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Abstract

Data Exploitation and Privacy Protection in the Era of Data Sharing

Lihi Idan

2021

As the amount, complexity, and value of data available in both private and public sec-

tors has risen sharply, the competing goals of data privacy and data utility have challenged

both organizations and individuals. This dissertation addresses both goals.

First, we consider the task of interorganizational data sharing, in which data owners,

data clients, and data subjects have different and sometimes competing privacy concerns.

A key challenge in this type of scenario is that each organization uses its own set of propri-

etary, intraorganizational attributes to describe the shared data; such attributes cannot be

shared with other organizations. Moreover, data-access policies are determined by multi-

ple parties and may be specified using attributes that are not directly comparable with the

ones used by the owner to specify the data.

We propose a system architecture and a suite of protocols that facilitate dynamic and

efficient interorganizational data sharing, while allowing each party to use its own set of

proprietary attributes to describe the shared data and preserving confidentiality of both

data records and attributes. We introduce the novel technique of attribute-based encryp-

tion with oblivious attribute translation (OTABE), which plays a crucial role in our solution

and may prove useful in other applications. This extension of attribute-based encryption

uses semi-trusted proxies to enable dynamic and oblivious translation between proprietary

attributes that belong to different organizations. We prove that our OTABE-based frame-

work is secure in the standard model and provide two real-world use cases.

Next, we turn our attention to utility that can be derived from the vast and growing

amount of data about individuals that is available on social media. As social networks



2

(SNs) continue to grow in popularity, it is essential to understand what can be learned

about personal attributes of SN users by mining SN data.

The first SN-mining problem we consider is how best to predict the voting behavior

of SN users. Prior work only considered users who generate politically oriented content

or voluntarily disclose their political preferences online. We avoid this bias by using a

novel type of Bayesian-network (BN) model that combines demographic, behavioral, and

social features. We test our method in a predictive analysis of the 2016 U.S. Presidential

election. Our work is the first to take a semi-supervised approach in this setting. Us-

ing the Expectation-Maximization (EM) algorithm, we combine labeled survey data with

unlabeled Facebook data, thus obtaining larger datasets and addressing self-selection bias.

The second SN-mining challenge we address is the extent to which Dynamic Bayesian

Networks (DBNs) can infer dynamic behavioral intentions such as the intention to get

a vaccine or to apply for a loan. Knowledge of such intentions has great potential to

improve the design of recommendation systems, ad-targeting mechanisms, public-health

campaigns, and other social and commercial endeavors. We focus on the question of how

to infer an SN user’s offline decisions and intentions using only the public portions of her

online SN accounts.

Our contribution is twofold. First, we use BNs and several behavioral-psychology

techniques to model decision making as a complex process that both influences and is

influenced by static factors (such as personality traits and demographic categories) and

dynamic factors (such as triggering events, interests, and emotions). Second, we explore

the extent to which temporal models may assist in the inference task by representing SN

users as sets of DBNs that are built using our modeling techniques. The use of DBNs,

together with data gathered in multiple waves, has the potential to improve both inference

accuracy and prediction accuracy in future time slots. It may also shed light on the extent

to which different factors influence the decision-making process.
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Chapter 1

Introduction

In many rule-of-law societies, citizens have a right to privacy. Even in the US, where

the Bill of Rights does not contain the word “privacy,” the Fourth Amendment1 prohibits

unreasonable government intrusions into citizens’ homes and belongings, and it has led

to many court decisions that are privacy enhancing. As the number of news stories about

hacks and data breaches clearly demonstrates, people are very concerned about loss of

control over their personal information.

As the Internet (and, in particular, Big Tech firms) have become dominant in citizens’

daily lives, however, privacy has ceased to be a right and became a commodity. Unlike

most commodities, privacy is not bought with money but rather with limited or even no

ability to use common and essential services. In order to use Facebook, Uber, or even a

credit card, people reveal personal data that are subsequently shared with other organi-

zations without their explicit permission. Sometimes people explicitly agree that service

providers may share their personal information with other organizations, because it is the

only obvious way to complete transactions that they need to complete in order to get on

with their daily lives. In both of these common scenarios, the information revealed al-

1“The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable
searches and seizures, shall not be violated, and no Warrants shall issue, but upon probable cause, supported
by Oath or affirmation, and particularly describing the place to be searched, and the persons or things to be
seized.”
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lows some of our most personal attributes to be inferred. It has been argued that people’s

willingness to use services that collect and share their personal information means that

they accept the privacy risks entailed in doing so and regard them simply as the price of

receiving service for which they do not have to pay money. We question the soundness of

this argument, because many people do not know what information they routinely reveal

or with whom it is shared.

For example, healthcare providers create electronic medical records (EMRs) for all

patients and share them with other organizations for various purposes. Do patients know

with whom their EMRs are shared and why? The Health Insurance Portability and Ac-

countability Act (HIPAA [1]) limits access to EMRs by parties outside of the healthcare

organizations that create them. However, it imposes very weak restrictions on access by

those inside of the organizations; specifically, HIPAA requires only that internal access

be granted on a “need-to-know basis.” This requirement is routinely understood to allow

internal access not only by doctors and nurses, as may seem intuitive to many patients, but

by many other types of in-house employees such as administrators and IT-staff members.

Limits on external access do not prevent sharing with “business associates” such as billing

companies, insurance companies, collections agencies, practice-management companies,

IT consultants, and many more.

It is also unclear how seriously and consistently HIPAA rules are enforced. Numerous

HIPAA violations are reported every year.2 The actual number of violations may be sig-

nificantly higher. Some violations go unnoticed, and some may not be reported because of

fear of lawsuits or bad publicity.

Another domain in which people may overestimate the extent to which their per-

sonal information is protected is that of credit reports. The Fair Credit Reporting Act

(FCRA [36]) empowers consumer-reporting agencies such as Experian and Equifax to

2See, e.g., the example of this Ohio hospital: https://healthitsecurity.com/news/
ohio-hospital-hipaa-violation-goes-unnoticed-for-over-a-decade.
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collect and maintain financial information about individuals and to create credit reports

that lenders and other merchants can use to gauge individuals’ creditworthiness. Contrary

to many people’s intuitive understanding, the FCRA allows consumer-reporting agencies

to grant access to a person’s credit report without that person’s explicit consent, as long

as the report is to be used for a “permissible purpose.” This term is not defined, and the

rule is not enforced in a uniform, global manner – a state of affairs that has led to several

serious data breaches and privacy violations [16, 37].

Perhaps the most extreme example of the commodified nature of privacy occurs on

social networks (SNs), where people voluntarily share a lot of personal information. In

principle, the Cambridge Analytica scandal [2] made people aware of the fact that the

information that they explicitly share on SNs can be given to the SNs’ “partners,” including

but not limited to advertisers; one could argue, therefore, that active SN users accept this

practice. However, it is unlikely that they know the extent to which information that they

voluntarily publish (as well as their decisions not to publish certain information) can be

used to infer their private decisions and intentions.

This dissertation addresses two complementary challenges posed by our commodified

information environment: First, we provide a data-sharing framework that protects the

privacy of data owners, data users, and data subjects; second, we provide SN-mining tech-

niques that enable governments, companies, and other organizations to infer SN users’

offline decisions and intentions from the users’ publicly observable SN data.

1.1 Dissertation overview

In Chapter 2, we consider the task of interorganizational data sharing, in which data own-

ers, data clients, and data subjects have different and sometimes competing privacy con-

cerns. One real-world scenario in which this problem arises concerns law-enforcement

use of phone-call metadata: The data owner is a phone company, the data clients are law-
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enforcement agencies, and the data subjects are individuals who make phone calls. A key

challenge in this type of scenario is that each organization uses its own set of proprietary

intraorganizational attributes to describe the shared data; such attributes cannot be shared

with other organizations. Moreover, data-access policies are determined by multiple par-

ties and may be specified using attributes that are not directly comparable with the ones

used by the owner to specify the data.

We propose a system architecture and a suite of protocols that facilitate dynamic and

efficient interorganizational data sharing, while allowing each party to use its own set of

proprietary attributes to describe the shared data and preserving confidentiality of both data

records and proprietary intraorganizational attributes. We introduce the novel technique

of attribute-based encryption with oblivious attribute translation (OTABE), which plays a

crucial role in our solution. This extension of attribute-based encryption uses semi-trusted

proxies to enable dynamic and oblivious translation between proprietary attributes that

belong to different organizations; it supports hidden access policies, direct revocation, and

fine-grained, data-centric keys and queries. We prove that our OTABE-based framework

is secure in the standard model and provide two real-world use cases.

The material in Chapter 2 has been published in [58, 59].

In Chapter 3, we introduce our novel approach to SN mining. Increasing use of so-

cial media in political campaigns raises the question of whether one can predict the vot-

ing behavior of SN users. Prior work on this problem considered only the minority of

users who generate politically oriented content or voluntarily disclose their political pref-

erences online, thus introducing substantial bias. We avoid this bias by using a novel

Bayesian-network (BN) model that combines demographic, behavioral, and social fea-

tures. We test our approach in a predictive analysis of the 2016 US Presidential election.

Our model is highly extensible and facilitates the use of incomplete datasets. Furthermore,

our work is the first to apply a semi-supervised approach to this task: Using an expectation-

maximization (EM) algorithm, we combine labeled survey data with unlabeled Facebook

4



data, thus obtaining larger datasets as well as addressing self-selection bias.

The material in Chapter 3 has been published in [57].

In Chapter 4, we generalize our BN approach to SN mining by asking what can be

learned about personal attributes of SN users (beyond their voting behavior) by mining

their publicly observable SN data. Previous work in this area focused on the inference

of time-invariant attributes such as personality, demographic categories, and ideology. By

contrast, we study the extent to which BNs and Dynamic Bayesian Networks (DBNs) can

infer dynamic behavioral intentions in areas such as health care and finance. Knowledge

of such intentions has great potential to improve the design of recommendation systems,

ad-targeting mechanisms, public-health campaigns, and other social and commercial en-

deavors.

Our contribution to this type of intention inference is twofold. First, we use BNs

and several behavioral-psychology techniques to model decision making as a complex

process that both influences and is influenced by static factors (such as personality traits

and demographic categories) and dynamic factors (such as triggering events, interests, and

emotions). Second, we explore the extent to which temporal models may assist in the

inference task by representing SN users as sets of DBNs that are built using our modeling

techniques. The use of DBNs, together with data gathered in multiple waves, has the

potential to improve both inference accuracy and prediction accuracy in future time slots.

It may also shed light on the extent to which different factors influence the decision-making

process.

The material in Chapter 4 has been submitted for publication and is under review.

Finally, in Chapter 5, we present conclusions and directions for further research.

5



1.2 Technical background

In this dissertation, we make extensive use of three technical building blocks: attribute-

based encryption, Bayesian networks, and dynamic Bayesian networks. We give brief

introductions to these building blocks here and provide pointers to more extensive treat-

ments.

1.2.1 Attribute-based encryption

An attribute-based encryption (ABE) scheme is a type of public-key encryption scheme.

In an ABE scheme, plaintexts are encrypted under access policies that are composed of

attributes. In addition, potential decryptors receive secret keys, composed of attributes as

well; typically, these are user-centric attributes in the sense that they represent decryp-

tors’ identities or roles within the enterprise that is using the ABE scheme. For instance:

IS-IN-CS-DEPARTMENT, CLEARANCE-LEVEL=HIGHEST, etc. One or more trusted

authorities (TAs) issue secret keys to potential decryptors that are based on the decryptors’

attribute sets. A user will be able to decrypt a ciphertext if and only if the set of attributes

that her key represents satisfies the access policy under which the plaintext was encrypted.

This is called ciphertext-policy ABE.

By contrast, key-policy ABE works in reverse: Users’ keys are based on access poli-

cies, and plaintexts are encrypted under sets of attributes. A key-policy ABE scheme that

involves multiple TAs is called a multi-authority, key-policy ABE (MA-KP-ABE) scheme.

MA-KP-ABE is our technical starting point in PRShare, a framework for privacy-

preserving, interorganizational data sharing that we present in Chapter 2. We start with

the single-authority KP-ABE scheme due to Rouselakis and Waters [96] and enhance it

with novel, oblivious-translation capabilities, thus introducing a new type of encryption

scheme: attribute-based encryption with oblivious attribute translation (OTABE).

6



Further information about ABE can be found in [17, 47].

1.2.2 Bayesian networks

A Bayesian network (BN) is a directed graphical model that captures a subset of the in-

dependence relations of a given joint probability distribution. Each BN is represented as

a directed acyclic graph (DAG), where nodes in the graph represent random variables and

edges represent statistical dependencies between variables. Specifically, a key property

of BNs is that each variable is conditionally independent of its non-descendants, given its

parents in the network. The parameters of a BN are all of the nodes’ conditional probabil-

ity distributions, which are often represented as tables (cpts). Cpts quantify the effects of

the node’s parents on each of the nodes’ states.

The main objective of a BN is to model the posterior conditional probability distribu-

tion of a variable or a set of variables of interest after observing new data (“evidence”).

BNs may be constructed either manually, using knowledge of the underlying domain (e.g.

“priors”), or automatically using domain-specific datasets.

In Chapters 3 and 4, we exploit some of the main advantages of BNs for the purpose

of inferring different behavioral intentions of SN users. BNs are highly suitable for this

purpose, because they naturally encode relations between different variables, rather than

focusing solely on relations between features and the target variable. This property is

essential when dealing with SN data or, more generally, with a data set that contains many

correlations among features. Furthermore, BNs allow us to incorporate prior information

in parameters and to learn parameters from both data and priors.

Further information about BNs can be found in [54, 63].

7



1.2.3 Dynamic Bayesian networks

BNs are static models and cannot represent dynamic processes. A dynamic Bayesian net-

work (DBN) is a sequence of BNs that adds three components: temporal variables, tempo-

ral edges, and temporal evidence. The ith BN in the sequence represents the ith time slice

of the DBN. In order to build a DBN, one must specify both its intra-slice structure and

corresponding cpts and its inter-slice cpts. Intra-slice cpts represent dependency relations

within a single time slice. Inter-slice cpts represent temporal dependency relations, i.e.,

relations between variables from different time slices.

DBNs can model temporal relations between different variables and thus are capable

of capturing influences over time; this makes them excellent tools for modeling time-

varying dependencies. Furthermore, DBNs are more versatile than BNs in terms of the

queries that they support and can be used to conduct richer types of analysis. These types

include inference of one or more variables of interest, prediction of future states of one or

more variables, identification of key determinants of different variables in the network, and

backward reasoning and retroactive analysis of historical values of variables. By enabling

the analyst to assess how a given variable changes over time, DBNs provide a capability

that static BNs cannot.

In Chapter 4, we present a new conceptual model of SN users that is based on DBNs.

We go on to develop a new methodology for inference of dynamic attributes in SN settings.

We demonstrate the usefulness of this conceptual representation on five dynamic attributes,

each of which is a different behavioral intention.

Further information about DBNs can be found in [84].

8



Chapter 2

Privacy-preserving data sharing

2.1 Introduction

As the amount, complexity, and value of data available in both private and public sectors

has risen sharply, data management and access control have challenged many organiza-

tions. Even more challenging are management and access control in interorganizational

data sharing. Each organization would like to minimize the amount of sensitive infor-

mation disclosed to other organizations, including both information about the data and

information about the organization’s work methodologies and role structure.

2.1.1 Problem description

We consider scenarios in which multiple organizations need to share data while each or-

ganization uses its own set of proprietary metadata to describe the shared data. In these

scenarios, data records contain a payload, which is the actual data, and a set of meta-

data attributes that describe the payload. Although organizations may agree to share the

payload, each uses a different set of metadata attributes, taken from its own professional

domain, to describe this payload. Data must be shared in a controlled manner that protects

the confidentiality of each organization’s proprietary attributes and prevents unauthorized
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users from accessing the payload.

Typically, one organization, the data owner, maintains a set of data records that are

potentially useful to other organizations, called the data clients. Each data record contains

sensitive information about an individual, the data subject. Data users, who are employ-

ees of a data client, may need access to data records stored by the data owner to perform

their assigned tasks. Each user must have the proper authorization to access the payloads

of the specific set of records needed for a given task. Our framework also features a third

type of organization, data intermediaries, that enrich data with additional information that

is needed for the client’s tasks but is available only to the intermediary. Each organization

ORGi maintains its own vocabulary V OCi that contains the overall set of domain-specific,

intraorganizational attributes used in its operations. V OCi includes both proprietary, sen-

sitive attributes and attributes that can be shared with other organizations. ORGi uses a

different set of attributes, ATTi,j ⊆ V OCi, to describe each shared payload pj .

For example, the data owner may be an email service provider (ESP). The data records

represent email messages. Each email record is composed of a payload, which is the

content of the email message, and metadata attributes about the payload such as sender,

receiver, and date. Some attributes, e.g., the email message’s receiver, are sensitive; there-

fore, the ESP will share them with other organizations only when required to do so and

only in a controlled manner. Each email message is created by one of the ESP’s customers,

who are the data subjects; it is then stored and cataloged using attributes that represent

the message’s metadata as collected by the ESP. Clients may be law-enforcement (LE)

agencies, in which agents (data users) need access to email records in order to perform

investigations. Intermediaries may include government agencies such as the IRS, which

could provide tax records associated with the email addresses that appear in the messages’

metadata attributes.

Design goals: Each organization wishes to maintain its proprietary view of the shared data
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and to keep that view confidential. This means that the set ATTi,j of attributes that ORGi

maintains on each shared payload must be hidden from the other organizations.

Another requirement that must be accommodated is the use of multiple vocabularies.

The owner uses vocabulary V OC1 to store and query the shared data, an intermediary

uses a different vocabulary V OC2 to enrich the shared data, and the client uses a third

vocabulary V OC3 to query and process the data, to manage access control, and to issue

data-access authorizations to its employees. Therefore, our framework must provide a

mechanism that dynamically and obliviously transforms attributes of shared data from one

vocabulary to another. Note that that this problem cannot be solved simply by requir-

ing any set of organizations that may need to share data to agree on a shared, standard

vocabulary. Such a standardization effort would require the organizations to know both

the names and values of attributes used by other organizations. However, our premise is

that the values of many attributes used internally by organizations are sensitive and cannot

be exposed to other organizations. Furthermore, in many natural use cases (see Subsec-

tion 2.2.2), transformations require auxiliary information, such as up to date statistics or

lists. Such information is known only at the point at which a user requests a specific data

record and may need to be supplied by an intermediary that is not known by the data owner

at the time that the owner encrypts the data.

Finally, because attributes could reveal sensitive aspects of organizations’ activities,

regulators and data subjects should expect sharing of both payloads and attributes to be

kept to a minimum. To facilitate minimal exposure of sensitive information, an interorga-

nizational data-sharing framework should offer a data-centric access-control mechanism.

Such a mechanism will allow a user to access a payload only if it is essential for the com-

pletion of one of her tasks; in addition, it will allow the user to learn only the subset of that

payload’s attributes that are needed for the task.
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2.1.2 Starting point: attribute-based encryption

Attribute-based encryption (ABE) is a natural starting point in the design of our frame-

work. In our terminology, the encryptor is the data owner, users are data clients’ em-

ployees (data users), and trusted authorities (TAs) both inside and outside the data client

determine users’ access policies. An ABE scheme grants an individual user a key that per-

mits him to decrypt a ciphertext if and only if the key matches certain attributes specified

during the ciphertext’s creation. ABE enables fine-grained access control, which is essen-

tial in a privacy-preserving data-sharing framework. It provides one-to-many encryption,

which can significantly increase the scalability of encryption and key management – prop-

erties that are necessary for interorganizational data sharing. ABE policy-access formulae

are highly expressive, because they can be specified with binary or multivalued attributes,

using AND, OR, and threshold gates.

Existing ABE schemes, however, have several properties that make them unsuitable

for our framework.

In existing ABE schemes, encryptors, users, and TAs all use the same vocabulary.

This means that these schemes cannot be used off-the-shelf in our framework, where a

crucial element of the problem description is that participating organizations may belong

to different business sectors or professional domains and thus use different vocabularies.

In particular, a data client’s TAs and employees use a different vocabulary from that of the

data owner. In ABE terms, this implies that attributes used in access policies (and keys)

issued by the TAs to data users might belong to a different vocabulary from the one used

by the owner to encrypt and store ciphertexts. Unless a suitable transformation is made

between the keys and the ciphertexts, decryption will fail even if the ciphertext satisfies the

user’s access policy. Such a transformation must separately consider each attribute in the

ciphertext and change it into a valid attribute from the users’ keys’ vocabulary. To protect

both data subjects’ privacy and organizations’ proprietary views, the original attribute must
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remain hidden from the user and the new attribute must remain hidden from the encryptor.

Existing ABE schemes cannot support this requirement.

Moreover, existing ABE schemes are generally used for role-based access control and

thus have user-centric vocabularies (attributes that describe decryptors’ traits) that reflect

organizational structure and roles. The use of user-centric attributes, coupled with the

single-vocabulary assumption, implies that the encryptor (data owner) must be exposed to

the roles of potential decryptors (clients’ data users) and the organizational structure that

they fit into. Many organizations are reluctant to share such sensitive information.

2.1.3 Main contributions

We present a new system architecture and a suite of protocols for interorganizational

data sharing that support privacy of both data (payload hiding) and organizational vo-

cabularies (attribute hiding). We introduce Attribute-Based Encryption With Oblivious

Attribute Translation (OTABE), in which a semi-trusted proxy translates the attributes un-

der which a data record’s payload was encrypted into the attributes under which it can

be decrypted by authorized users. The proxy performs the translation without learning

the underlying plaintext data. Moreover, translation is oblivious in the sense that the at-

tributes under which the record is encrypted remain hidden from the proxy. This novel

cryptographic technique enables mutually untrusted parties not only to use different vo-

cabularies of attributes to describe the shared data but also to share proprietary metadata

attributes in a controlled manner that protects the attributes’ confidentiality (attribute pri-

vacy). Furthermore, attributes and policies can be dynamically reconfigured, in the sense

that updates are done dynamically, without the need for re-encryption, and offline. No

previous proposed ABE scheme achieves all of these properties.

We provide a concrete OTABE scheme and prove it selectively secure in the standard

model. We then use it in our design of an efficient, expressive, and flexible interorgani-
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zational data-sharing framework that we call PRShare. In addition to the direct benefits

of OTABE described above, PRShare provides several other capabilities that are desirable

in real-world interorganizational data-sharing applications, including efficient and direct

revocation, protection from key-abuse attacks, and hidden access policies. In order to ob-

tain these features, we leverage our OTABE scheme’s translation technique. OTABE also

enables division of trust (multiple independent authorities authorize data access) and data

centricity (access policies contain data-related, rather than user-related, attributes), both of

which enhance privacy protection in PRShare. Finally, because of the unique structure of

OTABE ciphertexts, a single owner’s database can serve multiple clients without know-

ing the clients’ identities at encryption time. Furthermore, the owner does not to need to

authorize or serve clients’ data-access queries. Previous ABE schemes achieved some of

these desirable properties of our OTABE construction, but none achieved all of them.

Before proceeding to our technical results, we note that our approach is not suitable

for all data-sharing applications. For example, it is not intended for scenarios in which

the data subject participates directly in the user’s request for data about her and could be

asked to grant explicit consent. In general, data subjects in the scenarios we consider will

not even be aware of the specific uses that are made of data about them. Similarly, our

approach is not intended for scenarios in which there are clear, efficiently decidable, and

universal rules that govern which users can access which portions of the data; existing

access-control mechanisms suffice in such scenarios. Our techniques are useful in scenar-

ios in which there are legally mandated, general principles that govern access to sensitive

data, but instantiating those principles in the form of efficiently decidable rules requires

data-specific and dynamically changing knowledge. We give two examples in Subsec-

tion 2.2.2.
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Table 2.1: Properties of Proxy-Assisted ABE Schemes

Scheme Type MA
Access
policy DAT Proxy’s role DR SM HP

[50] KP-ABE 7 LSSS 7 Outsourced decryption 7 RCCA 7

[73] CP-ABE 7 AND gates 7
Delegation of

decryption rights 7 SCPA 7

[116] KP-ABE 7 LSSS 7 Revocation management 7 SCPA 7

[104] KP-ABE 7 LSSS 7 Revocation management 3 SCPA 7

[117] CP-ABE 7 AND gates 7 Revocation management 7 SCCA 7

[15] CP-ABE 3 LSSS 7 Outsourced decryption 7 SRCPA 3

[72] CP-ABE 7 LSSS 7
Delegation of

decryption rights 7 SCCA 7

[70] CP-ABE 7 AND gates 7
Outsourced decryption,

encryption 7 SCPA 7

[67] CP-ABE 7 LSSS 7 Outsourced decryption 7 SCPA 7

OTABE KP-ABE 3 LSSS 3 Attribute translation 3 SCPA 3

2.2 Background and motivation

2.2.1 Related work

Existing privacy-preserving data-sharing schemes fall into two general categories: cen-

tralized and decentralized. The former category includes the works of Dong et al. [32],

X. Liu et al. [76], Popa et al. [91] and Vinayagamurthy et al. [109]. The major advantage

of the centralized approach is efficiency; disadvantages include single points of failure and

the lack of division of trust. Decentralized solutions can be found in the work of Fabian

et al. [35], Froelicher et al. [41], C. Liu et al. [75], and Nayak et al. [86]. Decentralized

solutions avoid single points of failure, but they often have limited efficiency or scalability.

