
Set theoretical Representations of Integers, I.

Marie Ferbus-Zanda, Serge Grigorieff

To cite this version:

Marie Ferbus-Zanda, Serge Grigorieff. Set theoretical Representations of Integers, I.. Math-
ematical Logic Quaterly, 2006, 52 (N4), pp.375-403. <10.1002/malq.200510040>. <hal-
00201608>

HAL Id: hal-00201608

https://hal.archives-ouvertes.fr/hal-00201608

Submitted on 1 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47118095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00201608

ha
l-

00
20

16
08

, v
er

si
on

 1
 -

 1
 J

an
 2

00
8

Kolmogorov Complexity

and

Set theoretical Representations of Integers, I

Marie Ferbus-Zanda

LIAFA, Université Paris 7

2, pl. Jussieu 75251 Paris Cedex 05

France

ferbus@logique.jussieu.fr

Serge Grigorieff

LIAFA, Université Paris 7

2, pl. Jussieu 75251 Paris Cedex 05

France

seg@liafa.jussieu.fr

January 2, 2008

Contents

1 Introduction 3

1.1 Kolmogorov complexity and representations of N, Z 3

1.2 Kolmogorov complexities and families of functions 5

1.3 Road map of the paper . 6

2 An abstract setting for Kolmogorov complexity: self-enumerated repre-

sentation systems 6

2.1 Classical Kolmogorov complexity . 6

2.2 Self-enumerated representation systems . 7

2.3 Good universal functions always exist . 9

2.4 Relativization of self-enumerated representation systems 9

2.5 The Invariance Theorem . 10

3 Some operations on self-enumerated systems 11

3.1 The composition lemma . 11

3.2 Product of self-enumerated representation systems 12

4 From domain N to domain Z 13

4.1 The ∆ operation . 13

4.2 Z systems and N systems . 14

5 Self-enumerated representation systems for r.e. sets 14

5.1 Acceptable enumerations . 14

5.2 Self-enumerated representation systems for r.e. sets 15

1

6 Infinite computations 18

6.1 Self-enumerated systems of max of partial recursive functions 18

6.2 Kolmogorov complexities Kmax, K∅′

max, ... 20

6.3 Max2
∗→N

Rec and Max2
∗→N

PR and infinite computations 20

6.4 Max2
∗→N

PR and the jump . 21

6.5 The ∆ operation on Max2
∗→N

PR and the jump 22

7 Abstract representations and effectivizations 25

7.1 Some arithmetical representations of N . 25

7.2 Abstract representations . 26

7.3 Effectivizing representations: why? . 27

7.4 Effectivizations of representations and associated Kolmogorov complexities 27

7.5 Partial recursive representations . 28

8 Cardinal representations of N 29

8.1 Basic cardinal representation and its effectivizations 29

8.2 Syntactical complexity of cardinal representations 29

8.3 Characterization of the card self-enumerated systems 30

8.4 Characterization of the ∆card representation system 32

9 Index representations of N 32

9.1 Basic index representation and its effectivizations 32

9.2 Syntactical complexity of index representations 33

9.3 Characterization of the index self-enumerated systems 36

9.4 Characterization of the ∆index self-enumerated systems 42

10 Functional representations of N 43

10.1 Basic Church representation of N . 43

10.2 Computable and effectively continuous functionals 44

10.3 Effectiveness of the Apply functional . 45

10.4 Functionals over PRX→Y and computability 46

10.5 Effectivizations of Church representation of N 46

10.6 Some examples of effectively continuous functionals 50

10.7 Syntactical complexity of Church representation 51

10.8 Characterization of the Church representation system 52

10.9 Characterization of the ∆Church self-enumerated systems 53

10.10Functional representations of Z . 53

11 Conclusion 53

Abstract

We reconsider some classical natural semantics of integers (namely
iterators of functions, cardinals of sets, index of equivalence relations)
in the perspective of Kolmogorov complexity. To each such semantics
one can attach a simple representation of integers that we suitably ef-
fectivize in order to develop an associated Kolmogorov theory. Such
effectivizations are particular instances of a general notion of “self-
enumerated system” that we introduce in this paper. Our main result
asserts that, with such effectivizations, Kolmogorov theory allows to
quantitatively distinguish the underlying semantics. We characterize
the families obtained by such effectivizations and prove that the asso-
ciated Kolmogorov complexities constitute a hierarchy which coincides
with that of Kolmogorov complexities defined via jump oracles and/or

2

infinite computations (cf. [5]). This contrasts with the well-known fact
that usual Kolmogorov complexity does not depend (up to a constant)
on the chosen arithmetic representation of integers, let it be in any
base n ≥ 2 or in unary. Also, in a conceptual point of view, our result
can be seen as a mean to measure the degree of abstraction of these
diverse semantics.

