
On the Cryptographic Hardness of Local Search
Nir Bitansky1

Tel Aviv University, Israel
nirbitan@tau.ac.il

Idan Gerichter
Tel Aviv University, Israel
idangerichter@gmail.com

Abstract
We show new hardness results for the class of Polynomial Local Search problems (PLS):

Hardness of PLS based on a falsifiable assumption on bilinear groups introduced by Kalai, Paneth,
and Yang (STOC 2019), and the Exponential Time Hypothesis for randomized algorithms.
Previous standard model constructions relied on non-falsifiable and non-standard assumptions.
Hardness of PLS relative to random oracles. The construction is essentially different than previous
constructions, and in particular is unconditionally secure. The construction also demonstrates
the hardness of parallelizing local search.

The core observation behind the results is that the unique proofs property of incrementally-verifiable
computations previously used to demonstrate hardness in PLS can be traded with a simple incremental
completeness property.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Cryptography, PLS, Lower Bounds, Incremental Computation

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.6

Funding This work was supported in part by ISF grant 18/484, and by Len Blavatnik and the
Blavatnik Family Foundation.
Nir Bitansky: Supported by the Alon Young Faculty Fellowship.

1 Introduction

Local search is a well known approach for tackling optimization problems. Local search
algorithms seek solutions that are locally optimal – they commonly try to improve on a given
solution by considering small perturbations of it, called neighbors, and testing whether they
are better according to some value function. Indeed, many algorithms use this approach with
empirical success, for instance, the Simplex linear programming algorithm, the Lin-Kernighan
TSP algorithm, and various machine learning algorithms [43, 38, 31]. Nevertheless, the
approach has its limitations and many natural local search problems are not known to admit
polynomial-time algorithms.

Aiming to characterize the computational complexity of local search, Johnson, Papadim-
itriou, and Yannakakis [33] introduced the class Polynomial Local Search (PLS). The class
is defined by its canonical complete problem Local-Search (LS) [33, 29]. Here the input
consists of two polynomial-size circuits: a successor circuit S : {0, 1}n → {0, 1}n, which
given a string x outputs a string x′, and a value circuit F , which given a string x outputs
an integer value. The goal is to find a string x which is locally optimal in the sense that
F(x) ≥ F(S(x)). Here strings correspond to solutions, with a value assigned by F , and the

1 Member of the Check Point Institute of Information Security.

© Nir Bitansky and Idan Gerichter;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 6; pp. 6:1–6:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8361-6035
mailto:nirbitan@tau.ac.il
mailto:idangerichter@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On the Cryptographic Hardness of Local Search

successor assigned by S represents “the best” neighbor. Important problems that are known
to be PLS complete include finding a locally optimal max-cut [49] and finding pure Nash
equilibrium in congestion games [22].

As observed in [33], PLS belongs to the class TFNP of total search problems in NP; namely,
a local optimal solution always exists (and can be efficiently verified). As a result, it is
unlikely that PLS contains NP-hard problems, as this would imply that NP = coNP [33, 41].
This barrier is shared of course by other prominent subclasses of TFNP, perhaps the most
famous example being the class PPAD that captures the hardness of finding Nash equilibrium
in bimatrix games [18, 14]. Accordingly, researchers have turned to seek for alternative
evidence of hardness.

One natural place to look for such evidence is cryptography. Indeed, cryptography
typically relies on problems closer to the boundary of P than to NP hard problems. For
some subclasses of TFNP (such as PPP, PPA, and Ramsey) evidence of hardness has been
shown based on standard cryptographic assumptions [45, 12, 32, 36, 50]. Establishing the
hardness of PLS (and PPAD), however, has been far more elusive. Hubác̆ek and Yogev [29],
building on [7, 23], demonstrated a hard problem in PLS∩PPAD based on indistinguishability
obfuscation [4], a strong cryptographic primitive, yet to be constructed under standard
assumptions.2 Similar hardness was then shown by Choudhuri et al. [16] assuming hardness
of #SAT and the soundness of the Fiat-Shamir transform for the sumcheck protocol, which in
turn can be based on optimally-secure fully-homomorphic encryption against quasi-polynomial
attackers [13]. More recently, the same has been shown based on the hardness of iterated
squaring and soundness of Fiat-Shamir for the iterated-squaring protocol of Pietrzak [46] by
both Choudhuri et al. [15] and Ephraim et al. [21].

Basing the hardness of PLS (or PPAD) on standard assumptions remains an open problem.

1.1 Our Results
We provide new results regarding the hardness of PLS. Our first result shows worst-case
hardness of PLS based on the KPY assumption on bilinear groups and the randomized
Exponential Time Hypothesis (ETH). The KPY assumption was introduced recently by Kalai,
Paneth, and Yang [34] toward the construction of publicly-verifiable delegation schemes. The
assumption is similar in spirit to previous standard assumptions that generalize Decisional
Diffie Hellman (e.g., [8, 9]). It is polynomially falsifiable and holds in the generic group model.
Randomized ETH postulates that solving SAT in the worst case requires exponential-time
even for randomized algorithms [30].

I Theorem 1 (Informal). Under the KPY assumption on bilinear groups and randomized
ETH, PLS is hard in the worst case.

The result is, in fact, more general and shows a reduction of PLS hardness to a certain type
of incrementally-verifiable computation schemes (IVC) [51]. We then derive the required
IVC from the work of [34]. We can also show average-case hardness at the cost of assuming
superpolynomial hardness of the KPY assumption and average-case randomized ETH. See
further details in the technical overview.

Our second result is a construction of PLS instances that are unconditionally hard in the
random oracle model.

2 More accurately, they show a hard problem in the class Continuous Local Search (CLS), which is known
to be in PLS ∩ PPAD [19].

N. Bitansky and I. Gerichter 6:3

I Theorem 2 (Informal). Relative to a random oracle, Local-Search is unconditionally
hard-on-average.

Previously, Choudhuri et al. [16] showed hardness of CLS ⊆ PLS ∩ PPAD relative to a
random oracle, but their result is conditioned on hardness of #SAT (the construction
does not relativize with respect to this hardness and hence it cannot be derived from the
random oracle itself). Indeed, our construction is quite different from theirs. Whereas their
construction is based on the sum-check protocol [39] (which explains the non-black-box
reliance on #SAT hardness), ours comes from recent advancements in proofs of sequential
work motivated by blockchain applications [40, 17, 20].

The reliance on proofs of sequential work, in fact, translates to a result on the hardness of
parallelizing local search. Such hardness, in the random oracle model, was recently shown for
CLS (and in particular for both PLS and PPAD) by Ephraim et al. [21] further assuming that
repeated squaring modulo a composite is hard to parallelize [47]. Specifically, they construct
CLS instances that can be solved in some tuneable sequential polynomial time, but cannot be
solved much faster by parallel algorithms. Our result gives a similar kind of hardness for PLS
in the random oracle model, without relying on any unproven computational assumptions.
We elaborate on this in the technical overview below.

2 Technical Overview

To motivate our approach, we start by recalling previous approaches taken toward proving
PLS (or rather CLS) hardness.

2.1 Hardness via Incremental Computation
So far, the common approach toward arguing cryptographic hardness of PLS went through
an intermediate problem called Sink-of-Verifiable-Line (SVL) [1, 7]. An instance of SVL
consists of a successor circuit S and a verifier circuit V . The successor S implicitly defines a
step-by-step (or, incremental) computation st+1 := S(st) starting from a canonical source s0
and ending at a sink sT , for some superpolynomial T :

s0
S−→ . . .

S−→ sT

The verifier V(s∗, t) is promised to accept any s∗ as the t-th state if and only if it is correct,
namely s∗ = S(t)(s0). The goal is to find the sink sT = S(T)(s0), given (S,V).

It is not hard to see that solving SVL can be reduced to solving a local search problem in
PLS [29], and thus it is sufficient to prove the hardness of SVL.

Valiant’s Incrementally-Verifiable Computation and Uniqueness. A natural way to ap-
proach SVL hardness is Valiant’s notion of incrementally-verifiable computation (IVC) [51].
According to this notion, we can take a Turing machine computation given by a machine M
and input x with a configuration graph:

M0
x −→ . . . −→MT

x ,

and associate with each intermediate configuration M t
x a short proof πt, attesting to its

correctness. The proofs are incremental – the next proof πt+1 can be efficiently computed
from πt.

ITCS 2020

6:4 On the Cryptographic Hardness of Local Search

At first glance, this general notion seems to directly yield SVL hardness. Indeed, we can
take any polynomial-space machine M solving some hard search problem R on input x and
consider the corresponding incrementally-verifiable computation:

(M0
x , π0) S−→ . . .

S−→ (MT
x , πT) .

Here the successor simply advances the computation of M and incrementally computes the
corresponding proofs. The SVL verifier is derived directly from the IVC verifier.

The reason that the above simple transformation does not work is that the IVC proofs
may not be unique. In particular, a correct intermediate configuration may have many
different accepting proofs attesting to its correctness, whereas SVL requires that only a
single string can be accepted as the t-th node (for any t). Choudhuri et al. [16] show that
the SVL uniqueness requirement can be somewhat relaxed and traded with computational
uniqueness meaning that it is computationally hard to find more than a single proof for any
given statement (even if such proofs exist).

So far, however, incrementally-verifiable computation with (even computational) unique-
ness has not been achieved under standard assumptions. This is, in fact, the case even for
specific (hard) computations, let alone for general ones.

2.2 Incremental Completeness
We show that the hardness of PLS does not require SVL hardness nor IVC with unique proof.
Rather, we observe that IVC with a conceptually simple incremental completeness property
suffices. Then we derive such IVC for polynomially-long computations from the delegation
scheme construction of Kalai, Paneth, Yang [34] and combine it with ETH to obtain PLS
hardness. We next explain the notion of incremental completeness and why it suffices. In
the next subsection, we explain how it is obtained.

Incremental-Complete IVC and PLS Hardness. An incremental complete IVC has the
property that given any accepting proof π for an intermediate state M t

x of the computation,
running the prover results in an accepting proof π′ for the next state M t+1

x . This differs
from Valiant’s original formulation where completeness is only guaranteed for the prescribed
proof generated by iteratively applying the prover t times.

Let us now describe how to construct hard Local-Search instances from incrementally-
complete IVC. Once again, we start from some hard computation given by a polynomial-space
machine M and instance x. Rather than considering a verifiable computation chain, we shall
consider a DAG with nodes of the form (t, C, π), where t is a timestamp, C is an alleged
configuration of M(x) at time t, and π is an IVC proof. We call such a node valid if the
corresponding proof is accepting. For simplicity, we assume for now that the IVC is also
perfectly sound, meaning that valid nodes are always such that C is the correct configuration
M t
x. Note that for every time t, there may very well be multiple corresponding valid nodes.

