
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

ON THE FOUNDATIONS OF COMPUTABILITY THEORY ON THE FOUNDATIONS OF COMPUTABILITY THEORY

Maia Hoeberechts
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Hoeberechts, Maia, "ON THE FOUNDATIONS OF COMPUTABILITY THEORY" (2009). Digitized Theses.
3885.
https://ir.lib.uwo.ca/digitizedtheses/3885

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3885&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3885?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3885&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ON THE FOUNDATIONS OF
COMPUTABILITY THEORY

(Spine title: On the Foundations of Computability Theory)

(Thesis format: Monograph)

by

Maia Hoeberechts

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Maia Hoeberechts 2009

Abstract

The principal motivation for this work is the observation that there are significant

deficiencies in the foundations of conventional computability theory. This thesis ex

amines the problems with conventional computability theory, including its failure to

address discrepancies between theory and practice in computer science, semantic con

fusion in terminology, and limitations in the scope of conventional computing models.

In light of these difficulties, fundamental notions are re-examined and revised def

initions of key concepts such as “computer,” “computable,” and “computing power”

are provided. A detailed analysis is conducted to determine desirable semantics and

scope of applicability of foundational notions. The credibility of the revised definitions

is ascertained by demonstrating by their ability to address identified problems with

conventional definitions. Their practical utility is established through application to

examples.

Other related issues, including hidden complexity in computations, subtleties re

lated to encodings, and the cardinalities of sets involved in computing, are examined.

A resource-based meta-model for characterizing computing model properties is intro

duced.

The proposed definitions are presented as a starting point for an alternate founda

tion for computability theory. However, formulation of the particular concepts under

discussion is not the sole purpose of the thesis. The underlying objective of this re

search is to open discourse on alternate foundations of computability theory and to

inspire re-examination of fundamental notions.

Keywords: computability, uncomputability, Turing machines, models of computa

tion, computing power, Church-Turing thesis, encodings

m

To my grandmothers

Oma Joan Pakvis (1929-2009)

Bomma Antonia Hoeberechts (1912-2009)

IV

Acknowledgments

My most sincere appreciation

to Helmut Jiirgensen—supervisor, teacher, mentor and friend—who stood by me

throughout my studies and always believed in my abilities.

to Jamie Andrews, without whose support, friendship and advice this thesis would

not be finished.

to all the members of the computer science department who have helped me over the

years, and especially to the office staff.

to all my friends at UWO and beyond for providing me with much needed distractions—

occasionally too many—from my work. Thanks particularly to those who listened

to more than their share of thesis-related complaining: Suna and Fabrizio, Lynda,

Yaqing and Josh, Samantha, Sandra, Franzi and Carsten, Hanan, Vicki, Geoff and

Beata, Doug, Brad and the Grad Club gang.

and to my parents Patty and Charlie and my brother Jay who were always there to

encourage me in times of disappointment and celebrate with me in times of success.

You are the best family I could ask for.

v

Table of Contents

Certificate of Examination ... ii

A b s tr a c t... iii

D edication ... iv

Acknowledgments ... v

Table of Contents ... vi

List of T a b le s ... xi

List of Figures .. xii

1 Introduction.. 1

1.1 Research perspective... 1

1.2 B a c k g r o u n d ... 3

1.3 Historical and philosophical con text... 5

1.4 Overview of deficiencies in conventional computability......................... 14

1.4.1 Inconsistencies in the use of the word “computer” 14

1.4.2 Problems with the conventional Church-Turing th esis 17

1.5 Prior w ork ... 20

1.6 Outline of the thesis ... 21

vi

2 On the Definition of Computer .. 25

2.1 Influence of perspective on definition of com p u ter............................... 25

2.1.1 Etymology... 28

2.2 Algorithms... 29

2.3 Devices and models labelled as computers ... 34

2.3.1 Turing-equivalent machines .. 35

2.3.2 String rewriting system s.. 37

2.3.3 “Super-Turing” machines.. 40

2.3.4 Physical devices.. 48

2.4 Characterizations of the “effectively calculable” functions................... 49

2.5 Use of the word “computer” .. 52

2.5.1 Formal definitions vs. intuitive n o tio n s 53

2.5.2 Soare’s discussion of “recursive” and “computable” 56

2.6 Discussion of the conventional definition of “computer” 57

2.6.1 The central role of the Turing m achine..................................... 57

2.6.2 Relationship to practical computing... 61

2.6.3 More powerful machines are excluded.. 62

2.6.4 Summary of analysis of the conventional definition 62

2.7 A new type of defin ition ... 63

2.8 Application to existing m odels... 67

3 On the Church-Turing Thesis and Com putability.............................. 70

3.1 Problems with the conventional Church-Turing th es is 71

3.1.1 Problem #1: Ambiguity in the meaning of “Church-Turing the

sis” ... 72

vii

3.1.2 Problem #2: There are many things we consider computational

that a Turing machine cannot d o .. 78

3.1.3 Problem #3: Practical computing does not use Turing machines 79

3.1.4 Problem #4: There are machine models which compute func

tions Turing-equivalent machines ca n n o t 82

3.1.5 Scope of the Church-Turing thesis.. 82

3.2 An alternative proposal.. 85

3.2.1 Example.. 90

3.3 Computing pow er... 91

3.3.1 What this section is not about.. 91

3.3.2 Definition of computing power 92

3.3.3 Further com m entary.. 94

3.4 Com parisons o f com puting p o w e r ... 95

3.4.1 The “same” and “equivalent” computing p o w e r 96

3.4.2 E xam ples... 97

3.4.3 More computing p ow er... 98

3.4.4 Incomparable computing p o w e r ... 99

3.5 S u m m ary ... 101

4 A Parameterized Meta-model ..103

4.1 R esources... 104

4.2 A parameterized meta-model.. 108

4.2.1 Machine properties... 108

4.2.2 Input properties.. 109

4.2.3 Processing properties.. 110

4.2.4 Output properties... I l l

viii

4.3 Meta-model examples... 112

4.3.1 Turing m achine.. 112

4.3.2 Accelerating Turing machine.. 113

4.3.3 Electronic computer .. 114

4.4 Discussion of meta-model properties.. 115

5 Encodings and Labels ..121

5.1 Machine descriptions as function la b e ls .. 122

5.1.1 Enumerations of encodings... 123

5.1.2 Labels and computability ... 127

5.1.3 Duplication of la b e ls .. 130

5.2 Encodings revisited.. 132

5.2.1 Coordinating entity... 133

5.2.2 Sufficient pow er.. 135

6 Cardinalities, Computability and the Continuum Hypothesis . . 138

6.1 Prior w ork ... 139

6.2 N otation.. 140

6.3 Cantor’s results.. 141

6.4 The continuum hypothesis... 144

6.5 Godel’s speculation on Cantor’s continuum hypothesis......................... 145

6.6 Cardinalities and counting... 148

6.6.1 Some observations on the sizes of sets .. 148

6.7 Some new proofs of standard results.. 150

6.8 New results using counting techniques.. 152

6.8.1 Cardinality of computing power of a m odel............................... 153

6.9 Reasons for uncomputability.. 157

IX

6.9.1 Infinite execution times 157

6.9.2 Infinite number of results required.. 158

6.10 Integration of hierarchies... 158

7 C onclusion.. 160

7.1 Contributions of the thesis... 161

7.2 Speculation and future w o rk .. 164

Bibliography ... 166

Curriculum Vitae .. 179

x

List of Tables

2.1 Comparison of formal and informal notions... 55

4.1 Machine properties.. 109

4.2 Input properties.. 110

4.3 Processing properties... I l l

4.4 Output properties... 112

4.5 Turing machine parameters .. 113

4.6 Accelerating Turing machine param eters.. 114

4.7 Electronic computer parameters.. 115

4.8 Modified electronic computer parameters.. 118

xi

List of Figures

1.1 Kuhn’s evolution of scientific theories... 12

1

Chapter 1

Introduction

This thesis concerns the story of computability.

What did we mean by computability?

What do we mean by computability?

What should we mean by computability?

1.1 Research perspective

The analysis in my thesis draws on historical literature, perspectives in philosophy

of language and philosophy of mathematics, consideration of current practical and

theoretical work in computer science, and observations on the use of computers in

the everyday world. Due to the nature of the topic under investigation, this thesis is

necessarily a multi-disciplinary work.

The chapters concerning definitions of terms propose characterizations of estab

lished concepts and terminology, based on a carefully considered point of view. The

paths leading to the end results, and not just the conclusions themselves, are of prime

significance.

2

The principal motivation for my work is my conviction that there are significant

deficiencies in the basic notions in conventional computability theory. There is con

vincing evidence that Turing computability is not a sufficiently adequate basis for a

broad theory of computation. These deficiencies are described throughout the thesis.

For researchers who recognize the limitations of Turing computability, there are

two approaches which are typically taken in published works:

1. The inadequacies of the present paradigm are discussed.

2. Alternate candidate formal models which have different properties from Turing

machines are proposed.

Neither o f these approaches provides a answer to the key question: what should

we mean by computability?

Articles in the first category, while illuminating in their critiques of conventional

computability, do not provide alternate definitions and hence we are left without any

sound basis for computability theory, Turing or otherwise. In the second category,

we find proposals for “super-Turing” computing machines, machines which compute

functions over the real numbers, biological models, and so on, but these proposals are

also ultimately inadequate since they limit what we call computable to the class of

functions addressed by the particular described formalism.

In this thesis, I provide an answer to the question what should we mean by com

putability? “Computer,” “computable” and other key concepts are defined. I survey

problems with the conventional definition, both those identified by other researchers

and those I have discovered, and explain how my proposed definitions address those

problems. Furthermore, the notions and formalisms introduced in the thesis are used

to derive some new insights into matters concerning the limits of computation. The

3

goal of this thesis is to provide a starting point for an alternate foundation for com

putability theory.

Having said that, I anticipate that the proposed paradigm will be controversial,

and that many readers will disagree with aspects of the outlined foundation. This dis

agreement is welcome. The underlying point of the endeavour is that the foundations

of computability theory must be re-examined. Debate, discussion and critical exami

nation are necessary for evaluating the correctness and utility of proposed concepts.

In a paper on correspondence between Jacques Herbrand and Kurt Godel concerning

their development of recursive function theory, Wilfried Sieg makes this observation:

The general moral is, of course, that broad foundational questions can in

spire concrete mathematical work, and that concrete mathematical work

can call for philosophical analysis. There can be an extremely fruitful,

but also subtle and delicate interplay between wide-open conceptual re

flections and hard-nosed technical investigations. All of this is necessary

for arriving at balanced positions ([101], p. 183).

This thesis is neither purely technical nor purely philosophical, but rather takes its

place in the interplay between philosophical analysis and technical investigation.

In this chapter I outline the background, motivation, philosophical context, and

main contributions of my thesis.

1.2 Background

In 1936, Alan Turing described a calculating machine, his so-called “a-machine,”

which has since come to be known as the Turing machine [109]. Turing’s original idea

was that his machine would model the type of “computation” that a human with

4

pencil and paper was capable of doing. At the time of Turing’s paper, and in the

years following Turing’s original publication, other researchers also developed models

intended to capture the process of computation. Church and Kleene’s A-calculus,

published in a series of papers [23, 24, 69, 70, 71], and recursive function theory,

developed by Kurt Godel and others [55, 56] are two early examples. These models

and many more developed in subsequent years were all shown to be capable of calcu

lating the “same set” of functions, which has come to be known as the “computable

functions.” 1

The surprising formal equivalence between seemingly diverse models prompted

the widespread adoption of the so-called Church-Turing thesis. My statement of that

thesis is as follows:

The functions computable by Turing-equivalent machines correspond ex

actly to those which satisfy the informal criterion of effective calculability.1 2

The idea that there are fundamental properties shared by every “reasonable”

computing model is a compelling one. Over the past 70 years, the Turing machine has

taken a central position in computer science as the paradigmatic model of a computer.

Most students and researchers take for granted that the computing capabilities of

a Turing machine represent those of any past, present or future computer. The

properties of Turing machines and Turing-equivalent computation models have been

extensively studied.

1To say that different machines compute “the same” set of functions is an oversimplification, and
an inaccurate description. These problems are addressed in detail in this thesis. Issues related to
whether different machine compute “the same” set of functions are examined in Chapter 3 where
simulation of functions is introduced, and Chapter 5 where encoding of input and output is studied.

2This statement, like many statements of the Church-Turing thesis in the literature, does not
correspond to the original statements made by either Turing or Church. In my thesis, I call this
formulation “the broad Church-Turing thesis” to distinguish it from other formulations. A discussion
of the various forms taken by the Church-Turing thesis appears in Chapter 3.

5

An essential tenet I advocate in my thesis is that computability should be a relative

notion, not an absolute one.3 I question the assumption that the Turing machine

should have such a fundamental role in computability theory. What would happen

if we no longer view the limitations on the class of computable functions imposed by

the Turing machine’s capabilities as representative of all computation? The Turing

machine would remain a useful and well-studied model, but the assumption of the

centrality of its role could no longer be taken for granted.

Justification for a relativized notion of computability comes from many sources.

I begin by summarizing the historical and philosophical context in which present

computability theory developed. Subsequently, the primary arguments in favour of a

relativized notion of computability are outlined. These arguments are further explored

the remainder of the thesis.

1.3 Historical and philosophical context

The rise of logicism at the end of the 19th century and the development of intuitionism

at the beginning of the 20th century established the climate for the emergence of

computability theory.

Two key notions from L. E. J. Brouwer’s intuitionism are present in computability

theory: that only finite numbers or potential infinities should be admissible, and

that proofs should be constructive. One can regard algorithmic computation as the

construction of outputs from inputs using only finite resources in a potentially infinite

number of steps. However, the underlying logic in conventional computability theory

is classical rather than intuitionistic.
3Computability will be defined relative to specific computing models. For example, rather than

calling a function simply “computable,” it should be called “Turing-computable” if it is the function
computed by some Turing machine. Arguments for this viewpoint are presented throughout the
thesis.

6

Gottlob Frege’s publication in 1879 of the Begriff&schrift and in 1893/1903 of the

two volumes of Grundgesetze der Arithmetik, represent the introduction of modern

predicate logic. These and other of Frege’s works appeared in the context of his goal

of showing that mathematics can be reduced to logic. The background to Frege’s

work is the distinction originating with Kant between statements which axe analytic

(a statement whose predicate concept is contained in its subject concept), and those

which are synthetic (a statement whose predicate concept is not contained in its

subject concept). The simplest intuitive explanation of these categories is that to

establish the truth of a synthetic statement, one requires reference to concepts or

experience external to the statement, whereas the truth of an analytic statement can

be seen by considering the statement itself (it is “self-evident”). Frege’s goal was to

show mathematics to be analytic,4 in the sense that its theorems can be derived from

analytic axioms using universal inference rides: “those laws of thought that transcend

all particulars” ([112], p. 5).5

In the introduction to the Begriffsschrift, Frege states “ . . . I found the inadequacy

of language to be an obstacle; no matter how unwieldly the expressions I was ready

to accept, I was less and less able, as the relations became more and more complex, to

attain the precision that my purpose required. This deficiency led me to the idea of

the present ideography” ([112], p. 6). Hence, his motivation was to free mathematical

reasoning from the inadequacies of everyday language and provide as a replacement

what he called “a formula language for pure thought.” One of the most elementary

contributions of his work is the substitution of the notions of argument and function

for the ordinary language concepts subject and predicate.

As is well-known, Bertrand Russell wrote a letter to Frege in 1902 identifying a

4As opposed to Kant, who believed the statements of mathematics to be synthetic.
5This inference method is still the basis of our modern method of mathematical proof.

7

paradox which demonstrated that the axiom which addressed set equality in Frege’s

system was inconsistent (Russell’s Paradox) [64]. This discovery, which also affected

Russell’s work, was not viewed at the time as being detrimental to the logicist pro

gram. Russell and Whitehead’s theory of types in Principia Mathematica was created

as an attempted remedy for the paradox [119].

In addition to the formal notation itself, a key contribution of Frege’s work is

the clear distinction between what we now call syntax and semantics. Using modern

terminology, propositions are formulae composed of functions, arguments, variables,

constants, predicates, quantifiers and logical connectives. The functions will have the

values of true or false depending on which arguments are substituted for the variables.

The truth value of the whole proposition will depend on the truth value of each of

the functions it contains. The “meaning” of a proposition is its truth value.

Frege’s fundamental principle “never to ask for the meaning of a word in isolation,

but only in the context of a proposition” ([48], p. X)—in other words, that the basic

unit of meaning was a proposition, and not its component parts—was very influential

in philosophy of language. In his paper “On Sense and Reference” [49] he outlines the

analogous principles for analysis of natural language propositions. “We are therefore

driven into accepting the truth value of a sentence as constituting its reference” ([49],

p. 569).

Logicism can be contrasted with formalism, the perspective most closely associated

with David Hilbert. Hilbert’s aim was to create a formal system for mathematics in

which a primitive collection of symbols can be combined in prescribed ways to create

formulae. A construction method based on inference rules can be used to generate

consequent formulae from a starting set (i.e. the proof process). Hilbert hoped to

find a set of indisputable axioms from which all other mathematical knowledge could

be derived. The final goal for Hilbert’s system was that it should display internal

8

consistency, which would confirm its credibility as a rigorous proof method. Although

it was Hilbert’s aim to construct a system which could be interpreted as capturing

the usual semantics of classical mathematics, he contended that the system itself was

devoid of intrinsic meaning, and hence purely formal.

Contemporaneous with the rise of logicism in philosophy of mathematics, an anal

ogous movement was occurring in philosophy of language— the advent of logical pos

itivism. The logical positivists were inspired by the logicists’ view of mathematics,

and by the predominance of the scientific method in applied science. Like the logi

cists, they condoned the view that truths could be divided into the two categories of

analytic and synthetic. The theory of meaning, according to the logical positivists,

has two main principles [12]:

1. The verificationist principle: the meaning of a sentence is its method of confir

mation.

2. The statements of mathematics are vacuously or degenerately true (analytic).

The goal of the movement was to apply the same standards of empirical justification

to philosophical statements as were used for confirmation of theories in the empirical

sciences. The adoption of a “scientific method” for philosophical reasoning would sup

ply a criterion for philosophical truth and provide a gauge of philosophical progress.

This is the backdrop against which Church, Kleene, Godel, Post, Turing, and

other founders of computability theory were working in the 1930’s. The aims of

reducing mathematics, philosophical argument and effective calculability to scientific

bases were analogous goals in logicism, logical positivism and computability theory

respectively.

Logicism, formalism and logical positivism have all encountered extensive critique

over the years. Few mathematicians believe today that we can find a logical basis

9

for all of mathematics. Godel’s incompleteness theorems rendered Hilbert’s hope of a

consistency proof for his system unattainable. W. V. Quine argued in his influential

paper “Two Dogmas of Empiricism” [94] that the logical positivists’ emphasis on

the analytic/synthetic distinction was ill-founded and that reductionist analysis of

meaning was not a good basis for a theory of philosophical truth. Only the basis

of computability theory remains more or less unaltered from the form it took in the

1930’s!

This thesis addresses a philosophical void: we need to critically examine the the

oretical foundations of computing in order to assess whether they support the goals

of the field.

It should be noted that there are many authors who have considered this topic.

One finds articles spread across journals in philosophy, mathematics, semiotics, logic

and occasionally, computer science, which address foundations issues. However, in

mainstream computer science studies, consideration of foundational issues and alter

natives to Turing computability are commonly neglected. As an example illustrating

this claim, consider that at three large Canadian universities, the University of West

ern Ontario, the University of Toronto and McGill University, there are no under

graduate computer science courses listed which explicitly address these issues (2009

course offerings, see [6, 5, 4]). Even in courses with titles which sound promising, one

finds very conventional descriptions. For instance, the McGill course “COMP-330:

Theoretical Aspects: Computer Science:”

We study models of computation of increasing power. We begin with finite

automata and regular languages. The next phase deals with context-

free languages invented by linguistics and now an essential aspect of

every modern programming language. Finally we explore the limits of

10

computability with the study of recursive sets, enumerable sets, self-

reproducing programs and undecidability theory [3].

In typical undergraduate computer science programs, conventional computability is

normally taken for granted. This omission influences future computer scientists to

wards unquestioned acceptance of traditional foundations.

Why is philosophy of computer science, the discipline which critically examines

the theoretical foundations of computing, not better established? Should we not ques

tion the implications of the choice of formal models we make, and analyse the impact

of these choices on epistemology and ontology? Or, is computer science purely a for

malist discipline, with no metaphysical claims? If one believes that to be the case (as

those who view computation purely as a game of symbol manipulation might), then

at least the underlying philosophy should be explicitly stated. I claim however, that

we do desire more from computation than simple symbol manipulation. As Frege
\

stated for mathematics, “It is possible, of course, to operate with figures mechani

cally, just as it is possible to speak like a parrot: but that hardly deserves the name

of thought” ([48], p. IV). Likewise, arbitrary symbol manipulation hardly deserves

the name “computation” — rather, computation is a tool through which we hope to

establish truth values, calculate functions, transform data, and so on.6

This thesis belongs then, in the field of philosophy of computer science. My aim

is to re-examine key concepts in the foundations of the discipline and to present

arguments for certain points of view on their definitions.

Thomas Kuhn’s work on scientific revolutions is useful for understanding the con

text of the present state of research in theoretical computer science.7 Central to

6What is intended by the term “computer” is examined in depth in the chapter of my thesis
entitled “On the Definition of Computer.”

7Note that there has been debate about the applicability of Kuhn’s theory of scientific change to
mathematical fields. Critics such as Michael Crowe have argued that since development in math

11

Kuhn’s work is the notion of scientific paradigms: “universally recognized scientific

achievements that for a time provide model problems and solutions to a community

of practitioners” ([77], p. viii).

According to Kuhn, progress in scientific fields can be categorized in three stages [77,

78]:

1. Pre-paradigm : the initial stages of the formulation of a scientific theory.

There are competing paradigms, with no clear agreement among researchers.

Evidence, sometimes contradictory, is amassed for the competing theories.

2. N orm al science: There is an accepted paradigm which underlies investigation

in the field, and a set of axioms considered reasonable by researchers. Discov

eries axe made within the paradigm.

3. R evolu tionary science: New research uncovers deficiencies in the underlying

assumptions of the field. With enough contradictory evidence, the accepted

tenets are questioned.

Progression between the stages occurs when consensus is achieved or a scientific crisis

occurs as illustrated in Figure 1.1.

In theoretical computer science, the 1930’s were the pre-paradigm period. Before

the early work of Turing, Post, Kleene, Church, Godel and others, the field as such

did not exist. When it was discovered that independently developed models for

computation could be reduced to one another, a consensus was reached, and the

Turing machine came to be accepted as the “standard” model of computation. Since

ematics is frequently incremental, Kuhn’s theory of paradigm shifts is not applicable [37]. Other
authors have adapted some aspects of Kuhn’s theory to mathematical research but rejected others.
For a survey of the debate see [51]. In this thesis, Kuhn’s work is used only as an explanatory
mechanism for changes in computability theory; no broader claim is intended about its general
applicability to mathematics or computer science research.

12

P re-parad igm

consensus

N orm al science

crisis

R evolu tionary science

Figure 1.1: Kuhn’s evolution of scientific theories

that time of consensus, we have been operating in the normal science stage. The

present paradigm is characterized by these fundamental assumptions:

1. That which is rightly called “computable” is Turing-computable.

2. The conventional Church-Turing thesis is likely correct.

3. An algorithm8 is an appropriate expression of the intuitive notion of effective

calculability.

As evidence that the above assumptions are well-accepted, consider some recent

paper titles from articles in Theoretical Computer Science:

1. “The weak lambda calculus as a reasonable machine” (Lago and Martini, TCS

2008 [79]). In this paper, the authors argue that call-by-value A-calculus is a

“reasonable” machine because it can simulate a Turing machine and vice-versa

in polynomial time.

2. “Computational expressiveness of Genetic Systems” (Busi and Zandron, TCS

2009 [13]). The authors introduce Genetic Systems, a formalism inspired by

genetic regulatory networks which can be used to model interactions between

8As described, for example, by Donald Knuth (see Chapter 2, Section 2.2).

13

genes and proteins. They show that the formalism is Turing-equivalent by

providing encodings of Random Access Machines in Genetic Systems.

3. “The 4-way deterministic tiling problem is undecidable” (Lukkarila, TCS 2009

[83]). In this article, it is shown that the (infinite) tiling problem by Wang tiles

is Turing-undecidable for tile sets in which a tile is uniquely determined by the

colors of any two adjacent edges.

As will be discussed at length throughout this thesis, we also find many articles,

models and theories in theoretical computer science research which contradict the

fundamental assumptions I have identified above. Kuhn calls these contradictory

findings “anomalies.” In the process of normal science, an anomaly can force previ

ously standard beliefs or procedures to be discarded, and then the anomaly can be

integrated into the paradigm.

However, if the anomalies are too significant to be assimilated into the paradigm,

for example because they contradict explicit and fundamental generalizations, then

a crisis is evoked. The paradigm becomes blurred, established research methods

are called into question and existing results are re-examined. Kuhn identifies three

outcomes to a crisis:

Sometimes normal science ultimately proves able to handle the crisis pro

voking problem despite the despair of those who have seen it as the end

of an existing paradigm. On other occasions the problem resists even ap

parently radical new approaches. Then scientists may conclude that no

solution will be forthcoming in the present state of their field. [...] Or,

finally, [...] a crisis may end with the emergence of a new candidate for

paradigm and with the ensuing battle over its acceptance ([77], p. 84).

14

I contend that there are enough anomalies in computability theory that we must

seriously re-evaluate the utility of the Turing machine as the basis of the definition

of computability. A re-examination of key concepts such as computer, computable

and computing power is required, and alternate computation models should be seri

ously considered. The analysis and description of these anomalies, and the resulting

redefinition of terms comprise a significant portion of this thesis.

1.4 Overview of deficiencies in conventional com

putability

Problems with conventional computability theory can be divided into two broad cat

egories of concerns: inconsistencies in terminology, and difficulties presented by the

conventional statement of the Church-Turing thesis.

1.4.1 Inconsistencies in the use of the word “computer”

1. Perspective-dependent definitions.

Everyday use of the word “computer” often differs from usage by computer sci

entists. Consider, for example, the dictionary definition in the Collins Canadian

English Dictionary & Thesaurus: “a device, usually electronic, that processes

data according to a set of instructions” [106]. The focus on electronic devices

and the data processing requirement are not always met by models a computer

scientist might call a “computer,” such as a Post system. Among computer

scientists, there is also disagreement; for example, Andrew S. Tanenbaum’s

well-known computer architecture book states “A digital computer is a ma

chine that can solve problems for people by carrying out instructions given to

15

it” ([107], p. 1), whereas to Donald Knuth, a computer is a machine which ex

ecutes a computational method, where a computational method is defined as a

possibly non-terminating algorithm. ([76], p.7-8).

We need a definition of computer upon which, as a minimum, theoretical and

applied computer scientists can agree.

2. Machines whose power differs from Turing machines, but which are

also called “computers” .

In the theory of computation literature, one finds a plethora of computing mod

els. There are several whole books devoted to enumerating models and their

properties, for instance, Models of Computation by John E. Savage [97] and

Models o f Computation and Formal Languages by R. Gregory Taylor [108]. To

a reader first encountering these models, the number of alternatives and dispar

ity among them is overwhelming. Even researchers knowledgeable in the field

will still encounter models with which they are unfamiliar.

The models can be grouped in four classes: those which are less powerful than a

Turing machine, those which are Turing-equivalent, those which are more pow

erful than a Turing machine, and those whose computing power is incomparable

with Turing-equivalent machines (a category often overlooked in the standard

literature). I give here an example from each respective class: a finite automa

ton [63], a two-stack machine [63], an oracle Turing machine [110], and a true

random number generator [60].

A problem with the established terminology is that applications of the word

“computer” can be found for members of all of these categories, and “com

puting” is often employed to refer to activities performed by machines other

than those which are Turing-equivalent. This leads to paradoxical statements

16

such as these paper titles: “Computing the Uncomputable” (a short survey by

John L. Casti) [21], or “Even Turing Machines Can Compute Uncomputable

Functions” (a description of accelerated Turing machines by B. Jack Copeland)

[30]. We need a definition of computer which avoids these paradoxical uses.

3. Blurring of formal and informal notions.

The intent of the Church-Turing thesis is to hypothesize a link between an

informal notion, effective calculability, and a formal model, the Turing machine

(and/or its equivalents). This distinction has been present in computability

theory from the start; consider, for instance, Turing’s remarks in 1939:

A function is said to be “effectively calculable” if its values can be

found by some purely mechanical process [...] We shall use the ex

pression “computable function” to mean a function calculable by a

machine, and we let “effectively calculable” refer to the intuitive idea

without particular identification with any one of these definitions

([110], p. 160).

We overuse the words “computing” and “computer” to refer to both the informal

notion of effective calculability, and the formal notion of Turing-computable.

“Computable” sometimes also appears as a synonym for “recursively enumer

able.” All these uses of the terminology should be examined. We need a def

inition of “computer” which includes an explicit indication of its status as a

formal or informal concept.

These problems are further examined in Chapter 2 where an alternative definition

of computer is proposed.

17

1.4.2 Problems with the conventional Church-Turing thesis

The second broad category of concerns pertains to the choice of the Turing com

putability as the standard against which computing models are measured. If the

Church-Turing thesis is intended to be a universal claim about computability, then it

should have wide applicability, free of contradictions, throughout computer science.

This is not the case.

Below are five major problems with the conventional Church-Turing thesis. Prob

lems 1-4 are addressed in Chapter 3, and problem 5 is revisited in detail in Chapter 5.

1. Ambiguity in the meaning of “Church-Turing thesis” .

As mentioned above, the modern formulation of the Church-Turing thesis di

verges greatly from the original statements of Church and Turing. Furthermore,

statements of the thesis vary greatly in their subject matter (from partial re

cursive functions, to machine models, to physical machines), and scope of ap

plicability (from narrow statements about the capacities of formal models to

statements about human intelligence). Prior to any discussion about the suit

ability of the Church-Turing thesis, the intent of its statement must be clarified.

