the 

simple- manual (Wolf, 1984) and triangulation (Takahashi, 1995) to the 

complex surface fitting (Pfaltz, 1976; Wood, 1998). The different methods 

were chosen depending upon the researchers’ belief on the best way of 

extracting the critical points and lines. There have been many suggestions 

for detecting the critical points and lines of a surface. This chapter will 

describe the above-mentioned four works in some details as they 

represent the culmination of the most widely implemented ideas and were 

used specifically for surface networks. 
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3.2 Surface Network Extraction Methods 

Most simply, the generation of a surface network involves two steps –    

(i) extraction of the critical points and (ii) connecting them with the critical 

lines. However, the methods used for these two steps are still far more 

satisfactory. Two main concerns in the automated generation of surface 

networks are scale dependency and subjective feature definitions.  

 The issue of scale dependency is a multi-faceted and intensively 

studied topic across the academics. Various definitions and classifications 

have been proposed for scale and a number of books are dedicated in 

computer science (Lindeberg, 1994), earth sciences (Quattrochi and 

Goodchild, 1996) and social sciences on the determination and effects of 

scale in the processing. The basic issue, which concerns us, is that the 

features, objects and information exist across a range of scales, whose 

arrangement may and may not be hierarchical. At any one instance, our 

computing routines can detect features that fit into the fixed search 

window (kernel etc.). Therefore, the feature extraction could only be valid 

for the current scale but not as a true (natural) representation of the 

surface. In order to detect the scale, there have been attempts to model 

surface as fractals (Fels and Matson, 1996; Emerson and          

Quattrochi, 2000), wavelets (Starck et. al, 1998) or a simple hierarchical 

subdivision of surface (Csillag, 1996).   

Despite the various approaches, there is no formal proposal on the 

effects of scale on features or objects on the surface. We believe that a 

part of the reason for the limited success in scale detection is due to the 

misunderstanding of the structure of the surface. Most feature detection 

techniques suffer from the inability to perform perceptual organisation of 

the local features into a more meaningful global scene. This is largely due 

to the absence of any prior information about the feature content of a 

surface and infinite combinations of features possible on the unknown 

surface. For simplicity, most scale detection methods studied the “scale-

space” based on the behaviour of points on the surface. A prominent 

approach (in computer vision) has been measuring the appearance and 

disappearance of points under varying scales (“Gaussian Blurring”) in the 

hope of being able to detect the spatial extents of the features (Lindeberg, 
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1994). However, most surfaces and images have a mix of features of 

different topological dimensions. In other words, the structure of the 

surface or image is actually made up of features of different topological 

types. For instance, in the case of surface networks, both the critical point 

and lines are important but they belong to different topological classes. 

The current algorithms do not take into account that different topological 

objects are expressed differently under different scales. For instance, 

points tend to be lost more quickly compared to lines over decreasing 

scales (zooming out). The conceptual issues such as “What is scale” and 

“What is the right scale of the surface?” also need to be addressed  

(Montello and    Golledge, 1998). 

 Numerous methods and models have been proposed to characterise 

the critical points and lines. There is no consensus on the feature 

extraction technique but methods and algorithms are becoming more 

sophisticated (complicated) and universally available. The success of the 

algorithms depends on the critical point model i.e., eight neighbour 

methods or surface fitting and its scale dependency. For instance, some 

methods extract features in certain surfaces better than in other surfaces 

and some methods extract features better over only certain scales.  

The main stress of this work so far has been to understand the 

various techniques and to put more efforts on the perceptual organisation 

of the features, building a topologically consistent surface network in this 

case. The following part of this chapter will describe some prominent 

methods for the automated, except one, extraction of surface networks. 

 

3.2.1 Manual Extraction 

In author’s view, Wolf (1984) was perhaps the only successful researcher 

in extracting a topologically consistent surface network. The reason for his 

success lies in a manual extraction of the surface network from contour 

maps. He picked the critical points from the contour map using a digitiser 

and established the topological relationships i.e., the ridges and channels, 

by visual inspection. Wolf (1984) did not describe his methodology of the 

digitisation and therefore it will not be possible to give details about it in 

this report. A description of his work would have been useful because he 
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may have followed an optimised methodology to extract a consistent 

surface network.  

 

3.2.2 Triangulation 

3.2.2.1 Definitions and Methodology 

Takahashi et. al (1995) proposed a modified version of the eight-

neighbour method based detection of the critical points (Peucker and 

Douglas, 1975) for grid surfaces. The eight-neighbour method compares 

the height of a point, p(i,j), with its eight neighbours in a 3 x 3 square 

surrounding p   (Fig. 3.1) and classifies the point as a critical point based 

on the criteria in Table 3.1. 

i +1 ,  j i +1 ,  j -1

i ,  j -1 

i –1 ,  j -1 i –1 ,  j  i –1 ,  j +1

i ,  j +1 

i +1 ,  j +1

p (i,j)

Figure 3.1 Point p(i.j) in a grid (data view) and its 8
surrounding neighbours. 

 

 

peak |∆ +| > Tpeak |∆ -| = 0 Nc = 0 
pit |∆ -|  > Tpit |∆ +| = 0 Nc = 0 
pass |∆ +| + |∆ -| > Tpass Nc = 4 

 
|∆ +| 
 
 

|∆ -| 
 
 

Nc 
 

Teak 
Tpit 
Tpass 

The sum of all positive height differences between the point and its 8 
neighbours 
 

The sum of all negative height differences between the point and its 8 
neighbours 
 

The number of sign changes associated with the point 
 

Threshold height for a point to be a peak. 
Threshold height for a point to be a pit 
Threshold height for a point to be a pass. 

 

 

Table 3.1 Criteria for classification of critical points in the eight-
neighbour method. 
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Takahashi et al. (1995) showed that the eight-neighbour method 

based detection is subjective to the value of the threshold and this 

ambiguity could cause the loss of the Euler Formula property also called 

the Mountaineer’s Equation i.e., pits – passes + peaks ≠ 2. He suggested that in 

order to satisfy the Euler formula the contour changes should be 

determined according to the neighbour heights and not according to the 

threshold. He suggested the use of the Delaunay triangulation (Guibas 

and Stolfi, 1985) to triangulate the 3 x 3 square, centered at p, and  

p

Figure 3.2 Point p in a grid (analytical view) and its 7 adjacent
neighbours (hollow circles). 

 

determine only the adjacent points (amongst the 8 surrounding 

neighbours) of p (Fig. 3.2). The point is then classified according to the 

criteria given in Table 3.2.  

 

peak |∆ +| > 0 |∆ -| = 0 Nc = 0 
pit |∆ -|  > 0 |∆ +| = 0 Nc = 0 
pass |∆ +| + |∆ -| > 0 Nc = 4 

Table 3.2 Criteria for the classification of non-degenerate critical points 
based on Delaunay triangulation. 