We can visualize this as multiple “parallel universes”, which the verifiable computation lives
in simultaneously. Incremental completeness says that in every such universe, as time moves
forward, the computation may proceed. In particular, by induction, we always reach a sink
of the form (T,MT

x , π) that contains the last state of the computation.
This naturally gives an LS instance. Valid nodes (t,M t

x, π) are given value t and are always
succeeded by another valid node (t+ 1,M t+1

x , π′) derived by advancing the computation and
incrementing the IVC proof. Invalid nodes are given value −1 and are succeeded by some
canonical source in the DAG (0,M0

x , ε), where ε is the empty proof, which by convention is

N. Bitansky and I. Gerichter 6:5

accepted as a proof forM0
x . The local maximums of the corresponding instance are exactly the

sinks of the DAG, which by incremental completeness are of the form (T,MT
x , π), containing

the last state. Therefore, finding a local-maximum reduce to solving the underlying hard
computational task given by the computation M(x).

Our actual construction does not assume perfect soundness of the IVC, but only compu-
tational soundness. There may exist so called fooling nodes (t, C∗, π∗) that pass verification
although C∗ is not the correct configuration M t

x. These nodes may be local maximums and
finding them may not reduce to solving the underlying problem. Nonetheless, finding fooling
local maximum corresponds to breaking the soundness of the IVC, which is computationally
infeasible.

2.3 Obtaining IVC with Incremental Completeness
Valiant [51] put forth a general approach toward constructing IVC by recursive proof
composition. Oversimplifying, the basic idea is that to move from the t-th configuration
C = M t

x and proof πt to the next configuration C ′ = M t+1
x and proof πt+1, the new proof

πt+1 asserts that:
1. There exists a proof π that passes IVC verification as a valid proof that C = M t

x (this
part is recursive in the sense that it relies on IVC verification for smaller times stamps),

2. C ′ is obtained from C by applying Mx’s transition function.
For this to be feasible, each “single-step proof” is computed using a succinct non-interactive
NP proof system where verification time (and in particular, the size of the proof) is fixed and
is not affected by the complexity of the NP relation. We observe that any IVC construction
following the above blueprint is incrementally complete by definition as long as the succinct
NP proof system used has perfect completeness.

Succinct Proof Systems. Succinct proofs for NP with unconditional soundness are unlikely
to exist [26, 27]. Accordingly, Valiant suggested to instantiate the blueprint using computa-
tionally sound succinct arguments. This brings about some extra complications in following
the blueprint. For once, proving that a previous proof exists is meaningless in the case of
computational soundness. Rather we need the guarantee that a proof exists and can be
efficiently found. Such systems are known as succinct non-interactive arguments of knowledge
(SNARKs) and admit an efficient knowledge extractor that can efficiently extract a witness
from a convincing prover.

Using such SNARKs enables the construction of IVC for arbitrary poly-time computa-
tions (or superpolynomial ones, if the SNARK is superpolynomially secure) [51, 5], and the
corresponding constructions are incrementally complete by the fact that the underlying
SNARKs are perfectly complete. (The actual constructions are somewhat different from the
described blueprint; in particular, to deal with issues such as blowup in knowledge extraction
complexity, they aggregate proofs in a tree-like fashion rather than a chain, in order to reduce
the depth of the recursion. Incremental completeness holds just the same.)

Following the above, we can obtain an incrementally-complete IVC, and thus PLS hardness
from SNARKs. However, the existence of SNARKs is a strong non-falsifiable assumption. It is
only known under non-standard knowledge assumptions and its construction from standard
assumptions is subject to barriers [24, 6].

Incrementally-Complete IVC from Weaker Succinct Arguments. In a recent work, Kalai,
Paneth, and Yang [34] considered a relaxation of SNARKs called quasi-arguments that instead
of standard knowledge extraction only requires a certain weaker no-signaling extraction

ITCS 2020

6:6 On the Cryptographic Hardness of Local Search

requirement. Unlike SNARKs, such arguments are not subject to any known lower bounds,
and were in fact constructed from the learning with errors assumption in their privately-
verifiable form [35, 44, 11, 3] and recently also in their publicly-verifiable form based on the
so called KPY assumption in bilinear groups [34].

Furthermore, Kalai, Paneth, and Yang show that similarly to SNARKs such quasi-
arguments can, in fact, be recursively composed toward verifying a long computation,
provided that the computation is deterministic. Their explicit goal was not to construct
IVC but rather to bootstrap quasi-arguments with a long common reference string (CRS)
to succinct arguments with a short CRS. However, this is done by implicitly constructing
an IVC (this connection is also apparent in previous constructions of SNARKs with a short
CRS from ones with a long CRS [5]). The resulting IVC, like other IVCs based on recursive
composition, is incrementally complete.

The Class of Supported Computations and the Reliance on ETH. In its native form, the
IVC derived from the KPY construction supports computations of arbitrary polynomial
length T = λO(1) in the security parameter λ, with fixed prover-verifier running time (say,
λ). However, as explained earlier, to get PLS hardness, we would like to apply the IVC for a
hard (and thus superpolynomial) computation.

To circumvent this difficulty, we employ a fine-grained reduction. The idea is to construct
instances which are tailor-made to be hard for LS algorithms of a specific polynomial running
time. Fix any constant c > 0 and nc-time algorithm A that supposedly solve LS (here n is
the size of the LS instance (S,F)). Consider a search problem R and a Turing machine M
that solves it in polynomial time T (λ), while no randomized algorithm can solve it in time
T δ for constant δ < 1. If we can bound the blowup of the IVC reduction by at most T δ/c,
we can use A to construct a randomized adversary A′ that solves R in time T δ and get a
contradiction.

The blowup of the IVC reduction is polynomially related to (a) the input size, (b) the
space used by M , and (c) the efficiency of the IVC scheme. Accordingly, we require a
computation where there is an arbitrarily large (polynomial) gap between the space used and
the hardness of the underlying problem. To this end, we use the randomized ETH assumption.
By appropriately choosing the size of the underlying SAT instance, we get computations
that can be solved using fixed-space and some polynomial time via brute-force but not in
much faster polynomial time, even by randomized algorithms. To bound the blowup due to
the IVC efficiency, we follow the efficiency analysis by [34] and adapt it to the incremental
setting. (In the body, we show the above in the non-uniform setting: assuming non-uniform
ETH and using standard non-uniform derandomization techniques while taking special care
to bound the associated blowup.)

We note that the above only gives worst-case hardness. That is, we do not show a
single distribution that is hard for all polynomial-time algorithms. Assuming slight super-
polynomial security of the KPY assumption and average-case randomized ETH, we can get
average-case PLS hardness by essentially the same reduction (in fact, we can slightly weaken
average-case ETH to a slightly subexponential time hypothesis).

2.4 Unconditional Hardness in the Random Oracle Model
Our second result, in the random model, is based on recent advancements in proofs of
sequential work (PoSW) [40]. Roughly speaking, in a PoSW, the prover is given a statement
χ and a time parameter T , and can generate a corresponding proof π by making T sequential
steps. The soundness requirement is that provers that make � T sequential steps, will fail to

N. Bitansky and I. Gerichter 6:7

generate a valid proof for χ, except with negligible probability (namely, proof computation is
not parallelizable). The construction we present relies on the PoSW of Cohen and Pietrzak
[17] and its extension by Döttling, Lai, and Malavolta [20] to so called incremental proof
of sequential work; both are proven sound in the random oracle model. We now move to
recalling how these systems work, and explain how we derive from them hard PLS instances
relative to random oracles.

The CP PoSW. To construct a PoSW, Cohen and Pietrzak [17] suggest an elegant tree
labeling procedure that is inherently sequential. They consider a binary tree whose edges are
directed from the leaves toward the root. In addition, they add directed edges from every
node ` having a sibling r on the right, to all the leaves in the tree rooted at r. We call this
the CP graph (see Figure 1 in Section 6 for an illustration). The nodes of the CP graph are
then given random labels as follows: the label of any given node is obtained by applying a
random oracle Hχ = H(χ, ·) to the labels of its incoming nodes (the oracle is seeded with χ
to guarantee an independent oracle for every statement). Intuitively, the added edges enforce
that in order to compute the labels of some subtree rooted at some r, it is first necessary to
compute the labels of its left sibling `; in this sense, labeling must be done sequentially.

To turn this into an actual proof of sequential work π for χ, the prover publishes the
label of the root of the entire tree. The verifier then responds with random challenge leaves
to which the prover answers by providing all the labels in the corresponding paths toward
the root along with the labels of the siblings along the path, as in standard Merkle tree
authentication (indeed here the tree serves both the purpose of of a commitment and of
enforcing the sequential nature). Finally, they make the proof non interactive by using the
Fiat-Shamir transform. Cohen and Pietrzak prove that to successfully compute an accepting
proof, a prover must sequentially call the random oracle ≈ T times, where T is the size of
the tree.

Incremental PoSW and the DLM Construction. Cohen and Piertzak further show that
the standard streaming algorithm for Merkle commitments [42], can also be applied to their
labeling procedure. That is, one can keep track of a small amount of nodes (about log T),
each a root of some tree in a gradually growing forest, and when needed, merging two
nodes on the same level. In other words, the CP labeling can be done by an incremental
computation with small space.

One thing that is of course missing toward getting PLS hardness is verifiability of the
corresponding intermediate states. One Naïve idea toward such local verifiability is to apply
the CP proof strategy for each subtree in the incremetal labeling process. Indeed, each such
subtree is, in fact, CP labeled on its own, so we can use Fiat-Shamir to compute random
challenges for that particular subtree. While this is a step in the right direction it is still
not enough for the goal of PLS hardness, since the intermediate proofs themselves are not
computed incrementally – computing each local proof may take time proportional the size of
the corresponding subtree.

Döttling, Lai, and Malavolta [20] suggested a neat idea to make the CP proofs incremen-
tally computable.3 Roughly speaking rather than sampling fresh challenges for each subtree,
they suggested to derive them at random from the previously computed challenges of this
subtree. In a bit more detail, whenever merging two subtrees rooted at ` and r into a new

3 They were motivated by blockhains and aimed to make PoSW a process that can be advanced in a
distributed fashion by different parties.

