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Abstract

The principal motivation for this work is the observation that there are significant 

deficiencies in the foundations of conventional computability theory. This thesis ex

amines the problems with conventional computability theory, including its failure to 

address discrepancies between theory and practice in computer science, semantic con

fusion in terminology, and limitations in the scope of conventional computing models.

In light of these difficulties, fundamental notions are re-examined and revised def

initions of key concepts such as “computer,” “computable,” and “computing power” 

are provided. A detailed analysis is conducted to determine desirable semantics and 

scope of applicability of foundational notions. The credibility of the revised definitions 

is ascertained by demonstrating by their ability to address identified problems with 

conventional definitions. Their practical utility is established through application to 

examples.

Other related issues, including hidden complexity in computations, subtleties re

lated to encodings, and the cardinalities of sets involved in computing, are examined. 

A resource-based meta-model for characterizing computing model properties is intro

duced.

The proposed definitions are presented as a starting point for an alternate founda

tion for computability theory. However, formulation of the particular concepts under 

discussion is not the sole purpose of the thesis. The underlying objective of this re

search is to open discourse on alternate foundations of computability theory and to 

inspire re-examination of fundamental notions.

Keywords: computability, uncomputability, Turing machines, models of computa

tion, computing power, Church-Turing thesis, encodings
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Chapter 1

Introduction

This thesis concerns the story of computability.

What did we mean by computability? 

What do we mean by computability? 

What should we mean by computability?

1.1 Research perspective

The analysis in my thesis draws on historical literature, perspectives in philosophy 

of language and philosophy of mathematics, consideration of current practical and 

theoretical work in computer science, and observations on the use of computers in 

the everyday world. Due to the nature of the topic under investigation, this thesis is 

necessarily a multi-disciplinary work.

The chapters concerning definitions of terms propose characterizations of estab

lished concepts and terminology, based on a carefully considered point of view. The 

paths leading to the end results, and not just the conclusions themselves, are of prime 

significance.
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The principal motivation for my work is my conviction that there are significant 

deficiencies in the basic notions in conventional computability theory. There is con

vincing evidence that Turing computability is not a sufficiently adequate basis for a 

broad theory of computation. These deficiencies are described throughout the thesis.

For researchers who recognize the limitations of Turing computability, there are 

two approaches which are typically taken in published works:

1. The inadequacies of the present paradigm are discussed.

2. Alternate candidate formal models which have different properties from Turing 

machines are proposed.

Neither o f these approaches provides a answer to the key question: what should 

we mean by computability?

Articles in the first category, while illuminating in their critiques of conventional 

computability, do not provide alternate definitions and hence we are left without any 

sound basis for computability theory, Turing or otherwise. In the second category, 

we find proposals for “super-Turing” computing machines, machines which compute 

functions over the real numbers, biological models, and so on, but these proposals are 

also ultimately inadequate since they limit what we call computable to the class of 

functions addressed by the particular described formalism.

In this thesis, I provide an answer to the question what should we mean by com

putability? “Computer,” “computable” and other key concepts are defined. I survey 

problems with the conventional definition, both those identified by other researchers 

and those I have discovered, and explain how my proposed definitions address those 

problems. Furthermore, the notions and formalisms introduced in the thesis are used 

to derive some new insights into matters concerning the limits of computation. The
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goal of this thesis is to provide a starting point for an alternate foundation for com

putability theory.

Having said that, I anticipate that the proposed paradigm will be controversial, 

and that many readers will disagree with aspects of the outlined foundation. This dis

agreement is welcome. The underlying point of the endeavour is that the foundations 

of computability theory must be re-examined. Debate, discussion and critical exami

nation are necessary for evaluating the correctness and utility of proposed concepts. 

In a paper on correspondence between Jacques Herbrand and Kurt Godel concerning 

their development of recursive function theory, Wilfried Sieg makes this observation:

The general moral is, of course, that broad foundational questions can in

spire concrete mathematical work, and that concrete mathematical work 

can call for philosophical analysis. There can be an extremely fruitful, 

but also subtle and delicate interplay between wide-open conceptual re

flections and hard-nosed technical investigations. All of this is necessary 

for arriving at balanced positions ([101], p. 183).

This thesis is neither purely technical nor purely philosophical, but rather takes its 

place in the interplay between philosophical analysis and technical investigation.

In this chapter I outline the background, motivation, philosophical context, and 

main contributions of my thesis.

1.2 Background

In 1936, Alan Turing described a calculating machine, his so-called “a-machine,” 

which has since come to be known as the Turing machine [109]. Turing’s original idea 

was that his machine would model the type of “computation” that a human with
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pencil and paper was capable of doing. At the time of Turing’s paper, and in the 

years following Turing’s original publication, other researchers also developed models 

intended to capture the process of computation. Church and Kleene’s A-calculus, 

published in a series of papers [23, 24, 69, 70, 71], and recursive function theory, 

developed by Kurt Godel and others [55, 56] are two early examples. These models 

and many more developed in subsequent years were all shown to be capable of calcu

lating the “same set” of functions, which has come to be known as the “computable 

functions.” 1

The surprising formal equivalence between seemingly diverse models prompted 

the widespread adoption of the so-called Church-Turing thesis. My statement of that 

thesis is as follows:

The functions computable by Turing-equivalent machines correspond ex

actly to those which satisfy the informal criterion of effective calculability.1 2

The idea that there are fundamental properties shared by every “reasonable” 

computing model is a compelling one. Over the past 70 years, the Turing machine has 

taken a central position in computer science as the paradigmatic model of a computer. 

Most students and researchers take for granted that the computing capabilities of 

a Turing machine represent those of any past, present or future computer. The 

properties of Turing machines and Turing-equivalent computation models have been 

extensively studied.

1To say that different machines compute “the same” set of functions is an oversimplification, and 
an inaccurate description. These problems are addressed in detail in this thesis. Issues related to 
whether different machine compute “the same” set of functions are examined in Chapter 3 where 
simulation of functions is introduced, and Chapter 5 where encoding of input and output is studied.

2This statement, like many statements of the Church-Turing thesis in the literature, does not 
correspond to the original statements made by either Turing or Church. In my thesis, I call this 
formulation “the broad Church-Turing thesis” to distinguish it from other formulations. A discussion 
of the various forms taken by the Church-Turing thesis appears in Chapter 3.
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An essential tenet I advocate in my thesis is that computability should be a relative 

notion, not an absolute one.3 I question the assumption that the Turing machine 

should have such a fundamental role in computability theory. What would happen 

if we no longer view the limitations on the class of computable functions imposed by 

the Turing machine’s capabilities as representative of all computation? The Turing 

machine would remain a useful and well-studied model, but the assumption of the 

centrality of its role could no longer be taken for granted.

Justification for a relativized notion of computability comes from many sources. 

I begin by summarizing the historical and philosophical context in which present 

computability theory developed. Subsequently, the primary arguments in favour of a 

relativized notion of computability are outlined. These arguments are further explored 

the remainder of the thesis.

1.3 Historical and philosophical context

The rise of logicism at the end of the 19th century and the development of intuitionism 

at the beginning of the 20th century established the climate for the emergence of 

computability theory.

Two key notions from L. E. J. Brouwer’s intuitionism are present in computability 

theory: that only finite numbers or potential infinities should be admissible, and 

that proofs should be constructive. One can regard algorithmic computation as the 

construction of outputs from inputs using only finite resources in a potentially infinite 

number of steps. However, the underlying logic in conventional computability theory 

is classical rather than intuitionistic.
3Computability will be defined relative to specific computing models. For example, rather than 

calling a function simply “computable,” it should be called “Turing-computable” if it is the function 
computed by some Turing machine. Arguments for this viewpoint are presented throughout the 
thesis.
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Gottlob Frege’s publication in 1879 of the Begriff&schrift and in 1893/1903 of the 

two volumes of Grundgesetze der Arithmetik, represent the introduction of modern 

predicate logic. These and other of Frege’s works appeared in the context of his goal 

of showing that mathematics can be reduced to logic. The background to Frege’s 

work is the distinction originating with Kant between statements which axe analytic 

(a statement whose predicate concept is contained in its subject concept), and those 

which are synthetic (a statement whose predicate concept is not contained in its 

subject concept). The simplest intuitive explanation of these categories is that to 

establish the truth of a synthetic statement, one requires reference to concepts or 

experience external to the statement, whereas the truth of an analytic statement can 

be seen by considering the statement itself (it is “self-evident” ). Frege’s goal was to 

show mathematics to be analytic,4 in the sense that its theorems can be derived from 

analytic axioms using universal inference rides: “those laws of thought that transcend 

all particulars” ([112], p. 5).5

In the introduction to the Begriffsschrift, Frege states “ . . .  I found the inadequacy 

of language to be an obstacle; no matter how unwieldly the expressions I was ready 

to accept, I was less and less able, as the relations became more and more complex, to 

attain the precision that my purpose required. This deficiency led me to the idea of 

the present ideography” ([112], p. 6). Hence, his motivation was to free mathematical 

reasoning from the inadequacies of everyday language and provide as a replacement 

what he called “a formula language for pure thought.” One of the most elementary 

contributions of his work is the substitution of the notions of argument and function 

for the ordinary language concepts subject and predicate.

As is well-known, Bertrand Russell wrote a letter to Frege in 1902 identifying a

4As opposed to Kant, who believed the statements of mathematics to be synthetic.
5This inference method is still the basis of our modern method of mathematical proof.
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paradox which demonstrated that the axiom which addressed set equality in Frege’s 

system was inconsistent (Russell’s Paradox) [64]. This discovery, which also affected 

Russell’s work, was not viewed at the time as being detrimental to the logicist pro

gram. Russell and Whitehead’s theory of types in Principia Mathematica was created 

as an attempted remedy for the paradox [119].

In addition to the formal notation itself, a key contribution of Frege’s work is 

the clear distinction between what we now call syntax and semantics. Using modern 

terminology, propositions are formulae composed of functions, arguments, variables, 

constants, predicates, quantifiers and logical connectives. The functions will have the 

values of true or false depending on which arguments are substituted for the variables. 

The truth value of the whole proposition will depend on the truth value of each of 

the functions it contains. The “meaning” of a proposition is its truth value.

Frege’s fundamental principle “never to ask for the meaning of a word in isolation, 

but only in the context of a proposition” ([48], p. X )—in other words, that the basic 

unit of meaning was a proposition, and not its component parts—was very influential 

in philosophy of language. In his paper “On Sense and Reference” [49] he outlines the 

analogous principles for analysis of natural language propositions. “We are therefore 

driven into accepting the truth value of a sentence as constituting its reference” ([49], 

p. 569).

Logicism can be contrasted with formalism, the perspective most closely associated 

with David Hilbert. Hilbert’s aim was to create a formal system for mathematics in 

which a primitive collection of symbols can be combined in prescribed ways to create 

formulae. A construction method based on inference rules can be used to generate 

consequent formulae from a starting set (i.e. the proof process). Hilbert hoped to 

find a set of indisputable axioms from which all other mathematical knowledge could 

be derived. The final goal for Hilbert’s system was that it should display internal
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consistency, which would confirm its credibility as a rigorous proof method. Although 

it was Hilbert’s aim to construct a system which could be interpreted as capturing 

the usual semantics of classical mathematics, he contended that the system itself was 

devoid of intrinsic meaning, and hence purely formal.

Contemporaneous with the rise of logicism in philosophy of mathematics, an anal

ogous movement was occurring in philosophy of language— the advent of logical pos

itivism. The logical positivists were inspired by the logicists’ view of mathematics, 

and by the predominance of the scientific method in applied science. Like the logi

cists, they condoned the view that truths could be divided into the two categories of 

analytic and synthetic. The theory of meaning, according to the logical positivists, 

has two main principles [12]:

1. The verificationist principle: the meaning of a sentence is its method of confir

mation.

2. The statements of mathematics are vacuously or degenerately true (analytic).

The goal of the movement was to apply the same standards of empirical justification 

to philosophical statements as were used for confirmation of theories in the empirical 

sciences. The adoption of a “scientific method” for philosophical reasoning would sup

ply a criterion for philosophical truth and provide a gauge of philosophical progress.

This is the backdrop against which Church, Kleene, Godel, Post, Turing, and 

other founders of computability theory were working in the 1930’s. The aims of 

reducing mathematics, philosophical argument and effective calculability to scientific 

bases were analogous goals in logicism, logical positivism and computability theory 

respectively.

Logicism, formalism and logical positivism have all encountered extensive critique 

over the years. Few mathematicians believe today that we can find a logical basis
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for all of mathematics. Godel’s incompleteness theorems rendered Hilbert’s hope of a 

consistency proof for his system unattainable. W. V. Quine argued in his influential 

paper “Two Dogmas of Empiricism” [94] that the logical positivists’ emphasis on 

the analytic/synthetic distinction was ill-founded and that reductionist analysis of 

meaning was not a good basis for a theory of philosophical truth. Only the basis 

of computability theory remains more or less unaltered from the form it took in the 

1930’s!

This thesis addresses a philosophical void: we need to critically examine the the

oretical foundations of computing in order to assess whether they support the goals 

of the field.

It should be noted that there are many authors who have considered this topic. 

One finds articles spread across journals in philosophy, mathematics, semiotics, logic 

and occasionally, computer science, which address foundations issues. However, in 

mainstream computer science studies, consideration of foundational issues and alter

natives to Turing computability are commonly neglected. As an example illustrating 

this claim, consider that at three large Canadian universities, the University of West

ern Ontario, the University of Toronto and McGill University, there are no under

graduate computer science courses listed which explicitly address these issues (2009 

course offerings, see [6, 5, 4]). Even in courses with titles which sound promising, one 

finds very conventional descriptions. For instance, the McGill course “COMP-330: 

Theoretical Aspects: Computer Science:”

We study models of computation of increasing power. We begin with finite 

automata and regular languages. The next phase deals with context- 

free languages invented by linguistics and now an essential aspect of 

every modern programming language. Finally we explore the limits of
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computability with the study of recursive sets, enumerable sets, self- 

reproducing programs and undecidability theory [3].

In typical undergraduate computer science programs, conventional computability is 

normally taken for granted. This omission influences future computer scientists to

wards unquestioned acceptance of traditional foundations.

Why is philosophy of computer science, the discipline which critically examines 

the theoretical foundations of computing, not better established? Should we not ques

tion the implications of the choice of formal models we make, and analyse the impact 

of these choices on epistemology and ontology? Or, is computer science purely a for

malist discipline, with no metaphysical claims? If one believes that to be the case (as 

those who view computation purely as a game of symbol manipulation might), then 

at least the underlying philosophy should be explicitly stated. I claim however, that

we do desire more from computation than simple symbol manipulation. As Frege
\

stated for mathematics, “It is possible, of course, to operate with figures mechani

cally, just as it is possible to speak like a parrot: but that hardly deserves the name 

of thought” ([48], p. IV). Likewise, arbitrary symbol manipulation hardly deserves 

the name “computation” — rather, computation is a tool through which we hope to 

establish truth values, calculate functions, transform data, and so on.6

This thesis belongs then, in the field of philosophy of computer science. My aim 

is to re-examine key concepts in the foundations of the discipline and to present 

arguments for certain points of view on their definitions.

Thomas Kuhn’s work on scientific revolutions is useful for understanding the con

text of the present state of research in theoretical computer science.7 Central to

6What is intended by the term “computer” is examined in depth in the chapter of my thesis 
entitled “On the Definition of Computer.”

7Note that there has been debate about the applicability of Kuhn’s theory of scientific change to 
mathematical fields. Critics such as Michael Crowe have argued that since development in math
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Kuhn’s work is the notion of scientific paradigms: “universally recognized scientific 

achievements that for a time provide model problems and solutions to a community 

of practitioners” ([77], p. viii).

According to Kuhn, progress in scientific fields can be categorized in three stages [77, 

78]:

1. Pre-paradigm : the initial stages of the formulation of a scientific theory. 

There are competing paradigms, with no clear agreement among researchers. 

Evidence, sometimes contradictory, is amassed for the competing theories.

2. N orm al science: There is an accepted paradigm which underlies investigation 

in the field, and a set of axioms considered reasonable by researchers. Discov

eries axe made within the paradigm.

3. R evolu tionary  science: New research uncovers deficiencies in the underlying 

assumptions of the field. With enough contradictory evidence, the accepted 

tenets are questioned.

Progression between the stages occurs when consensus is achieved or a scientific crisis 

occurs as illustrated in Figure 1.1.

In theoretical computer science, the 1930’s were the pre-paradigm period. Before

the early work of Turing, Post, Kleene, Church, Godel and others, the field as such

did not exist. When it was discovered that independently developed models for

computation could be reduced to one another, a consensus was reached, and the

Turing machine came to be accepted as the “standard” model of computation. Since

ematics is frequently incremental, Kuhn’s theory of paradigm shifts is not applicable [37]. Other 
authors have adapted some aspects of Kuhn’s theory to mathematical research but rejected others. 
For a survey of the debate see [51]. In this thesis, Kuhn’s work is used only as an explanatory 
mechanism for changes in computability theory; no broader claim is intended about its general 
applicability to mathematics or computer science research.
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P re-parad igm

consensus 

N orm al science

crisis

R evolu tionary  science 

Figure 1.1: Kuhn’s evolution of scientific theories

that time of consensus, we have been operating in the normal science stage. The 

present paradigm is characterized by these fundamental assumptions:

1. That which is rightly called “computable” is Turing-computable.

2. The conventional Church-Turing thesis is likely correct.

3. An algorithm8 is an appropriate expression of the intuitive notion of effective 

calculability.

As evidence that the above assumptions are well-accepted, consider some recent 

paper titles from articles in Theoretical Computer Science:

1. “The weak lambda calculus as a reasonable machine” (Lago and Martini, TCS

2008 [79]). In this paper, the authors argue that call-by-value A-calculus is a 

“reasonable” machine because it can simulate a Turing machine and vice-versa 

in polynomial time.

2. “Computational expressiveness of Genetic Systems” (Busi and Zandron, TCS

2009 [13]). The authors introduce Genetic Systems, a formalism inspired by 

genetic regulatory networks which can be used to model interactions between

8As described, for example, by Donald Knuth (see Chapter 2, Section 2.2).
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genes and proteins. They show that the formalism is Turing-equivalent by 

providing encodings of Random Access Machines in Genetic Systems.

3. “The 4-way deterministic tiling problem is undecidable” (Lukkarila, TCS 2009 

[83]). In this article, it is shown that the (infinite) tiling problem by Wang tiles 

is Turing-undecidable for tile sets in which a tile is uniquely determined by the 

colors of any two adjacent edges.

As will be discussed at length throughout this thesis, we also find many articles, 

models and theories in theoretical computer science research which contradict the 

fundamental assumptions I have identified above. Kuhn calls these contradictory 

findings “anomalies.” In the process of normal science, an anomaly can force previ

ously standard beliefs or procedures to be discarded, and then the anomaly can be 

integrated into the paradigm.

However, if the anomalies are too significant to be assimilated into the paradigm, 

for example because they contradict explicit and fundamental generalizations, then 

a crisis is evoked. The paradigm becomes blurred, established research methods 

are called into question and existing results are re-examined. Kuhn identifies three 

outcomes to a crisis:

Sometimes normal science ultimately proves able to handle the crisis pro

voking problem despite the despair of those who have seen it as the end 

of an existing paradigm. On other occasions the problem resists even ap

parently radical new approaches. Then scientists may conclude that no 

solution will be forthcoming in the present state of their field. [... ] Or, 

finally, [... ] a crisis may end with the emergence of a new candidate for 

paradigm and with the ensuing battle over its acceptance ([77], p. 84).
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I contend that there are enough anomalies in computability theory that we must 

seriously re-evaluate the utility of the Turing machine as the basis of the definition 

of computability. A re-examination of key concepts such as computer, computable 

and computing power is required, and alternate computation models should be seri

ously considered. The analysis and description of these anomalies, and the resulting 

redefinition of terms comprise a significant portion of this thesis.

1.4 Overview of deficiencies in conventional com

putability

Problems with conventional computability theory can be divided into two broad cat

egories of concerns: inconsistencies in terminology, and difficulties presented by the 

conventional statement of the Church-Turing thesis.

1.4.1 Inconsistencies in the use of the word “computer”

1. Perspective-dependent definitions.

Everyday use of the word “computer” often differs from usage by computer sci

entists. Consider, for example, the dictionary definition in the Collins Canadian 

English Dictionary & Thesaurus: “a device, usually electronic, that processes 

data according to a set of instructions” [106]. The focus on electronic devices 

and the data processing requirement are not always met by models a computer 

scientist might call a “computer,” such as a Post system. Among computer 

scientists, there is also disagreement; for example, Andrew S. Tanenbaum’s 

well-known computer architecture book states “A digital computer is a ma

chine that can solve problems for people by carrying out instructions given to
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it” ([107], p. 1), whereas to Donald Knuth, a computer is a machine which ex

ecutes a computational method, where a computational method is defined as a 

possibly non-terminating algorithm. ([76], p.7-8).

We need a definition of computer upon which, as a minimum, theoretical and 

applied computer scientists can agree.

2. Machines whose power differs from Turing machines, but which are 

also called “computers” .

In the theory of computation literature, one finds a plethora of computing mod

els. There are several whole books devoted to enumerating models and their 

properties, for instance, Models of Computation by John E. Savage [97] and 

Models o f Computation and Formal Languages by R. Gregory Taylor [108]. To 

a reader first encountering these models, the number of alternatives and dispar

ity among them is overwhelming. Even researchers knowledgeable in the field 

will still encounter models with which they are unfamiliar.

The models can be grouped in four classes: those which are less powerful than a 

Turing machine, those which are Turing-equivalent, those which are more pow

erful than a Turing machine, and those whose computing power is incomparable 

with Turing-equivalent machines (a category often overlooked in the standard 

literature). I give here an example from each respective class: a finite automa

ton [63], a two-stack machine [63], an oracle Turing machine [110], and a true 

random number generator [60].

A problem with the established terminology is that applications of the word 

“computer” can be found for members of all of these categories, and “com

puting” is often employed to refer to activities performed by machines other 

than those which are Turing-equivalent. This leads to paradoxical statements
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such as these paper titles: “Computing the Uncomputable” (a short survey by 

John L. Casti) [21], or “Even Turing Machines Can Compute Uncomputable 

Functions” (a description of accelerated Turing machines by B. Jack Copeland) 

[30]. We need a definition of computer which avoids these paradoxical uses.

3. Blurring of formal and informal notions.

The intent of the Church-Turing thesis is to hypothesize a link between an 

informal notion, effective calculability, and a formal model, the Turing machine 

(and/or its equivalents). This distinction has been present in computability 

theory from the start; consider, for instance, Turing’s remarks in 1939:

A function is said to be “effectively calculable” if its values can be 

found by some purely mechanical process [... ] We shall use the ex

pression “computable function” to mean a function calculable by a 

machine, and we let “effectively calculable” refer to the intuitive idea 

without particular identification with any one of these definitions

([110], p. 160).

We overuse the words “computing” and “computer” to refer to both the informal 

notion of effective calculability, and the formal notion of Turing-computable. 

“Computable” sometimes also appears as a synonym for “recursively enumer

able.” All these uses of the terminology should be examined. We need a def

inition of “computer” which includes an explicit indication of its status as a 

formal or informal concept.

These problems are further examined in Chapter 2 where an alternative definition 

of computer is proposed.
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1.4.2 Problems with the conventional Church-Turing thesis

The second broad category of concerns pertains to the choice of the Turing com

putability as the standard against which computing models are measured. If the 

Church-Turing thesis is intended to be a universal claim about computability, then it 

should have wide applicability, free of contradictions, throughout computer science. 

This is not the case.

Below are five major problems with the conventional Church-Turing thesis. Prob

lems 1-4 are addressed in Chapter 3, and problem 5 is revisited in detail in Chapter 5.

1. Ambiguity in the meaning of “Church-Turing thesis” .

As mentioned above, the modern formulation of the Church-Turing thesis di

verges greatly from the original statements of Church and Turing. Furthermore, 

statements of the thesis vary greatly in their subject matter (from partial re

cursive functions, to machine models, to physical machines), and scope of ap

plicability (from narrow statements about the capacities of formal models to 

statements about human intelligence). Prior to any discussion about the suit

ability of the Church-Turing thesis, the intent of its statement must be clarified.

2. Practical computing does not use Turing machines.

Practitioners and theoreticians often ascribe a different degree of importance to 

the notions of computability and decidability. For the practitioner, if there is 

a computer program which accomplishes a given task, then the task is “com

putable” in the sense that it can be accomplished by a machine. This means 

that some problems that the theoretician would classify as uncomputable are 

“computable” to the practitioner. For example, practical computation could 

occur via approximation algorithms or only for a limited number of cases.

A second point to bear in mind is that practically speaking, we never use a
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Turing-equivalent machine for computing because the amount of “tape” avail

able is always limited. This implies that the word “computing” in reference to 

the activity of a Turing machine has a different meaning from when it is used 

to refer to the computation of an electronic computer.

3. There are many things we consider computational that a Turing ma

chine cannot do.

Consider Lenore Blum’s example of Newton’s Method:

“Newton’s method is the paradigm example of an algorithm cited 

most often in numerical analysis texts. The Turing machine is the un

derlying model of computation given in most computer science texts 

on algorithms. Yet Newton’s method is not discussed in these com

puter science texts, nor are Turing machines mentioned in texts on 

numerical analysis” ([8], p. 1024-1025).

It is not unreasonable to think of Newton’s method as computational, since it 

describes a well-defined set of steps for calculating output from input; however, 

it does not fit the traditional characterization of an algorithm because the inputs 

are real numbers, and therefore not discrete.9

As a second example, observe that Turing machines cannot make use of any

graphical input. This limitation implies, for example, that all problems in

computer vision research are non-computational.10

9One could object that whenever we use Newton’s method, we actually calculate with rational 
numbers, not reals. However, as already mentioned, in practice we never have an infinite Turing 
machine tape either. Hence, what is possible in practice is not a strict requirement of the charac
terization of computability anyway.

10 One could object that the part of the process called “computation” occurs after the input is 
encoded in a binary form. However, then we can still see that the Turing machine is incapable of 
performing that encoding, and thus we must still categorize vision problems as non-computational.
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4. T here are m achine m odels w hich  com p u te  functions Turing-equivalent 

m achines cannot.

As mentioned in 1.4.1, there are viable machine models which have power be

yond that of a Turing machine. These models do not fall under the scope 

of the conventional Church-Turing thesis, although their process of computa

tion is well-defined, and systematic analyses of their properties can be per

formed. To name just three examples, consider Lenore Blum, Michael Shub, 

Steve Smale and Felipe Cucker’s real number based computing model [10, 9], 

Klaus Weihrauch’s Type-2 machines [118], and Hava Siegelmann’s Analog Re

current Neural Networks [103]. Having a narrow definition of computer and a 

restrictive Church-Turing thesis preempts these models from consideration as 

formalizations of computational methods.

5. T here are hidden assum ptions in m achine m odels.

Consider the problem of finding a flight path between two cities along existing 

airline routes using a travel agent’s computer. Suppose that a directed graph 

representing airline routes has been encoded as binary data in the system. We 

know that we can write an algorithm to solve this problem, for instance by 

using a depth first search of the graph beginning at the city of origin. The time 

required to find a route will depend on the degree of the graph, and the number 

of stops between the two cities. However, we have not considered in this analysis 

the time it took to input the map, or to encode the data in a structure useful 

from a computational point of view. This is one example of a hidden assumption 

in the computation of this problem. Not only might these extra steps contribute 

to the time complexity, but they might not even be computable in the Turing

sense.
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These problems inspire my belief that our present definition of computability is 

too narrow, and that it should be replaced by a notion which is defined in relation to 

properties of the computing models it is intended to describe. Computability should 

be a relative notion, not an absolute one. The conventional Church-Turing should be 

viewed as a statement about a specific class of machines, but not as a limitation on 

all possible machine models.