2. Practical computing does not use Turing machines.

Practitioners and theoreticians often ascribe a different degree of importance to

the notions of computability and decidability. For the practitioner, if there is

a computer program which accomplishes a given task, then the task is “com

putable” in the sense that it can be accomplished by a machine. This means

that some problems that the theoretician would classify as uncomputable are

“computable” to the practitioner. For example, practical computation could

occur via approximation algorithms or only for a limited number of cases.

A second point to bear in mind is that practically speaking, we never use a

18

Turing-equivalent machine for computing because the amount of “tape” avail

able is always limited. This implies that the word “computing” in reference to

the activity of a Turing machine has a different meaning from when it is used

to refer to the computation of an electronic computer.

3. There are many things we consider computational that a Turing ma

chine cannot do.

Consider Lenore Blum’s example of Newton’s Method:

“Newton’s method is the paradigm example of an algorithm cited

most often in numerical analysis texts. The Turing machine is the un

derlying model of computation given in most computer science texts

on algorithms. Yet Newton’s method is not discussed in these com

puter science texts, nor are Turing machines mentioned in texts on

numerical analysis” ([8], p. 1024-1025).

It is not unreasonable to think of Newton’s method as computational, since it

describes a well-defined set of steps for calculating output from input; however,

it does not fit the traditional characterization of an algorithm because the inputs

are real numbers, and therefore not discrete.9

As a second example, observe that Turing machines cannot make use of any

graphical input. This limitation implies, for example, that all problems in

computer vision research are non-computational.10

9One could object that whenever we use Newton’s method, we actually calculate with rational
numbers, not reals. However, as already mentioned, in practice we never have an infinite Turing
machine tape either. Hence, what is possible in practice is not a strict requirement of the charac
terization of computability anyway.

10 One could object that the part of the process called “computation” occurs after the input is
encoded in a binary form. However, then we can still see that the Turing machine is incapable of
performing that encoding, and thus we must still categorize vision problems as non-computational.

19

4. T here are m achine m odels w hich com p u te functions Turing-equivalent

m achines cannot.

As mentioned in 1.4.1, there are viable machine models which have power be

yond that of a Turing machine. These models do not fall under the scope

of the conventional Church-Turing thesis, although their process of computa

tion is well-defined, and systematic analyses of their properties can be per

formed. To name just three examples, consider Lenore Blum, Michael Shub,

Steve Smale and Felipe Cucker’s real number based computing model [10, 9],

Klaus Weihrauch’s Type-2 machines [118], and Hava Siegelmann’s Analog Re

current Neural Networks [103]. Having a narrow definition of computer and a

restrictive Church-Turing thesis preempts these models from consideration as

formalizations of computational methods.

5. T here are hidden assum ptions in m achine m odels.

Consider the problem of finding a flight path between two cities along existing

airline routes using a travel agent’s computer. Suppose that a directed graph

representing airline routes has been encoded as binary data in the system. We

know that we can write an algorithm to solve this problem, for instance by

using a depth first search of the graph beginning at the city of origin. The time

required to find a route will depend on the degree of the graph, and the number

of stops between the two cities. However, we have not considered in this analysis

the time it took to input the map, or to encode the data in a structure useful

from a computational point of view. This is one example of a hidden assumption

in the computation of this problem. Not only might these extra steps contribute

to the time complexity, but they might not even be computable in the Turing

sense.

20

These problems inspire my belief that our present definition of computability is

too narrow, and that it should be replaced by a notion which is defined in relation to

properties of the computing models it is intended to describe. Computability should

be a relative notion, not an absolute one. The conventional Church-Turing should be

viewed as a statement about a specific class of machines, but not as a limitation on

all possible machine models.

1.5 Prior work

A principal claim of my thesis is that the Turing machine is not an appropriate model

on which to base the definition of computation. Instead, I advocate a broader view

of computability which defines computing power relative to specific models.

As already described, many authors have proposed models with computing power

beyond that of a Turing machine. Turing’s oracle machines are an example of such a

model [110].

As to the view that computing should be a relative notion, there are some authors

who have endorsed it, for the most part outside the mainstream theory of computation

literature. Other authors have rejected the conventional definition of computability

and replaced it with a different one which still maintains the absolute character. Here

are a few examples:

• B. Jack Copeland and Richard Sylvan: “The so-called Church-Turing thesis is

false [.. .] Computability is a relative notion, not an absolute one.” ([35], p.

46). Copeland repeats and elaborates this view in many papers, including [29,

35, 33, 32],

• Oron Shagrir: “This paper challenges two orthodox theses: (a) that computa

21

tional processes must be algorithmic; and (b) that all computed functions must

be Turing-computable” ([99], p. 321).

• Klaus Weihrauch: In his book Computable Analysis, Weihrauch redefines com

putability with the aim of bridging the gap between numerical analysis, which

relies on continuous functions, and conventional computation, which is dis

crete [118]. He introduces a new model which he proposes as an alternative

to the Turing machine as a basis of computability theory (see Section 2.3.3).

1.6 Outline of the thesis

The following is a summary of the chapters in the thesis.

1. Introduction .

This chapter.

2. O n the D efinition o f C om puter.

The aim of this chapter is to provide a definition for the word “computer.” My

requirements are that this definition be meaningful to practitioners and theo

reticians, be based on historical and contextual considerations, and avoid the

problems outlined in Section 1.4.1 and further elaborated in Chapter 2. Numer

ous definitions of computer and examples of computing models are analysed.

Distinctions between formal and informal notions are made. Finally, a new

definition of the term “computer” is provided.

3. O n the C hurch-Turing Thesis and C om putability.

This chapter begins with a comprehensive discussion of the problems with the

conventional Church-Turing thesis (some of which were briefly mentioned in

22

Section 1.4.2). New notation and definitions are given for the terms “com

putable” and “computing power,” along with syntax and semantics for com

parisons of computing power (e.g. “same” and “equivalent” computing power,

“more powerful than” and “incomparable” computing power). All the defi

nitions are provided for individual machines and functions, and extended to

classes of machines and sets of functions.

4. A Parameterized Meta-Model.

A central premise in the thesis is that the computing power of any given machine

is determined by its capabilities: how much information it can read in a step,

what type of input it receives, whether it can write, how many states it has,

whether it produces output etc. These capabilities are the resources the machine

has at its disposal, and they are modelled by parameters. As an example,

consider the deterministic finite automaton. It is a machine which has a finite

set of states, a finite input alphabet, and a set of deterministic transition rules

governing transitions between states. It does not receive any input beyond the

initial input string and it does not produce any output.

In this chapter, I identify some of the key parameters which determine a machine

model’s computing power. I organize these in the context of a meta-model which

I call a parameterized computing model which can be used to compare classes

of machine models and reason about their relative capacities. The model is not

intended to be exhaustive (i.e. it does not capture all machines identified as

“computers” according to Chapter 2), but rather is useful as a reasoning tool.

The chapter finishes with a statement of a relativized version of the Church-

Turing thesis.

5. Encodings and Labels.

23

Issues arising as a result of encodings of problems are explored in this chapter.

It is frequently assumed that as long as an effective encoding of a problem

in a machine’s input/output alphabet exists, then that machine is capable of

solving that problem. This approach hides complexity which should be explicitly

included as part of the computation. Differences resulting from varied input

alphabets are discussed, in addition to implications of using language acceptors

and language generators.

Secondly, the idea that machine descriptions axe labels for functions is intro

duced. One important implication of this perspective is that the integers are a

sufficient description of the Turing-computable functions.

6. Cardinalities, Computability and the Continuum Hypothesis.

If a computing model uses real numbers as input and/or output, what are the

implications for the class of functions which can be computed? The cardinality

of the sets involved in modelling problems are a primary factor in determining

the resources necessary to perform computations. An important claim about

the relationship between discrete and continuous structures is Cantor’s Contin

uum Hypothesis. In this chapter, I establish relationships between cardinalities,

computability and the continuum hypothesis.

As a starting point, note that the size of the set of all binary Turing machines

is N0, whereas the size of the set of all binary functions is the same as the

cardinality of the continuum, c = 2N° . This immediately leads to the conclusion

that there are Turing-uncomputable functions:11 There are c = 2K° definable

binary languages, but only No binary Turing machines. As No < 2K°, some

languages must be Turing-uncomputable. 11

11 This is, of course, simply a restatement of the standard diagonal argument for the existence of
Turing-uncomputable functions.

24

Using Cantor’s cardinal arithmetic, I have developed a proof technique based

on counting sizes of sets which can be used to establish existing and novel

computability results.

7. Conclusions and Future Work.

The final chapter contains a summary of the thesis contributions and pointers

to next steps and open questions.

25

Chapter 2

On the Definition of Computer

In this chapter, I analyse the use of the word “computer” in various contexts: with

respect to perspective dependent semantics, historical definitions, algorithms, and

computer science usage. I discuss the merits and limitations of using the Turing ma

chine as the paradigmatic model of the computer. Finally, I propose a new definition

of the term “computer” based on the prior analysis.

2.1 Influence of perspective on definition of com

puter

A principal goal of this thesis is to address the discrepancy between the theoretician’s

and the practitioner’s view of computability. A first question to ask is therefore: does

one’s perspective affect one’s definition of “computer” ?

To start, consider the layperson’s view of a computer. Most people think of a com

puter as a piece of electronic hardware which runs software and connects to peripheral

devices. For example, according to the Collins Canadian English Dictionary & The

saurus, a computer is “a device, usually electronic, that processes data according to

26

a set of instructions” [106]. According to the Merriam-Webster Online Dictionary, it

is: “a programmable usually electronic device that can store, retrieve, and process

data” [1]. The purpose of these dictionary definitions is to capture “current view on

their [the terms’] usage” in the language ([106], p.ix). Thus, we can conclude that

most people view a “computer” as an electronic data-processing device.

Among computer scientists, we find some more explicit definitions of a computer.

For instance, the first sentences of Structured Computer Organization, Andrew S.

Tanenbaum’s textbook on computer architecture, state: “A digital computer is a

machine that can solve problems for people by carrying out instructions given to it.

A sequence of instructions describing how to perform a certain task is called a pro

gram .” ([107], p. 1). I want to draw attention to two aspects of this definition to

which I will later return when I discuss Donald Knuth’s definition of an algorithm:

first, the idea that a computer is used for problem solving and, second, to solve a prob

lem, a computer must execute a sequence o f instructions. Notice that Tanenbaum’s

definition is more technical than the dictionary definitions since it specifies how the

computer operates (it carries out instructions), and it does not include mention of

any peripheral devices or physical description of hardware.

In another popular computer architecture textbook, Computer Systems Design

and Architecture by Heuring and Jordan [61], the authors identify four perspective

dependent views of the computer: that of the user, machine language programmer,

computer architect and computer logic designer. To the user, a computer is a tool to

do work; to the machine language programmer it is a low-level instruction executor;

to the computer architect it is a system with performance requirements within an

environment; and to the logic designer it is a hardware device at the logic-gate level.

The same entity, (in this case, an electronic computer), can be seen in very different

ways depending on one’s relationship to the machine. We could extend the list to

27

other domains— for example, an interior decorator would wonder how the physical

object (the computer) would fit into the space of a room. So, although the interior

decorator might “use” the computer to achieve a goal, perhaps to balance the look

of an office arrangement, nobody would claim that the decorator is “computing.”

From a theoretical viewpoint, the physical manifestation of the computer is not

essential. A universal Turing machine is the most common example of a theoretician’s

computer, but we find many other proposals such as P Systems [93], Post Systems and

tag systems [92, 86], and register machines [100], to name just a few. As an example of

a typical theoretician’s definition, consider these statements from a survey of machine

models by Peter van Emde Boas:

A machine model M is a class of similarly structured devices M*(i > 0)

called machines, which can be described as mathematical objects in the

language of set theory. [...] The set-theoretical object provides only

partial information on how the machine will behave and what its compu

tations will look like. Common in these definitions is the presence of a

finite object, called program... ([I ll], p. 6).

In recursive function theory, it would be typical to ignore the program aspect and to

simply say that a computer is any model of the partial recursive functions. For exam

ple, in R. Gregory Taylor’s book, we find the statement “we may regard Definition 3.7

[the partial recursive functions] as an alternative characterization, or mathematical

model of our intuitive notion of effectively computable ju n c t io n ([108], p. 234).

Thus, we can conclude that the definition of a computer varies highly depending

on one’s perspective.

28

2.1.1 Etymology

What is the origin of the word computer, and what did it first mean?

The first citation for the word “computer” in the Oxford English Dictionary is from

1613. The early use of the word was to describe a person performing a calculation.

The same source identifies the first use of “computer” to denote a mechanical device

in 1897: “Engineering 22 Jan. 104/2 This was..a computer made by Mr. W. Cox. He

described it as of the nature of a circular slide rule.” The word itself is derived from

the Latin computare meaning to count or sum up [2].

If we focus on the original meaning of the word “computer,” then calculation is

essential to the idea of computation. What, then, does it mean to calculate? Again,

according to the Oxford English Dictionary, it means “To estimate or determine by

arithmetical or mathematical reckoning.” Therefore, if we adhere to these original

definitions, a computer should be a person or device which performs an arithmetical or

logical operation in order to estimate or determine a result. I will refer to definitions in

this spirit as the data processing model of computation—we start with some input,

perform processing on the input, and produce output. We find this view of the

computer pervasive in computer science, perhaps because of the prevalence of the

von Neumann model as the “standard” computer architecture [11].

However, on closer examination, one notices that many models do not fit into

this characterization. Among the models I have already mentioned, it is hard to see

how a characterization of the computable functions as the partial recursive functions

includes a data processing step. As Taylor points out, a Post System “lacks anything

that would qualify as input” ([108], p. 343). If we define a universal Turing machine

as a language acceptor (it halts if the input word is a member of the language charac

terized by the machine), then input and data processing are present, but there is no

29

output data produced. Many purposes for which we use electronic computers would

not appear to the user to exemplify “computing.” Consider, for example, watching a

DVD on a computer— although we know that the computer is processing data from

the disc in order to render images on the screen and produce sound, the users watch

ing the DVD would not think of themselves as calculating anything. When asked

what they were doing, they would not describe themselves as “computing.”

Furthermore, in formal language theory, computations over sets with non-numerical

elements are commonly considered. Therefore, even for the narrow purpose of for

mal language theory, we need a definition of computer which accounts for more than

merely “arithmetical or mathematical reckoning.” A device whose purpose is to per

form numerical calculations is a calculator, a computer is often used for other purposes

too.

We therefore either need a broader definition o f computer than the data processing

model, or some o f the activities we label as “computing” actually are not.

2.2 Algorithms

Donald Knuth’s The Art o f Computer Programming has had a great influence on how

we view and define computation. His underlying assumption is that algorithms are

fundamental to computation. Volume 1 begins with the statement “The notion of an

algorithm is basic to all of computer programming, so we should begin with a careful

analysis of this concept” ([76], p .l). Knuth defines an algorithm as a finite set of rules

which specifies a sequence of operations to solve a problem and which additionally

has the following properties: 1

1. Finiteness: the algorithm must terminate.

30

2. Definiteness: the action to be taken in each step is precisely determined.

3. Input: the algorithm uses some initial data.

4. Output: the algorithm produces a result.

5. Effectiveness: all operations can be performed in a finite length of time.

He then goes on to provide a formal definition of a computational method as a

quadruple (Q , I , Q , f) whose components represent the states of the computation,

the input, the output and the computational rule respectively (for more details, see

[76], p.7-8). A computational method satisfies all algorithm conditions except possibly

finiteness, that is, it is permitted to run forever on some inputs. According to Knuth,

a computer is a machine which executes a computational method.

We can see the direct correspondence between Knuth’s characterization and Tanen-

baum’s definition quoted earlier. They both define computation as a problem solving

process and specify that the computation involves the execution of a sequence of

instructions. There axe countless other definitions in the scientific and pedagogical

references which follow this same blueprint. This view of computation certainly did

not originate with Knuth; Knuth himself credits a 1951 paper by Markov which iden

tifies virtually the same characteristics. The intent of Turing’s 1936 paper [109] was

to provide a rigorous model of the process of mathematical problem solving or proof.

Looking back even further, one could argue, as Martin Davis does, that the attempts

to define a systematic problem solving method can already be found in Leibniz’ work

in the 17th century [40].

In [96], Hartley Rogers Jr. provides an (informal) characterization of an algo

rithm. It has five “essential features” which he claims “virtually all mathematicians”

would agree are inherent in the idea of an algorithm. They are as follows, with my

31

comparisons to Knuth’s definition in brackets ([96], p. 2):

1. An algorithm is given as a set of instructions of finite size (Knuth’s algorithm

is a “finite set of rules”).

2. There is a computing agent, usually human, which can react to the instructions

and carry out the computations (no explicit equivalent in Knuth’s characteri

zation) .

3. There are facilities for making, storing, and retrieving steps in a computation

(no explicit equivalent in Knuth’s characterization— interestingly Knuth makes

no mention of intermediate data).

4. Let P be a set of instructions as in 1 and L be a computing agent as in 2. Then

L reacts to P in such a way that, for any given input, the computation is carried

out in a discrete stepwise fashion, without use of continuous methods or analog

devices (Knuth’s Effectiveness).

5. L reacts to P in such a way that a computation is carried forward determinis

tically, without resort to random methods or devices (Knuth’s Definiteness).

Rogers then goes on to identify five questions related to the definition which he

believes require more consideration and are not as readily accepted ([96], p. 3-5).

In brackets following each question are the answers to the questions given by “most

mathematicians” according to Rogers. These are also the answers required by the

conventional definition of computation (i.e. a Turing machine).

6. Is there to be a fixed finite bound on the size of inputs? (No— any finite length

is fine.)

32

7. Is there to be a fixed finite bound on the size of a set of instructions? (No— any

finite set is fine.)

8. Is there to be a fixed finite bound on the amount of “memory” storage space

available? (No— countably infinite.)

9. Is there to be, in any sense, a fixed finite bound on the capacity or ability of

the computing agent L? (Yes— follows transition rules exactly.)

10. Is there to be, in any way, a bound on the length of the computation? (No—

computations are permitted to run forever.)

Rogers’ characterization is interesting for several reasons. First, his inclusion of

the computing agent in the model is very unusual (point 2). Theoreticians are fond

of saying that electronic computers are equivalent to Turing machines. However, note

that a Turing machine on its own cannot compute anything! It is simply a collec

tion of symbols which requires a bookkeeper to perform the “computing.” On the

other hand, an electronic computer, if it has a power source, is capable of perform

ing computational steps without the intervention of a bookkeeper, provided that the

computation has been started.1 I will call these computational models which cannot

perform any steps on their own, “inanimate” models. Most of the theoretical models

are of this “inanimate” nature, for instance A-calculus, Post systems, recursive func

tion theory, etc. There are some recent proposals of candidates for computers such

as ciliates (see, for example, [80], [67]) and DNA computers (see, for example, [50]),

which could potentially serve as the basis for models able to compute on their own.

One could also argue that the human brain, when it is performing a calculation, is

an example of an “animate” model. Treating animate and inanimate models as if

1 Thanks to Cristian Calude for pointing out this difference (conversation, Oct. 2006).

33

they are the same without further consideration is as questionable as claiming that

a bridge over a river is the same as an engineering drawing and complete blueprint

for the bridge: clearly they have the same theoretical characteristics, but one can be

driven over and the other cannot.

The fundamental role of the algorithm in the definition of computability is often

taken for granted. Knuth’s definition (and equivalent characterizations) have been

very influential in shaping our formal notion of an “effective procedure.” As I discuss

in Section 2.6.1, there is significant empirical evidence for the plausibility of the

Church-Turing thesis if we use a definition o f algorithm equivalent to Knuth’s. The

problem with stating a definition of a computer based on Knuth’s algorithm is that

we are excluding many machine models, such as analog machines (see Section 2.3.3

and Section 2.3.3) or oracle machines ([110], see Section 2.3.3), from eligibility as

“computers.” I therefore reject the narrow definition of computer given by Knuth.

Rogers’ algorithm, with its inclusion of questions 6-10, is more flexible. In Chap

ter 4 I introduce a parameterized machine model which provides a formal framework

to explore the implications in terms of computing power of different answers to Rogers’

questions. Although I think it is important to consider the computing agent in a def

inition of computer, I disagree with Rogers’ inclusion of the agent in the definition of

algorithm. I will argue in Section 2.7 that a computer is a type of tool. It must be

possible to use the tool to accomplish a task, but the user does not need to be part of

the model. On the other hand, I will not exclude animate models from my definition

of a computer, as long as they satisfy all the other requirements.

34

2.3 Devices and models labelled as computers

In this section I summarize some uses of the word “computer” in the computer science

literature.

Beginning in the 1930’s with the introduction of the Turing machine, A-calculus

and recursive function theory, and continuing to the present, researchers have been

defining new models of computation and analysing their computing power, usually

in comparison with Turing machines. I will list a sampling of these models here to

illustrate the different types that one encounters. Collections of model descriptions

can be found in John Savage’s book Models o f Computation [97], R. Gregory Taylor’s

book Models o f Computation and Formal Languages [108], or Peter van Emde Boas’

survey article “Machine Models and Simulations” [111], to mention just a few sources.

The machines I list here are but a select few of the multitude of computing models

which exist. I only describe a sample which axe relevant to the discussion in this

dissertation, and which serve as examples in this chapter and in the remainder of the

thesis.

There are four categories to follow: Turing-equivalent machines, string rewriting

systems, “super-Turing” machines, and physical devices. The entities in these cate

gories are all considered to be capable of computation in different contexts. However,

not all of them would be labelled as computers if one takes the view that a computer

is a device which executes an algorithm. They are presented here so that one can con

sider their properties, and decide whether a revised definition of “computer” should

be applicable in each case.

Note that in the following, a machine usually denotes a device for which one can

imagine a physical instantiation and which operates on data of some kind.

35

2.3.1 Turing-equivalent machines

In 1936, Alan Turing published On Computable Numbers, with an Application to

the Entscheidungsproblem [109]. This groundbreaking paper contains the following

results:

• introduction of the a-machine (automatic machine; now, Turing machine)

• definition of a “computable number” as any number whose decimal expansion

can be produced as the output of some Turing machine

• construction of a universal Turing machine

• proof of equivalence of nondeterministic and deterministic machines

• proof of formal equivalence of A-calculus and Turing machines

• proof of existence of non-computable numbers

Turing’s model was widely accepted, even at the time, as a satisfactory character

ization of the functions “effectively calculable” by a human with pencil and paper.

Despite having introduced formally equivalent function definition schemas of their

own, both Godel and Chinch endorsed Turing’s model as the most intuitive and

reasonable [105]. To this day, the Turing machine remains the theoretician’s paradig

matic computing model.

Formed definition of a Turing machine

This definition follows [63], and is the definition used throughout this thesis, unless

otherwise stated.

36

A Turing machine (TM) is a seven-tuple

M = (Q , E, T, 8, go, B , F)

where

• Q is a finite set of states.

• E is the input alphabet.

• T is the tape alphabet (E C T).

• 8 is the transition function

5 : {Q xT) ^ (Q xT x {L,R}).

• Qo £ Q is the start state.

• B € T /E is a special symbol which indicates a blank cell on, the tape (only

appears at the ends of the tape).

• F C Q is the set of final states.

The described machine has one bi-directional infinite tape and one read/write

head. Computation begins with the head positioned at the leftmost input symbol on

the tape. In each processing step, the Turing machine:

• reads a tape symbol

• performs a state transition

• writes a new tape symbol

• moves left or right

37

as determined by the transition function, 5. The computation of M ends when it

enters a final state, and the output remains on the tape.

The language accepted by M , denoted by L(M), is precisely the set of words

w € £* on which M halts when given w as input. For w' £ L(M), the computation

of M does not terminate on input w'.2 In this case, the machine can be said to “run

forever” on input w'. If M is used to compute a function, the function value / m (z)

is the output which remains on the tape when M is given input x. In the case that

Jm {x) is undefined, M runs forever on x.

Many variants of the basic Turing machine model, such as multi-head machines,

multi-tape machines, multi-dimensional tape machines, and nondeterministic TMs,

do not surpass the computing power of a basic Turing machine. Register machines,

cellular automata, and 2-stack machines are other examples of machines with the same

computing power as a universal Turing machine. Models which are quite different

in nature from TMs, but also have also been shown to be equivalent in computing

power, include DNA computers [50], quantum computers [43], membrane computers

[93], billiard balls [47], and even a pile of sand [58].

2.3.2 String rewriting systems

As opposed to computing machines which are mechanistic devices that function ac

cording to a set of transition rules, string rewriting systems rely on operations which

transform strings. In general, the language defined by a string rewriting system is

the set of words which can be generated according to the defined operations from an

axiom.

I give here two examples of string rewriting systems.

Alternatively, we could define an additional output symbol or designate final states to denote
acceptance or rejection of input.

38

Markov algorithms

In 1954, A. A. Markov published Theory o f Algorithms, a manuscript in which his

aim was “to have the concept of algorithm rigorously established from the outset and

to work out a general theory of algorithms on this rigorous basis” ([85], p. 3). As

opposed to recursive functions which are natural number based, A-calculus which he

calls “cumbersome,” or Turing’s formulation, which he considers “principally oriented

toward a constructive approach to the concept of real number” ([85], p. 2), Markov

introduces a general theory of computation based on transforming words (in modern

terms, string rewriting). The presentation of Markov algorithms here is based on the

notation in [108].

A Markov algorithm schema S is a triple (E, T, II) where E and T are the input

alphabet and work alphabet respectively, with E C T and II a finite, ordered set

of production rules. The production rules II = { 7Ti , . . . , 7rn } are either of the form

a —> ¡3 (non-terminal production) or a —> ./? (terminal production) with a, (3 G T*.

A schema is applied to a word in the following way:

• In order to be applicable, the left-hand side of a production rule must match a

subword of the word in question.

• An application of a rule consists of the substitution of the left-hand side of the

rule with the right-hand side.

• The lowest numbered production rule which is applicable must be used before

any higher numbered rules can be used.

• The substitution must occur in the leftmost position in which it is possible in

the word.

39

• Rules axe iteratively applied until either no more substitutions are possible, or

a terminal production rule has been applied.

Note that the process is entirely deterministic. Halting of the production process by

reaching a terminal production can be used as a condition for language membership.

It can be shown that Markov algorithms are able to simulate Turing machine

productions and vice-versa. Hence the set of languages definable by both methods

axe the same.

Insertion/deletion systems

The insertion/deletion system described here is based on [68]. Note that there are

many variations and systems similar to this example. The motivation for these

systems was the development of a formal model for DNA computing operations—

specifically, the insertion and deletion of nucleotide sequences in DNA strands. In

molecular operations, insertion and deletion occurs at site-specific locations in a

strand, that is, only between certain nucleotide markers. This type of operation

is formally modelled by contextual insertions and deletions.

Consider a finite alphabet X and words u, v G X*. The formal definition of the

contextual insertion of v into u within the context (x, y) 6 X* x X* is defined in [68]

as:

u <r -̂ v = {u ixvyui \ui,U2 € X*, u = uixyu2)

The notation is extended to sets C C X* x X* of contexts. Contextual deletion is

defined analogously: a subword v can be erased from u if it appears in the required

context (see [68] for more details).

The authors proved that contextual insertion/deletion operations can be used to

40

simulate the execution of any Turing machine, and hence, these operations provide

the basis for a Turing-computationally complete model.

2.3.3 “Super-Turing” machines

There are several comprehensive surveys of machine models which can compute func

tions that a universal Turing machine cannot. The machines in this class are called by

various names, including super-Turing machines, hypermachines and machines which

compute beyond the Turing limit. They vary widely in their capabilities, operation

and specification. I will describe a selection of these models relevant to this thesis,

but the reader is referred to Toby Ord’s survey [89], or the works of Jack Copeland

[35], [33] for more comprehensive descriptions of models.

I will classify the models in three categories, according to the domain and co

domain of the functions they compute (or, equivalently, the input and output sets).

The first category comprises machines which, like Turing machines, operate over

discrete input sets. The second category contains machines which operate on another

type of data, such as real numbers or continuous intervals. I will call these classes

the discrete machines and the continuous machines, respectively, and consider also

hybrid machines which can do both.

Discrete machines

Turing himself was the first person to consider a mechanical model with more com

puting power than a simple Turing machine in his Ph.D. thesis where he introduces

the notion of oracle machines [110].3 This model is classified under “discrete” because

the domain on which it operates is entirely discrete— the integers, binary numbers, or

3As B. Jack Copeland remarks, it is therefore nonsensical to use terms such as “super-Turing,”
“beyond the Turing limit” and so on ([35], p. 63).

41

words over a finite alphabet, for example. Nevertheless, oracle Turing machines are

capable of computing larger sets of functions than ordinary Turing machines. The

(informal) presentation here follows Cooper ([28], p. 140).

An oracle Turing machine is a conventional Turing machine augmented by an

additional type of transition represented by a “query quadruple.” Given a set of

natural numbers A (the oracle), these quadruples allow the machine to determine

whether x G A for any x and change state on the basis of the answer. A query

quadruple has the form (<&, S, qi) where qi,qj and qi are states and S is the tape

symbol currently being scanned. When the oracle machine is in state qi and scanning

S, then the number of l ’s presently on the work tape is counted (say, n), and the

query “Is n G AT' is presented to the oracle. If yes, then state qj is entered, otherwise

state qi is entered.

Oracle Turing machines can be used as a basis for defining relative complexity and

computability. A (partial) function (p is A-Truing computable if <p is computable by an

oracle Turing machine with oracle A. A set B is A-Turing computable, or computable

relative to A, if its characteristic function is A-Turing computable. Computability

of B relative to oracle A is normally denoted by B < t A. The relation < t is

reflexive and transitive, and therefore can be used as a basis for partitioning binary

(or equivalently) integer functions into equivalence classes. Let A = t B if B < t A

and A < t B. The equivalence classes determined by = t are called the Turing degrees.