ITCS 2020

6:8 On the Cryptographic Hardness of Local Search

(taller) subtree, we assume by induction that each of the two already has a set of correspond-
ing challenges S` and Sr, where say the size of each one is some parameter k. Then, for the
new subtree, rooted at their parent v, we choose a new set Sv of k challenges by choosing k
challenges at random from the 2k challenges in S` ∪ Sr (this is again done non-interactive
using Fiat-Shamir). Each of the challenges is again just a Merkle authentication path, which
can be easily augmented to an authentication path for v. They prove that this choice of
challenges guarantees, for every intermediate state, essentially the same soundness as the
original CP construction guarantees for the final state.

Incremental Completeness and PLS Hardness. What we get from the DLM incremental
PoSW (in the random oracle) is somewhat analogous to an IVC system in the standard
model. However, while in the standard model we applied general IVC over some long (hard)
computation, here there is no such underlying hardness. Rather, the difficulty is only in
computing the accepting proofs themselves. Similarly to our standard model approach, here
too we can address the concept of incremental completeness. Indeed, we observe that merging
two accepting proofs in the DLM construction always yields an accepting proof. From
here incremental completeness follows. Formally, we need to slightly augment the DLM
construction to enforce consistency among different subtrees in a forest to guarantee such
incremental completeness (see Section 6 for the details).

Choosing the parameters appropriately, yields problems in PLS relative to a random
oracle which are exponentially hard-on-average. This translates to sub-exponential hardness
of the canonical LS probalem (due to polynomial blowup of the reduction). Also, by choosing
the size of the tree to be a polynomial of our choice, we get search problems in PLS which
are moderately hard but “depth-robust” in the sense that they cannot be solved much faster
by parallel algorithms [21]. This follows from the sequential hardness of DLM.

2.5 More Related Work on Total Search Problems
The class TFNP was introduced by Megiddo and Papadimitriou [41]. They observed that
TFNP is unlikely to include NP hard problems as this would imply that NP = coNP.
Furthermore, it is strongly believed that TFNP does not have complete problems (see for
instance discussion in [25]). Toward understanding of the complexity of total search problems,
Papadimitriou [45] introduced several “syntactic” subclasses of TFNP that cluster problems
according to the mathematical argument used to establish their totality. Recently, Goldberg
and Papadimitriou [25] presented a subclass called provable TFNP that contains previously
defined subclasses (and can be seen as generalizing them) and admits complete problems.

A long line of works have investigated the complexity of TFNP and its subclasses, searching
for efficient algorithms on one hand and evidence of hardness on the other. As explained
earlier in the intro, cryptography is a natural place to look for such evidence. Indeed,
basing the hardness of TFNP or its subclasses, on standard cryptographic assumptions, has
been successful in several cases. For example, Papadimitriou [45] observed that PPP is
hard assuming one-way permutations or collision-resistant hash functions, and Jeřábek [32],
building on the work of Buresh-Oppenheim [12], demonstrated the hardness of PPA assuming
factoring is hard. Hubáček, Naor and Yogev [28] showed TFNP-hardness assuming any
average-case hard NP language exists (in particular one-way functions) and derandomization
assumptions. Komargodski, Naor, and Yogev [37] showed that hardness of the class Ramsey
is equivalent to the existence of multi-collision resistant hash functions.

As discussed earlier, demonstrating hardness for PPAD and PLS has been more challenging
and so far only achieved under non-standard cryptographic assumptions. Trying to explain
our failure so far to base such hardness on standard cryptographic primitives, Rosen, Segev

N. Bitansky and I. Gerichter 6:9

and Shahaf [48] show that TFNP hard instances constructed in a black box way from random
oracles (or some variants thereof) must have a nearly exponential number of solutions (which
is indeed the case in our result in the random oracle model).

Finally, we note that in the smooth complexity setting, several PLS complete problems,
with natural noise distributions, have been shown to be solvable in smooth polynomial-time.
This include finding locally optimal Max-Cut [2] and finding pure Nash equilibrium in
network coordination games [10]. These algorithms suggest an explanation of why local
search may be empirically easy, while hard instances exist under reasonable assumptions and
can be sampled.

Organization

In Section 3, we recall some preliminaries including the definition of PLS. In Section 4, we
construct a computational reduction from a search problem having an incremental complete
IVC to LS. In Section 5, we instantiate the computational reduction under the KPY
assumption and ETH to demonstrate PLS hardness in the plain model. In Section 6, we
argue the hardness of PLS relative to a random oracle.

3 Preliminaries

Notation. Throughout, λ will denote security parameters. When the input size is not the
security parameter, we denote it by n. For a ≤ b integers we denote by [a, b] the set {a, ..., b}
and by [a] the set [1, a].

3.1 PLS Definition

The complexity class polynomial local search (PLS) consists of all TFNP search problems
polynomial-time reducible to the Local-Search problem [33, 29] we denote by LS.

I Definition 3 (Local-Search). The search problem LS is the following: given two
polynomial-size circuits S : {0, 1}n → {0, 1}n and F : {0, 1}n → N, find a string v ∈ {0, 1}n
such that F(S(v)) ≤ F(v).

We refer to S as the successor circuit and to F as the value circuit. Intuitively, the circuits
S and F could be seen as representing an implicit DAG over {0, 1}n. In this graph, a node
v is connected to u = S(v) if and only if F(u) > F(w). This is a DAG since F induce
a topological ordering. Notice also that every sink corresponds to a local maximum with
respect to F . With this perspective, the totality of LS follows from the fact every finite DAG
has a sink.

Oracle aided PLS. We denote by CO = {COλ } an oracle aided circuit family. That is a
circuit family with oracle gates to Oλ : {0, 1}r(λ) → {0, 1}`(λ). The complexity class PLSO

relative to an oracle O, is naturally defined as all TFNPO search problem polynomial-time
reducible to LSO.

I Definition 4 (Oracle Aided Local-Search). The search problem LSO is the following:
given two polynomial-size, oracle aided, circuits SO : {0, 1}n → {0, 1}n and FO : {0, 1}n → N,
find a string v ∈ {0, 1}n such that FO(SO(v)) ≤ FO(v).

ITCS 2020

6:10 On the Cryptographic Hardness of Local Search

4 PLS Hardness from IVC

In this section, we give a computational reduction from search problems having an IVC with
incremental completeness to LS. This, in turn, establishes that any (worst/average-case)
hard search problem, having an IVC with incremental completeness, implies the hardness
of PLS (in the worst/average-case, respectively). We start by formally defining IVC with
incremental completeness.

4.1 IVC with Incremental Completeness
Conventions. Let M be a Turing machine with T = T (λ) and S = S(λ) bounds on its run
time and space, respectively, for input of length λ. Throughout, we assume w.l.o.g that M
always makes exactly T steps and the size of a configuration is exactly S. Let x ∈ {0, 1}λ be
an input to M , we denote by M t

x ∈ {0, 1}S the configuration in the t step of the computation
M(x). We denote by Mx : {0, 1}S → {0, 1}S the transition circuit between configurations.

I Definition 5 (IVC with Incremental Completeness). Let M be a Turing machine with
T = T (λ) and S = S(λ) bounds on its run time and space, respectively, for input of length λ.

An Incremental Verifiable Computation scheme (IVC) for M , with incremental complete-
ness, consists of three algorithms IVC = (IVC.G, IVC.P, IVC.V):

IVC.G(x) is a randomized algorithm that given x ∈ {0, 1}λ outputs public parameters pp.
IVC.P(pp, t, C, π) is a deterministic algorithm that given public parameters pp, a natural
number t, an arbitrary configuration C and arbitrary proof π, outputs a proof π′.
IVC.V(pp, t, C, π) is a deterministic algorithm that given public parameters pp, a natural
number t, an arbitrary configuration C and arbitrary proof π, outputs ACC or REJ.

We make the following requirements:

1. Incremental Completeness: For every security parameter λ ∈ N:
a. For every input x ∈ {0, 1}λ, time t ∈ [0, T − 1] and candidate proof π ∈ {0, 1}∗:

Pr
[

IVC.V(pp, t,M t
x, π) = ACC =⇒

IVC.V(pp, t+ 1,M t+1
x , π′) = ACC

∣∣∣∣ pp← IVC.G(x)
π′ = IVC.P(pp, t,M t

x, π)

]
= 1 ,

where M t
x,M

t+1
x are the configurations in the t and t+ 1 steps of the computation of

M(x), respectively.
b. For every input x ∈ {0, 1}λ:

Pr
[
IVC.V(pp, 0,M0

x , ε) = ACC
∣∣ pp← IVC.G(x)

]
= 1 ,

where M0
x is the first configuration of the computation of M(x), and ε is the empty

proof.
2. Soundness: For every efficient adversary A, there exists a negligible function µ such

that for every λ ∈ N and x ∈ {0, 1}λ:

Pr
[
C∗ 6= M t

x

IVC.V(pp, t, C∗, π∗) = ACC

∣∣∣∣ pp← IVC.G(x)
(t, C∗, π∗)← A(x, pp)

]
≤ µ(λ) ,

where M t
x is the configuration in the t step of the computation of M(x).

3. Efficiency: The efficiency of IVC, denoted by TIVC(λ), is the maximal worst-case run-time
among IVC.G, IVC.P, IVC.V for input having security parameter λ. We require TIVC(λ) ≤
p(λ) for a fixed polynomial p.

N. Bitansky and I. Gerichter 6:11

4.2 Computationally Sound Karp Reduction
As discussed in the introduction, since we use IVC with computational soundness, the
reduction we give is also computationally sound. In what follows, we define the notion of
computationally sound Karp reduction.

For R,R′ ∈ FNP, a computationally sound reduction from R to R′ consists of a pair of
efficient algorithms (X ,W). Where X (x) is a randomized algorithm that given an instance
x of R, samples an instance x′ ← X (x) of R′. W(w′) is a deterministic algorithm that
translates a witness w′ for x′, to a candidate witness w of x. We require that its infeasible
to find w′, such that w =W(w′) is not a witness for x in R.

I Definition 6 (Computational Karp Reduction). For R,R′ ∈ FNP, a computational Karp
reduction from R to R′ consists of a pair (X ,W), where X (x) is a randomized efficient
algorithm andW(w) is a deterministic efficient algorithm. We make the following requirement:

Computational Soundness: For every efficient adversary A, there exists a negligible
function µ such that for every λ ∈ N and x ∈ {0, 1}λ for which Rx is non-empty:

Pr

 w′ ∈ R′x′

w 6∈ Rx

∣∣∣∣∣∣
x′ ← X (x)
w′ ← A(x′)
w =W(w′)

 ≤ µ(λ) ,

where Rx and R′x′ are the set of witnesses for x in R and x′ in R′ respectively.