 

However, in the case of degenerate passes (Fig. 3.3a) there will be 

more than 4 sign changes as three or more equi-height contours are 

merged. Takahashi derived that any degenerate pass can be decomposed 

into non-degenerate ones, m, where m = (Nc – 2) / 2   (Fig. 3.3d). By solving 

this equation, we can find out that the number of sign changes, Nc, at a 

degenerate pass will be equal to 2 + 2m (m = 1,2,...). 
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Figure 3.3 Decomposition of a degenerate pass (Modified from
Takahashi et. al, 1995). Figure shows the neighbours and their
heights. Higher neighbours are placed inside a grey region. (a) The
original neighbour list, (b) the reduced neighbour list, (c) the list in
the first turn of the loop in the algorithm, and (d) the final set of
neighbours which will define the pass.  

 

The algorithm to decompose a degenerate pass by Takahashi (1995) 

is unique and noteworthy. The steps are as follows : 

(i) Generate a counter-clockwise (CCW) list of the adjacent neighbours 

of this pass, which in this case is {p1, p2, p3, p4, p5, p6, p7} (Fig. 3.3a). 

(ii) Divide this list into an upper sequence, which has the higher 

neighbours, i.e, {p1},{p3, p4} and { p6}, and a lower sequence, which 

has the lower neighbours, i.e., {p2},{p5} and {p7}.  Reduce the 

neighbours list by selecting the highest neighbour from each upper 

sequence and the lowest neighbour from the lower sequence. For 

example, in the current example the original neighbours list is 

reduced to {p2, p3,  p5, p6, p7, p1} (Fig. 3.3.b) by removing p4, because p3 
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is higher in the sequence { p3, p4}. Note that if the list has more than 

one neighbour then the reduced list begins with a lower neighbour 

to ensure that the four alternating upper and lower neighbours at 

the pass are selected correctly. Also it can be seen from the 

reduced list that ther are 6 sign changes thereforre, the number of 

denegerate passes m is 2. 

(iii) Put all the elements of the reduced list except the first two i.e., {p5, 

p6, p7, p1}, in a trailing list to further reduce the neighbours list. 

(iv) Select the last four elements i.e., {p5, p6, p7, p1}, of the trailing list as 

representative neighbours. Remove the last two elements, which 

are  {p7, p1} in this case, of the representative neighbours, from the 

trailing list. 

(v) Repeat steps  (iii) – (iv) untill the trailing list is reduced to a lower 

and a upper neighbour of the pass, which in this case are {p7, p1} 

and were easily achieved. The final neighbours list of the 

decomposed pass has the first two elements of the trailing list and 

the two elements remained after step (v) thus in this case the final 

neigbhours of p are  {p2, p3,  p5, p6}. 

 

The methodology to connect the points is quite simple. It is based on 

the assumption that a  ridge line is the line of steepest ascent from a pass 

while a channel is the line of steepest descent. Therefore, the ridge 

(channel) line is traced by moving to the highest (lowest) neighbour and 

repeating the tracing until a peak (pit) or the boundary is reached.  

Takahashi et. al (1995) proposed that the above methodology would 

successfully extract a consistent surface network. However, we have some 

doubts, which will be shown in the next section. 

 

3.2.2.2 Discussion 

(a) Scale dependency: As mentioned earlier, features exist at various 

scales in a surface. The triangulation-based detection has a fixed scale 

of observation. It uses only the eight surrounding neighbours for the 

classification of the critical points. Takahashi (1996) was aware of this 

limitation and suggested referring to the scale-space theory      

(Witkin, 1983; Lindeberg, 1994). However, it is uncertain how the 
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current method of triangulation can be extended to detect larger 

features.  

(b) Limitations of feature classification:  

- In order to avoid the inaccuracies related to the mathematical division 

of numbers, Takahashi et al. (1995) preferred the use of linear 

interpolation (Delaunay triangulation) to smooth surface (quadratic, 

cubic) fitting based methods to classify the points.  See Wood (1996, 

1998) for the disadvantages of the linear interpolation of heights for 

the classification of critical points and the extraction of surface 

networks.  

- The ridge and channel lines are represented as the steepest lines of 

ascent and descent respectively from a pass, which again was debated 

by Wood (1996, 1998) as a proper method for feature identification. 

- The decomposition of the degenerate passes is the unique aspect of 

the technique. However, the author suspects that the decomposition of 

the degenerate pass is rotation variant. For example, if we were to 

rotate the degenerate pass in Fig. 3.3a so that the neighbours lists 

starts from p3 and not p1 then the decomposed pass will have {p5, p6, p7, 

p1} as the final neighbours. The author intends to take up this issue 

with Prof. Takahashi for confirmation before any further treatment. 

- There is no proposal for the representation of junctions and 

bifurcations. 

 

In the following section, the more sophisticated feature detection 

method, based on fitting a polynomial surface around a point, will be 

described. One of the main attractions of this method is its capability to 

perform multi-scale feature detection. 

 

3.2.3 Polynomial Surface Fitting 

3.2.3.1 Definitions and Methodology 

Recall from the last chapter that according to the Morse Theory, a point is 

a critical point of the surface if the local slope at the point is zero i.e., 

0=
x
z

δ
δ , 0=

y
z

δ
δ . However, not all points that have zero slopes are critical 
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points. In order to classify the locally flat areas into a peak or a pit or a 

pass, we have to know the local curvature using the second derivative of 

the height function at the candidate point. The local curvature can also be 

used to detect whether the candidate point is a ridge or channel. 

However, it is often advised to avoid the use of second derivative, as the 

second derivative tends to highlight the noise. The second derivative can 

be used to classify the critical points and lines in two ways.  Firstly, the 

easier method is to compare the curvature along the three orthogonal 

components (see Table 3.3) (Wood, 1996). The components x and y are 

not necessarily parallel to the axes of the DEM, but are in the direction of 

maximum and minimum profile convexity. Secondly, the eigenvalues and  

 

Feature Name Derivative Expression Description 

Peak 02

2

>
x

z
δ
δ

, 02

2

>
y

z
δ
δ

 Point that lies on a local convexity in all 
directions (all neighbours lower). 

Ridge 02

2

>
x

z
δ
δ

, 02

2

=
y

z
δ
δ

 
Point that lies on a local convexity that is 
orthogonal to a line with no 
convexity/concavity. 

Pass 02

2

>
x

z
δ
δ

, 02

2

<
y

z
δ
δ

 Point that lies on a local convexity that is 
orthogonal to a local concavity. 

Plane 02

2

=
x

z
δ
δ

, 02

2

=
y

z
δ
δ

 Points that do not lie on any surface 
concavity or convexity. 

Channel 02

2

<
x

z
δ
δ

, 02

2

=
y

z
δ
δ

 
Point that lies in a local concavity that is 
orthogonal to a line with no 
concavity/convexity. 

