30 research outputs found

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Security architecture for Fog-To-Cloud continuum system

    Get PDF
    Nowadays, by increasing the number of connected devices to Internet rapidly, cloud computing cannot handle the real-time processing. Therefore, fog computing was emerged for providing data processing, filtering, aggregating, storing, network, and computing closer to the users. Fog computing provides real-time processing with lower latency than cloud. However, fog computing did not come to compete with cloud, it comes to complete the cloud. Therefore, a hierarchical Fog-to-Cloud (F2C) continuum system was introduced. The F2C system brings the collaboration between distributed fogs and centralized cloud. In F2C systems, one of the main challenges is security. Traditional cloud as security provider is not suitable for the F2C system due to be a single-point-of-failure; and even the increasing number of devices at the edge of the network brings scalability issues. Furthermore, traditional cloud security cannot be applied to the fog devices due to their lower computational power than cloud. On the other hand, considering fog nodes as security providers for the edge of the network brings Quality of Service (QoS) issues due to huge fog device’s computational power consumption by security algorithms. There are some security solutions for fog computing but they are not considering the hierarchical fog to cloud characteristics that can cause a no-secure collaboration between fog and cloud. In this thesis, the security considerations, attacks, challenges, requirements, and existing solutions are deeply analyzed and reviewed. And finally, a decoupled security architecture is proposed to provide the demanded security in hierarchical and distributed fashion with less impact on the QoS.Hoy en día, al aumentar rápidamente el número de dispositivos conectados a Internet, el cloud computing no puede gestionar el procesamiento en tiempo real. Por lo tanto, la informática de niebla surgió para proporcionar procesamiento de datos, filtrado, agregación, almacenamiento, red y computación más cercana a los usuarios. La computación nebulizada proporciona procesamiento en tiempo real con menor latencia que la nube. Sin embargo, la informática de niebla no llegó a competir con la nube, sino que viene a completar la nube. Por lo tanto, se introdujo un sistema continuo jerárquico de niebla a nube (F2C). El sistema F2C aporta la colaboración entre las nieblas distribuidas y la nube centralizada. En los sistemas F2C, uno de los principales retos es la seguridad. La nube tradicional como proveedor de seguridad no es adecuada para el sistema F2C debido a que se trata de un único punto de fallo; e incluso el creciente número de dispositivos en el borde de la red trae consigo problemas de escalabilidad. Además, la seguridad tradicional de la nube no se puede aplicar a los dispositivos de niebla debido a su menor poder computacional que la nube. Por otro lado, considerar los nodos de niebla como proveedores de seguridad para el borde de la red trae problemas de Calidad de Servicio (QoS) debido al enorme consumo de energía computacional del dispositivo de niebla por parte de los algoritmos de seguridad. Existen algunas soluciones de seguridad para la informática de niebla, pero no están considerando las características de niebla a nube jerárquica que pueden causar una colaboración insegura entre niebla y nube. En esta tesis, las consideraciones de seguridad, los ataques, los desafíos, los requisitos y las soluciones existentes se analizan y revisan en profundidad. Y finalmente, se propone una arquitectura de seguridad desacoplada para proporcionar la seguridad exigida de forma jerárquica y distribuida con menor impacto en la QoS.Postprint (published version

    Securing Fog Federation from Behavior of Rogue Nodes

    Get PDF
    As the technological revolution advanced information security evolved with an increased need for confidential data protection on the internet. Individuals and organizations typically prefer outsourcing their confidential data to the cloud for processing and storage. As promising as the cloud computing paradigm is, it creates challenges; everything from data security to time latency issues with data computation and delivery to end-users. In response to these challenges CISCO introduced the fog computing paradigm in 2012. The intent was to overcome issues such as time latency and communication overhead and to bring computing and storage resources close to the ground and the end-users. Fog computing was, however, considered an extension of cloud computing and as such, inherited the same security and privacy challenges encountered by traditional cloud computing. These challenges accelerated the research community\u27s efforts to find practical solutions. In this dissertation, we present three approaches for individual and organizational data security and protection while that data is in storage in fog nodes or in the cloud. We also consider the protection of these data while in transit between fog nodes and the cloud, and against rogue fog nodes, man-in-the-middle attacks, and curious cloud service providers. The techniques described successfully satisfy each of the main security objectives of confidentiality, integrity, and availability. Further we study the impact of rogue fog nodes on end-user devices. These approaches include a new concept, the Fog-Federation (FF): its purpose to minimize communication overhead and time latency between the Fog Nodes (FNs) and the Cloud Service Provider (CSP) during the time the system is unavailable as a rogue Fog Node (FN) is being ousted. Further, we considered the minimization of data in danger of breach by rogue fog nodes. We demonstrate the efficiency and feasibility of each approach by implementing simulations and analyzing security and performance