I Definition 7 (Reduction Efficiency). The efficiency of a computational Karp reduction
(X ,W), denoted TRed(λ), is the maximum of TX (λ),TW(λ) where:
1. TX (λ) is the worst-case run-time of X for input x ∈ {0, 1}λ.

2. TW(λ) is the worst-case run-time of W for input w′ ∈

w′
∣∣∣∣∣∣
x ∈ {0, 1}λ
x′ ∈ Supp(X (x))
w′ ∈ Rx′

.

Note that TRed(λ) is a bound on instance size sampled using X .

4.3 The Hardness Reduction
Using the notion of computational Karp reduction, our hardness result is formalized in the
following theorem.

I Theorem 8 (IVC Reduction). Let R ∈ FNP, solvable by a polynomial-space Turing machine
M . If there exists an IVC scheme with incremental completeness for M , there exists a
computationally sound Karp reduction (X ,W) from R to LS. The efficiency of the reduction is

TRed = poly(TIVC, S, λ, |M |) ,

where S(λ) is a bound on M space and TIVC(λ) is the efficiency of the IVC. The polynomial
doesn’t depend on the IVC scheme, M nor R.

I Remark 9 (Efficiency Independent of T). Jumping ahead, the fact that TRed does not depend
directly on the time of the computation T , plays an important role in the fine-grained
reduction for polynomial-time computations presented in Section 5.

Next, we describe the reduction and in the following section we analyze its security.

ITCS 2020

6:12 On the Cryptographic Hardness of Local Search

4.3.1 The Reduction

Let IVC = (IVC.G, IVC.P, IVC.V) be an incremental verifiable computation scheme with
incremental completeness for M . Let S = S(λ) be the polynomial bound on space on M
when executed on x ∈ {0, 1}λ, guaranteed by the statement. Recall that we denote by M t

x

the configuration in the t step of the computation of M(x). We assume w.l.o.g that the
configuration size is exactly S. Let T = T (λ) = 2S(λ) ≤ 2poly(λ) be an upper bound on the
running time of M . We further assume w.l.o.g that M always makes exactly T steps. With
the above notation, the configuration graph of M when executing x is:

M0
x −→ · · · −→MT

x .

In the following, we describe the construction of X (x) for an input x ∈ {0, 1}λ. Recall that
we denote by Mx : {0, 1}S → {0, 1}S the transition circuit of M(x), taking a configuration
as input and returning the next configuration as output.

Instance translation. The algorithm X (x) begins by sampling pp ← IVC.G(x). Given
pp, we apply a deterministic procedure I to generate an LS instance (S,F) = I(x, pp).
The constructed LS instance corresponds to a graph on vertices of fixed polynomial length
` = `(λ) ≥ λ. Each vertex is of the form (t, C, π) ∈ {0, 1}` where t is parsed as an integer in
[0, T], C as a configuration of length S and π as a proof for the IVC padded to length ` if
needed. We describe the successor S and value circuits F formally in the following.

I Remark 10. We assume w.l.o.g that Mx always outputs something. If the transition
function of M fails to generate the next configuration given C, it will simply output M0

x , the
initial state.

I Remark 11. We assume w.l.o.g that F outputs values in [−1, T].

In what follows, v0 := (0,M0
x , ε) where M0

x is the initial state of M(x) and ε is the empty
proof.

Successor Circuit S(t, C, π)
Hardwired: The public parameters pp, and the input x.
Algorithm:
1. If IVC.V(pp, t, C, π) = REJ, output v0.
2. If t = T , output (t, C, π).
3. Compute C ′ = Mx(C), π′ = IVC.P(pp, t, C, π). Output (t+ 1, C ′, π′).

Value Circuit F(t, C, π)
Hardwired: The public parameters pp.
Algorithm:
1. If IVC.V(pp, t, C, π) = REJ, output −1.
2. Else, output t.

Witness translation. The algorithm W(t, C, π) simply returns the content of the output
tape in the configuration C.

N. Bitansky and I. Gerichter 6:13

Efficiency. The successor circuit Mx is of size poly(S, λ, |M |). The computations related
to IVC are of size poly(TIVC) by Turing machine simulation. All other computations are
polynomial in the input length `. We have that ` = poly(S,TIVC). It follows that TRed =
poly(TIVC, S, λ, |M |). All the above polynomials don’t depend on M nor IVC.

By the fact M is poly-space and the efficiency requirement of IVC, that is TIVC ≤ poly(λ),
both X ,W are polynomial-time algorithms, as required. In turn, this further implies that
S,F are of size poly(λ). Since the length is a polynomial such that `(λ) ≥ λ, we have that
S,F are polynomial-size circuits.

4.4 Security Analysis
Fix λ ∈ N and x ∈ {0, 1}λ. Let (S,F) be an instance in the support of X (x) and let pp be
the public parameters hardwired in (S,F). We prove that all local maximums of (S,F) are
one of two types:

Honest: Nodes (T,MT
x , π) where IVC.V(pp, t,MT

x , π) = ACC.
Fooling: Nodes (t, C∗, π∗) for which C∗ 6= M t

x and IVC.V(pp, t, C∗, π∗) = ACC.

The proof of the following claim use the incremental completeness of IVC.

B Claim 12. All local maximums of (S,F) are honest-type or fooling-type.

Proof of claim. Let v = (t, C, π) be a local maximum of (S,F), that is F(S(v)) ≤ F(v). We
have that IVC.V(pp, t, C, π) = ACC, as otherwise it is given value −1 and is connected to
v0 = (0,M0

x , ε) which is of value 0. If C 6= M t
x then v is a fooling-type local maximum and if

C = M t
x and t = T then v is an honest-type local maximum.

We are left with the case C = M t
x and t < T . By construction, S(v) = (t+ 1,M t+1

x , π′)
for π′ = IVC.P(pp, t,M t

x, π). By incremental completeness, IVC.V(pp, t+ 1,M t+1
x , π′) = ACC

and thus F(S(v)) = t + 1 while F(v) = t. Therefore it is not a local maximum, proving
the claim. C

Note that only honest-type local maximums translate by W to a valid witness for R, the
underlying search problem. While there exist fooling-type local maximums, by the security
of the IVC, finding them efficiently is infeasible. We proceed to prove Theorem 8.

Proof of Theorem 8. Let A be an efficient adversary that attempts breaking the compu-
tational soundness of the reduction (X ,W). Let λ ∈ N and x ∈ {0, 1}λ be such that Rx is
non-empty. We denote by ε = ε(x) the probability of success of A. That is

ε(x) := Pr

 F(S(w′)) ≤ F(w′)
w 6∈ Rx

∣∣∣∣∣∣
(S,F)← X (x)
w′ ← A(S,F)
w =W(w′)

 .

It follows by Claim 12 that all witnesses w′ for (S,F) such that W(w′) = w 6∈ Rx are
fooling-type local maximums. Indeed, for every honest-type local maximum, W outputs the
content of the output tape of MT

x . As M solves R and Rx is non-empty, we have that the
output tape of MT

x , the last configuration, consists of w such that w ∈ Rx.
Consider A′ = {A′λ}λ∈N that attempts breaking the soundness of the IVC defined as

follows. Recall I(x, pp) is the deterministic procedure used by X to construct the circuits S
and F .

A′(x, pp):
1. Compute (S,F) = I(x, pp).
2. Simulate w′ ← A(S,F).
3. Output w′ = (t, C, π).

ITCS 2020

6:14 On the Cryptographic Hardness of Local Search

Note that, every fooling-type local maximum corresponds to (t, C∗, π∗) breaking the IVC
scheme. Further notice that the distribution (S,F) = I(x, pp) for pp ← IVC.G(x) is, by
definition, the distribution of X (x). Therefore, the success probability of A′(x, pp) is at least
ε(x). Using the soundness of IVC, there exists a negligible function µ such that for every
λ ∈ N and x ∈ {0, 1}λ such that Rx is non-empty we have the following:

ε(x) ≤ Pr
[
C∗ 6= M t

x

IVC.V(pp, t, C∗, π∗) = ACC

∣∣∣∣ pp← IVC.G(x)
(t, C∗, π∗)← A′(x, pp)

]
≤ µ(λ) .

Establishing the computational soundness of the reduction. The efficiency part of the theorem
has been argued in Section 4.3. J

4.5 Applying the Reduction

In this section we present results that establish that a computational Karp reduction from
an underlying hard (worst-case/average-case) problem R to LS implies the hardness of LS
(in worst-case/average-case respectively). The proofs for the following propositions are given
in the full version of this paper.

4.5.1 Worst-Case Hardness

The existence of a computational Karp reduction from R to LS and an efficient solver for
LS implies, in a straightforward way, the existence of an efficient randomized solver for R,
successful with high probability. Proposition 13 extends this and show the existence of a
deterministic solver for R. This is by standard non-uniform derandomization techniques. We
use n to denote the size of LS instances and λ the size of R instances.

I Proposition 13 (Worst-Case Hardness). Let R be an FNP search problem having a computa-
tional Karp reduction to LS. Assume there exists a adversary A = {An}n∈N of polynomial-size
s(n) solving LS in the worst-case. Then there exists an adversary A′ = {Aλ}λ∈N solving R
in the worst-case. The size of A′ is

size(A′) = poly(s(TRed),TR, λ) ,

where TRed(λ) is the efficiency of the reduction and TR(λ) is the efficiency of the NP
verification R(x, y).

4.5.2 Average-Case Hardness

I Proposition 14 (Average-Case Hardness). If there exists a hard-on-average FNP problem
R, with a computationally sound Karp reduction from R to LS, then LS is hard-on-average.

Using the computational Karp reduction constructed in Section 4.3, we get the following
corollary:

I Corollary 15 (IVC Average-Case Hardness). Let R be a hard-on-average FNP problem. If
there exists an IVC scheme with incremental completeness for a polynomial-space Turing
machine M solving R, then LS is hard-on-average.

N. Bitansky and I. Gerichter 6:15

5 Instantiation under the KPY Assumption and ETH

In Section 4, we were able to prove that an IVC scheme with incremental completeness
for some superpolynomially hard computation suffices to show that LS is hard. It is left
to instantiate the above under the KPY assumption and construct an IVC scheme for a
superpolynomially hard computation. Unfortunately, under the KPY assumption we are able
to construct IVC schemes only for polynomial computations4. In this section, we show how
to circumvent this difficulty by employing a fine-grained reduction and further assuming the
non-uniform exponential time hypothesis (ETH). Finally proving the worst-case hardness of
LS under the KPY assumption and non-uniform ETH.