1.5 Prior work

A principal claim of my thesis is that the Turing machine is not an appropriate model 

on which to base the definition of computation. Instead, I advocate a broader view 

of computability which defines computing power relative to specific models.

As already described, many authors have proposed models with computing power 

beyond that of a Turing machine. Turing’s oracle machines are an example of such a 

model [110].

As to the view that computing should be a relative notion, there are some authors 

who have endorsed it, for the most part outside the mainstream theory of computation 

literature. Other authors have rejected the conventional definition of computability 

and replaced it with a different one which still maintains the absolute character. Here 

are a few examples:

• B. Jack Copeland and Richard Sylvan: “The so-called Church-Turing thesis is 

false [.. .] Computability is a relative notion, not an absolute one.” ([35], p. 

46). Copeland repeats and elaborates this view in many papers, including [29, 

35, 33, 32],

• Oron Shagrir: “This paper challenges two orthodox theses: (a) that computa
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tional processes must be algorithmic; and (b) that all computed functions must 

be Turing-computable” ([99], p. 321).

• Klaus Weihrauch: In his book Computable Analysis, Weihrauch redefines com

putability with the aim of bridging the gap between numerical analysis, which 

relies on continuous functions, and conventional computation, which is dis

crete [118]. He introduces a new model which he proposes as an alternative 

to the Turing machine as a basis of computability theory (see Section 2.3.3).

1.6 Outline of the thesis

The following is a summary of the chapters in the thesis.

1. Introduction .

This chapter.

2. O n  the D efinition  o f  C om puter.

The aim of this chapter is to provide a definition for the word “computer.” My 

requirements are that this definition be meaningful to practitioners and theo

reticians, be based on historical and contextual considerations, and avoid the 

problems outlined in Section 1.4.1 and further elaborated in Chapter 2. Numer

ous definitions of computer and examples of computing models are analysed. 

Distinctions between formal and informal notions are made. Finally, a new 

definition of the term “computer” is provided.

3. O n  the C hurch-Turing Thesis and C om putability.

This chapter begins with a comprehensive discussion of the problems with the 

conventional Church-Turing thesis (some of which were briefly mentioned in
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Section 1.4.2). New notation and definitions are given for the terms “com

putable” and “computing power,” along with syntax and semantics for com

parisons of computing power (e.g. “same” and “equivalent” computing power, 

“more powerful than” and “incomparable” computing power). All the defi

nitions are provided for individual machines and functions, and extended to 

classes of machines and sets of functions.

4. A  Parameterized Meta-Model.

A central premise in the thesis is that the computing power of any given machine 

is determined by its capabilities: how much information it can read in a step, 

what type of input it receives, whether it can write, how many states it has, 

whether it produces output etc. These capabilities are the resources the machine 

has at its disposal, and they are modelled by parameters. As an example, 

consider the deterministic finite automaton. It is a machine which has a finite 

set of states, a finite input alphabet, and a set of deterministic transition rules 

governing transitions between states. It does not receive any input beyond the 

initial input string and it does not produce any output.

In this chapter, I identify some of the key parameters which determine a machine 

model’s computing power. I organize these in the context of a meta-model which 

I call a parameterized computing model which can be used to compare classes 

of machine models and reason about their relative capacities. The model is not 

intended to be exhaustive (i.e. it does not capture all machines identified as 

“computers” according to Chapter 2), but rather is useful as a reasoning tool.

The chapter finishes with a statement of a relativized version of the Church- 

Turing thesis.

5. Encodings and Labels.
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Issues arising as a result of encodings of problems are explored in this chapter. 

It is frequently assumed that as long as an effective encoding of a problem 

in a machine’s input/output alphabet exists, then that machine is capable of 

solving that problem. This approach hides complexity which should be explicitly 

included as part of the computation. Differences resulting from varied input 

alphabets are discussed, in addition to implications of using language acceptors 

and language generators.

Secondly, the idea that machine descriptions axe labels for functions is intro

duced. One important implication of this perspective is that the integers are a 

sufficient description of the Turing-computable functions.

6. Cardinalities, Computability and the Continuum Hypothesis.

If a computing model uses real numbers as input and/or output, what are the 

implications for the class of functions which can be computed? The cardinality 

of the sets involved in modelling problems are a primary factor in determining 

the resources necessary to perform computations. An important claim about 

the relationship between discrete and continuous structures is Cantor’s Contin

uum Hypothesis. In this chapter, I establish relationships between cardinalities, 

computability and the continuum hypothesis.

As a starting point, note that the size of the set of all binary Turing machines 

is N0, whereas the size of the set of all binary functions is the same as the 

cardinality of the continuum, c =  2N° . This immediately leads to the conclusion 

that there are Turing-uncomputable functions:11 There are c =  2K° definable 

binary languages, but only No binary Turing machines. As No <  2K°, some

languages must be Turing-uncomputable. 11

11 This is, of course, simply a restatement of the standard diagonal argument for the existence of 
Turing-uncomputable functions.
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Using Cantor’s cardinal arithmetic, I have developed a proof technique based 

on counting sizes of sets which can be used to establish existing and novel 

computability results.

7. Conclusions and Future Work.

The final chapter contains a summary of the thesis contributions and pointers 

to next steps and open questions.
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Chapter 2

On the Definition of Computer

In this chapter, I analyse the use of the word “computer” in various contexts: with 

respect to perspective dependent semantics, historical definitions, algorithms, and 

computer science usage. I discuss the merits and limitations of using the Turing ma

chine as the paradigmatic model of the computer. Finally, I propose a new definition 

of the term “computer” based on the prior analysis.

2.1 Influence of perspective on definition of com

puter

A principal goal of this thesis is to address the discrepancy between the theoretician’s 

and the practitioner’s view of computability. A  first question to ask is therefore: does 

one’s perspective affect one’s definition of “computer” ?

To start, consider the layperson’s view of a computer. Most people think of a com

puter as a piece of electronic hardware which runs software and connects to peripheral 

devices. For example, according to the Collins Canadian English Dictionary & The

saurus, a computer is “a device, usually electronic, that processes data according to
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a set of instructions” [106]. According to the Merriam-Webster Online Dictionary, it 

is: “a programmable usually electronic device that can store, retrieve, and process 

data” [1]. The purpose of these dictionary definitions is to capture “current view on 

their [the terms’] usage” in the language ([106], p.ix). Thus, we can conclude that 

most people view a “computer” as an electronic data-processing device.

Among computer scientists, we find some more explicit definitions of a computer. 

For instance, the first sentences of Structured Computer Organization, Andrew S. 

Tanenbaum’s textbook on computer architecture, state: “A digital computer is a 

machine that can solve problems for people by carrying out instructions given to it. 

A  sequence of instructions describing how to perform a certain task is called a pro

gram .” ([107], p. 1). I want to draw attention to two aspects of this definition to 

which I will later return when I discuss Donald Knuth’s definition of an algorithm: 

first, the idea that a computer is used for problem solving and, second, to solve a prob

lem, a computer must execute a sequence o f instructions. Notice that Tanenbaum’s 

definition is more technical than the dictionary definitions since it specifies how the 

computer operates (it carries out instructions), and it does not include mention of 

any peripheral devices or physical description of hardware.

In another popular computer architecture textbook, Computer Systems Design 

and Architecture by Heuring and Jordan [61], the authors identify four perspective 

dependent views of the computer: that of the user, machine language programmer, 

computer architect and computer logic designer. To the user, a computer is a tool to 

do work; to the machine language programmer it is a low-level instruction executor; 

to the computer architect it is a system with performance requirements within an 

environment; and to the logic designer it is a hardware device at the logic-gate level. 

The same entity, (in this case, an electronic computer), can be seen in very different 

ways depending on one’s relationship to the machine. We could extend the list to
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other domains— for example, an interior decorator would wonder how the physical 

object (the computer) would fit into the space of a room. So, although the interior 

decorator might “use” the computer to achieve a goal, perhaps to balance the look 

of an office arrangement, nobody would claim that the decorator is “computing.” 

From a theoretical viewpoint, the physical manifestation of the computer is not 

essential. A universal Turing machine is the most common example of a theoretician’s 

computer, but we find many other proposals such as P Systems [93], Post Systems and 

tag systems [92, 86], and register machines [100], to name just a few. As an example of 

a typical theoretician’s definition, consider these statements from a survey of machine 

models by Peter van Emde Boas:

A machine model M  is a class of similarly structured devices M*(i >  0) 

called machines, which can be described as mathematical objects in the 

language of set theory. [... ] The set-theoretical object provides only 

partial information on how the machine will behave and what its compu

tations will look like. Common in these definitions is the presence of a 

finite object, called program... ([I ll], p. 6).

In recursive function theory, it would be typical to ignore the program aspect and to 

simply say that a computer is any model of the partial recursive functions. For exam

ple, in R. Gregory Taylor’s book, we find the statement “we may regard Definition 3.7 

[the partial recursive functions] as an alternative characterization, or mathematical 

model of our intuitive notion of effectively computable ju n c t io n ([108], p. 234).

Thus, we can conclude that the definition of a computer varies highly depending 

on one’s perspective.
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2.1.1 Etymology

What is the origin of the word computer, and what did it first mean?

The first citation for the word “computer” in the Oxford English Dictionary is from 

1613. The early use of the word was to describe a person performing a calculation. 

The same source identifies the first use of “computer” to denote a mechanical device 

in 1897: “Engineering 22 Jan. 104/2 This was..a computer made by Mr. W. Cox. He 

described it as of the nature of a circular slide rule.” The word itself is derived from 

the Latin computare meaning to count or sum up [2].

If we focus on the original meaning of the word “computer,” then calculation is 

essential to the idea of computation. What, then, does it mean to calculate? Again, 

according to the Oxford English Dictionary, it means “To estimate or determine by 

arithmetical or mathematical reckoning.” Therefore, if we adhere to these original 

definitions, a computer should be a person or device which performs an arithmetical or 

logical operation in order to estimate or determine a result. I will refer to definitions in 

this spirit as the data processing model of computation—we start with some input, 

perform processing on the input, and produce output. We find this view of the 

computer pervasive in computer science, perhaps because of the prevalence of the 

von Neumann model as the “standard” computer architecture [11].

However, on closer examination, one notices that many models do not fit into 

this characterization. Among the models I have already mentioned, it is hard to see 

how a characterization of the computable functions as the partial recursive functions 

includes a data processing step. As Taylor points out, a Post System “lacks anything 

that would qualify as input” ([108], p. 343). If we define a universal Turing machine 

as a language acceptor (it halts if the input word is a member of the language charac

terized by the machine), then input and data processing are present, but there is no
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output data produced. Many purposes for which we use electronic computers would 

not appear to the user to exemplify “computing.” Consider, for example, watching a 

DVD on a computer— although we know that the computer is processing data from 

the disc in order to render images on the screen and produce sound, the users watch

ing the DVD would not think of themselves as calculating anything. When asked 

what they were doing, they would not describe themselves as “computing.”

Furthermore, in formal language theory, computations over sets with non-numerical 

elements are commonly considered. Therefore, even for the narrow purpose of for

mal language theory, we need a definition of computer which accounts for more than 

merely “arithmetical or mathematical reckoning.” A device whose purpose is to per

form numerical calculations is a calculator, a computer is often used for other purposes 

too.

We therefore either need a broader definition o f computer than the data processing 

model, or some o f the activities we label as “computing” actually are not.

2.2 Algorithms

Donald Knuth’s The Art o f Computer Programming has had a great influence on how 

we view and define computation. His underlying assumption is that algorithms are 

fundamental to computation. Volume 1 begins with the statement “The notion of an 

algorithm is basic to all of computer programming, so we should begin with a careful 

analysis of this concept” ([76], p .l). Knuth defines an algorithm as a finite set of rules 

which specifies a sequence of operations to solve a problem and which additionally 

has the following properties: 1

1. Finiteness: the algorithm must terminate.
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2. Definiteness: the action to be taken in each step is precisely determined.

3. Input: the algorithm uses some initial data.

4. Output: the algorithm produces a result.

5. Effectiveness: all operations can be performed in a finite length of time.

He then goes on to provide a formal definition of a computational method as a 

quadruple ( Q , I , Q , f )  whose components represent the states of the computation, 

the input, the output and the computational rule respectively (for more details, see 

[76], p.7-8). A computational method satisfies all algorithm conditions except possibly 

finiteness, that is, it is permitted to run forever on some inputs. According to Knuth, 

a computer is a machine which executes a computational method.

We can see the direct correspondence between Knuth’s characterization and Tanen- 

baum’s definition quoted earlier. They both define computation as a problem solving 

process and specify that the computation involves the execution of a sequence of 

instructions. There axe countless other definitions in the scientific and pedagogical 

references which follow this same blueprint. This view of computation certainly did 

not originate with Knuth; Knuth himself credits a 1951 paper by Markov which iden

tifies virtually the same characteristics. The intent of Turing’s 1936 paper [109] was 

to provide a rigorous model of the process of mathematical problem solving or proof. 

Looking back even further, one could argue, as Martin Davis does, that the attempts 

to define a systematic problem solving method can already be found in Leibniz’ work 

in the 17th century [40].

In [96], Hartley Rogers Jr. provides an (informal) characterization of an algo

rithm. It has five “essential features” which he claims “virtually all mathematicians” 

would agree are inherent in the idea of an algorithm. They are as follows, with my
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comparisons to Knuth’s definition in brackets ([96], p. 2):

1. An algorithm is given as a set of instructions of finite size (Knuth’s algorithm 

is a “finite set of rules” ).

2. There is a computing agent, usually human, which can react to the instructions 

and carry out the computations (no explicit equivalent in Knuth’s characteri

zation) .

3. There are facilities for making, storing, and retrieving steps in a computation 

(no explicit equivalent in Knuth’s characterization— interestingly Knuth makes 

no mention of intermediate data).

4. Let P be a set of instructions as in 1 and L be a computing agent as in 2. Then 

L reacts to P in such a way that, for any given input, the computation is carried 

out in a discrete stepwise fashion, without use of continuous methods or analog 

devices (Knuth’s Effectiveness).

5. L reacts to P in such a way that a computation is carried forward determinis

tically, without resort to random methods or devices (Knuth’s Definiteness).

Rogers then goes on to identify five questions related to the definition which he 

believes require more consideration and are not as readily accepted ([96], p. 3-5). 

In brackets following each question are the answers to the questions given by “most 

mathematicians” according to Rogers. These are also the answers required by the 

conventional definition of computation (i.e. a Turing machine).

6. Is there to be a fixed finite bound on the size of inputs? (No— any finite length 

is fine.)
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7. Is there to be a fixed finite bound on the size of a set of instructions? (No— any 

finite set is fine.)

8. Is there to be a fixed finite bound on the amount of “memory” storage space 

available? (No— countably infinite.)

9. Is there to be, in any sense, a fixed finite bound on the capacity or ability of 

the computing agent L? (Yes— follows transition rules exactly.)

10. Is there to be, in any way, a bound on the length of the computation? (No— 

computations are permitted to run forever.)

Rogers’ characterization is interesting for several reasons. First, his inclusion of 

the computing agent in the model is very unusual (point 2). Theoreticians are fond 

of saying that electronic computers are equivalent to Turing machines. However, note 

that a Turing machine on its own cannot compute anything! It is simply a collec

tion of symbols which requires a bookkeeper to perform the “computing.” On the 

other hand, an electronic computer, if it has a power source, is capable of perform

ing computational steps without the intervention of a bookkeeper, provided that the 

computation has been started.1 I will call these computational models which cannot 

perform any steps on their own, “inanimate” models. Most of the theoretical models 

are of this “inanimate” nature, for instance A-calculus, Post systems, recursive func

tion theory, etc. There are some recent proposals of candidates for computers such 

as ciliates (see, for example, [80], [67]) and DNA computers (see, for example, [50]), 

which could potentially serve as the basis for models able to compute on their own. 

One could also argue that the human brain, when it is performing a calculation, is 

an example of an “animate” model. Treating animate and inanimate models as if

1 Thanks to Cristian Calude for pointing out this difference (conversation, Oct. 2006).
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they are the same without further consideration is as questionable as claiming that 

a bridge over a river is the same as an engineering drawing and complete blueprint 

for the bridge: clearly they have the same theoretical characteristics, but one can be 

driven over and the other cannot.

The fundamental role of the algorithm in the definition of computability is often 

taken for granted. Knuth’s definition (and equivalent characterizations) have been 

very influential in shaping our formal notion of an “effective procedure.” As I discuss 

in Section 2.6.1, there is significant empirical evidence for the plausibility of the 

Church-Turing thesis if we use a definition o f algorithm equivalent to Knuth’s. The 

problem with stating a definition of a computer based on Knuth’s algorithm is that 

we are excluding many machine models, such as analog machines (see Section 2.3.3 

and Section 2.3.3) or oracle machines ([110], see Section 2.3.3), from eligibility as 

“computers.” I therefore reject the narrow definition of computer given by Knuth.

Rogers’ algorithm, with its inclusion of questions 6-10, is more flexible. In Chap

ter 4 I introduce a parameterized machine model which provides a formal framework 

to explore the implications in terms of computing power of different answers to Rogers’ 

questions. Although I think it is important to consider the computing agent in a def

inition of computer, I disagree with Rogers’ inclusion of the agent in the definition of 

algorithm. I will argue in Section 2.7 that a computer is a type of tool. It must be 

possible to use the tool to accomplish a task, but the user does not need to be part of 

the model. On the other hand, I will not exclude animate models from my definition 

of a computer, as long as they satisfy all the other requirements.
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2.3 Devices and models labelled as computers

In this section I summarize some uses of the word “computer” in the computer science 

literature.

Beginning in the 1930’s with the introduction of the Turing machine, A-calculus 

and recursive function theory, and continuing to the present, researchers have been 

defining new models of computation and analysing their computing power, usually 

in comparison with Turing machines. I will list a sampling of these models here to 

illustrate the different types that one encounters. Collections of model descriptions 

can be found in John Savage’s book Models o f Computation [97], R. Gregory Taylor’s 

book Models o f Computation and Formal Languages [108], or Peter van Emde Boas’ 

survey article “Machine Models and Simulations” [111], to mention just a few sources. 

The machines I list here are but a select few of the multitude of computing models 

which exist. I only describe a sample which axe relevant to the discussion in this 

dissertation, and which serve as examples in this chapter and in the remainder of the 

thesis.

There are four categories to follow: Turing-equivalent machines, string rewriting 

systems, “super-Turing” machines, and physical devices. The entities in these cate

gories are all considered to be capable of computation in different contexts. However, 

not all of them would be labelled as computers if one takes the view that a computer 

is a device which executes an algorithm. They are presented here so that one can con

sider their properties, and decide whether a revised definition of “computer” should 

be applicable in each case.

Note that in the following, a machine usually denotes a device for which one can 

imagine a physical instantiation and which operates on data of some kind.
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2.3.1 Turing-equivalent machines

In 1936, Alan Turing published On Computable Numbers, with an Application to 

the Entscheidungsproblem [109]. This groundbreaking paper contains the following 

results:

• introduction of the a-machine (automatic machine; now, Turing machine)

• definition of a “computable number” as any number whose decimal expansion 

can be produced as the output of some Turing machine

• construction of a universal Turing machine

• proof of equivalence of nondeterministic and deterministic machines

• proof of formal equivalence of A-calculus and Turing machines

• proof of existence of non-computable numbers

Turing’s model was widely accepted, even at the time, as a satisfactory character

ization of the functions “effectively calculable” by a human with pencil and paper. 

Despite having introduced formally equivalent function definition schemas of their 

own, both Godel and Chinch endorsed Turing’s model as the most intuitive and 

reasonable [105]. To this day, the Turing machine remains the theoretician’s paradig

matic computing model.

Formed definition of a Turing machine

This definition follows [63], and is the definition used throughout this thesis, unless 

otherwise stated.
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A Turing machine (TM) is a seven-tuple

M  =  (Q , E, T, 8, go, B , F)

where

• Q is a finite set of states.

• E is the input alphabet.

• T is the tape alphabet (E C T).

• 8 is the transition function

5 : {Q xT) ^  (Q xT x {L,R}).

• Qo £ Q is the start state.

• B € T /E  is a special symbol which indicates a blank cell on, the tape (only 

appears at the ends of the tape).

• F  C Q is the set of final states.

The described machine has one bi-directional infinite tape and one read/write 

head. Computation begins with the head positioned at the leftmost input symbol on 

the tape. In each processing step, the Turing machine:

• reads a tape symbol

• performs a state transition

• writes a new tape symbol

• moves left or right
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as determined by the transition function, 5. The computation of M  ends when it 

enters a final state, and the output remains on the tape.

The language accepted by M , denoted by L(M),  is precisely the set of words 

w € £* on which M  halts when given w as input. For w' £ L(M),  the computation 

of M  does not terminate on input w'.2 In this case, the machine can be said to “run 

forever” on input w'. If M  is used to compute a function, the function value / m (z ) 

is the output which remains on the tape when M  is given input x. In the case that 

Jm {x ) is undefined, M  runs forever on x.

Many variants of the basic Turing machine model, such as multi-head machines, 

multi-tape machines, multi-dimensional tape machines, and nondeterministic TMs, 

do not surpass the computing power of a basic Turing machine. Register machines, 

cellular automata, and 2-stack machines are other examples of machines with the same 

computing power as a universal Turing machine. Models which are quite different 

in nature from TMs, but also have also been shown to be equivalent in computing 

power, include DNA computers [50], quantum computers [43], membrane computers 

[93], billiard balls [47], and even a pile of sand [58].

2.3.2 String rewriting systems

As opposed to computing machines which are mechanistic devices that function ac

cording to a set of transition rules, string rewriting systems rely on operations which 

transform strings. In general, the language defined by a string rewriting system is 

the set of words which can be generated according to the defined operations from an 

axiom.

I give here two examples of string rewriting systems.

Alternatively, we could define an additional output symbol or designate final states to denote 
acceptance or rejection of input.
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Markov algorithms

In 1954, A. A. Markov published Theory o f Algorithms, a manuscript in which his 

aim was “to have the concept of algorithm rigorously established from the outset and 

to work out a general theory of algorithms on this rigorous basis” ([85], p. 3). As 

opposed to recursive functions which are natural number based, A-calculus which he 

calls “cumbersome,” or Turing’s formulation, which he considers “principally oriented 

toward a constructive approach to the concept of real number” ([85], p. 2), Markov 

introduces a general theory of computation based on transforming words (in modern 

terms, string rewriting). The presentation of Markov algorithms here is based on the 

notation in [108].

A Markov algorithm schema S is a triple (E, T, II) where E and T are the input 

alphabet and work alphabet respectively, with E C T and II a finite, ordered set 

of production rules. The production rules II =  { 7Ti , . . . ,  7rn }  are either of the form 

a  —> ¡3 (non-terminal production) or a  —> ./? (terminal production) with a, (3 G T*. 

A schema is applied to a word in the following way:

• In order to be applicable, the left-hand side of a production rule must match a 

subword of the word in question.

• An application of a rule consists of the substitution of the left-hand side of the 

rule with the right-hand side.

• The lowest numbered production rule which is applicable must be used before 

any higher numbered rules can be used.

• The substitution must occur in the leftmost position in which it is possible in 

the word.
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• Rules axe iteratively applied until either no more substitutions are possible, or 

a terminal production rule has been applied.

Note that the process is entirely deterministic. Halting of the production process by 

reaching a terminal production can be used as a condition for language membership.

It can be shown that Markov algorithms are able to simulate Turing machine 

productions and vice-versa. Hence the set of languages definable by both methods 

axe the same.

Insertion/deletion systems

The insertion/deletion system described here is based on [68]. Note that there are 

many variations and systems similar to this example. The motivation for these 

systems was the development of a formal model for DNA computing operations— 

specifically, the insertion and deletion of nucleotide sequences in DNA strands. In 

molecular operations, insertion and deletion occurs at site-specific locations in a 

strand, that is, only between certain nucleotide markers. This type of operation 

is formally modelled by contextual insertions and deletions.

Consider a finite alphabet X  and words u, v G X*. The formal definition of the 

contextual insertion of v into u within the context (x, y) 6 X* x X* is defined in [68] 

as:

u <r -̂ v =  {u ixvyui \ui,U2 € X*, u =  uixyu2)

The notation is extended to sets C  C X*  x X*  of contexts. Contextual deletion is 

defined analogously: a subword v can be erased from u if it appears in the required 

context (see [68] for more details).

The authors proved that contextual insertion/deletion operations can be used to
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simulate the execution of any Turing machine, and hence, these operations provide 

the basis for a Turing-computationally complete model.

2.3.3 “Super-Turing” machines

There are several comprehensive surveys of machine models which can compute func

tions that a universal Turing machine cannot. The machines in this class are called by 

various names, including super-Turing machines, hypermachines and machines which 

compute beyond the Turing limit. They vary widely in their capabilities, operation 

and specification. I will describe a selection of these models relevant to this thesis, 

but the reader is referred to Toby Ord’s survey [89], or the works of Jack Copeland 

[35], [33] for more comprehensive descriptions of models.

I will classify the models in three categories, according to the domain and co

domain of the functions they compute (or, equivalently, the input and output sets). 

The first category comprises machines which, like Turing machines, operate over 

discrete input sets. The second category contains machines which operate on another 

type of data, such as real numbers or continuous intervals. I will call these classes 

the discrete machines and the continuous machines, respectively, and consider also 

hybrid machines which can do both.

Discrete machines

Turing himself was the first person to consider a mechanical model with more com

puting power than a simple Turing machine in his Ph.D. thesis where he introduces 

the notion of oracle machines [110].3 This model is classified under “discrete” because 

the domain on which it operates is entirely discrete— the integers, binary numbers, or

3As B. Jack Copeland remarks, it is therefore nonsensical to use terms such as “super-Turing,” 
“beyond the Turing limit” and so on ([35], p. 63).
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words over a finite alphabet, for example. Nevertheless, oracle Turing machines are 

capable of computing larger sets of functions than ordinary Turing machines. The 

(informal) presentation here follows Cooper ([28], p. 140).

An oracle Turing machine is a conventional Turing machine augmented by an 

additional type of transition represented by a “query quadruple.” Given a set of 

natural numbers A (the oracle), these quadruples allow the machine to determine 

whether x  G A  for any x  and change state on the basis of the answer. A query 

quadruple has the form (<&, S, qi) where qi,qj and qi are states and S is the tape 

symbol currently being scanned. When the oracle machine is in state qi and scanning 

S, then the number of l ’s presently on the work tape is counted (say, n), and the 

query “Is n G AT' is presented to the oracle. If yes, then state qj is entered, otherwise 

state qi is entered.

Oracle Turing machines can be used as a basis for defining relative complexity and 

computability. A (partial) function (p is A-Truing computable if <p is computable by an 

oracle Turing machine with oracle A. A set B  is A-Turing computable, or computable 

relative to A, if its characteristic function is A-Turing computable. Computability 

of B  relative to oracle A is normally denoted by B  < t A. The relation < t is 

reflexive and transitive, and therefore can be used as a basis for partitioning binary 

(or equivalently) integer functions into equivalence classes. Let A = t B  if B < t A  

and A < t B. The equivalence classes determined by = t are called the Turing degrees. 

Relative computability is this sense can be used to define a hierarchy of degrees of 

computability (the hierarchy of Turing degrees). At this point I will note that this 

definition of “relative computability” is not the same as the one discussed in this 

thesis. This difference will is further explained in Chapter 6, Section 6.10.
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Continuous machines

Analog recurrent neural networks (AR N N s)

In [102, 103], Hava Siegelmann describes a neural network based model which, with 

real numbers as weights and possible exponential computation time, permits the 

definition of networks for all binary languages, including those which are Turing- 

uncomputable ([103], p. 59).

