6,527 research outputs found

    Circuit Depth Relative to a Random Oracle

    Get PDF
    The study of separation of complexity classes with respect to random oracles was initiated by Bennett and Gill and continued by many other authors. Wilson defined relativized circuit depth and constructed various oracles A for which   P^A ¬ NC^A NC^A_k ¬ NC^A_k+varepsilon, AC^A_k ¬ AC^A_k+varepsilon, AC^A_k ¬ subset= AC^A_k+1-varepsilon, and NC^A_k not subset= AC^A_ k-varepsilon,for all positive rational k and varepsilon, thus separating those classes for which no trivial argument shows inclusion. In this note we show that as a consequence of a single lemma, these separations (or improvements of them) hold with respect to a random oracle A

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    Pseudorandom generators and the BQP vs. PH problem

    Get PDF
    It is a longstanding open problem to devise an oracle relative to which BQP does not lie in the Polynomial-Time Hierarchy (PH). We advance a natural conjecture about the capacity of the Nisan-Wigderson pseudorandom generator [NW94] to fool AC_0, with MAJORITY as its hard function. Our conjecture is essentially that the loss due to the hybrid argument (which is a component of the standard proof from [NW94]) can be avoided in this setting. This is a question that has been asked previously in the pseudorandomness literature [BSW03]. We then make three main contributions: (1) We show that our conjecture implies the existence of an oracle relative to which BQP is not in the PH. This entails giving an explicit construction of unitary matrices, realizable by small quantum circuits, whose row-supports are "nearly-disjoint." (2) We give a simple framework (generalizing the setting of Aaronson [A10]) in which any efficiently quantumly computable unitary gives rise to a distribution that can be distinguished from the uniform distribution by an efficient quantum algorithm. When applied to the unitaries we construct, this framework yields a problem that can be solved quantumly, and which forms the basis for the desired oracle. (3) We prove that Aaronson's "GLN conjecture" [A10] implies our conjecture; our conjecture is thus formally easier to prove. The GLN conjecture was recently proved false for depth greater than 2 [A10a], but it remains open for depth 2. If true, the depth-2 version of either conjecture would imply an oracle relative to which BQP is not in AM, which is itself an outstanding open problem. Taken together, our results have the following interesting interpretation: they give an instantiation of the Nisan-Wigderson generator that can be broken by quantum computers, but not by the relevant modes of classical computation, if our conjecture is true.Comment: Updated in light of counterexample to the GLN conjectur

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    On the Cryptographic Hardness of Local Search

    Get PDF
    We show new hardness results for the class of Polynomial Local Search problems (PLS): - Hardness of PLS based on a falsifiable assumption on bilinear groups introduced by Kalai, Paneth, and Yang (STOC 2019), and the Exponential Time Hypothesis for randomized algorithms. Previous standard model constructions relied on non-falsifiable and non-standard assumptions. - Hardness of PLS relative to random oracles. The construction is essentially different than previous constructions, and in particular is unconditionally secure. The construction also demonstrates the hardness of parallelizing local search. The core observation behind the results is that the unique proofs property of incrementally-verifiable computations previously used to demonstrate hardness in PLS can be traded with a simple incremental completeness property

    Quantum Simulation Logic, Oracles, and the Quantum Advantage

    Full text link
    Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, like the Deutsch-Jozsa and Simon's algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor's algorithm for integer factorization.Comment: 48 pages, 46 figure

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest
    corecore