131 research outputs found

    Set theoretical Representations of Integers, I

    Get PDF
    We reconsider some classical natural semantics of integers (namely iterators of functions, cardinals of sets, index of equivalence relations), in the perspective of Kolmogorov complexity. To each such semantics one can attach a simple representation of integers that we suitably effectivize in order to develop an associated Kolmogorov theory. Such effectivizations are particular instances of a general notion of "self-enumerated system" that we introduce in this paper. Our main result asserts that, with such effectivizations, Kolmogorov theory allows to quantitatively distinguish the underlying semantics. We characterize the families obtained by such effectivizations and prove that the associated Kolmogorov complexities constitute a hierarchy which coincides with that of Kolmogorov complexities defined via jump oracles and/or infinite computations. This contrasts with the well-known fact that usual Kolmogorov complexity does not depend (up to a constant) on the chosen arithmetic representation of integers, let it be in any base unary, binary et so on. Also, in a conceptual point of view, our result can be seen as a mean to measure the degree of abstraction of these diverse semantics.Comment: 56 page

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks

    ON THE FOUNDATIONS OF COMPUTABILITY THEORY

    Get PDF
    The principal motivation for this work is the observation that there are significant deficiencies in the foundations of conventional computability theory. This thesis examines the problems with conventional computability theory, including its failure to address discrepancies between theory and practice in computer science, semantic confusion in terminology, and limitations in the scope of conventional computing models. In light of these difficulties, fundamental notions are re-examined and revised definitions of key concepts such as “computer,” “computable,” and “computing power” are provided. A detailed analysis is conducted to determine desirable semantics and scope of applicability of foundational notions. The credibility of the revised definitions is ascertained by demonstrating by their ability to address identified problems with conventional definitions. Their practical utility is established through application to examples. Other related issues, including hidden complexity in computations, subtleties related to encodings, and the cardinalities of sets involved in computing, are examined. A resource-based meta-model for characterizing computing model properties is introduced. The proposed definitions are presented as a starting point for an alternate foundation for computability theory. However, formulation of the particular concepts under discussion is not the sole purpose of the thesis. The underlying objective of this research is to open discourse on alternate foundations of computability theory and to inspire re-examination of fundamental notions

    Retracing some paths in categorical semantics: From process-propositions-as-types to categorified reals and computers

    Full text link
    The logical parallelism of propositional connectives and type constructors extends beyond the static realm of predicates, to the dynamic realm of processes. Understanding the logical parallelism of process propositions and dynamic types was one of the central problems of the semantics of computation, albeit not always clear or explicit. It sprung into clarity through the early work of Samson Abramsky, where the central ideas of denotational semantics and process calculus were brought together and analyzed by categorical tools, e.g. in the structure of interaction categories. While some logical structures borne of dynamics of computation immediately started to emerge, others had to wait, be it because the underlying logical principles (mainly those arising from coinduction) were not yet sufficiently well-understood, or simply because the research community was more interested in other semantical tasks. Looking back, it seems that the process logic uncovered by those early semantical efforts might still be starting to emerge and that the vast field of results that have been obtained in the meantime might be a valley on a tip of an iceberg. In the present paper, I try to provide a logical overview of the gamut of interaction categories and to distinguish those that model computation from those that capture processes in general. The main coinductive constructions turn out to be of this latter kind, as illustrated towards the end of the paper by a compact category of all real numbers as processes, computable and uncomputable, with polarized bisimulations as morphisms. The addition of the reals arises as the biproduct, real vector spaces are the enriched bicompletions, and linear algebra arises from the enriched kan extensions. At the final step, I sketch a structure that characterizes the computable fragment of categorical semantics.Comment: 63 pages, 40 figures; cut two words from the title, tried to improve (without lengthening) Sec.8; rewrote a proof in the Appendi

    Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism

    Get PDF
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. We then adopt what may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences

    A primordial, mathematical, logical and computable, demonstration (proof) of the family of conjectures known as Goldbach´s