The general form of the computation model is as follows. A recurrent neural net

work contains N  elementary processors. These processors, which function as neurons, 

have an associated activation value represented by Xi(t), for i =  1 , . . . ,  N  (the acti

vation value of neuron i at time step t). At each time step, the neurons are presented 

with external binary inputs Uj for j  =  1 , . . . ,  M.  Each neuron has the potential to be 

connected to any other neuron with a weight on the connection. Likewise, a weight 

associated with each input/neuron pair determines the influence of the input on the 

neuron. At each time step, the activation value (or local state) of every neuron 

i =  1 , . . . ,  N  is updated according to the formula below ([103], p. 19):

( N M

T J aijXj(t) +  ^ 2  bijXj(t) +  Ci 
j=1 j=1

where a# are the connection weights, 6y are the input weights, and q  is a weight 

associated with neuron i itself, a is an activation function (such as a step function 

or sigmoid). Certain neurons are designated as output processors— their local state 

can be communicated to the environment. Normally an output value of 1 is used to 

indicate acceptance of an input (for a precise description see [103], p. 24).

If the weights are limited to integers, the languages recognizable by ARNNs as 

above are the regular binary languages; with rational weights, the binary Turing
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languages; and with real weights all binary languages.

In its form with real number weights, this model is classified as a continuous 

machine because its computation is not describable with parameter values from a 

discrete domain. The weights, which are part of the initial specification for a network, 

are taken from the set of real numbers, and hence, the machine does not have a finite 

description.

Hybrids

The computing models described in this section are capable of representing Turing- 

computable functions (discrete domain), and can simultaneously be used for compu

tations over the real numbers (continuous domain).

Abramson’s extended Turing machines

Extended Turing machines were described by Fred G. Abramson in a 1974 paper [7]. 

An extended Turing machine is an augmented conventional Turing machine whose 

tape is divided into two tracks. The function of the cells on the “bottom” track is 

identical to those on the tape of a conventional Turing machine: they can contain 

symbols from the finite tape alphabet and they can be read or written one at a time 

by the head of the extended Turing machine. On the other hand, the cells on the 

“upper” track can each hold one real number. The head simulatenously scans one 

cell on the lower track and the corresponding one on the upper track. Evidently, 

conventional Turing computability is recovered if the upper track is unused.

A “real number storage device, s” (i.e. register) is added to the finite control for 

the machine. There are additional operations defined to access s ([7], p. 33):

• load s: copy real number beneath the head into s
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• store s: write the contents of s in the current cell

• c —► s: load constant c into s

• s +  T  —> s: add the number T  in the current cell to s and store the result in s

• s * T  —► s: multiply the number T  in the current cell by s and store the result 

in s

• test s: change state according to the sign of the number in s 

W eihrauch ’s T ype-2  machines

The motivation for Weihrauch’s work is to provide a “coherent foundation for com

putable analysis” ([118], p. 2). He remarks that there is a divide between numerical 

analysis, which, generally speaking, relies on continuous functions on sets such as the 

real numbers and uses calculus extensively, and computability/complexity theory, 

which is concerned with discrete functions executed by machine models on count

able sets. His work attempts to bridge this gap by outlining a computation model 

which preserves Turing machine functionality while also allowing computation of lim

its and approximations of continuous functions. He calls the traditional computability 

Type-1 Theory, and the new theory, which extends traditional computability, Type-2 

Theory of Effectivity or TTE.

In [118], Weihrauch describes a “Type-2 machine” which serves as a computing 

machine for TTE. It is similar to a conventional Turing machine with some adjust

ments. A Type-2 machine has a finite number 1 . . .  k of one-way infinite read-only 

input tapes, an additional finite number k +  1 . . .  N  of two-way infinite work tapes, 

and one one-way infinite output tape 0. The input is read once from left to right 

from the input tapes, and the output is written once from left to right on the output
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tape. In a computation step, the machine may:

• move a head on one of the tapes 0 . . .  N  one position to the right

• scan a symbol on one of the tapes 1 . . . N

• write a symbol on a work tape k +  1. . .  N or the output tape 0

• move the head left on a work tape k +  1 . . .  N

• halt

The cells on the input and output tapes contain symbols from a non-empty finite 

alphabet EUi?,  and the work tapes use the alphabet T D S UB ,  where B  is a special 

blank symbol B  ^ E.

The key difference from a Turing machine is that the input and output strings 

are permitted to be infinite in length, that is, for k — 0 . . .  N, e  {£*, Ew}. Conse

quently, it is possible for the machine to run forever either by entering a loop in its 

transition function, or by continuing to read infinite input indefinitely.

It is easy to see that a Type-2 machine can simulate a traditional Turing ma

chine by restricting the input to finite strings only. Note that in order to perform a 

non-Turing computation, at least one input value must be non-Turing computable.4 

(Otherwise the computation could be simulated by a Turing machine extended to 

compute the symbols of the infinite input value as they are needed since the input is 

read exclusively from left to right.)

One possible objection to Weihrauch’s model which he raises himself ([118], p. 6) 

is that a real function is computable only if it is continuous in TTE. This limitation 

implies that some functions which might intuitively seem computable, for example,

4A real number x is Turing-computable if and only if there exists a Turing machine which, when 
started on a blank tape, prints the digits of x in sequence, starting with the most significant digit.
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the step function, are not. Weihrauch’s justification for this limitation is that “ [as] 

far as we know neither the step function5 or the Gaufi staircase6 nor any other non- 

continuous real function can be computed by physical devices” ([118], p. 6). However, 

this is not a usual requirement for computabilty— if it were, then computations re

quiring an infinite tape (which Weihrauch’s model and the standard Turing machine 

model include), would also be uncomputable.

Blum, Cucker, Shub, and Smale (BCSS)

The goal of the model proposed by Lenore Blum, Michael Shub and Steve Smale 

in [10] and developed by the former authors and Felipe Cucker in [9], is to define 

a machine which can provide a natural representation of real number computations. 

Recall Blum’s observation about Newton’s method: it is not unreasonable to think of 

Newton’s method as algorithmic, since it describes a well defined set of steps which for 

calculating output from input; however, it does not fit the traditional characterization 

of an algorithm because the input is a real number, and therefore not finite (see 

Section 1.4.2).

They observe that when conventional computing models such as Turing machines 

are used for real-number based problems, the key structure of the solution method 

is lost because of the necessity of approximation and representation conversion. Fur

thermore, elementary operations such as multiplication cannot be completed in one 

computation step, and so complexity analysis in terms of elementary real number 

operations is not possible. Their model addresses these issues.

Beyond the goal of defining a model which provides a natural representation of real 

number computations, secondary goals of their work are to allow the tools of analysis

5For a real number x ,  the step function is given by s (x)  =  < ôr x  <  ®
(1 otherwise.

6The value of the Gaufi staircase function for a real number x  is its integer component: g(x)  =  [x j.
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and geometry to be used in discrete computation and conversely, to make it possible 

for the notions of algorithm, complexity and computation to apply to problems in 

real analysis.

In [9, 10], a computation device is described which operates on an arbitrary com

mutative ring R  with unit (the BCSS machine). Examples discussed by the authors 

include the integers Z, the rational numbers Q, and the reals M. In the case that the 

ring is the integers Z, then the traditional computability is recovered. However, in 

the case that R  is taken to be the real numbers R, then the model describes functions 

over the reals and is therefore suitable for use in numerical analysis. A key difference 

from Weihrauch’s model, is that Blum et al. treat real numbers as basic mathematical 

entities rather than dealing with their decimal or binary expansions.

The described machine is a type of register machine. Each register contains a value 

from the domain of the ring R  on which the machine is operating. In the general 

case, an arbitrarily large (finite) number of registers can be simultaneously used. The 

operation of the machine is represented by a finite, connected, directed graph which 

can contain five types of nodes ([9], p. 71): input, output, branch, computation and 

shift. The data in registers Xi is modelled by a tuple x  =  ( . . . ,  x_2, x_i,  xQ.xi, x<x, . . . )  

where . is a distinguished marker between xq and x\. Informally, the functions of the 

nodes in the graph are as follows:

• input: transform input into computation domain

• computation: do a computation on the register values

• branching: based on one or more register values, branch in the graph

• output: transform the output from the computation domain

• shift: change the position of . (alters register indices)
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Weihrauch criticizes the BOSS machine by arguing that it is not finitely realizable:

Real-RAMs cannot be realized by physical machines, that is, they are un

realistic, for the following reason: in a finite amount of time every physical 

information channel can transfer only finitely many bits of information and 

every physical memory is finite ([118], p. 262).

On the other hand, the BOSS machine can represent computations on real numbers 

as primitive operations which Weihrauch’s model does not.

Leaving aside a discussion of the relative merits of each model, these two machines 

are in the hybrid category because they can be used to compute with purely discrete 

data, or compute using values from a continuous domain. They are able to simulate 

the computation of a Turing machine, but also have capacities beyond that of a Turing 

machine.

2.3.4 Physical devices

In this category, we have devices that physically exist and are used as computers. 

Some examples are an electronic computer, an abacus, and a human with pencil and 

paper. I already pointed out that there are differences between electronic computers, 

which in practice do not have unlimited memory, and Turing machines, which do (see 

Section 1.4.2). This issue is revisited in Section 3.1.3 where additional differences are 

discussed.

An example of a physical component which we cannot presently formally model is 

a true random number generator. As opposed to a pseudo-random number generator 

which is algorithmic, a true random number generator relies on environmental input 

to generate numbers. An example of such a device was created by Mads Haahr, and 

can be accessed via a web interface at http://www.random .org [60]. The website

http://www.random.org
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allows access to a random number generator which uses an array of radios that pick 

up atmospheric noise. On the basis of the atmospheric noise, each radio generates 

about 3000 random bits per second.

There have been a vast number of proposals for using real-world phenomena such 

as quantum state changes, molecular interactions, and biological processes as bases 

for computational models. I give here one example of a computer based on an unlikely 

physical entity: a pile of sand [58]. The authors model the avalanches which occur 

on the sides of a pile of sand as a set of what they call “critical staircases.” These 

staircases have stable forms, called critical attractors. The travelling of a grain of 

sand along a staircase can be used to transfer information, and logic gates are built 

using two staircases for input and one for output. In the paper, it is shown that AND, 

OR and NOT gates can be modelled which in turn can be used to simulate a register 

machine. Therefore, a pile of sand could potentially be used as a Turing-equivalent 

computing machine.

2.4 Characterizations of the “effectively calcula

ble” functions

As mentioned in Section 2.3.1, the motivation behind Turing’s introduction of his 

a-machines was to formalize the process of mathematical calculation as done by a 

human. Using a Turing machine, if one disregards the intermediate steps in the 

computation and attends only to the initial tape contents and the resulting tape con

tents when the computation halts, then the computation of a Turing machine can be 

thought of as a function from input to output. As we know, the set of functions (in- 

put/output mappings) calculated by the set of all Turing machines is usually labelled
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the set of “computable functions.” This set is invariant up to isomorphism over the 

tape alphabet.

In the 1930’s, two other significant characterizations of this set of functions were 

introduced: A-calculus and (partial) recursive functions. The former was developed 

by Alonzo Church and Stephen Kleene in a series of articles [23, 24, 69, 70, 71]. 

The original motivation for its development was to provide a set of postulates which 

would serve as a basis for formal logic and avoid the use of notation which Church and 

Kleene considered “somewhat artificial” (see [23], p. 347), such as the theory of types 

introduced by Whitehead and Russell in Principia Mathematica [119]. A-calculus is 

a tool for expressing logical propositions as formulae which can then be transformed 

by means of a set of axiomatic postulates. The resulting set of formulae identified by 

Kleene as those that aire “A-definable,” when interpreted as functions over the set of 

positive integers, was shown to be the same as the set of partial recursive functions 

[25].

The definition of the general recursive functions (or partial recursive functions 

as they are normally called today) is usually attributed to Kurt Godel and Jacques 

Herbrand.7 The definition of a primitive recursive function is formally given by Godel 

in [55]. (He referred to the defined functions as simply “recursive” ; the terminology 

“primitive recursive” was introduced by Kleene [72].) Other definitions of the primi

tive recursive functions also appeared in earlier works by Dedekind, Skolem, Hilbert 

and Ackermann ([75], p. 131). Briefly stated, the primitive recursive functions over

7The attribution to Herbrand made by Godel in his Princeton lectures ( “This [the definition of 
general recursive function] was suggested by Herbrand in a private communication” [56], p. 368), 
might not represent an accurate recollection. In 1963, in a letter to Jean van Heijenoort, Godel 
writes that he can no longer find the original letter from Herbrand, but that the definition given 
by Herbrand “was formulated exactly as on page 26 of my lecture notes” ([114], p. 115). However, 
the letters between Herbrand and Godel have since been found. Herbrand’s letter contains, among 
other things, several definitions of formal systems, and a discussion of the impact of Godel’s second 
incompleteness theorem on Hilbert’s program, but “ [njowhere in the correspondence does the issue 
of general computability arise” ([101], p. 180).
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the natural numbers are those that can be derived from the constant 0, the succes

sor function, the projection function, function composition and primitive reclusión. 

For the general recursive functions, the set of basic operations is augmented by a 

minimization operation.

The connection between A-calculus and recursive function theory is made through 

Godel numbers; each A-formula can be assigned a unique Godel number representa

tion, and checking whether a given natural number is a valid Godel number represen

tation of a well-formed A-formula is recursive. Furthermore, it was proven that every 

recursive function o f positive integers is X-definable and that every A-definable func

tion o f positive integers is recursive (Theorems XVI and XVII as stated in [25]). This 

conversion allows Church to conclude that “symbolic logic in general can be regarded, 

mathematically, as a branch of elementary number theory” ([25], p. 350). Therefore, 

Church and Kleene’s formal system for the expression of logical propositions and of 

logical proofs has the same expressive power as Godel and Herbrand’s system char

acterizing functions of elementary number theory. On that basis, one might argue 

that it was shown that the notions of “proving a formula” and “solving an equation,” 

are equivalent. Furthermore, if one also considers the reduction of Truing machine 

computations to the calculations in the previous two systems, then one might also 

argue that “computing” is interchangeable with the former two notions.

What can we say about the differences among the three systems? To facilitate the 

discussion, consider the natural representation in all three systems of the concrete ex

ample of adding two integers. In reclusive function theory, we could use the following 

function /  to calculate the sum of its arguments, m and n:
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Let f (n ,m )  be defined such that

/(0,m) =  m

f ( x  +  l ,m )  =  s ( f ( x , m ))

(where s is the successor function).

In A-calculus, we would construct a A-formula F(x, y, z ) such that F  is true if and 

only if x  +  y — z.8 In the Turing machine case, we could construct a machine which 

takes the unary representation of the addends as input and produces the unary rep

resentation of the sum as output. For the Turing machine and the recursive function 

representation, we can see how the sum of the two integers can be calculated— in 

each of these cases, we are able to obtain an answer (output) based on two arguments 

(input). However, with the A-formula, given x  and y, we cannot obtain 2— we would 

only be able to check whether 2  is the correct sum. Therefore, in the case of this 

A-calculus example, I would not say that we are computing the sum, since the sum 

of the arguments cannot be generated using the formalism.

2.5 Use of the word “computer”

I now summarize the ways in which the word “computer” is used which have been 

discussed in this chapter.

1. an electronic data processing device (dictionary definition)

2. a device which executes an algorithm (Tanenbaum, Knuth, Rogers)

3. a tool to do work (user perspective, Heuring and Jordan) 8

8There is also the possibility of using representations of the natural numbers as Church numerals 
where 0 =  X f .X x .x ,  1 =  X f . X x . f x , . . . ,  n  =  X f . X f nx.  I do not consider this further here.
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4. a low-level instruction executor (machine-language programmer perspective, 

Heuring and Jordan)

5. a person or device which performs a calculation in order to achieve a desired 

result (historical definition)

6. a universal Turing machine used as a language-acceptor, or any device capable 

of recognizing the same set of languages as a UTM

7. a universal Turing machine used as a language-generator, or any device capable 

of generating the same languages as a UTM

8. a universal Turing machine used to compute functions, or any device or formal 

system capable of computing the partial recursive functions

9. a string rewriting system

10. a “super-Turing” computation model

11. a model of the partial recursive functions or A-definable formula

12. a physical device

2.5.1 Formal definitions vs. intuitive notions

The list in Section 2.5 includes many meanings not typically used in theoretical com

puter science. In theoretical computer science, the term “computable” is normally 

synonymous with “partial recursive” or “Turing-computable” (and, by extension, with 

the terms “A-definable,” “specified by a Post System,” etc.).

The first important consideration required for the analysis of the above listed terms 

is to consider which of them are formal definitions and which are intuitive notions.
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This point might seem obvious, but a quick glance at common literature shows that 

the equivalence between formal and intuitive notions is frequently taken for granted 

and the use of these and other related terms is seldom rigorous. For example, consider 

this excerpt from Hopcroft, Motwani and Ullman’s popular textbook:

Interestingly, all the serious proposals for a model of computation have 

the same power; that is, they compute the same functions or recognize 

the same languages. The improvable assumption that any general way to 

compute will allow us to compute only the partial-recursive functions (or 

equivalently, what Turing machines or modern-day computers can com

pute) is known as Church’s hypothesis [ . . .] or the Church-Turing thesis.

(.Introduction to Automata Theory, Languages, and Computation, Hopcroft, 

Motwani &; Ullman, [63], p. 318) .

The above quotation has at least four problems:

• “Serious” is an ambiguous term— are so-called “super-Turing” proposals not 

serious?

• What is meant by “any general way to compute?” Is it an intuitive notion? 

Does it subsume all physical computations?

• The scope of the Church-Turing thesis does not extend to all conceivable com

puting models [34].

• Turing machines and modern-day computers have significant differences. For 

example, you cannot watch a DVD on a Turing machine and electronic com

puters do not have unbounded memory.
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In Table 2.1, I have identified terms according to whether they are intuitive or 

formal and I have provided justifications for the classifications.

Term Classification Justification
partial reclusive form al The partial recursive functions are the 

functions which can be specified using the 
function scheme first introduced by Her- 
brand and Godel (see Section 2.4).

A-definable form al A formula is A-definable if and only if 
it can be derived from the definition 
schemas, transformation rules and axioms 
of A-calculus, as specified by Church and 
Kleene (see Section 2.4).

Turing-computable form al A function is Turing-computable if its do
main and range are the input and output 
sets of some Turing machine.

algorithm intuitive Algorithm is a general term for a sequence 
of steps for solving a problem. Different 
authors have made the term precise by giv
ing a definition of algorithm (for example, 
Knuth and Rogers, Section 2.2).

effective procedure intuitive We normally understand “effective proce
dure” to denote a method which can be 
finitely expressed and can be carried out 
in a step by step manner without any ad
ditional insight.

computable intuitive A problem is computable if it can be solved 
using a computer.

Table 2.1: Comparison of formal and informal notions

The common practice of treating all the terms in Table 2.1 as if they are syn

onymous leads to hidden assumptions about the nature of computability and limits 

our ability to meaningfully discuss computation in contexts other than traditional 

Turing computation. We should be careful to use the term which precisely captures 

the meaning of what we want to express in each context.
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2.5.2 Soare’s discussion of “recursive” and “computable”

In [105], Robert I. Soaxe outlines the history of computability theory, and gives a 

detailed analysis of the usage of the terms “computable” and “recursive.” The purpose 

of his article is to examine the meaning, origin and history of these terms, and to 

evaluate their utility as descriptions in computability theory. The principal point 

he makes is that Gödel and Turing used the term “computable” to refer to any 

work related to algorithmic problem solving (usually machine based). “Recursive,” 

properly used, could refer to Godel-Herbrand recursive function theory, Kleene’s p- 

recursion or work by Platek, Péter, Dedekind etc.

Soare identifies a trend he calls the “recursion convention” ([105], p. 26-27), which 

he says has been followed for 50 years. Briefly, it entails using the language of recursion 

theory to describe results both related to recursive functions and to machine-based 

computation, whether it is appropriate or not. We can see evidence of this trend 

in the use of the partial-recursive functions as synonymous with the computable (or 

Turing-computable) functions by many computer scientists.

Soare strongly objects to the recursion convention:

. . .  the Convention leads to imprecise thinking about the basic concepts of 

the subject; the term “recursion” is often used when the concept of “com

putability” is meant. (By the term “recursive function” does the writer 

mean “inductively defined function” or “computable function?” ) Further

more, ambiguous and little recognized terms and imprecise thinking lead 

to poor communication both within the subject and to outsiders, which 

leads to isolation and lack of progress within the subject, since progress 

in science depends on the collaboration of many minds ([105], p. 28).

Soare’s arguments constitute yet another example where terms have lost precise
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meaning through misuse. A primary goal of this thesis is to disambiguate terms 

including: computer, computable, computing power, Church-Turing thesis, and so 

on. Only when we are careful in the form of expression of ideas can we meaningfully 

discuss foundational issues.

2.6 Discussion of the conventional definition of “com

puter”

In the previous sections, I have discussed in detail the various uses of the word “com

puter” that one encounters: perspective dependent use, historical use, theoretical 

machines, practitioners’ use, and formally equivalent models.

I want to return now to the conventional view of a computer in theoretical com

puter science, that is, a Turing machine. Why does it have such a central role, and 

what inadequacies does it have?

2.6.1 The central role of the Turing machine

Turing’s original motivation for the introduction of his a-machines was to formalize 

the process of mathematical calculation as done by a human with pencil and paper. 

Church, Kleene, Post, Godel, and others at that time were also interested in for

malizing logic, proof, calculation, and computation and analysing the relationships 

between these concepts.

Over the last 80 years, we have seen extensive evidence for the plausibility of 

the so-called Church-Turing thesis. In the discussion which follows, I am using Jack 

Copeland’s terminology, as outlined in his Stanford Encyclopedia of Philosophy article
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[34].9 His simple statement of the Church-Turing thesis is the following: “every 

effective computation can be carried out by a Turing machine” [34]. He credits Kleene 

with the introduction of the term “Church-Turing” thesis, which combines Turing’s 

assertion that a Turing machine can implement any effective procedure, and Church’s 

claim that any function of positive integers is effectively computable only if recursive. 

Copeland gives a definition of an effective procedure which is comparable to Knuth 

and Rogers’ definitions of an algorithm cited earlier in this chapter. I will quote here 

Copeland’s summary of the justifications for the plausibility of the Church-Turing 

thesis.

Much evidence has been amassed for the ‘working hypothesis’ proposed 

by Church and Turing in 1936. One of the fullest surveys is to be found 

in chapters 12 and 13 of Kleene (1952). In summary: (1) Every effec

tively calculable function that has been investigated in this respect has 

turned out to be computable by Turing machine. (2) All known methods 

or operations for obtaining new effectively calculable functions from given 

effectively calculable functions are paralleled by methods for construct

ing new Turing machines from given Turing machines. (3) All attempts 

to give an exact analysis of the intuitive notion of an effectively calcu

lable function have turned out to be equivalent in the sense that each 

analysis offered has been proved to pick out the same class of functions, 

namely those that are computable by Turing machine. Because of the di

versity of the various analyses the latter is generally considered strong ev

idence. For example, apart from the analyses already mentioned in terms

of lambda-definability and recursiveness, there are analyses in terms of

9Copeland provides an extensive analysis of the terms Church-Turing thesis, Turing’s thesis, 
Church’s thesis, Thesis M, and Thesis 5. He identifies several common misunderstandings of the 
Church-Turing thesis which are further discussed in Chapter 3.
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register machines (Shepherdson and Sturgis 1963), Post’s canonical and 

normal systems (Post 1943, 1946), combinatory definability (Schônfinkel 

1924, Curry 1929, 1930, 1932), Markov algorithms (Markov 1960), and 

Gôdel’s notion of reckonability (Gödel 1936, Kleene 1952) [34].

If we redefine “computer” and “computable,” what is to become of this overwhelm

ing body of evidence for the plausibility of the Church-Turing thesis? My desire is not 

to contradict or diminish the utility of the standard computing models or to contest 

the likelihood of the equivalence of computing models which satisfy the constaints of 

Knuth’s algorithm. Rather, I believe in a broader definition of computation which 

permits discourse about models less, equally and more powerful than Turing machines 

without a change in terminology. The Turing machine (and its equivalents) still play 

an important role as machine models which obey the constraints of finite input, effec

tive computing steps, finite description, and no additional input during computation. 

However, we limit our capacity to imagine alternative computing models when we 

adopt the Turing machine as our definition of a computer. Consider the analogy of 

nuclear power generation: we cannot synthesize uranium, nor do we have a complete 

explanation of why or how radioactive decay occurs; however, we are able to use this 

process to generate power. There is no good reason to assume that we will never 

similarly discover a computing component in nature— a “natural oracle” — which al

lows us to compute functions which the Turing machine cannot. Actually, we are 

already using natural phenomena to go beyond Turing computability. Consider the 

true random number generator described earlier (see Section 2.3.4).

Furthermore, as I pointed out in Section 2.3.3, there are many theoretical models 

which have computing power beyond that of a Turing machine. It is not reasonable, 

and moreover, it leads to semantic confusion, to have a definition of “computer” which
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excludes these models.

Copeland argues that the notion of effective method need not only refer to that 

which can be executed by a Turing machine, again without undermining the important 

role of that class of machines:

[A] thesis concerning the extent of effective methods— which is to say, 

concerning the extent of procedures of a certain sort that a human being 

unaided by machinery is capable of carrying out—carries no implication 

concerning the extent of the procedures that machines are capable of 

carrying out, even machines acting in accordance with ‘explicitly stated 

rules’ . For among a machine’s repertoire of atomic operations there may 

be those that no human being unaided by machinery can perform [34].

This point is comparable to Blum’s argument that Newton’s method could be consid

ered an algorithm, if one abandons the requirement that the input and intermediate 

data be finitary (see Section 2.3.3).

So, the Turing machine with its accompanying computability theory will still 

maintain an important place in a broader framework, but should be viewed as one 

instance of a computing model rather than as the basis of the definition of “computer.” 

Turing’s original intent was to model the calculation a human could do with pencil 

and paper. It is plausible that the Turing model, and other formally equivalent 

models, are adequate for capturing all functions which can be computed in the former 

manner. However, what we call “computation” goes beyond this narrow idealization 

of computing (see Chapter 3 for more discussion of this point). In this broader 

context, the Turing machine is still useful, but not as a global model. As Soare 

puts it, evidence for a definition of computability beyond Turing’s “would not affect 

Turing’s thesis about mechanical computability any more than hyberbolic geometry
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or Einsteinian physics refutes the laws of Euclidian geometry or Newtonian physics. 

Each simply describes a different part of the universe” ([105], p. 14).

2.6.2 Relationship to practical computing

With the advent of general-purpose electronic computers, the theoretical models pro

posed in the 1930’s gained physical instantiations. But what is really the relationship 

between the physical and theoretical models?

Mechanical aids to calculation or problem solving are not a new innovation. Even 

predating the first well-known electronic computers of the 1940’s, general purpose 

machines were envisioned for performing tasks we would now call computational. A 

few examples are Gottfried Leibniz’s conception of a universal mathematic language 

and associated reckoning machine in the late 17th century, Charles Babbage’s design 

of the analytical engine in the 1830’s, and Konrad Zuse’s construction of the Zl, 

started in 1934, before the publication of Turing’s seminal paper [40, 12 2 ].

Today, some problems which are conventionally called “uncomputable” are regu

larly solved in practice. Consider, for instance, the problem of compiler optimization 

of programs. We know that this problem is uncomputable in the sense that no Turing- 

equivalent computer is capable of producing an ideally optimized compilation of every 

program. However, a good compiler can “optimize” source code to a very satisfac

tory degree and will be capable of generating an ideal optimization of some programs. 