The original motivation for PRShare was enhancement of privacy protections in surveil-

lance processes. Previous work in this area includes that of Kamara [62] and Kroll et

al. [66]; they proposed cryptographic protocols that protect the privacy of known surveil-

lance targets. Segal et al. [101, 102] focused on unknown (i.e., not yet identified) targets

and provided cryptographic protocols that protect privacy of innocent bystanders in two
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commonly used surveillance operations: set intersection and contact chaining. Frankle et

al. [40] used secure, multiparty computation and zero-knowledge protocols to improve the

accountability of electronic surveillance.

Attribute-based encryption was introduced by Sahai and Waters [99]. Their work was

followed by many ciphertext-policy ABE and key-policy ABE constructions, including

those in [11, 17, 47, 88, 96]. Chase [25] introduced multi-authority ABE, and Nishide

et al. [87] introduced ABE with hidden access policy. ABE has been applied in a wide

range of domains, including fine-grained data-access control in cloud environments [112],

health IT [5, 71], and security of blockchains and Internet-Of-Things devices [93, 115].

We now give a high-level explanation of some crucial differences between the role of

proxies in OTABE and their roles in previous works.

An OTABE scheme provides an algorithm Translate() which allows a semi-trusted

proxy to translate one or more of the attributes under which a data record’s payload is

encrypted without learning the underlying plaintext. Moreover, translation can be done

obliviously, in the sense that the attributes under which the payload is encrypted remain

hidden from the proxy who translates them. The proxy learns only the attributes’ new

values.

Two common responsibilities of proxies in ABE are outsourced decryption, which

was introduced by Green et al. [50], and revocation management, which was used by Yu et

al. [116, 117]. In both cases, proxies are used for efficiency; they assume much of the com-

putational cost of decryption or revocation and lighten other parties’ loads. The attribute-

translation protocols in OTABE are not designed to reduce the client’s or the owner’s

computational loads. Similarly, outsourced-decryption and revocation-management prox-

ies are not designed to enable oblivious translation between organizational vocabularies or

to support dynamically reconfigurable attributes – two of OTABE’s primary goals. Sim-

ply put, proxies used for outsourced decryption and revocation management and those in
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OTABE serve completely different primary purposes.1

The use of proxies for ciphertext delegation was introduced by Sahai et al. [98]. Prox-

ies in this scenario take ciphertexts that are decryptable under policy P1 and transform

them into ciphertexts that are decryptable under policy P2. However, P2 must be stricter

than and use the same vocabulary as P1; here, “stricter” means than P2 permits the de-

cryption of a subset of the ciphertexts that could be decrypted under the original policy P1

used by the encryptor. Neither of these restrictions applies to the proxies in OTABE.

In attribute-based proxy re-encryption (ABPRE), which was introduced by Liang et

al. [73], a proxy re-encrypts a ciphertext encrypted under access structure AS1 to one that

can be decrypted under access structure AS2 without learning the plaintext. There is a sur-

face similarity between ABPRE and OTABE in that proxies in both transform ciphertexts

encrypted by data owners under AS1 into ciphertexts decryptable by clients under AS2.

However, the entity that issues re-encryption keys to proxies in ABPRE requires knowl-

edge of the vocabularies of both owner and client; to create re-encryption keys, she must

knowAS1 and AS2. Thus, unlike OTABE, ABPRE does not support multiple vocabularies

and can not provide attribute privacy.

In an ABPRE scheme, re-encryption keys are issued to a proxy on a per-access-policy

basis. In order to perform re-encryption, the entire access policy must be changed so that

the new policy contains no attributes that appear in the original policy. Neither of these

restrictions applies to OTABE, in which re-encryption-key issuing and re-encryption itself

can be done on a per-attribute basis. The responsibility for determining the new attribute

set and performing the re-encryption is divided among multiple parties from different trust

domains. Each party performs a partial re-encryption that uses only the attributes that

belong to its trust domain and does so in a controlled manner that results in a final, full

re-encryption that satisfies the data owner’s requirements. This decentralized approach

1A direct-revocation mechanism, partially managed by the proxy, is a natural byproduct of attribute
translation, as described in Subsection 2.4.2, but it is not the primary goal of OTABE.
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allows OTABE to support multiple vocabularies, provide attribute privacy, and enable dy-

namically reconfigurable translation policies that do not require re-initialization of the

system or re-encryption of records by the owner.

Finally, in ABPRE, the proxy must know the ciphertext’s original access policy in order

to perform the re-encryption. OTABE proxies, by contrast, perform oblivious translation

and re-encryption; they do not learn the original set of attributes or the original access

structure under which the plaintext was encrypted.

A detailed comparison between our scheme and other proxy-assisted ABE schemes is

shown in Table 4.2. MA denotes multi authority, DAT denotes dynamic attribute transla-

tion, DR denotes direct revocation, SM denotes security model, HP denotes hidden policy.

In addition, SCCA,SCPA and SRCPA stand for selective CCA, CPA and RCPA, respec-

tively.

2.2.2 Use cases

In order to motivate the notion of OTABE and illustrate its applicability in real-world

scenarios, we provide two examples.

Law-enforcement agencies: The Electronic Communications Privacy Act (ECPA) [33]

was passed to protect the privacy rights of ISPs’ customers with respect to disclosure of

their personal information. The ECPA limits LE access to email and other communication

records in a manner that is consistent with the Fourth Amendment. However, it has several

“loopholes.” For example, the ECPA classifies an email message that is stored on a third

party’s server for more than 180 days as “abandoned.” As a result, LE agencies can request

that both the metadata and the content of those email messages be turned over without the

need for judicial review.

Unrestrained government access to communication data is clearly undesirable. How-

ever, given national-security and public-health concerns, expecting LE and intelligence
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agencies never to access any data held by communication companies such as ESPs is un-

realistic. A more realistic goal is to deploy a policy that restricts such data sharing to

the minimum needed in order to perform the task at hand, as defined by multiple trusted

entities. OTABE provides a mechanism that can enforce such policies and protect the con-

fidential information of all organizations and agencies that participate in the data-sharing

protocols.

In OTABE terms, the data owner is the ESP, and the data subjects are people who

send and receive email messages. The data are email records. Each email record contains

a payload, which is the content of an email message, encrypted under a set of metadata

attributes, e.g., sender’s and receiver’s email addresses, date, subject line, etc. The client

is an LE agency, such as the FBI or a municipal police department, and the intermediaries

may be other LE agencies, non-LE government agencies, or private companies. The data

users are LE agents employed by the client.

Clearly, email records can be useful to LE agencies, but an agent should be able to

decrypt only those records whose metadata attributes constitute probable cause in the

context of a specific investigation. The entities who determine probable cause on a per-

investigation basis are the TAs. Each TA is motivated by a different set of interests and

goals. A TA may be part of the judicial branch, the ESP, the LE agency, or another external

entity.

Not all of the attributes used by the ESP to store email records can be shared with

the LE agency, because some of them reveal both private information about the ESP’s

customers or proprietary information of the ESP itself. Similarly, the attributes used by the

LE agency to access and process records and to issue access policies cannot be shared with

the ESP, because they reveal confidential information about the LE agency’s investigations.

Furthermore, some of the attributes that are used by the parties do not belong to the same

vocabulary. For instance, the attribute “appears-in-watchlist” is frequently used in keys

issued to LE agents, but it is meaningless to the ESP. Such attributes must undergo dynamic
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adaptation to ensure that agents’ keys match an email message’s attributes. OTABE allows

the ESP and LE agency to use their own vocabularies while keeping the email messages’

content and metadata confidential.

TAs are likely to grant an agent who is investigating a crime access to email records

in which either the sender or the receiver is on the agency’s watchlist. The LE agency’s

proxy can translate the ESP’s sender and receiver attributes into the LE agency’s “on-

watchlist” attribute in an oblivious fashion, thus maintaining both the confidentiality of

the watchlist and the privacy of data subjects’ email addresses. In addition, an agent might

want to check whether the sender or receiver appears on other agencies’ lists, e.g., a list of

investigations ongoing at LEA-2, which is another LE agency. Because details of LEA-2’s

ongoing investigations cannot be shared with the client, the translation of the attributes

sender and receiver will be done obligiously by LEA-2’s intermediary proxy.

Similarly, the access policy of an agent who is investigating cyber fraud may enable

access to email records in which the subject line matches a “suspicious” pattern. The

definition of “suspicious” may be determined according to a dynamically updated list of

keywords. Using this keyword list, the client’s proxy can obliviously translate the attribute

“subject line,” maintained by the ESP, into the attribute “is-suspicious-subject,” maintained

by the client and used in the agent’s access policy. Neither the agent nor the proxy is able

to read the actual subject line, and the data subject’s privacy is maintained.

Note that, in both of these investigations, dynamic translations are needed, because

watchlists and lists of suspicious keywords change over time. They enforce the require-

ment that an agent cannot access payloads without probable cause, but they do not reveal

to the ESP confidential information about watchlists and ongoing investigations.

Insurance companies: Consumer reporting agencies (CRAs) collect and share credit-

related information about consumers. This information is used by credit-card issuers, mort-

gage lenders, insurance companies, etc. to assess creditworthiness of consumers. The three
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Table 2.2: Summary of notations and symbols

Notation Description
(M)S encryption of M under a set of attributes S
[x]y encryption of x under the key y
ORGS set of proxies involved in translation of C = (M)S
DECS set of parties involved in decryption of C = (M)S
Porgj the proxy operating on behalf of organization orgj
Sm mutable attributes
Sim immutable attributes
Sp the set of attributes’ labels that Porgp is allowed to translate
pubΠ(x) the public key of entity x, created by a public-key scheme Π
Kx a symmetric shared key between orgowner and organization orgx
org(k) the organization who is allowed to translate attribute attk
Ej(L) encryption of auxiliary information L by organization orgj
F (K, x) pseudorandom function keyed with symmetric key K
F (x)[0] the first argument of the output of the evaluation of F on x

largest CRAs in the US are Experian, TransUnion, and Equifax.2 The Fair Credit Report-

ing Act (FCRA) [36] regulates the collection, dissemination, and use of credit-related in-

formation. The FCRA gives companies the right to access consumers’ credit reports. This

access is not limited to reports on the company’s customers; it may include reports on

large sets of potential customers. In order to create pre-screened offers and market them

to potential customers, an insurance company is allowed to access consumers’ credit re-

ports and to share information with credit-card issuers, banks, other insurance companies,

etc. However, access rights to credit reports are limited by the FCRA to information for

which an insurance company has a permissible purpose. OTABE can be used to formal-

ize and enforce this vague concept in a manner that protects both consumers’ privacy and

proprietary information of insurance companies and CRAs.

In OTABE terms, the data owner is a CRA, and the data subjects are consumers. Data

records are credit reports, owned by the CRA. Each record is encrypted under the set of

attributes that describe the report, e.g., the phone number, credit score, and driver’s license

2In September of 2017, Equifax announced a data breach that exposed the personal information of 147
million people and cost the company hundreds of millions of dollars in compensation to affected people [16,
37].
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number (DLN) of the data subject, credit-utilization ratio, date and time of the report’s

creation, CRA-internal statistics, etc.

Insurance companies are the data clients. Data users are insurance-company employ-

ees who use credit reports to make decisions about which insurance products to offer

consumers and how to price them. In order to comply with the FCRA’s “permissible-

purpose” requirement, employees should only access credit reports on a “need-to-know”

basis. An employee can only access those records whose associated attributes are relevant

to her task, as determined by a set of TAs. TAs may include the CRA, a government entity,

or various parties within the insurance company. Other organizations, such as credit-card

issuers, government entities, banks, and other insurance companies may serve as interme-

diaries by “enriching” data supplied by a CRA in a privacy-preserving manner.

As in the LE scenario, each organization wants to protect the confidentiality of its

proprietary information. For instance, the CRA does not want to reveal unnecessary iden-

tifying information about its customers, an insurance company does not want to reveal how

it makes business decisions regarding which consumers are considered “qualified” for pre-

screened offers, etc. Also as in LE, different organizations may use different vocabularies.

Consider the attribute “number of accidents,” which is used by insurance companies to

screen potential customers. This attribute cannot be used by CRAs, because they do not

maintain such information in their credit reports. OTABE supports all of these require-

ments.

Assume that each report is encrypted under the following attributes:

CREDIT-UTILIZATION-RATIO, CREDIT-SCORE, PHONE-NUMBER, DLN, and DATE.

Employee U in the car-insurance department is assigned the task of finding qualified po-

tential customers and tailoring pre-screened car-insurance offers, using information found

in their credit reports.

The TAs determine that, for this task, a qualified customer is defined by the following

policy:
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CREDIT-SCORE ≥ X ∧ #ACCIDENTS ≤ Y ∧ IS-BLACKLISTED=FALSE ∧ IS-

CREDIT-RATIO-LESS-THAN-AVERAGE=TRUE

The intermediaries in this case are financial business partners of the insurance com-

pany, e.g., banks and credit-card issuers, and the Department of Motor Vehicles (DMV).

To complete her task, U submits to the CRA a query that requests the reports of all

consumers whose credit scores are greater than X . The CRA then sends each matching

record to two intermediaries: the DMV and a credit-card issuer.

For each record, the DMV’s proxy obliviously translates the DLN attribute into #AC-

CIDENTS, which is found in the subject’s driving record. The credit-card issuer’s proxy

obliviously translates the numeric CREDIT-UTILIZATION-RATIO attribute into a binary

attribute IS-CREDIT-RATIO-LESS-THAN-AVERAGE by obliviously comparing the con-

sumer’s utilization ratio with the average utilization ratio of the issuer’s customers. The

insurance company’s proxy obliviously translates the PHONE-NUMBER attribute into the

attribute IS-BLACKLISTED, using a dynamically updated list of individuals who were

blacklisted by the insurance company or one of its business associates for, e.g., failure to

pay.

When U receives a record, she will be able to decrypt the credit report, read its con-

tents, and learn the subjects’ identifying information if and only if the record’s post-

translation attributes satisfy her access policy.

Data privacy is achieved, because only authorized users can decrypt a given credit

report. Attribute privacy is achieved, because attributes used by each organization remain

hidden to the extent required. Moreover, sensitive information about consumers whose

records are decrypted is also protected. For example, a user may learn that a consumer’s

number of accidents is below a certain threshold but not learn the exact number. Finally,

these translations demonstrate OTABE proxies’ ability to translate dynamically, because

the list and the average change over time, and obliviously, because neither the attributes
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nor the data are revealed to them.

2.3 Attribute-based encryption with oblivious attribute

translation

2.3.1 Terminology

Attributes: Our scheme uses multi-valued attributes, denoted by 〈label, operator, value〉.

Note that this representation is different from the ones found in typical ABE schemes,

which use “descriptive” (essentially binary) attributes. We denote by attLk and attVk the

label and value of an attribute attk. Translation of an attribute can be done either by

changing the attribute’s value (i.e., replacing value with value∗) or by replacing both the

attribute’s label and its value with label∗ and value∗, respectively.

In PRShare, attributes’ labels are partitioned into two sets: mutable, denoted Sm, and

immutable, denoted Sim. Immutable attributes are ones that cannot be translated by any

party in the system. Intuitively, they are the attributes that are shared by the owner and

the client. Mutable attributes, on the other hand, are ones that can be translated by a

semi-trusted proxy at some point after their initialization by the owner.

Hidden access policy: We introduce an OTABE scheme with hidden access policy by

ensuring that the set of attributes used to encrypt a message is hidden from the CSP, the

proxies, and the data users. We use the term “hidden access policy” for compatibility with

the terminology used in existing CP-ABE work, in which access policies are attached to

the ciphertexts.

In such a scenario, a data user cannot learn the attributes that are attached to a cipher-

text but is able to determine which attributes are needed to perform the decryption. The

hidden-access-policy feature is used to enhance privacy. However, if the owner and client
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wish to reveal the ciphertexts’ attributes to the users or wish to speed up decryption at the

expense of some privacy, they can turn off this feature without having to alter the encryp-

tion, translation, and decryption operations. This follows from the modular design of the

system, as discussed in Subsection. 2.5.1. Note that the hidden-access-policy feature does

not enable the creation of trivial policies (i.e., those that always allow a user to decrypt

every record she receives). This is because a key must satisfy all TAs’ policies in order to

succeed in decrypting, and the data owner can always serve as a TA or delegate to a TA

that it trusts not to permit decryptions that it wishes to forbid.

In general, PRShare is designed to achieve a high level of privacy while allowing flexi-

ble and expressive data-sharing protocols. In real-world scenarios, however, organizations

have different priorities. Some may favor privacy, but others may favor functionality and

thus prefer to allow their data users broader access to information about the shared data at

the expense of privacy. PRShare is able to support both approaches: It is highly modular,

and each privacy guarantee relies on a different low-level feature that can be removed or

changed to fit the organization’s privacy-functionality trade-offs while maintaining the rest

of the privacy guarantees.

(Informal) Definition: LetM be a data record’s payload encrypted under a set S ⊆ U1

of attributes, resulting in a ciphertextC. We refer to the set S as the set of original attributes

under which M is encrypted. Let T : U1 → U2 be a translation function from the universe

U1 of attributes to the universe U2 of attributes, and let Qj be the set of original attributes

that a semi-trusted proxy j is allowed to translate. An ABE scheme supports oblivious

attribute translation by semi-trusted proxy j if, given C, Qj , and T , for all s ∈ Qj , the

proxy is able to compute T (s) without:

• learning anything about M ,

• learning anything about the attributes in S \Qj , or

• learning the labels or the values of attributes in S ∩Qj .
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Formal security definitions are given in Subsection 2.5.2.

2.3.2 Algorithms

An MA-OTABE scheme consists of the following algorithms:

GlobalSetup(λ) ⇒ (PK): The global-setup algorithm takes as input a security pa-

rameter λ and outputs global parameters PK.

AuthoritySetup(PK) ⇒ (PKi,MSKi): Each authority runs the authority-setup al-

gorithm with PK as input to produce its own public key PKi and master secret key

MSKi.

Encrypt(M,PK, S, {PKi}i∈Aut) ⇒ (CT ): The encryption algorithm takes as input

a message M , a set S of attributes, and the public parameters. It outputs the ciphertext

CT .

KeyGen(PK,MSKi, Ai, u, t) ⇒ (SKi,u,t): The key-generation algorithm takes as

input the global parameters, an access structure Ai, a master secret key MSKi, the global

identifier u of a data user who issued the key-generation request, and a task t. It outputs a

decryption key SKi,u,t.

Distribute(I) ⇒ ({Cj|j ∈ DECS}): This algorithm takes as input a set I of cipher-

texts’ ids. It outputs a set of partial ciphertexts, {Cj|j ∈ DECS}.

Translate(PK, j = p, Cp, {PKi}i∈Aut) ⇒ (C ′p): The translation algorithm takes as

input the global public parameters and the authorities’ public parameters, a proxy’s index

j = p, and a partial ciphertext Cp. It outputs a translated partial ciphertext C ′p.

Decrypt(PK, {SKi,u,t}, Cu, {C ′j|j ∈ ORGS}) ⇒ (M): The decryption algorithm

takes as input the global parameters, a set of secret keys {SKi,u,t}i∈Aut, a partial ciphertext

Cu, and a set of translated partial ciphertexts {C ′j|j ∈ ORGS}. It outputs the plaintext

M .
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2.4 System model

Definition of attributes: We define two sets of attributes’ labels: Sowner represents the

set of attributes that the owner uses to encrypt, store, and access data records that it owns.

This set is determined by the data owner. Sclient represents the set of attributes under which

keys are generated; those are the attributes that the client uses to access and process the

shared data records, and they are chosen by orgclient. Note that Sowner ∩ Sclient 6= ∅; this

means that some attributes are shared by the client and the owner. This enables the users

to retrieve data records of potential interest from the CSP using queries that are composed

of shared attributes and also enables the data owner, if it wishes, to be one of the TAs. We

denote the universes of attributes comprising each set by Uowner and Uclient.

For each data intermediary orgj in the system, we define a set of attributes’ labels

Sj ⊆ Sm. It represents the set of attributes that is governed by orgj and hence can be

translated by the proxy Porgj that acts on behalf of orgj .

2.4.1 System participants

Data owner: orgowner is responsible for encrypting each of its data records using the set

S ⊆ Uowner of attributes that are most likely to appear in future queries.

Data users: Data users are employees of orgclient who need access to data records stored

by orgowner in order to perform daily tasks. Each user is assigned a unique global identifier

and a list of tasks. Each task t has a well defined time limit tlt. The list is dynamic in the

sense that tasks can be removed or added to it during the system run. A user issues two

types of queries. A key request is used to obtain a key that corresponds to a specific access

policy. A data query is used to obtain data records owned by orgowner that are relevant to

a specific task in the user’s task list.

Cloud-service provider: The CSP stores the ciphertexts outsourced by orgowner and re-
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sponds to queries submitted by data users in orgclient.

Trusted authorities: TAs are the entities that determine the decryption policy of orgclient

and issue secret keys that are used by data users. They use attributes from Uclient. There

must be at least two TAs, and they may be entities in orgowner, orgclient, or external orga-

nization. We assume that at least one TA belongs to orgclient and that at least one TA does

not.

Proxies: Each proxy Porgj represents a different organization orgj (either an intermediary

or a client) and operates on behalf of that organization. The role of a proxy Porgj is to

translate a subset of attributes in Uowner under which a ciphertext was encrypted to the

corresponding attributes in Uclient. To do this, the proxy uses both a generic translation

algorithm that is used by all proxies in the system and an organization-specific translation

function that is determined by orgj and may involve auxiliary information provided by the

organization to its proxy. The generic translation algorithm is public, but the organization-

specific translation function and auxiliary information are considered private to orgj and

Porgj . We assume that every MA-OTABE scheme includes at least one proxy (the “client

proxy”) that is responsible for managing orgclient’s user-level revocation mechanism and

for performing vocabulary translations.

Data subjects: Each data record owned by orgowner is linked to a certain individual, the

data subject. A data record’s payload contains personal information about the data subject,

including content produced by the data subject. We assume that every data subject has a

user id (UID) that varies based on the type of data used in the system. Examples of UIDs

include phone numbers and email addresses.

2.4.2 Revocation mechanism

One major byproduct of OTABE is the ability to implement an efficient and direct re-

vocation mechanism, in which revoking the keys of a set U of users does not affect the
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keys of users not in U . Using the translation technique, a semi-trusted mediator can trans-

form a ciphertext that was encrypted under a set of data-centric attributes at point A into

a “personalized” ciphertext reflecting a specific data query made by a user at point B. The

main idea of our revocation mechanism is the addition of global-identifier (GID) and time

attributes to each key. In addition, we add a dummy GID and dummy times during encryp-

tion. These dummy attributes will be translated to suit the specific data query’s time and

requester only if a certain criterion is met. This creates an efficient mechanism in which

most revocations are enforced automatically.

We assume that every data user receives a unique GID. The data client maintains a

revocation list that contains revoked GIDs. Users whose GIDs are on the revocation list

are not allowed to access any data record. Revocation-list updates are infrequent and

happen only when a user completely leaves the organization. Furthermore, GIDs can

be removed from the revocation list after a relatively short time, because the key-level

revocation mechanism ensures that secret keys become invalid within a well known and

controlled length of time from the date they were issued.

For the key-level revocation mechanism, we leverage a basic trait of an organizational

task: It has a well defined time limit. This time limit is determined by the user’s manager

and may change while the user is working the task. In our case, the entities who choose the

time limit are the TAs; this is an integral part of the per-task “probable-cause” approach.

The time limit given to a specific task performed by a user becomes an attribute in the

user’s key. In addition, the encryptor adds to each ciphertext a dummy “time” attribute.

That dummy attribute is translated by the client proxy to the current time at which the data

query is submitted by the user, thus making a key-level revocation check an automatic part

of any decryption attempt. In our construction, we view a “time limit” as a date. This can

easily be extended to include finer-grained notions of time.

We also leverage our attribute-translation technique for the user-level revocation mech-

anism. It enables us to include a user-specific component in the ciphertext; this component
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is adjusted according to the specific data user by the client proxy in the data-retrieval phase.

Note that we treat the GID as an additional attribute. We incorporate the user’s GID as

an attribute in the user’s secret keys and, in parallel, add a “placeholder” GID attribute to

each ciphertext. When a user submits a data query, the placeholder attribute is translated

to that specific user’s GID only if she does not appear in the revocation list. This mecha-

nism provides an efficient user-level revocation mechanism and protects the scheme from

collusion attempts and key-abuse attacks.

Details of the translations used in our revocation mechanism are provided in Subsec-

tion 2.7.2.