I Remark 16. For ease of notation, in the following section we assume w.l.o.g λ > 1.

5.1 IVC From KPY Assumption
The proof of Theorem 18 is given in the full version of this paper.

I Remark 17 (Dependence of Constants). In the following, we use the constant c instead of
big O notation in order to emphasize that the constant is independent of α.

I Theorem 18 (IVC from KPY Assumption). Fix any constants c, ε > 0. Let α be a large
enough constant and let M be a Turing machine of run-time T (λ) ≤ cλα, configuration size
S(λ) ≤ cλ and description size |M | ≤ c log2 α. Under the KPY assumption, there exists an
IVC scheme with incremental completeness for M having efficiency TIVC = λεα.

I Remark 19 (Non-Uniform Reduction). The security reduction of the IVC scheme given in
Theorem 18 is non-uniform and therefore we require that the IVC scheme, and accordingly
the KPY assumption, to hold against non-uniform polynomial-time attackers. This is to be
expected when dealing with worst-case hardness.

5.2 Fixed Space Polynomial Hardness via ETH
In this section, assuming the non-uniform ETH assumption, we show the existence of
arbitrarily polynomially hard computations for circuits that can be solved by Turing machines
using a fixed amount of space and slightly larger polynomial time.

I Assumption 20 (Non-Uniform ETH). There exists a constant δ > 0 such that no circuit
family of size O(2δn) solves 3SAT, where n is the length of the input 3CNF formula.

I Proposition 21 (Polynomial Hardness). Under the non-uniform ETH assumption, there
exists constants c, δ > 0 such that for every constant α > 1 there exists a search problem
Rα ∈ FNP satisfying the following:

Algorithm: There exists a Turing machine Mα of run-time T (λ) ≤ cλα, configuration
size S(λ) ≤ cλ and description size |Mα| ≤ c logα solving Rα.
Lower Bound: No circuit family of size O(λδα) can solve Rα.

Proof. Consider

Rα :=
{

(x02|x|/α−|x|, w)
∣∣∣ (x,w) ∈ 3SAT

}
.

4 This is for polynomial security of the KPY assumption. A super-polynomial security of the KPY
assumption yields an IVC scheme for computations of a corresponding superpolynomial length.

ITCS 2020

6:16 On the Cryptographic Hardness of Local Search

Algorithm. The naive brute force algorithm for Rα satisfy the requirement. In the following
α is not suppressed by O notation. For x ∈ {0, 1}n and input of the form x02n/α−n, brute
force takes O(2n) time while the whole input is of size λ = 2n/α. The description size is
O(logα) and the memory used is O(λ).

Lower Bound. Let δ > 0 be the constant assumed to exist by non-uniform ETH. Every
circuit family of size O(λδα) solving Rα can be turned to a circuit of size O(2δα) solving
3SAT. Contradicting non-uniform ETH. J

5.3 Putting Things Together
In this section, we put things together to prove that under non-uniform ETH and the KPY
assumption we have PLS 6⊆ FP/Poly.

I Theorem 22 (PLS Hardness). Assuming non-uniform ETH and the KPY assumption we
have PLS 6⊆ FP/Poly.

Toward proving the theorem, we start by bounding the blowup associated with the IVC
reduction when applied to the brute-force computation solving Rα defined by Proposition 21.

I Lemma 23 (Bounding the Blowup). Fix a constant ε > 0. Let α be a large enough constant.
Under the KPY assumption, there exists a computationally sound Karp reduction (X ,W)
from Rα to LS with efficiency TRed ≤ λεα.

Proof. Fix ε > 0 and let ε′ > 0 be a constant to be chosen later. Let c be the constant
guaranteed by Proposition 21. That is, for every α > 1 there exists a Turing machine Mα of
run-time T ≤ cλα, configuration size S ≤ cλ and description size |Mα| ≤ c log2 α solving Rα.
Let α be a large enough constant such that Theorem 18 apply to Mα with constant ε′. This
gives an IVC scheme with incremental completeness for Mα having efficiency TIVC ≤ λε

′α.
Applying Theorem 8 using the aforementioned IVC results in a computationally sound

Karp reduction (X ,W) from Rα to LS with efficiency:

TRed ≤ (TIVC · S · λ · |Mα|)η ≤ λε
′αη · (cλ log2 α)3η ≤ λ4ε′αη ,

where η is a constant independent of α and ε and the last inequality is true for large α. By
taking ε′ < ε/4η we get TRed ≤ λεα . This completes the proof the lemma. J

We are now ready to prove Theorem 22.

Proof of Theorem 22. Assume toward contradiction that under non-uniform ETH and the
KPY assumption we have that PLS ⊆ FP/Poly. Hence, there exists a constant η and
adversary A = {An}n∈N of size s(n) = nη solving LS instances of size n.

Let ε > 0 be a constant to be chosen later. By bounding the blowup lemma, Lemma 23,
there exists a large enough constant α such that there is a computationally sound Karp
reduction (X ,W) from Rα to LS having efficiency TRed ≤ λεα. Note that the efficiency of
the NP verifier for Rα is TRα = O(λ) with a constant independent of α. By Proposition 13,
there exists an adversary A′ = {A′λ}λ∈N, solving Rα instances of size λ of circuit size:

size(A′λ) ≤ poly (s(TRed),TRα , λ) ≤ poly (λεαη, λ) ≤︸︷︷︸
α>1/εη

poly (λεαη) = O(λεαξ) ,

where ξ is a constant independent of ε and α. Let δ > 0 be the constant associated with the
lower bound of Rα. Recall δ is fixed and independent of α. By choosing ε < δ/ξ we have

size(A′λ) = O(λεαξ) = O(λδα) .

A contradiction to the lower bound. We conclude that PLS 6⊆ FP/Poly. This completes
the proof. J

N. Bitansky and I. Gerichter 6:17

6 Unconditional PLS Hardness in the ROM

In this section we show that relative to a random oracle, there exists exponentially average-
case hard problems in PLS. We further show, relative to a random oracle, the existence
of depth-robust moderately hard problems in PLS. Our result is based on the incremental
proofs of sequential work (iPoSW) construction by Döttling, Lai, and Malavolta [20]. We
modify the DLM construction such that an incremental completeness analogous is achieved.
We proceed to reduce breaking the modified DLM scheme to LS relative to a random oracle.

6.1 Graph Related Definitions
We recall some graph related definitions used in the DLM scheme.

Notation. Throughout, we consider directed acyclic graphs (DAGs) G = (V,E) where
V ⊆ {0, 1}≤d is the vertex set and we refer to the parameter d as the depth of G. A vertex
v ∈ V is a parent of u ∈ V if (v, u) ∈ E. The set of parents of u is denoted by parents(u). A
vertex v is an ancestor of u if there is a directed path from v to u in G. The set of ancestors
of u is denoted by ancestors(u). Any vertex v ∈ V ∩ {0, 1}n is called a leaf. Denote by
leaves(u) the set of all leaf nodes that are ancestors of u.

6.1.1 CP Graphs
We recall the definition of CP graphs (see Figure 1), a family of directed acyclic graphs defined
first in the PoSW construction of Cohen and Pietrzak [17]. We denote the aforementioned
graph family by CP = {CPd}d∈N.

Figure 1 The CP4 graph; red edges corresponds to E′′.

I Definition 24 (CP Graphs, [17]). Let Bd = (V,E′) be the complete binary tree of depth d
with edges pointing from the leaves to the root. The graph CPd = (V,E) is constructed from
Bd with some added edges E′′. Where E′′ contains (v, u) for any leaf u ∈ {0, 1}d and any v
which is a left sibling to a node on the path form u to the root. Formally, E = E′ ∪E′′ where:

E′′ := {(v, u) | u ∈ {0, 1}d, u = a||1||a′, v = a||0, for some a, a′ ∈ {0, 1}≤d} .

The following fact on non-leaves in CP graphs is used in the construction and analysis.

I Fact 25 (Left and Right Parents). Let CPd = (V,E) and let v ∈ V be a non-leaf node
which is not the root. The node v has exactly two parents ` and r. We have the following:

leaves(v) = leaves(`) ∪ leaves(r) .

ITCS 2020

6:18 On the Cryptographic Hardness of Local Search

6.1.2 Graph Labeling
I Definition 26 (Partial Vertex Labeling). For a graph G = (V,E), a partial vertex labeling
is a function L : V → {0, 1}∗ ∪ {⊥}. The label for node u ∈ V is denoted by L[u].

I Definition 27 (Valid DAG Labeling). Let G = (V,E) be a DAG with V ⊆ {0, 1}∗ and let
f : {0, 1}∗ → {0, 1}w be a labeling function. The labeling of G with respect to f is defined
recursively, for every v ∈ V :

L[v] := f(v,L[p1], ...,L[pr]) ,

where (p1, ..., pr) = parents(v), ordered in lexicographic order.

Note that the above labeling is well defined since G is a acyclic and can be computed with
|V | queries to f in a topological order.

In the following lemma we recall the CP labeling procedure given in [17]. See Figure 2
for an illustration of the procedure.

I Lemma 28 (CP Labeling Procedure, Lemma 3 in [17]). The labeling of CPd with respect
to f : {0, 1}∗ → {0, 1}w can be computed in a topologicial ordering using O(w · d) bits of
memory.

Figure 2 The CP labeling procedure for CP2; black nodes represent labels the algorithm keep
track of; denoted Ut when computing the t label.

We require additional properties from the labeling procedure for the modified DLM scheme.
For that purpose, we give a description of the procedure bellow and prove additional lemmas
regarding it.

Labeling Procedure Description. The algorithm is recursive. The base case CP1 is easy.
For d > 1, let v be the root of CPd and let `, r be the left and right parents of v, respectively.
The subtree rooted by ` is isomorphic to CPd−1 and hence its labels can be computed
recursively. Keep track of the last label L[`] and proceed to the subtree rooted by r. Apart
from edges coming from ` to the leaves, it is isomorphic to CPd−1. One can use L[`], which
is in memory, and recursively compute the right subtree. Keep track of the last label L[r].
Compute the root label L[v] = f(v,L[`],L[r]) and forget both L[`] and L[r]. Output the
root label L[v].

N. Bitansky and I. Gerichter 6:19

Incremental Labeling. We consider an incremental version of the above procedure. Fix
d ∈ N and let v1, v2, . . . , vT be the topological ordering in which labels are being outputted
by the CP labeling procedure with depth d. Let Ut ⊆ V be the set of nodes the procedure
keep track of after outputting vt. For the incremental version, we are interested in algorithms
that efficiently compute Ut and vt given t.