Therefore, it seems misleading to talk about this problem as “uncomputable” since 

we can solve it for many examples (albeit not for all examples, and not necessarily 

perfectly all the time).

This example illustrates the semantic difference in the use of the word “compute” 

and consequently also “computer.” Shifting our view to a broader definition of a
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computer will allow us to avoid this semantic difficulty in which we find ourselves 

implying something “uncomputable” is “computed” on a regular basis.

The differences between practical and theoretical computing are further discussed 

in the context of the applicability of the Church-Turing thesis in Section 3.1.2.

2.6.3 More powerful machines are excluded

So-called super-Turing computing devices are excluded from the conventional defi

nition of computation. As described in Section 2.3.3, there have been very detailed 

proposals for machines which perform operations which a Turing machine cannot 

simulate. To exclude these from the outset as being classified as “computers” limits 

discussion and innovation. Furthermore, we invite semantic confusion: can one com

pute with a device which is not a computer? The simplest solution to this problem 

is to endorse a definition of computer which is broad enough to include super-Turing 

computation models.

2.6.4 Summary of analysis of the conventional definition

1. The Turing machine (and other formally equivalent theoretical models), serve 

a useful purpose as models of a specific class of functions.

2. There are differences in the use of the word “computer” by theoreticians and 

practitioners:

(a) Electronic computers “compute” uncomputable functions.

(b) No known physical computer is Turing-equivalent since they lack an infinite 

tape.
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3. The conventional definition excludes many models which differ in power from 

Turing machines.

2.7 A  new type of definition

I began this chapter by stating that a principal goal of this thesis is to address the 

discrepancy between the theoretician’s and the practitioner’s view of computability. 

Prom the list of definitions in Section 2.5, we see that there is a large variation in 

the way the word “computer” is used— among laypeople, practitioners, computer 

scientists, and even among theoretical computer scientists. We will not find one 

unifying formal definition of the word “computer” across all these domains, since the 

purpose for which the computer is used determines its definition. The same type of 

problem is encountered for other terms with broad applicability such as “information,” 

“communication,” or “game.” What is proposed here is not a single definition of 

“computer” for every context, but rather a definition which is useful to computer 

scientists for discourse within that domain.

I therefore accept that the layperson’s definition of a computer will not be the 

same as the computer scientist’s. However, I contend that a requirement of a good 

theoretical definition is that it be capable of capturing the characteristics of any 

instantiation of the definition. That is, an electronic desktop computer should be 

a recognizable instance of the theoretician’s computer. Consider an analogy from 

object-oriented programming: an abstract class captures common properties of its 

concrete subclasses, although the concrete subclasses might have additional properties 

or operations that the abstract class does not include. The type of definition of 

“computer” I will provide is of this nature; it serves as a common template which 

can characterize all its concrete instances. This definition will no longer be in an
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equivalence relationship with its instances: a Turing machine will be a computer, a 

Weihrauch Type-2 machine will be a computer, but not every computer is formally or 

informally equivalent to either of these models, nor are they equivalent to each other.

Returning now to the original intent of the word “computer,” recall that histor

ically a computer is a person or device which performs an arithmetical or logical 

operation to estimate or determine a result (see Section 2.1.1). As we saw from mod

ern dictionary defintions, the word “computer” has come mainly to refer to electronic 

computers in casual use, but I would argue that the historical definition is closer 

to what people mean when they use the verb “to compute” (recall the point about 

watching a DVD on your laptop: most people would not characterize this activity as 

“computing” ). So, if a computer is something which computes, then, essentially, a 

computer is a problem solving machine.

With respect to algorithms (see Section 2.2), I have argued that restricting the 

definition of computer to a device which executes an algorithm is too narrow as it 

excludes many existing models. Furthermore, following Copeland and Blum, even 

including the requirement that steps be effective is debatable since effectiveness nor

mally includes an assumption of finiteness and of human ability. The strict con

ventional definition would even exclude nondeterministic Turing machines because a 

“guessing” transition is not effective in the conventional sense. I also contend that in

sisting on a series of computation steps as part of the definition is too limiting because 

it would exclude devices like DNA computers in which the order of the lowest level 

steps (in this case, biological interactions among the DNA strands) are not sequential 

or predictable. The part from Knuth’s algorithm which I will retain is the explicit 

inclusion o f input and output in the model. To what end would we be computing if we 

did not start by specifying the problem and end by (at least potentially) producing a 

solution? From Rogers, I adapt the requirement of the computing agent. In order to
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qualify as a computer, a device must be accessible to some user, in the sense that the 

user has an interface to interact with the device— supply input and receive output. I 

do not, however, require that the internal workings of the device be transparent to 

the user.

As for the Turing-equivalent and so-called super-Turing models, I  insist on a defi

nition which is broad enough to label machines in either o f these classes as computers, 

and which also could extend to less powerful machines and devices that in the conven

tional model are incomparable with Turing machines. Both animate and inanimate 

devices can qualify as computers, as long as the other requirements are satisfied. For 

instance, my brain can be an example of an animate computer, in the case that I am 

using it to solve a problem involving input and output. Recall Kari and Landweber’s 

ciliates [67]: although decoding of the micronucleus into a macronucleus during repro

duction appears to be a computational process, these would not qualify as computers 

if they are not being used as such— if there is no user, they are not computing, rather 

they axe simply reproducing. In the case of inanimate devices, consider the pile of 

sand. If nobody is using it to compute anything, then it is simply a pile of sand, 

although it has the potential to be a computer. In order for a device to qualify as a 

computer, it must be used with an intention to compute.

Finally, I point out that my definition is an intuitive one, not a formal one. As the 

accumulated evidence for the Church-Turing thesis shows, attempts to formalize the 

notion of computation have consistently lead to machine models whose computational 

power is equivalent in the conventional sense to that of Turing machines. I contend 

that this has occurred because our definition of a formal model already includes 

the requirements that it be finitely expressible, include precisely defined, effective 

steps, and be fully specified. These restrictions on formalization are essentially a 

requirement for an algorithmic (in the traditional sense) model, and hence, it is not



66

surprising that the formal models have all turned out to be equivalent. To avoid the 

circularity of using a definition scheme which limits the scope of the entities defined, 

I do not require that all details of the model be explicitly specified in order to label a 

device a “computer.” At this point, taking into account all the above considerations, 

I state a definition of “computer.”

D efin ition  2.1. A computer C is a device which satisfies the following requirements:

1. C  is a tool for problem solving.

2. C  accepts input which determines the instance o f the problem to be solved, and 

potentially produces output in the case that a solution to the problem is found.

3. C  has an interface which allows a user to access its input and output.

4. A t least one o f the following must hold o f C :

(a) C ’s primary purpose is to be used for  problem solving, and/or

(b) Intentionality aspect: a user is employing C  with the intention o f solving 

a problem.

Requirement 4.(6) necessitates more explanation because it has the peculiar con

sequence that a device which has the potential to be used as a computer is not called 

a computer unless a user is employing it to solve a problem .10 As an example, con

sider again that the dynamics of a pile of sand can be used to compute as explained 

in [58]. The definition of computer would be far too broad if it labelled every pile of 

sand as a computer. No doubt other similar piles of granular material could also then 

qualify, such as pebbles, salt or coffee grounds. If anything which had the potential

to be used for computation were called a computer, we would be forced to label most

10Thanks to Lila Kari for pointing this out (discussion, October 24, 2008).
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of the physical world as computers! I therefore insist that something such as a pile of 

sand, whose primary purpose is not to be used for  problem solving, be used with the 

intention of solving a problem in order to be called a computer. Definitions of this 

type are not nonsensical, and exist for other natural language terms. A wine barrel 

which is used as a garden planter does not cease to be a wine barrel, but as long as 

it has flowers in it, it is also a planter. Likewise, a cookie jar used as a fish bowl can 

exist with both labels. In reverse, a laptop can be used exclusively to play CD’s, but 

this does not imply that it is no longer a computer, even though we would normally 

call a device that is only used for playing CD ’s a stereo. To reiterate, requirement

4. states that to qualify as a computer, either the device in question was specifically 

designed for problem solving, or it was designed with another purpose in mind, but 

is actively used for problem solving.

Another requirement which is purposely omitted from my characterization is that 

of determinism. Recall the description in Section 2.3.4 of the random number genera

tor. Although this device does not behave deterministically, it still solves a problem: it 

provides the user with a random number. Machines with nondeterministic behaviour 

should not be excluded by a definition of computer.

2.8 Application to existing models

Returning now to the models presented earlier in this chapter, I will briefly explain 

which ones qualify as computers in light of the revised definition, and which ones do 

not.

The Turing machine is a computer— it is a tool for problem solving, it has the 

capacity to accept input and produce output, the means for specifying the input 

and output is clear, and its primary purpose is problem solving. However, a seven
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tuple (Q , £ , T, 8, q0, B, F ) with values for the items in the tuple is not a computer. 

In order to be usable, the additional knowledge that an infinite tape is modelled, 

and that a read/write head is used for data processing and so on, is necessary. It is 

possible to formally describe Turing machine computations by means of instantaneous 

descriptions and transition rules. In this case, a complete set of axioms, rules and 

allowable initial instantaneous descriptions could be considered a computer. However, 

this is a different device than a Turing machine since its operation is in terms of string 

rewriting rather than reading and writing tape symbols.

As to the string rewriting systems described earlier (insertion/deletion systems 

and Markov algorithms), the consideration which must occur is whether they can be 

used as problem solving devices. As in the case of the seven-tuple, simply writing 

down rules or schemas is not enough. Supposing one has a specific Markov schema 

S =  (E ,r ,  II), one also needs to know how the production rules can be applied to 

an axiom, what the initial string and final strings are meant to represent, and when 

the application of rules terminates. With that additional information, a Markov 

algorithm can be considered a computer.

All of the super-Turing devices described qualify as computers under the new 

definition. It is significant to note that they are all outside the conventional definition 

of computing machine as an algorithm executing device.

As for the physical machines, an electronic computer is certainly a computer in 

the sense of this thesis. As already noted, some of the other physical devices should 

only rightly be considered computers if a user is employing them with the intention 

of solving a problem (requirement 4(b)).

As to recursive function theory and A-calculus, they are primarily systems of 

formal notation. Recursive function theory does enable calculation of functions over 

the natural numbers, and therefore it is reasonable to consider it a computer. A-
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calculus is more useful for formal specification than it is for calculation. However, 

augmented in such a way that it enables input and output, and if used problem 

solving, one could imagine designing a A-calculus based computer.

As desired, the given definition of computer permits consideration of formal com

puting models less powerful, equally powerful, and more powerful than Turing ma

chines. It also includes formal models whose computational methods or computed 

functions are incomparable with Turing machines (further discussed in Chapter 3). 

Both physical machines (animate or inanimate) and theoretical models are included. 

Furthermore, probabilistic machines, nondeterministic machines, and machines pro

ducing approximate results can qualify as computers. Thus, the definition is useful 

to theoreticians and practitioners alike.
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Chapter 3

On the Church-Turing Thesis and 

Computability

All computation takes place relative to some set or other of capacities, 

richer or poorer. The capacities specified by Turing in 1936 occupy no 

privileged position.

B. Jack Copeland

“Hypercomputation: philosophical issues” 

Theoretical Computer Science 317, 2004, p. 252, [33].

In Chapter 2, I provided an intuitive definition of a computer, and argued that 

the apparent success of the conventional Church-Turing thesis has been the result of 

restrictions on the definition of formal computing models. It seems plausible, based 

on over 70 years of accumulated empirical evidence, that the conventional Church- 

Turing thesis is true. But what does this really mean? In this chapter, I will argue 

that computing power must always be considered relative to a computing model. The 

Church-Turing thesis is a statement about the computing power of a particular set



71

of machines, but should not be interpreted as imposing a deeper limitation on the 

computing power of all machines.

In the previous chapter, problems with the conventional definition of “computer” 

were addressed. I concluded that an informal definition was computer was necessary 

to best capture the desired semantics of the term. Here, I discuss problems with 

conventional definitions of computing related terms. One could attempt to adopt 

an informal definition of a computer, but still reserve the terms “computable” and 

“uncomputable” to refer to Turing-equivalent computation; in other words, one could 

continue to endorse the conventional Church-Turing thesis as the proper measure of 

the limits of computation. This approach would be problematic for many reasons 

as I point out in the following sections. I will begin by outlining some difficulties 

with the conventional Church-Turing thesis, and then provide new definitions for 

the terms “computing power,” “computable,” and “more powerful than,” and other 

related concepts.

3.1 Problems with the conventional Church-Turing 

thesis

In this Section, I discuss the major problems with the conventional Church-Turing 

thesis. The first problem is imprecision in the statement itself. This is addressed as 

“Problem # 1 ,” followed by discussions of three other significant concerns.
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3.1.1 Problem # 1 :  Ambiguity in the meaning of “Church- 

Turing thesis”

In order to discuss problems with the Church-Turing thesis, I first need to clarify 

exactly what is meant by that term. This is a complicated task since statements of 

the thesis vary from author to author, to the point that the original intent of the 

thesis is often obscured.

B. Jack Copeland has repeatedly pointed out that there is great deviation from 

the original statements of Church and Turing in other authors’ interpretations of the 

Church-Turing thesis [29, 35, 32, 34, 33]. Copeland paraphrases Turing’s original 

statements in this way: “He argued for the claim (Turing’s thesis) that whenever 

there is an effective method for obtaining the values of a mathematical function, 

the function can be computed by Turing machine” [34]. Copeland lists examples 

where authors have used the term Church-Turing thesis to refer to claims that Turing 

machines can simulate the workings of any machine, that the class of well-defined 

computations is fully captured by Turing machines, that Turing machines can model 

all finitely realizable physical systems, and that anything computable (itself a term 

that requires definition), is computable by a Turing machine. Copeland calls all these 

misinterpreted theses examples of the “so-called Church-Turing thesis,” which he 

distinguishes from the original thesis “the Church-Turing thesis properly so-called.” 

Copeland’s Stanford Encyclopedia of Philosophy article on the Church-Turing thesis 

contains an extensive list of quotations of “so-called Church-Turing theses” [34]. The 

paper Beyond the Universal Turing Machine by Copeland and Richard Sylvan begins 

with the statement “Two of our heresies— in the dictionary sense of ‘opinions contrary 

to the accepted doctrine on any subject’— are these” ([35], p.46). This is followed by 

the heretical claims themselves: “Proposition 1. The so-called Church-Turing thesis
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is false” and “Proposition 2. Computability is a relative notion, not an absolute one.” 

I am also guilty of endorsing both these heresies.1 As we saw in Section 2.5.2, Robert

I. Soare attributes some of the confusion about the theses to the use of the terms 

“computable” and “recursive” as if they are interchangeable when actually they are 

not [105].

In Chapter 2 ,1 quoted Copeland’s summary of some of the accumulated evidence 

in favour of the Church-Turing thesis. Proposition 1. refers not to the Church-Turing 

thesis properly so-called, but to all the broader claims which are often mislabelled as 

the Church-Turing thesis.

It is instructive to return to Turing’s original paper to determine the nature of 

the claims he actually made. In Section 9 of Turing’s 1936 paper [109], he provides 

several arguments for the appropriateness of his definition of computable numbers. 

The first argument on pages 135-137 is an appeal to intuition in which he analyses 

the behaviour of a human “computer,” and makes the following observations:

• A one-dimensional tape divided into squares is sufficient to emulate two dimen

sional paper.

• The number of symbols which may be printed is finite (for example, digits 0- 

9), because otherwise some symbols would be arbitrarily close and could not 

be distinguished. He argues that this requirement is not too restrictive since 

sequences of symbols can be used in place of single symbols (for example, 4325).

• There is a bound on the number of symbols which can be observed by the 

computer at one time.

• Only a finite number of “states of mind” of the computer need to be considered 

(same reasoning as above: otherwise some would be arbitrarily close). The

1 Relative computability is discussed later in this chapter, in Section 3.2.
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necessity for more complicated states can be avoided by writing output to the

tape.

• There are four simple operations performed by the computer ([109], p.137):

(a) Changes of the symbol on one of the observed squares.

(ib) Changes of one of the squares observed to another square within L squares 

of one of the previously observed squares.

(.A ) A possible change (a) of symbol together with a possible change of state 

of mind.

(B ) A possible change (b) of observed squares, together with a possible change 

of state of mind.

The above observations are meant to persuade the reader that a Turing machine 

(a-machine in Turing’s terms) can model a human computer. He argues that the 

restrictions on the behaviour of the human computer (number of symbols, states of 

mind, etc.) are intuitively acceptable, and thus that his formalism is adequate.

Returning now to what Copeland calls Turing’s thesis, the intent of this claim is 

only that the Turing machine formalism is sufficient for modelling the behaviour of 

a human computer. Specifically, it does not imply anything about the limitations of 

every machine, or every formal system. “A myth seems to have arisen concerning 

Turing’s paper of 1936, namely that he there gave a treatment of the limits of mech

anism and established a fundamental result to the effect that the universal Turing 

machine can simulate the behaviour of any machine” [34].

Meanwhile, Church and Kleene’s development of A-calculus and their proof that 

the class of A-definable functions can be modelled by the class of recursive functions 

led to another thesis. Copeland’s statement of Church’s thesis is “A function of
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positive integers is effectively calculable only if recursive” [34].

The original statement by Church was given as a definition rather than a hypoth

esis or thesis, but this form of statement was immediately criticized by Emil Post, 

who called it a “working hypothesis” instead [34]. Robert Soare argues that Church, 

Turing and Godel all regarded the achievement in Turing’s work as providing a defini

tion o f computability. He attributes the introduction of the term “thesis,” to refer to 

both Church and Turing’s statements, to Kleene in a 1943 paper and a 1952 book [74] 

([105], p. 15). The advantage of speaking in terms of definitions rather than theses 

is that discoveries which appear to negate a thesis have no effect on the utility of a 

definition. If, for example, we were to discover a formal calculating machine which 

satisfies the same restrictions as a Turing machine but is able to model a broader set 

of functions, this would negate the Church-Turing thesis, but would not affect the 

definition of Turing machines. If the Turing machine serves as a definition of what is 

computable, then these more powerful machines would need to be called something 

other than computers.

Soare cites examples from texts by all the above mentioned authors, and there

fore his assertion that the original statements appeared as definitions is well founded. 

However, I contend that the “theses” which Turing, Church, Kleene and Godel were 

implicitly proposing were that the formalisms they defined were adequate characteri

zations of the informal notion of mechanical procedure. For example, Church makes 

the following statement:

We now define the notion, already discussed, of an effectively calculable 

function of positive integers by identifying it with the notion of a recur

sive function of positive integers (or of a A-definable function of positive 

integers). This definition is thought to be justified by the considerations
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which follow, so far as positive justification can ever be obtained for the 

selection of a formal definition to correspond to an intuitive notion ([25], 

p. 356).

Thus, although he clearly states that he is providing a definition of effective calcula- 

bility, the argument he presents is for the adequacy, justifiability and appopriateness 

of the definition. The argument for the correctness of the definition is the thesis 

advanced by Church.

Likewise, Turing’s arguments for the appropriateness of his definition of com

putable numbers via Turing machines that I have cited above constitute justification 

for his “thesis.” Although Turing machines themselves are given as a definition, the 

underlying assertion Turing made was that his a-machines were an adequate char

acterization of the intuitive notion of effective method, where an effective method is 

that which can be carried out by a human with pencil and paper.

In Chapter 2, I presented a table classifying terms as formal or informal (see 

Table 2.1). The Church-Turing thesis is a claim about correspondence between an 

intuitive notion, that of effectively calculable, and a formal model, a Turing machine. 

The real problem in assessing the veracity of the Church-Turing thesis is to identify 

the informal notion to which the formal model is meant to correspond. Definitions of 

algorithms such as Knuth’s (see Section 2.2) are one means of achieving this. Since 

Turing machines have been shown to be formally equivalent to a large number of other 

machine models, we should actually consider a broader thesis which would include 

the claim that these other machines also capture the intuitive notion of effectively 

calculable. I will call this thesis the “broad Church-Turing thesis” and state it as 

follows:

D efin ition  3.1. T h e broad  C hurch-Turing thesis. The functions computable
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by Turing-equivalent machines correspond exactly to those which satisfy the informal 

criterion o f effective calculability.

This type of statement is the “usual” formulation of the Church-Turing thesis. 

Although I completely agree that one should be careful about the original articulation 

of the statements by Turing and Church, it is also important to address the modern 

conventional meaning of the thesis. To support my claim that the broad Church- 

Turing thesis captures the modern intent of the Church-Turing thesis, I give three 

examples from popular reference books:

1. “Turing’s Thesis (1936) Every function for  which there is an intuitively effec

tive process for computing its values can be shown to be Turing computable.”

( Computability Theory, S. Barry Cooper [28], p. 42).

2 . As already quoted in Chapter 2 from Introduction to Automata Theory, Lan

guages, and Computation, Hopcroft, Motwani & Ullman, [63], p. 318: “The 

unprovable assumption that any general way to compute will allow us to com

pute only the partial-recursive functions (or equivalently, what Turing machines 

or modern-day computers can compute) is known as Church’s hypothesis [... ] 

or the Church-Turing thesis.”

3. “CHURCH’S THESIS: whatever is felt to be effectively computable can be brought 

within the scope of one of the formal models.” ( “Machine Models and Simula

tions,” P. van Emde Boas, in Handbook o f Theoretical Computer Science, [111], 

p. 3).

With this more precise definition in hand, we can proceed to consider other prob

lems with the broad Church-Turing thesis.
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3.1.2 Problem # 2 :  There are many things we consider com

putational that a Turing machine cannot do

A Turing machine is a discrete device. This observation is also true of any Turing- 

equivalent computation device which satisfies the constraints that Turing outlined, 

or that conforms to the conventional definition of an algorithm. This restriction 

immediately implies that any problem which does not have a discrete representation 

is unsolvable by a Turing machine. Consider the problem of bisecting an angle using 

a ruler and compass. I would argue that this is a well-defined problem which a 

Turing machine is incapable of solving because there is no means of representing the 

input. However, I could construct a machine equipped with a camera and a stylus 

which solves this problem, or a human can solve it using a pencil and paper (Turing’s 

criterion). A possible criticism of this example is that the solution is not 100% 

accurate because of imprécisions in the measurement devices. However, note that in 

practical computing, we often are satisfied with approximate solutions to problems. 

The cases where a Turing machine would “run forever,” which are included in the 

class of “computable” functions, are not useful from a practical point of view. The 

fundamental question is whether machines or models which solve problems imperfectly 

should be considered computers at all, and I have already presented arguments in 

favour of their inclusion (see Section 2.6.2). Any problems which have a non-discrete 

or graphical representation are unsolvable by Turing machines.

As I discussed in Section 2.3.3, real number based analysis techniques are excluded 

from consideration as computational methods because they lack a finite representation 

of input values. It is difficult to see why processes such as Newton’s Method or 

computing certain Fourier transforms are not effective, since we can write down a 

step-by-step method for achieving the desired result. Why should we exclude such
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methods from that which is considered effectively calculable?

Furthermore, within the realm of discrete functions there are tasks which cannot 

be completed by particular Turing machines. For example, we could define a Turing 

machine with an input alphabet consisting of the letters from a — z which implements 

an English spell checker, whereas no such Turing machine with a binary alphabet 

could be defined. Of course through an encoding, we know that we could translate 

the spell checking problem into a binary problem, but this step is normally overlooked 

in descriptions of computing power.2

3.1.3 Problem # 3 :  Practical computing does not use Turing 

machines

Here is a sampling of differences between practical computers and Turing machines. 

In practice, computers d o  not:

• Run forever: we usually consider programs which run forever to have bugs. 

(There are exceptions, such as web servers, which are expected to run continu

ously unless explicitly shut down.)

• Have access to infinite memory: although computer memory is expandable, in 

practice we do not add memory to a computer during execution.

• Operate according to their specifications without failure: physical computers 

occasionally encounter power surges, crosstalk on chips, or other disturbances 

which affect computation results.

2If one wishes to be absolutely precise, the Turing machine with the a — z  alphabet also deals with 
encodings of words into strings of symbols which represent their spelling, not the words themselves. 
However, this encoding is far closer encoding to the actual word than the binary one, because, for 
example, the number of symbols in the input string is the same as the number of letters in the word 
(these issues are further discussed in Chapter 5).
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• Solve large cases for many problems: there are problems which have so-called 

“computable” solutions, for which we cannot compute answers due to time re

strictions in practice. Some examples are large instances of NP-hard problems 

such as the boolean satisfiability problem, or problems requiring exponential 

time such as generating a perfect strategy in a chess game. In The physical 

basis of computability, Robert B. Laughlin gives the example of the quantum 

physics spin glass problem: although the problem has a matrix based algorith

mic solution, “even for the case of N  =  200, this matrix has 2400 =  2.6 x 10 120 

elements, a number vastly larger than all the atoms in the visible universe” 

([81], p.28).

However, in practice, computers do:

• Produce approximate results: numerical analysis, optimization algorithms, and 

constraint satisfaction are fields which deal with approximate results. As noted 

before, any real number computation is necessarily approximate when com

pleted with finite resources. The explicit aim of probabilistic computing is to 

produce approximate, but useful, results. As Calude and Stay have shown, 

even the Turing machine halting problem— the prototypical “uncomputable” 

problem— can be solved probabilistically to some degree [15].

• Rely on user input: unlike the Turing machine, many practical computations 

are interactive. Some recent “super-Turing” computation models such as one 

proposed by Peter Wegner in [117] have attempted to address this difference.

• “Solve” so-called “uncomputable” problems: for example, compiler optimiza

tion of programs. In the general case, we know that to determine a perfect 

optimization of program (for example, the one with the fewest statements), is
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Turing-uncomputable. However, optimizing compilers axe able to perform very 

well for most programs (and sometimes perfectly).

The above lists are not meant to be exhaustive, but rather general remarks about 

typical use of electronic computers. The point of these observations is that the con

ventional definition of computability is not usually representative of practical com

putation, or often, of applied research in computer science. This discrepancy results 

in a division in the field between theoreticians and practitioners with regard to the 

perceived importance of computability theory.

The differing views influence attempts to characterize the field of computer science. 

In an opinion piece “On the Nature of Computing,” Jon Crowcroft observes, “public 

debate typically polarizes us along a spectrum between engineering and science. [... ] 

An extreme view of each end places practitioners within university electrical engineer

ing departments, and theoreticians within university mathematics departments.” He 

later laments that “ [computing has never established a simple connection between 

the natural and the mathematical” ([36], p.19). In “Is Computer Science Science?” 

Peter J. Denning remarks that the roots of the field lie in science, mathematics, and 

engineering, and that some members continue to identify with one of those disciplines 

over the others [41]. The article addresses the question of why the scientific status 

of computer science is sometimes questioned. He argues that part of the reason is 

that computer scientists frequently fail to test their theoretical claims, and therefore 

research in computer science often ignores the scientific method.

My motivation in this section is different from Crowcroft or Denning’s— I am not 

attempting to characterize the field of computer science. However, I am arguing that 

having a theoretical definition of “computable” which is often not practically relevant 

causes a perspective divide between theoreticians and practitioners. A discrepancy
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between theory and practice within a discipline is not in itself problematic (one might 

even argue that it is unavoidable). However, when the discrepancy takes on propor

tions such that dialog between researchers in the field is compromised and definitions 

of fundamental terms axe no longer applicable to many research domains, then a re

examination of foundational issues is required. This is the case in computer science. 

Even the broad Church-Turing thesis is insufficient as a statement about the limits 

of computation, since we regularly compute outside its boundaries in practice.

Hence, a definition o f computability which allows a “connection between the natural 

and the mathematical” (Crowcroft’s point), and admits testing of theoretical claims 

(Denning’s point), is desirable. .