2.4.3 Main flows

The system model consists of an encryption flow, a data flow, and a key-generation flow.

We assume that the system has already been set up, resulting in the global public parame-

ters PK and a public-key, master-secret-key pair (PKi,MSKi) for each trusted authority

Auti.

Encryption flow: In order to encrypt a data record’s payload M , orgowner first determines

the set S of attributes under which M will be encrypted. S ⊆ Uowner is composed of

|S| − 2 data-centric attributes that describe the record’s metadata and two attributes that

serve as “placeholders.” The placeholders attGID and attTIME are initialized with ran-

dom, “dummy” values by orgowner and receive their actual values from orgclient’s proxy.

Based on the attributes in S, the encryptor determines the set DECS of decryption par-

ties. DECS contains all parties involved in the decryption of the ciphertext, i.e., a data

user and the set ORGS of organizations that are allowed to translate attributes in S (rep-

resented by their proxies). ORGS includes the client’s proxy and any number of data in-

termediaries’ proxies. After determining DECS , orgowner encrypts M under S by calling

Encrypt(M,PK, S, {PKi}i∈Aut) and receives a set {Cj} of |DECS| partial ciphertexts.
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|DECS| − 1 of the partial ciphertexts correspond to proxies and contain only attribute

components. One corresponds to the data user and contains both attribute components

and a data component; the latter contains the payload M itself. Note that, for each Cj ,

U(Cj) ⊆ Uowner, where U(C) is the vocabulary of attributes under which a ciphertext C

is encrypted. Lastly, orgowner computes Y = {Obf(attk) | attk ∈ S}, a set of obfuscated

values for immutable attributes in S, and uploads to the cloud the preprocessed ciphertext

and the UID that the ciphertext is associated with.

Key-generation flow: A user u who belongs to orgclient sends a key request to the TAs in

each of the following cases: Either a new task is inserted to u’s task list, or the time limit

for an existing task in u’s task list has expired, and her existing secret key for that task

is no longer valid. The request contains a description of the task and the “ideal” access

policy that u would like to obtain in the context of that task. Each authority Auti creates

an access policy Ai based on an examination of the user’s request and the nature of the

specific task. It creates a GID attribute attGID that contains the user’s GID u. Finally, it

determines tlt, which is either a new time limit for t (if t is a new task) or an extended

time limit (if t is an existing task and its time limit has expired) and uses tlt to create a

time-limit attribute attLIMIT . The time-limit attribute that is embedded in a secret key

must be expressed using the same units (date, month, time stamp, etc.) used in the time

attribute attTIME that is attached to the ciphertext. It then creates its secret key SKi,u,t by

calling KeyGen(PK,MSKi, A
′
i, u, t), where

A′i = Ai ∧ attGID ∧ attLIMIT = Ai ∧ (GID == u) ∧ (TIME < tlt).

Data flow: A data user u sends a data query to the CSP. It contains a conjunctive query

ψ on attributes from Uowner ∩ Uclient. The CSP retrieves the ciphertexts that satisfy the

query. For each ciphertext C, it sends Cj=u to u and each Cj=p to a proxy Porgp . At

that point, because u received only a partial ciphertext, she cannot yet use her key for
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decryption. Each proxy Porgp in ORGS translates each attribute attk such that (attk ∈

S) ∧ (attLk ∈ Sp) by calling Translate(PK, j = p, Cp, {PKi}i∈Aut) and computes an

obfuscated value for each new attribute attk′ that it added, creating Yp = {Obf(attk′)}.

The client organization’s proxy also manages the user-level mechanism by performing a

correct translation of attGID and attTIME only if u does not appear in the revocation list.

Each proxy Porgp then sends the translated partial ciphertext C ′j=p and Yp to the user. At

this point, U(C ′j) has changed from Uowner to Uclient. Because each partial ciphertext

is, from the proxy’s view, independent of the data component inside the ciphertext, each

proxy is able to perform the translations without learning M . Moreover, the structure of

each partial ciphertext ensures that Porgj learns nothing about the attributes with labels that

do not belong to Sj . All attribute components that correspond to attributes that the proxy

can translate contain obfuscations of the attributes, rather than the attributes themselves;

thus, each attribute attk such that (attk ∈ S)∧(attLk ∈ Sp) remains hidden from the proxy,

while the obfuscated value can still be used for various translation operations. The user

gathers all the translated partial ciphertexts {C ′j|j ∈ ORGS} and her partial ciphertext

Cu to create an aggregated ciphertext that she can decrypt using her secret key. Finally,

u decrypts the payload by calling Decrypt(PK, {SKi,u,t}i∈Aut, Cu, {C ′j|j ∈ ORGS}).

The decryption succeeds if and only if the following three conditions hold:

• ∀i ∈ Aut, TR(S) |= Ai, where TR(S) = Y ∪ {Yj}j∈ORGS
represents the set of

translated attributes, created based on the original set S of attributes.

• tlt, the time limit for task t, has not expired. (Otherwise, attLIMIT cannot be

satisfied.)

• u has not been revoked, and no collusion or key-abuse attempt has been made.

(Otherwise, attGID cannot be satisfied.)
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2.5 Security definitions

2.5.1 Goals and trust relationships

An OTABE-based framework should satisfy three security goals with respect to all PPT

adversaries.

Selective security against chosen-plaintext attacks: The adversary cannot learn (in the

selective-security model) the plaintext of either an original ciphertext or an aggregated,

translated ciphertext.

Security against colluding parties: Let C = (M)S be a valid MA-OTABE ciphertext.

No coalition of at most |DECS| − 1 parties can learn anything about M .

Attribute secrecy: The trust model that we consider in this work is different from the

standard ABE trust model. Unlike the plaintext, for which we have a single security notion

that applies to all the participants, we cannot apply a uniform security criterion to the

attributes. Because each party plays a distinct role in the protocol, the set of attributes to

which it is allowed to be exposed differs from the sets to which other parties are allowed

to be exposed. We define three security requirements to ensure the secrecy of ciphertexts’

attributes: hidden access policy, oblivious translation, and attribute privacy.

Hidden access policy: The set of attributes used to encrypt a message cannot be learned

by the CSP, the proxies, or the data users.

Oblivious translation: The original attributes that each proxy Porgj translates remain hid-

den from the proxy. That is, for every attribute s such that sL ∈ Sj , the proxy Porgj is able

to translate s into a new attribute s′ ∈ Uclient without learning s.

Attribute privacy: Informally, the attribute-privacy requirement states that organizations

that share data must be able to maintain separate views of the data that they share.

Definition 1 Given a payload space M, a universe Uowner of attributes used by the en-

cryptor (orgowner) to describe data records it owns, and a universe Uclient of attributes
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used by orgclient for data usage and authorization management, we define a function

MAP :M×Uowner → Uclient that maps attributes in orgowner’s vocabulary (correspond-

ing to data records’ payloads M ∈ M) to attributes in orgclient’s vocabulary. An OTABE

scheme achieves attribute privacy if and only if:

• For every data record’s payload M and every attribute s ∈ Uowner, if s is mutable,

the encryptor does not learnMAP (M, s), the translated value of the attribute s with

respect to M .

• For every data record’s payload M and every attribute v ∈ Uclient, if MAP−1(M, v)

is mutable, data users and TAs do not learn MAP−1(M, v), the original value of the

attribute v with respect to M .

The following observations about our threat model, which considers external adver-

saries as well as the parties presented in Subsection 2.4.1, are natural aspects of the secu-

rity definitions and results presented in Subsection 2.5.2.

No organization fully trusts the other organizations: Our framework protects the owner’s

data records, attributes of the data held by each organization, and auxiliary information

held by each organization that is used for attribute translation. We assume that the owner

is honest but curious.

No organization fully trusts its proxy server: CSPs and proxies in our framework, which

we assume to be honest but curious, are only given encrypted attributes and encrypted

auxiliary information. Note that the use of honest but curious proxies is well established

in the design of cryptographic protocols [9, 18, 21, 49, 56, 117].

The client organization does not fully trust its data users: Data users in our system,

who are assumed to be malicious, can only access records that are relevant to their assigned

tasks, as determined by the TAs. We assume that at least one TA is honest. Data users also

cannot learn attributes of the shared data records that are held by organizations other than

the data client.
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2.5.2 Definitions

We start by presenting the definition of selective security for our MA-OTABE scheme.

LetE = (Setup,AuthoritySetup, Encrypt,Distribute,KeyGen, Translate,Decrypt)

be an OTABE scheme for a set of authorities Aut, |Aut| = K. Consider the following

OTABE game for a PPT adversary A, a challenger B, a security parameter λ, an attribute

universe Uowner, and an attribute universe Uclient.

Init: The adversary chooses the challenge attribute set S, where S ⊆ Uowner. Based

on S, the adversary chooses the challenge decryption-parties set DEC*
S , where DEC*

S ⊆

DECS . The adversary also chooses a subset of corrupted authorities Autc. We assume

that all authorities but one are corrupted and denote the honest authority by Auth; thus,

Aut = Autc ∪ {Auth}. The adversary sends Autc, Auth, S, and DEC*
S to the challenger.

Setup: The challenger runs the Setup algorithm to produce the public parameters PK

and, for each authority Auti, runs the AuthoritySetup algorithm to produce PKi and

MSKi. If Auti is honest, the challenger sends PKi to the adversary. If Auti is corrupted,

the challenger sends both PKi and MSKi to the adversary.

Phase 1: The adversary chooses a revocation list RL and sends it to the challenger.

It may then issue any polynomial number of key requests for tuples of the form (access

structure, GID, task identifier) and send them to the challenger.

Given a request (access structure=AC ∈ Uclient, GID=u, task=t), the adversary pro-

ceeds as follows. For requests issued for a corrupted authority Auti, the adversary runs

SKiut = KeyGen(PK, MSKi, AC, u, t) itself, because it has MSKi, given to it in

the setup phase. For requests issued for the honest authority Auth, the challenger pro-

vides the answer. It extracts the time limit tlt from the description of task t and creates

a time-limit attribute attLIMIT = 〈DATE,<, tlt〉. In addition, given the GID, u, in the

request, the challenger creates a GID attribute attGID = 〈GID,==, u〉. It then creates

AC ′ = AC ∧ attLIMIT ∧ attGID, which is an updated version of AC, and performs:
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• If S |= AC ′ and u /∈ RL, the challenger aborts.

• If S |= AC ′ and u ∈ RL, then S must contain SGID = u. The challenger picks GID

u′, u′ 6= u, and generates the secret key using

SKhu′t = KeyGen(PK,MSKh, AC, u
′, t).

• If S 6|= AC ′, the challenger generates the secret key using

SKhut = KeyGen(PK,MSKh, AC, u, t).

Challenge: The adversary submits two messagesm0 andm1 to the challenger. In addi-

tion, for every proxy j in DEC*
S , it sends a bit aj to the challenger. (By default, if j repre-

sents the user, we assume aj = 0.) The challenger flips a fair coin b and encrypts mb under

S: CT = Encrypt(mb, PK, S, {PKi}i∈Aut). Assuming ICT is the index corresponding

to the ciphertext CT , the challenger computes a set {Cj|j ∈ DEC*
S} of partial ciphertexts

using Distribute(ICT ). For each proxy j ∈ DEC*
S , if aj = 1, the challenger performs a

translation of the corresponding partial ciphertext,C ′j = Translate(PK, j, Cj, {PKi}i∈Aut),

resulting in a translated partial ciphertext C ′j . Finally, it sends the ciphertext C∗ to the ad-

versary:

C∗ =
⋃

j∈DEC*
S

c∗j c∗j =


C ′j if aj = 1

Cj if aj = 0

Phase 2: Phase 1 is repeated.

Guess: The adversary outputs a guess b′ of b. The advantage of the adversary in this

game is defined as Pr[b′ = b]− 0.5.

Definition 2 An MA-OTABE scheme is selectively secure if all PPT adversaries have

negligible advantage with respect to λ in the selective-security game.

In the proof that our MA-OTABE construction is secure, we use a q-type assump-

tion about prime-order bilinear groups: the decisional q-Bilinear (t, n)-threshold Diffie-
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Hellman assumption ((q, t, n)-DBTDH). It is similar to the Decisional q-Bilinear Diffie-

Hellman assumption (q-DBDH) used by Rouselakis and Waters [96].3. The (q, t, n)-

DBTDH assumption can be seen as a “threshold version” of the q-DBDH assumption:

Instead of sending the attacker terms that contain the element z (q-DBDH), z is broken

into n shares and some of the terms that the attacker receives contain only shares {zc}c∈V

of z, where V , |V | = t, is chosen by the attacker.

The assumption is parameterized by a security parameter λ, a suitably large prime p,

two prime-order bilinear groups G1 and G2, a bilinear map e : G1→ G2, and integers q,

t, and n, where n ≥ 1 is polynomial in λ, and t ≤ n. It is defined by a game between a

challenger and an attacker. The attacker chooses a subset V ⊆ [n] of t indices and sends

it to the challenger. The challenger picks a group element g uniformly at random from

G1, q+3 exponents x, y, z, b1, b2, . . . , bq independently and uniformly at random from Zp,

and n− 1 additional exponents z1, . . . , zn−1 independently and uniformly at random from

Zp. It sets zn = z −
∑n−1

c=1 zc. Then it sends (p,G1, G2, e) and the following terms to the

attacker:

g, gx, gy, gz, g(xz)2

∀l ∈ [q] : gbl , gxzbl , gxz/bl , gx
2zbl , gy/b

2
l , gy

2/b2l

∀l, f ∈ [q], l 6= f : gybl/b
2
f , gxyzbl/b

2
f , g(xz)2bl/bf ,Ψl,f

where

Ψl,f = {gxzc(bl/bf )|c ∈ V }.

The challenger flips a fair coin b. If b = 0, it gives the term e(g, g)xyz to the attacker.

Otherwise, it gives the attacker a term R chosen uniformly at random from G2. Finally,

the attacker outputs its guess b′ for the value of b.

3For convenience, we give the details of the q-DBDH assumption in Section 2.10.
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Definition 3 We say that the (q, t, n)-DBTDH assumption holds if all PPT attackers have

at most a negligible advantage in λ in the above security game, where the advantage is

defined as Pr[b′ = b]− 1/2.

2.6 Construction overview

2.6.1 Main OTABE techniques

Before presenting our construction in full detail, we present a simplified version that is

inspired by the 69large-universe ABE scheme of Rouselakis and Waters [96] and that

illustrates basic techniques that are new to our construction. Note that the scheme in [96]

is single-authority; we extend it here to a multi-authority scheme.

Ciphertext composition in [96] is given by these equations:

C0 = Me(g, g)sα C1 = gs C2k = gfk C3k = (θattkh)fk(w)−s

The ciphertext is composed of a data layer and an attribute layer. We refer to C0 and C1

as data-layer components, C2 and C3 as attribute-layer components, and each element in

C3 as an attribute component. The data-layer component C0 in [96] contains the message

M masked by the public key e(g, g)α of the (single) TA. Assuming that M is encrypted

under a set S of attributes, the attribute layer contains 2|S| components, i.e., two (C2k

and C3k) for each attribute attk in the ciphertext. Each pair contains a uniform, randomly

chosen term fk that is local to the specific attribute attk. C3k also contains the attribute

attk itself. The two layers are connected by the binder term s.

The basic idea of our construction is as follows. Assume that we have a data owner,

a data client, two authorities (denoted Aut1 and Aut2), a client proxy, and a data user

u.4 Assume that the keys given to u by Aut1 and Aut2 are based on the access structures
4For clarity, we do not use intermediaries in this simplified construction.
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att1 ∨ att2 and att4, respectively.

The data owner wishes to encrypt a recordM under a set S = {att1, att3} of attributes,

where att1 ∈ Uowner ∩ Uclient, but att3 /∈ Uowner ∩ Uclient. That is, att3 does not belong

to the client’s vocabulary and hence needs to undergo translation before it can be used for

decryption by u, using the keys she received from the authorities. In this example, we

assume that T (att3) = att4; that is, a correct translation of the attribute att3 ∈ Uowner is

att4 ∈ Uclient.

In order to encrypt M , the owner produces a two-level ciphertext; it is similar to the

one in [96] but differs in several respects.

First, instead of creating |S| attribute components C3k, one for each attribute, the

owner creates |S| ∗ |DECS| attribute components C3k,j , one for each pair (attribute, de-

cryption party), whereDECS represents the set of parties that participate in the decryption

of the ciphertext (decryption-parties set). In this example |DECS| = 2 because there are

two decryption parties: the user and the client proxy.

Second, we use the binder term s differently from the way it is used by Rouselakis and

Waters in [96]. In [96], the binder term is used in the data layer and in each attribute com-

ponent. By contrast, we use secret sharing to break s into |DECS| shares: each attribute

component C3k,j contains only one share of the binder term, the one that corresponds to

the decryption party j. In this example, there are two decryption parties: the user and the

client proxy.

Third, recall that each attribute component in [96] contains the actual attribute to which

it corresponds. In our OTABE scheme, however, each attribute component contains the

output of a given transformation that is applied to the attribute. This enables the proxy to

translate the attribute obliviously without knowing its label or value. In our construction,

the transformation is a keyed PRF, but, as explained below, OTABE can accommodate a

richer set of transformations in order to better serve each organization’s business logic.

Fourth, we use another uniformly randomly chosen term, lk. Like fk, lk is local to
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the attribute component in which it appears. It is used to double blind the attribute part

(θattkh) of each attribute component, using dk = fk ∗ lk as a blinding factor; in this way,

fk can be used by the proxy as a token for oblivious translation.

Because of the composition of the ciphertext, the proxy is able to translate the attribute

att3 ∈ Uowner into a new attribute att4 ∈ Uclient. The proxy uses the attribute component

C3att3,proxy, an obfuscated version of the original attribute att3, the tokens given to it

by the Encrypt() algorithm, and Equation 1 in the Translate() algorithm, where attk ′

corresponds to the new attribute (in our case, att4). In general, determination of the new

attribute is done obliviously based on the obfuscated original attribute’s label and value;

this determination is explained fully in Subsection 2.7.2.

When the user receives the translated record from the proxy, she combines it with her

own attribute-layer components and data-layer components to create the final aggregated

ciphertext. She uses the keys that she received from Aut1 and Aut2 to decrypt the ag-

gregated ciphertext.5 Decryption with this equation uses secret sharing and the unique

structure of the translated attribute component received from the proxy, which includes

both an obfuscated version of the original attribute att3 and the new attribute att4.

Finally, to enable hidden access policy, we do not attach the actual set of attributes S

to the ciphertext. Instead, both the data owner and the proxy compute an obfuscated value

of each attribute they add to the ciphertext, based on the PEKS construction given in [20].

Using trapdoors received from the TAs, u is able to perform a “blind intersection” of the

obfuscated values received with the ciphertext and her own obfuscated access structure’s

attributes received from the TAs. Thus, u is able to determine which attributes are required

for decryption without learning their values.

5Decryption of aggregated ciphertexts is done using Equation 2, which is given (along with the rest of
the full construction) in Subsection 2.7.1).
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2.6.2 Other components of PRShare

PRShare combines the MA-OTABE construction in Subsection 2.7.1 with the following

building blocks:

• Pseudorandom functions: The data owner and each organization orgj agree on two

random k-bit keys Korg(j) and K1org(j) for the PRFs Fp : {0, 1}k × U → U and

F : {0, 1}k × {0, 1}∗ → {0, 1}∗.

• Collision-resistant hash function: If the parties wish to use the hidden-access-policy

feature, they agree on a collision-resistant hash function H .

• Searchable-encryption (SE) scheme, Λ: The input to theDistribute() algorithm is a

set I of ciphertexts’ ids. I is the output of SearchΛ, an SE scheme’s Search protocol,

executed by the CSP and a data user u. I contains the ids of ciphertexts whose

associated attributes satisfy the conjunctive query ψ sent by u to the CSP.

• Translation function: In the setup phase, each organization orgj provides to its proxy

the translation function Tj and the encrypted auxiliary information Ej(L) according

to which it should perform attribute translation.

Section 2.7 provides detailed descriptions of our MA-OTABE scheme and the associ-

ated attribute-translation procedure. However, for ease of exposition, it does not present

these contributions in their maximum generality or explain all of their features. We briefly

discuss some natural generalizations and interesting features here.

One essential feature of PRShare is oblivious translation of attributes in Sm by a semi-

trusted proxy. Oblivious translation is accomplished by applying a transformation to the

attribute inside each attribute component; this allows translation without disclosing the at-

tributes’ values to the proxy. The version of the full construction given in Subsection 2.7.1

applies the same transformation to each attribute in the ciphertext, using two PRFs. This
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version demonstrates a specific translation operation in which the proxy performs obliv-

ious equality tests and set-membership tests to determine the new attribute. However,

PRShare supports a more flexible approach in which different transformations are applied

to different attributes in the ciphertext, based on the attributes’ types and sensitivities. For

example, if attk ∈ Uowner is a numeric attribute, the proxy can translate it into a descrip-

tive attribute att′k ∈ Uclient by comparing attk with a threshold that was provided to it by

the organization that it represents. It determines the value of the new, descriptive attribute

according to the result of that comparison. In such a case, we would choose an order-

preserving transformation instead of an equality-preserving transformation. Based on this

modular approach and other PRF-based transformations, PRShare enables a broader set of

translation operations that better suit organizations’ translation logic. These operations in-

clude oblivious addition, keyword search, and numeric comparison [26]. Subsection 2.7.2

contains concrete examples of attribute translation.

The full construction in Subsection 2.7.1 involves just one data client. In fact, a data

owner in PRShare can encrypt its data records once for use by multiple data clients, and it

need not know who the data clients are at encryption time. What it does need to know is

the universe T of TAs from which each data client chooses the set of TAs that it will use.

At encryption time, the owner uses the public keys of all t ∈ T to create C1, which is

the data layer. It creates the rest of the ciphertext’s components exactly as they are created

in Subsection 2.7.1. Now consider a client c that uses TAs T ′ ⊆ T . In the key-generation

phase, data users associated with c will receive two types of keys: regular secret keys,

issued by each TA in T ′ according to the keygen() algorithm, and dummy secret keys,

issued by TAs in T \ T ′. Each dummy key represents a “decrypt all” policy and thus has

no effect when combined with the actual decryption policies represented by key issued by

TAs in T ′.

Dummy keys are issued to each data user once during the setup phase, and the total

42



number of TAs in the system is small. Furthermore, the attribute-layer components, which

constitute the longer part of the ciphertext, remain the same under this generalization.

Therefore, the performance of this generalized construction will be reasonable.

Query and retrieval of encrypted records in PRShare use a searchable encryption (SE)

scheme Λ. There is a CSP that stores ciphertext records that the data owner has created

using the Encrypt() algorithm and receives from data users requests that contain conjunc-

tive queries on attributes in U . In PRShare, storage and processing of the data records (aka

“payloads”) is decoupled from storage and processing of their metadata. The SE scheme

can be chosen independently of the OTABE scheme, according to specific needs or pri-

vacy requirements of the client or owner. The only functionality that the SE scheme must

provide is:

1. The data user can submit to the CSP a conjunctive query that contains attributes in

Uowner ∩ Uclient.

2. The CSP is able to retrieve all the records that match the query, without learning the

query’s contents or the attributes associated with each record. Furthermore, the data

user cannot learn the attributes that are associated with each record, except for those

that appear in her query.

Upon receiving a query from a data user, the CSP searches for all the ciphertexts that

satisfy this query; for each one, it performs the Distribute() algorithm. Importantly, the

CSP need not perform any type of authentication or authorization of users. Each payload

and its associated attributes are stored in encrypted form according to the OTABE scheme,

and only users with suitable keys are able to decrypt the payload and the attributes. If a

user does not belong to a client organization that uses TAs in T , or if she does belong to

such an organization but has not been issued the necessary decryption keys for the records

that match her queries, she will learn nothing from the encrypted payloads and attributes

that the CSP sends her.

43



Finally, note that the choice of SE scheme is highly flexible. One may choose a very

simple scheme, in which tags are created using PRFs with keys that shared among the

relevant entities (owner, CSP, and clients) or a more sophisticated schemes that provides

stronger security and privacy guarantees.

2.7 Detailed construction and translation function

2.7.1 Construction

We denote by org(k) the organization that governs the attribute attk. We denote by

pubΠ(Porgj) the public key of a proxy Porgj , created using a standard public key encryption

scheme, Π.

Our MA-OTABE scheme consists of the following algorithms:

GlobalSetup(λ)⇒ (PK): This algorithm takes as input a security parameter λ. It

defines bilinear groups G1,G2 of prime order p and a bilinear map e : G1 × G1 → G2.

The attribute universe is U = Zp. Finally, the algorithm selects θ, h, w randomly from G1.

It returns the global public key PK as follows:

PK = (G1, G2, p, θ, w, h, g, e)

AuthoritySetup(PK) ⇒ (PKi,MSKi): Each authority Auti chooses random

numbers αi, βi ∈ Zp. It sets PKi = (e(g, g)αi , gβi) as its public key and MSKi = (αi, βi)

as its master secret key.