    Blockchain-Based Access Control Techniques for IoT Applications

    Get PDF
    The Internet of Things is gaining more importance in the present era of Internet technology. It is considered as one of the most important technologies of everyday life. Moreover, IoT systems are ceaselessly growing with more and more devices. They are scalable, dynamic, and distributed, hence the origin of the crucial security requirements in IoT. One of the most challenging issues that the IoT community must handle recently is how to ensure an access control approach that manages the security requirements of such a system. Traditional access control technologies are not suitable for a large-scale and distributed network structure. Most of them are based on a centralized approach, where the use of a trusted third party (TTP) is obligatory. Furthermore, the emergence of blockchain technology has allowed researchers to come up with a solution for these security issues. This technology is highly used to record access control data. Additionally, it has great potential for managing access control requests. This paper proposed a blockchain-based access control taxonomy according to the access control nature: partially decentralized and fully decentralized. Furthermore, it presents an overview of blockchain-based access control solutions proposed in different IoT applications. Finally, the article analyzes the proposed works according to certain criteria that the authors deem important

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Efficient Ciphertext-policy Attribute Based Encryption for Cloud-Based Access Control

    Get PDF
    Outsourcing data to some cloud servers enables a massive, flexible usage of cloud computing resources and it is typically held by different organizations and data owners. However, various security concerns have been raised due to hosting sensitive data on an untrusted cloud environment, and the control over such data by their owners is lost after uploading to the cloud. Access control is the first defensive line that forbids unauthorized access to the stored data. Moreover, fine-grained access control on the untrusted cloud can be enforced using advanced cryptographic mechanisms. Some schemes have been proposed to deliver such access control using Ciphertext-policy attribute based encryption (CP-ABE) that can enforce data owners’ access policies to achieve such cryptographic access control and tackle the majority of those concerns. However, some challenges are still outstanding due to the complexity of frequently changing the cryptographic enforcements of the owners’ access policies in the hosted cloud data files, which poses computational and communicational overheads to data owners. These challenges are: 1) making dynamic decisions to grant access rights to the cloud resources, 2) solving the issue of the revocation process that is considered as a performance killer, and 3) building a collusion resistant system. The aim of our work is to construct an access control scheme that provides secure storing and sharing sensitive data on the cloud and suits limited-resources devices. In this thesis, we analyse some of the existing, related issues and propose a scheme that extends the relevant existing techniques to resolve the inherent problems in CP-ABE without incurring heavy computation overhead. In particular, most existing revocation techniques require re-issuing many private keys for all non-revoked users as well as re-encrypting the related ciphertexts. Our proposed scheme offers a solution to perform a novel technique that dynamically changes the access privileges of legitimate users. The scheme drives the access privileges in a specific way by updating the access policy and activating a user revocation property. Our technique assigns processing-intensive tasks to cloud servers without any information leakage to reduce the computation cost on resource-limited computing devices. Our analytical theoretical and experimental findings and comparisons of our work with related existing systems indicate that our scheme is efficient, secure and more practical compared to the current related systems, particularly in terms of policy updating and ciphertext re-encryption. Therefore, our proposed scheme is suited to Internet of Things (IoT) applications that need a practical, secure access control scheme. Moreover, to achieve secure, public cloud storage and minimise the limitations of CP-ABE which mainly supports storing data only on a private cloud storage system managed by only one single authority, our proposed access control scheme is extended to a secure, critical access control scheme with multiple authorities. This scheme ought to be carefully designed to achieve fine-grained access control and support outsourced-data confidentiality. In addition, most existing multi-authority access control schemes do not properly consider the revocation issue due to the difficulty of addressing it in distributed settings. Therefore, building a multi-authority CP-ABE scheme along with addressing changes to policy attributes and users, have motivated many researchers to develop more suitable schemes with limited success. By leveraging the existing work, in this thesis, we propose a second CP-ABE scheme that tackles most of the existing work’s limitations and allows storing data securely on a public cloud storage system by employing multiple authorities which manage a joint set of attributes. Furthermore, the proposed scheme efficiently maintains the revocation by adapting the two techniques used in the first proposed single authority access control scheme to allow dynamic policy update and invalidate a revoked user’s secret key that eliminates collusion attacks. In terms of computation overhead, the proposed multi-authority scheme outsources expensive operations of encryption and decryption to a cloud server to mitigate the burden on a data owner and data users, respectively. Our scheme analysis and the theoretical and implemented results demonstrate that our scheme is scalable and efficient