3.1.4 Problem # 4 :  There are machine models which com

pute functions Turing-equivalent machines cannot

In Chapter 2 , I described many models which compute functions that conventional 

Turing machines cannot. Having a definition of “computable” which limits that which 

is computable to Turing-computable, excludes these models from consideration as 

computing machines.

3.1.5 Scope of the Church-Turing thesis

In this section I mention two important critiques of the plausibility of Church’s thesis:3 

one which argues the thesis is too narrow (Laszlo Kalmar), and one which argues 

it is too broad (Rozsa Peter). The version of the thesis under discussion is “the 

identification of the notion of effectively calculable functions with that of general 

recursive (or equivalently, A-definable) functions” ([66], p. 72). This claim can be

3The two critiques specifically deal with the original statement of Church’s thesis, not Turing’s.
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separated into an assertion and its converse, namely, that every effectively calculable 

function is general recursive and that every general recursive function is effectively 

calculable.

Laszlo Kalmar

In [66], Laszlo Kalmar contests the claim that every effectively calculable function 

is general recursive. The basis of his argument is that the requirement that the 

calculation method of a function be “uniform” is too strong. He analyses the following 

function, first described by Church ([66], p. 74, Kalmar’s notation):

{the least natural number y for which <p(x, y) =  0 

if there is such a y

0 if there is no natural number y such that p(x, y) =  0 

where x  and y are natural numbers and ip(x, y) is general recursive. He points out 

that if y exists such that tp(x, y) =  0 for a given x, then there is a terminating 

decision procedure computing i/j(x ): simply evaluate <p(x,p) for p =  0 , 1 , 2 , . . .  until 

<p(x,p) =  0, and then ifj(x) — p. On the other hand, he surmises that <p(x, y) could 

be such that in the cases that no such y exists, one could prove it, “not in the 

frame of some fixed postulate system but by means of arbitrary—of course, correct— 

arguments” ([66], p. 74). This proof, although not in the same postulate system 

as that used to calculate values for ip(x, y), would provide an effective method to 

calculate the value of ip(x).

This argument is similar to the idea that we might discover a “natural oracle” (see 

Section 2.6.1) capable of computing function values a human with pencil and paper 

cannot. Kalmar is referring to a non-algorithmic proof method, but the same type 

of idea can used to raise the objection that the conventional Church-Turing thesis is
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too narrow, whether on the basis of a non-algorithmic proof method, a super-Turing 

computation model or a physical device. In any of these cases, providing that an 

effective method for calculating a function value is described, the assertion that every 

effectively calculable function is general recursive is false.

Rözsa Peter

Peter addresses the converse claim to Kalmar’s, that is, every general recursive func

tion is effectively calculable.

The basis of Rozsa Peter’s argument in [91] is that the purpose of attempts to 

formalize effectively calculability is to make it a constructive notion, in the intu

itionist sense. About the introduction of general recursive functions she states: “der 

Haupziel bei der Einführung dieses Begriffes war eben die exackte Fassung des Kon

struktivitätsbegriffes” (the principal goal of the introduction of this notion was the 

exact definition of the concept of constructiveness) [91].

Consider the criterion according to which a function is general recursive: “A 

function is general recursive if there exists a finite set of equations from which all its 

values can be deduced by simple finitistic rules” (interpretation from [88], p. 471). 

Peter’s critique hinges on the interpretation of the existential quantifier in the former 

statement. Suppose it is interpreted constructively. Then, since “general recursive” 

formalizes constructiveness, the definition is circular, and hence no longer useful. 

However, under the classical interpretation of the quantifier, the goal of formalizing 

effectively calculability in order to make it constructive would not be realized, and 

therefore this interpretation is also not useful. This is the sense in which Peter’s 

argument shows that Church’s thesis is too broad: the classical interpretation of 

the existential quantifier in the definition of recursive functions (which is the only 

possible non-circular interpretation) fails to provide a constructive characterization
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of the informal notion of effectively calculable.

Although Kalmar and Péter’s perspectives appear to influence the reader in oppo

site directions concerning the plausibility of the Church-Turing thesis, their arguments 

can be reconciled as follows:

• In the spirit of Kalmar argument, we acknowledge that there are intuitively 

effectively calculable functions which are not Turing-computable.

• Péter’s argument leads us to the conclusion that attempting to identify effective 

calculability with constructiveness is not possible without circularity.

Hence, a better definition of “computable” will not be restricted to Turing machines, 

and will not be constructive.

3.2 An alternative proposal

Here, I define computability relative to the computing model.

D efin ition  3.2. A class of computing models is a collection o f one or more computers 

(whether formally or informally described).

The simplest class is a complete description of one particular computing ma

chine (for example, a finite automaton which accepts the language (ab)*: A = 

( { ? o ,  9 i, 92} . {a, b},5, q0, {<7o}), with the transition function 8(q0,a) =  q1,8(q0,b) =  

<?2, 8(qi, a) =  q<z,8{q\,b) =  qQ, 8(q2, a) =  q2) 8(q2) b) =  q2. A second specification of 

a class is a formal definition of the type of machine, for instance, the description of 

a Turing machine as a seven-tuple M  =  { Q ,  E, T, 8 ,  q o ,  B, F ) given in Section 2.3.1. 

A third is by means of an informal description of the computing model. The latter 

way would be appropriate in the case that a finite formal description is not possible
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for all or part of the machine model; for example, a machine that includes a random 

component or a physical part such as a quantum element for which we presently have 

no finite formal description.4

This description of a class of machines is deliberately open-ended. For the same 

reasons which I stated in Chapter 2 that it is desirable to have an informal definition 

of computer, it is also desirable to have an informal definition of computability. It is 

the very insistence on finite formal descriptions that has resulted in “all reasonable” 

computing models having the same computing power.

If the notion of computability is not well-defined for some values because of the 

flexibility in the specification of machine class, this does not diminish its utility in 

describing computability for those classes and functions for which it is well-defined. 

For example, descriptions of a machine computing a function will not apply to a 

machine with a nondeterministic relationship between input and output such as a 

non-algorithmic random number generator.

By “capable of computing” I use an analogue of the conventional (Turing) defini

tion of computation.

D efin ition  3.3. A machine M  is capable of computing a (partial) function f  : I  —> O 

if, given input i € I  from the domain o f f ,  M  halts and produces the output f ( i )  e  O 

for  every value for which f  is defined. In the case that f  is not defined for some 

i! G I, M  runs forever when given i!. I f  given input j  £ I , the behaviour of M  is 

unspecified.

Notice that under this definition, machines are capable of computing more than 

one function, if the functions in question have different domains. For example, con

sider a binary Turing machine M  which counts the number of l ’s in its input string,

4 A fourth way of delimiting a class using a parameterized computing model will be introduced 
in Chapter 4.
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and produces a string of l ’s which represents the count as output. That is, on input 

0011010, it would halt and produce 111 as output. In this case, the function domain 

is {0 ,1 }*  (any binary string), and the range is {1}*, and hence a function computed 

by M  is described by /  : {0 ,1}* —► {1}*. Now, consider a function g with domain 

{1}*. In this case, M  is capable of computing g if and only if g : {1}* —► {1}* is the 

identity function g(x) =  x.

The definition of function that is intended in the above is the usual one: two sets, 

the domain and the range, and a (partial) mapping between them. In the case that 

the function is partial recursive, we are justified in considering single-valued functions 

by the s-m-n theorem ([96], p. 23). Otherwise, the definition could be extended to 

multi-valued mappings in a natural way: g : { / i , . . . ,  In}  —► {O i , . . .  Om}. I do not 

consider this case case further here.

There are two related definitions that must be distinguished from “is capable 

of computing:” “the function computed by” and “capable of simulating.” Before 

presenting these, a definition and a result about the relationship between machines 

and functions must be stated.

Lem m a 3.1. For two functions fi  : I\ —► Oi and : I 2 —► O2, the same machine is 

capable o f computing both fi  and f i  if  and only if fi {i)  =  fi(i) for  all i e  h  (M 2.

Proof. For two functions f i  : I\ 0\ and fa : I2 —> O2, distinguish 2 cases to 

determine whether a single machine could be capable of computing both functions. 

Let M /j be a machine capable of computing / 1  and M /2 be a machine capable of 

computing / 2, and thus the question is whether it is possible to have M fx =  Mf2.

1. I\ D I2 =  0.
This case is trivial since a machine which is a union of machines for computing 

f i  and /2  individually will be capable of computing both functions.
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2. I\ n h  7̂ 0-

In this case, there is a non-empty intersection between the input sets. Select an 

input from the intersection: i E hC\h- If M fx computes / i ,  then it produces the 

output fi (i )  when given i as input. Therefore, a machine capable of computing 

both f i  and / 2 must produce fi (i)  when given i as input. Therefore, could 

be the same as M /2 if and only if fi ( i )  =  f 2(i) for all i £ I\ fl I2-

□

D efin ition  3.4. Given a machine M  which is capable o f computing functions f\ : 

11 —> Oi and f 2 : h  —■> O2, the union of machine functions is defined by / 1 U /2  : 

11 U I2 —■► 0\ U O2, with:

( / iU/2)(x)
fi(x) ifx Eh

<
f2(x) if X E h

D efin ition  3.5. The function computed by a machine is the the union of all functions 

the machine is capable o f computing.

For example, for a binary machine, this will be a function over {0 ,1}*. For a 

machine which accepts integer input, this will be a function with domain Z. The 

latter machine will also be capable of computing functions over the domain of natural 

numbers No, or over the even integers, but these are not “the function computed by” 

the machine.

D efin ition  3.6. A machine M  is capable of simulating a (partial) function f  : I  —> O 

if and only if:

(i) There exist mappings p : I  —> I' and u : O —> O' and a function f  : I' —► O'
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such that f ( i ) =  o if and only if f ( i ' )  =  d  where i' and d  are the images of i 

and o under p and v respectively.5

(ii) M  is capable of computing f .

D efin ition  3.7. R elative com putability. Let C(M, f )  be a predicate which is true 

if and only if M  is a class containing computing models capable o f computing function 

f .  Intuitively, C (M , / )  is a predicate which is true if f  is computable relative to M .

C(M, f )  =
true

false

if some machine6 in class M  is capable of computing f  

otherwise.

The notation C(M, f )  is extended to a set o f functions F  below:

*
true if for  every f  G F , some machine in class M

C(M, F) = is capable o f computing f

false otherwise.
<

It is important to remark that of the three possibilities for computation definitions 

presented earlier, “M  is capable of computing,” “the function computed by M ” and 

“M  is capable of simulating,” the definitions of C (M , f )  and C(M ,F)  use the first 

one (capable of computing). The justification for this is as follows.

• “The function computed by” would be too restrictive. Using this definition

would imply, for example, that a machine Madd which computes addition of

Restrictions on fj. and v  are discussed in Chapter 5.
6I offer here a clarification of the choice of wording “if som e  machine.” The alternative would 

be to require every machine in the class to be capable of computing / .  This definition would not 
be reasonable, since it would then imply, for example, that the class of all Turing machines cannot 
compute a given binary function, since some members of the class do not have binary alphabets.
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integers f add : Z  x Z  —>■ Z, with /„¿¿(a, b) =  a +  b, would have a false value for 

the C predicate for addition of even integers (fadd-even)• That is, C(Madd, f add) 

would be true and C{Ma<M, fadd-even) would be false because fadd-even is not the 

function computed by Madd- This is nonsensical.

• “Is capable of simulating” hides complexity of the input/output encoding. With

out explicit consideration of the complexity of n and u, it would be misleading 

to imply that a function /  is computable relative to a machine M  if M  is only 

capable of simulating / .  These subtleties are explored further in Chapter 5.

• “Is capable of computing” avoids the problems of the other two, and provides 

a useful basis for the definition of relative computability, as will be illustrated 

in examples in the remainder of this chapter.

3.2.1 Example

To illustrate the use of the C predicate, consider the “unary addition” function:

Let w G {0 ,1 }+  be a binary string which is the unary representation of two 

positive integers m  and n in the format l m01n. Then let /  be a partial function 

/  : { 0 , 1 }+ —>■ {1 }* which is defined as below for all strings in the format l m01n and 

undefined otherwise.

f u - a d d {w ) =  lm+n

Now we can ask the question of which machine classes can compute the unary addition 

function, fu-add is computable relative to a given class M  of machines if there exists 

some machine m in the class which, for every string over the alphabet S =  {0 ,1 } , 

produces output corresponding to the answer to the addition for strings in the correct 

input format, but runs forever otherwise.
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A Moore machine is a finite automaton which has an output value associated with 

each of its states (see [42], p. 97 for a formal description). As a Moore machine has no 

memory device, no such machine is capable of computing f u-aM• However, a Turing 

machine is clearly capable of computing f u- add• Using the predicate C we can express 

this as:

Ĉ MMoorei fu—add) — false and C(Mtm, fu-add) =  true

where MMoore is the class of all Moore machines and Mtm  is the class of all Turing 

machines.

3.3 Computing power

In this section, I provide a definition of computing power and explain my motivation 

for this particular definition.

3.3.1 W hat this section is not about

Like the perspective dependent views of “computer,” one’s perspective influences 

one’s view of the term “computing power.” The layperson would likely see computing 

power as capacities or hardware characteristics of an electronic computer (think of 

what appears in a flyer advertising computers). In complexity theory, issues such as 

speed, storage space and trade-offs between resources are important. Practitioners are 

concerned with having “enough” computing power to solve the particular problems 

they are working on, whether that means using one machine, parallel machines or a 

distributed system. This thesis does not address these broader considerations related 

to computing power.
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Rather, I provide a definition which addresses the question of what a particular 

machine or model is capable of computing without considering how it computes it, 

what resources are used or how long the computation takes. In computability theory, 

this is usually the intent behind definitions of computing power.

3.3.2 Definition of computing power

The computing power of a machine is determined by its capabilities: we can measure 

these by considering the functions it is capable of computing. One rarely sees an 

explicit definition of computing power. Rather, the meaning of the term computing 

power is often implicit in comparative statements, for example “machine X  has the 

same computing power as machine Y .” It is useful to have an objective definition of 

computing power in order to be able to discuss a machine’s characteristics without 

reference to other machines or machine classes.

D efin ition  3.8. The computing power of a machine is the (partial) function computed 

by the machine (as in Definition 3.5). The notation V(m) is used to represent the 

computing power of machine m.

D efin ition  3.9. The computing power of a machine class is the set o f functions the 

machines in the class compute. The notation V (M )  is used to represent the computing 

power o f class M , that is, V (M )  =  |Jm M V{rn).

Notice that according to this definition, two machines which have different input 

sets would have different computing power. For example, a universal Turing machine 

with a binary alphabet does not have the same computing power as a universal Turing 

machine operating on an input alphabet of the letters a — z. In theoretical computer 

science, this difference is often overlooked, and the two machines would be said to have 

the “same” computing power. A more accurate statement would be that they have
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the same computing power, up to isomorphism of the input alphabet. However, this 

second statement is still not completely accurate because a different input alphabet 

necessitates an altered transition function and a different tape alphabet.

To illustrate my motivation for defining computing power in the way I have done, 

consider the following two examples.

1. The spell checking example explained in Section 3.1.2: a Turing machine with 

input alphabet a — z is not capable of computing the same function as a binary 

Turing machine.

2. It is often assumed that Turing machines as language acceptors and Turing ma

chines as function calculators have the same capabilities, when actually they do 

not. Consider the unary addition function described in Section 3.2.1. Accord

ing to the definition of computing power given above, in order for a machine to 

be capable of computing the unary addition function as it was described, the 

machine must have an input alphabet of l ’s and 0’s, take input strings over that 

alphabet, and produce the correct output strings for all the values for which 

the function is defined. On the other hand, a Turing machine described as a 

language acceptor could have the following behaviour: for input words which 

encode pairs of strings (x , y) with x, y e  {0 ,1 }* , the machine halts and accepts 

its input if f u-add(x) =  y, and halts and rejects or runs forever otherwise. In 

what sense could this language acceptor be said to be computing the unary 

addition function? It is not useful as a problem solving device, since it does not 

produce an answer to any instances of unary addition. It is desirable to have a 

distinction between the language acceptor (which we might call a machine for 

solving the “unary addition checking problem” ) and the function calculating 

Turing machine which actually solves the unary addition problem.



94

To match the definition of a computer as a problem solving device, it is necessary 

to have a definition of computing power which allows one to describe the problems 

which are actually solved by the machine. As the above examples illustrate, machines 

which are traditionally said to have the “same” computing power actually have very 

different capabilities when considered from the user point of view.

3.3.3 Further commentary

W h a t does a universal Turing m achine com pute?

Consider a universal Turing machine U which takes as input a string description of a 

Turing machine M  and an input value i for M . Let M' and i' represent the encodings 

of M  and i respectively in IPs input alphabet. Let the behaviour of U be such that 

U halts on the input (M ', i') if and only if M  would halt on i, and the contents of the 

tape following U’s computation are the same tape contents M  would produce running 

on i, except that they are encoded in (7’s tape alphabet. In particular, during the 

computation, the description of M  is deleted from the tape. Furthermore, U halts 

in an accepting state exactly when M  would on i. As U is a universal machine, it 

has the ability to simulate any Turing machine M  in this sense: provided with an 

encoding of the machine and its input in the format expected by U, the end result of 

the computation by U will be indistinguishable from that of M , up to the encoding.

According to the definition of computing power given in this chapter, what is the 

computing power of U1 Let E be IPs input alphabet and T be U’s tape alphabet. 

Then at a first glance, we might think U computes a function /  : E* —* F*. As stated 

above, U halts and accepts if and only if M  halts and accepts on i. However, the 

accepting/rejecting of the input word is part of the output provided by U, so actually 

we should say that U computes a function /  : E* —► T* x { accept, reject}, f  is defined
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for all input strings which contain valid encodings of a machine M  and its input i, 

and for which M ’s underlying function is defined, and undefined otherwise.

At last we can make a general statement about the function /  computed by U. 

The values for which /  is defined are exactly those which can be interpreted as a valid 

description of a Turing machine M  and input string i and where M ’s behaviour on 

the decoded version of i is defined. /  is simply a function from one set to another; 

the interpretation of the inputs as Turing machines and their inputs is arbitrary. The 

significance of U being a universal Turing machine is that U can simulate the function 

computed by any other Turing machine, and, more generally, the function computed 

by a Turing-equivalent computing device.

Finally, note that a universal Turing machine does not compute all partial recur

sive functions! We can interpret the function computed by a particular UTM as a 

simulation of the functions computed by all definable Turing machines, but the UTM 

itself computes only one function. The class of all Turing machines, does compute 

all partial recursive functions. More specifically, given a representation of the set of 

partial recursive functions, for example as binary functions, the class of all binary 

Turing machines is capable of computing all functions in that set. Let Uqi be a 

particular binary universal Turing machine, Mtm0i represent the class of all binary 

Turing machines, and V7Z represent the set o f partial reclusive functions. Using the 

previously defined notation, C(Uqi,VTV) =  false, and C(MTMoi, V 71) =  true.

3.4 Comparisons of computing power

An intuitive but vague definition of “more powerful than” would be: a machine A  is 

more powerful than a machine B  if A  can compute more than B. There are several 

problems with it:
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1. What is meant by “machine” ? Is it a machine class, or a single machine?

2. What does “more powerful” mean?

3. What does “compute more” mean?

As a second illustration of the need for precise definitions, consider this statement 

about program equivalence:

. . .  if a program can be regarded as computing a partial function [from] 

its inputs to its outputs, then “equivalent” means “computing the same 

partial function” ([90], p. 74).

No further explanation is given regarding the meaning of “the same partial function” — 

for example, is a change of domain permissible?

In this section, I will provide precise definitions for terms required to compare the 

computing power of machines, which will allow unambiguous expression of the above 

statements.

3.4.1 The “same” and “equivalent” computing power

In Section 3.3.2 I commented that under my definition of computing power, machines 

with different input alphabets could not be said to have the same computing power. 

However, it is necessary to have a means of describing machines whose computing 

power is equivalent, in the sense that they are able to simulate each other’s behaviour.

D efin ition  3.10. Two machines m\ and m 2 have the same computing power, denoted 

by mi =  m2, if and only if they compute exactly the same functions. That is, mi has 

the same computing power as m2 if and only i fV (m i)  =  V {m 2).
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D efin ition  3.11. Two machines classes Mi and M 2 have the same computing power, 

denoted by Mi =  M 2, if and only if the machines in the classes compute exactly the 

same set o f functions. That is, Mi has the same computing power as M2 if and only

i fV {M i )  =  V (M 2).

D efin ition  3.12. Two machines mi and m2 have equivalent computing power, de

noted by m i =  m 2, if and only if mi is capable o f simulating the function computed 

by m 2 and m2 is capable of simulating the function computed by m i.

D efin ition  3.13. Two machine classes Mi and M 2 have equivalent computing power, 

denoted by Mi =  M 2, if for  every machine mi in M i, there is some machine m\ in 

M 2 for  which mi =  m[, and for every machine m2 in M2, there is some machine m'2 

in Mi for  which m 2 — m2.

Note that it is not required for equivalence that classes Mi and M 2 be the same 

size, nor that there is a bijection between their machines. It is sufficient that for 

every function which is computed by a machine in one class, there is at least one 

corresponding machine in the other class which can simulate it. Consider, for instance, 

one class which contains only one machine for calculating addition of integers, and 

another class that contains ten machines for the same task. We would not want to 

say that these classes do not have equivalent computing power simply because there 

is duplication in one which results in a different size class.

3.4.2 Examples

Let o be a finite automaton which accepts the language a*b*c*. The only “output” 

from a finite automaton is whether or not a word is accepted, and hence, the function 

computed by a has the following domain and range: f a : {a, b, c}* —> {accept, reject}. 

Let m  be a language acceptor Turing machine which accepts the same language, and
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always deletes the input from its tape. Although the potential range for this machine 

is different (f m ■ {a, b, c}* —> {a,b,c}*  x {accept, reject}) ,  because of the deleted 

input, the computed functions of a and m can be defined to be identical. In that 

case, a =  m (and consequently a =  m). Now let m! be a Turing machine which also 

accepts a*b*c*, but does not delete its input from the tape. Then a ^ m !  (since there 

is output left on the tape, and the finite automaton produces no output), but a =  m'.

Let Mtmoi be the class of binary Turing machines and MTMabc be the class of 

Turing machines with input alphabet {a , b, c } .  Then Mtmoi ^  AfTMabc> but MtmQi — 

M TMabc-

3.4.3 More computing power

D efin ition  3.14. A machine mi has at least as much computing power as a ma

chine m2, denoted by m\ y  m2, if mi can simulate the function computed by m2 . 

I f m 2 cannot also simulate the function computed by mi (mi ^  m2), mi has more 

computing power than m2 denoted by mi y  m2.

D efin ition  3.15. For two machine classes Mi and M 2, Mi has at least as much 

computing power as M2, denoted by Mi y  M 2, if for every machine m2 in M 2, there 

is some machine m'2 in Mi for which m'2 m2. If Mi y  M 2 and there is some

machine mi in Mi for which no machine m{ exists in M 2 such that m[ y  mi, then 

Mi has more computing power than M 2, denoted by Mi y  M 2.

Intuitively, if Mi y  M2, then for every function which is computed by a machine 

in the class M2, a machine exists in M i capable of simulating that function. If the 

former holds, but there is at least one function computed by a machine in Mi for 

which there is no machine which can simulate it in M 2, then Mi y  M 2. In this sense, 

the class Mi computes a proper superset of the functions computed by machines in
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M 2.

Exam ples

Let niab be a Turing machine using the input alphabet {a, b} which deletes all but the 

first letter of its input word from the tape (if the empty word A is given as input, the 

tape remains empty). Hence f mab : {a, b}* —> {a, b, A}. Let m m  be a Turing machine 

using the input alphabet {1 ,2 ,3 } which counts the number of l ’s in the input word 

and leaves that number (a non-negative integer) on the tape as output. In this case, 

/ mi23 : {1 ,2 ,3 }* - N „ .

Consider the sets I  =  {a, b}*, 0  =  {a, b, A}, / '  =  { { 1 ,1 1 }{2 ,3}*} U A and O' =  

{0 ,1 ,2 }. Define the mappings m(a) =  1, m(b) =  11, m '(a) =  2, m'(b) =  3 and 

¿4 as /j,(x iX2 ■. . xn) =  m{xi)m'{x2) .. .m'(xn). Also define v : O —► O' as

v{a) — 1, u(b) — 2, i/(A) =  0.

Under these mappings, m m  is capable of simulating ra0¡, and therefore m m  h  

mab. However, as the cardinality of r a ^ ’s output set (No) is greater than mab s 

({a, 6, A}), it is impossible to define analogous mappings such that ma¿, could simulate 

m i23- Therefore m i23 >- mab.

For an example with a class of machines, recall Weihrauch’s Type-2 machines 

introduced in Section 2.3.3. Let Mt2 represent the class of all Type-2 machines, and 

Mtm  represent the class of all Turing machines. Then Mt2 >~ Mt m -

3.4.4 Incomparable computing power

D efin ition  3.16. Machines mi and m2 are incomparable, denoted by mi || m2, if 

neither mi y  m2 nor m2 y  mi holds. In other words, neither is capable of simulating 

the function computed by the other.
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D efin ition  3.17. For two machine classes Mi and M 2, the computing power of class 

Mi is incomparable with the computing power o f class M2, if there is some machine 

mi in Mi for  which no machine m[ exists in M 2 such that m[ >z mi and there is 

some machine m2 in M2 for which no machine m'2 exists in Mi such that m'2 m2. 

In this case, the relationship is denoted by Mi || M 2.

In other words, both classes Mi and M 2 contain machines for which there is no 

simulation capable machine in the other class. If this is the case, then we can neither 

say that Mi >z M 2, nor that M 2 ^  M i, and hence Mi and M2 are incomparable.

With the above definitions, partial orders with respect to computing power are 

defined for the computing machines and classes of computing machines.

E xam ples

Consider a machine Mhait which has the following ability: given a binary encoding of 

a Turing machine and its input, Mhait will output 1 if the encoded machine would halt 

on its input and 0 otherwise. Let Uqi be a binary universal Turing machine which 

accepts encodings of machines and input in the same format as Mhait, but simulates 

the execution of the described machine and produces output from the computation 

on its tape. As Mhait only produces output 0 or 1, it is incapable of simulating C/oi’s 

behaviour. Uqi cannot solve the halting problem. Therefore, Mhait 11 Uqi- Note that 

it would be incorrect to call Mhait a “super-Turing” machine since its behaviour is 

incomparable to a Turing machine.

The class of Weihrauch’s Type-2 machines Mt2 (see Section 2.3.3) and the class of 

BOSS machines M bcss (see Section 2.3.3) are incomparable for the following reason. 

Using a machine from Mx2 , one is able to distinguish different representations of equal 

real numbers (for example, the decimal expansions 1.9999... and 2.0). No machine
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in M bcss can do this since the real numbers are represented as units in registers. 

The underlying graph of the machine must be finite, and therefore there is no way to 

represent an infinite sequence. Secondly, in M bcss machines can be defined which 

compute noncontinuous functions, providing the required operations are defined by 

the underlying ring. All functions computed by machines in Mti are continuous. 

Each class contains machines which compute functions no machine in the other class 

can compute, therefore MT2 || Mbcss■

3.5 Summary

In this chapter, problems with the conventional Church-Turing thesis and definition 

of computability were discussed. Clarified definitions for the following terms and 

notions were given:

• “capable of computing”

• “the function computed by”

• “capable of simulating”

• relative computability

• computing power

• the same, equivalent and more computing power

• incomparable computing power

Returning to the idea that computability is a relative notion, I am going to argue 

that the Church-Turing thesis is actually a statement about a class of machines which
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have the same resources, and that instead of the conventional Church-Turing thesis, 

we should consider a relativized thesis. I revisit this idea at the end of Chapter 4.
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Chapter 4

A  Parameterized Meta-model

In preceding chapters, I have advocated a specific definition of a computer as an in

formal model of an information processing device. In this chapter, I present a more 

formal characterization of a computing device as a meta-model which permits one to 

specify and compare computing resources available to different machines. The un

derlying assumption of Chapter 3 is that computing power should be defined relative 

to the capacities of a specific computing model. The meta-model presented in this 

chapter provides a means for capturing the properties of classes of computing devices. 