I Lemma 29 (Computing Ut Efficiently). For CPd, computing Ut can be done in poly(d)
time.

Proof. The algorithm is recursive and follows the same post-order traversal as the labeling
procedure. For CPd, let v be the root node and let `, r be its left and right parents respectively.
If t = 2d+1 − 1 return the root node, {v}. If t ≤ 2d − 1, proceed to recursively compute Ut
on the left subtree rooted by `, which is isomorphic to CPd−1. Output the resulting set.
Else t > 2d − 1, recursively compute Ut−(2d−1) on the subtree rooted by r while ignoring the
extra edges from `. This graph is also isomorphic to CPd−1. Append ` to the resulting set
and output.

The algorithm correctness follows by induction. For efficiency, notice that the depth of
the recursion is d and every level takes poly(d) time. J

I Lemma 30 (Computing vt Efficiently). For CPd, computing vt can be done in poly(d) time.

Proof. Notice that by construction of the CP labeling procedure, v1, . . . , vT is a post-order
traversal on the binary tree Bd which is the base of CPd. Finding the t-th node in a post-order
traversal can be done by a simple recursion with efficiency poly(d). J

I Lemma 31 (One Vertex at a Time). For every t ∈ [2, T] we have Ut = {vt}
⊎

(Ut ∩ Ut−1).

Proof. The theorem statement is equivalent to proving Ut\Ut−1 = {vt}. By definition we have
that vt ∈ Ut. Apart from vt, the procedure only forget nodes, hence Ut ⊆ {vt}∪Ut−1. It is left
to show that vt 6∈ Ut−1. Indeed, using the aforementioned, by induction Ut−1 ⊆ {v1, . . . , vt−1},
in particular vt 6∈ Ut−1. J

6.2 Construction
In this section, we present a modified version of the incremental proof of sequential work
(iPoSW) due to [20]. The main difference, apart from syntax, is that we require stricter
conditions when verifying nodes.

Parameters. Let λ be a computational security parameter. Let T (λ) = T = 2λ+1−1 and let
s(λ) = s = Θ(λ3) that is a power of 2. Let H : {0, 1}∗ → {0, 1}λ and H′ : {0, 1}∗ → {0, 1}3s
be independently chosen random oracle ensembles depending on λ.

I Remark 32 (Random Coins Count). The use of 3s random coins allows to sample a statistically
close to uniform subset. See [20] for details.

Syntax. The scheme consists of two algorithms, DLM.PH,H′
(χ, t, π),DLM.VH,H′

(χ, t, π) with
the following syntax.
1. DLM.PH,H′

(χ, t, π) is a deterministic algorithm with oracle access to H,H′. Given a
statement χ, a natural number t and a proof π, it outputs a proof π′.

2. DLM.VH,H′
(χ, t, π) is a deterministic algorithm with oracle access to H,H′. Given a

statement χ, a natural number t and a proof π, it outputs ACC or REJ.

ITCS 2020

6:20 On the Cryptographic Hardness of Local Search

Proof Structure. The proofs π are of the form π = (L, (ui, Sui ,Pui)mi=1) where:

L is a partial vertex labeling for CPλ.

ui is a node of CPλ.

Sui is a set of challenge leaves, indexed by the node ui.

Pui is a set of candidate authentication paths, indexed by the node ui.

Path ∈ Pui is an ordered list of the form Path = (wj)j where each wj is a node of CPλ.

I Remark 33 (Labeling Data Structure). The partial vertex labeling L is given by a dictionary
data structure. Where keys are nodes v and the value associated is the corresponding label
L[v]. A node which is not in the dictionary is given the default value ⊥. Let n be the amount
of nodes v for which L[v] 6= ⊥. We use a dictionary implementation where size and retrieval
time are poly(n).

6.2.1 Algorithms Description

Conventions. A random oracle salted with the statement χ ∈ {0, 1}∗ is denoted by Hχ :=
H(χ, ·). Let v1, v2, . . . , vT be the topological order given by Lemma 28 for nodes of CPλ.
Recall that Ut is the list of nodes the CP labeling procedure keeps track of when computing
the label for vt. We extend the definition such that U0 = ∅.

DLM.PH,H′
(χ, t, π)

Input:
1. String χ ∈ {0, 1}λ.
2. Time t ∈ [T].
3. Candidate proof π = (L, (ui, Sui ,Pui)mi=1) .
Algorithm:
1. If {u1, . . . , um} 6= Ut−1 output ε.
2. Set L[vt] = Hχ(vt,L[p1], ...,L[pr]) where (p1, ..., pr) = parents(vt) in lexicographic

order.
3. If vt is a leaf, let Svt = {vt} and Pvt = {(vt)}.
4. Otherwise, vt has two parents, `, r ∈ Ut−1.

a. Sample a random subset Svt of size min(s, |leaves(vt)|) from S` ∪ Sr using
rand← H′χ(vt,L[vt]) as random coins.

b. Let Pvt = ∅. For every Path ∈ P` ∪ Pr starting from a leaf in Svt , extend with
vt and append to Pvt .

5. Remove labels from L for all nodes but

v
∣∣∣∣∣∣∣∣
u ∈ Ut
Path ∈ Pu
w ∈ Path
v = w or v ∈ parents(w)

.

6. Output π′ = (L, (u, Su,Pu)u∈Ut).

Note that in the above we use the efficient algorithms due to computing Ut efficiently
Lemma 29 and computing vt efficiently Lemma 30 to compute Ut−1,Ut and vt. We also use
one vertex at a time Lemma 31 in Line 5 and Line 6.

N. Bitansky and I. Gerichter 6:21

DLM.VH,H′
(χ, t, π)

Input:
1. String χ ∈ {0, 1}λ.
2. Time t ∈ [T].
3. Candidate proof π = (L, (ui, Sui ,Pui)mi=1) .
Algorithm:
1. Verify that {u1, . . . , um} = Ut−1 and distinct. Otherwise, output REJ.

2. Verify that the nodes having label in L are

v
∣∣∣∣∣∣∣∣
u ∈ Ut−1
Path ∈ Pu
w ∈ Path
v = w or v ∈ parents(w)

.

Otherwise output REJ.
3. For every i = 1 . . .m:

a. Validate Sui ⊆ leaves(ui) and is of size min(s, |leaves(ui)|). Otherwise output
REJ.

b. Check that every path in Pui is a valid path from a leaf in Sui to ui. Check
that every leaf in Sui has exactly one corresponding path in Pui . Otherwise
output REJ.

c. Let (Path1, . . . ,Pathk) = Pui ordered in lexicographic order of corresponding
source leaves.

d. For j = 1, . . . , k:
i. If VerifyMerklePathH(Pathj ,L, χ) rejects, output REJ.
ii. If VerifyRandChoiceH′

(Pathj ,L, j, χ) rejects, output REJ.
4. Output ACC.

In the above description we used the subroutines VerifyAuthPath and VerifyRandChoiceH′
that

are described in the following.

Merkle Authentication Path Verification VerifyAuthPathH(Path,L, χ). Let Path = (wj)j
be a candidate authentication path. For every node wj with (p1, . . . , pr) = parents(wj) ordered
in lexicographic order, verify

L[wj] = Hχ(wj ,L[p1], . . . ,L[pr]) .

If all checks pass, output ACC, otherwise output REJ.

Random Choice Verification VerifyRandChoiceH′(Path,L, ind, χ). We give a sketch of
the verification, for further details see [20]. Let Path = w1 → · · · → wr be a path where
w1 ∈ leaves(wr). In order to verify the random choice done by H′χ, we recreate the choice
going from the top down. We are given ind, the index of Path in P ordered by source leaves.
This is also the index of the leaf that was picked in the last random choice.

Note that since s is a power of 2, the random choice procedure we use in the prover either
choose an s subset from 2s set or take the whole set. Starting from wr, use H′χ to generate
the random coins rand. Using rand pick an s subset from the set [2s]. Let i be the ind-th
element in the resulting subset. If i ≤ s, we know that wr−1 should be a left parent to wr.
Otherwise i > s which tells us that wr−1 should be a right parent. We continue to wr−1
with ind = i if i ≤ s and ind = i− s otherwise. We continue with this procedure until we get
to a node with less than s leaves. If all verifications of the path passed, output ACC and
otherwise output REJ.

ITCS 2020

6:22 On the Cryptographic Hardness of Local Search

Efficiency. All the computations done above are polynomial in the input length that is of
size poly(λ, |π|). Notice that due to the restriction on the size of L (Line 2 of DLM.V), the
size of all accepted proofs is poly(λ). Therefore, for all accepted proofs the runtime is poly(λ)
for a fixed polynomial. Hence, we may modify DLM.V to reject and DLM.P to output ε once
this poly(λ) time limit exceeds. This way, the efficiency of DLM.V and DLM.P is poly(λ) for
every input.
I Remark 34 (Proofs are Not Unique). Proofs in the DLM scheme are not computationally
unique. To see this, consider an adversary that attempts to find a collision for accepting
proofs of time t = Θ(s2) = Θ(λ6) that is of the form 2k+1 − 1. The first proof is generated
honestly. For the second proof, select randomly u ∈ leaves(vt). Compute the proof honestly
up until the label for u is computed. Alter the label for u. Continue as the honestly generated
proof. With overwhelming probability, the two proofs generated are different. The second
proof is accepting if there is no authentication path starting with u. Since t is of the form
2k+1 − 1, there are s authentication paths starting with leaves in leaves(vt). Also, all the
leaves have the same probability to be chosen. There are 2k leaves, therefore the probability
u is selected is s/2k = Ω(1/λ3). The described adversary is efficient and successful with
noticeable probability.

6.2.2 Incremental Completeness
The proof for the next proposition is in the full version of this paper.

I Proposition 35 (Incremental Completeness of Modified DLM). For every security parameter
λ ∈ N, time t ∈ [T − 1], candidate proof π ∈ {0, 1}∗ and statement χ ∈ {0, 1}λ:

If DLM.VH,H′
(χ, t, π) = ACC then DLM.VH,H′

(χ, t+ 1, π′) = ACC ,

where π′ = DLM.PH,H′
(χ, t, π).

6.2.3 Soundness
In this section, we state the soundness property of the modified DLM system. While
we altered the DLM construction, we did so by enforcing stricter verification conditions.
Accordingly, we inherit the soundness of the original scheme – every valid proof in the
modified scheme corresponds to a valid proof in the original scheme without the use of the
random oracle in the correspondence.