Pit 02

2

<
x

z
δ
δ

, 02

2

<
y

z
δ
δ

 Point that lies in a local concavity in all 
directions (all neighbours higher). 

 
e

g

c

H

c

o

c

a

 

Table 3.3 Morphometric Features described by second derivatives
(After Wood, 1996)  
igenvectors of the Hessian matrix (see section 2.2.3 in Chapter 2) can 

ive information about the gradient flow at the critical point (Fig. 3.4). A 

ritical point is a peak if the 2 real parts (R1, R2) of the eigenvalues of the 

essian matrix are positive indicating a gradient flow away from the 

ritical point. A critical point is a pit if the 2 real parts of the eigenvalues 

f the Hessian matrix are negative indicating a gradient flow towards the 

ritical point. In the case of the pass, the 2 real parts of the eigenvalues 

re of different signs. In addition, at a pass the eigenvector along the 
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positive eigenvalue indicates the ridge line while the eigenvector along the 

negative eigenvalue marks the channel direction.  

Pit: R1, R2 < 0 Pass: R1 < 0, R2  > 0 Peak: R1, R2 > 0 
Figure 3.4 Critical points of the surface and the configuration of their

eigenvalues and eigenvectors. R1 and R2 are the real parts of the

eigenvalues. 
 

 In order to calculate the derivatives, the local surface around a 

critical point can be interpolated as a polynomial of the desired 

smoothness. For example, it could be modelled as a biquadratic function 

(Evans, 1980; Wood, 1996) or a bicubic function (Bajaj and         

Schikore, 1996).  It is clear that the complex polynomials will provide a 

significantly generalised surface approximation and will take longer time 

to be solved. Complex polynomial will also characterise lesser extent of 

the surface because it requires larger neighbourhoods i.e., bigger kernels 

or filters, to reach a reliable solution.  

For instance, the surface around a DEM grid cell can be represented 

as the following continuous quadratic function, made up of the sum of six 

terms (Wood, 1998):  

z ax by cxy dx ey f= + + + + +2 2  

Various methods have been used to solve the surface polynomials for 

the coefficients such as simple combinations of neighbouring cells (Evans, 

1980; Zvenburgen and Thorne, 1987) and matrix algebra   (Wood, 1996). 

The properties of the continuous surface fitted on the discrete DEM values 

can now be derived analytically from the continuous function. For 

example, Evans (1980) defines steepest slope and aspect as follows: 

)arctan( 22 edslope +=  
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aspect e d= arctan( / ) , where (x,y) = (0,0) 

Second order derivatives such as longitudinal and cross-sectional 

curvature can also be derived from the quadratic function (Wood, 1998).  

A potential uncertainty with these surface measures is that they 

represent the value of the measure at a point at the centre of the 

quadratic function (Wood, 1998). This is appropriate for point measure 

such as solar incidence angles (used for biological applications). However, 

some properties such as the flow of water over a surface require some 

description of the surface away from the centre i.e. some properties are 

areal properties (Wood, 1998). Wood (1998) proposed that the extended 

flow directions (and other properties) away from the centre of the 

modelled surface can be measured by defining the quadratic function as a 

conic section. The conic section analysis can also help in classification of 

critical points and lines. The conic sections are elliptic, parabolic, 

hyperbolic, and planar (Kindle, 1950) (Fig. 3.5). The first three cases 

represent the critical points and lines, namely pits and peaks (elliptic), 

channels and ridges (parabolic) and passes (hyperbolic).  The conic 

section analysis of the quadratic surface is especially useful in the cases 

when the centre of the critical point (line) is offset considerably from the 

centre of the area of interest (AOI). If the offset is significant, then the 

feature may be classified into the incorrect type. The benefit of using the 

conic section analysis is that the intersection between the semi-axes of 

the conic section and the region of interest can unambiguously determine 

the feature type and surface flow direction (Fig. 3.6). See Wood (1998) 

for the proof of this relation.  This property thus can effectively handle the 

situation when the centre of the feature is offset from the centre of the 

AOI.  

The procedure for connecting the critical points is more developed 

than the previous one because the information about the ridge and 

channel axes is also available (Wood, 1998; Wood and Rana, 2000). The 

steps are as follows: 

(i) Identify the passes, 

(ii) Move upwards in the direction of any ridge axes that fall within the 

AOI until a new grid is reached, 

(iii) Recursively repeat (ii) until no higher cell is found, 
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(iv) Repeat steps (i) – (iii) but moving downwards along a channel axes. 

 

 
(a) (b) (c)  

Figure 3.5 (a) Elliptic, (b) hyperbolic and (c) parabolic conic
sections with their semi-axes identified (After Wood, 1998). A
planar case is not considered here. 

 

 

 

(c)(a) (b) 

 

3.2.

(i) 

 

Figure 3.6 Three possible intersection cases between (circular)
region of interest and conic section’s semi-axes (After Wood,
1998). (a) Two axes intersect with region - pit, peak or pass, (b)
one axis intersects with region - channel or ridge and (c) no
intersection - planar. 
3.2 Discussion 

Scale dependency: An advantage of the polynomial surface 

fitting based feature detection method over the earlier methods, 

is that it allows variable kernel size for feature detection. This 

allows the identification of features at various scales. However, 

there are no guidelines about the appropriate size of the kernels 

so the extraction is still scale-dependent. The lack of a proper 

scale analysis results into the loss of the Euler criterion (Wood, 

1998). Also, fixed order of polynomial on varying scales may 

miss changes in surface complexity. 
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(ii) Limitation of feature classification: The feature extraction 

procedure does not perform any treatment of the degenerate 

points. Takahashi et al. (1995) showed that this is also a reason 

that the extracted surface network is inconsistent.  

 

3.3 Next Research Aims 

The following experiments are considered for further research in the 

extraction of surface networks: 

(i) Scale-space detection: 

- This will be explored if the triangulation technique for feature 

extraction can be modified to extract features at various scales. 

- The behaviour of the critical points and lines in the scale-space 

will be compared to verify our view on the importance of 

topological dimensions in scale-space analysis. 

- Since a theoretical treatment of the question “What is the right 

scale” seems open-ended, attempts will be made to achieve the 

answer based on empirical observations. 

(ii) Feature definition: 

- The accuracy of the triangulation- and polynomial surface- 

based feature detection methods will be compared for a variety 

of terrains.  