Encrypt(M,PK, S, {PKi}i∈Aut) ⇒ (CT ): This algorithm takes as input a data

record’s payload M , the public keys for all authorities {PKi}i∈Aut, and a set of attributes

S, |S| = R. It adds two attributes to S: attDATE =< DATE,==, rand1 >, attGID =<

GID,==, rand2 >. Both are randomly initialized. It then chooses 2|S| + 2 random
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exponents s, a, {fk}k∈[R], {lk}k∈[R] ∈ Zp and computes {dk = fk ∗ lk}k∈[R]. The encryptor

determines, according to the nature of attributes in S, the subset ORGS of organization

proxies that are able to perform translations of the ciphertext. The set of parties involved

in decryption of C will include the set of proxies in ORGS and the final decryptor, i.e.,

the user. Hence |DECS| = |ORGS| + 1 = P . The encryptor chooses another P random

elements sj ∈ Zp,
∑

j∈DECS

sj = s. It then encrypts M under S. The resulting ciphertext is

composed of four elements: C0, C1, C2, C3 and a set Tok of tokens:

W = ga C0 = M
∏
i∈Aut

e(g, g)sαi C1 = gs C2k = {gdk |attk ∈ S}

C3k,j =
⋃

attk∈S,
j∈DECS

c3k,j c3k,j =


Dk,j if attLk ∈ Sim

Ek,j if attLk ∈ Sm

where:

Dk,j = (θattkh)dk(w)−sj Ek,j = (θFp(Korg(k),attk)h)dk(w)−sj

C2 = {C2k|attk ∈ S} C3 = {C3k,j|attk ∈ S, j ∈ DECS}

Tokj = {Tokk,j|attLk ∈ Sj}

Tokk,j = [Tok1k,j||Tok1k,j||Tok1k,j||Tok1k,j]pubΠ(Porg(k))

Tok1k,j = θlk Tok2k,j = fk

Tok3k,j = F (K1org(k), att
L
k ) Tok4k,j = Fp(Korg(k), attk)
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C = (W,C0, C1, C2, C3, T ok = {Tokj|j ∈ ORGS})

For each attribute attk where attLk ∈ Sim, the encryptor computes an obfuscated value

as follows:

Y k = e((gβaut(k))a, H(attk)), where aut(k) denotes the authority that may use the attribute

attk in its access structure. The encryptor computes its signature, sigencryptoru on each

element in C, as well as on the number of attributes that each proxy inORGS is allowed to

translate. In addition, for each proxy, it computes a signature sigencryptorp on each element

in {C3k,p|attLk ∈ Sp}, on each element in Tokj , and on the size of both sets. The encryptor

then uploads the following record to the cloud server:

CT = (C,UID, P, Y = {Y k | ∀attLk ∈ Sim}, sigencryptoru , {sigencryptorp |p ∈ ORGS})

KeyGen(PK,MSKi, Ai, u, t)⇒ (SKi,u,t): The key generation algorithm forAuti,

user u and task t takes as input the master secret keyMSKi and access structureAi, deter-

mined by the authority based on the combination of data-centric attributes that it considers

to be a sufficient justification for decrypting a data record’s payload in the context of task

t and the role of user u. The authority determines a new or updated time limit for task

t, tlt, and creates a time-limit attribute: attLIMIT =< DATE,<, tlt >. Lastly, given

the user’s GID u the authority creates a GID attribute, attGID =< GID,==, u >. Auti

then creates A′i = Ai ∧ attLIMIT ∧ attGID, an updated version of Ai. To ensure the

hidden-access-policy feature, the authority replaces each attribute attx in the access struc-

ture, with a trapdoor H(attx)
βi and transforms the resulting access structure into an LSSS

access structure (Mi; ρ) whereMi is an ni×mimatrix and ρ is a function which associates

rows of Mi to attributes’ trapdoors. The algorithm chooses random y2, . . . , ymi ∈ Zn
p and

creates a vector vi = (αi; y2, . . . , ymi). For c = 1, . . . , ni, it calculates: λi,c = Mi(c) · vi,
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where Mi(c) is the vector corresponding to the c’th row of the matrix Mi. In addition, the

algorithm chooses ni random exponents r1, . . . , rni ∈ Zp. For each x ∈ [ni], it sets the

private key SKi,u,t as:

SK1
x,i,u,t = gλi,x(w)rx SK2

x,i,u,t = (θρ(x)h)−rx SK3
x,i,u,t = grx

Each authority Auti then sends:

SKi,u,t = {SK1
x,i,u,t, SK

2
x,i,u,t, SK

3
x,i,u,t}x∈[ni]

to u. The user’s secret keys for task t are {SKi,u,t}i∈Aut.

Distribute(I) ⇒ ({Cj|j ∈ DECS}): The input to the Distribute() algorithm is

a set of ciphertexts’ ids I . The cloud first retrieves all the ciphertexts that are associated

with ids in I . For a ciphertext CT , encrypted under a set of attributes S and retrieved by

the CSP, the CSP sends to each proxy, Porgp:

Cp = ({C3k,p|attLk ∈ Sp}, P, sigencryptorp , T okp)

and sends to user u:

Cu = {W,C0, C1, C2, C3u, P, Y, sig
encryptor
u )

where:

C3u = {C3k,u|attk ∈ S} ∪ {C3k,p|attk ∈ S, org(k) 6= p}

Translate(PK, j = p, Cp, {PKi}i∈Aut) ⇒ C ′p: the Translate() algorithm for a

proxy Porgp and a data record’s payload M encrypted under attribute S receives as input a

partial ciphertext Cp. For each attribute component C3k,p that corresponds to an attribute
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attk to be translated, the proxy first verifies the encryptor’s signature. It then decrypts its

tokens using its private key and extracts each of them. It computes Tj(Tok3k,j, T ok4k,j) =

attk
′, thus obliviously translating the attribute attk into a new attribute, att′k. The function

Tj is determined separately by each organization; see Subsection 2.7.2. It then computes

a new value for Ek,p, E ′k,p:

E ′k,p = Ek,p · (Tok1
−PTok4k,p+Pattk

′

k,p )Tok2k,p = (θ(Pattk
′−(P−1)Fp(Korg(k),attk))h)dkw−sp

(2.1)

Finally, the proxy chooses a random exponent, c ∈ Zp, where Wp = gc, and com-

putes, for each new attribute attk ′ that it created, an obfuscated value as follows: Y attk′ =

e((gβaut(k′))c, H(attk′)). We denote the set of obfuscated value corresponding to translated

attributes by proxy p as Yp. It then signs the new elements it added, as well as the number

of attributes it translated. It sends those signatures sigp and the translated partial ciphertext

to the user u. The record that is sent to the user is:

C ′p = (C ′3p, sigp,Wp, Yp) C ′3p = {C ′3k,p|attLk ∈ Sp} = {E ′k,p|attLk ∈ Sp}

Decrypt(PK, {SKi,u,t}, Cu, {C ′j|j ∈ ORGS}) ⇒ M : The decryption algorithm

for data record’s payload M , encrypted under a set of attributes S and a user u takes

as input the global parameters, K secret keys {SKi,u,t}, representing access structures

{A′i}, and two types of ciphertexts: a partial ciphertext Cu received directly from the CSP

and |ORGS| = P − 1 translated partial ciphertexts {C ′j|j ∈ ORGS}, received from

each one of the proxies in ORGS , C ′j = (C ′3j, sigj,Wj, Yj). After verifying both the

encryptor’s signatures and the proxies’ signatures, the user aggregates all the translated

partial ciphertexts she received from the proxies, extracts C3u from her partial ciphertext
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Cu, and creates and updated version of C3, C ′3:

C ′3 = {C3k,u|attk ∈ S} ∪ {C3k,p|attk ∈ S, org(k) 6= p} ∪ {C ′3j|j ∈ ORGS}

The user extracts C0, C1, C2 from Cu and merges those with C ′3. The final ciphertext is:

Cf = (C0, C1, C2, C ′3)

The user then determines the attributes that are needed for decryption, as well as their

corresponding rows in the LSSS matrix of each authority. For a given access policy, rep-

resented by (Mi, ρ), the user uses W , received from the CSP and {Wj}j∈ORGS
, received

from each proxy and computes the following set:

S∗i =
⋃
i∈[ni]

s∗i s∗i =


e(W, ρ(i)) if attLk ∈ Sim

e(Worg(k), ρ(i)) else

The user collects both the original attributes of the ciphertext and the ciphertext’s trans-

lated attributes, to create the final set of attributes TR(S) = Y ∪{Yj}j∈ORGS
. By perform-

ing Ŝi = S∗i ∩ TR(S), she receives the (obfuscated) set of attributes Ŝi that are needed for

decryption, Ii. This process is performed for each access policy (Mi, ρ)i∈Aut, resulting in

K obfuscated attribute sets Ii and corresponding index-sets Indi such that:

• For all c ∈ Indi, ρ(c) ∈ Ii.

• Exist constants, {wc,i ∈ Zp}c∈Indi , such that
∑

c∈Indi wc,iMi(c) = (1, 0, . . . , 0)

The algorithm now recovers M by computing:

C0

B
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where:

B =
∏
i∈Aut

∏
c∈Ii

(e(C1, SK1
c,i,u,t)(e(C2c, SK

2
c,i,u,t))

P
∏
j∈[P ]

e(C ′3c,j, SK
3
c,i,u,t))

wc,i (2.2)

2.7.2 Translation

The Translate() algorithm given in our construction assumes the existence of a set of

translation functions, {Tj|j ∈ ORG}. Each function is determined separately by each

organization orgj and determines how to translate attributes in Sj .

The translation of an attribute can be done in two ways: either by changing both the

label and the value of the attribute, or by keeping the attribute’s label and only changing

its value. A translation may require auxiliary information, provided to the proxy by its

organization. In such a case, the translation is done by performing an oblivious operation

on the attribute, that is encrypted using a certain transformation, and on another object (a

number, a list etc), the “auxiliary information,” that is encrypted using the same transfor-

mation. Such an oblivious operation can be a comparison, equality test, list membership

test, keyword search etc. Since both the attribute inside the ciphertext and the organization-

specific auxiliary information are encrypted using the same keyed transformation, with a

key that is unknown to the proxy, the proxy can perform the translation without learning

the attribute’s value and without learning the contents of the private auxiliary information

provided by the organization.

On a high level, the transformation applied by organization orgj to a data structure L

that contains multiple auxiliary information items, l ∈ L, works by treating each item l as

the value of the corresponding attribute’s label in Sowner, mapping the resulting attribute

to an element in U , and using the transformation to encrypt that element. The result, the

encryption of auxiliary information L that belongs to an organization orgj , is denoted by

Ej(L). A similar process is used for auxiliary information that includes only one element
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l such as a threshold or a descriptive statistic.

Each organization prepares a lookup table, where entries represent obfuscated labels

and values contain the translation logic and auxiliary information used for translation of

attributes with that label. Using the same obfuscated label received from the owner, the

proxy knows what logic and auxiliary information should it use for the translation of the at-

tribute in its hands. It then uses the obfuscated value (in our construction, a PRF-encrypted

value) of the attribute that the proxy obtained from the owner to compute the new attribute,

using the translation logic and auxiliary information.

We now present three important examples. For simplicity, in the following examples

we fix a specific translation function and refer to it as T . In addition, we use T as if it takes

one argument, namely the original attribute. In practice (as shown in our construction),

in order to support oblivious translation, a function Tj is a two-argument function, neither

contains the actual original attribute, but instead, an obfuscated version of both the label

and the value. In our construction, we use two PRFs for that purpose.

Dynamic translation between vocabularies: As discussed, translation of an attribute

from orgowner’s vocabulary to orgclient’s vocabulary is done according to the specific at-

tribute being translated as well as the specific needs and work methodologies of the client

organization.

One of the main reasons why attribute translation is essential for supporting multiple

vocabularies, is that while the encryption of a data record’s payload is done by the owner

once, the relevance of the data record to the client changes over time. In ABE terms, that

means that while the set of attributes under which a ciphertext is encrypted, taken from

one vocabulary, does not change, the question whether or not this set satisfies a given

access policy, taken from another vocabulary, does change over time. Furthermore, such

decision, of whether or not a ciphertext is relevant to the client at a given point in time is

made using external information, the “auxiliary information,” that is related to one or more
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of the owner’s, client’s, and intermediaries’ professional domains. Because the auxiliary

information changes over time, so does the decision whether or not the set of attributes

of a given data record should satisfy a given access policy. Values of such attributes with

respect to a data record cannot be fully determined at encryption time, but should rather

be dynamically translated, only when a data user needs to access that data record. OTABE

supports such dynamic attributes, as shown below.

We consider here two examples, representing common translation operations used for

translating attributes from Uowner.

The first operation, is determining the new attribute according to the original attribute’s

membership in a list provided by the client organization or an intermediary. Since both the

attribute and the list-items are encrypted using the output of a PRF, such translation can be

done obliviously.

To illustrate, we continue with the watchlist example given in Subsection 2.2.2. Two

pieces of metadata that ESPs collect about their customers’ email messages are the sender

and receiver of the email. Such attributes, however, cannot be used in the secret keys is-

sued by the LE agency to its employees: unless the investigation is targeted (and therefore

the data subject’s UID such as phone number or email address are known in advance), a

raw email address will be meaningless in terms of justification for decryption, and there-

fore cannot be used for determining the relevance of a certain ciphertext to one of the

LE agency’s investigations. Furthermore, exposing raw sender’s and receiver’s email ad-

dresses to agents in the LE agency will violate the privacy of data subjects that do not

appear on any watchlist. Hence, the translation of the attribute “sender” is a boolean at-

tribute that indicates whether the sender of the email appears on an existing watchlist.

Such an attribute better suits the daily activity of the LE agency as well as protects inno-

cent citizens’ privacy and thus can be included in the key in order to determine whether an

access to an email address is justified. Clearly, such a list cannot be revealed to an external

entity, including the ESP.
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Note that the raw email address’s relevance to a given investigation may vary over

time. This is because the auxiliary information, i.e., the watchlist, may change periodically

and thus the membership of a data subject associated with a given email address in the

watchlist may change over time as well. This is why such attributes can only be translated

dynamically, when an agent submits an access request for that specific email record.

We now show how the data client, the LE agency, encrypts the watchlist. The watchlist

L contains multiple items, l ∈ L, that represent data subjects’ ids (for example, email

addresses). In order for the watchlist to be compatible with the “sender” attribute under

which email messages are encrypted, the LE agency performs the following preprocessing

step on the watchlist:

for l in watchlist :

Ej=client(watchlist).add(Fp(Korgj=client
, < label = SENDER, operator = “ ==′′

, value = l >))

WhereEclient(watchlist) represents the resulting, encrypted watchlist, containing mul-

tiple “sender” attributes, and thus compatible with the “sender” attribute used by the ESP.

Assuming attk =< SENDER,==, c > represents a sender’s email address, c,

attk
′ =< ON −WATCHLIST,==, b > is a boolean attribute that represents whether

the sender appears on a watchlist, and Eorgj(L) represents an encryption of the watchlist

L as described above, the value of b is determined by the proxy as follows:

Contains(Eorgj(L), T ok4k,j) = b

The second operation, is determining the new attribute by comparing it to one or more

numeric auxiliary information pieces that usually represent either a certain threshold that

is related to the attribute’s value, or aggregated statistics about other data records that share

the same attribute. In this case, instead of an equality-preserving transformation, we will
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use an order-revealing transformation such as the ORE scheme presented in [26], denoted

by ΠORE (which also makes use of a PRF). Since both the attribute and the threshold or the

descriptive statistic with which the attribute is to be compared are encrypted using ΠORE ,

such translation can be done obliviously.

To illustrate, we consider the insurance-company example discussed in Subsection 2.2.2.

We consider the attribute: “credit utilization ratio,” used by the CRA to store credit reports.

Such attribute, however, cannot be used in the secret keys issued by the insurance company

to its employees, as a raw number will be meaningless in terms of determining whether a

consumer is a good candidate for an insurance offer, and therefore cannot be used to deter-

mine the relevance of a certain credit report to an employee’s task. Furthermore, exposing

the exact utilization ratio to insurance company’s employees will violate consumers’ pri-

vacy. Hence, the translation of the numeric attribute “credit utilization ratio” is a boolean

attribute that indicates whether that ratio is below the average ratio. Such attribute better

suits the daily activity of the insurance company as well as protects consumers’ privacy

to the extent possible. Therefore, it can be included in employees’ keys in order to deter-

mine whether the insurance company finds the data subject a good-enough candidate for

an insurance offer (in other words, whether an access to the data subject’s credit report is

justified). In this case the translation will be made by the credit card company’s proxy,

acting as an intermediary, by obliviously comparing the number that represents the con-

sumer’s credit utilization ratio to the average utilization ratio of its customers. Clearly, the

average utilization ratio that is calculated by each credit card company based on its own

customers, constitutes proprietary information of the company and should not be revealed

to other organizations.

As in the previous example, the auxiliary information (the utilization ratio’s average)

may change periodically. Thus, whether or not the utilization ratio of a data subject is

above average may change over time. This is why such an attribute can only be translated

dynamically, when an employee submits an access request for that specific credit report.
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Assuming attk =< CREDIT − UTILIZATION − RATIO,==, c > represents

the credit utilization ratio, c,

attk
′ =< IS − CREDIT − RATIO − LESS − THAN − AV ERAGE,==, b > is

a boolean attribute that represents whether the credit utilization ratio is above the current

average, as calculated by the credit card company, and Eorgj(l) represents an encryption

of the average l using ΠORE , the value of b is determined by the proxy as follows:

ΠORE.COMPARE(Eorgj(l), T ok4k,j) = b

Note that in both cases, both the label and the value of the attributes are being trans-

lated.

Key-level revocation: Porgclient
translates the value of the attribute attk =< DATE,==

, rand > from the c-bit random value (its default value given at encryption time by the

data owner) to the current date (or the current time stamp, if a time limit is expressed

using time instead of dates) datecur and so T (attk) = attk
′ =< DATE,==, datecur >.

In this case, only the value of the attribute is being translated. Note that access structures

in our system contain a time-limit attribute of the form: < DATE,<, tlt >, where tlt is

the per-task time limit, assigned by the TAs.

User-level revocation: Given a data user’s GID u who sent a data retrieval request,

Porgclient
performs the following: it first checks whether u appears in orgclient’s revo-

cation list. If so, it aborts. Otherwise, the proxy translates the value of the attribute

attk =< GID,==, rand > from the c-bit random value (its default value given at en-

cryption time by the data owner) to the data user’s GID u and so T (attk) = attk
′ =<

GID,==, u >. Note, that if the revocation list contains the data user’s GID, the partial

ciphertext C ′Porgclient will not be sent to the data user who initiated the retrieval request.

Furthermore, in such a case attGID will remain with its default random value assigned by

orgowner.
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In both revocation events, only the attribute’s value is being translated, as the original

attributes serve as placeholders. Thus, the proxy only needs to know the original attributes’

obfuscated labels in order to perform the translation.

2.8 Results

We now give the formal statements and full proofs of the properties of the scheme pre-

sented in Section 2.7.

Lemma 1 If n ≥ 2 and t ≤ n, then (q, t, n)-DBTDH⇒ q-DBDH.

From Definition 3, it is enough to prove that (q, n, n)-DBTDH⇒ q-DBDH.

Given a distinguisher D1 which is able to tell a (q, n, n)-DBTDH term from a random

term with non-negligible probability, we want to show that there exists a polynomial dis-

tinguisherD2 which is able to tell a q-DBDH term from a random term with non-negligible

advantage. We are given the terms:

Ω1 = {g, gx, gy} ∪ {gbl , gy/b2l , gy2/b2l |∀l ∈ [q]} ∪ {gybl/b2f |∀l, f ∈ [q], l 6= f}

Ω2 = {gz, g(xz)2}∪{gxzbl , gxz/bl , gx2zbl |∀l ∈ [q]}∪{gxyzbl/b2f , g(xz)2bl/bf , gxzbl/bf |∀l, f ∈ [q], l 6= f}

and R, where R is either a q-DBDH term e(g, g)xyz or a random term. We choose a set

A = {ai}, where each ai is randomly selected from Zp (note that for the (q, n, n)-DBTDH,

V is uniquely determined, as V = [n]) and compute, for each element in Ω2, a new term:

h1 = (gz)
∑n

i=1 ai = g(
∑n

i=1 aiz)

h2 = (g(xz)2

)(
∑n

i=1 ai)
2

= g(x(
∑n

i=1 aiz))
2

h3 = (gxzbl)
∑n

i=1 ai = gx(
∑n

i=1 aiz)bl
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h4 = (gxz/bl)
∑n

i=1 ai = gx(
∑n

i=1 aiz)/bl

h5 = (gx
2zbl)

∑n
i=1 ai = gx

2(
∑n

i=1 aiz)bl

h6 = (gxyzbl/b
2
f )

∑n
i=1 ai = gxy(

∑n
i=1 aiz)bl/b

2
f

h7 = (g(xz)2bl/bf )(
∑n

i=1 ai)
2

= g(x(
∑n

i=1 ai)z)
2bl/bf ,

Ψ′l,f = {(gxzbl/bf )ai |i ∈ [n]} = {gx(aiz)bl/bf |i ∈ [n]}

We set Ω′2 as:

Ω′2 = {h1, h2} ∪ {h3, h4, h5||∀l ∈ [q]} ∪ {h6, h7,Ψ′l,f |∀l, f ∈ [q], l 6= f}

Note, that if R is a q-DBDH term, then R′ = R(
∑n

i=1 ai) = e(g, g)xy(
∑n

i=1 aiz) is a (q, n, n)-

DBTDH term, and if R is a random term then R′ is a random term. We then view

(Ω1,Ω
′
2, R

′) as input to the oracle D1 to obtain correct value b ∈ {0, 1} (b = 0 if the

answer of D1 is (q, n, n)-DBTDH term, and 1 otherwise). Therefore, we have a polyno-

mial distinguisher D2 which is able to tell q-DBDH term from a random term with same

non-negligible advantage.

Theorem 1 If (q, n, n)-DBTDH holds, then our MA-OTABE scheme achieves selective

security against all PPT adversaries with a challenge attribute set S of size W , where

W ≤ q, and a challenge decryption-parties set DEC*
S of size P , where P ≤ n.

To prove the theorem we will assume that there exists a PPT adversary A with a

challenge attribute set S and a challenge decryption-parties set DEC*
S , which has a non-

negligible advantage in selectively breaking our MA-OTABE scheme. Using A we will

build a PPT simulatorB that attacks the (q, n, n)-DBTDH assumption with a non-negligible

advantage.6.
6For simplicity, we prove our attribute-secrecy related claims separately, in Theorem 3. We also omit the

signatures that are attached to some of the messages in our construction
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Init: The simulator receives the given terms from the assumption. The adversary

chooses the challenge attribute set S, where |S| = W . Based on S, the adversary chooses

the challenge decryption-parties set DEC*
S , where DEC*

S ⊆ DECS and |DEC*
S| = P .

The adversary chooses a subset of corrupted authorities Autc. We assume all authorities

but one are corrupted, and denote the honest authority byAuth. The adversary sendsAutc,

Auth, S and DEC*
S to the simulator.

Setup: We denote S as {att1, . . . , attW} and the set of indexes of attributes in S as IS .

The simulator chooses h∗, u∗ randomly from Zp. For each attribute attl it chooses el

randomly from Zp. It then computes the global public parameters:

w = gx

θ = gu
∗ ∏
l∈IS

(gy/b
2
l )

h = gh
∗ ∏
l∈IS

(gxz/blel)
∏
l∈IS

(gy/b
2
l )−attl

Based on the global public parameters, the simulator creates the parameters for author-

ity Auti, as follows:

For every Auti ∈ Autc, the simulator chooses random ni ∈ Zp, and sets MSKi =

−xni. It computes PKi = e(g, g)MSKi = e(gx, g−(ni)). The simulator sends MSKi

and PKi to the adversary. For Auth, the simulator sets MSKh = xy + x
∑

i∈Autc ni.

It computes PKh = e(gx, gy)
∏

i∈Autc e(g
x, gni). The simulator sends only PKh to the

adversary.

Phase 1: The adversary chooses a revocation list RL and sends it to the simulator.

Then it may issue any polynomial number of private key queries, for tuples of (access

structure, GID, task identifier), and sends those to the simulator.

For a query: (access structure=AC, GID=u, task=t), the simulator does the following:
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For queries issued for a corrupted authority Auti ∈ Autc, the adversary runs SKiut =

KeyGen(PK,MSKi, AC, u, t) itself, as it has MSKi, given to it in the setup phase. For

queries issued for the honest authority Auth, the simulator provides the answer. The simu-

lator determines a time limit for task t, tlt, and creates a time-limit attribute: attLIMIT =<

DATE,<, tlt >. In addition, given the GID in the query u the simulator creates a

GID attribute, attGID =< GID,==, u >. It then creates an updated version of AC,

AC ′ = AC ∧ attLIMIT ∧ attGID and performs the following:

• If S |= AC ′ and u /∈ RL, the simulator will abort.