I Theorem 36 (DLM Soundness, Follows From [20]). Let AH,H′ = {AH,H′

λ } be an oracle aided
adversary that makes at most q = q(λ) total queries to both H and H′. For every λ, d ∈ N
with d ≤ λ, such that A makes less than 2d sequential queries to H we have:

Pr
[
DLM.VH,H′

(χ, Td, π) = ACC
∣∣∣∣ χ← {0, 1}λ
π ← AH,H′(χ)

]
≤ O(q2)2−Ω(λ) ,

where Td = 2d+1 − 1.

I Corollary 37 (Sequential Hardness). Let d = d(λ) ≤ λ be a depth parameter. For every
oracle aided adversary AH,H′ = {AH,H′

λ }λ∈N of depth 2d and size 2o(λ), we have for every
λ ∈ N:

Pr
[
DLM.VH,H′

(χ, Td, π) = ACC
∣∣∣∣ χ← {0, 1}λ
π ← AH,H′(χ)

]
≤ 2−Ω(λ) ,

where Td = 2d+1 − 1.

N. Bitansky and I. Gerichter 6:23

6.2.3.1 Single Oracle

The DLM construction is described in terms of two random oracles H,H′ (which is done
mostly to simplify the analysis). From hereon, it will be simpler to think of a single random
oracle O : {0, 1}∗ → {0, 1}. The algorithms DLM.PO,DLM.VO simulate oracle calls to
H,H′ in the above construction by setting an appropriate prefix for every output bit in H
and H′. The security reduction incurs a multiplicative polynomial loss in efficiency and a
multiplicative logarithmic loss in depth (both in terms of λ).

Indeed, consider an adversary A attempting to break the scheme with O. In order reduce
this adversary to A′ attacking the scheme using H,H′ we modify the oracle gates to O in A
by examining the prefix and simulating the output of the associate output bit in H or H′. In
this reduction, comparing the prefix, incurs a logarithmic loss in depth and polynomial loss
in size of the new adversary A′. We conclude this in the following corollary.

I Corollary 38 (Single Oracle Sequential Hardness). Let d = d(λ) ≤ λ be a depth parameter.
For every oracle aided adversary AO = {AOλ }λ∈N of depth o(2d/ log λ) and size 2o(λ), we
have for every λ ∈ N:

Pr
[
DLM.VO(χ, Td, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) ,

where Td = 2d+1 − 1.

By considering d = λ, we derive the following corollary:

I Corollary 39 (Exponential Hardness). For every oracle aided adversary AO = {AOλ }λ∈N of
size 2o(λ) and λ ∈ N:

Pr
[
DLM.VO(χ, Tλ, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) ,

where Tλ = 2λ+1 − 1.

6.3 Hard instances
In this section, we consider the problem ROd , where instances are strings χ and a witness
for χ is a corresponding proof of sequential work in the modified DLM scheme for time
Td = 2d+1 − 1. We show that ROd lies in PLSO.
I Remark 40 (Efficiently Computable Depth Parameter). In the following, a depth parameter
d(λ) is a polynomial-time computable function. We require this for the efficiency of the
reduction.

I Definition 41. Let d = d(λ) ≤ λ be a depth parameter. The search problem ROd is defined
as follows:

ROd =
{

(χ, π)
∣∣∣ DLM.VO(χ, Td(|χ|), π) = ACC

}
,

where Td(λ) = 2d(λ)+1 − 1.

Note that ROd is in TFNPO. It is in FNPO by the efficiency of DLM. It is total by the
completeness of DLM, since for every χ, there exists a proof π that passes verification – the
honestly generated proof.

ITCS 2020

6:24 On the Cryptographic Hardness of Local Search

6.3.1 The Reduction to Local Search
Fix a depth parameter d = d(λ) ≤ λ. We construct a polynomial-time search reduction
(fd, gd) from ROd to LSO.

Instance Translation. Let χ ∈ {0, 1}λ be an instance for the problem ROd . We construct an
LSO instance fd(χ) = (SO,FO) in the following. Intuitively, we embed the computation of
the modified DLM PoSW in an LSO instance such that local maximums correspond to valid
proofs for time Td = 2d+1 − 1. Concretely, every node will be of a fixed polynomial length
` = `(λ) ≥ λ. Every vertex is of the form (t, π) ∈ {0, 1}` where t is parsed as an integer
t ∈ [Td] and π as a proof of the modified DLM scheme with padding to length ` if needed.

Let π1 be a valid proof for time t = 1 in the modified DLM scheme. For the node (t, π), if
the proof π is verified with respect to time t, the node will be given value t and be connected
to (t+ 1, π′) where π′ is the proof the prover generates given π. If π is rejected, it is given
value −1 and is connected to (1, π1). A formal definition of the circuits is given bellow.

Successor Circuit SO(t, π)
Hardwired: The instance χ.
Algorithm:
1. If DLM.VO(χ, t, π) = REJ, output (1, π1).
2. If t = Td, output (t, π).
3. Compute π′ = DLM.PO(χ, t, π) and output (t+ 1, π′).

Value Circuit FO(t, π)
Hardwired: The instance χ.
Algorithm:
1. If DLM.VO(χ, t, π) = REJ, output −1.
2. Else, output t.

Witness Translation. The function gd(t, π) outputs π.

Efficiency. By the efficiency of the modified DLM scheme and the efficiency of the depth
parameter d(λ), the instance translation fd is done in poly(λ) time. The witness translation
gd is also done in poly(λ) time since the length of nodes ` is of size poly(λ). This further
implies that SO,FO are of size poly(λ). Since the input length is a polynomial such that
`(λ) ≥ λ, this implies that SO,FO are polynomial-size circuits.

6.3.2 Security Analysis
In the following claim we rely on the incremental completeness of the modified DLM
Section 6.2.2.

B Claim 42. Let d = d(λ) ≤ λ be a depth parameter. Fix λ ∈ N and χ ∈ {0, 1}λ. Let
w = (t, π) be a local maximum of (SO,FO) = fd(χ). We have DLM.VO(χ, t, π) = ACC and
t = Td.

Proof. We have DLM.VO(χ, t, π) = ACC as otherwise w is given value −1 and his successor
is (1, π1) of value 1. If t < Td then w is given value t and is connected to (t + 1, π′)
for π′ = DLM.PO(χ, t, π). By incremental completeness Proposition 35, we have that
DLM.P(χ, t+ 1, π′) = ACC. Therefore, the value of (t+ 1, π′) is t+ 1, and w is not a local
maximum. We are left with t = Td. This concludes the claim. C

N. Bitansky and I. Gerichter 6:25

I Theorem 43 (Hard Problems in PLSO). For every depth parameter d = d(λ) ≤ λ, the
search problem ROd lies in PLSO.

Proof. The class PLSO consists of all TFNPO search problems that are polynomial-time
reducible to LSO. The search problem ROd ∈ TFNPO and by Claim 42, the tuple (fd, gd)
is a valid polynomial-time reduction to PLSO. Indeed, for every string χ, we have that all
witnesses w′ for the instance (SO,FO) = fd(χ) are mapped under gd to w = π such that
DLM.VO(χ, Td, π) = ACC – a valid witness to ROd . Hence ROd ∈ PLSO. A proof is given in
the full version. J

I Corollary 44 (Exponential Hardness in PLSO). There exists search problems in PLSO that
are average-case exponentially hard.

Proof. By Theorem 43, for every depth parameter d = d(λ) ≤ λ, the search problem ROd is
in PLSO. By Corollary 39, for d = λ the search problem ROλ is exponentially average-case
hard. J

This implies that LSO is sub-exponentially hard due to the polynomial blowup the reduction
incurs. We formulate it in the following corollary. In the following, n stands for the size of
the LSO instance (SO,FO) and λ stands for the security parameter that is given as input to
the sampler. A proof is given in the full version of this paper.

I Corollary 45. There exists an efficient sampler HARD of LSO instances and a constant
δ > 0 such that for every oracle aided adversary AO = {AOn }n∈N of size at most 2nδ and for
every λ ∈ N:

Pr
[
FO(SO(w)) ≤ FO(w)

∣∣∣∣ (SO,FO)← HARD(1λ)
w ← A(SO,FO)

]
≤ 2−Ω(λ) ,

where O : {0, 1}∗ → {0, 1} is a random oracle.

6.4 Depth Robust Instances

In this section, we deduce the existence of depth-robust, moderately hard, search problems
in PLSO. That is, search problems with instances that can be solved in polynomial time yet
also require high sequential time.

I Proposition 46 (Depth Robust Problems in PLSO). Fix any constant ε > 0. For any
large enough constant α, consider ROd for d(λ) = α log2 λ a depth parameter. The following
properties hold for λ > 1:

Moderately Hard: The search problem ROd can be solved in time λ(1+ε)α.
Depth Robust: If A is an adversary of depth λ(1−ε)α and size 2o(λ) then:

Pr
[
(χ, π) ∈ ROd

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) .

Proof. Fix ε > 0 throughout the proof. We start by proving that ROd is moderately hard.

B Claim 47 (Moderately Hard). The search problem ROd , where d(λ) = α log2 λ, can be
solved in time λ(1+ε)α when α is a large enough constant.

ITCS 2020

6:26 On the Cryptographic Hardness of Local Search

Proof. Fix λ > 1 and let χ ∈ {0, 1}λ be an instance of ROd . We have Td = 2α log2 λ+1 − 1 ≤
2λα ≤ λα+1. By efficiency of DLM, the run-time of DLM.PO is at most λc for some fixed
constant c, independent of ε and α. The proof π1 for time t = 1 can also be generated in
poly(λ) time. We assume w.l.o.g that it can be generated in time λc. By completeness of
DLM, generating π1 and applying the prover Td − 1 times on it, results in a valid proof for
time t = Td. This is a valid witness for the instance χ in ROd . The above algorithm takes
at most

Td · λc ≤ λα+1 · λc ≤ λ(1+ε)α ,

where the last inequality holds for large enough α, concretely α > (c+ 1)/ε. C

We proceed to show that ROd is depth robust.

B Claim 48 (Depth Robust). Let α be a large enough constant and let d = α log2 λ. For
every adversary A of depth λ(1−ε)α and size 2o(λ) we have for every λ ∈ N:

Pr
[
(χ, π) ∈ ROd

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) .

Proof. This is a direct application of single oracle sequential hardness Corollary 38. We have
Td = 2α log2 λ+1−1 ≥ λα. Hence λ(1−ε)α = o(Td/ logα) and the claim follows by Corollary 38.