- The rotation invariance of the methods will be confirmed.  
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Chapter 4 

Generalisation of Surface Networks  
 

 

 

4.1 Generalisation 

In the case of generalisation in GI science, the abstraction and the 

uncertainties inherited in the abstraction (generally not recorded) of 

complex and large spatial information such as terrains, population, roads, 

is a major conern. According to Weibel and Dutton (1999), modern 

generalisation methods have basically two lineages namely from the 

generalisation in conventional cartography and the generalisation in digital 

systems (Fig. 4.1). “In conventional cartography, map generalisation is 

responsible for reducing complexity in a map in a scale reduction process, 

emphasising the essential while suppressing the unimportant, maintaining 

logical and unambiguous relations between map objects, and preserving 

aesthetic quality” (Weibel and Dutton, 1999). In other words, it involves 

techniques such as simplification, smoothing, aggregation and others. The 

generalisation process is somewhat one of post-processing. On the 

contrary, Weibel and Dutton (1999) believe that generalisation in digital 

systems inevitably starts at the stage of defining (or abstracting) a model 

for the detailed object (spatial information e.g., terrain). This stage called 

Object Generalisation is also a part of the generalisation in conventional 

cartography. After this stage, further reduction in the volume or precision 

of model data is often desired for compatibility with other data sets, easy 

portability across communication channels and faster analyses. This 

transformation is called Model Generalisation. The final stage in the 

generalisation in digital systems is of Cartographic Generalisation. The 

role of Cartographic Generalisation overlaps with that of Model 
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Generalisation in the sense that the result of both processes is the 

reduced data volume. However unlike Model Generalisation, Cartographic 

Generalisation has to take into consideration not only the scalar property 

but also vector properties, such as feature displacement directions 

(important to detect intersections after line simplifications) and aesthetic 

properties such as congestion and labelling.  

 

  Generalisation Stage 

Generalisation Lineage  Object  
Generalisation 

Model 
Generalisation 

Cartographic 
Generalisation 

Conventional Cartography     

     
Digital Systems     

 
 
 
 
 

  
 

↓ 

32-bit precision 

↓ 
8-bit precision 

 
 

↓ 
 

 

Figure 4.1 Generalisation Lineages and Stages in spatial data structures. 
 

Müller (1991) compiled a list of requirements for generalisation 

methods. We suggest that these are also the benefits of the generalisation 

process. The main elements of this list are: 

(a) Development of a model of the real world with an appropriate 

resolution and content,  

(b) Efficient use of storage space and processing power,  

(c) Development of a consistent and accurate database by removing 

spurious and redundant details 

(d) Development of data and maps for various applications by suitably 

generalising details, and  

(e) Optimisation of visualisation of data and maps.  

 

We would like to add that the generalisation process could also help 

in understanding the structure of our spatial data especially if the data 

structure is based on a topological construction. Surface Networks will be 

a typical example of such a data structure. Later, evidence for this 

statement will be given. This knowledge about the structure would be 

 42



subtly generated and destroyed in the generalisation processes listed 

above. 

Based on the discussion above, it can be said that surface networks 

are an outcome of the Object Generalisation of surfaces. As the idea of 

surface network predates the digital age by centuries, they also serve as 

examples of Object Generalisation not being unique to generalisation in 

digital systems. As mentioned before, surface networks are a topological 

data structure therefore the Model- and Cartographic- Generalisation of 

surface networks have to be such that the resultant surface network 

should always be topologically consistent. For example, the surface 

network graph should be connected, all weights should be positive and 

such other properties of surface network mentioned before should be 

maintained. Pfaltz (1976) proposed the homomorphic contraction, a graph 

theoretic transformation, to prune sub-graphs of surface network graphs. 

Pfaltz viewed the generalisation as a Model Generalisation on the surface 

network i.e., to remove unimportant parts of surface network for clarity 

and efficiency. Wolf (1988) extended Pfaltz’s idea in his PhD and proposed 

the idea of assigning importance to the critical points as weights and the 

contraction criteria. Wolf proposed homomorphic contractions as a way of 

performing Cartographic Generalisation of surface networks. Wolf showed 

(originally proposed by Mark, 1977) that the simplification of the 

topographic structure is a better alternative to produce simplified contour 

maps compared to the line simplification based generalisation of contour 

maps as the latter often produces contour intersections. We believe that 

the homomorphic contractions also provide us a unique and simple 

(compared to sophisticated numerical methods) technique of simulating 

surface evolution studies such as erosion modelling and others. This kind 

of simulation study lies somewhere in between Object Generalisation and 

Model Generalisation.  

We believe that with the addition of the detailed geometry to the 

ridges and channels, traditional cartographic generalisation techniques 

also have a role to play in generalising surface networks. For example, it 

will generally be desired to simplify the channel and ridge paths using 

conventional line-simplifications methods. It is however unclear now what 

will be the requirements for the generalisation based on non-
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homomorphic contractions. A purely hypothetical outlook will be provided 

later in this chapter for the non-homomorphic contraction kind of 

generalisation of surface networks. A typical use of the non-homomorphic 

contractions will be given for the generalisation of unconstrained surface 

networks. 

In the following sections, at first a brief discussion about the 

homomorphic contractions and non-homomorphic contractions will be 

given followed by the description of the methodology and results of some 

of our experiments carried so far. 

 

4.2 Homomorphic Contraction of Surface 

Networks 

Homomorphic contraction is an abstraction of a subgraph H of a graph G  

(V,E) to a single point, where V is the set of all vertices and E is the set of 

all edges The transformation can be formally stated as follows: 

 

G’ = (V’, E’) is a simple homomorphic contraction of the graph G = (V, E) if 

there exits a function fH: V→V’ such that: 

(a) fH (vi) = v’    for all vi ∈ H 

     fH (vj) = vj’ ≠ v’   for all vj ∉ H 

(b) (v, w) ∈ E implies that (fH (v), fH (w)) ∈ E’ provided fH (v) ≠ fH (w). 

However, due to the topological properties of surface networks not all 

homomorphic contractions can be applied to the surface networks. Wolf 

(1984) proposed two types of homomorphic contractions, which always 

result into a topologically consistent surface network. They are defined as 

follows: 

 

(a) (yo – zo)-contraction: 

Let, 

- W  =  Surface Network, 

- yo = Pass with Peaks R(yo) = {zo, z} and the difference in height along 

an adjacent ridge  h(yo, zo) <= h(yi, zo) for i = 1,2, …., n-1 where n = degree 

of the peak zo. 

- Set of adjacent passes to zo L(zo) = {yo, y1, y2,…, yn-1). 
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Then, (yo, zo)-contracted graph W’ is the graph with the following 

properties: 

- Vertex set V(W’) = V’ = V – {yo, zo}, 

- Edge set E(W’) = E’ = E + {(y1, z’), (y2, z’),….,(yn-1, z’)}, and 

- Edge elevation drops: 

- h(yi, z’) = h(yi, zo) - h(yo, zo) + h(yo, z) for i = 1,2,…, n-1. 

- h(e’) = h(e) for all other edges e’ ∈ E(W’) 

 

This transformation, which contracts the subgraph [yo, zo] and converts 

the original surface network onto a condensed one is called a (yo, zo)-

contraction (Fig 4.2b). The contraction removes the peak zo and its highest 

adjacent pass yo together with all the critical lines incident with at least 

one of these critical lines. But this elimination causes the loss of two 

properties of surface networks, which are (a) the condensed subgraph   

[P’1, P’2] is no longer connected (violation of rule P1 – see page 19-21) and 

(b) od(yi) = 1 for i = 1,2, …., n-1 (violation of rule P3 - see page 19-21). The 

topological consistency is restored by connecting loose passes yi to z i.e., 

the edge set of W’ contains the old edge set E(W) and the new links (yi, z’). 