• If S |= AC ′ and u ∈ RL, S must contain SGID = u. The simulator picks a GID u′,

u′ 6= u, and generates the secret key using SKhu′t = KeyGen(PK,MSKh, AC, u
′, t)

• If S 6|= AC ′, the simulator generates the secret key using

SKhut = KeyGen(PK,MSKh, AC, u, t).

We will now show how the simulator produces the secret keys in the last two cases.

• In the second case, the simulator first creates att′GID =< GID,==, u′ >. Then it

needs to create a key for AC∗ = AC ∧ att′GID ∧ attLIMIT .

• In the third case, the simulator needs to create a key for AC∗ = AC ′.

Those access policies are represented by an LSSS matrix MAC∗ with dimensions l×n

and a row-mapping function ρ. Note, that in both cases S is not authorized for AC∗.

Hence, we can split MAC∗’s rows into two sets:

A = {r|r ∈ [l], ρ(r) ∈ S} B = {r| r ∈ [l], ρ(r) /∈ S}

where A,B 6= ∅. Since S is not authorized for MAC∗ , from the properties of LSSS we can

find a vector β ∈ Zn
p with β1 = 1 fixed such that ∀r ∈ A, MAC∗

r β = 0.
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The simulator then chooses uniformly at random n− 1 random elements in Zp, vi, and

sets the shares of MSKh as:

λr =< MAC∗
r ,Θ >

Where:

Θ = MSKhβ + (0, v2, . . . , vn)⊥

Hence, row’s r share is:

λr =< MAC∗

r , (MSKhβ + (0, v2, . . . , vn)⊥) >=

xy < MAC∗

r , β > +x
∑
i∈Autc

ni < MAC∗

r , β > + < MAC∗

r , (0, v2, . . . , vn)⊥ >=

xy < MAC∗

r , β > +x
∑
i∈Autc

ni < MAC∗

r , β > +λ′r

Now, let us see how the simulator computes the secret key for r ∈ A: From definition,

r ∈ A→ ρ(r) ∈ S. From LSSS properties, < MAC∗
r , β >= 0. Thus in this case,

λr = λ′r =< MAC∗

r , (0, v2, . . . , vn)⊥ >

and hence, its value is known to the simulator. The simulator can then compute the key

components SK1, SK2, SK3 as in the KeyGen algorithm:

SK1 = gλrwtr = gλ
′
rgxar

SK2 = (θρ(r)h)−tr = ((gu
∗ ∏
l∈IS

(gy/b
2
l ))ρ(r)(gh

∗ ∏
l∈IS

(gxz/blel) ·
∏
l∈IS

(gy/b
2
l )−attl))−ar

SK3 = gtr = gar

where tr = ar are randomly selected from Zp by the simulator and λr = λ′r.
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Finally, for r ∈ B, the simulator will compute the secret key in the following way:

From definition, r ∈ B → ρ(r) /∈ S. In this case, the simulator will define

tr = −
∑
i∈Autc

(ni) < MAC∗

r , β > −y < MAC∗

r , β > +
∑
l∈IS

xzbl < MAC∗
r , β >

ρ(r)− attl
+ t′r

where t′r is randomly selected from Zp. Hence the key components can be computed

as:

SK1 = gλrwtr = gλ
′
r

∏
l∈[n]

(gx
2zbl)<M

AC∗
r ,β>/(ρ(r)−attl) · gxt′r

SK2 = (θρ(r)h)−tr = g
∑

i∈Autc
(ni)<M

AC∗
r ,β>(ρ(r)u∗+h∗)(gy)<M

AC∗
r ,β>(ρ(r)u∗+h∗)

·
∏
l∈IS

(gxzbl)−(ρ(r)u∗+h∗)<MAC∗
r ,β>/(ρ(r)−attl)

·
∏

(l,f)∈IS

(g(xz)2bf/blel)−<M
AC∗
r ,β>/(ρ(r)−attf ) ·

∏
l∈IS

(gy
2/b2l )<M

AC∗
r ,β>(ρ(r)−attl)

·
∏
l∈IS

(gxz/blel)
∑

i∈Autc
(ni)<M

AC∗
r ,β> ·

∏
l∈IS

(gy/b
2
l )

∑
i∈Autc

(ni)<M
AC∗
r ,β>(ρ(r)−attl)

·
∏

(l,f)∈IS
l 6=f

(gxzy(bf/b
2
l ))−<M

AC∗
r ,β>(ρ(r)−attl)/(ρ(r)−attf ) · (θρ(r)h)−t

′
r

SK3 = gtr = (g)−
∑

i∈Autc
(ni)<M

AC∗
r ,β>(gy)−<M

AC∗
r ,β> ·

∏
l∈IS

(gxzbl)<M
AC∗
r ,β>/(ρ(r)−attl) · gt′r

Therefore, in both cases the simulator can reply to the adversary’s query with the entire

secret key. Note, that since AC,AC ′ ⊆ Uclient, and SGID, SLIMIT ∈ Uclient, AC∗ ⊆

Uclient, and so does the secret key given to the adversary. In addition, all the secret key’s

terms, both for A and for B can be calculated by the simulator using terms from the

assumption, the challenge set S (chosen by the adversary), and the access structure AC

(chosen by the adversary).
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Challenge: A submits two messages, m0 and m1 to the simulator. In addition, for

every proxy in DEC*
S , j, it sends a bit aj to the simulator. The simulator then flips a

random coin b and encrypts mb under S: CT = Encrypt(mb, PK, S, {PKi}i∈Aut), by

implicitly setting s = z, {lk = bk|∀k ∈ IS}, {fk = ek|∀k ∈ IS}, {dk = bkek|∀k ∈ IS}

and {sj = zj|∀j ∈ DEC*
S}. For each proxy j ∈ DEC*

S , the simulator creates a partial

ciphertext Cj = ({C3k,j|attLk ∈ Sj}, P, Tokj) using the Distribute algorithm, and, if

aj = 1, performs C ′j = Translate(PK, j, Cj, {PKi}i∈Aut). Note, that for every proxy

j such that aj = 1, if an attribute attLk ∈ Sj , the simulator has two attributes in its hands:

the original attribute attk and the translated attribute, attk′ . Finally, the simulator extracts

C0, C1, C2, C3 = {C3k,j|attk ∈ S, j ∈ DEC*
S}, T ok from CT , and extracts C ′3j =

{C ′3k,j|attLk ∈ Sj} from each translated partial ciphertext, C ′j . The simulator then sends

the translated ciphertext C∗ to A. Note, that each element in C∗ can be computed using

terms from the assumption:

C∗ = {C0, C1, C2, C∗3, T ok}

where:

C0 = mb·e(g, g)xys = mb·R C1 = gs = gz C2 = {gdk |attk ∈ S} = {gbkek |attk ∈ S}

C∗3 =
⋃

attk∈S,
j∈DEC*

S

c∗3k,j c∗3k,j =


C ′3k,j if attLk ∈ Sj ∧ aj = 1

C3k,j otherwise
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From the construction,

c∗3k,j =


Dk,j if attLk ∈ Sim

Ek,j if (attLk ∈ Sm ∧ attLk /∈ Sj) ∨ (attLk ∈ Sj ∧ aj = 0)

E ′k,j if attLk ∈ Sj ∧ aj = 1

Now, the simulator can compute the following terms using terms from the assumption:

Dk,j = ((gu
∗ ∏
l∈IS

(gy/b
2
l ))attk(gh

∗ ∏
l∈IS

(gxz/blel) ·
∏
l∈IS

(gy/b
2
l )−attl))bkekg−xzj =

gbkek(u∗attk+h∗)
∏
l∈IS

gxzbkek/blel
∏
l∈IS

gybkek(attk−attl)/b2l )g−xzj =

gbkek(u∗attk+h∗)
∏
l∈IS

∏
c∈[P ]

gxzcbkek/blel
∏
l∈IS

gybkek(attk−attl)/b2l · g−xzj =

gbkek(u∗attk+h∗)
∏
l∈IS

∏
c∈[P ]

(l,c)6=(k,j)

gxzcbkek/blel ·
∏
l∈IS

(gybkek/b
2
l )attk−attl

Ek,j = ((gu
∗ ∏
l∈IS

(gy/b
2
l ))Fp(Korg(k),attk)(gh

∗ ∏
l∈IS

(gxz/blel) ·
∏
l∈IS

(gy/b
2
l )−attl))bkekg−xzj =

gbkek(u∗Fp(Korg(k),attk)+h∗)
∏
l∈IS

gxzbkek/blel ·
∏
l∈IS

gybkek(Fp(Korg(k),attk)−attl)/b2l )g−xzj =

gbkek(u∗Fp(Korg(k),attk)+h∗)
∏
l∈IS

∏
c∈[P ]

gxzcbkek/blel ·
∏
l∈IS

gybkek(Fp(Korg(k),attk)−attl)/b2l · g−xzj =

gbkek(u∗Fp(Korg(k),attk)+h∗)
∏
l∈IS

∏
c∈[P ]

(l,c)6=(k,j)

gxzcbkek/blel ·
∏
l∈IS

(gybkek/b
2
l )Fp(Korg(k),attk)−attl
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E ′k,j = (θ(Pattk
′−(P−1)Fp(Korg(k),attk))h)dkw−sp =

gbkek(u∗(Pattk
′−(P−1)Fp(Korg(k),attk))+h∗)

∏
l∈IS

gxzbkek/blel

·
∏
l∈IS

gybkek((Pattk
′−(P−1)Fp(Korg(k),attk))−attl)/b2l g−xzj =

gbkek(u∗(Pattk
′−(P−1)Fp(Korg(k),attk))+h∗) ·

∏
l∈IS

∏
c∈[P ]

gxzcbkek/blel

·
∏
l∈IS

gybkek((Pattk
′−(P−1)Fp(Korg(k),attk))−attl)/b2l g−xzj =

gbkek(u∗(Pattk
′−(P−1)Fp(Korg(k),attk))+h∗) ·

∏
l∈IS

∏
c∈[P ]

(l,c)6=(k,j)

gxzcbkek/blel

·
∏
l∈IS

(gybkek/b
2
l )Pattk

′−(P−1)Fp(Korg(k),attk)−attl

Tok =
⋃

attk∈S,
attLk∈Sj

Tokk,j =
⋃

attk∈S,
attLk∈Sj

(Tok1k,j, T ok2k,j, T ok3k,j, T ok4k,j)

Tok1k,j = (gu
∗ ∏
l∈IS

(gy/b
2
l ))bk = (gy)u

∗ ∏
l∈IS ,l 6=k

(gybk/b
2
l ) Tok2k,j = ek

Tok3k,j = F (K1org(k), att
L
k ) Tok4k,j = Fp(Korg(k), attk)

Phase 2: Phase 1 is repeated.

Guess: The adversary outputs a guess b′ of b. If b = b′ the challenger outputs 0, i.e. it

claims that the challenge term is R = e(g, g)xyz. Otherwise, it outputs 1 to indicate that it

believes R is a random group element.

If R = e(g, g)xyz then A played the proper security game, because C = mb · R =

mb · e(g, g)xys. On the other hand, if R is a random term then all information about the
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message mb is lost in the challenge ciphertext. Therefore the advantage of A is exactly 0.

As a result if A breaks the proper security game with a non negligible advantage, then B

has a non negligible advantage in breaking the (q, n, n)-DBTDH assumption.

Theorem 2 LetC = (M)S be a MA-OTABE ciphertext. No coalition of at most |DECS|−

1 parties can learn anything about M .

Let M be a message to be encrypted under an MA-OTABE scheme and a set of at-

tributes S. Let |DECS| = n. Additionally, let Φ be a colluding set, |Φ| = n− 1.

From our definition, the colluding set might contain either all the proxies in ORGS or

a subset of |ORGS| − 1 proxies from ORGS and the data user. Since the information that

the colluding set has in the former case is a subset of the information that it has in the latter

case, it is enough to prove the lemma for the latter case.7

We claim that no information about the data layer, represented by data-layer compo-

nents C0 and C1, can be inferred from translation tokens, as well as any combination of

attribute-layer components held by members of Φ.

Attribute-layer components include C2 = {C2k|attk ∈ S} and C3 = {C3k,j|attk ∈

S, j ∈ DECS}. Each attribute component C3k,j includes two parts: a “local randomness”

part, either (θattkh)dk or (θFp(Korg(k),attk)h)dk and a binder-term part (w)−sj , while C2 =

{gdk |attk ∈ S} contains only a “local randomness” part.

Since each fk, lk are chosen uniformly at random, so does dk. In addition, each dk

is local to the attribute-layer components corresponding to attk, {C2k}, {C3k,j} in which

it appears, and does not appear in attribute-layer components that correspond to other

attributes, and, more importantly, in the data layer. Therefore, the local-randomness parts

of any combination of attribute-layer components C2 and C3 are independent of the data

7Theoretically, the colluding set may include proxies that do not belong to ORGS ; because they do
not participate in the translation of C, they are not given any partial ciphertext related to C. Since each
ciphertext’s elements are individually randomized, even if such proxies are part of the colluding set, they
will not be able to provide any information that may contribute to the collusion attempt.
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layer. Furthermore, each token, set of tokens or combination of sets of tokens in Tok =

{Tokj|j ∈ Φ} are also independent of the data layer. This means that, any information

about the data layer, and therefore, the plaintext, can only be obtained using a combination

of binder term parts taken from various attribute componentsC3k,j that parties j ∈ Φ hold.

We now show that any such combination provides no information about the the binder

term, and hence, no information on the data layer.

Let us look at any n− 1 combination of binder term parts held by members of Φ. We

define the following random variables:

{Si}1≤i≤n = w−si

Consider a set of n − 1 binder-term parts, T . If T does not include Sn, it must contain

S1, . . . , Sn−1. Since s1, . . . , sn−1 are chosen uniformly at random from Zp, S1, . . . , Sn−1

are independent random variables. If T does include Sn, assume without loss of gen-

erality that T = {S1, S2, . . . , Sn−2, Sn}. Clearly, the first n − 2 variables are indepen-

dent. Sn = w−sn = w−s+
∑n−1

i=1 si = w−(s+
∑n−1

i=1 −si) = (wsSn−1

∏n−2
i=1 Si)

−1 depends on

S1, S2, . . . , Sn−2, but also on the missing Sn−1. Sn−1 is independent of S1, . . . , Sn−2. Each

distinct value of Sn−1 produces a distinct value of Sn. Therefore Sn is independent of the

first n−2 Si’s. In both cases, all n−1 elements in T appear to the adversary as independent

random numbers, and give no information about the binder term.

Thus, for any colluding set of size at most n − 1 = |DECS| − 1, any combination

of tokens and attribute-layer components which members of Φ are given as part of the

protocol provide no information about the data layer, and hence, about the plaintext M .

Lemma 2 Let C = (M)S be a MA-OTABE ciphertext. The proxies in an MA-OTABE

scheme cannot learn anything about M , even if they all collude.

The proof follows from Theorem 2 since every colluding set of at most |DECS| − 1
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parties cannot learn any information about M and, by definition, only |DECS|−1 proxies

participate in each ciphertext’s translation.

Theorem 3 Let F and Fp be two PRFs used in the construction of our MA-OTABE

scheme. If F and Fp are secure, then the scheme achieves attribute secrecy.

Consider a message M , encrypted under a set of attributes S resulting in a ciphertext

C.

Hidden access policy: We consider both the servers, and the data users:

CSP, proxies: The set of attributes Y that is stored with the ciphertext on the CSP

includes only the obfuscated values of immutable attributes from S. In addition, neither

the CSP nor the proxies are given any trapdoors for attributes in S. Thus, Y is hidden from

the servers (for more details, the reader is referred to [20]).

Apart from Y , an attribute attk ∈ S may appear in the ciphertext only within the at-

tribute components {C3k,j} to which the attribute corresponds. Immutable attributes can

only appear within Dk,j , as the exponent of θ inside the local randomness part. Since each

local randomness part in which the attribute itself appears is blinded by a local, uniformly

random chosen element, known only to the owner, the attribute remains hidden. Muta-

ble attributes in S can appear within Ek,j or E ′k,j , as the exponent of θ inside the local

randomness part, or in Tok3k,j, T ok4k,j . In both Ek,j and E ′k,j , each local randomness

part in which the attribute itself appears is blinded by a local, uniformly random chosen

element, known only to the owner. Furthermore, In both Ek,j , Tok3k,j and Tok4k,j , either

attk or attLk only appear in their encrypted form, using a keyed PRF with a key that is

unknown to the CSP, or to any proxy. Lastly, each PRF-encrypted term inside Tok3k,j and

Tok4k,j is encrypted using the public key of the proxy who is allowed to translate attk

(“the translator”). Hence, mutable attributes inside the ciphertext remain hidden as well.

Data users: We start by defining the term “terminal attributes.” Terminal attributes

include either immutable attributes, or attributes which are the result of an attribute trans-
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lation performed by one of the proxies. Intuitively, those are the attributes that the data user

will eventually receive with the ciphertext, and thus must be kept hidden from the user, in

such a manner that enables her to know which attributes should she use for decryption.

Each immutable attribute in S is replaced by the owner at encryption time by an ob-

fuscated value of that attribute,

e((gβaut(k))c, H(attk)), derived from the PEKS construction in [20] where c is a random

number, creating the set Y .

When a proxy Porgj performs a translation of an attribute, it computes an obfuscated

value of the new attribute that it created, and only that obfuscated value is attached to the

translated partial ciphertext that it sends to the user, as Yj .

The data user never receives the actual S. Instead, it receives TR(S) = Y ∪{Yj}j∈ORGS

where Y represents immutable attributes in S and {Yj} represent the set of mutable at-

tributes in S. Hence, all the terminal attributes are obfuscated, and therefore remain hid-

den from the user (for more details, the reader is referred to [20]). Note, however, that

unlike the servers, data users do hold trapdoors for attributes that appear in their access

policies, H(attk)
βaut(k) , and those trapdoors do leak some information about the attributes

in S. Such leakage to the data user is limited to those attributes in S that also appear in the

user’s access policy; that is, the user learns nothing about attributes in S that are not in her

access policy. Such leakage includes, for instance, the ability of the user to know whether

an attribute in S, that also appears in the user’s access policy, appeared in previous cipher-

texts that the user has retrieved from the CSP (we note that the source of such leakage is

the transitivity of the equality operation, not the attributes’ actual values. The user is not

able to learn any of the attributes in S, even for those attributes that appear in her access

policy).

Oblivious translation: A proxy Porgj uses its partial ciphertext, its tokens, and auxiliary

information in order to perform a translation of an attribute attk. We claim that neither of
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the items above reveals the attribute attk.

Within the partial ciphertext, an attribute attk such that

attLk ∈ Sj can only appear in the attribute components {C3k,j} to which the attribute attk

corresponds, within Ek,j , as the exponent of θ inside the local randomness part. However,

each local randomness part within an elementEk,j in which the attribute appears is blinded

by a local, uniformly random chosen element, known only to the owner.

Tokens include fk, θlk , which cannot provide any information about attk. Tokens also

include the label and the value of attk, each encrypted using a different keyed PRF (F

and Fp). The keys of both F and Fp are shared between the owner and orgj , and are

unknown to the proxy. Auxiliary information pieces are also encrypted using the same

keyed PRFs, with the same key used for encryption of the attribute to be translated by the

proxy. Hence, if F and Fp are secure, attk remains hidden from the proxy. As discussed

in Subsection 2.6.2, the PRF can be replaced with other transformations that better suit

the translation logic of each organization, e.g., order-preserving transformations. Often

such transformations also use PRFs to some extent. In this case, because both the original

attribute and the auxiliary information will be encrypted using the same transformation,

using a key that is unknown to the proxy, the original attribute will remain hidden from

the proxy as well.

Lastly, we would like to note that though the translation is done obliviously and the

proxy does not learn the original attribute, it does leak some information about the original

attribute, as well as the auxiliary information, to the proxy. For instance, the proxy is

able to know, because of the deterministic encryption, which attributes in Sj are used in

different ciphertexts, as equality can be determined based on the PRF-encrypted value.

However, at least some sort of leakage appears to be inherent, as this is exactly what

enables the proxy to perform the functionality required from it in our scheme. Also note,

that such leakage is limited to the translator. This is because each attribute component that

is meant to undergo translation by a proxy has two encryption layers: In the outer layer,
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we use strong encryption, based on traits of our proposed scheme as discussed in Theorem

1 or on traits of Π; all system entities except the translator will be unable to decrypt this

layer. Only the translator is able to decrypt the outer layer and access the inner layer,

which contains the actual attribute encrypted in a “weaker” encryption that enables it to

perform the translation.

Attribute privacy: We consider the data owner and the data client:

Data client: Given a translated attribute v ∈ Uclient, such that MAP−1(M, v) is a mu-

table attribute, MAP−1(M, v) may appear either within the attribute components {C3k,j}

to which the attribute v corresponds, inside an element Ek,j , or within Tok3k,j, T ok4k,j .

In both the ciphertext and the tokens, MAP−1(M, v) only appears in its encrypted form,

using a keyed PRF with a key that is unknown to any member of orgclient. Furthermore,

each local randomness part inside each element Ek,j in which MAP−1(M, v) appears, is

blinded by a local, uniformly random chosen element, known only to the owner. Lastly,

PRF-encrypted terms inside Tok3k,j, T ok4k,j are encrypted using the translator’s public

key, and can only be decrypted by the translator.

Hence, for every attribute v ∈ Uclient such that MAP−1(M, v) is a mutable attribute,

orgclient does not learn MAP−1(M, v).

Data owner: For every mutable attribute s ∈ S, the Encrypt() algorithm given in

our construction does not require any knowledge about MAP (M, s). Furthermore, for

each s ∈ S, the resulting ciphertext, C (including both ciphertext’s elements and trans-

lation tokens), does not contain MAP (M, s). Lastly, for every mutable attribute s ∈ S,

data owners participating in PRShare receive neither terms that include MAP ((M, s), nor

terms that can provide any information on the value of MAP (M, s).

Hence, for every attribute s ∈ Uowner such that s is a mutable attribute, orgowner does

not learn MAP (M, s).
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(a) Data query (b) Encryption

(c) Key generation

Figure 2.1: Typical running times in seconds
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2.9 Implementation and evaluation

To assess the feasibility of our framework, we implemented the full version of our OTABE

scheme using Charm, a framework developed for rapidly prototyping advanced cryptosys-

tems [4]. Charm was used to develop multiple, prominent existing ABE schemes, includ-

ing that of Rouselakis and Waters [96]. We instantiated our implementation using a 256-bit

Barreto-Naehrig (BN) curve. Note that in our implementation, we translated our scheme

to the asymmetric setting, as charm uses formally asymmetric groups. The assumptions

and the security proofs can be translated to the asymmetric setting in a generic way.

We consider a setting with three authorities and policies of size ten, where the decryp-

tion is always successful, and use oblivious list membership as our translation operation.

We present benchmarks for three operations. The first is the overall turnaround time of a

data query, i.e., the total time between a user’s initiation of a query and her receiving the

plaintext records that satisfy it. We also provide benchmarks for the encryption algorithm

and the key-generation algorithm, despite the fact that encryptions are done offline, and

key requests are significantly less frequent than data queries. Note that the hidden-access-

policy feature is turned off in our experiments.

Recall that each data query entails the following steps. A query is sent to the CSP.

The CSP searches for all of the records that satisfy the query. For each ciphertext returned

by the search, the CSP sends its partial ciphertexts to the relevant proxies. Each proxy

obliviously translates the partial ciphertext it received. The user aggregates all partial

ciphertexts and decrypts the result to obtain the plaintext.

To enable adequate comparison of our OTABE scheme and other ABE schemes, results

are given for a single-record data query. Indeed, our running times are similar to other

multi-authority ABE schemes, such as [97]. When generalizing our results to the multi-

record case, it is important to note that our scheme is highly parallelizable. No TA or proxy
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needs to coordinate its computation with any other TA or proxy; thus they can all proceed

in parallel. In order to decrypt, a data user must perform a separate computation for each

TA, and all of these computations can be done in parallel. Finally, partial ciphertexts that

correspond to different attributes can be translated in parallel.

Figure 4.2(e) compares the average time of a data query that contains 100 attributes,

for different numbers of mutable attributes and various sizes of ORGS . The runtimes

are relatively small: it takes only 314ms to perform a 90-translation data query when

|ORGS| = 10. Although there is an increase in runtime as the number of mutable at-

tributes increases, this increase is significantly more noticeable when ORGS contains

fewer proxies. Figure 4.2(e) also demonstrates an inherent trade-off between the transla-

tion and decryption algorithms: A larger number of proxies results in better load balancing

of translation operations, but it also results in more expensive decryption.

Figure 2.1(b) shows the average time taken by the encryption algorithm for different

numbers of attributes in the ciphertext and various sizes of DECS . As expected, en-

cryption time increases as the number of attributes in the ciphertext increases, and as the

number of organizations that participate in the decryption increases. Yet, as can be seen,

all times are very reasonable compared to other ABE schemes: it only takes 0.46s to en-

crypt a ciphertext that contains 100 attributes if the number of decrypting entities is 2, and

0.81s if the number of decrypting entities is 6. Bear in mind, that encryption is done once

per record, and offline.