    Securing clouds using cryptography and traffic classification

    Get PDF
    Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction. Over the last decade, cloud computing has gained popularity and wide acceptance, especially within the health sector where it offers several advantages such as low costs, flexible processes, and access from anywhere. Although cloud computing is widely used in the health sector, numerous issues remain unresolved. Several studies have attempted to review the state of the art in eHealth cloud privacy and security however, some of these studies are outdated or do not cover certain vital features of cloud security and privacy such as access control, revocation and data recovery plans. This study targets some of these problems and proposes protocols, algorithms and approaches to enhance the security and privacy of cloud computing with particular reference to eHealth clouds. Chapter 2 presents an overview and evaluation of the state of the art in eHealth security and privacy. Chapter 3 introduces different research methods and describes the research design methodology and processes used to carry out the research objectives. Of particular importance are authenticated key exchange and block cipher modes. In Chapter 4, a three-party password-based authenticated key exchange (TPAKE) protocol is presented and its security analysed. The proposed TPAKE protocol shares no plaintext data; all data shared between the parties are either hashed or encrypted. Using the random oracle model (ROM), the security of the proposed TPAKE protocol is formally proven based on the computational Diffie-Hellman (CDH) assumption. Furthermore, the analysis included in this chapter shows that the proposed protocol can ensure perfect forward secrecy and resist many kinds of common attacks such as man-in-the-middle attacks, online and offline dictionary attacks, replay attacks and known key attacks. Chapter 5 proposes a parallel block cipher (PBC) mode in which blocks of cipher are processed in parallel. The results of speed performance tests for this PBC mode in various settings are presented and compared with the standard CBC mode. Compared to the CBC mode, the PBC mode is shown to give execution time savings of 60%. Furthermore, in addition to encryption based on AES 128, the hash value of the data file can be utilised to provide an integrity check. As a result, the PBC mode has a better speed performance while retaining the confidentiality and security provided by the CBC mode. Chapter 6 applies TPAKE and PBC to eHealth clouds. Related work on security, privacy preservation and disaster recovery are reviewed. Next, two approaches focusing on security preservation and privacy preservation, and a disaster recovery plan are proposed. The security preservation approach is a robust means of ensuring the security and integrity of electronic health records and is based on the PBC mode, while the privacy preservation approach is an efficient authentication method which protects the privacy of personal health records and is based on the TPAKE protocol. A discussion about how these integrated approaches and the disaster recovery plan can ensure the reliability and security of cloud projects follows. Distributed denial of service (DDoS) attacks are the second most common cybercrime attacks after information theft. The timely detection and prevention of such attacks in cloud projects are therefore vital, especially for eHealth clouds. Chapter 7 presents a new classification system for detecting and preventing DDoS TCP flood attacks (CS_DDoS) for public clouds, particularly in an eHealth cloud environment. The proposed CS_DDoS system offers a solution for securing stored records by classifying incoming packets and making a decision based on these classification results. During the detection phase, CS_DDOS identifies and determines whether a packet is normal or from an attacker. During the prevention phase, packets classified as malicious are denied access to the cloud service, and the source IP is blacklisted. The performance of the CS_DDoS system is compared using four different classifiers: a least-squares support vector machine (LS-SVM), naïve Bayes, K-nearest-neighbour, and multilayer perceptron. The results show that CS_DDoS yields the best performance when the LS-SVM classifier is used. This combination can detect DDoS TCP flood attacks with an accuracy of approximately 97% and a Kappa coefficient of 0.89 when under attack from a single source, and 94% accuracy and a Kappa coefficient of 0.9 when under attack from multiple attackers. These results are then discussed in terms of the accuracy and time complexity, and are validated using a k-fold cross-validation model. Finally, a method to mitigate DoS attacks in the cloud and reduce excessive energy consumption through managing and limiting certain flows of packets is proposed. Instead of a system shutdown, the proposed method ensures the availability of service. The proposed method manages the incoming packets more effectively by dropping packets from the most frequent requesting sources. This method can process 98.4% of the accepted packets during an attack. Practicality and effectiveness are essential requirements of methods for preserving the privacy and security of data in clouds. The proposed methods successfully secure cloud projects and ensure the availability of services in an efficient way