The most important part of the contraction is the choice of yo, which 

ensures that the elevation differences along the new links are always 

greater than zero. This idea actually originated from Mark (1977), when 

he proposed methods for the generalisation surface trees. Positive 

elevation differences are essential for the realisation of a topographic 

surface for instance a situation where a higher pass connects to a lower 

peak is unnatural.  

 

(b) (xo– yo)-contraction: 

A (xo – yo)-contraction can be similarly defined for the contraction of the 

subgraph [xo, yo] (Fig 4.2c). The only difference is that the pass yo is the 

lowest pass connected to the pit xo. A surface network therefore can be 

condensed by repeated (yo–zo)-contraction and (xo– yo)-contraction until a desired 

level of simplicity is achieved. 
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 In the case of surface networks, only the internal peaks and 

internal pits could be selected for contraction. The next section describes 

the basis of selecting the pits and peaks for contraction.  
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Figure 4.2 A hypothetical island and the (yo–zo)-contraction and
(xo–yo)-contraction of its surface network. The numbers in the square
brackets in (a) denote the height of the critical points and x is the
surrounding pit 
 

.2.1 Criteria for Homomorphic Contraction  

lthough, the idea of homomorphic contraction was introduced by Pfaltz 

1976) it was Mark (1977), Wolf (1985) and Rana (1998, 2000) who 

roposed various “importance measures” or weights, which could be used 

o select the peaks and pits for contraction. It is easy to realise that there 

ould be many types of weights associated with the critical points. 

owever, an ideal choice will depend upon the particular problem and the 

urface (Wolf, 1991). Mark (1977) and Wolf (1984) believed that any type 
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of weights should be based on the elevation or in general on the value of 

the mapped property of the critical point because this would ensure a 

topologically consistent surface network after generalisation. The author 

however have observed that the importance of the critical point could be 

based on any measure which is suited to assess the importance of the 

critical point in the local or global neighbourhood. For instance, it could be 

the length of the edges, degree of the critical point, density of the local 

neighbourhood and many others. The critical step is to contract the edge 

with the least height difference (in case of terrains) or least mapped 

property. The following list of importance measures or weights is only a 

representative of many possible ways of assigning importance to the pits 

and peaks. Importance measure (i) – (v) are based on the suggestions of 

Mark (1977) and Wolf (1984) while importance measure (vi) – (viii) are 

based on Rana (2000) - work conducted during this research. 

 

(i) Height of the Peak and Pit. 

w (xi) = | h(xi) | 

w (zk) = | h(zk) | 

where (xi) is a pit, (zk) is a peak, h denotes height and w denotes 

weight. Height of the critical point is perhaps the simplest and most 

obvious weight that could be assigned to it (Mark, 1977).  

 

(ii) The maximum of the elevation differences between a peak 

or pit and all its adjacent passes. 

w(xi) = max { h(yj) – h(xi) } 

w(zk) = max { h(zk) – h(yj) } 

where (xi, yj) ∈ E and (zk, yj) ∈ E. This measure can be used to remove 

peaks and pits ranked on the basis of the steepest ridge and 

channel linked to them. 

 

(iii) The minimum of the elevation differences between a peak or  

pit and all its adjacent passes.  

w(xi) = min { h(yj) – h(xi) } = min { h(yj) } - h(xi) 

w(zk) = min { h(zk) – h(yj) } = min { h(zk) } - h(yj) 
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where (xi, yj) ∈ E and (zk, yj) ∈ E.  This measure can be used to remove 

peaks and pits ranked based on the shallowest ridge and channel 

linked to them. 

 

(iv) The sum of the elevation differences between a peak or pit 

and all its adjacent passes. 

w(xi) = Σ { h(yj) – h(xi) } 

w(zk) = Σ { h(zk) – h(yj) } 

where (xi, yj) ∈ E and (zk, yj) ∈ E. This measure can be used to 

selectively remove pits and peaks with low number of crossings. 

However as can be seen this measure could be misleading because 

it will be biased by the heights of the points. 

 

(v) The sum of the elevation differences between a peak or pit 

and all its adjacent passes normalised by the degree of the 

peak or pit. 

w(xi) = )(
)}()({

i

ij

xn
xhyh −  Σ

   

w(zk) =  
)(

)}()({

k

jk

zn
yhzh −  Σ

 

where (xi, yj) ∈ E, (zk, yj) ∈ E  and n denotes the degree of the critical 

point. The idea behind this measure is same as in the last one but 

this one should remove the height dependency of the last measure. 

However, this is an unnecessarily long way of finding crossings. The 

degree of the peak or pit is perhaps more suited. Still, the 

normalised sum could prove to be useful for some other purpose. 

 

(vi) Degree of the Peak and Pit. 

w(xi) = n(xi) 

w(zk) = n(zk) 

The degree of the critical points i.e., the number of ridge and 

channels incident on the peak and pit respectively should be a quick 

and easy indicator of the crossings at these critical points. 

 

 48



(vii) Maximum-, Minimum-, Sum-, and Normalised Sum- of the 

Length of the ridges and channels connected to the peak and 

pit. 

w(xi) = max { Λ(yj,xi) } 

w(zk) = max { Λ(zk,yj) } 

 

w(xi) = min { Λ(yj,xi) } 

w(zk) = min { Λ(zk,yj) } 

 

w(xi) = Σ { Λ(yj,xi) } 

w(zk) = Σ { Λ(zk,yj) } 

 

w(xi) = 
)(

)},(

i

ij

xn
xyΣΛ

 

w(zk) = 
)(

)},(

k

jk

zn
yzΣΛ

 

 

where (xi, yj) ∈ E , (zk, yj) ∈ E and Λ denotes the length of the ridge or 

channel. The length measure is useful because it is perhaps a more 

realistic measure for the size (minor or major) ridges and channels. 

The assumption that a minor ridge will also generally have a small 

elevation difference is perhaps true in most surfaces but, in the 

presence of artificial or natural noise in the surface, this assumption 

could be misleading. More discussion will be given later in this 

chapter. 

 

(viii) Maximum-, Minimum-, Sum-, and Normalised Sum- of the 

Slope of the ridges and channels connected to the peak 

and pit. 

w(xi) = max { ∆(yj,xi) } 

w(zk) = max { ∆(zk,yj)} 

 

w(xi) = min { ∆(yj,xi) } 

w(zk) = min { ∆(zk,yj) } 
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w(xi) = Σ { ∆(yj,xi) } 

w(zk) = Σ { ∆(zk,yj) } 

 

w(xi) = 
)(

)},(

i

ij

xn
xyΣ∆

 

w(zk) = 
)(

)},(

k

jk

zn
yzΣ∆

 

where (xi, yj) ∈ E, (zk, yj) ∈ E  and ∆ denotes the slope of the ridge or 

channel. Slope of the ridge and channels is perhaps the ideal 

form of importance based on local neighbourhood as it includes 

both the height difference and the length of the ridges and 

channels.  