Finally, Figure 2.1(c) shows the average time taken by the key generation algorithm

for various policies. The times are all under 1.81s. This means that, within less than

two seconds from a data user’s request for a task-related key, she will receive, from each

authority, a key that supports a policy of size 100. Bear in mind that key requests are

significantly less frequent than data queries and only occur once per time-limited task.
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2.10 The q-DBDH assumption

In Section 2.5, we define a q-type assumption, (q, t, n)-DBDTH, and use it to prove that

our OTABE scheme is secure. This assumption is based on another q-type assumption

(used in [96], as well as in other existing ABE works) that we referred to as the q-DBDH

assumption.

The q-DBDH assumption is parameterized by a security parameter λ, a suitably large

prime p, two prime-order bilinear groups G1 and G2, a bilinear map e : G1 → G2,

and an integer q. It is defined by a game between a challenger and an attacker. The

challenger picks a group element g uniformly at random from G1 and q + 3 exponents

x, y, z, b1, b2, . . . , bq independently and uniformly at random from Zp. Then it sends

(p,G1, G2, e) and the following terms to the attacker:

g, gx, gy, gz, g(xz)2

∀l ∈ [q] : gbl , gxzbl , gxz/bl , gx
2zbl , gy/b

2
l , gy

2/b2l

∀l, f ∈ [q], l 6= f : gybl/b
2
f , gxyzbl/b

2
f , g(xz)2bl/bf , gxz(bl/bf )

The challenger flips a fair coin b. If b = 0, it gives the term e(g, g)xyz to the attacker.

Otherwise, it gives the attacker a term R chosen uniformly at random from G2. Finally,

the attacker outputs its guess b′ for the value of b.

We say that the q-DBDH assumption holds if all PPT attackers have at most a neg-

ligible advantage in λ in the above security game, where the advantage is defined as

Pr[b′ = b]− 1/2.
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Chapter 3

Social-network mining to infer voters’
intentions

3.1 Introduction

Political choices and voting decisions are considered by many people to be highly sen-

sitive and private information that they are reluctant to reveal. Political campaigns, on

the other hand, are investing heavily in voter targeting, focusing intently on social network

platforms because of the micro-targeted advertising capabilities they provide. In this work,

we explore the following question: Can we predict the voting behavior of Facebook users

from their public Facebook profiles?

We present a novel approach for predicting the voting behavior of Facebook users using

a Bayesian-network model that combines demographic, behavioral and social features.

Although we focus on the 2016 U.S. Presidential election, our approach can be extended

to any two-part system.

This work is the first to use a Bayesian network model for political attribute inference.

Furthermore, it is the first to not only address, but also offer concrete solutions to the

selection bias problem, combining a representative and heterogeneous datasets of both

politically active and passive users, a semi-supervised training methodology and a diverse
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set of demographic, behavioral and social features. Finally, our model is trained to predict

not only to whom the user will vote, but also whether she will vote at all, a task that has

not been performed by any existing work on vote prediction.

3.1.1 Related work

There are several streams of research that investigate the predictive power of social media

for political purposes.

One stream of research concentrates on predicting the political orientation of an in-

dividual from various components of her social network profile: Tweets’ content [95];

retweet graph [29]; following behavior [14]; degree of tweets and retweets [22, 114]; and

“liking” politically oriented pages [19].

A more general approach, taken by [90, 111, 118, 120] aims at building a generic

framework for latent attribute inference of social media users. Those works do not focus on

political orientation as a stand-alone trait, but rather use it to demonstrate the functionality

of their generic classification system.

Another stream of research focuses on election prediction from social network data.

Such works usually take either a volume based approach or a sentiment analysis based

approach and use it to predict the outcomes of various election systems in both two-party

and multiparty settings [24, 74, 106, 108].

Although closely related to the lines of research discussed above, individual voting

behavior differs in several respects. Individual voting behavior prediction aims at predict-

ing an individual choice (unlike election prediction, that aims at capturing an aggregated

measure) for a specific event. This event has a well-defined end date and a well-defined set

of choices (labels) that represent the possible voting choices the individual has in a given

election. In contrast, political orientation reflects a generic and subjective measure that

does not have well defined time boundaries; furthermore, the multitude of scales used for
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measuring political orientation, combined with the fact that any point on such scale may

have different meanings to different individuals results in the lack of a well-defined set of

labels.

In contrast to the work on political orientation and election prediction, relatively little

work has focused on individual voting behavior prediction: Gayo-Avello [43] tried to

infer the votes of Twitter users in the 2008 U.S. elections by applying multiple sentiment

analysis methods. Bachhuber et al. [13] examined several approaches aimed at finding

distinct clusters of Twitter users based on linguistic properties of their tweets, creating

language profiles for supporter groups in the 2016 US elections. Kristensen et al. [65]

used Facebook to predict voter intentions in the 2015 Danish election, and examined users’

political like history to predict which party will they vote for.

3.1.2 Shortcomings of prior research

A significant shortcoming of prior research is the use of biased datasets. Those datasets are

composed of politically active social-network users, a minority which does not represent

the ordinary user population. Classifiers trained on such datasets will thus experience

limited predictive accuracy when applied to ordinary users [28], who are less politically

engaged yet constitute the majority of social media users [85].

We recognize three potential sources of bias:

Platform: Twitter is the social network most commonly used for politically oriented

data-mining research. However, Twitter is one of the least representative social networks

[3, 80]: First, the usage statistics among American adults are quite low. Second, Twitter

users are not demographically representative of the population; the resulting demographic

bias is often ignored in research concerning political orientation inference and voting be-

havior prediction. Third, Twitter is considered the most “political” social network, at-

tracting a user population with unusually high political awareness. Twitter users’ datasets

77



are therefore highly likely to be politically and demographically unrepresentative of the

general population.

Features: The vast majority of prior work relies solely on the analysis of user-generated

content or politically oriented activities in social networks. This approach introduces sub-

stantial selection bias because the only social network users who appear in such datasets

are those who engage in politically overt activities, and only a minority of all users do

so [28], [65]. In other words, those approaches yield high-accuracy results, but those re-

sults are limited to a small fraction of social media users. Indeed, less than 27% of the

users in our dataset performed a public activity related to Trump or Clinton before the

2016 election date; that is, more than 73% of the users for whom solely relying on user-

generated content would yield results which are essentially no better than those we would

have received using a random classifier.

Labels: Previous works have used several methodologies for extracting labels from social-

network accounts, relying on online behaviors such as explicitly stating political orienta-

tion online [43, 90, 118]; including politically related content in tweets [13, 29, 114];

supporting partisan causes [95] or following candidates [110]. Subsequently, only users

for whom such label exists are included in the datasets, leading to the creation of biased

datasets, composed entirely of individuals who voluntarily disclose their political prefer-

ence online. This methodology introduces self-selection bias into the final results, as users

who choose to disclose their political affiliations constitute a minority of social media

users[92].

3.1.3 Our contribution

The goal of the models presented in this work is the following: given a Facebook user,

predict the individual voting behavior of that user based on the public portions of the

user’s Facebook profile. Our main contributions are the following:
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Addressing sources of potential bias: we address platform-based bias by using Facebook

as our social network platform. Facebook is known to be much more representative of the

general population than Twitter and supports a richer profile representation; we address

features-based bias by going beyond active content analysis and combining multiple types

of information about the user: static (demographic attributes of the user), dynamic (activ-

ities performed by the user and their frequency patterns) and social (information we can

learn about the user from her social network links). Finally, we address label-based bias by

applying a semi-supervised approach that uses a combination of labeled data, where labels

are obtained from surveys, and unlabeled data, composed of users who didn’t participate

in the survey though were offered to.

Incorporating non-voters: Existing works implicitly assume that all users indeed vote.

That is, the only users that are included in the datasets are users who voted for one of the

candidates in a given election. This assumption is not only an unrealistic oversimplifica-

tion of election systems but also prevents us from identifying important subpopulations,

whose specific vote is inconsistent with their general partisanship such as strong partisans

who decide not to vote in a given election. Our key assumption is that a voting decision

is influenced by two types of components: a “static” component that is determined by the

general party identification of the individual, and “dynamic” components that are deter-

mined by specific characteristics of the candidates and include both factual policy-related

material and subjective perception of the candidate. Each component can be learnt from

different elements in a social-network profile, and its influence on the individual’s voting

behavior is combined with the rest of the components using a Bayesian network model.

Using a novel Bayesian network model: Bayesian-network (BN) classifiers offer impor-

tant advantages that specifically fit the nature of our problem as well as the nature of our

data.

One advantage of BNs is their ability to support the combination of data and prior

knowledge about the problem’s domain. This allows us to use existing research and statis-
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tics for encoding some of the model’s parameters; these include interactions between de-

mographic attributes, and interactions between demographic attributes and party identifi-

cation. Another advantage of BNs is that they handle missing data very well within both

training and evidence data. This is particularly important when dealing with social net-

work datasets, which are often incomplete. Indeed, datasets used in this work contain

a large number of missing values, which correspond to attributes that users have chosen

not to include in their public Facebook profile. Due to our use of BN, missing values

in the evidence data need not be imputed but rather can be fed directly to the model.

Furthermore, the probabilistic representation combines naturally with the Expectation-

Maximization (EM) algorithm [31], enabling our training data to include both missing

values and latent variables. It is this trait of BNs that facilitates the use of both labeled and

unlabeled training data.

3.2 Methodology and datasets

We designed and distributed a comprehensive survey1 which adopted purposeful sampling

of eligible voters in the 2016 U.S. elections that are also Facebook users. We used the

Qualtrics survey platform to create and host the survey.

Survey construction: The survey included questions about the user’s demographics, her

Facebook activity, her political opinions including her party identification and her vote

in the 2016 presidential election. All survey data was anonymized after collection. We

informed participants that their responses would be used for academic research.

We implemented several methods for identifying and excluding data from participants

who answered unreliably. First, we eliminated responses from participants who took the

survey more than once. We took a conservative approach and discarded responses that

came from the same IP address. Second, to ensure the eligibility of participants, they had

1The full survey can be found at https://lihiid.files.wordpress.com/2021/09/survey voting behavior.pdf
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to complete a screening questionnaire before taking the survey. The questionnaire was

carefully designed, in order to prevent respondents from inferring the qualifications we

were looking for and taking the survey without being an eligible participant. We avoided

yes/no questions regarding the qualification needed and used multiway questions instead,

as yes/no questions tend to insinuate the “correct” answer in order to pass the screening

questionnaire. In addition, we disguised the real screening questions among other dummy

questions. For example: instead of directly asking: “do you have a Facebook account”?

we asked a series of identical multiway questions about news consumption habits from

each of the media platforms. For example, the question “how often do you consume news

via TV?” had the following five answers: More than 5 times a day; 3 times a day; once

daily; Never; I do not have a TV. In the same question that dealt with Facebook, the last

answer was replaced by “I do not have a Facebook account”. Third, we included control

questions to ensure that the respondents were providing reliable data; those were fairly

straightforward questions which asked the same question multiple times, in different parts

of the survey, and using a slightly different terminology. We excluded participants who

failed in one or more of the control questions. Lastly, the survey’s name did not include

words such as ’politics’ or ’social media’ so as to not expose the qualifications needed, as

well as not to oversample from the more politically engaged population.

Datasets: In this work, we make use of three datasets:

D1 consists of 1638 survey responses collected via Amazon’s Mechanical Turk (MTurk).

Labels for this dataset are obtained through the survey.

D2 consists of 841 Facebook profiles and corresponding survey responses collected

via both Facebook and Qualtrics. Labels for this dataset are obtained through the survey.

D3 consists of 500 unlabeled Facebook profiles, corresponding to individuals who did

not participate in our survey. The only information that was collected on this dataset is

public — details that the users have published in their public Facebook profile. For that

reason, D3 is unlabeled and contains a large number of missing features.
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Table 3.1: Descriptive statistics for D1 and D2

Attribute Metric D2 D1 Census

Gender Female 48.6% 50.6% 50.8%
Male 51.4% 49.4% 49.2%

Educational attainment Post-graduate degree 13% 14.3% 11%
College degree 35% 31.2% 26.2%

No college degree 52% 54.5% 62.6%
Marital Status Married 48.9% 49.5% 48.3%

Unmarried 51.1% 50.5% 51.7%
Ethnicity Caucasian 66.6% 71.4% 62.8%

African American 10.7% 9.77% 12.2%
Hispanic 15.6% 12.1% 16.9%

Other 7.13% 6.72% 8.1%
State Of Residence Solid republican 28.3% 23.6% 24%

Lean republican 8.56% 10.5% 11.7%
Competitive 38% 39.2% 40.5%

Lean democratic 13.1% 14.6% 14.8%
Solid democratic 12% 11.9% 9%

Age 20-33 38.9% 53.7% 19.7%
34-49 30.2% 26% 20.5%
50+ 30.9% 20.3% 44%

Party Identification Republican 33.9% 33.3%
Democrat 40% 33.3%

Independent 26.2% 33.3%
Vote Trump 30.8% 32.1%

Clinton 36.7% 37.3%
Other 32.5% 30.6%

The use of D1, D2 and D3 was motivated by our attempt to address three types of

selection bias:

Visibility bias: Datasets used in prior research were often created by systematically ex-

cluding users who did not publish a certain attribute — one that is crucial to the model’s

performance, such as politically oriented activity or self-reported label — in their pub-

lic social network profile. Acknowledging that such approach yield datasets that are not

representative of the Facebook user population, our datasets were constructed so that the

absence of a feature or a label from a user’s public profile does not affect the user’s chance

of being selected. As is evident from Table 3.2, neither feature was publicly disclosed by

more than 46% of the users in D2, and only 4.4% of them published their vote in the 2016

presidential election.

Self-selection bias: D1 and D2 represent a population of individuals who have selected to

participate in our survey. In order to address this selection bias, we created a third dataset
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Figure 3.1: The BASIC model

D3 composed of Facebook users who, though were asked to, did not participate in our

survey. While we could not use D3 for testing, as it is unlabeled, we did combine it in our

training set in order to further generalize our model.

Demographic bias: one advantage of the use of MTurk for data collection is the ability

to obtain data from demographically diverse groups; although MTurk’s population is not

fully representative of the US population, the ease of data collection via MTurk enabled

us to reach crowds that are diverse across the primary demographic dimensions used in

this work. Table 3.1 presents descriptive statistics of D1 and D2 and compares a subset of

their demographics to the 2014 US census. As can be seen, each group is well represented

in the datasets. Note that D1 was stratified by Party Identification, resulting in a balanced

representation of Republicans, Democrats, and Independents within the training set.

External software: Throughout this work we refer to specific subtasks that were per-

formed using existing, readily available software. Examples include Genderize.io2 and

ethnicolr3 for gender and race inference based on the user’s name; Python NLTK for sen-

timent analysis tasks; GeNle and pysmile for our BNs’ creation, parameter learning, and

inference.
2https://genderize.io/
3https://ethnicolr.readthedocs.io/
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3.3 The Bayesian network

The target node in our BN, “vote”, represents the voting behavior of an individual user. It

may take one of three values: vote for candidate 0 (“c0”); vote for candidate 1 (“c1”); not

vote at all or vote for a third party candidate (“Other”). In our setting, “candidate 0” repre-

sents a vote for Donald Trump; “candidate 1” represents a vote for Hillary Clinton; “Other”

represents non voters or a vote for a third party candidate in the 2016 U.S. elections. The

basic idea behind our BN models is to treat the vote node as both a cause and an effect.

As such, it is influenced by a set of causes and causes a set of effects: Causes include

the party identification (PID) of the user and the voting behavior of the user’s network

neighborhood (NET). Effects include the user’s politically oriented activities on Facebook

(ACT). Each of the causes and effects belongs to a subnetwork that includes a different

type of observable variables: demographic attributes of the user (“static subnetwork”);

types and patterns of Facebook activity performed by the user (“dynamic subnetwork”);

and activities performed by the user’s network neighborhood (“social subnetwork”). Due

to the BN’s structure, we are able to elicit different priors with varying levels of confidence

to the different subnetworks.

Formally, given a target Facebook user ut, Let D = {D1
t , D

2
t , . . . , D

n
t } be n demo-

graphic attributes of ut, A = {A1
t , A

2
t , . . . , A

k
t } be k attributes describing Facebook activ-

ities performed by ut and N = {N1
t , N

2
t , . . . , N

j
t } be j attributes describing ut’s network

neighborhood. Given our target node, vote, we are interested in the label c that maximizes

the following posterior probability:

c = argmax
v∈{c0,c1,Other}

P (vote = v | PID,ACT,NET )

Assuming that {D1
t , D

2
t , . . . , D

n
t }, {A1

t , A
2
t , . . . , A

k
t } and {N1

t , N
2
t , . . . , N

j
t } are ob-

servable attributes, and using a bayesian approach P (ACT | A1
t , A

2
t , . . . , A

k
t ),
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P (NET | N1
t , N

2
t , . . . , N

j
t ) are obtained from our datasets and a uniform prior, and

P (PID | D1
t , D

2
t , . . . , D

n
t ) is obtained from our datasets and survey-based, or census-

based priors.

Using the EM algorithm, we employed a two-stage learning methodology: first, we

trained a BN using the available labeled data (D1) and probabilistically labeled the unla-

beled data; then, we trained a second BN using both the labeled data and a subset of the

unlabeled data (D3) about which the first BN was the most confident. This allowed us to

both learn the parameters of the model’s latent variables and diversify our training set with

a more representative, but unlabeled, data. Inference was done using a Junction tree based

algorithm.

Complexity-accuracy trade-off: the models presented in this work were carefully designed

so as to create compact models without damaging performance; if a certain edge did not

substantially contribute to the model’s predictive performance, we did not include it in

the network. For example, the income node in our SELF INFER model is, theoretically,

influenced by many demographic attributes. However, we have found that the only edges

that significantly contribute to the overall accuracy were those connecting income with

occupation, race and gender, and hence included only those edges in the network.

BASIC: Two nodes, “party identification” and “activity” are directly linked to the “vote”

node. “Party identification” covers the influence of an individual’s general party identifi-

cation on her actual vote. It is considered an unobservable attribute, and thus inferred from

the user’s demographic attributes. The attributes which are included in the model met two

criteria: attributes which are highly indicative of party identification; observable attributes,

in the sense that they are either offered by Facebook as an optional field in a profile or can

be inferred from other public information, such as name. The following attributes were

included in our model: gender, age, race, state of residence, education level, marital status.

We enhance the static subnetwork using prior information about the magnitude of the

interactions between each demographic attribute and the PID. Priors are based on multiple
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surveys conducted by Pew research center4 and on statistics provided by the U.S. Census

Bureau; priors refer to data that was collected at least six months before the elections and

were incorporated into the model’s parameters using a Bayesian approach and a Dirichlet

prior with varying confidence factors based on the available prior information on a given

parameter.

As can be seen in Figure 3.1, the static subnetwork is built in a conceptually “layered”

fashion: The first level represents ascribed attributes; the second level represents acquired

attributes; the final level contains the PID node. In order to avoid a large CPT for the

PID node, we used a parent-divorcing technique, introducing intermediate nodes (colored

orange in Figure 3.1, Figure 3.2 and Figure 3.3) that serve as the “accumulators” of the

PID given the subset of demographic attributes to which they are linked.

The second node which is directly linked to the target node is the “activity” node,

which addresses the more dynamic indicators of the user’s voting behavior and is influ-

enced by the public Facebook activities that the user performs.

In BASIC, we included three types of activities: writing a post; sharing an item; and

“liking” a page that is positively or negatively associated with one of the candidates. Each

of those activities is represented in the model using a separate observable node. The “activ-

ity” node aggregates the different combinations of activities into three states that represent

the user’s overall activity: activity associated with supporting candidate 0, activity associ-

ated with supporting candidate 1 and activity that is not associated with supporting either

candidate (such as writing a positive post about both candidates).

REVISED: Our second model, the REVISED model, refines the dynamic subnetwork

(Figure 3.2) in order to reflect several insights we obtained from reviewing the explanations

respondents gave to different questions in the survey:

Positive activity towards a candidate and negative activity towards her opponent

are not equivalent: Although positive activities were almost always associated with a

4https://www.pewresearch.org/
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Table 3.2: Fraction of users (D2) whose public profile contains various attributes

Attribute Fraction revealed

Age 18.2%
Educational attainment 34.8%

Marital status 36%
Occupation 32.7%

State of residence 45.5%
Wall content (full) 57.7%

Wall content (partial) 72.5%
Friends list 53.6%

Activity (positive or negative)
associated with either Clinton or Trump 26.6%
Vote in the 2016 Presidential election 4.4%

vote for the candidate who was the subject of the activity, negative activities towards a

candidate were associated either with a vote for the candidate’s opponent, or with non

voters.

Passive users versus politically passive users: The respondents who answered that

they did not perform any political activities on Facebook were asked to explain why they

didn’t. A common explanation was an unwillingness to reveal political opinions on Face-

book. It is important to note that those answers differed from the answers of respondents

who reported that they rarely use Facebook, use Facebook without performing activities,

or are simply not interested in politics. An interesting observation was that most users who

said they did not want to expose their political opinions on Facebook identified themselves

as either voted for Trump or did not vote at all.

Considering other Facebook activities: Respondents pointed out that, although they

have not performed an activity associated with one of the main candidates, they did per-

form an activity that was associated with a third-party candidate.

Based on our observations, we created the REVISED model: First, the “activity” node

was replaced with two nodes: “positive activity” and “negative activity”. In addition, the

observed “post”, “share”, and “like” nodes are each replaced by two nodes, one for the

positive form of the activity and one for the negative form of the activity. Note, that unlike
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the BASIC model in which there was no distinction between a positive activity towards

candidate x and a negative activity towards her opponent (as both were mapped to the same

“pro candidate x” state), here we distinguish between positive and negative activities, each

separately influences the vote node.

Second, we added a new binary node, labeled “Other activity”, that represents various

online activities that may indicate a vote for a third-party candidate. In the REVISED

model, it is set to one only if there is a positive activity associated with a third party

candidate in the user’s profile.

Third, we added a binary node, “activity level”, that represents the general activity

level of the user on Facebook. We wanted to distinguish those users who are not active on

Facebook from those who are not politically active on Facebook; our second observation

suggested that while the first group is not particularly important for the inference process,

the second group is strongly associated with users who voted for Trump (more generally,

with the candidate who is considered less “socially acceptable”). We added four ques-

tions to the survey: one asked for the subjective estimation, on a ten-point scale, of the

respondent’s activity volume on Facebook. The remaining three asked about the number

of posts, shares, and likes that the user has recently performed. We aggregated those four

measurements into one node, “activity level”, by discretizing each variable with a median

split and setting the “activity-level” value to the four variables’ logical AND.

3.4 Handling incomplete data

The models discussed thus far has considered a simplified setting, in which no evidence

data is missing. While social-networking services can potentially obtain such complete

information about their users (by accessing profile items in all visibility levels or collecting

demographic data when the user creates an account), third-party services can not, because

they are limited to the public portion of social-network profiles that often lacks some of
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the attributes that comprise our models’ features. Thus, it is essential to understand how

well does the model perform in the presence of missing data.

MISSING: In order to understand to what extent our model’s performance is influenced

by missing data, we tested the REVISED model on another dataset D′2 which is identical

to D2 except for the following case: if the value of an attribute was not publicly shared

in a user’s Facebook profile, we deleted the attribute’s value from the user’s record in D′2

and treated it as “missing evidence”. In other words, D′2 includes only those attributes

that the users in D2 have chosen to publish under a “visible to everyone” setting. For

attributes that do not have their own field in a Facebook profile, such as race, we used

external software and inferred them from other public information such as name; if the

software misclassified the attribute (compared to the real label that was obtained from the

survey), we deleted it from D′2.

Results for the MISSING model suggested a significant decrease in the overall accu-

racy, resulting in the need to design models that are specifically suited for missing evi-

dence. The following models demonstrate several strategies that were used to handle the

challenge of incomplete datasets.

SELF INFER: This model enriches REVISED by exploring various correlations between

the input variables for the purpose of reducing the influence of missing data on the overall

results.

Interactions among demographic attributes: Instead of treating demographic at-

tributes uniformly, we partition them into two groups: ascribed attributes and acquired

attributes. We can then make use of the possible dependency relations between the two

groups. This idea is incorporated in the model by creating new edges between the two “ac-

quired” attributes, education level and marital status, and the “ascribed” attributes which

are known to be highly indicative of them: race, gender for the education level, and age,

gender for the marital status. An important advantage of this approach is the ability to

combine priors in the CPD of the demographic child nodes, which represent the known
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Figure 3.2: The REVISED model

“influence” of the node’s parents on their descendant; the priors for this purpose were

taken from census statistics and were incorporated into the model’s parameters using a

Bayesian approach with a Dirichlet prior.