Relative computability is this sense can be used to define a hierarchy of degrees of

computability (the hierarchy of Turing degrees). At this point I will note that this

definition of “relative computability” is not the same as the one discussed in this

thesis. This difference will is further explained in Chapter 6, Section 6.10.

42

Continuous machines

Analog recurrent neural networks (AR N N s)

In [102, 103], Hava Siegelmann describes a neural network based model which, with

real numbers as weights and possible exponential computation time, permits the

definition of networks for all binary languages, including those which are Turing-

uncomputable ([103], p. 59).

The general form of the computation model is as follows. A recurrent neural net

work contains N elementary processors. These processors, which function as neurons,

have an associated activation value represented by Xi(t), for i = 1 , . . . , N (the acti

vation value of neuron i at time step t). At each time step, the neurons are presented

with external binary inputs Uj for j = 1 , . . . , M. Each neuron has the potential to be

connected to any other neuron with a weight on the connection. Likewise, a weight

associated with each input/neuron pair determines the influence of the input on the

neuron. At each time step, the activation value (or local state) of every neuron

i = 1 , . . . , N is updated according to the formula below ([103], p. 19):

(N M

T J aijXj(t) + ^ 2 bijXj(t) + Ci
j=1 j=1

where a# are the connection weights, 6y are the input weights, and q is a weight

associated with neuron i itself, a is an activation function (such as a step function

or sigmoid). Certain neurons are designated as output processors— their local state

can be communicated to the environment. Normally an output value of 1 is used to

indicate acceptance of an input (for a precise description see [103], p. 24).

If the weights are limited to integers, the languages recognizable by ARNNs as

above are the regular binary languages; with rational weights, the binary Turing

43

languages; and with real weights all binary languages.

In its form with real number weights, this model is classified as a continuous

machine because its computation is not describable with parameter values from a

discrete domain. The weights, which are part of the initial specification for a network,

are taken from the set of real numbers, and hence, the machine does not have a finite

description.

Hybrids

The computing models described in this section are capable of representing Turing-

computable functions (discrete domain), and can simultaneously be used for compu

tations over the real numbers (continuous domain).

Abramson’s extended Turing machines

Extended Turing machines were described by Fred G. Abramson in a 1974 paper [7].

An extended Turing machine is an augmented conventional Turing machine whose

tape is divided into two tracks. The function of the cells on the “bottom” track is

identical to those on the tape of a conventional Turing machine: they can contain

symbols from the finite tape alphabet and they can be read or written one at a time

by the head of the extended Turing machine. On the other hand, the cells on the

“upper” track can each hold one real number. The head simulatenously scans one

cell on the lower track and the corresponding one on the upper track. Evidently,

conventional Turing computability is recovered if the upper track is unused.

A “real number storage device, s” (i.e. register) is added to the finite control for

the machine. There are additional operations defined to access s ([7], p. 33):

• load s: copy real number beneath the head into s

44

• store s: write the contents of s in the current cell

• c —► s: load constant c into s

• s + T —> s: add the number T in the current cell to s and store the result in s

• s * T —► s: multiply the number T in the current cell by s and store the result

in s

• test s: change state according to the sign of the number in s

W eihrauch ’s T ype-2 machines

The motivation for Weihrauch’s work is to provide a “coherent foundation for com

putable analysis” ([118], p. 2). He remarks that there is a divide between numerical

analysis, which, generally speaking, relies on continuous functions on sets such as the

real numbers and uses calculus extensively, and computability/complexity theory,

which is concerned with discrete functions executed by machine models on count

able sets. His work attempts to bridge this gap by outlining a computation model

which preserves Turing machine functionality while also allowing computation of lim

its and approximations of continuous functions. He calls the traditional computability

Type-1 Theory, and the new theory, which extends traditional computability, Type-2

Theory of Effectivity or TTE.

In [118], Weihrauch describes a “Type-2 machine” which serves as a computing

machine for TTE. It is similar to a conventional Turing machine with some adjust

ments. A Type-2 machine has a finite number 1 . . . k of one-way infinite read-only

input tapes, an additional finite number k + 1 . . . N of two-way infinite work tapes,

and one one-way infinite output tape 0. The input is read once from left to right

from the input tapes, and the output is written once from left to right on the output

45

tape. In a computation step, the machine may:

• move a head on one of the tapes 0 . . . N one position to the right

• scan a symbol on one of the tapes 1 . . . N

• write a symbol on a work tape k + 1. . . N or the output tape 0

• move the head left on a work tape k + 1 . . . N

• halt

The cells on the input and output tapes contain symbols from a non-empty finite

alphabet EUi?, and the work tapes use the alphabet T D S UB , where B is a special

blank symbol B ^ E.

The key difference from a Turing machine is that the input and output strings

are permitted to be infinite in length, that is, for k — 0 . . . N, e {£*, Ew}. Conse

quently, it is possible for the machine to run forever either by entering a loop in its

transition function, or by continuing to read infinite input indefinitely.

It is easy to see that a Type-2 machine can simulate a traditional Turing ma

chine by restricting the input to finite strings only. Note that in order to perform a

non-Turing computation, at least one input value must be non-Turing computable.4

(Otherwise the computation could be simulated by a Turing machine extended to

compute the symbols of the infinite input value as they are needed since the input is

read exclusively from left to right.)

One possible objection to Weihrauch’s model which he raises himself ([118], p. 6)

is that a real function is computable only if it is continuous in TTE. This limitation

implies that some functions which might intuitively seem computable, for example,

4A real number x is Turing-computable if and only if there exists a Turing machine which, when
started on a blank tape, prints the digits of x in sequence, starting with the most significant digit.

46

the step function, are not. Weihrauch’s justification for this limitation is that “ [as]

far as we know neither the step function5 or the Gaufi staircase6 nor any other non-

continuous real function can be computed by physical devices” ([118], p. 6). However,

this is not a usual requirement for computabilty— if it were, then computations re

quiring an infinite tape (which Weihrauch’s model and the standard Turing machine

model include), would also be uncomputable.

Blum, Cucker, Shub, and Smale (BCSS)

The goal of the model proposed by Lenore Blum, Michael Shub and Steve Smale

in [10] and developed by the former authors and Felipe Cucker in [9], is to define

a machine which can provide a natural representation of real number computations.

Recall Blum’s observation about Newton’s method: it is not unreasonable to think of

Newton’s method as algorithmic, since it describes a well defined set of steps which for

calculating output from input; however, it does not fit the traditional characterization

of an algorithm because the input is a real number, and therefore not finite (see

Section 1.4.2).

They observe that when conventional computing models such as Turing machines

are used for real-number based problems, the key structure of the solution method

is lost because of the necessity of approximation and representation conversion. Fur

thermore, elementary operations such as multiplication cannot be completed in one

computation step, and so complexity analysis in terms of elementary real number

operations is not possible. Their model addresses these issues.

Beyond the goal of defining a model which provides a natural representation of real

number computations, secondary goals of their work are to allow the tools of analysis

5For a real number x , the step function is given by s (x) = < ôr x < ®
(1 otherwise.

6The value of the Gaufi staircase function for a real number x is its integer component: g(x) = [x j.

47

and geometry to be used in discrete computation and conversely, to make it possible

for the notions of algorithm, complexity and computation to apply to problems in

real analysis.

In [9, 10], a computation device is described which operates on an arbitrary com

mutative ring R with unit (the BCSS machine). Examples discussed by the authors

include the integers Z, the rational numbers Q, and the reals M. In the case that the

ring is the integers Z, then the traditional computability is recovered. However, in

the case that R is taken to be the real numbers R, then the model describes functions

over the reals and is therefore suitable for use in numerical analysis. A key difference

from Weihrauch’s model, is that Blum et al. treat real numbers as basic mathematical

entities rather than dealing with their decimal or binary expansions.

The described machine is a type of register machine. Each register contains a value

from the domain of the ring R on which the machine is operating. In the general

case, an arbitrarily large (finite) number of registers can be simultaneously used. The

operation of the machine is represented by a finite, connected, directed graph which

can contain five types of nodes ([9], p. 71): input, output, branch, computation and

shift. The data in registers Xi is modelled by a tuple x = (. . . , x_2, x_i, xQ.xi, x<x, . . .)

where . is a distinguished marker between xq and x\. Informally, the functions of the

nodes in the graph are as follows:

• input: transform input into computation domain

• computation: do a computation on the register values

• branching: based on one or more register values, branch in the graph

• output: transform the output from the computation domain

• shift: change the position of . (alters register indices)

48

Weihrauch criticizes the BOSS machine by arguing that it is not finitely realizable:

Real-RAMs cannot be realized by physical machines, that is, they are un

realistic, for the following reason: in a finite amount of time every physical

information channel can transfer only finitely many bits of information and

every physical memory is finite ([118], p. 262).

On the other hand, the BOSS machine can represent computations on real numbers

as primitive operations which Weihrauch’s model does not.

Leaving aside a discussion of the relative merits of each model, these two machines

are in the hybrid category because they can be used to compute with purely discrete

data, or compute using values from a continuous domain. They are able to simulate

the computation of a Turing machine, but also have capacities beyond that of a Turing

machine.

2.3.4 Physical devices

In this category, we have devices that physically exist and are used as computers.

Some examples are an electronic computer, an abacus, and a human with pencil and

paper. I already pointed out that there are differences between electronic computers,

which in practice do not have unlimited memory, and Turing machines, which do (see

Section 1.4.2). This issue is revisited in Section 3.1.3 where additional differences are

discussed.

An example of a physical component which we cannot presently formally model is

a true random number generator. As opposed to a pseudo-random number generator

which is algorithmic, a true random number generator relies on environmental input

to generate numbers. An example of such a device was created by Mads Haahr, and

can be accessed via a web interface at http://www.random .org [60]. The website

http://www.random.org

49

allows access to a random number generator which uses an array of radios that pick

up atmospheric noise. On the basis of the atmospheric noise, each radio generates

about 3000 random bits per second.

There have been a vast number of proposals for using real-world phenomena such

as quantum state changes, molecular interactions, and biological processes as bases

for computational models. I give here one example of a computer based on an unlikely

physical entity: a pile of sand [58]. The authors model the avalanches which occur

on the sides of a pile of sand as a set of what they call “critical staircases.” These

staircases have stable forms, called critical attractors. The travelling of a grain of

sand along a staircase can be used to transfer information, and logic gates are built

using two staircases for input and one for output. In the paper, it is shown that AND,

OR and NOT gates can be modelled which in turn can be used to simulate a register

machine. Therefore, a pile of sand could potentially be used as a Turing-equivalent

computing machine.

2.4 Characterizations of the “effectively calcula

ble” functions

As mentioned in Section 2.3.1, the motivation behind Turing’s introduction of his

a-machines was to formalize the process of mathematical calculation as done by a

human. Using a Turing machine, if one disregards the intermediate steps in the

computation and attends only to the initial tape contents and the resulting tape con

tents when the computation halts, then the computation of a Turing machine can be

thought of as a function from input to output. As we know, the set of functions (in-

put/output mappings) calculated by the set of all Turing machines is usually labelled

50

the set of “computable functions.” This set is invariant up to isomorphism over the

tape alphabet.

In the 1930’s, two other significant characterizations of this set of functions were

introduced: A-calculus and (partial) recursive functions. The former was developed

by Alonzo Church and Stephen Kleene in a series of articles [23, 24, 69, 70, 71].

The original motivation for its development was to provide a set of postulates which

would serve as a basis for formal logic and avoid the use of notation which Church and

Kleene considered “somewhat artificial” (see [23], p. 347), such as the theory of types

introduced by Whitehead and Russell in Principia Mathematica [119]. A-calculus is

a tool for expressing logical propositions as formulae which can then be transformed

by means of a set of axiomatic postulates. The resulting set of formulae identified by

Kleene as those that aire “A-definable,” when interpreted as functions over the set of

positive integers, was shown to be the same as the set of partial recursive functions

[25].

The definition of the general recursive functions (or partial recursive functions

as they are normally called today) is usually attributed to Kurt Godel and Jacques

Herbrand.7 The definition of a primitive recursive function is formally given by Godel

in [55]. (He referred to the defined functions as simply “recursive” ; the terminology

“primitive recursive” was introduced by Kleene [72].) Other definitions of the primi

tive recursive functions also appeared in earlier works by Dedekind, Skolem, Hilbert

and Ackermann ([75], p. 131). Briefly stated, the primitive recursive functions over

7The attribution to Herbrand made by Godel in his Princeton lectures (“This [the definition of
general recursive function] was suggested by Herbrand in a private communication” [56], p. 368),
might not represent an accurate recollection. In 1963, in a letter to Jean van Heijenoort, Godel
writes that he can no longer find the original letter from Herbrand, but that the definition given
by Herbrand “was formulated exactly as on page 26 of my lecture notes” ([114], p. 115). However,
the letters between Herbrand and Godel have since been found. Herbrand’s letter contains, among
other things, several definitions of formal systems, and a discussion of the impact of Godel’s second
incompleteness theorem on Hilbert’s program, but “ [njowhere in the correspondence does the issue
of general computability arise” ([101], p. 180).

51

the natural numbers are those that can be derived from the constant 0, the succes

sor function, the projection function, function composition and primitive reclusión.

For the general recursive functions, the set of basic operations is augmented by a

minimization operation.

The connection between A-calculus and recursive function theory is made through

Godel numbers; each A-formula can be assigned a unique Godel number representa

tion, and checking whether a given natural number is a valid Godel number represen

tation of a well-formed A-formula is recursive. Furthermore, it was proven that every

recursive function o f positive integers is X-definable and that every A-definable func

tion o f positive integers is recursive (Theorems XVI and XVII as stated in [25]). This

conversion allows Church to conclude that “symbolic logic in general can be regarded,

mathematically, as a branch of elementary number theory” ([25], p. 350). Therefore,

Church and Kleene’s formal system for the expression of logical propositions and of

logical proofs has the same expressive power as Godel and Herbrand’s system char

acterizing functions of elementary number theory. On that basis, one might argue

that it was shown that the notions of “proving a formula” and “solving an equation,”

are equivalent. Furthermore, if one also considers the reduction of Truing machine

computations to the calculations in the previous two systems, then one might also

argue that “computing” is interchangeable with the former two notions.

What can we say about the differences among the three systems? To facilitate the

discussion, consider the natural representation in all three systems of the concrete ex

ample of adding two integers. In reclusive function theory, we could use the following

function / to calculate the sum of its arguments, m and n:

52

Let f (n ,m) be defined such that

/(0,m) = m

f (x + l ,m) = s (f (x , m))

(where s is the successor function).

In A-calculus, we would construct a A-formula F(x, y, z) such that F is true if and

only if x + y — z.8 In the Turing machine case, we could construct a machine which

takes the unary representation of the addends as input and produces the unary rep

resentation of the sum as output. For the Turing machine and the recursive function

representation, we can see how the sum of the two integers can be calculated— in

each of these cases, we are able to obtain an answer (output) based on two arguments

(input). However, with the A-formula, given x and y, we cannot obtain 2— we would

only be able to check whether 2 is the correct sum. Therefore, in the case of this

A-calculus example, I would not say that we are computing the sum, since the sum

of the arguments cannot be generated using the formalism.

2.5 Use of the word “computer”

I now summarize the ways in which the word “computer” is used which have been

discussed in this chapter.

1. an electronic data processing device (dictionary definition)

2. a device which executes an algorithm (Tanenbaum, Knuth, Rogers)

3. a tool to do work (user perspective, Heuring and Jordan) 8

8There is also the possibility of using representations of the natural numbers as Church numerals
where 0 = X f .X x .x , 1 = X f . X x . f x , . . . , n = X f . X f nx. I do not consider this further here.

53

4. a low-level instruction executor (machine-language programmer perspective,

Heuring and Jordan)

5. a person or device which performs a calculation in order to achieve a desired

result (historical definition)

6. a universal Turing machine used as a language-acceptor, or any device capable

of recognizing the same set of languages as a UTM

7. a universal Turing machine used as a language-generator, or any device capable

of generating the same languages as a UTM

8. a universal Turing machine used to compute functions, or any device or formal

system capable of computing the partial recursive functions

9. a string rewriting system

10. a “super-Turing” computation model

11. a model of the partial recursive functions or A-definable formula

12. a physical device

2.5.1 Formal definitions vs. intuitive notions

The list in Section 2.5 includes many meanings not typically used in theoretical com

puter science. In theoretical computer science, the term “computable” is normally

synonymous with “partial recursive” or “Turing-computable” (and, by extension, with

the terms “A-definable,” “specified by a Post System,” etc.).

The first important consideration required for the analysis of the above listed terms

is to consider which of them are formal definitions and which are intuitive notions.

54

This point might seem obvious, but a quick glance at common literature shows that

the equivalence between formal and intuitive notions is frequently taken for granted

and the use of these and other related terms is seldom rigorous. For example, consider

this excerpt from Hopcroft, Motwani and Ullman’s popular textbook:

Interestingly, all the serious proposals for a model of computation have

the same power; that is, they compute the same functions or recognize

the same languages. The improvable assumption that any general way to

compute will allow us to compute only the partial-recursive functions (or

equivalently, what Turing machines or modern-day computers can com

pute) is known as Church’s hypothesis [. . .] or the Church-Turing thesis.

(.Introduction to Automata Theory, Languages, and Computation, Hopcroft,

Motwani &; Ullman, [63], p. 318) .

The above quotation has at least four problems:

• “Serious” is an ambiguous term— are so-called “super-Turing” proposals not

serious?

• What is meant by “any general way to compute?” Is it an intuitive notion?

Does it subsume all physical computations?

• The scope of the Church-Turing thesis does not extend to all conceivable com

puting models [34].

• Turing machines and modern-day computers have significant differences. For

example, you cannot watch a DVD on a Turing machine and electronic com

puters do not have unbounded memory.

55

In Table 2.1, I have identified terms according to whether they are intuitive or

formal and I have provided justifications for the classifications.

Term Classification Justification
partial reclusive form al The partial recursive functions are the

functions which can be specified using the
function scheme first introduced by Her-
brand and Godel (see Section 2.4).

A-definable form al A formula is A-definable if and only if
it can be derived from the definition
schemas, transformation rules and axioms
of A-calculus, as specified by Church and
Kleene (see Section 2.4).

Turing-computable form al A function is Turing-computable if its do
main and range are the input and output
sets of some Turing machine.

algorithm intuitive Algorithm is a general term for a sequence
of steps for solving a problem. Different
authors have made the term precise by giv
ing a definition of algorithm (for example,
Knuth and Rogers, Section 2.2).

effective procedure intuitive We normally understand “effective proce
dure” to denote a method which can be
finitely expressed and can be carried out
in a step by step manner without any ad
ditional insight.

computable intuitive A problem is computable if it can be solved
using a computer.

Table 2.1: Comparison of formal and informal notions

The common practice of treating all the terms in Table 2.1 as if they are syn

onymous leads to hidden assumptions about the nature of computability and limits

our ability to meaningfully discuss computation in contexts other than traditional

Turing computation. We should be careful to use the term which precisely captures

the meaning of what we want to express in each context.

56

2.5.2 Soare’s discussion of “recursive” and “computable”

In [105], Robert I. Soaxe outlines the history of computability theory, and gives a

detailed analysis of the usage of the terms “computable” and “recursive.” The purpose

of his article is to examine the meaning, origin and history of these terms, and to

evaluate their utility as descriptions in computability theory. The principal point

he makes is that Gödel and Turing used the term “computable” to refer to any

work related to algorithmic problem solving (usually machine based). “Recursive,”

properly used, could refer to Godel-Herbrand recursive function theory, Kleene’s p-

recursion or work by Platek, Péter, Dedekind etc.

Soare identifies a trend he calls the “recursion convention” ([105], p. 26-27), which

he says has been followed for 50 years. Briefly, it entails using the language of recursion

theory to describe results both related to recursive functions and to machine-based

computation, whether it is appropriate or not. We can see evidence of this trend

in the use of the partial-recursive functions as synonymous with the computable (or

Turing-computable) functions by many computer scientists.

Soare strongly objects to the recursion convention:

. . . the Convention leads to imprecise thinking about the basic concepts of

the subject; the term “recursion” is often used when the concept of “com

putability” is meant. (By the term “recursive function” does the writer

mean “inductively defined function” or “computable function?”) Further

more, ambiguous and little recognized terms and imprecise thinking lead

to poor communication both within the subject and to outsiders, which

leads to isolation and lack of progress within the subject, since progress

in science depends on the collaboration of many minds ([105], p. 28).

Soare’s arguments constitute yet another example where terms have lost precise

57

meaning through misuse. A primary goal of this thesis is to disambiguate terms

including: computer, computable, computing power, Church-Turing thesis, and so

on. Only when we are careful in the form of expression of ideas can we meaningfully

discuss foundational issues.

2.6 Discussion of the conventional definition of “com

puter”

In the previous sections, I have discussed in detail the various uses of the word “com

puter” that one encounters: perspective dependent use, historical use, theoretical

machines, practitioners’ use, and formally equivalent models.

I want to return now to the conventional view of a computer in theoretical com

puter science, that is, a Turing machine. Why does it have such a central role, and

what inadequacies does it have?

2.6.1 The central role of the Turing machine

Turing’s original motivation for the introduction of his a-machines was to formalize

the process of mathematical calculation as done by a human with pencil and paper.

Church, Kleene, Post, Godel, and others at that time were also interested in for

malizing logic, proof, calculation, and computation and analysing the relationships

between these concepts.

Over the last 80 years, we have seen extensive evidence for the plausibility of

the so-called Church-Turing thesis. In the discussion which follows, I am using Jack

Copeland’s terminology, as outlined in his Stanford Encyclopedia of Philosophy article

58

[34].9 His simple statement of the Church-Turing thesis is the following: “every

effective computation can be carried out by a Turing machine” [34]. He credits Kleene

with the introduction of the term “Church-Turing” thesis, which combines Turing’s

assertion that a Turing machine can implement any effective procedure, and Church’s

claim that any function of positive integers is effectively computable only if recursive.

Copeland gives a definition of an effective procedure which is comparable to Knuth

and Rogers’ definitions of an algorithm cited earlier in this chapter. I will quote here

Copeland’s summary of the justifications for the plausibility of the Church-Turing

thesis.

Much evidence has been amassed for the ‘working hypothesis’ proposed

by Church and Turing in 1936. One of the fullest surveys is to be found

in chapters 12 and 13 of Kleene (1952). In summary: (1) Every effec

tively calculable function that has been investigated in this respect has

turned out to be computable by Turing machine. (2) All known methods

or operations for obtaining new effectively calculable functions from given

effectively calculable functions are paralleled by methods for construct

ing new Turing machines from given Turing machines. (3) All attempts

to give an exact analysis of the intuitive notion of an effectively calcu

lable function have turned out to be equivalent in the sense that each

analysis offered has been proved to pick out the same class of functions,

namely those that are computable by Turing machine. Because of the di

versity of the various analyses the latter is generally considered strong ev

idence. For example, apart from the analyses already mentioned in terms

of lambda-definability and recursiveness, there are analyses in terms of

9Copeland provides an extensive analysis of the terms Church-Turing thesis, Turing’s thesis,
Church’s thesis, Thesis M, and Thesis 5. He identifies several common misunderstandings of the
Church-Turing thesis which are further discussed in Chapter 3.

59

register machines (Shepherdson and Sturgis 1963), Post’s canonical and

normal systems (Post 1943, 1946), combinatory definability (Schônfinkel

1924, Curry 1929, 1930, 1932), Markov algorithms (Markov 1960), and

Gôdel’s notion of reckonability (Gödel 1936, Kleene 1952) [34].

If we redefine “computer” and “computable,” what is to become of this overwhelm

ing body of evidence for the plausibility of the Church-Turing thesis? My desire is not

to contradict or diminish the utility of the standard computing models or to contest

the likelihood of the equivalence of computing models which satisfy the constaints of

Knuth’s algorithm. Rather, I believe in a broader definition of computation which

permits discourse about models less, equally and more powerful than Turing machines

without a change in terminology. The Turing machine (and its equivalents) still play

an important role as machine models which obey the constraints of finite input, effec

tive computing steps, finite description, and no additional input during computation.

However, we limit our capacity to imagine alternative computing models when we

adopt the Turing machine as our definition of a computer. Consider the analogy of

nuclear power generation: we cannot synthesize uranium, nor do we have a complete

explanation of why or how radioactive decay occurs; however, we are able to use this

process to generate power. There is no good reason to assume that we will never

similarly discover a computing component in nature— a “natural oracle” — which al

lows us to compute functions which the Turing machine cannot. Actually, we are

already using natural phenomena to go beyond Turing computability. Consider the

true random number generator described earlier (see Section 2.3.4).

Furthermore, as I pointed out in Section 2.3.3, there are many theoretical models

which have computing power beyond that of a Turing machine. It is not reasonable,

and moreover, it leads to semantic confusion, to have a definition of “computer” which

60

excludes these models.

Copeland argues that the notion of effective method need not only refer to that

which can be executed by a Turing machine, again without undermining the important

role of that class of machines:

[A] thesis concerning the extent of effective methods— which is to say,

concerning the extent of procedures of a certain sort that a human being

unaided by machinery is capable of carrying out—carries no implication

concerning the extent of the procedures that machines are capable of

carrying out, even machines acting in accordance with ‘explicitly stated

rules’ . For among a machine’s repertoire of atomic operations there may

be those that no human being unaided by machinery can perform [34].

This point is comparable to Blum’s argument that Newton’s method could be consid

ered an algorithm, if one abandons the requirement that the input and intermediate

data be finitary (see Section 2.3.3).

So, the Turing machine with its accompanying computability theory will still

maintain an important place in a broader framework, but should be viewed as one

instance of a computing model rather than as the basis of the definition of “computer.”

Turing’s original intent was to model the calculation a human could do with pencil

and paper. It is plausible that the Turing model, and other formally equivalent

models, are adequate for capturing all functions which can be computed in the former

manner. However, what we call “computation” goes beyond this narrow idealization

of computing (see Chapter 3 for more discussion of this point). In this broader

context, the Turing machine is still useful, but not as a global model. As Soare

puts it, evidence for a definition of computability beyond Turing’s “would not affect

Turing’s thesis about mechanical computability any more than hyberbolic geometry

61

or Einsteinian physics refutes the laws of Euclidian geometry or Newtonian physics.

Each simply describes a different part of the universe” ([105], p. 14).

2.6.2 Relationship to practical computing

With the advent of general-purpose electronic computers, the theoretical models pro

posed in the 1930’s gained physical instantiations. But what is really the relationship

between the physical and theoretical models?

Mechanical aids to calculation or problem solving are not a new innovation. Even

predating the first well-known electronic computers of the 1940’s, general purpose

machines were envisioned for performing tasks we would now call computational. A

few examples are Gottfried Leibniz’s conception of a universal mathematic language

and associated reckoning machine in the late 17th century, Charles Babbage’s design

of the analytical engine in the 1830’s, and Konrad Zuse’s construction of the Zl,

started in 1934, before the publication of Turing’s seminal paper [40, 12 2].

Today, some problems which are conventionally called “uncomputable” are regu

larly solved in practice. Consider, for instance, the problem of compiler optimization

of programs. We know that this problem is uncomputable in the sense that no Turing-

equivalent computer is capable of producing an ideally optimized compilation of every

program. However, a good compiler can “optimize” source code to a very satisfac

tory degree and will be capable of generating an ideal optimization of some programs.

Therefore, it seems misleading to talk about this problem as “uncomputable” since

we can solve it for many examples (albeit not for all examples, and not necessarily

perfectly all the time).

This example illustrates the semantic difference in the use of the word “compute”

and consequently also “computer.” Shifting our view to a broader definition of a

62

computer will allow us to avoid this semantic difficulty in which we find ourselves

implying something “uncomputable” is “computed” on a regular basis.

The differences between practical and theoretical computing are further discussed

in the context of the applicability of the Church-Turing thesis in Section 3.1.2.

2.6.3 More powerful machines are excluded

So-called super-Turing computing devices are excluded from the conventional defi

nition of computation. As described in Section 2.3.3, there have been very detailed

proposals for machines which perform operations which a Turing machine cannot

simulate. To exclude these from the outset as being classified as “computers” limits

discussion and innovation. Furthermore, we invite semantic confusion: can one com

pute with a device which is not a computer? The simplest solution to this problem

is to endorse a definition of computer which is broad enough to include super-Turing

computation models.

2.6.4 Summary of analysis of the conventional definition

1. The Turing machine (and other formally equivalent theoretical models), serve

a useful purpose as models of a specific class of functions.

2. There are differences in the use of the word “computer” by theoreticians and

practitioners:

(a) Electronic computers “compute” uncomputable functions.

(b) No known physical computer is Turing-equivalent since they lack an infinite

tape.

63

3. The conventional definition excludes many models which differ in power from

Turing machines.

2.7 A new type of definition

I began this chapter by stating that a principal goal of this thesis is to address the

discrepancy between the theoretician’s and the practitioner’s view of computability.

Prom the list of definitions in Section 2.5, we see that there is a large variation in

the way the word “computer” is used— among laypeople, practitioners, computer

scientists, and even among theoretical computer scientists. We will not find one

unifying formal definition of the word “computer” across all these domains, since the

purpose for which the computer is used determines its definition. The same type of

problem is encountered for other terms with broad applicability such as “information,”

“communication,” or “game.” What is proposed here is not a single definition of

“computer” for every context, but rather a definition which is useful to computer

scientists for discourse within that domain.