  

As mentioned before there could be many ways of assigning weights.  

One particular aspect is that the weights mentioned above are all based 

on local neighbourhood but more global importance measures could 

provide more insights in characterising the surface.  

We also feel that the weight is not the only way of selecting the 

peaks and pits for contraction. The sequential condensation of surface 

networks does not provide flexibility to the user to generate a desired 

topology and topography. Wolf (1989) experienced a typical limitation. He 

observed that the quality of condensed contour maps could be improved 

substantially if the step to eliminate a peak and its adjacent pass were 

shifted to a subsequent one. It is also apparent that vertex importance 

based selection criteria are insensitive to the ridge or channel structure at 

a peak or pit. This means that edges are solely selected for condensation, 

based on their weights and no consideration is given to the size or 

significance of the host structure (such as length of edges), which may 

not be suitable in some cases. Rana (2000) proposed the User Defined 

Contraction (UDC), in which a user can arbitrarily select an internal pit 

or peak for removal, which allows not only the flexibility desired above, 

but also the ability to create experimental surface networks.  

In current ideas, there is a lack of suggestions to decide between 

equally weighted points. According to the Wolf (personal communication) 

either of the nodes can be selected arbitrarily as the other node(s) will be 
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contracted in the next step(s) or perhaps an additional criterion for the 

order in which the nodes can be specified. It is easy to realise that this 

decision will have to be more sensible than an arbitrary one as the surface 

networks produced will be entirely different depending upon the choice. 

Another alternative is the use of a lexico-graphical basis for second 

ordering (Takahashi et. al, 1995). An example of such a situation is shown 

in Fig. 4.2, where the peak zo and the pit xo have two edges of equal 

weights. Wolf (1991) gave another example in his generalisation 

experiment. The use of this basis raises similar concerns like the previous 

basis therefore it is very essential for a researcher to be aware of this 

arbitrariness in the contraction purpose. 

 

4.3 Non-Homomorphic contraction of Surface 

Networks 

While the homomorphic contractions are useful for generalising the 

topology of surface networks, the addition of co-ordinates to the ridges 

and channels require that traditional line-simplification methods could also 

be used for the simplification of the geometry of the ridges and channels. 

This kind of simplification has been addressed extensively in a number of 

applications and the choice of a technique could be left to the user. The 

generalisation should of course produce topologically consistent surface 

network. Some topological properties will however be most vulnerable 

such as: 

• Planarity – Line-simplification may cause ridges and channels to 

intersect (violation of P0). 

• Resemblance to original surface – Too much simplification may 

cause channels to appear to cut across the surface. This would 

ultimately generalise to a purely topological state of the surface 

network, which reduce the visualisation potential of the surface 

network. 

 

No attempts have been made in research so far on formalising the rules 

for this kind of generalisation of surface networks.  
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4.4 Generalisation Experiment 

4.4.1 Methodology 

Experimentation involved carrying out condensation of two surfaces both 

taken from original data by Wolf (1991) (Fig. 4.3a) and Wolf (1989)     

(Fig. 4.4a). Lack of an automated routine for the generation of a 

consistent surface network led to the use of a ready-made consistent 

network. These surface networks (Fig. 4.3b, Fig. 4.4b) for the surfaces 

were created manually i.e., by identifying the fundamental points and 

their relations manually. Fig. 4.3a is a hypothetical surface while Fig. 4.4a 

is a surface from an area in the Latschur Mountains of the Western 

Carinthia region in Austria. The original file format of the surface network 

was modified slightly into the following format. 

 

Points 
Point  Col. 1 Col. 2 Col. 3 Col. 3 Col. 4 Col. 5 
Pit X I D x y z 0 (if surrounding) or 1 (if internal) 
Pass Y I D -do- -do- -do-  
Peak Z I D -do- -do -do 0 (if surrounding) or 1 (if internal) 

 

Lines 
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 

E YID X1ID X2ID Z1ID Z2ID 
 

For example, part of the data for the Figure 4.4b surface network is 

as follows: 

 

Y y4 1.61 0.58 1150   

X x5 0.77 0.45 1000 0  

Z z6 2.74 0.35 2200 1  

E y1 x1 x2 z1 z2  
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Figure 4.3 (a) Hypothetical topographic surface and its (b) surface

network. Blue contour represents the surrounding pit. 
 
 

 (a) (b) 

igure 4.4 (a) Topography around the Latschur Mountains in the 

arinthia Region, Austria and (b) its surface network. 
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4.4.2 Surface Topology Toolkit 

The generalisations were carried out using an application, Surface 

Topology Toolkit (STT), developed by Sanjay Rana in Tcl/Tk. Tcl/Tk is 

becoming a popular language amongst GIS programmers (cdv by Jason 

Dykes, http://www.geog.le.ac.uk/jad7/cdv). The highlight of Tcl/Tk 

functions is the provision of dynamically manipulating the properties of 

graphical objects with ease and speed, which is particularly useful for 

cartographic and other visualisation applications. Owing to the Graphic 

User Interface (Figure 4.5) and UDC present in STT a user is able to 

achieve considerable improvement over the earlier methods for the 

generalisation and visualisation of surface networks (Wolf, 1991). The 

other main advantages of STT are as follows: 

 

• STT informs the user of every contraction (except for continuous 

contractions) so that a selection can be made more intuitively. 

• Users can generalise the topography by a combination of 

importance measure rather than a single one and can also 

arbitrarily select an internal pit or peak for contraction.  

• Users have the flexibility to undo a contraction to observe the 

changes in results for better generalisation. 

 

 

 

 
Figure 4.5 Graphical User Interface of the Surface Topology Toolkit

application with the controls for the contractions. 
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An ArcView Avenue script has been implemented, which converts 2D 

surface networks into ArcView 3D-shape files so that they can be seen in 

3D using ArcView 3D-Analyst extension. 

 

This work has the following two experimental aims: 

1. To compare the effectiveness of drop in elevation, edge length and 

valency weight measures. 

2. To use UDC to generate artificial landform changes. 

 

4.4.3 Results 

Case 1: Effectiveness of drop in elevation, edge length and valency 

weight measure 

As mentioned earlier the aim of using maximum and minimum edge 

weight criteria is the removal of peaks/pits based on respectively the 

steepest and shallowest ridges/channels linked to them. However, as 

would be expected a drop in elevation weight does not take into account 

the length of the edges, therefore it makes long edges vulnerable for 

condensation. For example, for the surface network shown in Fig. 4.6a, 

the next maximum drop in elevation weight criterion based condensation 

will remove the ridge [y1, z2] (Fig. 4.6b) although it is longer, thus more 

important, than some of the other ridges in the surface. On the other 

hand, maximum edge length weight criterion based condensation selects 

to remove the ridge [y1, z1] (Fig. 4.6c) and therefore is a more sensible 

measure. However, it is important to note that even after a better 

decision the ridge [y1, z2] is still removed due to topology condensation 

rules, which proves the earlier stated proposal, that condensation solely 

based on weights, ignores the structure of ridge/channel networks. 