Hidden demographic attributes: Demographic attributes that were included in the

former models were both influential on the PID and observable, i.e., can be directly ex-

tracted from a Facebook profile. A question that may arise is whether both of those traits

must exist in a single attribute. The key idea is that while some observable attributes

are not highly influential on the PID, they are influential on other unobservable attributes

which do have a high influence on the PID. Using the chain of observable attribute →

unobservable attribute→ PID we can combine such unobservable nodes in our model as

well.

We consider one such pair: occupation and personal income. While income is not a

“potentially observable” attribute on Facebook, it is highly indicative of the individual’s

PID. Occupation, on the other hand, is not considered very indicative of PID but can be

considered as an observable attribute. In the model shown in Figure 3.2, we incorporate
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Figure 3.3: The FULL model

this idea, introducing two new nodes: an observed occupation node and a hidden income

node. The latter is fed by three observed nodes: occupation, race and gender, and feeding

the PID node. The occupation node’s states represents the twenty main occupation cat-

egories according to the standard SOC (Standard Occupational Classification) system, to

which we added two additional states: “student” and “retired”.

3.5 Combining link information: The FULL model

Homophily is the tendency of individuals to link to others who are similar to them. In a so-

cial network setting, this principle implies that the network neighborhood of an individual

may reveal a significant amount of information about the individual. In the FULL model,

we adopt a fine-grained interpretation of the homophily principle in order to both enrich

the static subnetwork and create the social subnetwork.
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A common BN representation of social network ties [53, 61] relies on a user-based

granularity where each node corresponds to a user within the target user’s (ut) neigh-

borhood; in such representation, dependency relations (and, consequently, similarity rela-

tions) can only be established between users. Thus, such representation implicitly assumes

that if two users share a tie, all their traits are similar. As demonstrated by [79], this as-

sumption is false: It is known that some attributes experience a more homophilous nature

than others. For some, similarity does not induce homophily at all.

In order to facilitate a more realistic representation of social network ties, our FULL

model relies on an attribute-based granularity, thus reflecting a more “fine-grained” ho-

mophily which may vary across different attributes. To achieve that, we decompose a user

into the different attributes that constitute her social network profile by associating nodes

with pairs of <user, attribute>, and dependency relations with links between attributes

of users. Using this fine-grained representation, dependency relations can be established

between a single attribute of ut and the same attribute of each of her neighbors only if the

attribute is known to be highly homophilous.

The above idea is implemented in the model using a small, fixed number of “aggre-

gator” nodes (colored purple in Figure 3.3), thus avoiding the overhead of dynamically

allocating a separate node for each neighbor of ut. For a given attribute, those nodes ag-

gregate the magnitude of each of the attribute’s states within ut’s neighborhood: let at be

an attribute of ut that we want to infer from ut’s neighbors, and has q(at) states, a1
t ..a

q(at)
t .

In the BN, we allocate q(at) aggregator nodes, parents of at, where the ith node represent

the magnitude of the subset of ut’s neighbors for whom the value of at equals the state ait.

3.5.1 Enriching the static subnetwork

We use the homophily principle to infer missing demographic traits of ut from the Face-

book profile of ut’s neighbors.
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Table 3.3: Comparison of the overall classification accuracy using different training con-
figurations.

TEST→ D2 D′2
TRAIN ↓ BASELINE BASIC REVISED MISSING SELF INFER FULL

10-fold CV .382 .68 .745 .661 .718 .825
D1 .382 .726 .76 .67 .712 —
D1+D3 .382 .738 .782 .695 .755 —

FULL: In the FULL model (Figure 3.3), we focused on a particular subset of ties within

ut’s network neighborhood. The subset is composed of neighbors who are ”close friends”

of ut, where a close friend is defined as a friend who has reacted to a recent post on

ut’s wall. Using this approach, we only consider ties that are both intense and recent,

as the stronger the tie connecting two individuals, the more similar they are[48, 79].

Furthermore, such activity based metric is more predictive of tie strength than metrics

based on network structure or social distance, incorporating both intimacy and intensity

factors[44, 48]. The major advantage of this approach is its simplicity and practicality, as

it does not require access to the full list of friends, but only to ut’s wall. Furthermore, such

ties can be identified and accessed directly from ut’s profile.

We examined two attributes that are known to be highly homophilous: state of res-

idence (SOR) and age. We elaborate on the CPD design of the state of residence node

(VSOR). The CPD of the age node was built in a similar process.

The influence of ut’s neighbors’ SOR on ut’s own SOR is modeled using five aggre-

gator nodes that represent the five states that the SOR variable can take in the BN (see

Table 3.1), {SORi}1≤i≤5. The jth aggregator node quantifies the portion of ut’s close

friends for whom VSOR=SORj . Each of the aggregator nodes was discretized to reflect

the rank of the state it represents among VSOR’s states and was linked to VSOR as its parent

using a memory-efficient multinomial logistic CPD.
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3.5.2 Creating the social subnetwork

The influence of the target user’s neighborhood on her voting behavior has been consid-

ered thus far only indirectly, through the static subnetwork. A natural extension is to treat

the vote node as a stand-alone trait; then, the homophily principle can be used directly to

infer the voting behavior of ut from the voting behavior of her neighborhood. However,

because the voting behavior cannot be directly extracted from a Facebook profile field we

cannot use exact counts as we did for demographic attributes. Instead, we use an approx-

imation of the overall voting behavior of ut’s neighborhood, obtained via the following

procedure: First, we mark the subset of ut’s neighborhood whose voting behavior can be

estimated with high confidence; these are users who have performed a social network ac-

tivity that is associated with one of the candidates. Second, we determine the influence of

ut’s neighborhood on her own voting behavior using only this marked subset, as well as

the magnitude of this subset relative to ut’s neighborhood.

FULL: A social subnetwork, built under the same principles used to enhance the static

subnetwork, is added to the FULL model. The subnetwork contains four aggregator nodes,

representing the portion of ut’s close friends who performed either a positive or negative

Facebook activity associated with candidate 0 or 1, and a “noise” node, representing the

portion of ut’s close friends who did not perform any public Facebook activity associated

with a candidate. In order to avoid continuous-valued nodes, the portions represented by

each node were discretized into five intervals using equal-frequency discretization. All

four nodes were linked into one of two intermediate nodes (’Positive neighborhood ac-

tivity’ and ’Negative neighborhood activity’), while the ’noise’ node was linked to both.

Those intermediate nodes aggregate the influence of the user’s neighborhood on her voting

behavior and feed directly to the vote node.
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3.6 Experimental results

The BASELINE, BASIC and REVISED models were evaluated on D2, which includes

attributes in all visibility levels. The REVISED model was also evaluated on D′2, which

only includes attributes from D2 published under a “visible to everyone” setting. SELF

INFER and FULL, designed to handle missing evidence, were evaluated on D′2.

Table 3.4 provides a detailed summary of results. We report overall accuracy, Preci-

sion, Recall, and AUC for each class. For FULL, we report the 10-fold cross-validation

results on D′2, because D1 does not include social features. However, in order to take

advantage of the information in D1, we use the CPDs obtained for the static and dynamic

subnetwork in previous models as high-confidence priors for FULL.

Inspired by [90], we employ a simple baseline system (BASELINE) that classifies all

the users explicitly mentioning their vote in the 2016 election within one of their public

posts. All other users are considered misses for the given class.

Table 3.3 compares the overall accuracy of each model using different training con-

figurations. The cross-validation results allow adequate comparison between the results

of FULL in Table 3.4 and the rest of the results. As can be seen, augmenting the labeled

dataset D1 with unlabeled data D3 indeed improves the classification accuracy. Further-

more, this increase becomes more significant as the number of missing values within the

test set increases.

BASELINE’s low overall accuracy probably results from the fact that very few users

have publicly disclosed their voting intention. Results for the REVISED model demon-

strate an improvement over the BASIC model, especially for the “other” class. This im-

provement suggests that the finer-grained modeling of the dynamic subnetwork allows the

classifier to capture additional information which uniquely characterizes the “other” class,

thus better separating it from the other two classes. Results also show that the MISSING
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model underperforms the REVISED model. However, the differences are not as sharp as

we expected considering the large number of missing values.

FULL was the best model, as evidenced by its high accuracy score (82.5%). Its use

of social features boosts both precision and recall, but the SELF INFER model, which

only includes demographic and behavioral features, achieves a decent score (75.5%) as

well. This demonstrates the fact that using carefully designed models combined with

complementary sources of information about the user yields solid predictions even when

both training and testing datasets are incomplete.

Most determinant features: We performed a sensitivity analysis to assess the impact of

the various models’ features on our target variable, vote. We elaborate here on the two

most determinant features for each state of the vote node. The most influential feature

for vote=Trump was race=African American, which decreased the posterior probability

of vote=Trump by 19%, followed by positive neighborhood activity Trump=very high,

which increased the posterior probability of vote=Trump by 13%. For vote=Clinton, the

two most influential features were positive post=Clinton and education level=post grad-

uate degree; they increased the posterior probability of vote=Clinton by 22% and 15%,

respectively. The two most influential features on vote=Other were negative activity=both

candidates and noise=very high. They increased the posterior probability of vote=Other

by 15% and 9%, respectively.

Comparison with Existing Results: Unlike political orientation, prediction of individual

voting behavior has not been intensively studied. Exceptions include [13], [43], and [65],

achieving an overall accuracy of 63%, 78.8%, 70.8% respectively. However, datasets used

in all three works were artificially limited to include only politically active users: users

who performed politically oriented tweets [13], hashtags [43] or likes [65]. The last is

highlighted because the accuracy of political-orientation classifiers is heavily dependent

on users’ political-engagement level. For example, [28] showed that methods for infer-

ring the political orientation of social-network users previously claimed to achieve greater
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Table 3.4: Detailed results for the Bayesian network models presented in this chapter

Model Class
Acc.

Prec. Rec. AUC
BASIC Trump .77 .76 .91 .738

Clinton .72 .89 .91
Other .72 .53 .78

REVISED Trump .73 .85 .94 .782
Clinton .79 .83 .92
Other .83 .64 .84

MISSING Trump .63 .84 .88 .695
Clinton .75 .7 .85
Other .72 .53 .78

SELF INFER Trump .69 .87 .91 .755
Clinton .81 .73 .88
Other .76 .65 .82

FULL Trump .78 .88 .94 .825
Clinton .83 .86 .93
Other .85 .72 .91

than 90% accuracy on politically active users, actually achieve barely 65% accuracy when

applied to “politically modest” users.

The prior work most relevant to ours is that of Kristensen et al. [65], which consid-

ers five models. We could not use all five as baselines for our work, because some use

features that can not be directly extracted from a Facebook profile (such as the user’s opin-

ion towards politically dividing issues, information which [65] obtains from surveys). In

contrast, our main principle in this work is to only use features that can be extracted from

a Facebook profile directly, without requiring the user to participate actively in the data-

collection process (our survey is used for validation purposes only). We were able to apply

model 2, which uses the user’s single most recent like that is associated with a party or

politician’s page; model 3, which uses the number of such likes over the past two years;

and their final model, which combines the features from model 3 with all the features from

the survey that served as their baseline model. We selected from their final model only

those features that can be extracted from a Facebook profile directly: gender, age, geog-
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raphy and education. All models were implemented using Python’s scikit-learn library.
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Figure 3.4: Overall classification accuracy among different classifiers

Applying model 2 to our dataset (Using D1 and D2 as training and test sets) achieved

an overall accuracy of 38.6%, a low score both compared to the result achieved in [65]

(43.9%) and to our BN models’ results. Applying model 3 to our dataset achieved an

overall accuracy of 40.4%. It is interesting to see that there is not much improvement in

the accuracy compared to model 2, while the difference between the two models in [65]

is more significant, with model 3 achieving 60.9%. Finally, applying their final model

to our dataset achieved an overall accuracy of 60%; we can see a clear increase in the

accuracy compared to models 2 and 3; however, it still underperforms [65]’s final results

(70.8%). This results from the fact that [65] both artificially limit their datasets to users

who performed a “political like” (only 19% from our dataset) and use features that can

not be directly extracted from a user’s profile such as opinion about politically dividing

issues. As evidenced by Table 3.4, [65]’s final model significantly underperforms all our

BN models when applied to our datasets. This highlights the added value that BNs have for

this specific task compared to a regression model, and the importance of the other features

that are not included in [65]’s final model but are included in our BN models.

Apart from [65], no other existing work could serve as a proper baseline for our work,
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primarily because their objective is different from ours; Unlike works such as [74, 106],

we are not trying to forecast the general outcome of an election. Unlike works such as

[28, 29, 90, 118], we are not trying to predict a general political orientation of an in-

dividual. Therefore, a direct comparison of our results and theirs is meaningless. For

election forecasting, such comparison is impossible since the evaluation metrics are dif-

ferent: while we use an overall accuracy score, election prediction papers use MSE and

compare their forecasting results to national surveys. Furthermore, the vast majority of

political orientation inference papers have dealt with Twitter; thus, their models heavily

rely on Twitter-specific features, making it impossible to apply those models directly to

our datasets. However, in order to gain further insights about how our BN compares to

other models used in previous work, we chose two other classifiers commonly used in

previous work on political orientation inference: Support Vector Machines (SVM) and

Boosted Decision Trees (BDT), as well as simplified Multinomial Naive Bayes (MNB)

classifier, and tested the performance of each classifier when applied to our datasets and

fed with the features of each of our BN models.

Hyperparameters (cost and γ for the RBF SVM; number of trees and learning rate

for BDT) were chosen using a randomized grid search with 5-fold cross-validation. All

three models were implemented using Python’s scikit-learn library. As seen in Figure 3.4,

both MNB and SVM considerably underperform the BN on all five configurations. On the

other hand, the BDT classifier performs on par with the BN; it slightly outperforms the

BN on the REVISED model but underperforms the BN on the MISSING, SELF-INFER

and FULL models; that is, when the test set contains missing evidence.
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Chapter 4

Inferring behavioral intentions of
social-network users

4.1 Introduction

Knowledge of SN users’ decisions and intentions has immense potential to improve the

design of recommendation systems, ad-targeting mechanisms, public-health campaigns,

and other social and commercial endeavors. At the same time, such knowledge can have a

detrimental effect on users’ privacy. In this work, we are interested in inferring intentions

of SN users using public data extracted from their SN accounts.

Problem description: Let u be an SN user and Su be the set of SNs on which u has

accounts. We use ξ(u,s) to denote user u’s account on network s. Each account has a private

portion ξpr(u,s) and a public portion ξpu(u,s). The private portion contains data that only u’s ties

and the SN provider can see, while the public portion contains data that can be seen by

everyone. In addition to data that u publishes, ξpu(u,s) contains metadata information about

ξ(u,s) such as the mere existence of ξ(u,s) and the visibility levels of different attributes

in ξ(u,s). The goal of this work is to infer an SN user u’s offline intentions using only the

public portions, {ξpu(u,s)}s∈Su , of her online SN accounts. We focus on present or near-future

behavioral intentions, i.e., on decisions to perform certain actions within short periods of
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time after the decisions are made. Examples include weight-loss intentions, vaccination

intentions and purchase intentions.

As intention inference is a complex task, combining external, internal and temporal

factors, we tackle it in two stages: First, we propose a novel methodology for infer-

ring behavioral attributes such as decisions and intentions. We go beyond the inference

of single attributes and design a modular Bayesian-Network model that, using public SN

data, aims at inferring different types of intentions in different domains. We then build

on this general-purpose model and use it to create intention-specific Dynamic Bayesian

Networks. Because of their temporal nature, DBNs can capture the evolving nature of the

decision-making process. The work makes the following contributions:

Intention inference: Intention inference differs from the inference of other attributes in

multiple respects. Unlike persisting attributes such as personality traits or attitudes, inten-

tions are dynamic in the sense that their values with respect to a given user may constantly

change. Unlike attributes such as mental state or demographic attributes, intentions are

“self-controlled” attributes, in the sense that the user is able to control the values of those

attributes. The intentions that we explore in this work can be seen as “behavioral” at-

tributes, as they aim at predicting a time-varying behavior rather than a time-invariant

tendency, opinion or preference. Intentions are therefore significantly harder to infer than

other extensively researched attributes.

A new methodology for intention inference: We present a modular model that draws

on behavioral-psychology literature and can be used to infer different different types of

intentions in different domains. Our Bayesian-Network-based models are built using a

sophisticated, hybrid feature-selection method and can handle common challenges in SN

research such as incomplete datasets and bidirectional influence between features and the

target variable.

A novel DBN representation of SN users: We offer a new conceptual model of SN users

that is particularly suited for inference of dynamic attributes. Each user u is modeled
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Figure 4.1: Our general intention-inference model.

using a set of DBNs, {Dd
u}. Each DBN Dd=k

u aims at inferring or predicting a different

dynamic attribute of u, k. Users’ SN profiles are sampled at regular intervals; the resulting

data is fed into each attribute-specific DBN Dk
u and is used, along with data sampled in

prior time slots, for the inference of k’s current value. We demonstrate our approach when

applied to the inference of various intentions using temporal SN data collected in multiple

waves. This work is the first to take a DBN-based approach to the SN-attribute-inference

problem.

Finally, We evaluate our new DBN-based SN-users representation using five inten-

tions: vaccination intentions, weight-loss intentions, purchase intentions, borrowing in-

tentions and job-searching intentions, achieving varying, yet promising results despite the

use of highly imbalanced, incomplete datasets.
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4.2 Methodology

4.2.1 Key ideas

We start by clarifying the terminology used in this chapter. The terms “decision” and “in-

tention” are sometimes mistakenly used to describe a past behavior, rather than a cognitive

state. This work does not aim at predicting past behaviors, but rather the decision to per-

form those behaviors. Identifying the specific cognitive stage that lies between planning

an action and performing that action is of utmost importance for many applications, such

as recommendation systems and targeted advertising. Therefore, in this work we will use

the term “behavioral intention” to describe a decision to perform a present or near-future

behavior.

“Intentions are people’s decisions to perform particular actions” [103]. In this work,

we aim at understanding to what extent we can infer behavioral intentions of SN users.

In order to do that, we build a Bayesian-Network model that is based on intentions’ most

influential factors as shown in behavioral psychology literature [39, 52, 103]. We split

those factors into two groups: static factors, such as personality, demographic attributes

and self-efficacy, and dynamic factors such as emotions, situational factors, interest and

opinions. While those factors are known to be excellent determinants of behavioral inten-

tions, the values of some of them (personality, for instance) can not be directly obtained

from the user’s SN profile (“latent variables”). Therefore, we enrich the model with vari-

ous observed or partially observed network features which may assist in both inferring the

target intention and inferring each intention’s latent determinants.

Though different intentions are assumed to be influenced by the same high-level fac-

tors, their associated BNs still differ in their qualitative, quantitative and temporal specifi-

cations. To reflect those differences, we build on our general intention-inference BN and

create, for each behavioral intention, an intention-specific DBN. This is achieved using a
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multistage process: first, intention-specific predictors are obtained from relevant literature

and added to the set of general features as described above. Second, the final feature set

of each intention is determined using priors, feature-selection methods, or both. Third, the

set of intention-specific features is mapped into network nodes; this includes aggregation,

state-elicitation and discretization strategy. Fourth, the structure of each intention-specific

DBN is specified using priors, structure-learning methods, or both. Lastly, The DBN’s

parameters are quantified using a combination of prior information and data.

In order to simplify the models’ description, they are specified in a gradual manner:

in Sections 4.3 and 4.4 we show how to implement the above methodology using static

BNs and in Section 4.5 we elaborate on the process of extending the resulting BNs and

creating intention-specific DBNs. In Section 4.6, we present our models’ results when

used for the inference of various intentions: weight-loss intentions (WI), vaccination in-

tentions (VI), travel-purchase intentions (PI), borrowing intentions (BI) and job-searching

intentions (JI).

4.2.2 Data collection

We designed and distributed a comprehensive survey1 created and hosted using Qualtrics

survey platform. The first part of our survey contained questions about the participants’

personal attributes, as discussed in Section 4.3. The second part contained the following

statements, which users were asked to rank (as well as dummy statements about unrelated

intentions): “I am planning to start a weight-loss regime within the next 1-4 weeks” and

“I am currently trying to lose weight” (weight-loss intentions); “I am planning to look

for a new job within the next 1-4 weeks” and “I am currently looking for a new job”

(job-searching intentions); “I am planning to apply for a loan within the next 1-4 weeks”

(borrowing intentions); “I received a flu vaccine this season” — depending on the answer

1The full survey can be found at https://lihiid.files.wordpress.com/2021/09/survey behavioral inten-
tions.pdf
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to that question the following question was asked for either the upcoming (2020-2021) flu

season or the next season (2021-2022): “I am planning to get vaccinated against influenza

this upcoming fall-winter/next year” (vaccination intentions); “I am planning to make a

travel-related purchase within the next 1-4 weeks” (travel-purchase intentions). Ambigu-

ous words and phrases such as ”travel-related purchase” and ”weight-loss regime” were

explained to the participants.

We implemented several methods for identifying and excluding data from participants

who answered unreliably, as extensively discussed in Chapter 3. All survey data was

anonymized after collection. We informed participants that their responses would be used

for academic research.

Table 4.1: Datasets’ statistics

Size %VI %WI %BI %PI %JI
1st-wave dataset 1300 58 38 17 24 19
2nd-wave dataset 803 66 40 13 19 23

Datasets: Survey data was collected in two waves with a three-month lag. Training and

test datasets include data obtained from Amazon Mechanical Turk (MTurk), Facebook

(profile attributes and activities), Instagram (profile attributes and activities) and Linkedin

(only profile attributes). MTurk participants were presented with two options: providing

links to their SN profiles (which they reported having in the screening step), or answering

a series of questions about their SN profiles; providing SN links was optional and com-

pletely voluntary. We took a wide and shallow approach: while data was gathered from

multiple SN accounts of each target user, we did not collect “deep” network information.

Therefore, our datasets do not include information about the target user’s SN ties, except

for information that can be directly extracted from the target user’s SN accounts such as

the number of user’s SN ties (see Section 4.3).

As in [57], our datasets include both labeled and unlabeled data; unlabeled data is
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specifically important when using multi-wave data, as a considerable number of partic-

ipants dropped out after the first wave: from 1300 respondents who participated in our

first-wave survey, only 803 participated in our second-wave survey (0.617 response rate).

In order to both reduce non-response bias and create a bigger training dataset, we chose a

subset of our partially-labeled data records which belong to participants who dropped out

(missing attributes were treated as missing values) and added it to our training set (see Sec-

tion 4.5). Our training datasets, D1
j (first-wave data for intention j) and D2

j (second-wave

data for intention j) consist of 780 and 592 labeled and unlabeled data records, respec-

tively. Our test sets, D3
j (first wave-data for intention j) and D4

j (second-wave data for

intention j) consist of 520 and 361 labeled data records, respectively. As mentioned in

Section 4.1, in order to simulate a real-world inference task we only consider the public

portion of each user’s online SN profiles. Therefore, each dataset contains a large number

of missing values which corresponds to attributes that the user has not publicly revealed

on one of her SN accounts. The size of our datasets is similar to datasets used in prior

work in which labels are obtained using surveys or others means that require the users’

active participation (unlike self-reported labels). Examples include [60] (523), [29] (956),

[65] (1216), [118] (400), [30] (1583), [46] (279), [105] (53).

4.3 Features

A template of our general intention-inference model is shown in Figure 4.1. Second

layer-third-layer edges and first-layer-third-layer edges are not presented, because they

are intention-specific and must be determined separately for each behavioral intention.

Likewise, double-sided edges represent scenarios in which influence may flow in different

directions, depending on the inferred intention. Bold nodes are translated into multiple

nodes in each intention-specific model.

To reduce noise when combining high dimensional features, and to avoid a large con-
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ditional probability table (cpt), we used a layering-divorcing technique. Our basic idea

was to create a “layered” network. The first (inner) layer comprises the target intention

node that we aim at inferring (colored green in Figure 4.1). The second layer comprises

either latent or partially observed nodes, obtained using prior research (colored orange in

Figure 4.1). Those nodes represent external and internal factors that are known to have a

strong relation to the formation of behavioral intentions. The third layer consists of ob-

servable network features (colored purple in Figure 4.1). The purpose that they serve is

twofold: both to assist in inferring the behavioral intention, and serve as observed pre-

dictors for second layer’s latent variables. While some prior research exists on relations

between network features and behavioral intentions, it is both relatively sparse, and not

general enough. Therefore the decision of which network features to include in each BN

was made primarily on the basis of feature-selection results. Some of the network features

were found to directly influence the behavioral intention (first layer), and were therefore

included in the second layer as well.

4.3.1 Second-layer features

Training-set values for second-layer variables were obtained from our survey. We elabo-

rate on our survey questions for non-trivial attributes. Test-set values were either obtained

or inferred using network features as discussed in Subsection 4.3.2.

Personality: This variable represents five broad dimensions of personality obtained from

the “Big Five” model of personality dimensions. The big five model distills personality

to five traits: neuroticism, extraversion, agreeableness, conscientiousness, and ‘openness

to experience’. To measure the Big Five personality traits among survey participants we

used a short version of the Big Five Inventory based on BFI-10 [94].