I therefore accept that the layperson’s definition of a computer will not be the

same as the computer scientist’s. However, I contend that a requirement of a good

theoretical definition is that it be capable of capturing the characteristics of any

instantiation of the definition. That is, an electronic desktop computer should be

a recognizable instance of the theoretician’s computer. Consider an analogy from

object-oriented programming: an abstract class captures common properties of its

concrete subclasses, although the concrete subclasses might have additional properties

or operations that the abstract class does not include. The type of definition of

“computer” I will provide is of this nature; it serves as a common template which

can characterize all its concrete instances. This definition will no longer be in an

64

equivalence relationship with its instances: a Turing machine will be a computer, a

Weihrauch Type-2 machine will be a computer, but not every computer is formally or

informally equivalent to either of these models, nor are they equivalent to each other.

Returning now to the original intent of the word “computer,” recall that histor

ically a computer is a person or device which performs an arithmetical or logical

operation to estimate or determine a result (see Section 2.1.1). As we saw from mod

ern dictionary defintions, the word “computer” has come mainly to refer to electronic

computers in casual use, but I would argue that the historical definition is closer

to what people mean when they use the verb “to compute” (recall the point about

watching a DVD on your laptop: most people would not characterize this activity as

“computing”). So, if a computer is something which computes, then, essentially, a

computer is a problem solving machine.

With respect to algorithms (see Section 2.2), I have argued that restricting the

definition of computer to a device which executes an algorithm is too narrow as it

excludes many existing models. Furthermore, following Copeland and Blum, even

including the requirement that steps be effective is debatable since effectiveness nor

mally includes an assumption of finiteness and of human ability. The strict con

ventional definition would even exclude nondeterministic Turing machines because a

“guessing” transition is not effective in the conventional sense. I also contend that in

sisting on a series of computation steps as part of the definition is too limiting because

it would exclude devices like DNA computers in which the order of the lowest level

steps (in this case, biological interactions among the DNA strands) are not sequential

or predictable. The part from Knuth’s algorithm which I will retain is the explicit

inclusion o f input and output in the model. To what end would we be computing if we

did not start by specifying the problem and end by (at least potentially) producing a

solution? From Rogers, I adapt the requirement of the computing agent. In order to

65

qualify as a computer, a device must be accessible to some user, in the sense that the

user has an interface to interact with the device— supply input and receive output. I

do not, however, require that the internal workings of the device be transparent to

the user.

As for the Turing-equivalent and so-called super-Turing models, I insist on a defi

nition which is broad enough to label machines in either o f these classes as computers,

and which also could extend to less powerful machines and devices that in the conven

tional model are incomparable with Turing machines. Both animate and inanimate

devices can qualify as computers, as long as the other requirements are satisfied. For

instance, my brain can be an example of an animate computer, in the case that I am

using it to solve a problem involving input and output. Recall Kari and Landweber’s

ciliates [67]: although decoding of the micronucleus into a macronucleus during repro

duction appears to be a computational process, these would not qualify as computers

if they are not being used as such— if there is no user, they are not computing, rather

they axe simply reproducing. In the case of inanimate devices, consider the pile of

sand. If nobody is using it to compute anything, then it is simply a pile of sand,

although it has the potential to be a computer. In order for a device to qualify as a

computer, it must be used with an intention to compute.

Finally, I point out that my definition is an intuitive one, not a formal one. As the

accumulated evidence for the Church-Turing thesis shows, attempts to formalize the

notion of computation have consistently lead to machine models whose computational

power is equivalent in the conventional sense to that of Turing machines. I contend

that this has occurred because our definition of a formal model already includes

the requirements that it be finitely expressible, include precisely defined, effective

steps, and be fully specified. These restrictions on formalization are essentially a

requirement for an algorithmic (in the traditional sense) model, and hence, it is not

66

surprising that the formal models have all turned out to be equivalent. To avoid the

circularity of using a definition scheme which limits the scope of the entities defined,

I do not require that all details of the model be explicitly specified in order to label a

device a “computer.” At this point, taking into account all the above considerations,

I state a definition of “computer.”

D efin ition 2.1. A computer C is a device which satisfies the following requirements:

1. C is a tool for problem solving.

2. C accepts input which determines the instance o f the problem to be solved, and

potentially produces output in the case that a solution to the problem is found.

3. C has an interface which allows a user to access its input and output.

4. A t least one o f the following must hold o f C :

(a) C ’s primary purpose is to be used for problem solving, and/or

(b) Intentionality aspect: a user is employing C with the intention o f solving

a problem.

Requirement 4.(6) necessitates more explanation because it has the peculiar con

sequence that a device which has the potential to be used as a computer is not called

a computer unless a user is employing it to solve a problem .10 As an example, con

sider again that the dynamics of a pile of sand can be used to compute as explained

in [58]. The definition of computer would be far too broad if it labelled every pile of

sand as a computer. No doubt other similar piles of granular material could also then

qualify, such as pebbles, salt or coffee grounds. If anything which had the potential

to be used for computation were called a computer, we would be forced to label most

10Thanks to Lila Kari for pointing this out (discussion, October 24, 2008).

67

of the physical world as computers! I therefore insist that something such as a pile of

sand, whose primary purpose is not to be used for problem solving, be used with the

intention of solving a problem in order to be called a computer. Definitions of this

type are not nonsensical, and exist for other natural language terms. A wine barrel

which is used as a garden planter does not cease to be a wine barrel, but as long as

it has flowers in it, it is also a planter. Likewise, a cookie jar used as a fish bowl can

exist with both labels. In reverse, a laptop can be used exclusively to play CD’s, but

this does not imply that it is no longer a computer, even though we would normally

call a device that is only used for playing CD ’s a stereo. To reiterate, requirement

4. states that to qualify as a computer, either the device in question was specifically

designed for problem solving, or it was designed with another purpose in mind, but

is actively used for problem solving.

Another requirement which is purposely omitted from my characterization is that

of determinism. Recall the description in Section 2.3.4 of the random number genera

tor. Although this device does not behave deterministically, it still solves a problem: it

provides the user with a random number. Machines with nondeterministic behaviour

should not be excluded by a definition of computer.

2.8 Application to existing models

Returning now to the models presented earlier in this chapter, I will briefly explain

which ones qualify as computers in light of the revised definition, and which ones do

not.

The Turing machine is a computer— it is a tool for problem solving, it has the

capacity to accept input and produce output, the means for specifying the input

and output is clear, and its primary purpose is problem solving. However, a seven

68

tuple (Q , £ , T, 8, q0, B, F) with values for the items in the tuple is not a computer.

In order to be usable, the additional knowledge that an infinite tape is modelled,

and that a read/write head is used for data processing and so on, is necessary. It is

possible to formally describe Turing machine computations by means of instantaneous

descriptions and transition rules. In this case, a complete set of axioms, rules and

allowable initial instantaneous descriptions could be considered a computer. However,

this is a different device than a Turing machine since its operation is in terms of string

rewriting rather than reading and writing tape symbols.

As to the string rewriting systems described earlier (insertion/deletion systems

and Markov algorithms), the consideration which must occur is whether they can be

used as problem solving devices. As in the case of the seven-tuple, simply writing

down rules or schemas is not enough. Supposing one has a specific Markov schema

S = (E ,r , II), one also needs to know how the production rules can be applied to

an axiom, what the initial string and final strings are meant to represent, and when

the application of rules terminates. With that additional information, a Markov

algorithm can be considered a computer.

All of the super-Turing devices described qualify as computers under the new

definition. It is significant to note that they are all outside the conventional definition

of computing machine as an algorithm executing device.

As for the physical machines, an electronic computer is certainly a computer in

the sense of this thesis. As already noted, some of the other physical devices should

only rightly be considered computers if a user is employing them with the intention

of solving a problem (requirement 4(b)).

As to recursive function theory and A-calculus, they are primarily systems of

formal notation. Recursive function theory does enable calculation of functions over

the natural numbers, and therefore it is reasonable to consider it a computer. A-

69

calculus is more useful for formal specification than it is for calculation. However,

augmented in such a way that it enables input and output, and if used problem

solving, one could imagine designing a A-calculus based computer.

As desired, the given definition of computer permits consideration of formal com

puting models less powerful, equally powerful, and more powerful than Turing ma

chines. It also includes formal models whose computational methods or computed

functions are incomparable with Turing machines (further discussed in Chapter 3).

Both physical machines (animate or inanimate) and theoretical models are included.

Furthermore, probabilistic machines, nondeterministic machines, and machines pro

ducing approximate results can qualify as computers. Thus, the definition is useful

to theoreticians and practitioners alike.

70

Chapter 3

On the Church-Turing Thesis and

Computability

All computation takes place relative to some set or other of capacities,

richer or poorer. The capacities specified by Turing in 1936 occupy no

privileged position.

B. Jack Copeland

“Hypercomputation: philosophical issues”

Theoretical Computer Science 317, 2004, p. 252, [33].

In Chapter 2, I provided an intuitive definition of a computer, and argued that

the apparent success of the conventional Church-Turing thesis has been the result of

restrictions on the definition of formal computing models. It seems plausible, based

on over 70 years of accumulated empirical evidence, that the conventional Church-

Turing thesis is true. But what does this really mean? In this chapter, I will argue

that computing power must always be considered relative to a computing model. The

Church-Turing thesis is a statement about the computing power of a particular set

71

of machines, but should not be interpreted as imposing a deeper limitation on the

computing power of all machines.

In the previous chapter, problems with the conventional definition of “computer”

were addressed. I concluded that an informal definition was computer was necessary

to best capture the desired semantics of the term. Here, I discuss problems with

conventional definitions of computing related terms. One could attempt to adopt

an informal definition of a computer, but still reserve the terms “computable” and

“uncomputable” to refer to Turing-equivalent computation; in other words, one could

continue to endorse the conventional Church-Turing thesis as the proper measure of

the limits of computation. This approach would be problematic for many reasons

as I point out in the following sections. I will begin by outlining some difficulties

with the conventional Church-Turing thesis, and then provide new definitions for

the terms “computing power,” “computable,” and “more powerful than,” and other

related concepts.

3.1 Problems with the conventional Church-Turing

thesis

In this Section, I discuss the major problems with the conventional Church-Turing

thesis. The first problem is imprecision in the statement itself. This is addressed as

“Problem # 1 ,” followed by discussions of three other significant concerns.

72

3.1.1 Problem # 1 : Ambiguity in the meaning of “Church-

Turing thesis”

In order to discuss problems with the Church-Turing thesis, I first need to clarify

exactly what is meant by that term. This is a complicated task since statements of

the thesis vary from author to author, to the point that the original intent of the

thesis is often obscured.

B. Jack Copeland has repeatedly pointed out that there is great deviation from

the original statements of Church and Turing in other authors’ interpretations of the

Church-Turing thesis [29, 35, 32, 34, 33]. Copeland paraphrases Turing’s original

statements in this way: “He argued for the claim (Turing’s thesis) that whenever

there is an effective method for obtaining the values of a mathematical function,

the function can be computed by Turing machine” [34]. Copeland lists examples

where authors have used the term Church-Turing thesis to refer to claims that Turing

machines can simulate the workings of any machine, that the class of well-defined

computations is fully captured by Turing machines, that Turing machines can model

all finitely realizable physical systems, and that anything computable (itself a term

that requires definition), is computable by a Turing machine. Copeland calls all these

misinterpreted theses examples of the “so-called Church-Turing thesis,” which he

distinguishes from the original thesis “the Church-Turing thesis properly so-called.”

Copeland’s Stanford Encyclopedia of Philosophy article on the Church-Turing thesis

contains an extensive list of quotations of “so-called Church-Turing theses” [34]. The

paper Beyond the Universal Turing Machine by Copeland and Richard Sylvan begins

with the statement “Two of our heresies— in the dictionary sense of ‘opinions contrary

to the accepted doctrine on any subject’— are these” ([35], p.46). This is followed by

the heretical claims themselves: “Proposition 1. The so-called Church-Turing thesis

73

is false” and “Proposition 2. Computability is a relative notion, not an absolute one.”

I am also guilty of endorsing both these heresies.1 As we saw in Section 2.5.2, Robert

I. Soare attributes some of the confusion about the theses to the use of the terms

“computable” and “recursive” as if they are interchangeable when actually they are

not [105].

In Chapter 2 ,1 quoted Copeland’s summary of some of the accumulated evidence

in favour of the Church-Turing thesis. Proposition 1. refers not to the Church-Turing

thesis properly so-called, but to all the broader claims which are often mislabelled as

the Church-Turing thesis.

It is instructive to return to Turing’s original paper to determine the nature of

the claims he actually made. In Section 9 of Turing’s 1936 paper [109], he provides

several arguments for the appropriateness of his definition of computable numbers.

The first argument on pages 135-137 is an appeal to intuition in which he analyses

the behaviour of a human “computer,” and makes the following observations:

• A one-dimensional tape divided into squares is sufficient to emulate two dimen

sional paper.

• The number of symbols which may be printed is finite (for example, digits 0-

9), because otherwise some symbols would be arbitrarily close and could not

be distinguished. He argues that this requirement is not too restrictive since

sequences of symbols can be used in place of single symbols (for example, 4325).

• There is a bound on the number of symbols which can be observed by the

computer at one time.

• Only a finite number of “states of mind” of the computer need to be considered

(same reasoning as above: otherwise some would be arbitrarily close). The

1 Relative computability is discussed later in this chapter, in Section 3.2.

74

necessity for more complicated states can be avoided by writing output to the

tape.

• There are four simple operations performed by the computer ([109], p.137):

(a) Changes of the symbol on one of the observed squares.

(ib) Changes of one of the squares observed to another square within L squares

of one of the previously observed squares.

(.A) A possible change (a) of symbol together with a possible change of state

of mind.

(B) A possible change (b) of observed squares, together with a possible change

of state of mind.

The above observations are meant to persuade the reader that a Turing machine

(a-machine in Turing’s terms) can model a human computer. He argues that the

restrictions on the behaviour of the human computer (number of symbols, states of

mind, etc.) are intuitively acceptable, and thus that his formalism is adequate.

Returning now to what Copeland calls Turing’s thesis, the intent of this claim is

only that the Turing machine formalism is sufficient for modelling the behaviour of

a human computer. Specifically, it does not imply anything about the limitations of

every machine, or every formal system. “A myth seems to have arisen concerning

Turing’s paper of 1936, namely that he there gave a treatment of the limits of mech

anism and established a fundamental result to the effect that the universal Turing

machine can simulate the behaviour of any machine” [34].

Meanwhile, Church and Kleene’s development of A-calculus and their proof that

the class of A-definable functions can be modelled by the class of recursive functions

led to another thesis. Copeland’s statement of Church’s thesis is “A function of

75

positive integers is effectively calculable only if recursive” [34].

The original statement by Church was given as a definition rather than a hypoth

esis or thesis, but this form of statement was immediately criticized by Emil Post,

who called it a “working hypothesis” instead [34]. Robert Soare argues that Church,

Turing and Godel all regarded the achievement in Turing’s work as providing a defini

tion o f computability. He attributes the introduction of the term “thesis,” to refer to

both Church and Turing’s statements, to Kleene in a 1943 paper and a 1952 book [74]

([105], p. 15). The advantage of speaking in terms of definitions rather than theses

is that discoveries which appear to negate a thesis have no effect on the utility of a

definition. If, for example, we were to discover a formal calculating machine which

satisfies the same restrictions as a Turing machine but is able to model a broader set

of functions, this would negate the Church-Turing thesis, but would not affect the

definition of Turing machines. If the Turing machine serves as a definition of what is

computable, then these more powerful machines would need to be called something

other than computers.

Soare cites examples from texts by all the above mentioned authors, and there

fore his assertion that the original statements appeared as definitions is well founded.

However, I contend that the “theses” which Turing, Church, Kleene and Godel were

implicitly proposing were that the formalisms they defined were adequate characteri

zations of the informal notion of mechanical procedure. For example, Church makes

the following statement:

We now define the notion, already discussed, of an effectively calculable

function of positive integers by identifying it with the notion of a recur

sive function of positive integers (or of a A-definable function of positive

integers). This definition is thought to be justified by the considerations

76

which follow, so far as positive justification can ever be obtained for the

selection of a formal definition to correspond to an intuitive notion ([25],

p. 356).

Thus, although he clearly states that he is providing a definition of effective calcula-

bility, the argument he presents is for the adequacy, justifiability and appopriateness

of the definition. The argument for the correctness of the definition is the thesis

advanced by Church.

Likewise, Turing’s arguments for the appropriateness of his definition of com

putable numbers via Turing machines that I have cited above constitute justification

for his “thesis.” Although Turing machines themselves are given as a definition, the

underlying assertion Turing made was that his a-machines were an adequate char

acterization of the intuitive notion of effective method, where an effective method is

that which can be carried out by a human with pencil and paper.

In Chapter 2, I presented a table classifying terms as formal or informal (see

Table 2.1). The Church-Turing thesis is a claim about correspondence between an

intuitive notion, that of effectively calculable, and a formal model, a Turing machine.

The real problem in assessing the veracity of the Church-Turing thesis is to identify

the informal notion to which the formal model is meant to correspond. Definitions of

algorithms such as Knuth’s (see Section 2.2) are one means of achieving this. Since

Turing machines have been shown to be formally equivalent to a large number of other

machine models, we should actually consider a broader thesis which would include

the claim that these other machines also capture the intuitive notion of effectively

calculable. I will call this thesis the “broad Church-Turing thesis” and state it as

follows:

D efin ition 3.1. T h e broad C hurch-Turing thesis. The functions computable

77

by Turing-equivalent machines correspond exactly to those which satisfy the informal

criterion o f effective calculability.

This type of statement is the “usual” formulation of the Church-Turing thesis.

Although I completely agree that one should be careful about the original articulation

of the statements by Turing and Church, it is also important to address the modern

conventional meaning of the thesis. To support my claim that the broad Church-

Turing thesis captures the modern intent of the Church-Turing thesis, I give three

examples from popular reference books:

1. “Turing’s Thesis (1936) Every function for which there is an intuitively effec

tive process for computing its values can be shown to be Turing computable.”

(Computability Theory, S. Barry Cooper [28], p. 42).

2 . As already quoted in Chapter 2 from Introduction to Automata Theory, Lan

guages, and Computation, Hopcroft, Motwani & Ullman, [63], p. 318: “The

unprovable assumption that any general way to compute will allow us to com

pute only the partial-recursive functions (or equivalently, what Turing machines

or modern-day computers can compute) is known as Church’s hypothesis [...]

or the Church-Turing thesis.”

3. “CHURCH’S THESIS: whatever is felt to be effectively computable can be brought

within the scope of one of the formal models.” (“Machine Models and Simula

tions,” P. van Emde Boas, in Handbook o f Theoretical Computer Science, [111],

p. 3).

With this more precise definition in hand, we can proceed to consider other prob

lems with the broad Church-Turing thesis.

78

3.1.2 Problem # 2 : There are many things we consider com

putational that a Turing machine cannot do

A Turing machine is a discrete device. This observation is also true of any Turing-

equivalent computation device which satisfies the constraints that Turing outlined,

or that conforms to the conventional definition of an algorithm. This restriction

immediately implies that any problem which does not have a discrete representation

is unsolvable by a Turing machine. Consider the problem of bisecting an angle using

a ruler and compass. I would argue that this is a well-defined problem which a

Turing machine is incapable of solving because there is no means of representing the

input. However, I could construct a machine equipped with a camera and a stylus

which solves this problem, or a human can solve it using a pencil and paper (Turing’s

criterion). A possible criticism of this example is that the solution is not 100%

accurate because of imprécisions in the measurement devices. However, note that in

practical computing, we often are satisfied with approximate solutions to problems.

The cases where a Turing machine would “run forever,” which are included in the

class of “computable” functions, are not useful from a practical point of view. The

fundamental question is whether machines or models which solve problems imperfectly

should be considered computers at all, and I have already presented arguments in

favour of their inclusion (see Section 2.6.2). Any problems which have a non-discrete

or graphical representation are unsolvable by Turing machines.

As I discussed in Section 2.3.3, real number based analysis techniques are excluded

from consideration as computational methods because they lack a finite representation

of input values. It is difficult to see why processes such as Newton’s Method or

computing certain Fourier transforms are not effective, since we can write down a

step-by-step method for achieving the desired result. Why should we exclude such

79

methods from that which is considered effectively calculable?

Furthermore, within the realm of discrete functions there are tasks which cannot

be completed by particular Turing machines. For example, we could define a Turing

machine with an input alphabet consisting of the letters from a — z which implements

an English spell checker, whereas no such Turing machine with a binary alphabet

could be defined. Of course through an encoding, we know that we could translate

the spell checking problem into a binary problem, but this step is normally overlooked

in descriptions of computing power.2

3.1.3 Problem # 3 : Practical computing does not use Turing

machines

Here is a sampling of differences between practical computers and Turing machines.

In practice, computers d o not:

• Run forever: we usually consider programs which run forever to have bugs.

(There are exceptions, such as web servers, which are expected to run continu

ously unless explicitly shut down.)

• Have access to infinite memory: although computer memory is expandable, in

practice we do not add memory to a computer during execution.

• Operate according to their specifications without failure: physical computers

occasionally encounter power surges, crosstalk on chips, or other disturbances

which affect computation results.

2If one wishes to be absolutely precise, the Turing machine with the a — z alphabet also deals with
encodings of words into strings of symbols which represent their spelling, not the words themselves.
However, this encoding is far closer encoding to the actual word than the binary one, because, for
example, the number of symbols in the input string is the same as the number of letters in the word
(these issues are further discussed in Chapter 5).

80

• Solve large cases for many problems: there are problems which have so-called

“computable” solutions, for which we cannot compute answers due to time re

strictions in practice. Some examples are large instances of NP-hard problems

such as the boolean satisfiability problem, or problems requiring exponential

time such as generating a perfect strategy in a chess game. In The physical

basis of computability, Robert B. Laughlin gives the example of the quantum

physics spin glass problem: although the problem has a matrix based algorith

mic solution, “even for the case of N = 200, this matrix has 2400 = 2.6 x 10 120

elements, a number vastly larger than all the atoms in the visible universe”

([81], p.28).

However, in practice, computers do:

• Produce approximate results: numerical analysis, optimization algorithms, and

constraint satisfaction are fields which deal with approximate results. As noted

before, any real number computation is necessarily approximate when com

pleted with finite resources. The explicit aim of probabilistic computing is to

produce approximate, but useful, results. As Calude and Stay have shown,

even the Turing machine halting problem— the prototypical “uncomputable”

problem— can be solved probabilistically to some degree [15].

• Rely on user input: unlike the Turing machine, many practical computations

are interactive. Some recent “super-Turing” computation models such as one

proposed by Peter Wegner in [117] have attempted to address this difference.

• “Solve” so-called “uncomputable” problems: for example, compiler optimiza

tion of programs. In the general case, we know that to determine a perfect

optimization of program (for example, the one with the fewest statements), is

81

Turing-uncomputable. However, optimizing compilers axe able to perform very

well for most programs (and sometimes perfectly).

The above lists are not meant to be exhaustive, but rather general remarks about

typical use of electronic computers. The point of these observations is that the con

ventional definition of computability is not usually representative of practical com

putation, or often, of applied research in computer science. This discrepancy results

in a division in the field between theoreticians and practitioners with regard to the

perceived importance of computability theory.

The differing views influence attempts to characterize the field of computer science.

In an opinion piece “On the Nature of Computing,” Jon Crowcroft observes, “public

debate typically polarizes us along a spectrum between engineering and science. [...]

An extreme view of each end places practitioners within university electrical engineer

ing departments, and theoreticians within university mathematics departments.” He

later laments that “ [computing has never established a simple connection between

the natural and the mathematical” ([36], p.19). In “Is Computer Science Science?”

Peter J. Denning remarks that the roots of the field lie in science, mathematics, and

engineering, and that some members continue to identify with one of those disciplines

over the others [41]. The article addresses the question of why the scientific status

of computer science is sometimes questioned. He argues that part of the reason is

that computer scientists frequently fail to test their theoretical claims, and therefore

research in computer science often ignores the scientific method.

My motivation in this section is different from Crowcroft or Denning’s— I am not

attempting to characterize the field of computer science. However, I am arguing that

having a theoretical definition of “computable” which is often not practically relevant

causes a perspective divide between theoreticians and practitioners. A discrepancy

82

between theory and practice within a discipline is not in itself problematic (one might

even argue that it is unavoidable). However, when the discrepancy takes on propor

tions such that dialog between researchers in the field is compromised and definitions

of fundamental terms axe no longer applicable to many research domains, then a re

examination of foundational issues is required. This is the case in computer science.

Even the broad Church-Turing thesis is insufficient as a statement about the limits

of computation, since we regularly compute outside its boundaries in practice.

Hence, a definition o f computability which allows a “connection between the natural

and the mathematical” (Crowcroft’s point), and admits testing of theoretical claims

(Denning’s point), is desirable. .

3.1.4 Problem # 4 : There are machine models which com

pute functions Turing-equivalent machines cannot

In Chapter 2 , I described many models which compute functions that conventional

Turing machines cannot. Having a definition of “computable” which limits that which

is computable to Turing-computable, excludes these models from consideration as

computing machines.

3.1.5 Scope of the Church-Turing thesis

In this section I mention two important critiques of the plausibility of Church’s thesis:3

one which argues the thesis is too narrow (Laszlo Kalmar), and one which argues

it is too broad (Rozsa Peter). The version of the thesis under discussion is “the

identification of the notion of effectively calculable functions with that of general

recursive (or equivalently, A-definable) functions” ([66], p. 72). This claim can be

3The two critiques specifically deal with the original statement of Church’s thesis, not Turing’s.

83

separated into an assertion and its converse, namely, that every effectively calculable

function is general recursive and that every general recursive function is effectively

calculable.

Laszlo Kalmar

In [66], Laszlo Kalmar contests the claim that every effectively calculable function

is general recursive. The basis of his argument is that the requirement that the

calculation method of a function be “uniform” is too strong. He analyses the following

function, first described by Church ([66], p. 74, Kalmar’s notation):

{the least natural number y for which <p(x, y) = 0

if there is such a y

0 if there is no natural number y such that p(x, y) = 0

where x and y are natural numbers and ip(x, y) is general recursive. He points out

that if y exists such that tp(x, y) = 0 for a given x, then there is a terminating

decision procedure computing i/j(x): simply evaluate <p(x,p) for p = 0 , 1 , 2 , . . . until

<p(x,p) = 0, and then ifj(x) — p. On the other hand, he surmises that <p(x, y) could

be such that in the cases that no such y exists, one could prove it, “not in the

frame of some fixed postulate system but by means of arbitrary—of course, correct—

arguments” ([66], p. 74). This proof, although not in the same postulate system

as that used to calculate values for ip(x, y), would provide an effective method to

calculate the value of ip(x).

This argument is similar to the idea that we might discover a “natural oracle” (see

Section 2.6.1) capable of computing function values a human with pencil and paper

cannot. Kalmar is referring to a non-algorithmic proof method, but the same type

of idea can used to raise the objection that the conventional Church-Turing thesis is

84

too narrow, whether on the basis of a non-algorithmic proof method, a super-Turing

computation model or a physical device. In any of these cases, providing that an

effective method for calculating a function value is described, the assertion that every

effectively calculable function is general recursive is false.

Rözsa Peter

Peter addresses the converse claim to Kalmar’s, that is, every general recursive func

tion is effectively calculable.

The basis of Rozsa Peter’s argument in [91] is that the purpose of attempts to

formalize effectively calculability is to make it a constructive notion, in the intu

itionist sense. About the introduction of general recursive functions she states: “der

Haupziel bei der Einführung dieses Begriffes war eben die exackte Fassung des Kon

struktivitätsbegriffes” (the principal goal of the introduction of this notion was the

exact definition of the concept of constructiveness) [91].

Consider the criterion according to which a function is general recursive: “A

function is general recursive if there exists a finite set of equations from which all its

values can be deduced by simple finitistic rules” (interpretation from [88], p. 471).

Peter’s critique hinges on the interpretation of the existential quantifier in the former

statement. Suppose it is interpreted constructively. Then, since “general recursive”

formalizes constructiveness, the definition is circular, and hence no longer useful.

However, under the classical interpretation of the quantifier, the goal of formalizing

effectively calculability in order to make it constructive would not be realized, and

therefore this interpretation is also not useful. This is the sense in which Peter’s

argument shows that Church’s thesis is too broad: the classical interpretation of

the existential quantifier in the definition of recursive functions (which is the only

possible non-circular interpretation) fails to provide a constructive characterization

85

of the informal notion of effectively calculable.

Although Kalmar and Péter’s perspectives appear to influence the reader in oppo

site directions concerning the plausibility of the Church-Turing thesis, their arguments

can be reconciled as follows:

• In the spirit of Kalmar argument, we acknowledge that there are intuitively

effectively calculable functions which are not Turing-computable.

• Péter’s argument leads us to the conclusion that attempting to identify effective

calculability with constructiveness is not possible without circularity.

Hence, a better definition of “computable” will not be restricted to Turing machines,

and will not be constructive.

3.2 An alternative proposal

Here, I define computability relative to the computing model.

D efin ition 3.2. A class of computing models is a collection o f one or more computers

(whether formally or informally described).

The simplest class is a complete description of one particular computing ma

chine (for example, a finite automaton which accepts the language (ab)*: A =

({ ? o , 9 i, 92} . {a, b},5, q0, {<7o}), with the transition function 8(q0,a) = q1,8(q0,b) =

<?2, 8(qi, a) = q<z,8{q\,b) = qQ, 8(q2, a) = q2) 8(q2) b) = q2. A second specification of

a class is a formal definition of the type of machine, for instance, the description of

a Turing machine as a seven-tuple M = { Q , E, T, 8 , q o , B, F) given in Section 2.3.1.

A third is by means of an informal description of the computing model. The latter

way would be appropriate in the case that a finite formal description is not possible

8 6

for all or part of the machine model; for example, a machine that includes a random

component or a physical part such as a quantum element for which we presently have

no finite formal description.4

This description of a class of machines is deliberately open-ended. For the same

reasons which I stated in Chapter 2 that it is desirable to have an informal definition

of computer, it is also desirable to have an informal definition of computability. It is

the very insistence on finite formal descriptions that has resulted in “all reasonable”

computing models having the same computing power.

