2,128 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Error Mitigation Using Approximate Logic Circuits: A Comparison of Probabilistic and Evolutionary Approaches

    Get PDF
    Technology scaling poses an increasing challenge to the reliability of digital circuits. Hardware redundancy solutions, such as triple modular redundancy (TMR), produce very high area overhead, so partial redundancy is often used to reduce the overheads. Approximate logic circuits provide a general framework for optimized mitigation of errors arising from a broad class of failure mechanisms, including transient, intermittent, and permanent failures. However, generating an optimal redundant logic circuit that is able to mask the faults with the highest probability while minimizing the area overheads is a challenging problem. In this study, we propose and compare two new approaches to generate approximate logic circuits to be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy manner based on a probabilistic estimation of the error. The evolutionary approach can provide radically different solutions that are hard to reach by other methods. By combining these two approaches, the solution space can be explored in depth. Experimental results demonstrate that the evolutionary approach can produce better solutions, but the probabilistic approach is close. On the other hand, these approaches provide much better scalability than other existing partial redundancy techniques.This work was supported by the Ministry of Economy and Competitiveness of Spain under project ESP2015-68245-C4-1-P, and by the Czech science foundation project GA16-17538S and the Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602

    Graph composition in a graph grammar-based method for automata network evolution

    Get PDF
    Piscataway, N

    Field Guide to Genetic Programming

    Get PDF

    Evolutionary design of digital VLSI hardware

    Get PDF

    A Gravitational Theory of the Quantum

    Full text link
    The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set theory is built on geometric properties of a compact fractal-like subset IUI_U of cosmological state space on which the universe is assumed to evolve and from which the laws of physics are assumed to derive. Consistent with the primacy of IUI_U, a non-Euclidean (and hence non-classical) state-space metric gpg_p is defined, related to the pp-adic metric of number theory where pp is a large but finite Pythagorean prime. Uncertain states on IUI_U are described using complex Hilbert states, but only if their squared amplitudes are rational and corresponding complex phase angles are rational multiples of 2π2 \pi. Such Hilbert states are necessarily gpg_p-distant from states with either irrational squared amplitudes or irrational phase angles. The gappy fractal nature of IUI_U accounts for quantum complementarity and is characterised numerically by a generic number-theoretic incommensurateness between rational angles and rational cosines of angles. The Bell inequality, whose violation would be inconsistent with local realism, is shown to be gpg_p-distant from all forms of the inequality that are violated in any finite-precision experiment. The delayed-choice paradox is resolved through the computational irreducibility of IUI_U. The Schr\"odinger and Dirac equations describe evolution on IUI_U in the singular limit at p=∞p=\infty. By contrast, an extension of the Einstein field equations on IUI_U is proposed which reduces smoothly to general relativity as p→∞p \rightarrow \infty. Novel proposals for the dark universe and the elimination of classical space-time singularities are given and experimental implications outlined

    The application of evolutionary computation towards the characterization and classification of urothelium cell cultures

    Get PDF
    This thesis presents a novel method for classifying and characterizing urothelial cell cultures. A system of cell tracking employing computer vision techniques was applied to a one day long time-lapse videos of replicate normal human uroepithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS) as inhibitor. Subsequent analysis following feature extraction on both cell culture and single-cell demonstrated the ability of the approach to successfully classify the modulated classes of cells using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the cell class separation. This approach provides a non-biased insight into modulated cell class behaviours

    Electromagnetic compatibility and printed circuit boards

    Get PDF
    • …
    corecore