    Get PDF
    licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.In this document, by means of a novel system model and first order topological, algebraic and geometrical free-­‐context formal language (NT-­‐FS&L), first, we describe a new signature for a set of the natural numbers that is rooted in an intensional inductive de-­‐embedding process of both, the tensorial identities of the known as “natural numbers”, and the abstract framework of theirs locus-­‐positional based symbolic representations. Additionally, we describe that NT-­‐FS&L is able to: i.-­‐ Embed the De Morgan´s Laws and the FOL-­‐Peano´s Arithmetic Axiomatic. ii.-­‐ Provide new points of view and perspectives about the succession, precede and addition operations and of their abstract, topological, algebraic, analytic geometrical, computational and cognitive, formal representations. Second, by means of the inductive apparatus of NT-­‐FS&L, we proof that the family of conjectures known as Glodbach’s holds entailment and truth when the reasoning starts from the consistent and finitary axiomatic system herein describedWe wish to thank the Organic Chemistry Institute of the Spanish National Research Council (IQOG/CSIC) for its operative and technical support to the Pedro Noheda Research Group (PNRG). We also thank the Institute for Physical and Information Technologies (ITETI/CSIC) of the Spanish National Research Council for their hospitality. We also thank for their long years of dedicated and kind support Dr. Juan Martínez Armesto (VATC/CSIC), Belén Cabrero Suárez (IQOG/CSIC, Administration), Mar Caso Neira (IQOG/CENQUIOR/CSIC, Library) and David Herrero Ruíz (PNRG/IQOG/CSIC). We wish to thank to Bernabé-­‐Pajares´s brothers (Dr. Manuel Bernabé-­‐Pajares, IQOG/CSIC Structural Chemistry & Biochemistry; Magnetic Nuclear Resonance and Dr. Alberto Bernabé Pajares (Greek Philology and Indo-­‐European Linguistics/UCM), for their kind attention during numerous and kind discussions about space, time, imaging and representation of knowledge, language, transcription mistakes, myths and humans always holding us familiar illusion and passion for knowledge and intellectual progress. We wish to thank Dr. Carlos Cativiela Marín (ISQCH/UNIZAR) for his encouragement and for kind listening and attention. We wish to thank Miguel Lorca Melton for his encouragement and professional point of view as Patent Attorney. Last but not least, our gratitude to Nati, María and Jaime for the time borrowed from a loving husband and father. Finally, we apologize to many who have not been mentioned today, but to whom we are grateful. Finally, let us point out that we specially apologize to many who have been mentioned herein for any possible misunderstanding regarding the sense and intension of their philosophic, scientific and/or technical hard work and milestone ideas; we hope that at least Goldbach, Euler and Feymann do not belong to this last human´s collectivity.Peer reviewe

    Epistemic Modality, Mind, and Mathematics

    Get PDF
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal cognitivism and modal expressivism. Chapter \textbf{3} provides an abstraction principle for epistemic intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal μ\mu-calculus in order to account for the iteration of epistemic states, by contrast to availing of modal axiom 4 (i.e. the KK principle). Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's "criterial" identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. Chapter \textbf{8} examines the modal commitments of abstractionism, in particular necessitism, and epistemic modality and the epistemology of abstraction. Chapter \textbf{9} examines the modal profile of Ω\Omega-logic in set theory. Chapter \textbf{10} examines the interaction between epistemic two-dimensional truthmaker semantics, epistemic set theory, and absolute decidability. Chapter \textbf{11} avails of modal coalgebraic automata to interpret the defining properties of indefinite extensibility, and avails of epistemic two-dimensional semantics in order to account for the interaction of the interpretational and objective modalities thereof. The hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{2} is applied in chapters \textbf{7}, \textbf{8}, \textbf{10}, and \textbf{11}. Chapter \textbf{12} provides a modal logic for rational intuition and provides four models of hyperintensional semantics. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Chapter \textbf{14} examines, finally, the modal semantics for the different types of intention and the relation of the latter to evidential decision theory

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines
    corecore