If the notion of computability is not well-defined for some values because of the

flexibility in the specification of machine class, this does not diminish its utility in

describing computability for those classes and functions for which it is well-defined.

For example, descriptions of a machine computing a function will not apply to a

machine with a nondeterministic relationship between input and output such as a

non-algorithmic random number generator.

By “capable of computing” I use an analogue of the conventional (Turing) defini

tion of computation.

D efin ition 3.3. A machine M is capable of computing a (partial) function f : I —> O

if, given input i € I from the domain o f f , M halts and produces the output f (i) e O

for every value for which f is defined. In the case that f is not defined for some

i! G I, M runs forever when given i!. I f given input j £ I , the behaviour of M is

unspecified.

Notice that under this definition, machines are capable of computing more than

one function, if the functions in question have different domains. For example, con

sider a binary Turing machine M which counts the number of l ’s in its input string,

4 A fourth way of delimiting a class using a parameterized computing model will be introduced
in Chapter 4.

87

and produces a string of l ’s which represents the count as output. That is, on input

0011010, it would halt and produce 111 as output. In this case, the function domain

is {0 ,1 }* (any binary string), and the range is {1}*, and hence a function computed

by M is described by / : {0 ,1}* —► {1}*. Now, consider a function g with domain

{1}*. In this case, M is capable of computing g if and only if g : {1}* —► {1}* is the

identity function g(x) = x.

The definition of function that is intended in the above is the usual one: two sets,

the domain and the range, and a (partial) mapping between them. In the case that

the function is partial recursive, we are justified in considering single-valued functions

by the s-m-n theorem ([96], p. 23). Otherwise, the definition could be extended to

multi-valued mappings in a natural way: g : { / i , . . . , In} —► {O i , . . . Om}. I do not

consider this case case further here.

There are two related definitions that must be distinguished from “is capable

of computing:” “the function computed by” and “capable of simulating.” Before

presenting these, a definition and a result about the relationship between machines

and functions must be stated.

Lem m a 3.1. For two functions fi : I\ —► Oi and : I 2 —► O2, the same machine is

capable o f computing both fi and f i if and only if fi {i) = fi(i) for all i e h (M 2.

Proof. For two functions f i : I\ 0\ and fa : I2 —> O2, distinguish 2 cases to

determine whether a single machine could be capable of computing both functions.

Let M /j be a machine capable of computing / 1 and M /2 be a machine capable of

computing / 2, and thus the question is whether it is possible to have M fx = Mf2.

1. I\ D I2 = 0.
This case is trivial since a machine which is a union of machines for computing

f i and /2 individually will be capable of computing both functions.

8 8

2. I\ n h 7̂ 0-

In this case, there is a non-empty intersection between the input sets. Select an

input from the intersection: i E hC\h- If M fx computes / i , then it produces the

output fi (i) when given i as input. Therefore, a machine capable of computing

both f i and / 2 must produce fi (i) when given i as input. Therefore, could

be the same as M /2 if and only if fi (i) = f 2(i) for all i £ I\ fl I2-

□

D efin ition 3.4. Given a machine M which is capable o f computing functions f\ :

11 —> Oi and f 2 : h —■> O2, the union of machine functions is defined by / 1 U /2 :

11 U I2 —■► 0\ U O2, with:

(/ iU/2)(x)
fi(x) ifx Eh

<
f2(x) if X E h

D efin ition 3.5. The function computed by a machine is the the union of all functions

the machine is capable o f computing.

For example, for a binary machine, this will be a function over {0 ,1}*. For a

machine which accepts integer input, this will be a function with domain Z. The

latter machine will also be capable of computing functions over the domain of natural

numbers No, or over the even integers, but these are not “the function computed by”

the machine.

D efin ition 3.6. A machine M is capable of simulating a (partial) function f : I —> O

if and only if:

(i) There exist mappings p : I —> I' and u : O —> O' and a function f : I' —► O'

89

such that f (i) = o if and only if f (i ') = d where i' and d are the images of i

and o under p and v respectively.5

(ii) M is capable of computing f .

D efin ition 3.7. R elative com putability. Let C(M, f) be a predicate which is true

if and only if M is a class containing computing models capable o f computing function

f . Intuitively, C (M , /) is a predicate which is true if f is computable relative to M .

C(M, f) =
true

false

if some machine6 in class M is capable of computing f

otherwise.

The notation C(M, f) is extended to a set o f functions F below:

*
true if for every f G F , some machine in class M

C(M, F) = is capable o f computing f

false otherwise.
<

It is important to remark that of the three possibilities for computation definitions

presented earlier, “M is capable of computing,” “the function computed by M ” and

“M is capable of simulating,” the definitions of C (M , f) and C(M ,F) use the first

one (capable of computing). The justification for this is as follows.

• “The function computed by” would be too restrictive. Using this definition

would imply, for example, that a machine Madd which computes addition of

Restrictions on fj. and v are discussed in Chapter 5.
6I offer here a clarification of the choice of wording “if som e machine.” The alternative would

be to require every machine in the class to be capable of computing / . This definition would not
be reasonable, since it would then imply, for example, that the class of all Turing machines cannot
compute a given binary function, since some members of the class do not have binary alphabets.

90

integers f add : Z x Z —>■ Z, with /„¿¿(a, b) = a + b, would have a false value for

the C predicate for addition of even integers (fadd-even)• That is, C(Madd, f add)

would be true and C{Ma<M, fadd-even) would be false because fadd-even is not the

function computed by Madd- This is nonsensical.

• “Is capable of simulating” hides complexity of the input/output encoding. With

out explicit consideration of the complexity of n and u, it would be misleading

to imply that a function / is computable relative to a machine M if M is only

capable of simulating / . These subtleties are explored further in Chapter 5.

• “Is capable of computing” avoids the problems of the other two, and provides

a useful basis for the definition of relative computability, as will be illustrated

in examples in the remainder of this chapter.

3.2.1 Example

To illustrate the use of the C predicate, consider the “unary addition” function:

Let w G {0 ,1 }+ be a binary string which is the unary representation of two

positive integers m and n in the format l m01n. Then let / be a partial function

/ : { 0 , 1 }+ —>■ {1 }* which is defined as below for all strings in the format l m01n and

undefined otherwise.

f u - a d d {w) = lm+n

Now we can ask the question of which machine classes can compute the unary addition

function, fu-add is computable relative to a given class M of machines if there exists

some machine m in the class which, for every string over the alphabet S = {0 ,1 } ,

produces output corresponding to the answer to the addition for strings in the correct

input format, but runs forever otherwise.

91

A Moore machine is a finite automaton which has an output value associated with

each of its states (see [42], p. 97 for a formal description). As a Moore machine has no

memory device, no such machine is capable of computing f u-aM• However, a Turing

machine is clearly capable of computing f u- add• Using the predicate C we can express

this as:

Ĉ MMoorei fu—add) — false and C(Mtm, fu-add) = true

where MMoore is the class of all Moore machines and Mtm is the class of all Turing

machines.

3.3 Computing power

In this section, I provide a definition of computing power and explain my motivation

for this particular definition.

3.3.1 W hat this section is not about

Like the perspective dependent views of “computer,” one’s perspective influences

one’s view of the term “computing power.” The layperson would likely see computing

power as capacities or hardware characteristics of an electronic computer (think of

what appears in a flyer advertising computers). In complexity theory, issues such as

speed, storage space and trade-offs between resources are important. Practitioners are

concerned with having “enough” computing power to solve the particular problems

they are working on, whether that means using one machine, parallel machines or a

distributed system. This thesis does not address these broader considerations related

to computing power.

92

Rather, I provide a definition which addresses the question of what a particular

machine or model is capable of computing without considering how it computes it,

what resources are used or how long the computation takes. In computability theory,

this is usually the intent behind definitions of computing power.

3.3.2 Definition of computing power

The computing power of a machine is determined by its capabilities: we can measure

these by considering the functions it is capable of computing. One rarely sees an

explicit definition of computing power. Rather, the meaning of the term computing

power is often implicit in comparative statements, for example “machine X has the

same computing power as machine Y .” It is useful to have an objective definition of

computing power in order to be able to discuss a machine’s characteristics without

reference to other machines or machine classes.

D efin ition 3.8. The computing power of a machine is the (partial) function computed

by the machine (as in Definition 3.5). The notation V(m) is used to represent the

computing power of machine m.

D efin ition 3.9. The computing power of a machine class is the set o f functions the

machines in the class compute. The notation V (M) is used to represent the computing

power o f class M , that is, V (M) = |Jm M V{rn).

Notice that according to this definition, two machines which have different input

sets would have different computing power. For example, a universal Turing machine

with a binary alphabet does not have the same computing power as a universal Turing

machine operating on an input alphabet of the letters a — z. In theoretical computer

science, this difference is often overlooked, and the two machines would be said to have

the “same” computing power. A more accurate statement would be that they have

93

the same computing power, up to isomorphism of the input alphabet. However, this

second statement is still not completely accurate because a different input alphabet

necessitates an altered transition function and a different tape alphabet.

To illustrate my motivation for defining computing power in the way I have done,

consider the following two examples.

1. The spell checking example explained in Section 3.1.2: a Turing machine with

input alphabet a — z is not capable of computing the same function as a binary

Turing machine.

2. It is often assumed that Turing machines as language acceptors and Turing ma

chines as function calculators have the same capabilities, when actually they do

not. Consider the unary addition function described in Section 3.2.1. Accord

ing to the definition of computing power given above, in order for a machine to

be capable of computing the unary addition function as it was described, the

machine must have an input alphabet of l ’s and 0’s, take input strings over that

alphabet, and produce the correct output strings for all the values for which

the function is defined. On the other hand, a Turing machine described as a

language acceptor could have the following behaviour: for input words which

encode pairs of strings (x , y) with x, y e {0 ,1 }* , the machine halts and accepts

its input if f u-add(x) = y, and halts and rejects or runs forever otherwise. In

what sense could this language acceptor be said to be computing the unary

addition function? It is not useful as a problem solving device, since it does not

produce an answer to any instances of unary addition. It is desirable to have a

distinction between the language acceptor (which we might call a machine for

solving the “unary addition checking problem”) and the function calculating

Turing machine which actually solves the unary addition problem.

94

To match the definition of a computer as a problem solving device, it is necessary

to have a definition of computing power which allows one to describe the problems

which are actually solved by the machine. As the above examples illustrate, machines

which are traditionally said to have the “same” computing power actually have very

different capabilities when considered from the user point of view.

3.3.3 Further commentary

W h a t does a universal Turing m achine com pute?

Consider a universal Turing machine U which takes as input a string description of a

Turing machine M and an input value i for M . Let M' and i' represent the encodings

of M and i respectively in IPs input alphabet. Let the behaviour of U be such that

U halts on the input (M ', i') if and only if M would halt on i, and the contents of the

tape following U’s computation are the same tape contents M would produce running

on i, except that they are encoded in (7’s tape alphabet. In particular, during the

computation, the description of M is deleted from the tape. Furthermore, U halts

in an accepting state exactly when M would on i. As U is a universal machine, it

has the ability to simulate any Turing machine M in this sense: provided with an

encoding of the machine and its input in the format expected by U, the end result of

the computation by U will be indistinguishable from that of M , up to the encoding.

According to the definition of computing power given in this chapter, what is the

computing power of U1 Let E be IPs input alphabet and T be U’s tape alphabet.

Then at a first glance, we might think U computes a function / : E* —* F*. As stated

above, U halts and accepts if and only if M halts and accepts on i. However, the

accepting/rejecting of the input word is part of the output provided by U, so actually

we should say that U computes a function / : E* —► T* x { accept, reject}, f is defined

95

for all input strings which contain valid encodings of a machine M and its input i,

and for which M ’s underlying function is defined, and undefined otherwise.

At last we can make a general statement about the function / computed by U.

The values for which / is defined are exactly those which can be interpreted as a valid

description of a Turing machine M and input string i and where M ’s behaviour on

the decoded version of i is defined. / is simply a function from one set to another;

the interpretation of the inputs as Turing machines and their inputs is arbitrary. The

significance of U being a universal Turing machine is that U can simulate the function

computed by any other Turing machine, and, more generally, the function computed

by a Turing-equivalent computing device.

Finally, note that a universal Turing machine does not compute all partial recur

sive functions! We can interpret the function computed by a particular UTM as a

simulation of the functions computed by all definable Turing machines, but the UTM

itself computes only one function. The class of all Turing machines, does compute

all partial recursive functions. More specifically, given a representation of the set of

partial recursive functions, for example as binary functions, the class of all binary

Turing machines is capable of computing all functions in that set. Let Uqi be a

particular binary universal Turing machine, Mtm0i represent the class of all binary

Turing machines, and V7Z represent the set o f partial reclusive functions. Using the

previously defined notation, C(Uqi,VTV) = false, and C(MTMoi, V 71) = true.

3.4 Comparisons of computing power

An intuitive but vague definition of “more powerful than” would be: a machine A is

more powerful than a machine B if A can compute more than B. There are several

problems with it:

96

1. What is meant by “machine” ? Is it a machine class, or a single machine?

2. What does “more powerful” mean?

3. What does “compute more” mean?

As a second illustration of the need for precise definitions, consider this statement

about program equivalence:

. . . if a program can be regarded as computing a partial function [from]

its inputs to its outputs, then “equivalent” means “computing the same

partial function” ([90], p. 74).

No further explanation is given regarding the meaning of “the same partial function” —

for example, is a change of domain permissible?

In this section, I will provide precise definitions for terms required to compare the

computing power of machines, which will allow unambiguous expression of the above

statements.

3.4.1 The “same” and “equivalent” computing power

In Section 3.3.2 I commented that under my definition of computing power, machines

with different input alphabets could not be said to have the same computing power.

However, it is necessary to have a means of describing machines whose computing

power is equivalent, in the sense that they are able to simulate each other’s behaviour.

D efin ition 3.10. Two machines m\ and m 2 have the same computing power, denoted

by mi = m2, if and only if they compute exactly the same functions. That is, mi has

the same computing power as m2 if and only i fV (m i) = V {m 2).

97

D efin ition 3.11. Two machines classes Mi and M 2 have the same computing power,

denoted by Mi = M 2, if and only if the machines in the classes compute exactly the

same set o f functions. That is, Mi has the same computing power as M2 if and only

i fV {M i) = V (M 2).

D efin ition 3.12. Two machines mi and m2 have equivalent computing power, de

noted by m i = m 2, if and only if mi is capable o f simulating the function computed

by m 2 and m2 is capable of simulating the function computed by m i.

D efin ition 3.13. Two machine classes Mi and M 2 have equivalent computing power,

denoted by Mi = M 2, if for every machine mi in M i, there is some machine m\ in

M 2 for which mi = m[, and for every machine m2 in M2, there is some machine m'2

in Mi for which m 2 — m2.

Note that it is not required for equivalence that classes Mi and M 2 be the same

size, nor that there is a bijection between their machines. It is sufficient that for

every function which is computed by a machine in one class, there is at least one

corresponding machine in the other class which can simulate it. Consider, for instance,

one class which contains only one machine for calculating addition of integers, and

another class that contains ten machines for the same task. We would not want to

say that these classes do not have equivalent computing power simply because there

is duplication in one which results in a different size class.

3.4.2 Examples

Let o be a finite automaton which accepts the language a*b*c*. The only “output”

from a finite automaton is whether or not a word is accepted, and hence, the function

computed by a has the following domain and range: f a : {a, b, c}* —> {accept, reject}.

Let m be a language acceptor Turing machine which accepts the same language, and

98

always deletes the input from its tape. Although the potential range for this machine

is different (f m ■ {a, b, c}* —> {a,b,c}* x {accept, reject}) , because of the deleted

input, the computed functions of a and m can be defined to be identical. In that

case, a = m (and consequently a = m). Now let m! be a Turing machine which also

accepts a*b*c*, but does not delete its input from the tape. Then a ^ m ! (since there

is output left on the tape, and the finite automaton produces no output), but a = m'.

Let Mtmoi be the class of binary Turing machines and MTMabc be the class of

Turing machines with input alphabet {a , b, c } . Then Mtmoi ^ AfTMabc> but MtmQi —

M TMabc-

3.4.3 More computing power

D efin ition 3.14. A machine mi has at least as much computing power as a ma

chine m2, denoted by m\ y m2, if mi can simulate the function computed by m2 .

I f m 2 cannot also simulate the function computed by mi (mi ^ m2), mi has more

computing power than m2 denoted by mi y m2.

D efin ition 3.15. For two machine classes Mi and M 2, Mi has at least as much

computing power as M2, denoted by Mi y M 2, if for every machine m2 in M 2, there

is some machine m'2 in Mi for which m'2 m2. If Mi y M 2 and there is some

machine mi in Mi for which no machine m{ exists in M 2 such that m[y mi, then

Mi has more computing power than M 2, denoted by Mi y M 2.

Intuitively, if Mi y M2, then for every function which is computed by a machine

in the class M2, a machine exists in M i capable of simulating that function. If the

former holds, but there is at least one function computed by a machine in Mi for

which there is no machine which can simulate it in M 2, then Mi y M 2. In this sense,

the class Mi computes a proper superset of the functions computed by machines in

99

M 2.

Exam ples

Let niab be a Turing machine using the input alphabet {a, b} which deletes all but the

first letter of its input word from the tape (if the empty word A is given as input, the

tape remains empty). Hence f mab : {a, b}* —> {a, b, A}. Let m m be a Turing machine

using the input alphabet {1 ,2 ,3 } which counts the number of l ’s in the input word

and leaves that number (a non-negative integer) on the tape as output. In this case,

/ mi23 : {1 ,2 ,3 }* - N „ .

Consider the sets I = {a, b}*, 0 = {a, b, A}, / ' = { { 1 ,1 1 }{2 ,3}*} U A and O' =

{0 ,1 ,2 }. Define the mappings m(a) = 1, m(b) = 11, m '(a) = 2, m'(b) = 3 and

¿4 as /j,(x iX2 ■. . xn) = m{xi)m'{x2) .. .m'(xn). Also define v : O —► O' as

v{a) — 1, u(b) — 2, i/(A) = 0.

Under these mappings, m m is capable of simulating ra0¡, and therefore m m h

mab. However, as the cardinality of r a ^ ’s output set (No) is greater than mab s

({a, 6, A}), it is impossible to define analogous mappings such that ma¿, could simulate

m i23- Therefore m i23 >- mab.

For an example with a class of machines, recall Weihrauch’s Type-2 machines

introduced in Section 2.3.3. Let Mt2 represent the class of all Type-2 machines, and

Mtm represent the class of all Turing machines. Then Mt2 >~ Mt m -

3.4.4 Incomparable computing power

D efin ition 3.16. Machines mi and m2 are incomparable, denoted by mi || m2, if

neither mi y m2 nor m2 y mi holds. In other words, neither is capable of simulating

the function computed by the other.

100

D efin ition 3.17. For two machine classes Mi and M 2, the computing power of class

Mi is incomparable with the computing power o f class M2, if there is some machine

mi in Mi for which no machine m[exists in M 2 such that m[>z mi and there is

some machine m2 in M2 for which no machine m'2 exists in Mi such that m'2 m2.

In this case, the relationship is denoted by Mi || M 2.

In other words, both classes Mi and M 2 contain machines for which there is no

simulation capable machine in the other class. If this is the case, then we can neither

say that Mi >z M 2, nor that M 2 ^ M i, and hence Mi and M2 are incomparable.

With the above definitions, partial orders with respect to computing power are

defined for the computing machines and classes of computing machines.

E xam ples

Consider a machine Mhait which has the following ability: given a binary encoding of

a Turing machine and its input, Mhait will output 1 if the encoded machine would halt

on its input and 0 otherwise. Let Uqi be a binary universal Turing machine which

accepts encodings of machines and input in the same format as Mhait, but simulates

the execution of the described machine and produces output from the computation

on its tape. As Mhait only produces output 0 or 1, it is incapable of simulating C/oi’s

behaviour. Uqi cannot solve the halting problem. Therefore, Mhait 11 Uqi- Note that

it would be incorrect to call Mhait a “super-Turing” machine since its behaviour is

incomparable to a Turing machine.

The class of Weihrauch’s Type-2 machines Mt2 (see Section 2.3.3) and the class of

BOSS machines M bcss (see Section 2.3.3) are incomparable for the following reason.

Using a machine from Mx2 , one is able to distinguish different representations of equal

real numbers (for example, the decimal expansions 1.9999... and 2.0). No machine

101

in M bcss can do this since the real numbers are represented as units in registers.

The underlying graph of the machine must be finite, and therefore there is no way to

represent an infinite sequence. Secondly, in M bcss machines can be defined which

compute noncontinuous functions, providing the required operations are defined by

the underlying ring. All functions computed by machines in Mti are continuous.

Each class contains machines which compute functions no machine in the other class

can compute, therefore MT2 || Mbcss■

3.5 Summary

In this chapter, problems with the conventional Church-Turing thesis and definition

of computability were discussed. Clarified definitions for the following terms and

notions were given:

• “capable of computing”

• “the function computed by”

• “capable of simulating”

• relative computability

• computing power

• the same, equivalent and more computing power

• incomparable computing power

Returning to the idea that computability is a relative notion, I am going to argue

that the Church-Turing thesis is actually a statement about a class of machines which

102

have the same resources, and that instead of the conventional Church-Turing thesis,

we should consider a relativized thesis. I revisit this idea at the end of Chapter 4.

103

Chapter 4

A Parameterized Meta-model

In preceding chapters, I have advocated a specific definition of a computer as an in

formal model of an information processing device. In this chapter, I present a more

formal characterization of a computing device as a meta-model which permits one to

specify and compare computing resources available to different machines. The un

derlying assumption of Chapter 3 is that computing power should be defined relative

to the capacities of a specific computing model. The meta-model presented in this

chapter provides a means for capturing the properties of classes of computing devices.

This meta-model is not intended to be universal in the sense that it can capture the

characteristics of any computing model. Rather, it is one tool which can be used

to discuss a certain set of models which can be described within the framework’s

limitations.

As I argued in Chapter 3, in Section 3.3.2, the computing power of a machine

is determined by its capabilities, in other words, the functions which it is able to

compute. What allows one machine or machine model to be more powerful than

another? The central assumption of this chapter is the following:

The resources available to a computing machine determine its computing

104

power.

This statement raises several crucial questions.

1. What is a resource?

2. What set of resources are required to characterize computing machines?

3. Is there a unique set of resources to characterize all computing machines?

4. Do computing machines with the same resources necessarily have the same

computing power?

5. How do changes in resources affect computing power?

In this chapter, I present one possible set of resources for specifying machine

models. In Section 4 .41 revisit the above questions in light of the meta-model outlined

in this chapter.

4.1 Resources

The informal computing model of Chapter 2, Section 2.7, identifies a computer as a

device satisfying four properties. Briefly stated, these properties are: that the device

be used for problem solving, that the device accept input and produce output, that

the input and output be accessible by a user, and that the device be used with the

intent of computing. To complement this informal definition of computer, I give here

an informal definition of a resource:

D efin ition 4.1. A resource is a property o f a computing device used in the operation

o f the machine during computation.

105

In other words, the resources of the machine are the capacities we would name

when describing the specific model. For example, to describe a Turing machine, we

might begin by saying that a Turing machine is a device equipped with a read/write

head (resource) and a bi-directional working tape divided into cells (resource), on

which symbols from a finite tape alphabet (resource) can be written. The description

of a DNA computer might begin with a collection of DNA double strands (resource)

composed of nucleotide sequences from the alphabet {A , C, G, T } (resource) in a

substrate (resource) at a specific temperature (resource). Further explanation of

the machines’ respective functionality would include descriptions of a set of possible

operations (resource) and the type of output produced (resource).

Assuming an informal model of computation, it is not possible within that frame

work to formally identify a complete set of resources. Supposing it were possible

to formally delineate a set of resources adequate for characterizing the properties of

any computing machine, and also accepting the assumption stated in this chapter

that resources determine the computing power of a machine, we would then have a

formal means of specifying the computing power of any possible computing device.

As already explained, there is a problem of circularity in attempting to create one

comprehensive formal computation model, in that the limitations of that model then

determine a definition of computability. Functions or problems outside the domain of

that particular formalism are then necessarily uncomputable. This is the precise dif

ficulty with the adoption of the Turing machine or equivalent models as the standard

model of computation: anything which falls outside the scope of the model is then

called uncomputable. Simply expanding the formal model changes the problem, but

does not solve it, as the set of so-called computable functions might be extended, but

any functions which cannot be expressed within the formal framework will be still be

a priori classified as uncomputable.

106

The presumption of this thesis is therefore that the answer to question 3. “Is

there a unique set o f resources to characterize all computing machines?” is no, as

the existence of such a set would imply the possibility of defining a formal universal

computing model.

To find a correct and complete characterization of resources for computing models

is perhaps an unattainable goal in general. Consider R. Gregory Taylor’s discussion

of the problem:

. . . the models of computation that we have considered in Chapters 1

through 6 are not physical models in the sense in which an architect’s

model, say, is a physical model of a proposed building. Rather, they are

mathematical models. In the typical case, the model of computation in

question was characterized set-theoretically as the parameterized descrip

tion of a class of abstract machines. For example, the single-tape Turing

machine model was described as a quintuple (Q, E, T, $)■ Each of

the five elements is a parameter whose values must satisfy certain re

strictions with respect to the other four. Each choice of five permissible

values for the parameters amounts to a new Turing machine. The Tur

ing machine model of computation, then, consists of the class of all such

quintuples. Similarly, the Markov algorithm model of computation may

be characterized set-theoretically as a class of triples (£ , T, II) satisfying

certain conditions. The register machine model of computation becomes

a class of pairs (9£, S), and Post’s model becomes a class of quintuples

(E, T, fi, A, II).1

The reader who finds the foregoing characterization of a model of compu

tation less than satisfying is not alone. What would be more fulfilling—but

107

is much more difficult to provide— is a set of criteria for deciding which

features of computational activity wind up as parameters in the first place.

In other words, the set-theoretic model characterization of model of com

putation seems somewhat after the fact, when what is needed is a “ge

netic” account— one that gets at why certain aspects of computation get

modeled while others are omitted ([108], p. 343).

He goes on to point out that there is a difficulty in choosing criteria for parameters

for several reasons ([108], p. 343-344):

1. What features we consider essential is “value laden.” In other words, it is

influenced by the prevailing assumptions regarding the nature of computation

at a given time.

2. Even for the four examples given by Taylor in the quotation, there are some

features which are not shared that might be desirable in a general characteriza

tion. For instance, the Post system has no input in the Turing machine sense,

and Turing machines do not perform pattern matching and string substitution

in the manner of Markov algorithms.

3. Nondeterminism is exhibited by some models and not others.

Taylor’s conclusion is that finding common features in models will be difficult, and

that “the most that can be said is that the various models that we have considered

exhibit certain family resemblances” ([108], p. 344).

Taylor only discusses the difficulties associated with defining a parameter based

model, but does not supplement his comments by presenting such a model, even an

1The reader is referred to Taylor’s book for the definitions of the tuples appearing in this quotation
[108] ,

108

unsatisfactory one. In this chapter, I present a model which addresses some, but

not all, of the problems identified by Taylor. For the parameterized meta-model

presented, it is not my intention to claim this as a comprehensive model capable

of capturing the properties of any possible computing device. Rather, I claim that

the meta-model provides utility in comparing the computing power of some models.

In Taylor’s terms, it is useful for models which exhibit “family resemblance” to the

Turing machine.

4.2 A parameterized meta-model

The parameters in the model are divided into four categories: machine properties,

input properties, processing properties and output properties. The type of entities

which are eligible as values for each parameter varies depending on the nature of the

parameter. For example, as part of the machine properties, consider the set of states

in which the machine can exist (type: set; parameter variation: size of the set). The

parameters identified below are illustrated with the example of a standard Turing

machine M = {Q, E, T, 5, qo, B, F) as described in Section 2.3.1.

4.2.1 Machine properties

The machine properties define the static properties of the computing device (see

Table 4.1).

109

Param eter T yp e T M E xam ple
States set Q : finite set
Possible inputs set E*: countably infinite set
Possible data set D = {w | w = 7 • Y }, where 7 , Y £

r*, and • represents the read/write
head position: countably infinite
set

Possible opera
tions

set of function schemas { f (y x j ' , s) = (j z • Y ,s ') , / (7 •
£ 7 ', s) = (7 • yzj ' ,s ') } , where
7 , j ' £ T*, x , y , z £ F and s, s' £ Q :
finite set

Halting condition predicate s £ F

Table 4.1: Machine properties

4.2.2 Input properties

The type of input allowed for a machine has a definite impact on its computational

capacities. For example, consider the following informally described scenario. Take

a standard universal Turing machine that accepts a binary input word which is in

terpreted as a self-delimiting description of a Turing machine followed by its binary

input. The UTM halts if and only if the simulated machine halts, and the output

remaining on the tape in that case is the same as the simulated machine’s output.

Now modify the UTM in the following way:

• Change the transition rules such that for any word which begins with a leading

0, the 0 is erased and then computation of the UTM continues as it originally

would have.

• Change the transitions rules such that the UTM halts and rejects any word

which begins with a 1.

Now, evidently the modified UTM is still universal since the original inputs can be

changed to have a leading 0, and then computation proceeds exactly as it had for

110

the initial machine. However, what happens if we restrict the machine such that

only inputs beginning with 1 are allowed? Clearly we no longer have a universal

computing device since it halts and rejects all inputs. Hence, the inputs permitted

for a given machine, and not just the static properties of the machine, are instrumental

in determining its computing power.

I identify the input parameters in Table 4.2 for computing devices. Again, the

properties are illustrated with the example of a standard Turing machine M =

(Qi r , 5, q0, B, F).