Demographic attributes: We considered the following demographic attributes: age, gen-

der, ethnicity, marital status, occupation group, income (latent variable). Only a subset of
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those attributes were used in each model.

Situational variables: Events that might trigger a certain behavioral intention. Those

events include personal-life transitions, professional-life transitions, external events (such

as a holiday or an election), etc. Priors were obtained for some events-intentions rela-

tions. For instance, life-transitions are shown to have an important impact on weight-loss

intentions [23].

Emotions: Our model should represent the fact that different emotions may serve as ei-

ther the cause of a behavioral intention or as its effect. Therefore, we went beyond the

binary emotion-representation (positive-negative) and also considered fine-grained emo-

tions. The most studied model of discrete emotions is the Ekman model [34] which posits

the existence of six basic emotions: anger, disgust, fear, joy, sadness and surprise. Since

momentary emotion ratings are not particularly indicative of the behavioral intentions ex-

plored in this work, survey participants were presented with eight emotion categories (six

basic emotions and two positive-negative emotion categories) and were asked to rate their

feelings over their past week/month/three months in general.

Interest, Opinion: Those variables represent the user’s level of interest and opinion re-

garding topics related to a given behavioral intention.

Intention-specific features: Apart from the set of general features as discussed above, we

also consider several intention-specific predictors that are known to be strongly linked to

different intentions such as body image (weight-loss intentions) [78], impulsivity (borrow-

ing intentions) [89], employment status (“status” in Figure 4.2), etc.

4.3.2 Network features

We considered a diverse set of network features. The values of a given network feature

were included in our datasets if and only if this network feature was part of the public

portion of one of the user’s SN profiles.

108



Numeric features (NUMERIC): We considered statistics about the user’s activity (num-

ber of posts, status updates, number of uploaded photos, etc), reactions to the user’s con-

tent (number of tagged photos, for instance) and the user’s reactions to other users’ con-

tent. The latter measure was sparse, as both Facebook and Instagram limit the visibility of

such reactions. We also considered basic statistics about the users’ network, but we limit

ourselves to statistics that are both publicly visible and can be directly extracted from the

user’s own SN profile/s (number of friends, followers-following ratio, etc).

Raw Textual features (TEXT): Textual features were classified as either user-generated

(UG) features (including textual content that was written by the user), or non-user-generated

(NUG) features (textual features that were not written by the user such as likes (Facebook)

or hashtags (Instagram)). We limit ourselves to textual content that is both publicly visible

and was either produced by the target user, or can be directly extracted from the user’s own

SN profile/s.

Miscellaneous features (MISC): Miscellaneous features include features that are neither

numeric nor textual, such as the mere existence of various SN accounts, visibility level/s

that the user has chosen to apply to her SN accounts, profile attributes from which de-

mographic attributes can be extracted, etc. MISC features can be seen as SN accounts’

metadata rather than the data itself (NUMERIC, TEXT).

4.3.3 Linguistic features

Keyword-search (KWS-UG, KWS-NUG): For a given intention, or an event, A, we man-

ually identified the most prominent keywords related to A. We then performed a keyword

search on our textual features. For some textual features, items that were found to con-

tain a relevant keyword were further processed using a second method, depending on the

nature of A and the nature of the textual feature. This resulted in two groups of features,

KWS-UG (keyword search applied to user-generated content) and KWC-NUG (keyword
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search applied to non-user-generated content).

LIWC (LIWC-UG, LIWC-NUG): LIWC is a text analysis tool that is widely used in

psychological studies [107]. Each list of words is associated with a semantic or syntactic

category, such as positive emotion, adverbs or tone. LIWC analysis was applied to both

UG and NUG textual features. However, with regards to NUG features, we only consid-

ered a relatively small subset of LIWC categories that mostly deal with features’ topics,

such as leisure, work, money or sentiment.

Topic modeling (LDA-UG, LDA-NUG): Topics were extracted using Latent Dirichlet

Allocation (LDA). Shorter features (such as likes) and longer features (such as posts) were

considered separately using different parameters. As many likes only contain names (e.g

brand names), we considered a like to be both the like’s title as well as the category to

which it belongs.

Sentiment analysis, part-of-speech tagging (SA, PoS): These were only applied to KWS-

UG (SA and PoS) and KWS-NUG (SA), i.e., textual features that were found to contain at

least one relevant keyword. SA was applied to items that were found to contain keywords

that relate to the behavioral intention to be inferred, in order to assess the user’s opinion

on topics related to the behavioral intention. The use of PoS tagging was more implicit,

and was applied to items that were found to contain keywords that relate to events.

Emotions (NRC, LIWC): We automatically quantify emotions from our UG textual fea-

tures using LIWC and NRC. NRC is a publicly available lexicon of words associated with

any of the six emotions, as well as general positive and negative sentiment [82]. We assign

a predicted emotion to each UG textual feature and then average across all users’ features.

Network representation: The features described in this section were first fed into our fea-

ture selection algorithm (Section 4.4). Only features that were found to be relevant for

the inference of a given intention were included as nodes in the intention’s BN. Nodes

in our BNs represent either discretized values of numeric features; categorical features
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such as demographic attributes; or discretized frequencies of various categories of a cer-

tain linguistic feature; such nodes are essentially aggregators as their value represents the

prevalence of a specific linguistic category among the entire set of a user’s raw textual

features. For instance, a node may represent “the aggregated portion of textual features

that contain keywords related to fitness”. Finally, situational variables are connected to the

target node through an intermediate node, “trigger event”.

4.4 Feature selection and model selection

Feature selection: We designed a two-level, hybrid feature-selection (FS) method. Due to

the high number of correlations between different features, we opted for a BN-based-FS

method that utilizes a BN-learning algorithm rather than a univariate filter-based approach.

However, performing FS using only a BN may lead to overfitting. In addition, the vast

majority of BN-learning algorithms require complete datasets. To combine the best of

both worlds, we employed a hybrid FS approach. First, a simple, univariate FS method

was applied to a subset of the features on which we didn’t have strong prior information.

For that purpose, we used a mutual information-based FS method and removed all the

features that received a score below a certain threshold. Mutual information measures the

dependency between variables (specifically, between each feature and the target variable)

and is thus highly suited for BN-based models. The resulting features, as well as the set

of latent/high-prior features were the input for the second phase which used the Greedy

Thick Thinning learning algorithm (GTT) [27]. This phase aimed at identifying the best

features using Markov Blankets.

A Markov Blanket of a variable t is a minimal variable subset conditioned on which

all other variables are probabilistically independent of t. The Markov Blanket of a BN

node, MB(t) is the set of its parents, P (t); children, C(t); and spouses, U(t) (i.e., parents

of common children) as encoded by the graph structure of the BN. As shown in [64], the
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Markov Blanket of a given target variable is the theoretically optimal set of variables to

predict its value. However, simply considering all the features in the Markov Blanket of

the behavioral intention node is unsatisfactory in our case, due to the existence of latent

variables. Thus, a better strategy would be to first find an “approximated” Markov Blanket

of the target node, MB′(t) which includes the variables in the sets P (t), C(t) and U(t) as

discussed above. Then, identify the Markov Blanket of each latent variable that is also a

member of the target’s approximated Markov Blanket and include the features in the union

of those blankets in our feature set (in addition, of course, to features in MB′(t)). That is,

our feature set is:

{MB′(t)} ∪ {MB(I) | I ∈ S ∩MB′(t)}

Where S represents the set of latent variables in our model. The above strategy would

have probably been sufficient if our datasets were complete. However, our datasets contain

missing values which had to be imputed before running the SL algorithm. We note that

although one of the main strengths of BNs is the ability to perform parameter learning and

inference in the presence of missing values, most of the BN-structure-learning algorithms

require complete datasets. Hence, for some variables we consider an “extended” notion

of a Markov Blanket which also includes certain variables that belong to the variable’s

second-degree Markov Blanket. Specifically, if a given variable v represents an observed

attribute with more than 50% missing values in our test sets (m()) and for which we do

not have a strong prior (p()), we consider a restricted notion of v’s second degree Markov

Blanket, and add both its direct parents P (v) and its direct children C(v) to our feature

set. Let F be that entire variable-set before applying feature selection, andO the set F \S;

that is, the set of observed variables (many of which are only partially observed). Our final

feature set includes the following features:
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{MB′(t)} ∪ {MB(I) | I ∈ S ∩MB′(t)} ∪

{P (I) | I ∈ O ∩MB′(t) ∧m(I) > 50% ∧ p(I) = false} ∪

{C(I) | I ∈ O ∩MB′(t) ∧m(I) > 50% ∧ p(I) = false}

Structure learning (SL): Using the GTT learning algorithm, the approach described

above not only yields a feature set but also a BN structure (by considering all the nodes in

the feature set and all the edges connecting features in the feature set). A small number of

edges were corrected in order to reflect strong prior information.

4.5 Moving from static to dynamic models

So far, we have treated intentions as time-invariant attributes using a static BN. Decision-

making, however, is a dynamic process. Thus, a temporal model should be used; one

that can capture temporal relations between different variables and our target behavioral

intention. Using a DBN, not only can we model temporal relations between different

variables and each behavioral intention, but also model both static and temporal relations

among different variables.

A DBN is a sequence of BNs. Each BN represents a time slice of the DBN, i ∈ T ,

corresponding to a particular instance of time. A DBN adds three components to a static

BN: temporal variables, temporal edges and temporal evidence. For instance, if a static BN

contains the variables {Xj}j∈D, a DBN may also contain variables that can take different

values in different time slices, e.g. {Xj
i }j∈D,i∈T . In order to build a DBN we must specify

both its intra-slice structure and corresponding cpts (as in BNs) and its inter-slice cpts.

Intra-slice cpts represent dependency relations within a specific time slice. Inter-slice cpts

represent temporal dependency relations; that is, relations between variables from different
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(a) Vaccination intentions (b) Purchase intentions (c) Borrowing intentions

(d) Weight-loss intentions (e) Job-searching intentions

Figure 4.2: A DBN representation of various intentions.

time slices.

Formally, a DBN is defined as a pair (B0, Bt) whereB0 defines the prior P (X1) andBt

is a two-slice temporal BN that defines P (Xi|Xi−1) by means of a directed acyclic graph:

P (Xi|Xi−1) =
∏
j∈D

P (Xj
i | PA(Xj

i ))

If PA(Xj
i ) (Xj

i ’s parents in the network) only contains variables from either the same

time slice or an immediate previous time slice, the DBN is considered a first-order DBN.

The temporal nature of DBNs, combined with other unique features such as their abil-

ity to work on incomplete datasets make DBNs highly suited for representing various SN

components. In this work we focus on SN users, and apply a user-centric approach in

which each SN user u is represented as a set of DBNs, {Dd
u}. Each DBN Dd=k

u corre-

sponds to a different dynamic attribute, k; after it is built and trained, Dk
u can be used to
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infer the value of k, using data that is sampled at regular intervals from u’s SN profiles.

DBNs are extremely versatile; once a DBN Dk
u is built and trained, it can be used to

conduct various types of analysis. This includes inferring k’s current values, predicting

its future values, identifying key determinants of k and performing backward reasoning

and retroactive analysis of historical values. A particularly useful feature of DBNs is the

ability to assess how a given dynamic attribute changes over time. This ability can be used,

for instance, by advertisers in order to assess the impact of a given targeted campaign on

the users’ intentions.

We demonstrate our approach using the five intentions considered in this work. For

each intention, we build its own DBN which builds on the static model developed in pre-

vious sections. Note that in this work data is sampled twice, at the same sampling rate

for all the intentions. However, if time allows and enough resources are available, better

results can be achieved when sampling each SN multiple times using sampling rates that

are uniquely tailored to each intention.

In order to define the inter-slice structure of each intention-specific DBN, the following

components must be specified:

Temporal/static nodes: The set of static and temporal nodes. Some nodes, such as emo-

tions, are inherently temporal (colored yellow/green in Figure 4.2). Other nodes, such as

gender, are static (colored pink in Figure 4.2). For some nodes, their static/temporal defi-

nition depends on the sampling rate of the network with regards to a given attribute. Note

that some variables that were considered static in our BN are latent attributes, and thus rep-

resent the approximated value of those attributes. This approximation may be dynamically

updated based on temporal evidence that is added in each time slot.

Inter-slice structure: Dependency relations between a subset of each DBN’s temporal

nodes that belong to different time slices. As we only considered a first-order model, it

can be assumed that temporal relations may only include edges between two consecutive

time slices. However, in higher-order models inter-slice relations may include other types
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of edges as well. In fact, including historical values for some variables can be very useful

for the inference of certain intentions. The inter-slice structure of each DBN was obtained

using a combination of priors and data using a SL algorithm similar to the one described

in Section 4.4.

Figure 4.2 presents our intention-specific DBNs. For simplicity, we omit network-level

features.

As can be seen, a temporal link is created between variables that represent our target

intentions in consecutive time slices. P (intentioni+1 | intentioni, U) represents the in-

tention’s evolution over time, given changes in other temporal variables in the network

(U ).

Interest-intention is an interesting relation. First, we see that interest may serve as

either a cause or an effect of different intentions. Second, interest seems to be a cyclic pro-

cess, to some extent, as can be concluded from P (WIi | interesti, U) and P (interesti+1 |

WIi), for example. Such a temporal relation might be attributed to the fact that interest

in a certain topic assists in forming a behavioral intention related to that topic. After the

intention has been formed, a new level of interest is formed, aimed at understanding how

to fulfill that intention. In addition, P (PIi+1 | interesti, U) and P (interesti+1 | PIi+1)

show that both prior interest-level and current interest-level are important determinants

of some intentions. In higher-order models, such a dependency relation might also in-

clude older interest levels. Such historical data can assist in identifying a sudden increase

in the user’s interest level.

“Opinion” is another interesting variable. An opinion might be influenced by multi-

ple factors such as personality traits and demographic attributes as demonstrated by VI’s

P (opinioni+1 | opinioni, education, age, personality). Note that this cpt also contains

opinioni. This represents the fact that oftentimes, opinion is a self-propelling process:

opinion at a given point in time, in addition to other factors, influences opinion at future

points in time. A similar cpt structure is seen in “COVID-19 concern”.
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Fine-grained emotions were not used in either of the models. Furthermore, we weren’t

able to extract from the data meaningful inter-slice relations between different fine-grained

emotions and the target intentions. We attribute that difficulty to the fact that unlike

other features, emotions change quickly. Thus understanding emotions’ temporal evolve-

ment mechanism for each intention requires the use of finer-grained sampling rates.

Parameter learning: parameter learning was performed using the Expectation-Maximization

algorithm [31]. This allowed us to use the original, incomplete training dataset. Our be-

lief was that since our test datasets include a large number of missing values, training the

DBN on incomplete datasets will allow the BN to take into consideration relations be-

tween missing and observed values of different features in different records, thus allowing

the network to generalize better. Parameter learning was done in two stages: first, we

trained a DBN using our labeled training data and probabilistically labeled the unlabeled

training data; then, we trained a second DBN using both the labeled data and a subset of

the unlabeled data on which the first DBN was the most confident. This semi-supervised

approach allowed us to incorporate unlabeled data in the training process as well to reduce

selection and visibility bias.

After each DBN is built and trained, it can be used to perform different kinds of infer-

ence and prediction by periodically sampling users’ SN profiles, using the sampled data

as temporal values for the temporal nodes in the DBN and running an inference algorithm.

In this work, we used the Lauritzen-Spiegelhalter’s junction tree algorithm [69], applied

to incomplete test sets. In the next section, we show our inference results when using a

two-slice DBN and SN data sampled twice.

4.6 Results

For a given intention j we tested its DBN DBNj using our datasets as follows: in the

first stage, (1), we trained DBNj using D1
j and tested it on D3

j . Only the first DBN’s slice
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Table 4.2: Results of the DBN models presented in this chapter

Intention VI WI BI PI JI
Micro F1, (1) .732 .832 .663 .763 .704
Macro F1, (1) .73 .815 .54 .691 .623
Micro F1, (2) .75 .831 .662 .812 .747
Macro F1, (2) .741 .82 .526 .732 .699

was affected in this stage. In the second stage, (2), we trained DBNj using D2
j (implicitly

using D1
j as well due to the use of priors) and tested it on D4

j , using evidence data from

D3
j as well. Hence, inference results in (2) were obtained based on data and parameters

from two slices of the DBN. The idea behind our approach was to simulate a real-world

scenario in which SN data is sampled multiple times at different points. In such cases,

all the data collected up to time t can be used as evidence to infer the target intention at

time t (and predict it at time t′, t′ > t). Note that our test sets are highly imbalanced, in

order to accurately represent the original distribution of each intention within our collected

datasets (Table 4.1). Moreover, as we only consider the public portion of SN profiles, our

datasets contain a large number of missing values. Those facts make the inference task

highly challenging, both as a stand-alone task and compared to inference tasks in prior

attribute-inference works.

Table 4.2 provides a detailed summary of our results. We report Micro F1 and Macro

F1 scores for each stage ((1) and (2)) and for each intention-specific DBN. Note that the

“intending” class is, almost always, the minority class. We also compare our average ROC

AUC scores to those achieved by a discriminative classifier (SVM, see details below).

As can be seen, different intentions achieved significantly different Micro F1 and

Macro F1 scores. BI’s score is the lowest, whereas WI’s score is the highest. A possible

explanation for BI’s performance is that applying for a loan is an intention that is often-

times not publicly shared in SNs. However, other non-publicly shared intentions such as
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JI scored significantly better than BI. This can be attributed to the fact that we were able to

find other strong predictors for JI which don’t depend on user-generated content, whereas

for BI we failed to do so.

Figure 4.3 compares our average ROC AUC scores to those of a Support Vector Ma-

chine classifier (SVM, RBF kernel). Imputation of missing values was done using scikit-

learn’s IterativeImputer, a multivariate imputation method; it is currently considered the

best imputation method offered by scikit-learn that can work with mixed datasets (i.e. nu-

meric and categorical features). Note that because BNs are able to work directly with

incomplete datasets, we did not need to perform any imputation on our datasets when fed

to our BN models. As seen in Figure 4.3, our models outperform a SVM classifier on all

five intentions, though the differences between the two classifiers vary between intentions.

A possible explanation for those differences is the varying number of dependencies among

each model’s variables, or the existence of dependencies that are of specific importance

for each inference task. Another possible explanation is the varying number of missing

values within the features used for each intention’s inference task.

When comparing Micro F1 and Macro F1 scores achieved in different stages ((1) and

(2)) using the same DBN, we can see that the differences are more pronounced for PI and

JI. This can be attributed to the underlying differences between different intentions. As

evidenced by our data, intentions such as WI and VI can be seen as “continuous intentions”

in the sense that the period of time between intention formation and completion of the

associated behavior is longer than for other intentions; the persistence rate (participants

who report the same intention in both the first and the second wave) of such intentions is

significantly higher than rates reported for PI or JI. Another explanation for the varying

differences is the different set of determinants of each intention. While the importance

of some of those determinants stems from their intra-slice values (that is, their values at

a given point in time), the importance of others is derived from a combination of intra-

slice values and inter-slice change patterns between slices. For instance, various features
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related to non user-generated content serve as excellent predictors of PI in (2), but only as

solid predictors in (1). In a similar manner, the change in different MISC features such as

attributes’ visibility levels between (1) and (2) serve as an important predictor of JI in (2)

(and for obvious reasons, can not be used for JI’s inference in (1)).

JI WI BI VI PI
0.55

0.6

0.65

0.7

0.75

0.8

0.85

DBN SVM

Figure 4.3: Average ROC AUC scores

4.7 Related work

Inference of personal attributes using SN data has been extensively researched. Inferring

users’ personality type was investigated in [45, 46] using regression models and Twit-

ter/Facebook data, respectively. Youyou et al. [111] showed that automatic inference

methods that rely on Facebook likes achieve better prediction accuracy than those achieved

by asking the users’ friends. Staiano et al. [105] used data gathered through smartphones

such as calls and texts; their results significantly vary across different personality dimen-

sions.

Demographic attributes’ inference is another well-studied topic, with age and gender

being the most researched attributes [100, 118].

A related stream of research focuses on psychological and mental conditions. Depres-

sion is the most researched condition, followed by anxiety and stress [30, 38].
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The common denominator of all the above works is that they focus on attributes that

are either static (their values rarely change), non-self controlled, or both.

Inference of self-controlled attributes has also been extensively studied. However,

such works focus on the inference of opinions and attitudes [29, 90] rather than behavioral

attributes. While a substantial amount of work does study different types of behavioral at-

tributes, their goals are different than ours. Such works study general correlations between

network or linguistic features and a given behavior, identify the prevalence of a certain

behavior among the general population, or classify SN textual objects such as tweets or

posts. For example, while there exists a considerable amount of work about the use of SNs

for monitoring public health, none of those works aims at inferring vaccination intent of a

given SN user at a given point in time. Rather, existing works analyze collective sentiment

towards vaccinations [81], track the spread of infectious diseases [68], or perform classi-

fication of stand-alone SN objects according to vaccination attitudes or intentions of the

object’s creator [8, 55].

Inferring time-varying, behavioral attributes using public SN data has therefore been

hardly researched, with two exceptions: voting intentions and online purchase intentions.

There are several key differences between this work and prior ML work on PI. First, the

majority of existing works examine general buying preferences rather than time-varying

PIs [119]. Other works try to infer PI of stand-alone SN objects (content-centric) rather

than PI of SN users (user-centric), an approach which is inherently biased [10, 51]. Note

that [10]’s test set is perfectly balanced; such a test-set composition is far from being

representative of any real-world tweet set as the vast majority of tweets do not reflect a PI.

The remaining works that do try to infer a user-centric, time-varying PI use data derived

solely from E-commerce platforms. Such data is both platform-specific, and oftentimes

considered private (session logs, for example), unlike our use of public SN data [83]. The

closest work to ours is [77] which infers PI of Pinterest users using static and temporal

121



features. However, they only consider Pinterest users (31% of Americans 2); furthermore,

they only consider online purchases and do not differentiate between different product-

categories.

2https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
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Chapter 5

Conclusions and open problems

In this final chapter, we briefly review our conclusions and offer some directions for future

research.

5.1 Privacy-preserving data sharing

In Chapter 2, we presented PRShare, an interorganizational data-sharing framework that

protects the privacy of data owners, data clients, and data subjects. In designing PRShare,

we introduced the novel concept of Attribute-Based Encryption With Oblivious Attribute

Translation (OTABE), which may be of independent interest. Our experimental results

indicate that the performance of our OTABE-based data-sharing framework is competitive

with that of earlier MA-ABE schemes that provide less sophisticated privacy guarantees.

One natural open question is whether it is possible to relax one or more assumptions

that PRShare relies on. For example, can the proxies in PRShare be malicious?

We plan to investigate connections between the techniques developed for PRShare and

OTABE and the areas of blockchain systems, smart contracts, and cryptocurrencies. One

such connection may enable the use of malicious proxies: We conjecture that existing

work on smart contracts [12, 113] can be combined with fair-exchange protocols [6, 7, 42]
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to remove the assumption that proxies in OTABE are honest but curious. Conversely, we

plan to use OTABE to improve existing blockchain access-control mechanisms.

Another natural goal for future work is to demonstrate the power and applicability of

OTABE in concrete applications. We plan to provide one such demonstrations by imple-

menting a credit-report-management system that makes essential use of blockchains and

OTABE.

5.2 Social-network mining to predict voting behavior

In Chapter 3, we presented a novel approach to predicting the voting behavior of Facebook

users based on a BN model that combines diverse yet complementary types of information

about the user. In contrast to previous works, we made use of data about ordinary Facebook

users, thus avoiding the bias entailed in cherry-picked datasets that are limited to politically

active users such as those who are most active on Twitter. Using a semi-supervised method,

we applied our model to the case of the 2016 U.S. elections, achieving promising results

despite large amounts of missing data.

Interesting avenues for future research include augmenting the model with additional

behavioral and interest-based traits, combining more complex measures of the network

neighborhood, and adding temporal features that capture how various attributes change

over time. Temporal features may be particularly useful in election-oriented applications,

examples of which include identifying swing voters by examining whether users’ politi-

cal opinions are consistent over time and measuring the extent to which a specific event

influences a user’s voting intentions.
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5.3 Inferring behavioral intentions of social-network users

In Chapter 4, we presented a new, BN-based methodology for inferring the intentions

of SN users. We reconceived SN users using DBNs and built intention-specific DBN

models that can capture the temporal nature of the human decision-making process. Our

DBN models also handle common challenges in SN-based inference, including incomplete

datasets, unlabeled data, and bidirectional influence. We evaluated our methodology on

multiple real-world inference tasks and multi-wave SN data, achieving promising results

despite the use of highly imbalanced, incomplete datasets.

Interesting directions for further related work include the use of higher-order DBNs

and decision-specific sampling rates. Specifically, we plan to explore the combination of

advanced SN features such as photos and videos.
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