 Sum of edge weights and valency criteria are used to remove 

peaks/pits based on the ridge/channel crossings at them. The aim is to 

keep higher degree peaks or pits as they represent crossings of different 

ridge and channel lines and are therefore of great importance for the 

topography of the given area. A comparison of the condensation 

sequences based on the sum of drop in elevation weight criterion and 

valency weight criterion reveals that the later criterion identifies 
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ridge/channel crossings more uniquely than the earlier criterion. Fig. 4.7 

shows the situation in which of sum of edge weight criterion selects to 

remove the ridge [y4, z5] (Fig. 4.7b) although the peak z5 has got the 

highest number of ridge crossings and is therefore a misleading 

condensation. On the other hand, valency weight criterion selects the 

ridge [y5, z6] (Figure 4.7c), which is closer to the expectation. 

 

Case 2: Use of UDC to generate artificial landform changes 

Study of landform evolution is a very useful topic of research in order to 

understand the geomorphic and tectonic phenomena in nature. 

Researchers use some form of landform models to simulate changes and 

predictions, but this often requires detailed mathematical analysis. As an 

alternative, this work proposes that UDC can be used to introduce similar 

changes more easily and quickly. An example of the generation of a NW-

SE trending artificial valley in the Latschur surface network is shown in 

Fig. 4.8. This valley was achieved simply by merging minor channels in 

this area and the removal of the intersecting ridges along these channels. 

However, as its apparent, the changes are purely topological and one of 

the main advantages of other landform evolution models is their ability to 

regenerate the topography. 

 

4.5 Regeneration of Surface 

Even though the homomorphic contraction and line-simplifications are 

perhaps well established, according to the author the generalisation 

sequence is incomplete because there are no proposals for the general 

form of the surface inside and around the generalised part of the surface 

networks. In other words, we know about the connectivity of the critical 

points after a generalisation but we don’t know how the ridges and 

channels should connect because we don’t know what the “surface” looks 

like. 

 It is easy to realise that there could be infinite ways in which a river 

or ridge can meander but it is likely that most surfaces would behave in 

certain ways given a set of structural constraints. A common example of 

 56



 

Figure 4.7 Comparison of the effectiveness for selection of points in a (a) surface network, 

between (b) sum of elevation difference criterion and (c) valency criterion, showing how criterion 

(b) can mislead about the ridge/channel crossings. Numbers at peaks in (a) are sum of elevation 

differences and their valencies (in parentheses). 
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Figure 4.6 Comparison of the effectiveness for selection of points in the surface network 

(a) between maximum of elevation difference criterion (b) and maximum of edge length 

criterion and (c) Note that criterion (b) selects a long ridge due to its low drop in 

elevation (350). 
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Figure 4.8 Generation of an artificial valley inside the dotted

region of the Latschur surface network. 
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such an application is the erosion or aggradation modelling in 

geosciences. However, it is obvious that different surfaces will have 

different “evolution” models. For the time being, we would like to 

categorise broadly three kinds of approaches for regenerating the surface  

networks. These are arranged in increasing order of the likely complexity 

involved in the restoration method. 

1. Topological – This kind of approach is purely the restoration of the 

topology of the surface network. The current methods of contraction 

already allow such regeneration. This will be the simplest and easiest 

possible method of regenerating a surface network. 

2. Artificial – This method would involve some kind of artificial filling up 

of the generalised area with “surface like” details allowed under the 

topological constraints. Three methods are being explored namely 

Fractals, Region Merging (Takahashi and Kunii, 1994) and shape 

preservation (Bajaj and Schikore, 1997). 

3. Natural – An ideal way of regenerating the generalised surface would 

be to simulate the generalisation as a form of natural surface process. 

A widely used example of such a modelling method is the terrain 

erosion modelling. These surface evolution models would require 

hypothesising solutions for morphological changes in the surfaces.  

 

4.6 Discussion 

Generalisation of Surface Networks particularly the homomorphic have an 

immense potential for future research. They could especially be useful for 

exploring the structure of a large surface. Some key areas, which will be 

addressed in the PhD, are: 

• Detailed understanding of the property and effects of each of the 

condensation criterion. 

• Further research on possible contraction criteria. 

• Development of models for the regeneration of topography 

incorporating topological settings. A related issue is the refinement of 

surface networks (Bajaj and Schikore, 1997; Rosin, 1995). 

• Formal methodologies for the non-homomorphic generalisation of 

surface networks. 
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Chapter 5 

The Applications and Conclusions 
 

 

 

5.1 Scope of Applications 

Surface Network is a very “natural” representation of surfaces. It 

represents the surfaces in terms of the fundamental “surface elements” 

i.e., the peaks, pits, passes, ridges and channels. The use of the critical 

points and lines to represent the surfaces has a number of advantages, 

such as the following: 

- It removes the subjectivity associated with the choice of legend (class 

intervals, colour scale etc.) to visualise the surfaces (Bajaj and 

Schikore, 1996). For example, there is often a certain level of 

uncertainty experienced while deciding the legend of a surface every 

time it is scaled or transformed. The critical points and lines, due to 

their unique positions in the surface, provide an intuitive 

understanding of the surfaces especially, which have complex structure 

such as dynamic maps (Rana, 2001a) and highly detailed surfaces 

(e.g., in flow topology by Helman and Hesselink, 1991). In essence, 

surface network is an intelligent data structure. In other words, if there 

were to be a measure of intelligence amongst the spatial data 

structures then surface networks will be much higher in the scale (Fig. 

5.1). However, as the surface networks are a very coarse abstraction 

of the surface therefore they will score much higher on the scale of 

uncertainty in interpolating a surface based on them. 

- The critical points and lines effectively act as landmarks on the surface 

thus they can be used to get a representative coverage of the entire 

surface. Intervisibility and viewshed analyses are particular examples 
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of modern applications, where such a property will be very useful 

(Rana, 2001b).  

- According to the author, the homomorphic contraction of surface 

networks could be an easy and quick method of performing surface 

evolution processes, such as the erosion modelling in geology or 

morphing in computer graphics. Existing methods based on 

sophisticated numerical models are too computing intensive and 

require strong mathematical background. 

Uncertainty Intelligent TIN

Surface Network

. 

.

. 

.

Contour 
DEM 

Figure 5.1 Comparison of the dumbness and uncertainty in spatial 
data structures. 

 

In the following sections, some examples of ongoing experiments on the 

application of surface networks will be described.  