Param eter T y p e T M Exam ple
Start state item from state set Qo £ Q
Input item from input set w G E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / (7 «® y , s) = (7 W , s ') . . . } , or in
conventional notation, S : Q x F —>
{L, i? } x T x Q: finite set

Program ordered list of functions N /A

Table 4.2: Input properties

4.2.3 Processing properties

Beyond the static machine properties and the restrictions on input, the operation of

the machine during processing must be specified. The consideration of this class of

properties is what occurs during a processing step. In this meta-model, I assume the

standard view of computation: processing can be divided into well-defined steps, the

steps are ordered, and the timing of the steps can be determined (Knuth’s properties

2. and 5. o f algorithms— see Section 2.2). (Note, however, that these assumptions

do not hold for all models called “computers” by the definitions in this thesis.) For

processing properties, see Table 4.3.

I l l

Param eter T yp e T M Exam ple
Duration of step function 1: constant
Additional input item from input set N /A

Table 4.3: Processing properties

4.2.4 Output properties

Similarly to the influence that altering the potential inputs has on the computing

power of a model, the allowed output also alters the possible computations. First,

observe that according to the definition of computing power (Definition 3.8), a model’s

computing power is identified with the (partial) function it computes. Immediately

this definition implies that models with different output possibilities will have dif

ferent computing power. In the case of machines with equivalent rather than equal

computing power, it is possible to define a mapping between output sets if they have

the same cardinality.

However, for a user of a computing machine, the potential output is significant.

Consider the simple example of creating a multiplication machine for finding the

product of two integers. If we restrict ourselves to a machine which can only ac-

cept/reject its input, then the only obvious option for encoding the problem is to

input an ordered triple of integers (the multiplicands and the product), and then to

check whether the product is correct. Let T represent the set of all ordered triples

of integers and {accept, re ject} to represent the rejection/acceptance of input re

spectively. Then the domain and range of the function computed by the described

machine is / : T —► {accept, re ject}. According to conventional computability theory,

we would call the multiplication problem computable by an accepting/rejecting uni

versal Turing machine even though the machine is actually only checking the answer.

112

The problem that arises is that the ordered triple encoding is not helpful to a

user who does not know the product in advance. For any given pair of multiplicands,

there is a corresponding countably infinite number of triples with potential products

in the third position. Hence, we cannot use the binary output machine to solve the

problem from the user’s point of view.2

The potential outputs are modelled as a set as shown in Table 4.4.

Param eter T yp e T M Exam ple
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.4: Output properties

4.3 Meta-model examples

To illustrate the use of the parameterized meta-model, I now give some examples of

parameters for some common computing models.

4.3.1 Turing machine

The first table (Table 4.5) summarizes the properties for a standard Turing machine

already stated above.

2 One might argue that since the integers are countable, a user could try all possible triples
until the correct one is found. There are two possible means to accomplish this: either the user
is contributing some of the computational logic (by submitting the triples in a determined order),
or an auxiliary machine is necessary to generate and submit the triples. Either way, the unaided
binary machine is incapable of supplying the answer to the multiplication problem for integers. The
machine does not alone have the computing power to solve the problem.

113

Param eter T yp e T M E xam ple
States set Q: finite set
Possible inputs set £*: countably infinite set
Possible data set D = {w | w = 7 • 7 '} , where 7 , 7 ' £

T*, and • represents the read/write
head position: countably infinite
set

Operations set of function schemas { / (7 • X'Y, s) = (7 z • 7 ', s'), / (7 •
a r /js) = (7 • yz'y', s ')}, where
7 , 7 ' £ T*, x, y, z £ T and s, s' £ Q:
finite set

Halting condition predicate s e F
Start state item from state set Qo £ Q
Input item from input set w £ E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / (7 * * y , s) = (7 W , s ') . . . } , or in
conventional notation, ¿ : Q x T - >
{L, R } x T x Q: finite set

Program ordered list of functions N /A
Duration of step function 1: constant
Additional input item from input set N /A
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.5: Turing machine parameters

4.3.2 Accelerating Turing machine

In Table 4.6, an accelerating Turing machine [30, 31] is shown. This machine is

identical to a standard Turing machine, except that each step takes half the processing

time of the previous step.

The accelerating Turing machine is capable of computing any function over its

input and output sets in 2 units of time. Hence, we see that a change to only one

parameter can have a huge impact on computing power.

114

P aram eter T ype A ccelerating T M
States set Q : finite set
Possible inputs set E*: countably infinite set
Possible data set D — { vj | w = 7 • 7 '} , where 7 , 7 ' G

T*, and • represents the read/write
head position: countably infinite
set

Operations set of function schemas { / (7 • XT', s) = ('yz • Y , s'), / (7 •
ary', s) = (7 • 1/2 7 ', s ')}, where
7 , 7 ' € r*, x, y, z G r and s, s' G Q:
finite set

Halting condition predicate s e F
Start state item from state set <Zo € Q
Input item from input set w G E*: finite length
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
{ / (7 * z y , 5) = (7 W , s') • • •}, or in
conventional notation, 8 : Q x T —>
{L, R } x T x Q : finite set

Program ordered list of functions N /A
Duration of step n function for the nth processing step
Additional input item from input set N /A
Intermediate out
puts

set N /A

Final output set T*: countably infinite set

Table 4.6: Accelerating Turing machine parameters

4.3.3 Electronic computer

Consider the description of parameters for a desktop electronic computer, with the

modification that potentially unlimited memory is available (see Table 4.7). 3 4 5 6 7

3 One could argue that variable values constitute the state of the electronic computer. With
Turing machine as well, we can make a similar trade off between states and data (we know that
fewer states can be used if more alphabet symbols are used). In the particular characterization of
the electronic computer presented here, I choose to represent variable values below, as possible data.

4There are a finite number of registers of finite length, and therefore only finitely many value
combinations are possible.

5Could also be a file input.
6Here I assume a non-interactive program.
7The non-interactive program does not produce any intermediate output.

115

Param eter T y p e E lectron ic com puter
States set register values:3finite set4
Possible inputs set any binary string of finite length:

countably infinite set
Possible data set UmeNoi0»1) 8™ where m is the

number of used memory cells (as
suming a cell size of one byte):
countably infinite set

Operations set of function schemas machine language instruction set:
finite set

Halting condition predicate program terminated?
Start state item from state set initial register values
Input item from input set particular binary string of finite

length5
Initial data item from data set N /A
Operating system set of functions satisfy

ing operation format
machine language instruction set:
finite set

Program ordered list of functions finite length sequence of instruc
tions

Duration of step function 1: constant
Additional input item from input set ~WJÂ*
Intermediate out
puts

set N /A y

Final output set any binary string of finite length:
countably infinite set

Table 4.7: Electronic computer parameters

4.4 Discussion of meta-model properties

I now return to the questions posed at the beginning of this chapter.

1. What is a resource?

2. What set of resources are required to characterize computing machines?

3. Is there a unique set of resources to characterize all computing machines?

4. Do computing machines with the same resources necessarily have the same

computing power?

116

5. How do changes in resources affect computing power?

Question 1 was answered in Section 4.1. The parameterized meta-model provides

one possible answer to Question 2. That the set of proposed parameters is reasonable

is illustrated through their utility in capturing the properties of the examples in

Section 4.3. Question 3 was answered negatively in light of definitions in this thesis

in Section 4.1.

Turning now to Question 4, the answer is trivially “yes” when considering the

parameterized meta-model. Machines which have exactly the same parameters will

be indistinguishable, and thus have the same computing power. I therefore ask a

modified question:

4'. Do computing machines with equivalent resources have equivalent computing power?

The definition of equivalent computing power is as it is given in Chapter 3, Defini

tion 3.13: Two machine classes M\ and M 2 have equivalent computing power, denoted

by Mi = M 2, if for every machine in M i, there is some machine m[in M2 for

which mi = m'i, and for every machine m2 in M2, there is some machine m'2 in M\

for which m2 = m'2.

For resources, the definition of equivalence is stated in terms of the size of the sets

or items which characterize the resource.8

D efin ition 4.2. A resource is equivalent to another resource if the resources are

subject to the same restrictions:

• I f the two resources are sets, it is possible to define a bijection between them

(the sets are the same size).

8A characterization in terms of energy has also been proposed, however, it is not as immediately
applicable in the present discussion (see [65]).

117

• I f the resources are single items, the items are either both finite length, or both

infinite length.

• I f the resource is a function, then the functions should have the same growth

rate (as defined by their order in big-Q notation).

• I f a particular resource is not used in the model (“N/A” in the examples), then

for equivalence that particular resource should be unused in the other model as

well.

Consider again the description of parameters for a desktop electronic computer

(see Table 4.7). Let Mtm denote the class of Turing machines designated by the

parameters in Table 4.5. Let Mec denote the class of electronic computers designated

by the parameters in the above table. Now, we would like to determine whether

Mtm = Me c ■ In order to do this, according to the definition it must be shown

that for every machine mtm in Mt m , there is some machine m'tm in Mec f°r which

mtm = m'tm, and for every machine mec in M e c , there is some machine m'ec in MTm

for which mec = m'ec. One means of achieving the above would be to show that

for any Turing machine, there exists an electronic computer which can simulate the

behaviour of that Turing machine, and vice-versa. This is well-known to be true. An

example of a simulation argument can be found in Hopcroft, Motwani and Ullman’s

introductory textbook ([63], p. 355-363).

Returning now to the above characterization of an electronic computer, consider

the following modification. As a computer’s program resides in memory, the program

can be regarded as data. As justification for this claim, recall the standard instruction

execution cycle (see for example [11], p. 81-82).

1. The instruction to which the program counter currently refers is loaded from

memory into the instruction register.

118

2. If the instruction terminates the program, execution is ended.

3. Otherwise, depending on the instruction, any necessary data is fetched from

memory into temporary registers.

4. The instruction is executed on the relevant data in registers (if applicable).

5. The result is returned to memory from registers (if applicable).

6 . The program counter is updated to the next instruction location.

If we regard one execution of the entire instruction cycle as a single computation

step, then following one iteration we have a state change (change of instruction reg

ister value, and possible change of other register values), and a possible data change

(alteration of memory data, if applicable). Therefore, we can amend the following

parameter values (see Table 4.8):

P aram eter T y p e E lectron ic com p u ter
Input item from input set program and particular binary

string of finite length
Program ordered list of functions N /A

Table 4.8: Modified electronic computer parameters

The parameter values for the two models are now equivalent in the sense defined

above. For instance, they both have a finite state set, a finite input string taken from

a countably infinite set of potential inputs, and a constant function for duration of a

single computation step.

Turing’s original definition of the a-machine, and its motivation as a model of

the calculation done by a human “computer,” has constrained the models which

we potentially define as computers. Our acceptance of the precise definition of an

119

algorithm as given by Knuth and others has further reinforced the plausibility of the

set of restrictions we place on a model in order to call it a model of computation. It

is my belief that the reason the conventional Church-Turing thesis appears to hold

is that models with the equivalent resources will have equivalent computing power,

and hence limiting ourselves to the constraints of the conventional definition of a

computer never results in a model with computing power beyond that of a Turing

machine. Based on this hypothesis, and as an answer to question 4', I therefore

present the following hypothesis:

H ypoth esis 4.1. The relativized Church-Turing thesis Computing models with

equivalent resources have equivalent computing power.

Note that in the case of Turing computability, a proof that any computing model

which satisfies the restrictions of an algorithm is equivalent to a Turing machine would

constitute a proof of the broad Church-Turing thesis (provided that we accept that the

informal notion of effective calculability is captured by the definition of algorithm).

A proof of the above hypothesis would be a far more general result covering not only

Turing-equivalent models, but all other definable computing models.

The final question is:

5. How do changes in resources affect computing power?

Intuitively, adding more of a resource can potentially increase the computing power

of a model. That an increase in computing power is effected by the addition of

resources is not necessarily the case; consider for example adding any finite number

of extra heads or tapes to a Turing machine. However, there seem to be threshold

values beyond which the addition of resources does have an effect on computing power.

In anticipation of the connection with Cantor’s continuum hypothesis drawn in

Chapter 6 of this thesis, I observe that these values tend to be important in their

120

effects on computing power:

• none

• one

• finitely many

• countably infinitely many

• uncountably infinitely many

For example, a Moore machine is more powerful than a finite automaton since

it can produce some output rather than none (none to one); a one stack machine

cannot simulate a Turing machine but a two stack machine can (one to finitely many);

allowing countably infinite input lengths as in Weihrauch’s Type-2 machine makes it

more powerful than a Turing machine (finitely many to countably infinitely many);

and permitting input from a real ring rather than an integer ring causes a jump in

computing power for the BCSS model (countably to uncountably infinite).

121

Chapter 5

Encodings and Labels

In Chapter 1, I argued that computer science should be more than a purely formalist

discipline. The purpose of computing is to solve problems which can be represented

in a computational way. To illustrate, consider computation by a binary Turing

machine. Let B = {0 ,1 } be the binary alphabet under discussion, and the input

and output to the problem be represented by binary strings. In order to claim that

a binary Turing machine M solves problem P , the following requirements must be

fulfilled:

1. There is an effective encoding1 of the problem P in the domain of M . That is,

P can be translated into a binary function f : B —> B.

2. The Turing machine M is capable of computing the function / .

3. There is an effective decoding of the output from M into the problem domain,

such that the decoded output is the problem solution.

1We can specify restrictions on an encoding, for example, that it be computable using a specific
model, or within a certain complexity class. These issues will be explored later in this chapter. For
now, I intend simply by “effective” that the encoding exists, and there is some means of performing
it.

122

Requirements 1.-3. can be summarized for a specific problem instance p e P by this

transformation:

where p is a problem instance in the problem domain, a is the encoding, p' is a binary

representation of p (the Turing machine input), / is the function computed by the

Turing machine, s' is the machine output, (3 is the decoding and s is the solution in

the problem domain.

It turns out that a much more careful analysis must be done in order to claim

that a machine solves a problem. That analysis is one purpose of this chapter. The

above transformation is revisited in Section 5.2. The other aim of this chapter is to

explore the idea of machine descriptions as labels for functions. A specific labelling

function is defined, and then it is shown that that any enumerable set with countably

infinitely many elements is adequate for labelling the Turing-computable functions.

Interpretations of encodings are discussed, and an analysis of the impact of changing

encodings is done. Finally, based on subtleties of encodings, a definition of what it

means for a machine (possibly encoded) to have sufficient power to solve a problem

is given.

5.1 Machine descriptions as function labels

When claiming that a machine can solve a problem, we need to refer to the machine

in some way. There are three possibilities:

1. The machine is an animate, physical device which is present.

2. We have a formal description of the machine, but no physical device (for exam

ple, a 7-tuple specifying a Turing machine).

123

3. We have an encoding of the formal description (for instance, a self-delimiting

description of a Turing machine which can be given as input to a universal

Turing machine).

These possibilities are ordered by the readiness with which the machines can be used

as problem solving devices. In the first case, the physical machine can be directly

used. In the second case, a human or other meta-machine is necessary to actually

execute the required computation with the formal model. The formal description plus

the executor can be regarded as an animate machine (an instance of the first case).

In the third case, the description must first be decoded, and then the same process

as for the second case must be used. The comments in this section refer to the third

possibility: a representation of a machine model is a finite string of symbols which is

an encoding of a formal machine model.

Unless otherwise noted, discussion in this chapter refers to machines which have

a finite description, and which compute a function from a specific domain and range.

Neither of these two restrictions is required by the general definition of “computer”

given in this thesis. However, these are restrictions associated with the conventional

definition of computer and computability. As was the case in Chapter 4 for the

parameterized meta-model, the utility of the observations made in this chapter for

the applicable class of computing devices is not diminished because the observations

do not apply to all computers.

5.1.1 Enumerations of encodings

Consider a specific finite string encoding of a computer. We choose to interpret the

string of symbols as a machine model, and furthermore, to interpret that machine

model as a representation of a function. Thus the encoded machine model is a label

124

for a function. Furthermore, a machine model and the input to that machine model

is a label for a specific function evaluation on a domain element yielding a value from

the range.

In the case of Turing machines, and those models equivalent to Turing machines,

we know that the complete set of machines is enumerable. By enumerable, I mean

that it is possible to produce an ordered list of strings which represent all the definable

Turing machines. One example of such an enumeration would be a list of all Godel

numbers of possible Turing machines. Let S = {e i, e%,. . . } be an enumeration of

a set of encodings of all Turing machines, and let e* represent the ith element in the

enumeration. This enumeration does not have the requirement that it be recursive

as an acceptable Godel numbering does— any enumeration for which some decoding

exists is allowed. Then we see that with a fixed enumeration, each Turing-computable

function can be associated with a unique natural number i.

O bservation 1 . The shortest description of any given Turing-computable function

is the same as that o f any other, and is precisely one natural number.

This observation also leads us to the well-known conclusion that the set of natural

numbers, No, is a sufficient description of the set of Turing-computable functions—

provided that there is an established decoding mechanism. This observation is stated

here explicitly to emphasize the idea that there is a trade-off between succinctness of

the description of a machine and the amount of decoding which is required to use the

machine to perform a computation. The closer the description of a machine is to a

usable problem solving device, the easier it is for a user to employ it. In the case that

the function is described by one integer, it is up to the person or entity performing

the computation to determine which machine is indicated by the enumeration, how

that machine should be decoded, and also to understand what the decoding means

125

(i.e. how the decoded machine operates as a problem solving device). It is much more

difficult to use “31” as a computer than it is to use a seven-tuple of a Turing machine,

but that does not mean that “31” is not a sufficient description provided that one has

all the details to decode it. This sort of encoding trick is prevalent in the literature

on small universal Turing machines (see, for example, [84]).

This leads to the next observation.

O bservation 2 . Any set for which a bijection to No can be defined can also be used

as a description o f the Hiring-computable functions.

More formally, let ¿ : S —»• M be a mapping from string encodings to descriptions

of machines. The elements of S depend on the choice of symbols for the encoding,

and the content of set M depends on the desired machine description. In the present

example, ¿(e) is an effective decoding of the string e into a formal description of

a Turing machine. In the case that the desired decoding of a string e is as input

for a universal Turing machine, the result of ¿(e) might be a self-delimiting string

containing the necessary information for the UTM to simulate the execution of the

machine. As a third example, consider the case that a human decodes e and draws

a graph of the transition function of the machine. The point is that the result of

applying ¿ to a string encoding results in a description of a machine which can be

used for the purpose for which it was decoded. Then for the enumeration £ of Turing

machines, Mi G No, ¿(e)̂ is an interpretation of e* as the ith Turing machine. Now

consider a set A such that a bijection / : No —> A exists. Then Vo G A, a identifies

the unique Turing machine ¿(e/-i(a)).

I will use the notation £ (M) to denote the function labelled by machine M, and

£ (M , i) to denote the function evaluation labelled by the execution of the machine

M on input i. In other words, C : M —> T is a mapping from machine descriptions

126

to functions, and £ : M x I —̂ (F x I x O is a mapping from machine descriptions

and their input values to triples of functions, domain elements, and range elements

such that £ (M , i) = (f , i , o) if and only if (£ (M)) (i) = o (where I is the allowable

input set for machines in A4, I and O are the domain and range of the labelled

function, and i G I, o G O). In the case that the machine is described by a string e,

the interpretation of the string must also be included: £(t(e)) denotes the function

labelled by description e under interpretation ¿ and £(i (e) , i) denotes the function

value labelled by the execution of the machine ¿(e) on input i.

Example

As a concrete example, consider a Turing machine Mxi which can be used to compute

the square of a natural number n G % Let the input and output alphabets of M be

E = T = {0 ,1 ,2 ,3 ,4 , 5 ,6 , 7 , 8 ,9 } respectively. The boldface type distinguishes the

symbols { 0 , 1 , 2 , . . . } from natural numbers {0 ,1 ,2 , . . . } . The domain of the square

computing problem can be encoded into the input alphabet of Mxi with the encoding

« as follows. For single digits, « (0) = 0, « (1) = 1 , . . . , « (9) = 9. For larger numbers

.z G No, find a(z) = xn-iX n- 2 ■ ■ - Xq for \ log\Qz\ > i > 0 by Xi = ot((z mod 10i+1)/10l)

(where / is integer division and mod is integer modulus). For example, «(347) =

347.

To convert the output from Mxz back to a natural number, the decoding (3 can

be defined as follows. For a word w = x n-\xn-.2 . . . x0 G T* of length n, let (3(w) =

&~l (xi) * 10*. Any leading 0 ’s in w are ignored, which means that i actually

maps equivalence classes of words to single natural numbers from No- For example,

(3(123) = /?(000123) = 123.

Now, supposing Mx2 correctly solves the natural number squaring problem, then

given a string encoding (via «) of a natural number, it will produce a string encoding of

127

that number’s square (which can be decoded via ¡3). This is expressed as £ (M X2) = f x2

where f x2 : No —► No is defined by f (x) = x 2. The Turing machine Mx2 is a label for

the natural number squaring function, f x2.

When M X2 is apphed to a particular input string w, an application of the squar

ing function to a element in its domain is labelled. Consider input string 017, on

which M x2 would produce output string 289. Using labelling notation, we write

£ { M X2,017) = (fx2, 17,289) to explain that on input 017, the computation per

formed by M x2 represents the mapping of 17 to its square, 289, via the function

fx2 •

5.1.2 Labels and computability

The existence of Turing-uncomputable functions can by explained by observing that

there are not enough labels for all possible functions. To simplify the discussion,

consider, without loss of generality, the set o f all (partial) functions on the natural

numbers No, denoted by N. The following is well-known, and is a consequence of the

enumerability of Turing machines.

O bservation 3. \N\ = 2 N° . 2

For a given enumeration £ of Turing machines, a countably infinite subset of

functions is “picked out” of N by those labels. As K0 < \N\ it is impossible to

simultaneously label all the functions in N.

However, note that the set of labelled functions is not fixed. By changing the

interpretation of the label, a different function can be associated with that label.

Consider for example, a string encoding of a standard 7-tuple description of a Turing

2No denotes the cardinality of No, and 2**° denotes the cardinality of the set of all subsets of No-
This is revisited in detail in Chapter 6.

128

machine: M = (Q, E, F, 5, qQ, B, F) (see Section 2.3.1 for the formal definition of a

Turing machine). This string encoding will contain a representation of F C Q, the

set o f final states of the Turing machine. Without altering the string, change the

interpretation such that the part of the string which formerly represented F now

represents the set of non-final states.

As a concrete example, let i be a string encoding of a binary Turing machine

accepting E* with exactly one state which is both the start state and a final state.

Assume that the behaviour of the machine is such that it halts and accepts its input

if it enters a final state, and halts and rejects its input if an undefined transition

function value is encountered. Then the first interpretation of x is given by (x) =

({ g o } , {0 , l } , { 0 , l ,S } ,d ,q 0,S , { g 0}) with % o,0) = {go, 0, R},5{q0, 1) = {q0, l , R } .

Under the new interpretation ¿2> ¿2 (2) = ({go}, {0 ,1 }, {0 ,1, B}, 5, qo, B, 0) with 5

given by S(q0, 0) = {q0,Q, R},5(q0, l) = {QoA , R } - Then C{li{x)) = with / i (i) =

(i, accept) (accepts all strings without altering the tape contents) and C {l2 (2;)) = f*i

with f f i i) = (i, reject) (rejects all strings without altering the tape contents).

The idea of labels becomes even more interesting when one considers a universal

Turing machine. Let U represent a specific binary UTM, for example, the UTM

specified in Section 3.3.3. As previously specified, let its behaviour be such that U

halts on input (M ',i') (an encoding of machine M and input i) if and only if M

would halt on i, and runs forever otherwise. The UTM computes one partial function

fu : B —» B, which we interpret as representations of all possible Turing machines

and their inputs and outputs.

Now recall the unary addition function described in Section 3.2.1. Let Mû add

be a Turing machine which computes the unary addition function. That is, let the

encoding a map each problem instance (m, n) onto a binary string l m0 1 n, and the

decoding (3 map strings of the form l x onto x. In order to claim that Mu_acw computes

129

fu-add, it should produce the output l m+n on its tape if and only if it is given the

input l m0 1 n, and run forever on other inputs.

As U is a universal Turing machine, it is capable of simulating the behaviour of

Mu-add. Consider a specific input string: i = 111011. When given {M'u_add,i') (the

encodings of Mu-add and i) as input, U should halt and produce o', the encoding

of 11111 as output. In other words, C(M'u_add,i') = { fu-add, (111, 11), 11111).

Consider now the function f f which is identical to fu, except for the value of fu(i')

which, instead of 11111, will be undefined. There is a Turing machine U* which

computes ff\ we can add states and functionality to fu such that the input is first

read without alteration, and then if it is {M'u_aiid,i'), the machine enters an infinite

loop, but otherwise, it returns to the beginning of the input and then behaves exactly

as U does.

We now have a specific instance of a function which U* cannot directly compute:

the original function computed by U, fu (that is, U* is not capable of computing fu

in the sense of Definition 3.3). U* also cannot directly simulate every other Turing

machine, since it cannot directly simulate Mu- add■ The word directly is essential since

there is still a possible encoding of the unary addition problem. As U is universal, it

can simulate itself.3 Let U' be the encoding of U in the format to be used as input for

U (the original UTM). Then, giving the input ([/', {M'u_add, i')') to U* will produce

the output o', the encoding of 11111. This “trick” of using U* to simulate U can

also be used to argue that fu is still computable by U*.

However, it would be incorrect to imply that since there is a means of produc

ing the correct output for (M'u__add) i'), there is no difference in the computational

capabilities of U and U*. The user of U* who wishes to find the result of Mu-add's

computation on i now must do extra work to encode not only Mu- add and i, but

3Of course, U can also simulate every other universal Turing machine.

130

also to encode U. Taken to the extreme, recall that No is a sufficient description of

the Turing-computable functions. The “user” of a machine described by a natural

number i must first determine which string in the enumeration e* e S is referenced

by i, then interpret it (find ¿(e*)), and finally perform the computation. Disregarding

these extra steps performed by the user hides some of the time complexity of the

computation, and might even affect whether the problem is computable by a given

model as explained in Section 5.2.

5.1.3 Duplication of labels

When considering simulation of function computation, it is easy to imagine multiple

machines which can simulate the computation of a given Turing machine— simply

change the input alphabet, and define an appropriate translation. However, a point

which is not as apparent is that there are also multiple machines which compute

exactly the same function as any given Turing machine.

Pick a specific Turing machine M f which computes the function / , that is, C{Mf) =

/ . Suppose, without loss of generality, that M /s read head begins at the left-most

input symbol. From Mf, create a new machine M j which reads the input word from

left to right, and then returns to the left-most symbol, without changing the original

input. Following this input reading, M j ’s computation proceeds exactly a s M /s does,

and hence M f(i) = Mj(i) for all i in the domain of / . The same principle can be

used to build M f for all n G No, machines which read their input n times, before

completing the computation as M f would.4 This leads to the following well-known

statement.

T h eorem 5.1. In any complete enumeration of Turing machines, if there is one

4In the case of A as input, M f could perforin n state changes before completing the computation.

131

machine capable of computing a function f , then there are countably infinitely many.

Proof. Using the above construction, if one machine M f appears in the enumeration,

then so do all the machines M f, n G N0. □

C orollary 5.2. There are countably infinitely many labels for every Turing-computable

function.

C orollary 5.3. Every language accepted by a Turing machine is accepted by countably

infinitely many Turing machines.

C orollary 5.4. For a property p o f a Turing-computable language, if there is one

Turing machine M whose language L(M) satisfies the property p(L(M)) = true, there

are countably infinitely many Turing machines Mi,i G N such thatp(L(Mi)) = true.

Of course, in all four of the above cases, there are many other Turing machines

which are capable of computing / (which label / , accept the same language as M f, or

whose language satisfies p, respectively). The generation scheme for Turing machines

I have outlined here shows that Ko (countably infinitely many) is a lower bound for

the number in each case. As the total number of Turing machines is also bounded by

No> the number is precisely N0.

To summarize, the purpose of this section was to emphasize the point that from a

purely formal standpoint, there is nothing special about particular machine descrip

tions beyond their purpose as labels for functions. The integers, or any enumerable

set is an adequate set of labels for the Turing-computable functions. Labelling is not

fixed— by changing an interpretation, different functions can be associated with the

same label.

132

5.2 Encodings revisited

I return now to the transformation describing the solving of a problem P by a machine

M from the beginning of the chapter. In this section, it will be further analysed and

stated more precisely taking into account all the encodings which must occur.

The simple encoding/decoding:

V
f s

for computing the solution to a problem instance presented earlier in this chapter must

be expanded to include the encoding/decoding of the machine. For a description e

of a machine, and an interpretation ¿, ¿(e) is the machine described by e. In order

for ¿(e) to be appropriate for solving p, it must be the case that C(i{e)) = / , which

depends on both e and t. How do we find ¿(e)? The interpretation of e could be done

by a human, or by a machine. Let M L denote this entity, and let its behaviour be

such that M l produces output ¿(e) on input e for all e on which ¿(e) is defined. The

decoding of e is shown by:

e M e

Once the machine is decoded, we can use it to compute the function value for the

desired problem instance:

V
0

* S

However, there are still steps hidden in the above transformation. A human or ma

chine entity is required to perform a and (3. Let these entities be represented by

Ma and Mp respectively. Note that whether one, two, or three different entities are

required for M a, Mp and Me is dependent on the pairwise intersections of the input

sets.

133

Returning now to the computation of a problem solution, the transformation can

again be updated:

V
M0
------► S

If the input sets for Ma and Me have a non-empty intersection, then only if Ma

and M e have the same output values for all the intersecting inputs could M a = Me

(and analogously for Me and Mp). This is a consequence of Lemma 3.1. The more

typical case would be that three different entities would be necessary for the complete

transformation. There is an exceptional case in which the problem p is the identity

mapping with no domain change. In that case M e, Ma and Mp could all be machines

for which the input is the same as the output in all cases.