This meta-model is not intended to be universal in the sense that it can capture the 

characteristics of any computing model. Rather, it is one tool which can be used 

to discuss a certain set of models which can be described within the framework’s 

limitations.

As I argued in Chapter 3, in Section 3.3.2, the computing power of a machine 

is determined by its capabilities, in other words, the functions which it is able to 

compute. What allows one machine or machine model to be more powerful than 

another? The central assumption of this chapter is the following:

The resources available to a computing machine determine its computing
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power.

This statement raises several crucial questions.

1. What is a resource?

2. What set of resources are required to characterize computing machines?

3. Is there a unique set of resources to characterize all computing machines?

4. Do computing machines with the same resources necessarily have the same 

computing power?

5. How do changes in resources affect computing power?

In this chapter, I present one possible set of resources for specifying machine 

models. In Section 4 .41 revisit the above questions in light of the meta-model outlined 

in this chapter.

4.1 Resources

The informal computing model of Chapter 2, Section 2.7, identifies a computer as a 

device satisfying four properties. Briefly stated, these properties are: that the device 

be used for problem solving, that the device accept input and produce output, that 

the input and output be accessible by a user, and that the device be used with the 

intent of computing. To complement this informal definition of computer, I give here 

an informal definition of a resource:

D efin ition  4.1. A resource is a property o f a computing device used in the operation 

o f the machine during computation.
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In other words, the resources of the machine are the capacities we would name 

when describing the specific model. For example, to describe a Turing machine, we 

might begin by saying that a Turing machine is a device equipped with a read/write 

head (resource) and a bi-directional working tape divided into cells (resource), on 

which symbols from a finite tape alphabet (resource) can be written. The description 

of a DNA computer might begin with a collection of DNA double strands (resource) 

composed of nucleotide sequences from the alphabet {A , C, G, T }  (resource) in a 

substrate (resource) at a specific temperature (resource). Further explanation of 

the machines’ respective functionality would include descriptions of a set of possible 

operations (resource) and the type of output produced (resource).

Assuming an informal model of computation, it is not possible within that frame

work to formally identify a complete set of resources. Supposing it were possible 

to formally delineate a set of resources adequate for characterizing the properties of 

any computing machine, and also accepting the assumption stated in this chapter 

that resources determine the computing power of a machine, we would then have a 

formal means of specifying the computing power of any possible computing device. 

As already explained, there is a problem of circularity in attempting to create one 

comprehensive formal computation model, in that the limitations of that model then 

determine a definition of computability. Functions or problems outside the domain of 

that particular formalism are then necessarily uncomputable. This is the precise dif

ficulty with the adoption of the Turing machine or equivalent models as the standard 

model of computation: anything which falls outside the scope of the model is then 

called uncomputable. Simply expanding the formal model changes the problem, but 

does not solve it, as the set of so-called computable functions might be extended, but 

any functions which cannot be expressed within the formal framework will be still be 

a priori classified as uncomputable.
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The presumption of this thesis is therefore that the answer to question 3. “Is 

there a unique set o f resources to characterize all computing machines?” is no, as 

the existence of such a set would imply the possibility of defining a formal universal 

computing model.

To find a correct and complete characterization of resources for computing models 

is perhaps an unattainable goal in general. Consider R. Gregory Taylor’s discussion 

of the problem:

. . .  the models of computation that we have considered in Chapters 1 

through 6 are not physical models in the sense in which an architect’s 

model, say, is a physical model of a proposed building. Rather, they are 

mathematical models. In the typical case, the model of computation in 

question was characterized set-theoretically as the parameterized descrip

tion of a class of abstract machines. For example, the single-tape Turing 

machine model was described as a quintuple (Q, E, T, $)■ Each of 

the five elements is a parameter whose values must satisfy certain re

strictions with respect to the other four. Each choice of five permissible 

values for the parameters amounts to a new Turing machine. The Tur

ing machine model of computation, then, consists of the class of all such 

quintuples. Similarly, the Markov algorithm model of computation may 

be characterized set-theoretically as a class of triples (£ , T, II) satisfying 

certain conditions. The register machine model of computation becomes 

a class of pairs (9£, S ), and Post’s model becomes a class of quintuples 

(E, T, fi, A, II).1

The reader who finds the foregoing characterization of a model of compu

tation less than satisfying is not alone. What would be more fulfilling—but
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is much more difficult to provide— is a set of criteria for deciding which 

features of computational activity wind up as parameters in the first place.

In other words, the set-theoretic model characterization of model of com

putation seems somewhat after the fact, when what is needed is a “ge

netic” account— one that gets at why certain aspects of computation get 

modeled while others are omitted ([108], p. 343).

He goes on to point out that there is a difficulty in choosing criteria for parameters 

for several reasons ([108], p. 343-344):

1. What features we consider essential is “value laden.” In other words, it is 

influenced by the prevailing assumptions regarding the nature of computation 

at a given time.

2. Even for the four examples given by Taylor in the quotation, there are some 

features which are not shared that might be desirable in a general characteriza

tion. For instance, the Post system has no input in the Turing machine sense, 

and Turing machines do not perform pattern matching and string substitution 

in the manner of Markov algorithms.

3. Nondeterminism is exhibited by some models and not others.

Taylor’s conclusion is that finding common features in models will be difficult, and 

that “the most that can be said is that the various models that we have considered 

exhibit certain family resemblances” ([108], p. 344).

Taylor only discusses the difficulties associated with defining a parameter based 

model, but does not supplement his comments by presenting such a model, even an

1The reader is referred to Taylor’s book for the definitions of the tuples appearing in this quotation
[108] ,
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unsatisfactory one. In this chapter, I present a model which addresses some, but 

not all, of the problems identified by Taylor. For the parameterized meta-model 

presented, it is not my intention to claim this as a comprehensive model capable 

of capturing the properties of any possible computing device. Rather, I claim that 

the meta-model provides utility in comparing the computing power of some models. 

In Taylor’s terms, it is useful for models which exhibit “family resemblance” to the 

Turing machine.

4.2 A  parameterized meta-model

The parameters in the model are divided into four categories: machine properties, 

input properties, processing properties and output properties. The type of entities 

which are eligible as values for each parameter varies depending on the nature of the 

parameter. For example, as part of the machine properties, consider the set of states 

in which the machine can exist (type: set; parameter variation: size of the set). The 

parameters identified below are illustrated with the example of a standard Turing 

machine M  =  {Q, E, T, 5, qo, B, F ) as described in Section 2.3.1.

4.2.1 Machine properties

The machine properties define the static properties of the computing device (see 

Table 4.1).
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Param eter T yp e T M  E xam ple
States set Q : finite set
Possible inputs set E*: countably infinite set
Possible data set D  =  {w  | w =  7  • Y }, where 7 , Y  £ 

r*, and • represents the read/write 
head position: countably infinite 
set

Possible opera
tions

set of function schemas { f ( y x j ' , s )  =  ( j z  • Y ,s ' ) , / ( 7  • 
£ 7 ', s) =  (7  • yzj ' ,s ' ) } ,  where 
7 , j '  £ T*, x , y , z  £ F and s, s' £ Q : 
finite set

Halting condition predicate s £ F

Table 4.1: Machine properties

4.2.2 Input properties

The type of input allowed for a machine has a definite impact on its computational 

capacities. For example, consider the following informally described scenario. Take 

a standard universal Turing machine that accepts a binary input word which is in

terpreted as a self-delimiting description of a Turing machine followed by its binary 

input. The UTM halts if and only if the simulated machine halts, and the output 

remaining on the tape in that case is the same as the simulated machine’s output. 

Now modify the UTM in the following way:

• Change the transition rules such that for any word which begins with a leading 

0, the 0 is erased and then computation of the UTM continues as it originally 

would have.

• Change the transitions rules such that the UTM halts and rejects any word 

which begins with a 1.

Now, evidently the modified UTM is still universal since the original inputs can be 

changed to have a leading 0, and then computation proceeds exactly as it had for



110

the initial machine. However, what happens if we restrict the machine such that 

only inputs beginning with 1 are allowed? Clearly we no longer have a universal 

computing device since it halts and rejects all inputs. Hence, the inputs permitted 

for a given machine, and not just the static properties of the machine, are instrumental 

in determining its computing power.

I identify the input parameters in Table 4.2 for computing devices. Again, the 

properties are illustrated with the example of a standard Turing machine M  =  

(Qi r , 5, q0, B, F).

Param eter T y p e T M  Exam ple
Start state item from state set Qo £ Q
Input item from input set w G E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / ( 7 «® y , s) =  ( 7 W ,  s ' ) . . . } ,  or in 
conventional notation, S : Q x F —> 
{L, i? } x T x Q: finite set

Program ordered list of functions N /A

Table 4.2: Input properties

4.2.3 Processing properties

Beyond the static machine properties and the restrictions on input, the operation of 

the machine during processing must be specified. The consideration of this class of 

properties is what occurs during a processing step. In this meta-model, I assume the 

standard view of computation: processing can be divided into well-defined steps, the 

steps are ordered, and the timing of the steps can be determined (Knuth’s properties

2. and 5. o f algorithms— see Section 2.2). (Note, however, that these assumptions 

do not hold for all models called “computers” by the definitions in this thesis.) For 

processing properties, see Table 4.3.
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Param eter T yp e T M  Exam ple
Duration of step function 1: constant
Additional input item from input set N /A

Table 4.3: Processing properties

4.2.4 Output properties

Similarly to the influence that altering the potential inputs has on the computing 

power of a model, the allowed output also alters the possible computations. First, 

observe that according to the definition of computing power (Definition 3.8), a model’s 

computing power is identified with the (partial) function it computes. Immediately 

this definition implies that models with different output possibilities will have dif

ferent computing power. In the case of machines with equivalent rather than equal 

computing power, it is possible to define a mapping between output sets if they have 

the same cardinality.

However, for a user of a computing machine, the potential output is significant. 

Consider the simple example of creating a multiplication machine for finding the 

product of two integers. If we restrict ourselves to a machine which can only ac- 

cept/reject its input, then the only obvious option for encoding the problem is to 

input an ordered triple of integers (the multiplicands and the product), and then to 

check whether the product is correct. Let T  represent the set of all ordered triples 

of integers and {accept, re ject}  to represent the rejection/acceptance of input re

spectively. Then the domain and range of the function computed by the described 

machine is /  : T  —► {accept, re ject}. According to conventional computability theory, 

we would call the multiplication problem computable by an accepting/rejecting uni

versal Turing machine even though the machine is actually only checking the answer.
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The problem that arises is that the ordered triple encoding is not helpful to a 

user who does not know the product in advance. For any given pair of multiplicands, 

there is a corresponding countably infinite number of triples with potential products 

in the third position. Hence, we cannot use the binary output machine to solve the 

problem from the user’s point of view.2

The potential outputs are modelled as a set as shown in Table 4.4.

Param eter T yp e T M  Exam ple
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.4: Output properties

4.3 Meta-model examples

To illustrate the use of the parameterized meta-model, I now give some examples of 

parameters for some common computing models.

4.3.1 Turing machine

The first table (Table 4.5) summarizes the properties for a standard Turing machine 

already stated above.

2 One might argue that since the integers are countable, a user could try all possible triples 
until the correct one is found. There are two possible means to accomplish this: either the user 
is contributing some of the computational logic (by submitting the triples in a determined order), 
or an auxiliary machine is necessary to generate and submit the triples. Either way, the unaided 
binary machine is incapable of supplying the answer to the multiplication problem for integers. The 
machine does not alone have the computing power to solve the problem.
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Param eter T yp e T M  E xam ple
States set Q: finite set
Possible inputs set £*: countably infinite set
Possible data set D  =  {w  | w =  7  • 7 '} ,  where 7 , 7 ' £ 

T*, and • represents the read/write 
head position: countably infinite 
set

Operations set of function schemas { / ( 7  • X'Y, s) =  ( 7 z • 7 ', s'), / ( 7  • 
a r /js ) =  (7  • yz'y', s ')}, where 
7 , 7 ' £ T*, x, y, z £ T and s, s' £ Q: 
finite set

Halting condition predicate s e F
Start state item from state set Qo £ Q
Input item from input set w £ E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / ( 7 * * y ,  s) =  (7 W ,  s ' ) . . . } ,  or in 
conventional notation, ¿ : Q x T - >  
{L, R }  x T x Q: finite set

Program ordered list of functions N /A
Duration of step function 1: constant
Additional input item from input set N /A
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.5: Turing machine parameters

4.3.2 Accelerating Turing machine

In Table 4.6, an accelerating Turing machine [30, 31] is shown. This machine is 

identical to a standard Turing machine, except that each step takes half the processing 

time of the previous step.

The accelerating Turing machine is capable of computing any function over its 

input and output sets in 2 units of time. Hence, we see that a change to only one 

parameter can have a huge impact on computing power.
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P aram eter T ype A ccelerating  T M
States set Q : finite set
Possible inputs set E*: countably infinite set
Possible data set D  — { vj | w =  7  • 7 '} ,  where 7 , 7 ' G 

T*, and • represents the read/write 
head position: countably infinite 
set

Operations set of function schemas { / ( 7  • XT', s) =  ('yz • Y , s'), / ( 7  • 
ary', s) =  (7  • 1/2 7 ', s ')}, where 
7 , 7 ' € r*, x, y, z G r  and s, s' G Q: 
finite set

Halting condition predicate s e  F
Start state item from state set <Zo €  Q
Input item from input set w G E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / ( 7 * z y ,  5) =  (7 W ,  s') • • •}, or in 
conventional notation, 8 : Q x T —> 
{L, R }  x  T x Q : finite set

Program ordered list of functions N /A
Duration of step n function for the nth processing step
Additional input item from input set N /A
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.6: Accelerating Turing machine parameters

4.3.3 Electronic computer

Consider the description of parameters for a desktop electronic computer, with the 

modification that potentially unlimited memory is available (see Table 4.7). 3 4 5 6 7

3 One could argue that variable values constitute the state of the electronic computer. With 
Turing machine as well, we can make a similar trade off between states and data (we know that 
fewer states can be used if more alphabet symbols are used). In the particular characterization of 
the electronic computer presented here, I choose to represent variable values below, as possible data.

4There are a finite number of registers of finite length, and therefore only finitely many value 
combinations are possible.

5Could also be a file input.
6Here I assume a non-interactive program.
7The non-interactive program does not produce any intermediate output.
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Param eter T y p e E lectron ic com puter
States set register values:3finite set4
Possible inputs set any binary string of finite length: 

countably infinite set
Possible data set UmeNoi0»1) 8™ where m  is the 

number of used memory cells (as
suming a cell size of one byte): 
countably infinite set

Operations set of function schemas machine language instruction set: 
finite set

Halting condition predicate program terminated?
Start state item from state set initial register values
Input item from input set particular binary string of finite 

length5
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
machine language instruction set: 
finite set

Program ordered list of functions finite length sequence of instruc
tions

Duration of step function 1: constant
Additional input item from input set ~WJÂ*
Intermediate out
puts

set N /A y

Final output set any binary string of finite length: 
countably infinite set

Table 4.7: Electronic computer parameters

4.4 Discussion of meta-model properties

I now return to the questions posed at the beginning of this chapter.

1. What is a resource?

2. What set of resources are required to characterize computing machines?

3. Is there a unique set of resources to characterize all computing machines?

4. Do computing machines with the same resources necessarily have the same 

computing power?
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5. How do changes in resources affect computing power?

Question 1 was answered in Section 4.1. The parameterized meta-model provides 

one possible answer to Question 2. That the set of proposed parameters is reasonable 

is illustrated through their utility in capturing the properties of the examples in 

Section 4.3. Question 3 was answered negatively in light of definitions in this thesis 

in Section 4.1.

Turning now to Question 4, the answer is trivially “yes” when considering the 

parameterized meta-model. Machines which have exactly the same parameters will 

be indistinguishable, and thus have the same computing power. I therefore ask a 

modified question:

4'. Do computing machines with equivalent resources have equivalent computing power?

The definition of equivalent computing power is as it is given in Chapter 3, Defini

tion 3.13: Two machine classes M\ and M 2 have equivalent computing power, denoted 

by Mi =  M 2, if for every machine in M i, there is some machine m[ in M2 for 

which mi =  m'i, and for every machine m2 in M2, there is some machine m'2 in M\ 

for which m2 =  m'2.

For resources, the definition of equivalence is stated in terms of the size of the sets 

or items which characterize the resource.8

D efin ition  4.2. A resource is equivalent to another resource if the resources are 

subject to the same restrictions:

• I f the two resources are sets, it is possible to define a bijection between them 

(the sets are the same size).

8A  characterization in terms of energy has also been proposed, however, it is not as immediately 
applicable in the present discussion (see [65]).
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• I f the resources are single items, the items are either both finite length, or both 

infinite length.

• I f  the resource is a function, then the functions should have the same growth 

rate (as defined by their order in big-Q notation).

• I f a particular resource is not used in the model ( “N/A” in the examples), then 

for equivalence that particular resource should be unused in the other model as 

well.

Consider again the description of parameters for a desktop electronic computer 

(see Table 4.7). Let Mtm  denote the class of Turing machines designated by the 

parameters in Table 4.5. Let Mec denote the class of electronic computers designated 

by the parameters in the above table. Now, we would like to determine whether 

Mtm  =  Me c ■ In order to do this, according to the definition it must be shown 

that for every machine mtm in Mt m , there is some machine m'tm in Mec f°r which 

mtm =  m'tm, and for every machine mec in M e c , there is some machine m'ec in MTm 

for which mec =  m'ec. One means of achieving the above would be to show that 

for any Turing machine, there exists an electronic computer which can simulate the 

behaviour of that Turing machine, and vice-versa. This is well-known to be true. An 

example of a simulation argument can be found in Hopcroft, Motwani and Ullman’s 

introductory textbook ([63], p. 355-363).

Returning now to the above characterization of an electronic computer, consider 

the following modification. As a computer’s program resides in memory, the program 

can be regarded as data. As justification for this claim, recall the standard instruction 

execution cycle (see for example [11], p. 81-82).

1. The instruction to which the program counter currently refers is loaded from 

memory into the instruction register.
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2. If the instruction terminates the program, execution is ended.

3. Otherwise, depending on the instruction, any necessary data is fetched from 

memory into temporary registers.

4. The instruction is executed on the relevant data in registers (if applicable).

5. The result is returned to memory from registers (if applicable).

6 . The program counter is updated to the next instruction location.

If we regard one execution of the entire instruction cycle as a single computation 

step, then following one iteration we have a state change (change of instruction reg

ister value, and possible change of other register values), and a possible data change 

(alteration of memory data, if applicable). Therefore, we can amend the following 

parameter values (see Table 4.8):

P aram eter T y p e E lectron ic com p u ter
Input item from input set program and particular binary 

string of finite length
Program ordered list of functions N /A

Table 4.8: Modified electronic computer parameters

The parameter values for the two models are now equivalent in the sense defined 

above. For instance, they both have a finite state set, a finite input string taken from 

a countably infinite set of potential inputs, and a constant function for duration of a 

single computation step.

Turing’s original definition of the a-machine, and its motivation as a model of 

the calculation done by a human “computer,” has constrained the models which 

we potentially define as computers. Our acceptance of the precise definition of an
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algorithm as given by Knuth and others has further reinforced the plausibility of the 

set of restrictions we place on a model in order to call it a model of computation. It 

is my belief that the reason the conventional Church-Turing thesis appears to hold 

is that models with the equivalent resources will have equivalent computing power, 

and hence limiting ourselves to the constraints of the conventional definition of a 

computer never results in a model with computing power beyond that of a Turing 

machine. Based on this hypothesis, and as an answer to question 4', I therefore 

present the following hypothesis:

H ypoth esis 4.1. The relativized Church-Turing thesis Computing models with 

equivalent resources have equivalent computing power.

Note that in the case of Turing computability, a proof that any computing model 

which satisfies the restrictions of an algorithm is equivalent to a Turing machine would 

constitute a proof of the broad Church-Turing thesis (provided that we accept that the 

informal notion of effective calculability is captured by the definition of algorithm). 

A proof of the above hypothesis would be a far more general result covering not only 

Turing-equivalent models, but all other definable computing models.

The final question is:

5. How do changes in resources affect computing power?

Intuitively, adding more of a resource can potentially increase the computing power 

of a model. That an increase in computing power is effected by the addition of 

resources is not necessarily the case; consider for example adding any finite number 

of extra heads or tapes to a Turing machine. However, there seem to be threshold 

values beyond which the addition of resources does have an effect on computing power.

In anticipation of the connection with Cantor’s continuum hypothesis drawn in 

Chapter 6 of this thesis, I observe that these values tend to be important in their
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effects on computing power:

• none

• one

• finitely many

• countably infinitely many

• uncountably infinitely many

For example, a Moore machine is more powerful than a finite automaton since 

it can produce some output rather than none (none to one); a one stack machine 

cannot simulate a Turing machine but a two stack machine can (one to finitely many); 

allowing countably infinite input lengths as in Weihrauch’s Type-2 machine makes it 

more powerful than a Turing machine (finitely many to countably infinitely many); 

and permitting input from a real ring rather than an integer ring causes a jump in 

computing power for the BCSS model (countably to uncountably infinite).
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Chapter 5

Encodings and Labels

In Chapter 1, I argued that computer science should be more than a purely formalist 

discipline. The purpose of computing is to solve problems which can be represented 

in a computational way. To illustrate, consider computation by a binary Turing 

machine. Let B =  {0 ,1 } be the binary alphabet under discussion, and the input 

and output to the problem be represented by binary strings. In order to claim that 

a binary Turing machine M  solves problem P , the following requirements must be 

fulfilled:

1. There is an effective encoding1 of the problem P  in the domain of M . That is, 

P  can be translated into a binary function f  : B —> B.

2. The Turing machine M  is capable of computing the function / .

3. There is an effective decoding of the output from M  into the problem domain, 

such that the decoded output is the problem solution.

1We can specify restrictions on an encoding, for example, that it be computable using a specific 
model, or within a certain complexity class. These issues will be explored later in this chapter. For 
now, I intend simply by “effective” that the encoding exists, and there is some means of performing 
it.
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Requirements 1.-3. can be summarized for a specific problem instance p e  P  by this 

transformation:

where p  is a problem instance in the problem domain, a  is the encoding, p' is a binary 

representation of p (the Turing machine input), /  is the function computed by the 

Turing machine, s' is the machine output, (3 is the decoding and s is the solution in 

the problem domain.

It turns out that a much more careful analysis must be done in order to claim 

that a machine solves a problem. That analysis is one purpose of this chapter. The 

above transformation is revisited in Section 5.2. The other aim of this chapter is to 

explore the idea of machine descriptions as labels for functions. A specific labelling 

function is defined, and then it is shown that that any enumerable set with countably 

infinitely many elements is adequate for labelling the Turing-computable functions. 

Interpretations of encodings are discussed, and an analysis of the impact of changing 

encodings is done. Finally, based on subtleties of encodings, a definition of what it 

means for a machine (possibly encoded) to have sufficient power to solve a problem 

is given.

5.1 Machine descriptions as function labels

When claiming that a machine can solve a problem, we need to refer to the machine 

in some way. There are three possibilities:

1. The machine is an animate, physical device which is present.

2. We have a formal description of the machine, but no physical device (for exam

ple, a 7-tuple specifying a Turing machine).



123

3. We have an encoding of the formal description (for instance, a self-delimiting 

description of a Turing machine which can be given as input to a universal 

Turing machine).

These possibilities are ordered by the readiness with which the machines can be used 

as problem solving devices. In the first case, the physical machine can be directly 

used. In the second case, a human or other meta-machine is necessary to actually 

execute the required computation with the formal model. The formal description plus 

the executor can be regarded as an animate machine (an instance of the first case). 

In the third case, the description must first be decoded, and then the same process 

as for the second case must be used. The comments in this section refer to the third 

possibility: a representation of a machine model is a finite string of symbols which is 

an encoding of a formal machine model.

Unless otherwise noted, discussion in this chapter refers to machines which have 

a finite description, and which compute a function from a specific domain and range. 

Neither of these two restrictions is required by the general definition of “computer” 

given in this thesis. However, these are restrictions associated with the conventional 

definition of computer and computability. As was the case in Chapter 4 for the 

parameterized meta-model, the utility of the observations made in this chapter for 

the applicable class of computing devices is not diminished because the observations 

do not apply to all computers.

5.1.1 Enumerations of encodings

Consider a specific finite string encoding of a computer. We choose to interpret the 

string of symbols as a machine model, and furthermore, to interpret that machine 

model as a representation of a function. Thus the encoded machine model is a label
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for a function. Furthermore, a machine model and the input to that machine model 

is a label for a specific function evaluation on a domain element yielding a value from 

the range.

In the case of Turing machines, and those models equivalent to Turing machines, 

we know that the complete set of machines is enumerable. By enumerable, I mean 

that it is possible to produce an ordered list of strings which represent all the definable 

Turing machines. One example of such an enumeration would be a list of all Godel 

numbers of possible Turing machines. Let S =  {e i, e%,. . . }  be an enumeration of 

a set of encodings of all Turing machines, and let e* represent the ith element in the 

enumeration. This enumeration does not have the requirement that it be recursive 

as an acceptable Godel numbering does— any enumeration for which some decoding 

exists is allowed. Then we see that with a fixed enumeration, each Turing-computable 

function can be associated with a unique natural number i.

O bservation  1 . The shortest description of any given Turing-computable function 

is the same as that o f any other, and is precisely one natural number.

This observation also leads us to the well-known conclusion that the set of natural 

numbers, No, is a sufficient description of the set of Turing-computable functions— 

provided that there is an established decoding mechanism. This observation is stated 

here explicitly to emphasize the idea that there is a trade-off between succinctness of 

the description of a machine and the amount of decoding which is required to use the 

machine to perform a computation. The closer the description of a machine is to a 

usable problem solving device, the easier it is for a user to employ it. In the case that 

the function is described by one integer, it is up to the person or entity performing 

the computation to determine which machine is indicated by the enumeration, how 

that machine should be decoded, and also to understand what the decoding means
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(i.e. how the decoded machine operates as a problem solving device). It is much more 

difficult to use “31” as a computer than it is to use a seven-tuple of a Turing machine, 

but that does not mean that “31” is not a sufficient description provided that one has 

all the details to decode it. This sort of encoding trick is prevalent in the literature 

on small universal Turing machines (see, for example, [84]).

This leads to the next observation.

O bservation  2 . Any set for which a bijection to No can be defined can also be used 

as a description o f the Hiring-computable functions.

More formally, let ¿ : S  —»• M  be a mapping from string encodings to descriptions 

of machines. The elements of S  depend on the choice of symbols for the encoding, 

and the content of set M  depends on the desired machine description. In the present 

example, ¿(e) is an effective decoding of the string e into a formal description of 

a Turing machine. In the case that the desired decoding of a string e is as input 

for a universal Turing machine, the result of ¿(e) might be a self-delimiting string 

containing the necessary information for the UTM to simulate the execution of the 

machine. As a third example, consider the case that a human decodes e and draws 

a graph of the transition function of the machine. The point is that the result of 

applying ¿ to a string encoding results in a description of a machine which can be 

used for the purpose for which it was decoded. Then for the enumeration £  of Turing 

machines, Mi G No, ¿(e )̂ is an interpretation of e* as the ith Turing machine. Now 

consider a set A  such that a bijection /  : No —> A  exists. Then Vo G A, a identifies 

the unique Turing machine ¿(e/-i(a)).