    Data exploitation and privacy protection in the era of data sharing

    Get PDF
    As the amount, complexity, and value of data available in both private and public sectors has risen sharply, the competing goals of data privacy and data utility have challenged both organizations and individuals. This dissertation addresses both goals. First, we consider the task of {\it interorganizational data sharing}, in which data owners, data clients, and data subjects have different and sometimes competing privacy concerns. A key challenge in this type of scenario is that each organization uses its own set of proprietary, intraorganizational attributes to describe the shared data; such attributes cannot be shared with other organizations. Moreover, data-access policies are determined by multiple parties and may be specified using attributes that are not directly comparable with the ones used by the owner to specify the data. We propose a system architecture and a suite of protocols that facilitate dynamic and efficient interorganizational data sharing, while allowing each party to use its own set of proprietary attributes to describe the shared data and preserving confidentiality of both data records and attributes. We introduce the novel technique of \textit{attribute-based encryption with oblivious attribute translation (OTABE)}, which plays a crucial role in our solution and may prove useful in other applications. This extension of attribute-based encryption uses semi-trusted proxies to enable dynamic and oblivious translation between proprietary attributes that belong to different organizations. We prove that our OTABE-based framework is secure in the standard model and provide two real-world use cases. Next, we turn our attention to utility that can be derived from the vast and growing amount of data about individuals that is available on social media. As social networks (SNs) continue to grow in popularity, it is essential to understand what can be learned about personal attributes of SN users by mining SN data. The first SN-mining problem we consider is how best to predict the voting behavior of SN users. Prior work only considered users who generate politically oriented content or voluntarily disclose their political preferences online. We avoid this bias by using a novel type of Bayesian-network (BN) model that combines demographic, behavioral, and social features. We test our method in a predictive analysis of the 2016 U.S. Presidential election. Our work is the first to take a semi-supervised approach in this setting. Using the Expectation-Maximization (EM) algorithm, we combine labeled survey data with unlabeled Facebook data, thus obtaining larger datasets and addressing self-selection bias. The second SN-mining challenge we address is the extent to which Dynamic Bayesian Networks (DBNs) can infer dynamic behavioral intentions such as the intention to get a vaccine or to apply for a loan. Knowledge of such intentions has great potential to improve the design of recommendation systems, ad-targeting mechanisms, public-health campaigns, and other social and commercial endeavors. We focus on the question of how to infer an SN user\u27s \textit{offline} decisions and intentions using only the {\it public} portions of her \textit{online} SN accounts. Our contribution is twofold. First, we use BNs and several behavioral-psychology techniques to model decision making as a complex process that both influences and is influenced by static factors (such as personality traits and demographic categories) and dynamic factors (such as triggering events, interests, and emotions). Second, we explore the extent to which temporal models may assist in the inference task by representing SN users as sets of DBNs that are built using our modeling techniques. The use of DBNs, together with data gathered in multiple waves, has the potential to improve both inference accuracy and prediction accuracy in future time slots. It may also shed light on the extent to which different factors influence the decision-making process
    corecore