To make the claim that a problem P is computable by a machine described by a

string e, all the translation steps must be taken into account. That is, the machine

Me decoded via l from e must satisfy all the following inequalities:5

M e h M l

Me b Ma

M e h Mp

5.2.1 Coordinating entity

There is one further point which is almost always ignored in the conventional lit

erature. In the case of inanimate models, the execution of the machine simulation

must be done by some entity. When I have e, p, M t, Ma, Mp and I want to find s,

someone or something must perform the computation of M L on e, Ma on p and so on.

5This analysis ignores time and space complexity. To claim that the machine described by e is
capable of computing P within a complexity class C , for example, M e would be required to compute
¿, a and ¡3 within C as well.

134

This entity must also use each of the machines in the correct order, and pass input

and output along to each of them as required. I will call this the coordinating entity

and denote it by M e- M e is capable of taking a problem instance expressed in the

problem domain and the encoding of a machine for solving the problem, and produce

a solution from the problem domain. In order to be able to do this, it must satisfy

the following requirements:

1. The input set Imc f°r M e must include the input to Ma and the input to ML:

1Me 2 I Ma U Iml ■

2. The working language (what symbols M e is able to process), must include all

the input and output sets of the component machines, in addition to the symbols

used in the machine descriptions: W c 2 iMa U Iml U Ims U Im0 U Om* U Oml U

Omb U Om0 ■

3. The output set Omc for M e must include the output from M$\ Omc 2 Om/3-

The final requirement to claim that problem P is computable by a machine de

scribed by a string e is that

M e is capable of computing the function computed by M e

It would be insufficient to require that Me be capable of simulating the function com

puted by M e, or in other words that M e >z M e, because additional encoding/decoding

would be hidden in the simulation. At some point, it is actually necessary to have a

machine or device, the coordinating entity, which can directly communicate with all

the other machines, without domain translations.

There is one circularity which cannot be avoided, and that is the requirement that

Me be capable of computing M t(e), in other words, that it be capable of decoding

135

its own encoding. One could require that Me not be encoded in any way, but this

restriction would mean that the only machines powerful enough to compute any

functions at all would be those in the first category from the beginning of this chapter:

the machine is an animate, physical device which is present. This restriction would

be unreasonable since computability theory is, after all, a discipline concerned with

formal models. Therefore instead, if a machine is presented in an encoded form,

only if the machine is capable of decoding its own encoding is it deemed sufficiently

powerful to solve the problem in question.

5.2.2 Sufficient power

Finally, a definition concerning power necessary to compute a problem solution can

be stated.

D efin ition 5.1. An encoding o f a machine e has sufficient power to solve problem p

if all the following hold:

(i) Me, M t , Ma, Mg and M e can be specified according to the requirements outlined

in this chapter.

(a) M e y m l .

(in) M e >z Ma.

(iv) Me y Mg.

(v) M e is capable o f computing the function computed by M e-

An an illustration, consider the example of the problem p+ of addition of natural

numbers. This problem is denoted by function / + , and has No as domain and range.

Let e+ be the Godel number of a binary machine M + which is capable of simulating

136

this function. To determine whether there is a Turing machine with sufficient power

to solve p+ we would need to be able to define Turing machines for the following

problems:

• M l decodes e+ into M+.

• Ma translates natural numbers into binary inputs.

• M + simulates /+ .

• M /3 translates binary outputs into natural numbers.

• M e can be defined to use all the above machines to compute /+ .

Without giving specifics of the machines, it should be evident that there are Turing

machines which can perform all the required tasks. M e will have binary and digits 0

to 9 in its tape alphabet, in addition to extra symbols for representing machines and

keeping track of inputs and outputs. We can therefore say that there exists a Turing

machine with sufficient power to solve the “addition of natural numbers” problem.

On the other hand, it is very important to note that, for example, a binary uni

versal Turing machine does not have sufficient power to solve this problem. Although

it is capable of simulating /+ (according to Definition 3.6), it would need additional

resources to actually solve the problem directly. With respect to the above example,

the binary universal Turing machine could be used in place of M+, but not in place

of any of the other machines in the example.

There is one other subtle point which must be made concerning interpretations.

Suppose a problem P is expressed in some kind of notation, formal or otherwise.

Consider again the problem of addition of natural numbers. This problem can be

phrased as “Given natural numbers x and y, find 2 such that x + y = z," or in terms

137

of functions, “Define / + : No x No -> No with f+ (x , y) = x + y ” What are x ,y

and z? A formalist would not ascribe any further meaning to the symbols beyond

their function in mathematical expressions. However, most people concerned with

problem solving intend more than that with mathematical expressions— x , y and

z represent natural numbers (entities which exist in a Platonic sense). A natural

number has a magnitude, and the problem is to find the result of adding the two

magnitudes. I opened this chapter with the statement that “computer science should

be more than a purely formalist discipline.” In other words, the symbols involved

in a computation have semantics beyond their function as machine input, data or

output. Attributing meaning to those symbols is a step which cannot be formally

modelled. The association between a symbolic representation and the intuitive idea

of a problem can not be computed in a formal sense.

In this chapter, I presented the idea of machines as labels for functions, dis

cussed the number of possible labellings, analysed encoding and decoding necessary

for problem solving, and provided a definition of the notion of sufficient power to

solve a problem.

There are two main points which arise out of the discussions in this chapter:

1. Computational “work” can be shifted from the computing machine to the user

of a computer by hiding complexity in the encoding of the machine and data. A

precise analysis of the power of a model requires the encoding/decoding details

to be explicitly analysed.

2. Any set which can be put in a bijection with the integers can be used as a

description of the set of Turing-computable functions. There is nothing special

about a Turing machine as a label for a function— it is simply a finite description

of a particular function. Other finite descriptions can be readily substituted.

138

Chapter 6

Cardinalities, Computability and

the Continuum Hypothesis

In this chapter, I develop some results concerning the relationship the continuum

hypothesis (CH) and Turing computability.1 The properties of Turing-computability

which serve as the basis for the observations I make are that Turing-computability

refers solely to computation over finite input sets, and the so-called “computable lan

guages” (and the “uncomputable” ones) are all finite or countably infinite. Therefore,

the cardinality of the sets and languages involved in Turing computations are all de

scribed by Cantor’s Ho- On the other hand, some of the “super-Turing” computation

models I described in Chapter 2 such as Abramson’s extended Turing machines [7]

and Weihrauch’s Type-2 machines [118] can describe computations over sets with the

same cardinality as the real numbers. Cantor’s continuum hypothesis addresses the

question of where in the hierarchy of cardinals the integers and the real numbers

1 Thanks to Jamie Andrews for asking the question “Does this talk have anything to do with the
continuum hypothesis?” about a talk I gave which actually had nothing to do with the continuum
hypothesis. His question inspired my curiosity on the relationship between the subjects in the title
of this chapter.

139

fall; here I consider how results and speculation about the veracity of the continuum

hypothesis inform discussion about computable functions and vice-versa.

As is well known, Cantor’s diagonal argument for proving the uncountability of

the real numbers transfers easily to prove the existence of Turing-uncomputable func

tions. In this chapter, I explore the proof method based on sizes of sets which I call

“counting-based” proofs. I repeat some known results and introduce some new results

with this technique.

The discussion in this chapter is essential to one of the concluding claims of this

thesis:

The existence o f Turing-uncomputable functions is fundamentally related to the

cardinality o f sets, and has little to do with the uncomputable functions themselves.

This idea is elaborated in the conclusion (Chapter 7).

6.1 Prior work

Given the obvious connections between finite and infinite structures and computabil

ity, there have been many researchers who have remarked on possible implications of

the continuum hypothesis in computability theory. In his 1939 work [110], Turing in

cludes a section titled “The continuum hypothesis. A digression” in which he explores

the idea of using ordinal logic to reason about constructive analogues of the continuum

hypothesis. Kleene’s exploration of recursive functionals and higher types constituted

an extension of recursive function theory over integers to sets with higher cardinali

ties [73]. Functionals are important for defining notions such as constructibility and

enumerability to sets with cardinality greater than K0 ([96], p. 366).

In this chapter, I summarize Cantor’s principal findings related to large cardinals

and the continuum hypothesis. I then discuss a paper by Godel on the topic of the

140

continuum hypothesis. I draw analogies between his arguments concerning the re

lationship between the continuum hypothesis and the axioms of set theory and my

assertions about Turing uncomputability and the algorithmic conception of comput

ing. Finally I present a few known and new computability-related theorems using a

proof technique based on the sizes of sets (“counting-based proofs”).

6.2 Notation

Let N = { 1 ,2 ,3 , . . . } denote the set of natural numbers, No the set of natural numbers

including 0, Z the set of integers (numbers in No and their negations), <Q> the set of

rational numbers, and R the set of real numbers.

For a set A, let \A\ denote its cardinality (the number of items in the set). 2A

will denote the powerset of A, or the set o f all subsets of A. Note that if A is finite,

the cardinality of 2A is \2A\ = 2 ^ . A countably infinite set can be put into one-to-

one correspondence with the natural numbers, and but an uncountably cannot (for

example, the set of real numbers).

For infinite sets, No is the first infinite cardinal number. No is the cardinality of

countably infinite sets, and so No = |N| = |No| = |Z| = |Q|. Higher cardinalities

are represented by Ni ,N2, . . . as dicussed later in this chapter. Analogous to the

case for finite sets, let 2Hx represent the cardinality of the set of all subsets of a set

with cardinality N̂ . Let c represent the cardinality of the set of real numbers (the

continuum), that is, c = |R|.

The rules of cardinal arithmetic needed in this chapter are listed below [62, 44]. Let

A and B be arbitrary infinite sets with cardinalities a = |A| and ¡3 = \B\ respectively.

Let 7 be an infinite cardinal with 7 < a.

• a + (3 = | A U B\

141

• a + 7 = a

• a * 7 = a

• a + n = a for n € No

• a * n = a for n e No

• a + a — a

• a * a = a

In this chapter, I assume standard Zermelo-Fraenkel set theory, with the axiom

of choice (abbreviated ZFC) and the well-ordering theorem (see [62] for a summary

of axioms).

6.3 Cantor’s results

Between 1874 and 1884, Georg Cantor published a series of seminal papers concerning

sets and infinity. These were comprised of several self-contained articles, and a series

of six papers entitled Uber unendliche lineare Punktmannigfaltigkeiten (On infinite,

linear point manifolds).2

Cantor’s results and definitions from those papers which are relevant to this Chap

ter are the following:

• Proof that the cardinality of the algebraic numbers (and consequently, that

of the rationals and integers) is strictly less than the cardinality of the reals

2For an analysis of the chronology of Cantor’s discoveries and their historical significance, see
Joseph Warren Dauben’s biography and historical bibliography of Cantor and his work on the infinite
[38].

142

(|Q| < |M|) [19]. Although Cantor did not yet use this terminology, we now say

that he proved that the reals are not countably infinite.3,4

• Method for comparing sizes of sets: two sets have equal cardinality (“Mächtigkeit,”

or power, Cantor’s term), if their elements can be put in a one-to-one corre

spondence (see for example the explicit statement in [17], p. 119). Cantor uses

the notation M to denote the cardinality of set M and M ^ N to show that M

and N are equivalent (have equal cardinality). In order to compare the sizes of

transfinite cardinals and to provide a total ordering on the cardinal numbers, a

definition of “smaller” and “larger” must be given for sets. In [16], p. 284-285,

the following definition is stated:

If for two sets M and N, with cardinal numbers a = M and b = N

the two conditions are fulfilled:

1. there is no subset o f M which is equivalent to N

2. there is a subset Ny such that N y ^ M

[. . .]

We express through 1) and 2) the characterized relationship from a to

3The title of [19] is “Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen,”
or “On a Property of the Collection of All Real Algebraic Numbers” (Dauben’s translation [38], p.
67). This title was likely chosen to disguise, or at least make less obvious, the the paper’s result
on the nondenumerability of the real numbers. The paper was published in Crelle’s Journal fü r die
reine und angewandte M athem atik (Journal for Pure and Applied Mathematics) of which Leopold
Kronecker was editor at that time. Kronecker, whom Cantor knew from the time of his studies
in Berlin, was pursuing a theory of arithmetization in which all of mathematics could be based on
a finite number of integer operations. “As an editor of Crelle’s Journal he [Kronecker] was in a
position to refuse any article, and Cantor may have felt it was wisest to minimize those features of
his proof that might raise any questions about its acceptability for publication. By making the 1874
paper seem as innocuous as possible, Cantor was perhaps being diplomatic and trying to smooth
his own way as best he could” ([38], p. 68).

4A noteworthy observation about Cantor’s original publication of the proof is that it is not in the
form of the often cited “diagonal method” ; rather, it is based on choosing intervals of diminishing
size within a linear ordering of the algebraic numbers, and showing that an unlisted real number
must always exist between the smallest intervals considered. The diagonal method appeared in an
1891 paper [20].

143

b by saying: a is smaller than b, or also: b is larger than a . ..

• Definition of the first and second number classes (“die erste Zahlenklasse,” and

“die zweite Zahlenklasse”), and the notation No and Ni [16] to represent them

respectively. No is defined as the number of finite cardinal numbers and is

the first transfinite cardinal number ([16], p. 293). The cardinal numbers are

generated using “generating principles” on ordinals: addition of 1 and taking

limits. Given an ordinal au, the next largest, a v+\ is given by a v+\ = a v + l

(principle 1). To jump to a new number class (cardinal) the second generating

principle is needed. This is notated by Cantor as: a = Jv a„. In this case, a is

defined as the next largest ordinal greater than all the ordinals a u generated by

the first principle ([16], p. 330-331). Cantor showed that these two generating

principles can be used to define an infinite hierarchy of cardinal numbers, and

that the hierarchy is complete in the sense that no cardinals exist which cannot

be generated by the two principles.

• In 1891, Cantor published what he called a “simpler proof” of the existence of

nondenumerable sets which did not depend on irrational numbers (which were

also objectionable to Kroenecker) ([20], p. 278). This proof was his famous

diagonal method. The proof method is not only applicable to show the existence

of a nondenumerable set, but also generalizes to show that the cardinality of

the power set of any set is greater than the cardinality of set itself.

• Cantor’s theorem: the cardinality of a set A is always strictly less than the

cardinality of the powerset of A (|A| < |2A|) [20].

• The cardinality of the reals is equal to the cardinality of the set of all sets of

natural numbers (c = 2N°) ([16], p. 288-289).

144

6.4 The continuum hypothesis

In addition to the above results, the conjecture with which we are concerned is the

continuum hypothesis. After Cantor proved that the cardinality of the reals is strictly

greater than Ko, he posed the question of where in the cardinal hierarchy it belongs.

The continuum hypothesis is that c = Ni— the reals have the “next largest” car

dinality after N0. Cantor believed the continuum hypothesis to be true, and spent

many years unsuccessfully trying to prove it. It appears as the following statement

in his 1883 work Grundlagen einer allgemeinen Mannigfaltigkeitslehre (Foundations

of a general theory of manifolds): “und ich hoffe, sie schon bald durch einen strengen

Beweis dahin beantworten zu können, daß die gesuchte Mächtigkeit keine andere ist

als diejenige unserer zweite Zahlenklasse (II)” (and I hope to be able to answer the

question soon with a rigorous proof that the sought cardinality is none other than

that of our second number class) ([18], p. 192).

There are many propositions formally equivalent to the continuum hypothesis.

The alternate formulations are useful in application to computability theory, and will

be used later in this chapter. Here I list three.

• Every infinite subset of the continuum either has the cardinality of the of set

integers, or the cardinality of the continuum itself ([54], p. 516).

• There is no set with cardinality between that of the integers and that of the

reals.

• That Ki is the second H number and therefore also the cardinality of the con

tinuum (Ni = Di = c). H numbers are used to denote the cardinalities of sets

of subsets of sets, and are defined as 3o = N0 and 1 ^ + 1 = 2-In.

The generalized continuum hypothesis is the extension of the continuum hypothesis

145

which proposes that Kn+i = 2Nn for every n.

6.5 Godel’s speculation on Cantor’s continuum hy

pothesis

In this section, I summarize a paper by Kurt Godel on the topic of the continuum

hypothesis. I will draw analogies between some of the Godel’s comments about that

problem with my discussion of computability theory.

In the paper “What is Cantor’s continuum problem,” Godel examines the history

of the continuum hypothesis, details some known results about it, speculates on its

decidability, and discusses mathematical and philosophical implications of different

outcomes of its eventual demonstrability or refutability. This paper is interesting not

only for its contents, but also for the timing of its publication in November 1947.

Between 1938 and 1940, Godel had published his groundbreaking papers proving

the consistency of the axiom of choice and the generalized continuum hypothesis

with the standard axioms of set theory [52, 53, 57], but even at the time of those

papers’ publications, Gddel believed the continuum hypothesis to be false. The 1947

paper was published before Paul Cohen’s development of forcing and proof of the

independence of the continuum hypothesis which appeared in 1963-1964 [26, 27].

Hence Godel’s speculation on the independence of Cantor’s continuum hypothesis

and the plausibility arguments for independence he presents in the 1947 paper were

the product of his remarkable mathematical intuition.

Godel believed that the “scarcity of results” ([54], p. 517) concerning the con

tinuum hypothesis and equivalent restatements of the problem were not entirely due

to mathematical difficulties, but rather pointed to a need for a deeper analysis of

146

the concepts of set, one-to-one correspondence and other fundamental notions. He

further asserted that the result that the continuum hypothesis might be undecid-

able within the existing axioms of set theory was “only a precise formulation of the

conjecture [...] that the difficulties of the problem are perhaps not purely mathe

matical” ([54], p. 519). In other words, if we accept analysis on the basis of standard

(such as Zermelo-Fraenkel) set theory as a foundation for mathematics, then the inde

pendence of the continuum hypothesis might imply that there are non-mathematical

concepts. If some of the concepts which must be classified as non-mathematical are

of significance, then their existence could indicate a deficiency in the mathematical

paradigm.

However, regardless of whether concepts such as set prove to be inadequately

defined, Gödel believed that there are propositions whose truth can be implied by

means other than mathematical proof.

It is to be noted, however, that even if one should succeed in proving

its undemonstrability as well, this would [...] by no means settle the

question definitively. Only someone who (like the intuitionist) denies that

the concepts and axioms of classical set theory have any meaning (or

any well-defined meaning) could be satisfied with such a solution, not

someone who believes them to describe some well-determined reality. For

in this reality Cantor’s conjecture must be either true or false, and its

undecidability from the axioms as known today can only mean that these

axioms do not contain a complete description of this reality ([54], p. 519—

520).

In this quotation, Gödel exhibits a Platonic view of mathematical truth— the contin

uum hypothesis has a truth value in a “well-determined reality” beyond that which

147

is described by set theory or mathematics. In this thesis, I am not advocating an

absolute or Platonic view of computability. Rather, I am arguing for the opposite

view: that computability is a concept best defined relative to a computing model.

However, an important observation to make is that conventional computability theory

is an absolutist theory: problems are called “computable” if they can be reduced to a

Turing-computable problem and “uncomputable” otherwise. As I argued extensively

in Chapters 2 and 3, there is significant evidence that the conventional definitions

of the terms “computer” and “computable” are unable to capture many aspects of

the concepts they purport to define. This is problematic for an absolutist theory

because the existence of discrepancies between the idealized concept and the formal

definition is evidence of an inaccurate description of reality. To resolve this problem

in computability theory, we would either need to find better formal definitions (an

approach with which I have already identified many flaws), or take the approach I

am advocating, which is to adopt a relativized foundation for the theory.

Godel then goes on to speculate on the deficiencies with “the axioms as known

today,” and the basis upon which one could evaluate the axioms. As an example

of the type of criteria one could use for evaluating the plausibility of an indepen

dent axiom, he proposes considering its success or fruitfulness in simplifying proofs of

already known results. If the axioms axe very useful in establishing verifiable conse

quences and producing solutions to outstanding problems, then this utility serves as

a powerful argument in favour of their truth. Rather than viewing the independence

of the continuum hypothesis as a fundamental result, one can take the view that its

independence highlights a weakness in the existing axioms of set theory itself. Godel

devoted many years in the latter part of his career working on proposals for a better

foundation for set theory which would maintain intuitive appeal and yet broaden the

scope of the proofs possible within the theory, but was unsuccessful in finding such a

148

system. As he says, “one may on good reason suspect that the role of the continuum

problem in set theory will be this, that it will finally lead to the discovery of new

axioms which will make it possible to disprove Cantor’s conjecture” ([54], p. 524).

This view is analogous to my assertion that the existence of “uncomputable” prob

lems, to which we can sometimes “compute” answers, indicates a deficiency in the

definition of computability, and not necessarily something about the “uncomputable”

problems themselves. The arguments I presented in Chapter 3 regarding the inade

quacy of the conventional Church-Turing thesis should inspire us to consider alterna

tive definitions of key concepts as, for example, I have done in this thesis. By closing

our minds to the possibility that there might be computing machines more powerful

than Turing machines and focusing only on properties of problems with respect to

Turing computability, we abandon the possibility of finding models which might have

more power with respect to these so-called “uncomputable” problems.

6.6 Cardinalities and counting

In this section, I make some observations about the cardinalities of sets involved in

computing. Based on these cardinalities, I introduce a proof method which I call the

counting based proof technique which I use to prove some known results and a new

theorem about formal models and uncomputability.

6.6.1 Some observations on the sizes of sets

Consider the alphabet E = {0 ,1 } . According to conventional terminology, a language

L C E is called computable if there exists a Turing machine M with input alphabet

E which halts and accepts every word w G L, and halts and rejects or runs forever

on every word w' G E*/L. We are justified in considering only this particular E,

149

since we know that the set of computable languages defined in this way is isomorphic

to the set computable languages defined over any other input alphabet, up to letter

encodings.

Note that since a language is defined as a subset of E*, all languages definable

over E are either finite or have cardinality Mo (countably infinite).

O bservation 4. All (conventional) computable and uncomputable languages have

cardinality less than or equal to Mo-

Since |N0| = Mo, by definition of equal cardinalities, for any fixed, complete order

ing of the words in E*, one can define a bijection to the natural numbers. Therefore,

statements about the relationship of the cardinality of the set of natural numbers and

that of other sets (such as the continuum hypothesis), can apply to E* as well via the

aforementioned bijection.

The set of languages definable over E is precisely the set of all subsets of E*. This

set has the same cardinality as the set of all sets of integers, which we know from

Cantor is c = 2N° .

O bservation 5. The total number o f languages definable over E = { 0 , 1 } (or equiv

alently for any Turing machine input alphabet) is 2H° = c.

We know that the set of all possible Turing machines is enumerable, and therefore

countably infinite (cardinality Mo). For example, one can associate a Godel number

(see [96], p. 21) with each definable Turing machine such that all the machines are

listed in a specific order. Let T — {eo, ei, e2 , • • •} be one such enumeration.

150

6.7 Some new proofs of standard results

In this section I give some proofs of standard computability theorems using cardinality

arguments. For some of them, the proof idea is standard; for others, it is new.

T h eorem 6.1. There are Turing-uncomputable functions.

Proof. For any input alphabet, there are c = 2H° possible definable languages, but only

N0 Turing machines. As N0 < 2Hq, some languages must be Turing-uncomputable. □

T h eorem 6.2. Every non-trivial property of the language of a given Turing machine

is undecidable, where non-trivial means that there exist languages which have the

property and some that do not (restatement o f R ice’s theorem [95]).

In order to prove this, we need the following results and definitions:

Recall Corollary 5.4: For a property p o f a Turing-computable language, if there

is one Turing machine M which satisfies the property p (L (M)) = true, there are

countably infinitely many (tH0) Turing machines M u i £ N such thatp(L(M i)) = true.

This applies both to the properties under discussion and their negations.

D efin ition 6.1. For a set A, c^ is the characteristic function o f A defined as ca(x) =

1 i f x € A, and c a (x) = 0 i f x ^ A ([96], p. xvii).

D efin ition 6.2. Let T = {<po, tpi, <£>2, • • •} be a specific enumeration of all Turing

machines. Let p be a property o f a Turing language. Then the characteristic string

cp o f p with respect to the enumeration T is the string P0P1P2 • • • such that pi = 1 if

and only if p{L((fi)) — true and pi = 0 otherwise. I f the enumeration is understood,

the characteristic string is simply denoted by Cp.

O bservation 6. For a non-trivial property p, there are N0 Turing machines which

satisfy p and N0 which do not. Therefore Cp contains No 0 ’s and Nq 1 ’s.

151

O bservation 7. The number o f possible arrangements of a countably infinite number

o f 0 ’s and l ’s in a string is 2H° = c. Using Observation 6, the number of potential

strings which could serve as characteristic strings is 2 °̂ = c.

We can regard a machine which is capable of deciding Rice’s theorem for a partic

ular non-trivial property p as a machine which, given <pi, is able to output the value

Pi from the characteristic string Cp. Finally we can state a proof of Theorem 6.2.

Proof. Suppose there exists a Turing machine Mp which, given an encoding of a

Turing machine ipi from a fixed enumeration T = {(p0, y?i, <P2, ■ • •}, halts and outputs

P i, where Cp = P0P1P2 . . . is the characteristic string of p. Define a second machine

M* which has the following non-terminating behaviour: M* simulates the behaviour

of Mp for each Turing machine <po, <Pu ¥’2 , • • • and outputs the result. Therefore, M*

will incrementally output the characteristic string of p.

Let C be the set of all potential characteristic strings of properties (according to

Observation 7, this is the set of all strings with No 0’s and No l ’s). The stepwise

behaviour of M*, where an evaluation step is one simulation of Mp, can be regarded

as a decision procedure in which the elements of C are classified in two sets, C +

and C ~ , where C + contains the strings which are possible candidates for Cp and C~

contains those which are not. If M* ran for No steps, C+ would have one member,

Cp, and C~ would contain all the other strings. Initially, C + = C and C~ — 0.

At each evaluation step i, M* outputs pi, and effectively classifies all strings in C +

which do not match Pi at position i into C ~ . But, how many strings remain in C +?

Let n be the number of l ’s output so far, and m be the number of 0’s, with n + m = i.

As only a finite number of evaluation steps have occurred, the numbers of 0’s and

l ’s following Pi in the strings remaining in C + are N0 — n = N0 and N0 — m — N0,

respectively. Therefore, there are still 2**° strings in C + . As a Turing machine is not

152

permitted to run for a completed infinity N0 of steps, Cp will never be determined.

Therefore, by way of contradiction, no machine Mp for deciding p exists. □

6.8 New results using counting techniques

An informal statement of the result presented in this section is as follows:

No computing model which satisfies the requirements o f an algorithm will be capable

o f defining machines to compute all binary functions.

The notion of algorithm in this theorem is the standard one as exemplified, for

instance, by Knuth’s definition (see Section 2.2). The idea is stated as a theorem in

an expanded form below:

T h eorem 6.3. T he com putability incom pleteness theorem . Consider a ma

chine model with the following restrictions:

(i) A machine must have a finite description.

(ii) Computation begins with a finite amount o f input taken from a set with cardi

nality at most No-

(Hi) The machine performs a perform a finite or unbounded number of computation

steps, but the number of steps is strictly less than N0.

(iv) Any additional data available to the machine during computation is taken from

a set with cardinality at most No, and at most a finite amount of data is added

at each computation step.

(v) Each computation step is completed in a finite amount of time.

This model will be incapable of defining machines to compute all possible binary func

tions.

153

Suppose one accepts the algorithm as a reasonable definition of the informal notion

of effective calculability (as most computer scientists do). Then a proof of the pre

ceding theorem constitutes a partial proof of the broad Church-Turing thesis because

it shows that all “reasonable” computing models will have uncomputable problems

associated with them. However, it is not a complete proof since it does not show that

the set of uncomputable problems is always the same set for any model defined with

the specified restrictions.

In order to prove Theorem 6.3 a definition concerning the power of a model must

be stated.

6.8.1 Cardinality of computing power of a model

In Chapter 3, I defined the computing power of a class of machines as the set of

functions the machines in the class compute and introduced the notation V{M) to

represent the computing power of class M, that is V(M) = (Jm in m ^ (m)-

A key question when evaluating computing power is how large the set of functions

computable by a given model is. In the case of Turing machines, each machine labels

one function (see Chapter 5), and hence the cardinality of the set of Turing machines

is the same as the cardinality of set of functions which are Turing-computable.

However, in the case that the machine behaviour is not completely determined by

its initial state, the set of computable functions can be different than the set of defin

able machines. As a simple illustration, consider a random binary machine with the

following behaviour: once started, it outputs all the binary numbers in lexicographic

order, and randomly assigns each one an output value in the set B — {0 ,1 }. The set

of machines with this description is capable of outputting the graph of every possible

single-valued binary function (an uncountably infinite set). Another example would

154

be an interactive machine where user input is added to the data at each computation

step. If the input is not known in advance, the set of computable functions might be

larger than the set of machine descriptions (for examples of “interactive” models, see

[116, 117, 120]). The analysis must also be refined if we expand our consideration to

variants of machines which have a non-constant computation step duration, or which

are self-modifying and so on. Prom all these example, one concludes that a static

analysis of the cardinality of the set of functions computable by a given model is

not sufficient in general; rather, a dynamic analysis which accounts for the machine’s

temporal behaviour is necessary.

A model defines a class of machines which can be specified with the model. Those

machines can be used to compute a set of functions. The following definitions address

the cardinality of that set of functions.

D efin ition 6.3. The cardinality of the computing power of a model is the cardinality

of the set o f functions computed by machines which can be specified by the model. It

is represented by \V(M)\, where M is the class o f machines which can be specified by

the model.

Using the terminology from Chapter 5, the machines serve as labels for functions.

An alternate way of expressing the computing power of a model is in terms of labelled

functions.

D efin ition 6.4. A lternative defin ition . The cardinality of the computing power

of a model is the cardinality of the set o f functions which can be labelled by machines

defined by the model. That is, \V(M)\ = | \Jm M C{m)\.