I will use the notation £ (M )  to denote the function labelled by machine M,  and 

£ (M , i) to denote the function evaluation labelled by the execution of the machine 

M  on input i. In other words, C : M  —> T  is a mapping from machine descriptions
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to functions, and £ : M x I —̂ ( F x I x O  is a mapping from machine descriptions 

and their input values to triples of functions, domain elements, and range elements 

such that £ (M , i )  =  (f , i , o ) if and only if (£ (M )) ( i )  =  o (where I  is the allowable 

input set for machines in A4, I  and O are the domain and range of the labelled 

function, and i G I, o G O). In the case that the machine is described by a string e, 

the interpretation of the string must also be included: £(t(e))  denotes the function 

labelled by description e under interpretation ¿ and £( i (e ) , i )  denotes the function 

value labelled by the execution of the machine ¿(e) on input i.

Example

As a concrete example, consider a Turing machine Mxi which can be used to compute 

the square of a natural number n G %  Let the input and output alphabets of M  be 

E =  T =  {0 ,1 ,2 ,3 ,4 , 5 ,6 , 7 , 8 ,9 }  respectively. The boldface type distinguishes the 

symbols { 0 , 1 , 2 , . . . }  from natural numbers {0 ,1 ,2 , . . . } .  The domain of the square 

computing problem can be encoded into the input alphabet of Mxi with the encoding 

«  as follows. For single digits, « (0 ) =  0, « (1 ) =  1 , . . . ,  « (9 ) =  9. For larger numbers 

.z G No, find a(z) =  xn-iX n- 2 ■ ■ - Xq for \ log\Qz\ >  i >  0 by Xi =  ot((z mod 10i+1 )/10l) 

(where /  is integer division and mod is integer modulus). For example, «(347) =  

347.

To convert the output from Mxz back to a natural number, the decoding (3 can 

be defined as follows. For a word w =  x n-\xn-.2 . . .  x0 G T* of length n, let (3(w) =  

&~l (xi) * 10*. Any leading 0 ’s in w are ignored, which means that i actually 

maps equivalence classes of words to single natural numbers from No- For example, 

(3(123) =  /?(000123) =  123.

Now, supposing Mx2 correctly solves the natural number squaring problem, then 

given a string encoding (via « )  of a natural number, it will produce a string encoding of
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that number’s square (which can be decoded via ¡3). This is expressed as £ (M X2) =  f x2 

where f x2 : No —► No is defined by f ( x )  =  x 2. The Turing machine Mx2 is a label for 

the natural number squaring function, f x2.

When M X2 is apphed to a particular input string w, an application of the squar

ing function to a element in its domain is labelled. Consider input string 017, on 

which M x2 would produce output string 289. Using labelling notation, we write 

£ { M X2,017) =  ( fx2, 17,289) to explain that on input 017, the computation per

formed by M x2 represents the mapping of 17 to its square, 289, via the function

fx2 •

5.1.2 Labels and computability

The existence of Turing-uncomputable functions can by explained by observing that 

there are not enough labels for all possible functions. To simplify the discussion, 

consider, without loss of generality, the set o f all (partial) functions on the natural 

numbers No, denoted by N. The following is well-known, and is a consequence of the 

enumerability of Turing machines.

O bservation  3. \N\ =  2 N° . 2

For a given enumeration £  of Turing machines, a countably infinite subset of

functions is “picked out” of N  by those labels. As K0 <  \N\ it is impossible to

simultaneously label all the functions in N.

However, note that the set of labelled functions is not fixed. By changing the

interpretation of the label, a different function can be associated with that label.

Consider for example, a string encoding of a standard 7-tuple description of a Turing

2No denotes the cardinality of No, and 2**° denotes the cardinality of the set of all subsets of No- 
This is revisited in detail in Chapter 6.
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machine: M  =  (Q, E, F, 5, qQ, B, F ) (see Section 2.3.1 for the formal definition of a 

Turing machine). This string encoding will contain a representation of F  C Q, the 

set o f final states of the Turing machine. Without altering the string, change the 

interpretation such that the part of the string which formerly represented F  now 

represents the set of non-final states.

As a concrete example, let i  be a string encoding of a binary Turing machine 

accepting E* with exactly one state which is both the start state and a final state. 

Assume that the behaviour of the machine is such that it halts and accepts its input 

if it enters a final state, and halts and rejects its input if an undefined transition 

function value is encountered. Then the first interpretation of x  is given by (x) =  

( { g o } , {0 , l } , { 0 ,  l ,S } ,d ,q 0,S , { g 0})  with % o,0) =  {go, 0, R},5{q0, 1) =  {q0, l , R } .  

Under the new interpretation ¿2> ¿2 (2 ) =  ({go}, {0 ,1 }, {0 ,1, B},  5, qo, B, 0) with 5 

given by S(q0, 0) =  {q0,Q, R},5(q0, l )  =  {QoA , R } -  Then C{li{x)) =  with / i ( i )  =  

(i, accept) (accepts all strings without altering the tape contents) and C {l2 (2;)) =  f*i 

with f f i i )  =  (i, reject) (rejects all strings without altering the tape contents).

The idea of labels becomes even more interesting when one considers a universal 

Turing machine. Let U represent a specific binary UTM, for example, the UTM 

specified in Section 3.3.3. As previously specified, let its behaviour be such that U 

halts on input (M ',i') (an encoding of machine M  and input i) if and only if M  

would halt on i, and runs forever otherwise. The UTM computes one partial function 

fu  : B —» B, which we interpret as representations of all possible Turing machines 

and their inputs and outputs.

Now recall the unary addition function described in Section 3.2.1. Let Mû add 

be a Turing machine which computes the unary addition function. That is, let the 

encoding a  map each problem instance (m, n) onto a binary string l m0 1 n, and the 

decoding (3 map strings of the form l x onto x. In order to claim that Mu_acw computes
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fu-add, it should produce the output l m+n on its tape if and only if it is given the 

input l m0 1 n, and run forever on other inputs.

As U is a universal Turing machine, it is capable of simulating the behaviour of 

Mu-add. Consider a specific input string: i =  111011. When given {M'u_add,i') (the 

encodings of Mu-add and i) as input, U should halt and produce o', the encoding 

of 11111 as output. In other words, C(M'u_add,i') =  { fu-add, (111, 11), 11111). 

Consider now the function f f  which is identical to fu, except for the value of fu(i') 

which, instead of 11111, will be undefined. There is a Turing machine U* which 

computes ff\  we can add states and functionality to fu  such that the input is first 

read without alteration, and then if it is {M'u_aiid,i'), the machine enters an infinite 

loop, but otherwise, it returns to the beginning of the input and then behaves exactly 

as U does.

We now have a specific instance of a function which U* cannot directly compute: 

the original function computed by U, fu  (that is, U* is not capable of computing fu  

in the sense of Definition 3.3). U* also cannot directly simulate every other Turing 

machine, since it cannot directly simulate Mu- add■ The word directly is essential since 

there is still a possible encoding of the unary addition problem. As U is universal, it 

can simulate itself.3 Let U' be the encoding of U in the format to be used as input for 

U (the original UTM). Then, giving the input ([/', {M'u_add, i')') to U* will produce 

the output o', the encoding of 11111. This “trick” of using U* to simulate U can 

also be used to argue that fu  is still computable by U*.

However, it would be incorrect to imply that since there is a means of produc

ing the correct output for (M'u__add) i'), there is no difference in the computational 

capabilities of U and U*. The user of U* who wishes to find the result of Mu-add's 

computation on i now must do extra work to encode not only Mu- add and i, but

3Of course, U  can also simulate every other universal Turing machine.
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also to encode U. Taken to the extreme, recall that No is a sufficient description of 

the Turing-computable functions. The “user” of a machine described by a natural 

number i must first determine which string in the enumeration e* e  S is referenced 

by i, then interpret it (find ¿(e*)), and finally perform the computation. Disregarding 

these extra steps performed by the user hides some of the time complexity of the 

computation, and might even affect whether the problem is computable by a given 

model as explained in Section 5.2.

5.1.3 Duplication of labels

When considering simulation of function computation, it is easy to imagine multiple 

machines which can simulate the computation of a given Turing machine— simply 

change the input alphabet, and define an appropriate translation. However, a point 

which is not as apparent is that there are also multiple machines which compute 

exactly the same function as any given Turing machine.

Pick a specific Turing machine M f which computes the function / ,  that is, C{Mf)  =  

/ .  Suppose, without loss of generality, that M /s  read head begins at the left-most 

input symbol. From Mf,  create a new machine M j  which reads the input word from 

left to right, and then returns to the left-most symbol, without changing the original 

input. Following this input reading, M j ’s computation proceeds exactly a s M /s  does, 

and hence M f(i ) =  Mj(i)  for all i in the domain of / .  The same principle can be 

used to build M f  for all n G No, machines which read their input n times, before 

completing the computation as M f  would.4 This leads to the following well-known 

statement.

T h eorem  5.1. In any complete enumeration of Turing machines, if there is one

4In the case of A as input, M f  could perforin n  state changes before completing the computation.
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machine capable of computing a function f , then there are countably infinitely many.

Proof. Using the above construction, if one machine M f appears in the enumeration, 

then so do all the machines M f, n G N0. □

C orollary  5.2. There are countably infinitely many labels for every Turing-computable 

function.

C orollary  5.3. Every language accepted by a Turing machine is accepted by countably 

infinitely many Turing machines.

C orollary  5.4. For a property p o f a Turing-computable language, if there is one 

Turing machine M  whose language L(M) satisfies the property p(L(M))  =  true, there 

are countably infinitely many Turing machines Mi,i  G N such thatp(L(Mi)) =  true.

Of course, in all four of the above cases, there are many other Turing machines 

which are capable of computing /  (which label / ,  accept the same language as M f, or 

whose language satisfies p, respectively). The generation scheme for Turing machines 

I have outlined here shows that Ko (countably infinitely many) is a lower bound for 

the number in each case. As the total number of Turing machines is also bounded by 

No> the number is precisely N0.

To summarize, the purpose of this section was to emphasize the point that from a 

purely formal standpoint, there is nothing special about particular machine descrip

tions beyond their purpose as labels for functions. The integers, or any enumerable 

set is an adequate set of labels for the Turing-computable functions. Labelling is not 

fixed— by changing an interpretation, different functions can be associated with the 

same label.
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5.2 Encodings revisited

I return now to the transformation describing the solving of a problem P  by a machine 

M  from the beginning of the chapter. In this section, it will be further analysed and 

stated more precisely taking into account all the encodings which must occur.

The simple encoding/decoding:

V
f s

for computing the solution to a problem instance presented earlier in this chapter must 

be expanded to include the encoding/decoding of the machine. For a description e 

of a machine, and an interpretation ¿, ¿(e) is the machine described by e. In order 

for ¿(e) to be appropriate for solving p, it must be the case that C(i{e)) =  / ,  which 

depends on both e and t. How do we find ¿(e)? The interpretation of e could be done 

by a human, or by a machine. Let M L denote this entity, and let its behaviour be 

such that M l produces output ¿(e) on input e for all e on which ¿(e) is defined. The 

decoding of e is shown by:

e M e

Once the machine is decoded, we can use it to compute the function value for the 

desired problem instance:

V
0

* S

However, there are still steps hidden in the above transformation. A human or ma

chine entity is required to perform a  and (3. Let these entities be represented by 

Ma and Mp respectively. Note that whether one, two, or three different entities are 

required for M a, Mp and Me is dependent on the pairwise intersections of the input

sets.
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Returning now to the computation of a problem solution, the transformation can 

again be updated:

V
M0
------► S

If the input sets for Ma and Me have a non-empty intersection, then only if Ma 

and M e have the same output values for all the intersecting inputs could M a =  Me 

(and analogously for Me and Mp). This is a consequence of Lemma 3.1. The more 

typical case would be that three different entities would be necessary for the complete 

transformation. There is an exceptional case in which the problem p is the identity 

mapping with no domain change. In that case M e, Ma and Mp could all be machines 

for which the input is the same as the output in all cases.

To make the claim that a problem P  is computable by a machine described by a 

string e, all the translation steps must be taken into account. That is, the machine 

Me decoded via l from e must satisfy all the following inequalities:5

M e h  M l 

Me b  Ma 

M e h  Mp

5.2.1 Coordinating entity

There is one further point which is almost always ignored in the conventional lit

erature. In the case of inanimate models, the execution of the machine simulation 

must be done by some entity. When I have e, p, M t, Ma, Mp and I want to find s, 

someone or something must perform the computation of M L on e, Ma on p and so on.

5This analysis ignores time and space complexity. To claim that the machine described by e is 
capable of computing P  within a complexity class C ,  for example, M e would be required to compute 
¿, a  and ¡3 within C  as well.
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This entity must also use each of the machines in the correct order, and pass input 

and output along to each of them as required. I will call this the coordinating entity 

and denote it by M e- M e  is capable of taking a problem instance expressed in the 

problem domain and the encoding of a machine for solving the problem, and produce 

a solution from the problem domain. In order to be able to do this, it must satisfy 

the following requirements:

1. The input set Imc f°r M e  must include the input to Ma and the input to ML: 

1Me 2  I  Ma U Iml ■

2. The working language (what symbols M e  is able to process), must include all 

the input and output sets of the component machines, in addition to the symbols 

used in the machine descriptions: W c  2  iMa U Iml U Ims U Im0 U Om* U Oml U

Omb U Om0 ■

3. The output set Omc for M e  must include the output from M$\ Omc 2  Om/3-

The final requirement to claim that problem P  is computable by a machine de

scribed by a string e is that

M e is capable of computing the function computed by M e

It would be insufficient to require that Me be capable of simulating the function com

puted by M e, or in other words that M e >z M e, because additional encoding/decoding 

would be hidden in the simulation. At some point, it is actually necessary to have a 

machine or device, the coordinating entity, which can directly communicate with all 

the other machines, without domain translations.

There is one circularity which cannot be avoided, and that is the requirement that 

Me be capable of computing M t(e), in other words, that it be capable of decoding
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its own encoding. One could require that Me not be encoded in any way, but this 

restriction would mean that the only machines powerful enough to compute any 

functions at all would be those in the first category from the beginning of this chapter: 

the machine is an animate, physical device which is present. This restriction would 

be unreasonable since computability theory is, after all, a discipline concerned with 

formal models. Therefore instead, if a machine is presented in an encoded form, 

only if the machine is capable of decoding its own encoding is it deemed sufficiently 

powerful to solve the problem in question.

5.2.2 Sufficient power

Finally, a definition concerning power necessary to compute a problem solution can 

be stated.

D efin ition  5.1. An encoding o f a machine e has sufficient power to solve problem p 

if all the following hold:

(i) Me, M t , Ma, Mg and M e can be specified according to the requirements outlined 

in this chapter.

(a) M e y  m l .

(in) M e >z Ma.

(iv) Me y  Mg.

(v) M e is capable o f computing the function computed by M e-

An an illustration, consider the example of the problem p+ of addition of natural 

numbers. This problem is denoted by function / + , and has No as domain and range. 

Let e+ be the Godel number of a binary machine M + which is capable of simulating
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this function. To determine whether there is a Turing machine with sufficient power 

to solve p+ we would need to be able to define Turing machines for the following 

problems:

• M l decodes e+ into M+.

• Ma translates natural numbers into binary inputs.

• M + simulates /+ .

• M /3 translates binary outputs into natural numbers.

• M e  can be defined to use all the above machines to compute /+ .

Without giving specifics of the machines, it should be evident that there are Turing 

machines which can perform all the required tasks. M e  will have binary and digits 0 

to 9 in its tape alphabet, in addition to extra symbols for representing machines and 

keeping track of inputs and outputs. We can therefore say that there exists a Turing 

machine with sufficient power to solve the “addition of natural numbers” problem.

On the other hand, it is very important to note that, for example, a binary uni

versal Turing machine does not have sufficient power to solve this problem. Although 

it is capable of simulating /+  (according to Definition 3.6), it would need additional 

resources to actually solve the problem directly. With respect to the above example, 

the binary universal Turing machine could be used in place of M+, but not in place 

of any of the other machines in the example.

There is one other subtle point which must be made concerning interpretations. 

Suppose a problem P  is expressed in some kind of notation, formal or otherwise. 

Consider again the problem of addition of natural numbers. This problem can be 

phrased as “Given natural numbers x  and y, find 2  such that x  +  y =  z," or in terms
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of functions, “Define / + : No x No -> No with f+ (x , y ) =  x  +  y ” What are x ,y  

and z? A formalist would not ascribe any further meaning to the symbols beyond 

their function in mathematical expressions. However, most people concerned with 

problem solving intend more than that with mathematical expressions— x , y and 

z represent natural numbers (entities which exist in a Platonic sense). A natural 

number has a magnitude, and the problem is to find the result of adding the two 

magnitudes. I opened this chapter with the statement that “computer science should 

be more than a purely formalist discipline.” In other words, the symbols involved 

in a computation have semantics beyond their function as machine input, data or 

output. Attributing meaning to those symbols is a step which cannot be formally 

modelled. The association between a symbolic representation and the intuitive idea 

of a problem can not be computed in a formal sense.

In this chapter, I presented the idea of machines as labels for functions, dis

cussed the number of possible labellings, analysed encoding and decoding necessary 

for problem solving, and provided a definition of the notion of sufficient power to 

solve a problem.

There are two main points which arise out of the discussions in this chapter:

1. Computational “work” can be shifted from the computing machine to the user 

of a computer by hiding complexity in the encoding of the machine and data. A 

precise analysis of the power of a model requires the encoding/decoding details 

to be explicitly analysed.

2. Any set which can be put in a bijection with the integers can be used as a 

description of the set of Turing-computable functions. There is nothing special 

about a Turing machine as a label for a function— it is simply a finite description 

of a particular function. Other finite descriptions can be readily substituted.
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Chapter 6

Cardinalities, Computability and 

the Continuum Hypothesis

In this chapter, I develop some results concerning the relationship the continuum 

hypothesis (CH) and Turing computability.1 The properties of Turing-computability 

which serve as the basis for the observations I make are that Turing-computability 

refers solely to computation over finite input sets, and the so-called “computable lan

guages” (and the “uncomputable” ones) are all finite or countably infinite. Therefore, 

the cardinality of the sets and languages involved in Turing computations are all de

scribed by Cantor’s Ho- On the other hand, some of the “super-Turing” computation 

models I described in Chapter 2 such as Abramson’s extended Turing machines [7] 

and Weihrauch’s Type-2 machines [118] can describe computations over sets with the 

same cardinality as the real numbers. Cantor’s continuum hypothesis addresses the 

question of where in the hierarchy of cardinals the integers and the real numbers

1 Thanks to Jamie Andrews for asking the question “Does this talk have anything to do with the 
continuum hypothesis?” about a talk I gave which actually had nothing to do with the continuum 
hypothesis. His question inspired my curiosity on the relationship between the subjects in the title 
of this chapter.
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fall; here I consider how results and speculation about the veracity of the continuum 

hypothesis inform discussion about computable functions and vice-versa.

As is well known, Cantor’s diagonal argument for proving the uncountability of 

the real numbers transfers easily to prove the existence of Turing-uncomputable func

tions. In this chapter, I explore the proof method based on sizes of sets which I call 

“counting-based” proofs. I repeat some known results and introduce some new results 

with this technique.

The discussion in this chapter is essential to one of the concluding claims of this 

thesis:

The existence o f Turing-uncomputable functions is fundamentally related to the 

cardinality o f sets, and has little to do with the uncomputable functions themselves.

This idea is elaborated in the conclusion (Chapter 7).

6.1 Prior work

Given the obvious connections between finite and infinite structures and computabil

ity, there have been many researchers who have remarked on possible implications of 

the continuum hypothesis in computability theory. In his 1939 work [110], Turing in

cludes a section titled “The continuum hypothesis. A digression” in which he explores 

the idea of using ordinal logic to reason about constructive analogues of the continuum 

hypothesis. Kleene’s exploration of recursive functionals and higher types constituted 

an extension of recursive function theory over integers to sets with higher cardinali

ties [73]. Functionals are important for defining notions such as constructibility and 

enumerability to sets with cardinality greater than K0 ([96], p. 366).

In this chapter, I summarize Cantor’s principal findings related to large cardinals 

and the continuum hypothesis. I then discuss a paper by Godel on the topic of the
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continuum hypothesis. I draw analogies between his arguments concerning the re

lationship between the continuum hypothesis and the axioms of set theory and my 

assertions about Turing uncomputability and the algorithmic conception of comput

ing. Finally I present a few known and new computability-related theorems using a 

proof technique based on the sizes of sets ( “counting-based proofs” ).

6.2 Notation

Let N =  { 1 ,2 ,3 , . . . }  denote the set of natural numbers, No the set of natural numbers 

including 0, Z  the set of integers (numbers in No and their negations), <Q> the set of 

rational numbers, and R  the set of real numbers.

For a set A, let \A\ denote its cardinality (the number of items in the set). 2A 

will denote the powerset of A, or the set o f all subsets of A. Note that if A  is finite, 

the cardinality of 2A is \2A\ =  2 ^ . A countably infinite set can be put into one-to- 

one correspondence with the natural numbers, and but an uncountably cannot (for 

example, the set of real numbers).

For infinite sets, No is the first infinite cardinal number. No is the cardinality of 

countably infinite sets, and so No =  |N| =  |No| =  |Z| =  |Q|. Higher cardinalities 

are represented by Ni ,N2, . . .  as dicussed later in this chapter. Analogous to the 

case for finite sets, let 2Hx represent the cardinality of the set of all subsets of a set 

with cardinality N̂ . Let c represent the cardinality of the set of real numbers (the 

continuum), that is, c =  |R|.

The rules of cardinal arithmetic needed in this chapter are listed below [62, 44]. Let 

A  and B  be arbitrary infinite sets with cardinalities a  =  |A| and ¡3 =  \B\ respectively. 

Let 7  be an infinite cardinal with 7  <  a.

• a +  (3 =  | A  U B\
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•  a +  7 =  a

• a *  7 =  a

• a +  n =  a  for n € No

• a  * n =  a  for n e  No

• a  +  a — a

• a  * a  =  a

In this chapter, I assume standard Zermelo-Fraenkel set theory, with the axiom 

of choice (abbreviated ZFC) and the well-ordering theorem (see [62] for a summary 

of axioms).

6.3 Cantor’s results

Between 1874 and 1884, Georg Cantor published a series of seminal papers concerning 

sets and infinity. These were comprised of several self-contained articles, and a series 

of six papers entitled Uber unendliche lineare Punktmannigfaltigkeiten (On infinite, 

linear point manifolds).2

Cantor’s results and definitions from those papers which are relevant to this Chap

ter are the following:

• Proof that the cardinality of the algebraic numbers (and consequently, that

of the rationals and integers) is strictly less than the cardinality of the reals

2For an analysis of the chronology of Cantor’s discoveries and their historical significance, see 
Joseph Warren Dauben’s biography and historical bibliography of Cantor and his work on the infinite 
[38].
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(|Q| <  |M|) [19]. Although Cantor did not yet use this terminology, we now say 

that he proved that the reals are not countably infinite.3,4

• Method for comparing sizes of sets: two sets have equal cardinality ( “Mächtigkeit,” 

or power, Cantor’s term), if their elements can be put in a one-to-one corre

spondence (see for example the explicit statement in [17], p. 119). Cantor uses 

the notation M  to denote the cardinality of set M  and M  ^  N  to show that M  

and N  are equivalent (have equal cardinality). In order to compare the sizes of 

transfinite cardinals and to provide a total ordering on the cardinal numbers, a 

definition of “smaller” and “larger” must be given for sets. In [16], p. 284-285, 

the following definition is stated:

If for two sets M  and N, with cardinal numbers a =  M  and b =  N  

the two conditions are fulfilled:

1. there is no subset o f M  which is equivalent to N

2. there is a subset Ny such that N y ^ M

[ . . . ]

We express through 1) and 2) the characterized relationship from a to

3The title of [19] is “Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen,” 
or “On a Property of the Collection of All Real Algebraic Numbers” (Dauben’s translation [38], p. 
67). This title was likely chosen to disguise, or at least make less obvious, the the paper’s result 
on the nondenumerability of the real numbers. The paper was published in Crelle’s Journal fü r die 
reine und angewandte M athem atik  (Journal for Pure and Applied Mathematics) of which Leopold 
Kronecker was editor at that time. Kronecker, whom Cantor knew from the time of his studies 
in Berlin, was pursuing a theory of arithmetization in which all of mathematics could be based on 
a finite number of integer operations. “As an editor of Crelle’s Journal he [Kronecker] was in a 
position to refuse any article, and Cantor may have felt it was wisest to minimize those features of 
his proof that might raise any questions about its acceptability for publication. By making the 1874 
paper seem as innocuous as possible, Cantor was perhaps being diplomatic and trying to smooth 
his own way as best he could” ([38], p. 68).

4A noteworthy observation about Cantor’s original publication of the proof is that it is not in the 
form of the often cited “diagonal method” ; rather, it is based on choosing intervals of diminishing 
size within a linear ordering of the algebraic numbers, and showing that an unlisted real number 
must always exist between the smallest intervals considered. The diagonal method appeared in an 
1891 paper [20].
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b by saying: a is smaller than b, or also: b is larger than a . ..

• Definition of the first and second number classes ( “die erste Zahlenklasse,” and 

“die zweite Zahlenklasse” ), and the notation No and Ni [16] to represent them 

respectively. No is defined as the number of finite cardinal numbers and is 

the first transfinite cardinal number ([16], p. 293). The cardinal numbers are 

generated using “generating principles” on ordinals: addition of 1 and taking 

limits. Given an ordinal au, the next largest, a v+\ is given by a v+\ =  a v +  l 

(principle 1 ). To jump to a new number class (cardinal) the second generating 

principle is needed. This is notated by Cantor as: a  =  Jv a„. In this case, a  is 

defined as the next largest ordinal greater than all the ordinals a u generated by 

the first principle ([16], p. 330-331). Cantor showed that these two generating 

principles can be used to define an infinite hierarchy of cardinal numbers, and 

that the hierarchy is complete in the sense that no cardinals exist which cannot 

be generated by the two principles.

• In 1891, Cantor published what he called a “simpler proof” of the existence of 

nondenumerable sets which did not depend on irrational numbers (which were 

also objectionable to Kroenecker) ([20], p. 278). This proof was his famous 

diagonal method. The proof method is not only applicable to show the existence 

of a nondenumerable set, but also generalizes to show that the cardinality of 

the power set of any set is greater than the cardinality of set itself.

• Cantor’s theorem: the cardinality of a set A  is always strictly less than the 

cardinality of the powerset of A  (|A| <  |2A|) [20].

• The cardinality of the reals is equal to the cardinality of the set of all sets of 

natural numbers ( c =  2N°) ([16], p. 288-289).
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6.4 The continuum hypothesis

In addition to the above results, the conjecture with which we are concerned is the 

continuum hypothesis. After Cantor proved that the cardinality of the reals is strictly 

greater than Ko, he posed the question of where in the cardinal hierarchy it belongs. 

The continuum hypothesis is that c =  Ni— the reals have the “next largest” car

dinality after N0. Cantor believed the continuum hypothesis to be true, and spent 

many years unsuccessfully trying to prove it. It appears as the following statement 

in his 1883 work Grundlagen einer allgemeinen Mannigfaltigkeitslehre (Foundations 

of a general theory of manifolds): “und ich hoffe, sie schon bald durch einen strengen 

Beweis dahin beantworten zu können, daß die gesuchte Mächtigkeit keine andere ist 

als diejenige unserer zweite Zahlenklasse (II)” (and I hope to be able to answer the 

question soon with a rigorous proof that the sought cardinality is none other than 

that of our second number class) ([18], p. 192).

There are many propositions formally equivalent to the continuum hypothesis. 