 

5.1.1 Enhanced and Intuitive Visualisation 

Complex surfaces such as dynamic maps and incised terrains have too 

many details to be sensibly interpreted by the viewer. Visualisation of 

dynamic maps is an actively discussed research topic in dynamic 

cartography (Shepard, 1995; Rana, 2001a). It has been debated whether 

the animation in dynamic maps is often a distraction rather than being of 

help in interpreting the map (Bertin, 1967; Dibiase et. al, 1992; 

McEachren, 1994). Bertin was perhaps right because although there have 

been many treatments of the elements of dynamic maps (dynamic 

variables) but there is still no guideline on the ways one should visualise a 

dynamic map.   

 As mentioned in the last section, surface networks provide a 

synoptic visualisation of the surfaces. This property could be useful in 
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visualising dynamic maps, particularly used to represent continuous 

phenomena or fields such as weather maps. Fig. 5.2 shows an example of 

comparison between the traditional animation of weather patterns and 

surface network enhanced animation. It is clear that with the use of the 

surface network features it is easier to track the weather changes 

accurately. For example, the movement of the centre of the depression 

over the land can be more easily monitored. An interesting extension of 

this kind of visualisation will be to understand how the meteorological 

phenomena are linked to each other. For instance, the appearance, 

disappearance, and merging of the depressions could be observed by 

superimposing the framework of surface network. These ideas are still 

hypothetical and in the next stage, the author would like to pursue this 

field.  

 Few social science researchers have used the surface networks to 

visualise social phenomena such as urban settlement, commercial 

transactions and spatial flows (Warntz, 1966).  We are exploring the 

possibility of work in these fields especially for their potentials to describe 

the structure of socio-economic phenomena. 

 

5.1.2 Increased Efficiency 

Critical points and lines are located at prime positions on a surface and 

therefore they can be used as the representative set over their local 

spatial neighbourhoods. In a number of analyses such as visibility and 

accessibility studies, an optimally located set of points is required to act as 

control to assess the significance of other points in the surface. For 

instance, a traditional problem in the visibility analysis has been the large 

processing time required assessing the visibility of points in large 

surfaces. There have been many proposals on decreasing the processing 

time. Most recently, based on their experiments with random points on 

the surface, O’ Sullivan and Turner (2001) proposed that the critical 

points and lines are perhaps adequate to assess the Intervisibility of 

points on terrains. In this report, a preliminary experiment has been done 

to assess the potential of surface network to act as an observer 

framework for the Intervisibility of a terrain. In other words, instead of 

testing the visibility of each point against every other point, the visibility  
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Surface Network Enhanced 
Representation Current Representation

Figure 5.2 Comparison between the current and
surface network enhanced visualisation of the
dynamism in the geopotential height over Europe. 
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from a critical point and line was calculated (Fig. 5.3).  Two observations 

have been made from a cursory comparison. Firstly, the overall pattern of 

the visibility of a point is very similar in both, with and without surface 

network based Intervisibility measurements. Secondly, as expected, the 

number of observers of a point in the surface network based Intervisibility 

is less than in the entire grid based calculation. However, is the low value 

significant? It is clear that a certain level of uncertainty has been 

introduced in the Intervisibility values. Can we quantify the uncertainty? 

Overall, the potential of surface networks for Intervisibility studies 

still needs to be verified. We are developing this idea further with Dr. Y. H. 

Kim of Sheffield University to experiment with the use of surface networks 

for accessibility studies. 

 

5.1.3 Simple Surface Evolution 

Simulation of changes in the surfaces is a very attractive research area in 

many sciences. For example in geology, geomorphologists are interested 

in simulating erosion modelling and tectonic changes. In computer 

graphics, morphing is widely used technique in computer animation and 

effects. Social scientists are keen to experiment with different urban 

scenarios such as installation or removal of marketing town centres. Most 

of these operations require statistical and numerical methods for 

simulating the changes, which could be fairly complicated.  

As suggested in Chapter 4 (section 4.5), the use of homomorphic 

contractions, both sequential and user-defined contractions, could be 

useful for performing simple surface evolution. However, it is clear that 

this idea needs to be thoroughly addressed before being advocated widely 

as a viable alternative. A critical issue in this idea, which needs to be 

resolved, is the regeneration of the surface after the “topological” 

generalisation.  

 

5.2 Discussion and Conclusions 

This report presents an overview of the previous works and author’s 

research ideas on surface networks. The research on Surface Networks 
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igure 5.3 Intervisibility calculations in a part of Isle of Man, based on

a) each grid point (16335 points) and (b) critical points and lines (3975

oints). Lighter to darker colour indicates increasing number of
bservers. The blue line is the surface network. 
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has four main focus areas namely, data structure model, automated 

extraction, generalisation, and applications. Since the start of research on 

parameterising a surface as a critical point-critical line framework in the 

19th century, researches on this area has happened in different details in 

these four areas. We now clearly know and agree on the nature of the 

surface network components. However, many surfaces, especially natural 

terrains, pose problems in an automated extraction of surface networks. 

This is due to the inability of the automated routines to characterise the 

terrain intelligently into the critical points and lines. Some surfaces like 

natural terrains do not strictly follow the mathematically derived rules for 

surfaces. So what are the solutions? - the following two perhaps: 

(a) Change the surface network design and rules to accommodate 

individual surfaces or 

(b) Deliberately decompose the problematic parts of the surface somehow 

into what desired by surface network model.  

The latter solution is probably easier and could be more natural (Of 

course depending upon the natural/realistic qualities of the decomposition 

process). Wolf (1990) and Takahashi et al. (1995) have shown examples 

of how junctions (bifurcations) and degenerate passes could be converted 

into surface network components. However, as discussed earlier, these 

decompositions have limitations. Therefore, designing a surface network 

model, which could be most adapted to most surfaces, is the first aim of 

this research. The automated extraction of a surface network is a related 

issue. The lack of a robust surface network model often creates problems 

in the automated extraction. However, the issues of a suitable feature 

definition model (e.g., how to detect whether a point is peak?), and scale 

dependency are internal to the automated extraction.  

 The methods and potentials of the homomorphic contractions of 

surface networks are practically unexplored. A large part of this research 

will focus on the issue of generalisation of surface networks.  

The success of data structures comes down to their usability for 

practical applications. Surface Networks are used in different disciplines in 

different forms and names. A main aim of the author during the transfer 

period has been to establish contacts with researchers in various 

disciplines. It is hoped that the collaboration will ultimately help to 
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produce a universal agreement on thoughts and perhaps even benefiting 

one another on some issues.  

An issue, which is generally, ignored in most discussions on spatial 

data structures, is the uncertainty present in each abstraction of surface. 

It is perhaps difficult but not impossible to achieve a value for the 

approximation present in results derived from surface abstractions such as 

surface networks. We suggest that the approximation may vary according 

to the application and over the surface. For instance, the approximation in 

a visibility analysis may not be the same as in slope calculation. The 

approximation is likely to vary across the area of the surface because the 

approximation will depend on the density of the surface network in an 

area i.e., denser the surface network the lesser will be the approximation.  

 

Finally, there is plenty of scope for new ideas in the research on 

surface networks, which have both intellectual and practical value. 
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