To determine \V(M)\ for a class of machines one needs to know:

• how many machines are in the class

155

• how many different inputs can be given to the machines

• how many computation steps will occur

• how the data is transformed at each computation step

• what outputs are produced

The goal is to analyse the upper bound on the number of functions which could

be computed based on the computation of all possible machines on all possible in

puts. Computation of the upper bound assumes that at each step the combined state

and data of every machine is distinct from every other machine. This assumption

might not hold for a given specific machine model, and therefore within that model,

some machines would become indistinguishable from one another at some point in

their computation, and hence the number of distinct values computed would be non-

monotonically increasing. The upper bound is computed based on the assumption of a

monotonically increasing number of machine states. The parameters from Chapter 4

can be used to formalize this computation for some machine classes.

The intuitive idea of the calculation which is shown below is to count how many
i.

distinct machine states can be generated by the execution of all the possible machines

in the class, starting on all possible input values.

The calculation can be separated into two parts:

1. How large an individual machine description can become through a computation

(dynamic aspect), and

2. How many different machine descriptions exist (static aspect).

Let ad represent the potential size of the machine description (dynamic aspect).

156

Then ad can be calculated by:

ad — m + i + y~] dj
i= 1

where m is the (finite) length of the machine description, i is the (finite) input, dj is

the (finite) amount of data added at each step i, and s is the (finite) number of steps

performed. As all the components are finite, ad must be finite as well.

For the static aspect, as, all the information which is included in the description

of the machine class must be taken into account. The following formula summarizes

the necessary computation:

as = \M\\I\ + \D\

where \M\ is the cardinality of the machine class, |/| is the cardinality of the input

set, \D\ is the cardinality of the set of from which additional data provided at each

computation step is chosen (D can also be thought of as the oracle available to the

machine). For the restrictions of an algorithm, the machine description must be finite

length, and therefore \M\ < H0. Furthermore, |/| and |D| are restricted to be bounded

by Ho, that is, |/| < H0 and \D\ < Ho- Therefore a3 < H0.

For the upper bound, take the maximal number of machine descriptions and

multiply that by the maximal size of any machine. This is the desired cardinality.

\V(M)\ = ad * a s

157

For the case of models satisfying the restrictions of an algorithm, we have

\V(M)\ = <7d *Us

= n * No with n < N0

= No

Now a proof of Theorem 6.3 can be stated.

Proof. Any model M which satisfies restrictions (i) — (v) will have \P(M)\ = N0.

There are 2N° binary functions. As No < 2No, there will be binary functions which are

uncomputable with respect to M. □

The implication of this theorem is that any attempt to define a model which

satisfies the restrictions of an algorithm but can comprfte all binary functions will be

unsuccessful.

6.9 Reasons for uncomputability

In this section I speculate on some intuitive explanations for the Turing uncomputabil

ity of two classes of functions. These ideas are presented as informal arguments.

6.9.1 Infinite execution times

There are some problems which seem to require infinite execution time to find a

complete solution.

One example of a problem which can be phrased in these terms is the halting

problem: if a Turing machine were permitted to run for a countably infinite number

of steps, this problem could be solved. The set of all Turing machines is enumerable,

158

as is the set of all possible inputs. Therefore it is possible by dovetailing to simulate

the execution of all possible Turing machines on all possible inputs using a Turing

machine H. If H is permitted to run for No steps, then all the simulated machines

which halt, will; and those which do not halt will still be running. Thus H could be

used to solve the Turing machine halting problem.

6.9.2 Infinite number of results required

For any computation which requires a countably infinite number of results, the output

alone cannot be printed in finite time. For example, printing out digits of Chaitin’s 0

(the halting probability for Turing machines or Lisp programs [22], or printing out all

the digits of 7r). In the latter example, tt is classified as a Turing-computable number

since there exists an algorithm for incrementally generating its digits. However, this

computation is a non-terminating process, and therefore printing all the digits of 7r is

impossible with a Turing-equivalent computing device. Obviously if an uncountably

infinite number of results are required, this cannot be done in finite time (for example,

listing all possible binary functions).

6.10 Integration of hierarchies

As we know, the continuum hypothesis is independent of ZFC set theory. Consider for

a moment Godel’s perspective that it has a truth value, but that we are presently inca

pable of proving it within the current paradigm. The truth or falsity of the continuum

hypothesis has an interesting impact on the hierarchy of computable functions:

• If CH is true (c = Ni), then there are no sets with cardinality between that of

the integers and the real numbers. Hence, a language defined by any computing

159

machine will have finite cardinality, countably infinite cardinality, or uncount-

ably infinite cardinality (any large cardinal could potentially be considered).

For example, there would be no cardinal between the size of the set of all Tur

ing machines and the size of the set of all languages over a finite alphabet, L

such that L C £*.

• If CH is false (c > Kx) then it could be possible to define computing models

which accept languages having cardinality greater than that which is possible

with a Turing machine, but less than the cardinality of the set of all binary

languages (or the set of languages over any other fixed finite alphabet). This

possibility would certainly require models with different properties from those

we find in conventional computability theory.

The axioms of set theory are not likely to be revised in the near future, but it is

an interesting theoretical note that there might be an intermediate class of functions

between those we normally consider.

The generalized continuum hypothesis is actually a statement about the corre

spondence between two hierarchies: the hierarchy of cardinals No, Ni, N2, . . . and the

hierarchy of sizes of subsets of sets: Do, Di, D2, . . . If true, it would mean that Nn = Dn

for all n G No- In computer science, the most familiar hierarchies are the arithmetic

hierarchy and the hierarchy of Turing degrees (see [28] for definitions). It is important

to note that both these hierarchies involve sets with cardinality < No-

Therefore, conventional definitions of “relativized computability,” in which com

putation is discussed within the context of relativizations within the Turing or arith

metic hierarchy are not sufficient to capture properties of many of the computing

machines discussed in this thesis. The application of relativity in computability the

ory must be extended beyond the countably infinite.

160

Chapter 7

Conclusion

[Scientific revolutions are inaugurated by a growing sense [.. .] that an

existing paradigm has ceased to function adequately in the exploration of

an aspect of nature to which that paradigm itself had previously led the

way.

Thom as S. K uhn

The Structure o f Scientific Revolutions

The University of Chicago Press, 1970, p. 92, [77].

In this thesis, I have argued that progress in computability theory has reached

a time of scientific crisis, in the sense identified by Kuhn. There are significant

deficiencies in the basic notions in conventional computability theory. A definition

of “computer” based on Turing-equivalent machines is insufficient, not only for most

practitioners of computer science, but also for many theoreticians. A definition of

computability which permits only algorithm-based computing methods excludes many

useful and theoretically sound models from discourse on the limits of computation.

These broad problems, in addition to many others identified in this thesis, indicate

161

an urgent need to re-examine the foundations of computability theory.

Computability theory of the 1930’s, born in the era of logicism in mathematics

and logical positivism in philosophy of language, is now out of date. The foundations

of the field need to be critically assessed and updated such that they match the key

aims of the field and support research currently being done by specialists in the area.

This thesis presented a starting point for revised foundations for computability

theory.

7.1 Contributions of the thesis

Here I summarize the main arguments in the thesis by listing the principal claims

and their relationships below.

1. Turing computability is not a sufficiently adequate foundation for a theory of

computability.

2. Introducing other formal models does not address the difficulties since these

ultimately suffer the same types of problems.

3. The term “computer” and other basic notions such as “computing power” and

“computed by” are ill-defined in the conventional theory.

4. 2 and 3 imply that an informal definition of “computer” is needed.

5. 1 and 4 imply that computability should be a relative notion, not an absolute

one.

6. Based on 4 and 5, definitions of basic terms should be provided which avoid se

mantic ambiguities suffered by conventional terminology, but are flexible enough

to be used with a broad range of computing models.

162

7. When considering relative computability (5), one observes that the resources

available in a machine model determine its computing power.

8. Cardinalities of sets of elements are a crucial factor in evaluating the contribu

tion to computing power of the resources identified under point 7.

9. Due to ambiguous terminology and imprecise analysis (3), complexity hidden

in encodings is often overlooked when analysing computations.

The analysis, examples, definitions, and arguments presented throughout the the

sis support the aforementioned claims and the chain of reasoning through which they

are derived.

I will now summarize the concrete contributions of the thesis. They can be divided

into three main categories which are fisted below, with the specific topics addressed

in the thesis under each category.

1. C ritica l exam ination o f deficiencies in conventional com putability the

ory

• The historical and philosophical roots of conventional computability theory

were analysed. The observation was made some core beliefs from that era

were superseded in other areas of study but have remained unchanged in

computability theory (Chapter 1).

• Evidence that the term computer is used in different ways by laypeople,

applied computer scientists and theoretical computer scientists was pre

sented. Furthermore, limiting what is called a “computer” to Turing-

equivalent machines leads to semantic ambiguity (Chapter 2).

• The conventional Church-Turing thesis was clarified and its relevance and

implications were analysed with the conclusion that it is no longer an

163

appropriate means by which to delimit computability (Chapter 3).

• The idea was discussed that uncomputability, rather than merely being a

property of particular problems, indicates deficiencies in the definition of

computability (Chapter 6).

2. R ev ised definitions o f key con cep ts

The following concepts were defined, and justification and examples were pro

vided for the definitions:

• computer (Chapter 2)

• capable of computing, the function computed by, capable of simulating,

relative computability, computing power, the same, equivalent, more and

incomparable computing power (Chapter 3)

• resource, resource equivalence, the relativized Church-Turing thesis (Chap

ter 4)

• function labelled by a machine, sufficient power (Chapter 5)

• cardinality of the computing power of a model (Chapter 6)

3. Investigation o f som e technical issues

• introduction of the parameterized meta-model (Chapter 4)

• analysis of hidden complexity in encodings; notion of function labelling;

observations on the impact of changing interpretations (Chapter 5)

• impact of cardinalities of certain sets on computability; counting-based

proofs; the computability incompleteness theorem (Chapter 6)

164

7.2 Speculation and future work

Conventional computability is concerned with the limits of finite describability. That

perspective was purposely chosen by Turing, and has been re-confirmed over the years

by most researchers in the field. The purpose of that perspective is to model what

a human can do with pencil and paper, or more generally, to model processes which

can be started, executed and finished with complete, finite descriptions of every step.

Based on accumulated evidence, the conventional Church-Turing thesis is probably

correct. The implication is that Turing computability likely does represent the limits

of finite describability.

Which are these functions that we call “uncomputable” ? Languages (sets of

words) can be described by their characteristic functions. A different way of iden

tifying languages which are are uncomputable is to say that they are those with an

uncompressible characteristic function graph (in the Kolmogorov/Chaitin sense [22]).

For these sets, there is no means by which their characteristic function can be finitely

described, and therefore, no Turing machine could label them. Unless adequate in

finite resources are accessible to a machine, it will be incapable of describing such a

function. This illustrates the purpose of the analysis of resources in Chapter 4.

In Chapter 5, it was shown that the integers can serve as labels for the set of

Turing-computable functions. This is not an unknown idea as it is a direct conse

quence of the enumerability of the set of Turing machines. The purpose of stating

it explicitly is to draw attention to the notion that all Turing-computable functions

can be described equally succinctly. From this perspective, there is no function which

requires a more complex description that any other. What we learned from the

computability incompleteness theorem (Chapter 6), is that the size of the set of func

tions describable by any model which satisfies the properties of an algorithm will be

165

bounded by N0- Hence, it has the same cardinality as the integers and the Turing-

computable functions. What is not known is whether all possible sets of functions

which are algorithmically describable are the same as the set of Turing-computable

functions.

In Chapter 5, I made the following statement, which can now be explained:

The existence of Turing-uncomputable functions is fundamentally related to the

cardinality o f sets, and has little to do with the uncomputable functions themselves.

It is my belief that what one learns from studying Turing-uncomputability can

be summarized by the claims that only countably infinite sets can be constructed

with finite means, and that furthermore, the only elements which are in those sets

are the ones which themselves admit a finite description. There is nothing “special”

about uncomputable functions. They are not mysterious, and they do not indicate

anything about the limits of computability (in the sense of this thesis). The existence

of Turing-uncomputable functions is a product of our insistence on finite descriptions.

A broad definition of computation and flexible definitions which permit the consid

eration of computation models beyond those which are Turing-equivalent best enables

the study of computability. The functions which can be described by finite means

have been extensively studied. Central to future study in computability theory should

be the question of what can be described by other means as well.

166

Bibliography

[1] Merriam-Webster online dictionary: computer, 2007. [online] http://www.m-

w.com, accessed January 10, 2007.

[2] Oxford English dictionary: computer, 2007. [online] http://www.oed.com, ac

cessed January 10, 2007.

[3] McGill COMP-330: Theoretical Aspects: Computer Science, 2009-2010. [on

line] http://www.cs.mcgill.ca/academic/courses/profiles?course=330, accessed

November 16, 2009.

[4] McGill University School of Computer Science Courses, 2009-2010. [online]

http://www.cs.mcgill.ca/academic/courses/ugrad_courses, accessed November

16, 2009.

[5] University of Toronto Department of Computer Science Courses, 2009-2010.

[online] http://www.cdf.toronto.edu/courses/current.html, accessed November

16, 2009.

[6] University of Western Ontario Department of Computer Science Courses,

2009-2010. [online] http://www.csd.uwo.ca/UnderGrad/courses.shtml, ac

cessed November 16, 2009.

http://www.m-w.com
http://www.m-w.com
http://www.oed.com
http://www.cs.mcgill.ca/academic/courses/profiles?course=330
http://www.cs.mcgill.ca/academic/courses/ugrad_courses
http://www.cdf.toronto.edu/courses/current.html
http://www.csd.uwo.ca/UnderGrad/courses.shtml

167

[7] Fred G. Abramson. Effective computation over the real numbers. In Twelfth

Annual Symposium on Switching and Automata Theory. East Lansing, MI. Oc

tober 13-15, 1971, pages 33-37. IEEE, 1971.

[8] Lenore Blum. Computing over the reals: Where Turing meets Newton. Notices

o f the AMS, 51(9):1024-1034, October 2004.

[9] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and

Real Computation. Springer-Verlag, New York, NY, 1998.

[10] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and

complexity over the real numbers: NP-completeness, recursive functions and

universal machines. Bulletin of the American Mathematical Society, 21(1) :1—

46, July 1989.

[11] J. Glenn Brooksheax. Computer Science: An Overview. Pearson Education,

Inc., Boston, MA, 2003.

[12] Tyler Burge. Philosophy of language and mind 1950-1990. In Heimir Geirs-

son and Michael Losonsky, editors, Readings in Language and Mind. Blackwell

Publishers, Cambridge, MA, 1996.

[13] Nadia Busi and Claudio Zandron. Computational expressiveness of genetic

systems. Theoretical Computer Science, 410:286-293, February 2009.

[14] C. S. Calude, J. Casti, and M. Dinneen, editors. Unconventional Models of

Computation. Springer-Verlag, Singapore, 1998.

[15] Cristian S. Calude and Michael A. Stay. Most programs stop quickly or never

halt. Advances in Applied Mathematics, 40:295-308, 2008.

168

[16] Georg CaMifli Büfcräge zur Begründung der transfiniten Mengenlehre. In Zer-

melo [121}>kfia§® 182-356.

[17] Georg Cantor. Ein Beitrag zur Mannigfaltigkeitslehre. In Zermelo [121], pages

119-133. 'ölten'. T -

[18] Georg Cantor. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. In Zermelo

[121], pages 165-208.

r , •• C u-« .,* .!
[19] Georg Cantor. Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen

Zahlen. In Zermelo [121], pages 115-118.

[20] Georg Cantor. Über eine elemetare Frage der Mannigfaltigkeitslehre. In Zermelo

[121], pages 278-281.

[21] John L. Casti. Computing the uncomputable. Complexity, 2:7-12, January-

February 1997.

[22] Gregory J. Chaitin. Algorithmic Information Theory. Cambridge University

Press, Cambridge, United Kingdom, 1987.

[23] Alonzo Church. A set of postulates for the foundation of logic. The Annals of

Mathematics, 33(2):346-366, April 1932.

[24] Alonzo Church. A set of postulates for the foundation of logic. The Annals of

Mathematics, 34(4):839-864, October 1933.

[25] Alonzo Church. An unsolvable problem of elementary number theory. American

Journal o f Mathematics, 58(2):345-363, April 1936.

169

[26] Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of

the National Academy o f Sciences o f the United States of America, 50(6):1143-

1148, December 1963.

[27] Paul J. Cohen. The independence of the continuum hypothesis, II. Proceedings

o f the National Academy o f Sciences o f the United States of America, 51(1):105-

110, January 1964.

[28] S. Barry Cooper. Computability Theory. Chapman & Hall/CRC, Boca Raton,

FL, 2004.

[29] B. Jack Copeland. The broad conception of computation. American Behavioral

Scientist, 40(6) :690-716, May 1997.

[30] B. Jack Copeland. Even Turing Machines can compute uncomputable functions.

In Calude et al. [14], pages 150-164.

[31] B. Jack Copeland. Accelerating Turing machines. Minds and Machines, 12:281-

301, 2002.

[32] B. Jack Copeland. Narrow versus wide mechanism. In Scheutz [98], pages

59-86.

[33] B. Jack Copeland. Hypercomputation: Philosophical issues. Theoretical Com

puter Science, 317(1-3) :251-267, 2004.

[34] B. Jack Copeland. The Church-Turing thesis. In Edward N. Zalta, editor, The

Stanford Encyclopedia o f Philosophy. Fall 2002.

[35] B. Jack Copeland and Richard Sylvan. Beyond the universal Turing machine.

Australasian Journal of Philosophy, 77(l):46-67, March 1999.

170

[36] Jon Crowcroft. On the nature of computing. Communications of the ACM,

48(2) :19—20, February 2005.

[37] Michael Crowe. Ten ‘laws’ concerning patterns of change in the history of

mathematics. In Gillies [51], pages 15-20.

[38] Joseph Warren Dauben, editor. Georg Cantor: His Mathematics and Philosophy

o f the Infinite. Harvard University Press, Cambridge, MA, 1979.

[39] Martin Davis, editor. The Undecidable: Basic Papers on Undecidable Propo

sitions, Unsolvable Problems and Computable Functions. Raven Press Books,

Ltd., Hewlett, NY, 1965.

[40] Martin Davis. The Universal Computer: The Road from Leibniz to Turing.

W. W. Norton Sc Company, New York, NY, 2000.

[41] Peter J. Denning. Is computer science science? Communications of the ACM,

48(4):27-31, April 2005.

[42] Peter J. Denning, Jack B. Dennis, and Joseph E. Qualitz. Machines, Languages

and Computation. Prentice Hall, Inc., Englewood Cliffs, NJ, 1978.

[43] D. Deutsch. Quantum theory, the Church-Turing principle and the universal

quantum computer. Proceedings o f the Royal Society o f London, 400(1818) :97-

117, July 1985.

[44] Theodore G. Faticoni. The Mathematics of Infinity. Wiley-Interscience. John

Wiley & Sons, Inc., Hoboken, NJ, 2006.

[45] Soloman Feferman, John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore,

Robert M. Solovay, and Jean van Heijenoort, editors. Kurt Gödel: Collected

Works, volume I. Oxford University Press, Inc., New York, NY, 1986.

171

[46] Soloman Feferman, John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore,

Robert M. Solovay, and Jean van Heijenoort, editors. Kurt Gódel: Collected

Works, volume II. Oxford University Press, Inc., New York, NY, 1990.

[47] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal

o f Theoretical Physics, 21(3-4), April 1982.

[48] Gottlob Frege. The Foundations o f Arithmetic. Northwestern University Press,

Evanston, IL, second edition, 1996.

[49] Gottlob Frege. On sense and reference. In Ludlow [82], pages 563-583.

[50] Grzegorz Rozenberg Gheorghe Páun and Arto Salomaa. DNA Computing: New

Computing Paradigms. Springer-Verlag, Berlin, 1998.

[51] Donald Gillies, editor. Revolutions in Mathematics. Oxford University Press,

New York, NY, 1992.

[52] Kurt Gódel. The consistency of the axiom of choice and of the generalized

continuum-hypothesis. Proceedings o f the National Academy of Sciences of the

United States o f America, 24(12):556-557, December 1938.

[53] Kurt Gódel. Consistecy-proof for the generalized continuum-hypothesis. Pro

ceedings of the National Academy o f Sciences of the United States of America,

25(4):220-224, April 1939.

[54] Kurt Gódel. What is Cantor’s continuum problem. The American Mathematical

Monthly, 54(9):515-525, November 1947.

[55] Kurt Gódel. On formally undecidable propositions of Principia Mathematica

and related systems I. In Davis [39], pages 5-38.

172

[56] Kurt Gödel. On undecidable propositions of formal mathematical systems, with

postscript. In Davis [39], pages 41-74.

[57] Kurt Gödel. The consistency of the axiom of choice and of the generalized

continuum hypothesis with the axioms of set theory. In Feferman et al. [46],

pages 33-101.

[58] Eric Goles and Maurice Margenstern. Sand pile as a universal computer. In

ternational Journal o f Modem Physics C, 7(2):113—122, 1996.

[59] Edward R. Griffor, editor. Handbook o f Computability Theory, volume 140 of

Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam,

The Netherlands, 1999.

[60] Mads Haahr. RANDOM.ORG— true random number service, 2009. [online]

http://www.random.org, accessed August 30, 2009.

[61] Vincent R Heuring and Harry F. Jordan. Computer Systems Design and Archi

tecture. Pearson Prentice Hall, Upper Saddle River, NJ, second edition, 2004.

[62] M. Holz, K. Steffens, and E. Weitz. Introduction to Cardinal Arithmetic.

Birkhäuser Verlag, Basel, Switzerland, 1999.

[63] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. Addison Wesley, Boston, MA,

second edition, 2001.

[64] A. D. Irvine. Russell’s paradox. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Fall 2008.

[65] Helmut Jiirgensen. Complexity, information, energy. International Journal of

Foundations of Computer Science, 19(4):781—793, August 2008.

http://www.random.org

173

[66] Laszld Kalmar. An argument against the plausibility of Church’s thesis. In

Arend Heyting, editor, Constructivity in Mathematics, Proceedings o f the col

loquium held at Amsterdam, 1957, pages 72-80, Amsterdam, The Netherlands,

1959. North-Holland Publishing Company.

[67] Lila Kari and Laura F. Landweber. Computational power of gene rearrange

ment. DIMACS Series, 54:207-216, 2000.

[68] Lila Kari and Gabriel Thierrin. Contextual insertions/deletions and com

putability. Information and Computation, 131(1):47—61, November 1996.

[69] Stephen C. Kleene. Proof by cases in formal logic. The Annals of Mathematics,

35(3):529-544, July 1934.

[70] Stephen C. Kleene. A theory of positive integers in formal logic. Part I. Amer

ican Journal of Mathematics, 57(1):153-173, January 1935.

[71] Stephen C. Kleene. A theory of positive integers in formal logic. Part II. Amer

ican Journal o f Mathematics, 57(2) :219—244, April 1935.

[72] Stephen C. Kleene. General recursive functions of natural numbers. Mathema-

tische Annalen, 112(1):727—742, December 1936.

[73] Stephen C. Kleene. Recursive functionals and quantifiers of finite types. I.

Transactions o f the American Mathematical Society, 91:1-52, 1959.

[74] Stephen C. Kleene. Introduction to Metamathematics. North-Holland Publish

ing Company, Amsterdam, The Netherlands, 1971.

[75] Stephen C. Kleene. Godel 1930b: Introductory note to 1930b, 1931, 1932b. In

Feferman et al. [45], pages 126-141.

174

[76] Donald E. Knuth. The Art o f Computer Progamming, volume 1. Addison-

Wesley, Reading, MA, third edition, 1997.

[77] Thomas S. Kuhn. The Structure o f Scientific Revolutions, volume 2 of Inter

national Encyclopedia of Unified Science. The University of Chicago Press,

Chicago, IL, second edition, 1970.

[78] Thomas S. Kuhn. The Copemican Revolution. Harvard University Press, Cam

bridge, MA, second edition, 1985.

[79] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable

machine. Theoretical Computer Science, 398:32-50, May 2008.

[80] Laura F. Landweber and Lila Kari. The evolution of cellular computing: Na

ture’s solution to a computational problem. Biosystems, 52(1-3):3—13, October

1999.

[81] Robert B. Laughlin. The physical basis of computability. Computing in Science

and Engineering, 4(3):27-30, 2002.

[82] Peter Ludlow, editor. Readings in the Philosophy of Language. MIT Press,

Cambridge, MA, 1997.

[83] Ville Lukkarila. The 4-way deterministic tiling problem is undecidable. Theo

retical Computer Science, 410:1516-1533, April 2009.

[84] Maurice Margenstern. Frontier between decidability and undecidability: A

survey. Theoretical Computer Science, 231:217-251, 2000.

[85] A. A. Markov. Theory o f Algorithms. Academy of Sciences of the USSR,

Moscow, USSR, 1954.

175

[86] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,

Englewood Cliffs, NJ, 1967.

[87] Harold Morick, editor. Challenges to Empiricism. Hackett Publishing Company,

Inc., Indianapolis, IL, 1980.

[88] Yiannis N. Moschovakis. Review: [untitled]. The Journal of Symbolic Logic,

33(3):471-472, 1968.

[89] Toby Ord. Hypercomputation: Computing More than the Turing Machine. The

University of Melbourne, Melbourne, Australia, 2002.

[90] Michael S. Paterson. Decision problems in computational models. In Proceedings

o f ACM Conference on Proving Assertions about Programs, volume 14, pages

74-82, January 1972.

[91] Rozsa Peter. Rekursivitat und konstructivitat. In Arend Heyting, editor, Con-

structivity in Mathematics, Proceedings o f the colloquium held at Amsterdam,

1957, pages 226-233. North-Holland Publishing Company, 1959.

[92] Emil L. Post. Formal reductions of the general combinatorial decision problem.

American Journal of Mathematics, 2:197-215, April 1943.

[93] Gheorghe Paun. Membrane Computing: An Introduction. Springer-Verlag,

Berlin, 2002.

[94] W. V. Quine. Two dogmas of empiricism. In Morick [87], pages 46-70.

[95] H. G. Rice. Classes of recursively enumerable sets and their decision problems.

Transactions o f the American Mathematical Society, 74(2):358-366, March

1953.

176

[96] Hartley Rogers, Jr. Theory o f Recursive Functions and Effective Computability.

The MIT Press, Cambridge, MA, 1988.

[97] John E. Savage. Models o f Computation: Exploring the power of computing.

Addison-Wesley, Reading, MA, 1998.

[98] Matthias Scheutz, editor. Computationlism: New Directions. MIT Press, Cam

bridge, MA, 2002.

[99] Oron Shagrir. Two dogmas of computationalism. Minds and Machines, 7:321-

344, 1997.

[100] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions.

Journal o f the ACM, 10(2):217-255, April 1963.

[101] Wilfried Sieg. Only two letters: The correspondence between Herbrand and

Godei. Bulletin of Symbolic Logic, 11(2):172—184, January 2005.

[102] Hava T. Siegelmann. Computation beyond the Turing limit. Science, 268:545-

548, April 1995.

[103] Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond the

Turing Limit. Birkhauser Boston Inc., Cambridge, MA, USA, 1999.

[104] Scott Sigman. Engaging students in formal language theory and theory of com

putation. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium

on Computer science education, pages 450-453, New York, NY, 2007. ACM.

[105] Robert I. Soare. The history and concept of computability. In Griffor [59],

pages 3-36.

177

[106] Elspeth Summers and Andrew Holmes, editors. Canadian English Dictionary

& Thesaurus. HarperCollins Publishers Ltd., Toronto, ON, 2004.

[107] AndrewS. Tanenbaum. Structured Computer Organization. Prentice Hall, Inc.,

Upper Saddle River, NJ, fourth edition, 1999.

[108] R. Gregory Taylor. Models of Computation and Formal Languages. Oxford

University Press, New York, NY, 1998.

[109] Alan Turing. On computable numbers, with an application to the Entschei-

dungsproblem, with corrections. In Davis [39], pages 115-154.

[110] Alan Turing. Systems of logic based on ordinals. In Davis [39], pages 155-154.

[111] Peter van Emde Boas. Machine models and simulations. In van Leeuwen [115],

pages 1-66.

[112] Jean van Heijenoort, editor. Frege and Godel: Two Fundamental Texts in

Mathematical Logic. Harvard University Press, Cambridge, MA, 1970.

[113] Jean van Heijenoort. Jacques Herbrand’s work in logic and its historical context.

[114], pages 99-121.

[114] Jean van Heijenoort. Selected Essays. Bibliopolis, Napoli, Italy, 1985.

[115] Jan van Leeuwen, editor. Handbook o f Theoretical Computer Science. Elsevier

Science Publishers B.V. and MIT Press, Cambridge, MA, 1994.

[116] Peter Wegner. Why interaction is more powerful than algorithms. Communi

cations of the ACM, 40(5):80-91, May 1997.

[117] Peter Wegner. Interactive foundations of computing. Theoretical Computer

Science, 192:315-351, 1998.

178

[118] Klaus Weihrauch. Computable Analysis: An Introduction. Springer-Verlag,

Berlin, Germany, 2000.

[119] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, volume

1-3. Cambridge University Press, Cambridge, UK, second edition, 1925, 1927.

[120] Sheng Yu. The time dimension of computation models. In Carlos Martin-Vide

and Victor Mitrana, editors, Where Mathematics, Computer Science, Linguis

tics and Biology Meet, pages 161-172. Kluwer Academic Publishers, Dordrecht,

The Netherlands, 2001.

[121] Ernst Zermelo, editor. Georg Cantor: Gesammelte Abhandlungen. Georg Olms

Verlagsbuchhandlung, Hildesheim, Germany, 1962.

[122] Konrad Zuse. Some remarks on the history of computing in Germany. In

N. Metropolis, J. Howlett, and Gian-Carlo Rota, editors, A History of Comput

ing in the Twentieth Century, pages 611-627. Academic Press, Inc., New York,

NY, 1980.

	ON THE FOUNDATIONS OF COMPUTABILITY THEORY
	Recommended Citation

	tmp.1681241597.pdf.3Unyt