The alternate formulations are useful in application to computability theory, and will 

be used later in this chapter. Here I list three.

• Every infinite subset of the continuum either has the cardinality of the of set 

integers, or the cardinality of the continuum itself ([54], p. 516).

• There is no set with cardinality between that of the integers and that of the 

reals.

• That Ki is the second H number and therefore also the cardinality of the con

tinuum (Ni =  Di =  c). H numbers are used to denote the cardinalities of sets 

of subsets of sets, and are defined as 3o =  N0 and 1 ^ + 1  =  2-In.

The generalized continuum hypothesis is the extension of the continuum hypothesis
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which proposes that Kn+i =  2Nn for every n.

6.5 Godel’s speculation on Cantor’s continuum hy

pothesis

In this section, I summarize a paper by Kurt Godel on the topic of the continuum 

hypothesis. I will draw analogies between some of the Godel’s comments about that 

problem with my discussion of computability theory.

In the paper “What is Cantor’s continuum problem,” Godel examines the history 

of the continuum hypothesis, details some known results about it, speculates on its 

decidability, and discusses mathematical and philosophical implications of different 

outcomes of its eventual demonstrability or refutability. This paper is interesting not 

only for its contents, but also for the timing of its publication in November 1947. 

Between 1938 and 1940, Godel had published his groundbreaking papers proving 

the consistency of the axiom of choice and the generalized continuum hypothesis 

with the standard axioms of set theory [52, 53, 57], but even at the time of those 

papers’ publications, Gddel believed the continuum hypothesis to be false. The 1947 

paper was published before Paul Cohen’s development of forcing and proof of the 

independence of the continuum hypothesis which appeared in 1963-1964 [26, 27]. 

Hence Godel’s speculation on the independence of Cantor’s continuum hypothesis 

and the plausibility arguments for independence he presents in the 1947 paper were 

the product of his remarkable mathematical intuition.

Godel believed that the “scarcity of results” ([54], p. 517) concerning the con

tinuum hypothesis and equivalent restatements of the problem were not entirely due 

to mathematical difficulties, but rather pointed to a need for a deeper analysis of
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the concepts of set, one-to-one correspondence and other fundamental notions. He 

further asserted that the result that the continuum hypothesis might be undecid- 

able within the existing axioms of set theory was “only a precise formulation of the 

conjecture [... ] that the difficulties of the problem are perhaps not purely mathe

matical” ([54], p. 519). In other words, if we accept analysis on the basis of standard 

(such as Zermelo-Fraenkel) set theory as a foundation for mathematics, then the inde

pendence of the continuum hypothesis might imply that there are non-mathematical 

concepts. If some of the concepts which must be classified as non-mathematical are 

of significance, then their existence could indicate a deficiency in the mathematical 

paradigm.

However, regardless of whether concepts such as set prove to be inadequately 

defined, Gödel believed that there are propositions whose truth can be implied by 

means other than mathematical proof.

It is to be noted, however, that even if one should succeed in proving 

its undemonstrability as well, this would [... ] by no means settle the 

question definitively. Only someone who (like the intuitionist) denies that 

the concepts and axioms of classical set theory have any meaning (or 

any well-defined meaning) could be satisfied with such a solution, not 

someone who believes them to describe some well-determined reality. For 

in this reality Cantor’s conjecture must be either true or false, and its 

undecidability from the axioms as known today can only mean that these 

axioms do not contain a complete description of this reality ([54], p. 519—

520).

In this quotation, Gödel exhibits a Platonic view of mathematical truth— the contin

uum hypothesis has a truth value in a “well-determined reality” beyond that which
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is described by set theory or mathematics. In this thesis, I am not advocating an 

absolute or Platonic view of computability. Rather, I am arguing for the opposite 

view: that computability is a concept best defined relative to a computing model. 

However, an important observation to make is that conventional computability theory 

is an absolutist theory: problems are called “computable” if they can be reduced to a 

Turing-computable problem and “uncomputable” otherwise. As I argued extensively 

in Chapters 2 and 3, there is significant evidence that the conventional definitions 

of the terms “computer” and “computable” are unable to capture many aspects of 

the concepts they purport to define. This is problematic for an absolutist theory 

because the existence of discrepancies between the idealized concept and the formal 

definition is evidence of an inaccurate description of reality. To resolve this problem 

in computability theory, we would either need to find better formal definitions (an 

approach with which I have already identified many flaws), or take the approach I 

am advocating, which is to adopt a relativized foundation for the theory.

Godel then goes on to speculate on the deficiencies with “the axioms as known 

today,” and the basis upon which one could evaluate the axioms. As an example 

of the type of criteria one could use for evaluating the plausibility of an indepen

dent axiom, he proposes considering its success or fruitfulness in simplifying proofs of 

already known results. If the axioms axe very useful in establishing verifiable conse

quences and producing solutions to outstanding problems, then this utility serves as 

a powerful argument in favour of their truth. Rather than viewing the independence 

of the continuum hypothesis as a fundamental result, one can take the view that its 

independence highlights a weakness in the existing axioms of set theory itself. Godel 

devoted many years in the latter part of his career working on proposals for a better 

foundation for set theory which would maintain intuitive appeal and yet broaden the 

scope of the proofs possible within the theory, but was unsuccessful in finding such a
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system. As he says, “one may on good reason suspect that the role of the continuum 

problem in set theory will be this, that it will finally lead to the discovery of new 

axioms which will make it possible to disprove Cantor’s conjecture” ([54], p. 524).

This view is analogous to my assertion that the existence of “uncomputable” prob

lems, to which we can sometimes “compute” answers, indicates a deficiency in the 

definition of computability, and not necessarily something about the “uncomputable” 

problems themselves. The arguments I presented in Chapter 3 regarding the inade

quacy of the conventional Church-Turing thesis should inspire us to consider alterna

tive definitions of key concepts as, for example, I have done in this thesis. By closing 

our minds to the possibility that there might be computing machines more powerful 

than Turing machines and focusing only on properties of problems with respect to 

Turing computability, we abandon the possibility of finding models which might have 

more power with respect to these so-called “uncomputable” problems.

6.6 Cardinalities and counting

In this section, I make some observations about the cardinalities of sets involved in 

computing. Based on these cardinalities, I introduce a proof method which I call the 

counting based proof technique which I use to prove some known results and a new 

theorem about formal models and uncomputability.

6.6.1 Some observations on the sizes of sets

Consider the alphabet E =  {0 ,1 } . According to conventional terminology, a language 

L C  E is called computable if there exists a Turing machine M  with input alphabet 

E which halts and accepts every word w G L, and halts and rejects or runs forever 

on every word w' G E*/L. We are justified in considering only this particular E,
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since we know that the set of computable languages defined in this way is isomorphic 

to the set computable languages defined over any other input alphabet, up to letter 

encodings.

Note that since a language is defined as a subset of E*, all languages definable 

over E are either finite or have cardinality Mo (countably infinite).

O bservation  4. All (conventional) computable and uncomputable languages have 

cardinality less than or equal to Mo-

Since |N0| =  Mo, by definition of equal cardinalities, for any fixed, complete order

ing of the words in E*, one can define a bijection to the natural numbers. Therefore, 

statements about the relationship of the cardinality of the set of natural numbers and 

that of other sets (such as the continuum hypothesis), can apply to E* as well via the 

aforementioned bijection.

The set of languages definable over E is precisely the set of all subsets of E*. This 

set has the same cardinality as the set of all sets of integers, which we know from 

Cantor is c =  2N° .

O bservation  5. The total number o f languages definable over E =  { 0 , 1 }  (or equiv

alently for any Turing machine input alphabet) is 2H° =  c.

We know that the set of all possible Turing machines is enumerable, and therefore 

countably infinite (cardinality Mo). For example, one can associate a Godel number 

(see [96], p. 21) with each definable Turing machine such that all the machines are 

listed in a specific order. Let T  — {eo, ei, e2 , • • •} be one such enumeration.
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6.7 Some new proofs of standard results

In this section I give some proofs of standard computability theorems using cardinality 

arguments. For some of them, the proof idea is standard; for others, it is new.

T h eorem  6.1. There are Turing-uncomputable functions.

Proof. For any input alphabet, there are c =  2H° possible definable languages, but only 

N0 Turing machines. As N0 <  2Hq, some languages must be Turing-uncomputable. □

T h eorem  6.2. Every non-trivial property of the language of a given Turing machine 

is undecidable, where non-trivial means that there exist languages which have the 

property and some that do not (restatement o f R ice’s theorem [95]).

In order to prove this, we need the following results and definitions:

Recall Corollary 5.4: For a property p o f a Turing-computable language, if there 

is one Turing machine M  which satisfies the property p (L (M )) =  true, there are 

countably infinitely many (tH0)  Turing machines M u i £ N such thatp(L(M i)) =  true. 

This applies both to the properties under discussion and their negations.

D efin ition  6.1. For a set A, c^ is the characteristic function o f A  defined as ca(x) =  

1 i f x  € A, and c a ( x ) =  0 i f x ^ A  ([96], p. xvii).

D efin ition  6.2. Let T  =  {<po, tpi, <£>2, • • •} be a specific enumeration of all Turing 

machines. Let p be a property o f a Turing language. Then the characteristic string 

cp o f p with respect to the enumeration T  is the string P0P1P2 • • • such that pi =  1 if 

and only if p{L((fi)) — true and pi =  0 otherwise. I f  the enumeration is understood, 

the characteristic string is simply denoted by Cp.

O bservation  6. For a non-trivial property p, there are N0 Turing machines which 

satisfy p and N0 which do not. Therefore Cp contains No 0 ’s and Nq 1 ’s.
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O bservation  7. The number o f possible arrangements of a countably infinite number 

o f 0 ’s and l ’s in a string is 2H° =  c. Using Observation 6, the number of potential 

strings which could serve as characteristic strings is 2 °̂ =  c.

We can regard a machine which is capable of deciding Rice’s theorem for a partic

ular non-trivial property p as a machine which, given <pi, is able to output the value 

Pi from the characteristic string Cp. Finally we can state a proof of Theorem 6.2.

Proof. Suppose there exists a Turing machine Mp which, given an encoding of a 

Turing machine ipi from a fixed enumeration T  =  {(p0, y?i, <P2, ■ • •}, halts and outputs 

P i, where Cp =  P0P1P2 . . .  is the characteristic string of p. Define a second machine 

M* which has the following non-terminating behaviour: M* simulates the behaviour 

of Mp for each Turing machine <po, <Pu ¥’2 , • • • and outputs the result. Therefore, M* 

will incrementally output the characteristic string of p.

Let C  be the set of all potential characteristic strings of properties (according to 

Observation 7, this is the set of all strings with No 0’s and No l ’s). The stepwise 

behaviour of M*, where an evaluation step is one simulation of Mp, can be regarded 

as a decision procedure in which the elements of C  are classified in two sets, C + 

and C ~ , where C + contains the strings which are possible candidates for Cp and C~ 

contains those which are not. If M* ran for No steps, C+ would have one member, 

Cp, and C~ would contain all the other strings. Initially, C + =  C  and C~ — 0.

At each evaluation step i, M* outputs pi, and effectively classifies all strings in C + 

which do not match Pi at position i into C ~ . But, how many strings remain in C +? 

Let n be the number of l ’s output so far, and m be the number of 0’s, with n +  m =  i. 

As only a finite number of evaluation steps have occurred, the numbers of 0’s and 

l ’s following Pi in the strings remaining in C + are N0 — n =  N0 and N0 — m — N0, 

respectively. Therefore, there are still 2**° strings in C + . As a Turing machine is not
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permitted to run for a completed infinity N0 of steps, Cp will never be determined. 

Therefore, by way of contradiction, no machine Mp for deciding p exists. □

6.8 New results using counting techniques

An informal statement of the result presented in this section is as follows:

No computing model which satisfies the requirements o f an algorithm will be capable 

o f defining machines to compute all binary functions.

The notion of algorithm in this theorem is the standard one as exemplified, for 

instance, by Knuth’s definition (see Section 2.2). The idea is stated as a theorem in 

an expanded form below:

T h eorem  6.3. T he com putability  incom pleteness theorem . Consider a ma

chine model with the following restrictions:

(i) A machine must have a finite description.

(ii) Computation begins with a finite amount o f input taken from a set with cardi

nality at most No-

(Hi) The machine performs a perform a finite or unbounded number of computation 

steps, but the number of steps is strictly less than N0.

(iv) Any additional data available to the machine during computation is taken from 

a set with cardinality at most No, and at most a finite amount of data is added 

at each computation step.

(v) Each computation step is completed in a finite amount of time.

This model will be incapable of defining machines to compute all possible binary func

tions.
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Suppose one accepts the algorithm as a reasonable definition of the informal notion 

of effective calculability (as most computer scientists do). Then a proof of the pre

ceding theorem constitutes a partial proof of the broad Church-Turing thesis because 

it shows that all “reasonable” computing models will have uncomputable problems 

associated with them. However, it is not a complete proof since it does not show that 

the set of uncomputable problems is always the same set for any model defined with 

the specified restrictions.

In order to prove Theorem 6.3 a definition concerning the power of a model must 

be stated.

6.8.1 Cardinality of computing power of a model

In Chapter 3, I defined the computing power of a class of machines as the set of 

functions the machines in the class compute and introduced the notation V{M)  to 

represent the computing power of class M,  that is V(M)  =  (Jm in m  ^ (m)-

A  key question when evaluating computing power is how large the set of functions 

computable by a given model is. In the case of Turing machines, each machine labels 

one function (see Chapter 5), and hence the cardinality of the set of Turing machines 

is the same as the cardinality of set of functions which are Turing-computable.

However, in the case that the machine behaviour is not completely determined by 

its initial state, the set of computable functions can be different than the set of defin

able machines. As a simple illustration, consider a random binary machine with the 

following behaviour: once started, it outputs all the binary numbers in lexicographic 

order, and randomly assigns each one an output value in the set B — {0 ,1 }. The set 

of machines with this description is capable of outputting the graph of every possible 

single-valued binary function (an uncountably infinite set). Another example would
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be an interactive machine where user input is added to the data at each computation 

step. If the input is not known in advance, the set of computable functions might be 

larger than the set of machine descriptions (for examples of “interactive” models, see 

[116, 117, 120]). The analysis must also be refined if we expand our consideration to 

variants of machines which have a non-constant computation step duration, or which 

are self-modifying and so on. Prom all these example, one concludes that a static 

analysis of the cardinality of the set of functions computable by a given model is 

not sufficient in general; rather, a dynamic analysis which accounts for the machine’s 

temporal behaviour is necessary.

A model defines a class of machines which can be specified with the model. Those 

machines can be used to compute a set of functions. The following definitions address 

the cardinality of that set of functions.

D efin ition  6.3. The cardinality of the computing power of a model is the cardinality 

of the set o f functions computed by machines which can be specified by the model. It 

is represented by \V(M)\, where M  is the class o f machines which can be specified by 

the model.

Using the terminology from Chapter 5, the machines serve as labels for functions. 

An alternate way of expressing the computing power of a model is in terms of labelled 

functions.

D efin ition  6.4. A lternative defin ition . The cardinality of the computing power 

of a model is the cardinality of the set o f functions which can be labelled by machines 

defined by the model. That is, \V(M)\ =  | \Jm M C{m)\.

To determine \V(M)\ for a class of machines one needs to know:

• how many machines are in the class
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• how many different inputs can be given to the machines

• how many computation steps will occur

• how the data is transformed at each computation step

• what outputs are produced

The goal is to analyse the upper bound on the number of functions which could 

be computed based on the computation of all possible machines on all possible in

puts. Computation of the upper bound assumes that at each step the combined state 

and data of every machine is distinct from every other machine. This assumption 

might not hold for a given specific machine model, and therefore within that model, 

some machines would become indistinguishable from one another at some point in 

their computation, and hence the number of distinct values computed would be non- 

monotonically increasing. The upper bound is computed based on the assumption of a 

monotonically increasing number of machine states. The parameters from Chapter 4 

can be used to formalize this computation for some machine classes.

The intuitive idea of the calculation which is shown below is to count how many
i.

distinct machine states can be generated by the execution of all the possible machines 

in the class, starting on all possible input values.

The calculation can be separated into two parts:

1. How large an individual machine description can become through a computation 

(dynamic aspect), and

2. How many different machine descriptions exist (static aspect).

Let ad represent the potential size of the machine description (dynamic aspect).
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Then ad can be calculated by:

ad — m +  i +  y~] dj
i=  1

where m  is the (finite) length of the machine description, i is the (finite) input, dj is 

the (finite) amount of data added at each step i, and s is the (finite) number of steps 

performed. As all the components are finite, ad must be finite as well.

For the static aspect, as, all the information which is included in the description 

of the machine class must be taken into account. The following formula summarizes 

the necessary computation:

as =  \M\\I\ +  \D\

where \M\ is the cardinality of the machine class, |/| is the cardinality of the input 

set, \D\ is the cardinality of the set of from which additional data provided at each 

computation step is chosen (D  can also be thought of as the oracle available to the 

machine). For the restrictions of an algorithm, the machine description must be finite 

length, and therefore \M\ <  H0. Furthermore, |/| and |D| are restricted to be bounded 

by Ho, that is, |/| <  H0 and \D\ <  Ho- Therefore a3 <  H0.

For the upper bound, take the maximal number of machine descriptions and 

multiply that by the maximal size of any machine. This is the desired cardinality.

\V(M)\ =  ad * a s
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For the case of models satisfying the restrictions of an algorithm, we have

\V(M)\ =  <7d *Us

=  n * No with n < N0 

=  No

Now a proof of Theorem 6.3 can be stated.

Proof. Any model M  which satisfies restrictions (i) — (v) will have \P(M)\ =  N0. 

There are 2N° binary functions. As No <  2No, there will be binary functions which are 

uncomputable with respect to M.  □

The implication of this theorem is that any attempt to define a model which 

satisfies the restrictions of an algorithm but can comprfte all binary functions will be 

unsuccessful.

6.9 Reasons for uncomputability

In this section I speculate on some intuitive explanations for the Turing uncomputabil

ity of two classes of functions. These ideas are presented as informal arguments.

6.9.1 Infinite execution times

There are some problems which seem to require infinite execution time to find a 

complete solution.

One example of a problem which can be phrased in these terms is the halting 

problem: if a Turing machine were permitted to run for a countably infinite number 

of steps, this problem could be solved. The set of all Turing machines is enumerable,
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as is the set of all possible inputs. Therefore it is possible by dovetailing to simulate 

the execution of all possible Turing machines on all possible inputs using a Turing 

machine H.  If H  is permitted to run for No steps, then all the simulated machines 

which halt, will; and those which do not halt will still be running. Thus H  could be 

used to solve the Turing machine halting problem.

6.9.2 Infinite number of results required

For any computation which requires a countably infinite number of results, the output 

alone cannot be printed in finite time. For example, printing out digits of Chaitin’s 0  

(the halting probability for Turing machines or Lisp programs [22], or printing out all 

the digits of 7r). In the latter example, tt is classified as a Turing-computable number 

since there exists an algorithm for incrementally generating its digits. However, this 

computation is a non-terminating process, and therefore printing all the digits of 7r is 

impossible with a Turing-equivalent computing device. Obviously if an uncountably 

infinite number of results are required, this cannot be done in finite time (for example, 

listing all possible binary functions).

6.10 Integration of hierarchies

As we know, the continuum hypothesis is independent of ZFC set theory. Consider for 

a moment Godel’s perspective that it has a truth value, but that we are presently inca

pable of proving it within the current paradigm. The truth or falsity of the continuum 

hypothesis has an interesting impact on the hierarchy of computable functions:

• If CH is true (c =  Ni), then there are no sets with cardinality between that of 

the integers and the real numbers. Hence, a language defined by any computing
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machine will have finite cardinality, countably infinite cardinality, or uncount- 

ably infinite cardinality (any large cardinal could potentially be considered). 

For example, there would be no cardinal between the size of the set of all Tur

ing machines and the size of the set of all languages over a finite alphabet, L 

such that L C  £*.

• If CH is false (c >  Kx) then it could be possible to define computing models 

which accept languages having cardinality greater than that which is possible 

with a Turing machine, but less than the cardinality of the set of all binary 

languages (or the set of languages over any other fixed finite alphabet). This 

possibility would certainly require models with different properties from those 

we find in conventional computability theory.

The axioms of set theory are not likely to be revised in the near future, but it is 

an interesting theoretical note that there might be an intermediate class of functions 

between those we normally consider.

The generalized continuum hypothesis is actually a statement about the corre

spondence between two hierarchies: the hierarchy of cardinals No, Ni, N2, . . .  and the 

hierarchy of sizes of subsets of sets: Do, Di, D2, . . .  If true, it would mean that Nn =  Dn 

for all n G No- In computer science, the most familiar hierarchies are the arithmetic 

hierarchy and the hierarchy of Turing degrees (see [28] for definitions). It is important 

to note that both these hierarchies involve sets with cardinality <  No-

Therefore, conventional definitions of “relativized computability,” in which com

putation is discussed within the context of relativizations within the Turing or arith

metic hierarchy are not sufficient to capture properties of many of the computing 

machines discussed in this thesis. The application of relativity in computability the

ory must be extended beyond the countably infinite.
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Chapter 7 

Conclusion

[Scientific revolutions are inaugurated by a growing sense [.. .] that an 

existing paradigm has ceased to function adequately in the exploration of 

an aspect of nature to which that paradigm itself had previously led the 

way.

Thom as S. K uhn

The Structure o f Scientific Revolutions 

The University of Chicago Press, 1970, p. 92, [77].

In this thesis, I have argued that progress in computability theory has reached 

a time of scientific crisis, in the sense identified by Kuhn. There are significant 

deficiencies in the basic notions in conventional computability theory. A definition 

of “computer” based on Turing-equivalent machines is insufficient, not only for most 

practitioners of computer science, but also for many theoreticians. A definition of 

computability which permits only algorithm-based computing methods excludes many 

useful and theoretically sound models from discourse on the limits of computation. 

These broad problems, in addition to many others identified in this thesis, indicate
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an urgent need to re-examine the foundations of computability theory.

Computability theory of the 1930’s, born in the era of logicism in mathematics 

and logical positivism in philosophy of language, is now out of date. The foundations 

of the field need to be critically assessed and updated such that they match the key 

aims of the field and support research currently being done by specialists in the area.

This thesis presented a starting point for revised foundations for computability 

theory.

7.1 Contributions of the thesis

Here I summarize the main arguments in the thesis by listing the principal claims 

and their relationships below.

1. Turing computability is not a sufficiently adequate foundation for a theory of 

computability.

2. Introducing other formal models does not address the difficulties since these 

ultimately suffer the same types of problems.

3. The term “computer” and other basic notions such as “computing power” and 

“computed by” are ill-defined in the conventional theory.

4. 2 and 3 imply that an informal definition of “computer” is needed.

5. 1 and 4 imply that computability should be a relative notion, not an absolute 

one.

6. Based on 4 and 5, definitions of basic terms should be provided which avoid se

mantic ambiguities suffered by conventional terminology, but are flexible enough 

to be used with a broad range of computing models.
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7. When considering relative computability (5), one observes that the resources 

available in a machine model determine its computing power.

8. Cardinalities of sets of elements are a crucial factor in evaluating the contribu

tion to computing power of the resources identified under point 7.

9. Due to ambiguous terminology and imprecise analysis (3), complexity hidden 

in encodings is often overlooked when analysing computations.

The analysis, examples, definitions, and arguments presented throughout the the

sis support the aforementioned claims and the chain of reasoning through which they 

are derived.

I will now summarize the concrete contributions of the thesis. They can be divided 

into three main categories which are fisted below, with the specific topics addressed 

in the thesis under each category.

1. C ritica l exam ination o f  deficiencies in conventional com putability  the

ory

• The historical and philosophical roots of conventional computability theory 

were analysed. The observation was made some core beliefs from that era 

were superseded in other areas of study but have remained unchanged in 

computability theory (Chapter 1).

• Evidence that the term computer is used in different ways by laypeople, 

applied computer scientists and theoretical computer scientists was pre

sented. Furthermore, limiting what is called a “computer” to Turing- 

equivalent machines leads to semantic ambiguity (Chapter 2).

• The conventional Church-Turing thesis was clarified and its relevance and 

implications were analysed with the conclusion that it is no longer an
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appropriate means by which to delimit computability (Chapter 3).

• The idea was discussed that uncomputability, rather than merely being a 

property of particular problems, indicates deficiencies in the definition of 

computability (Chapter 6).

2. R ev ised  definitions o f  key con cep ts

The following concepts were defined, and justification and examples were pro

vided for the definitions:

• computer (Chapter 2)

• capable of computing, the function computed by, capable of simulating, 

relative computability, computing power, the same, equivalent, more and 

incomparable computing power (Chapter 3)

• resource, resource equivalence, the relativized Church-Turing thesis (Chap

ter 4)

• function labelled by a machine, sufficient power (Chapter 5)

• cardinality of the computing power of a model (Chapter 6)

3. Investigation  o f  som e technical issues

• introduction of the parameterized meta-model (Chapter 4)

• analysis of hidden complexity in encodings; notion of function labelling; 

observations on the impact of changing interpretations (Chapter 5)

• impact of cardinalities of certain sets on computability; counting-based 

proofs; the computability incompleteness theorem (Chapter 6)
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7.2 Speculation and future work

Conventional computability is concerned with the limits of finite describability. That 

perspective was purposely chosen by Turing, and has been re-confirmed over the years 

by most researchers in the field. The purpose of that perspective is to model what 

a human can do with pencil and paper, or more generally, to model processes which 

can be started, executed and finished with complete, finite descriptions of every step. 

Based on accumulated evidence, the conventional Church-Turing thesis is probably 

correct. The implication is that Turing computability likely does represent the limits 

of finite describability.

Which are these functions that we call “uncomputable” ? Languages (sets of 

words) can be described by their characteristic functions. A different way of iden

tifying languages which are are uncomputable is to say that they are those with an 

uncompressible characteristic function graph (in the Kolmogorov/Chaitin sense [22]). 

For these sets, there is no means by which their characteristic function can be finitely 

described, and therefore, no Turing machine could label them. Unless adequate in

finite resources are accessible to a machine, it will be incapable of describing such a 

function. This illustrates the purpose of the analysis of resources in Chapter 4.

In Chapter 5, it was shown that the integers can serve as labels for the set of 

Turing-computable functions. This is not an unknown idea as it is a direct conse

quence of the enumerability of the set of Turing machines. The purpose of stating 

it explicitly is to draw attention to the notion that all Turing-computable functions 

can be described equally succinctly. From this perspective, there is no function which 

requires a more complex description that any other. What we learned from the 

computability incompleteness theorem (Chapter 6), is that the size of the set of func

tions describable by any model which satisfies the properties of an algorithm will be
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bounded by N0- Hence, it has the same cardinality as the integers and the Turing- 

computable functions. What is not known is whether all possible sets of functions 

which are algorithmically describable are the same as the set of Turing-computable 

functions.

In Chapter 5, I made the following statement, which can now be explained:

The existence of Turing-uncomputable functions is fundamentally related to the 

cardinality o f sets, and has little to do with the uncomputable functions themselves.

It is my belief that what one learns from studying Turing-uncomputability can 

be summarized by the claims that only countably infinite sets can be constructed 

with finite means, and that furthermore, the only elements which are in those sets 

are the ones which themselves admit a finite description. There is nothing “special” 

about uncomputable functions. They are not mysterious, and they do not indicate 

anything about the limits of computability (in the sense of this thesis). The existence 

of Turing-uncomputable functions is a product of our insistence on finite descriptions.

A broad definition of computation and flexible definitions which permit the consid

eration of computation models beyond those which are Turing-equivalent best enables 

the study of computability. The functions which can be described by finite means 

have been extensively studied. Central to future study in computability theory should 

be the question of what can be described by other means as well.
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