C

The above two claims conclude the proof of the proposition. J

References
1 Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equilibria. Unpublished,

2004.
2 Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed

polynomial time. CoRR, abs/1610.04807, 2016. arXiv:1610.04807.
3 Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and Daniel

Wichs. Succinct delegation for low-space non-deterministic computation. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 709–721, 2018. doi:10.1145/3188745.3188924.

4 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (Im)Possibility of Obfuscating Programs. J. ACM, 59(2):6:1–6:48, May
2012. doi:10.1145/2160158.2160159.

5 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive Composition and
Bootstrapping for SNARKS and Proof-carrying Data. In Proceedings of the Forty-fifth Annual
ACM Symposium on Theory of Computing, pages 111–120, New York, NY, USA, 2013. ACM.
doi:10.1145/2488608.2488623.

6 Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the Existence of Extractable
One-Way Functions. SIAM J. Comput., 45(5):1910–1952, 2016. doi:10.1137/140975048.

7 Nir Bitansky, Omer Paneth, and Alon Rosen. On the Cryptographic Hardness of Finding
a Nash Equilibrium. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 1480–1498, October 2015. doi:10.1109/FOCS.2015.94.

8 Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT
2005, pages 440–456, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

9 Dan Boneh, Craig Gentry, and Brent Waters. Collusion Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, pages 258–275, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

http://arxiv.org/abs/1610.04807
https://doi.org/10.1145/3188745.3188924
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1137/140975048
https://doi.org/10.1109/FOCS.2015.94

N. Bitansky and I. Gerichter 6:27

10 Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Nash Equilibrium in Smoothed
Polynomial Time for Network Coordination Games, September 2018. arXiv:1809.02280.

11 Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and
batch NP verification from standard computational assumptions. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474–482, 2017. doi:10.1145/3055399.3055497.

12 Buresh-Oppenheim. On the TFNP complexity of factoring. Unpublished, 2006.
13 Ran Canetti, Yilei Chen, and Leonid Reyzin. On the Correlation Intractability of Obfuscated

Pseudorandom Functions. In Proceedings, Part I, of the 13th International Conference on
Theory of Cryptography - Volume 9562, TCC 2016-A, pages 389–415, Berlin, Heidelberg, 2016.
Springer-Verlag. doi:10.1007/978-3-662-49096-9_17.

14 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the Complexity of Computing Two-
player Nash Equilibria. J. ACM, 56(3):14:1–14:57, May 2009. doi:10.1145/1516512.1516516.

15 Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, and
Guy N. Rothblum. PPAD-Hardness via Iterated Squaring Modulo a Composite. Cryptology
ePrint Archive, Report 2019/667, 2019. URL: https://eprint.iacr.org/2019/667.

16 Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, and
Guy N. Rothblum. Finding a Nash Equilibrium is No Easier Than Breaking Fiat-Shamir. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 1103–1114, New York, NY, USA, 2019. ACM. doi:10.1145/3313276.3316400.

17 Bram Cohen and Krzysztof Pietrzak. Simple Proofs of Sequential Work. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages
451–467, Cham, 2018. Springer International Publishing.

18 Constantinos Daskalakis, Paul Goldberg, and Christos H. Papadimitriou. The Complexity
of Computing a Nash Equilibrium. SIAM J. Comput., 39:195–259, February 2009. doi:
10.1137/070699652.

19 Constantinos Daskalakis and Christos Papadimitriou. Continuous Local Search. In Proceedings
of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11,
pages 790–804, Philadelphia, PA, USA, 2011. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=2133036.2133098.

20 Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental Proofs of Sequential
Work. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, pages 292–323, Cham, 2019. Springer International Publishing.

21 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous Verifiable
Delay Functions. Cryptology ePrint Archive, Report 2019/619, 2019. URL: https://eprint.
iacr.org/2019/619.

22 Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The Complexity of Pure Nash
Equilibria. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’04, pages 604–612, New York, NY, USA, 2004. ACM. doi:10.1145/1007352.1007445.

23 Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the Cryptographic
Hardness of Finding a Nash Equilibrium. In Advances in Cryptology – CRYPTO 2016, pages
579–604, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

24 Craig Gentry and Daniel Wichs. Separating Succinct Non-interactive Arguments from All
Falsifiable Assumptions. In Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 99–108, New York, NY, USA, 2011. ACM. doi:
10.1145/1993636.1993651.

25 Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory of
total functions. J. Comput. Syst. Sci., 94:167–192, 2018. doi:10.1016/j.jcss.2017.12.003.

26 Oded Goldreich and Johan Håstad. On the Complexity of Interactive Proofs with Bounded
Communication. Inf. Process. Lett., 67(4):205–214, 1998. doi:10.1016/S0020-0190(98)
00116-1.

ITCS 2020

http://arxiv.org/abs/1809.02280
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1145/1516512.1516516
https://eprint.iacr.org/2019/667
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
http://dl.acm.org/citation.cfm?id=2133036.2133098
https://eprint.iacr.org/2019/619
https://eprint.iacr.org/2019/619
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1016/j.jcss.2017.12.003
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1

6:28 On the Cryptographic Hardness of Local Search

27 Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic
prover. Computational Complexity, 11(1-2):1–53, 2002. doi:10.1007/s00037-002-0169-0.

28 Pavel Hubácek, Moni Naor, and Eylon Yogev. The Journey from NP to TFNP Hardness. In
Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages
60:1–60:21, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ITCS.2017.60.

29 Pavel Hubáček and Eylon Yogev. Hardness of Continuous Local Search: Query Complexity and
Cryptographic Lower Bounds, pages 1352–1371. ACM, 2016. doi:10.1137/1.9781611974782.
88.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

31 Hisao Ishibuchi and Tadahiko Murata. A multi-objective genetic local search algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 28(3):392–403, August 1998. doi:10.1109/5326.704576.

32 Emil Jerábek. Integer factoring and modular square roots. CoRR, abs/1207.5220, 2012.
arXiv:1207.5220.

33 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

34 Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to Delegate Computations Publicly.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 1115–1124, New York, NY, USA, 2019. ACM. doi:10.1145/3313276.3316411.

35 Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to Delegate
Computations: The Power of No-Signaling Proofs. In In Proceedings of the
46th annual ACM symposium on Theory of computing (STOC), pages 485–494.
ACM, January 2014. URL: https://www.microsoft.com/en-us/research/publication/
delegate-computations-power-no-signaling-proofs/.

36 Ilan Komargodski, Moni Naor, and Eylon Yogev. White-Box vs. Black-Box Complexity of
Search Problems: Ramsey and Graph Property Testing. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 622–632, October 2017.

37 Ilan Komargodski, Moni Naor, and Eylon Yogev. White-Box vs. Black-Box Complexity of
Search Problems: Ramsey and Graph Property Testing. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 622–632, 2017. doi:10.1109/FOCS.2017.63.

38 S. Lin and Brain W. Kernighan. An Effective Heuristic Algorithm for the Traveling-Salesman
Problem. Oper. Res., 21(2):498–516, April 1973. doi:10.1287/opre.21.2.498.

39 Carsten Lund, Lance Fortnow, H Karloff, and Noam Nisan. Algebraic Methods for Interactive
Proof Systems, November 1990. doi:10.1109/FSCS.1990.89518.

40 Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly Verifiable Proofs of Sequential
Work. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pages 373–388, New York, NY, USA, 2013. ACM. doi:10.1145/2422436.2422479.

41 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991. doi:
10.1016/0304-3975(91)90200-L.

42 Ralph Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stanford
University, Department of Electrical Engineering, June 1979.

43 John C. Nash. The (Dantzig) simplex method for linear programming. Computing in Science
Engineering, 2(1):29–31, January 2000. doi:10.1109/5992.814654.

https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.4230/LIPIcs.ITCS.2017.60
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1109/5326.704576
http://arxiv.org/abs/1207.5220
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1145/3313276.3316411
https://www.microsoft.com/en-us/research/publication/delegate-computations-power-no-signaling-proofs/
https://www.microsoft.com/en-us/research/publication/delegate-computations-power-no-signaling-proofs/
https://doi.org/10.1109/FOCS.2017.63
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1109/5992.814654

N. Bitansky and I. Gerichter 6:29

44 Omer Paneth and Guy N. Rothblum. On Zero-Testable Homomorphic Encryption and Publicly
Verifiable Non-interactive Arguments. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography, pages 283–315, Cham, 2017. Springer International Publishing.

45 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994. doi:
10.1016/S0022-0000(05)80063-7.

46 Krzysztof Pietrzak. Simple Verifiable Delay Functions. Cryptology ePrint Archive, Report
2018/627, 2018. URL: https://eprint.iacr.org/2018/627.

47 Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, MIT, February 2000.

48 Alon Rosen, Gil Segev, and Ido Shahaf. Can PPAD Hardness be Based on Standard Cryp-
tographic Assumptions? In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography,
pages 747–776, Cham, 2017. Springer International Publishing.

49 Alejandro Schaffer and Mihalis Yannakakis. Simple Local Search Problems That are Hard to
Solve. SIAM J. Comput., 20:56–87, February 1991. doi:10.1137/0220004.

50 Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-Completeness with Con-
nections to Cryptography. CoRR, abs/1808.06407, 2018. arXiv:1808.06407.

51 Paul Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space
Efficiency. In Ran Canetti, editor, Theory of Cryptography, pages 1–18, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

ITCS 2020

https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://eprint.iacr.org/2018/627
https://doi.org/10.1137/0220004
http://arxiv.org/abs/1808.06407

	Introduction
	Our Results

	Technical Overview
	Hardness via Incremental Computation
	Incremental Completeness
	Obtaining IVC with Incremental Completeness
	Unconditional Hardness in the Random Oracle Model
	More Related Work on Total Search Problems

	Preliminaries
	PLS Definition

	PLS Hardness from IVC
	IVC with Incremental Completeness
	Computationally Sound Karp Reduction
	The Hardness Reduction
	The Reduction

	Security Analysis
	Applying the Reduction
	Worst-Case Hardness
	Average-Case Hardness

	Instantiation under the KPY Assumption and ETH
	IVC From KPY Assumption
	Fixed Space Polynomial Hardness via ETH
	Putting Things Together

	Unconditional PLS Hardness in the ROM
	Graph Related Definitions
	CP Graphs
	Graph Labeling

	Construction
	Algorithms Description
	Incremental Completeness
	Soundness

	Hard instances
	The Reduction to Local Search
	Security Analysis

	Depth Robust Instances