1 Introduction

Notation 1.1. Equality, inequality and strict inequality up to a constant
between total functions D → N, where D is any set, are denoted as follows:

f ≤ct g ⇔ ∃c ∈ N ∀x ∈ D f(x) ≤ g(x) + c

f =ct g ⇔ f ≤ct g ∧ g ≤ct f

⇔ ∃c ∈ N ∀x ∈ D |f(x) − g(x)| ≤ c

f <ct g ⇔ f ≤ct g ∧ ¬(g ≤ct f)

⇔ f ≤ct g ∧ ∀c ∈ N ∃x ∈ D g(x) > f(x) + c

As we shall consider N-valued partial functions with domain N, Z, 2∗,
N

2,..., the following definition is convenient.

Definition 1.2. A basic set X is any non empty finite product of sets among
N,Z or the set 2∗ of finite binary words or the set Σ∗ of finite words in some
finite or countable alphabet Σ.

Let’s also introduce some notations for partial recursive functions.

Notation 1.3. Let X,Y be basic sets. We denote PRX→Y (resp. PRA,X→Y)
the family of partial recursive (resp.partial A-recursive) functions X → Y.
In case X = Y = N,we simply write PR and PRA.

1.1 Kolmogorov complexity and representations of N, Z

Kolmogorov complexity K : N → N maps an integer n onto the length of any
shortest binary program p ∈ 2∗ which outputs n. The invariance theorem
asserts that, up to an additive constant, K does not depend on the program
semantics p 7→ n , provided it is a universal partial recursive function.
As a straightforward corollary of the invariance theorem, K does not de-
pend (again up to a constant) on the representation of integers, i.e. whether
the program output n is really in N or is a word in some alphabet {1} or
{0, ..., k−1}, for some k ≥ 2, which gives the unary or base k representation
of n. A result which is easily extended to all partial recursive representations
of integers, cf. Thm.7.8.

In this paper, we show that this is no more the case when (suitably effec-
tivized) classical set theoretical representations are considered. We particu-
larly consider representations of integers via

3

• Church iterators (Church [3], 1933),

• cardinal equivalence classes (Russell [16] §IX, 1908, cf. [22] p.178),

• index equivalence classes.

Following the usual way to define Z from N, we also consider representa-
tions of a relative integer z ∈ Z as pairs of representations of non negative
integers x, y satisfying z = x− y. In the particular case of Church iterators,
restricting to injective functions and considering negative iterations, leads
to another direct way of representing relative integers.

Programs are at the core of Kolmogorov theory. They do not work on ab-
stract entities but require formal representations of objects. Thus, we have
to define effectivizations of the above abstract set theoretical notions in or-
der to allow their elements to be computed by programs. To do so, we use
computable functions and functionals and recursively enumerable sets.

Effectivized representations of integers constitute particular instances of self-
enumerated representation systems (cf. Def.2.1). This is a notion of family
F of partial functions from 2∗ to some fixed set D for which an invari-
ance theorem can be proved using straightforward adaptation of original
Kolmogorov’s proof. Which leads to a notion of Kolmogorov complexity
KD

F : D → N, cf. Def.2.16. The ones considered in this paper are

KN

Church , K
Z

Church , K
Z

∆Church , K
N

card , K
Z

∆card , K
N

index , K
Z

∆index

associated to the systems obtained by effectivization of the Church, cardinal
and index representations of N and the passage to Z representations as
outlined above.

The main result of this paper states that the above Kolmogorov complexities
coincide (up to an additive constant) with those obtained via oracles and
infinite computations as introduced in [1], 2001, and our paper [5], 2004.

Theorem 1.4 (Main result).

KN

Church =ct KZ

Church ↾N =ct KZ

∆Church ↾N =ct K

KN

card =ct Kmax KZ

∆card ↾N =ct K∅′

KN

index =ct K∅′

max KZ

∆index ↾N =ct K∅′′

Thm.1.4 gathers the contents of Thms.8.5, 8.6, 9.5, 9.7, 10.24, 10.25 and
§10.10.
A preliminary “light” version of this result was presented in [4], 2002.

The strict ordering result K >ct Kmax >ct K
∅′ (cf. Notations 1.1) proved

in [1, 5] and its obvious relativization (cf. Prop.6.11) yield the following
hierarchy theorem.

4

Theorem 1.5.

log >ct

KN
Church

=ct

KZ

Church ↾N

=ct

KZ

∆Church ↾N

>ct K
N

card >ct K
Z

∆card ↾N >ct K
N

index >ct K
Z

∆index ↾N

This hierarchy result for set theoretical representations somewhat reflects
their degrees of abstraction.

Though Church representation via iteration functionals can be considered
as somewhat complex, we see that, surprisingly, the associated Kolmogorov
complexities collapse to the simplest possible one.

Also, it turns out that, for cardinal and index representations, the passage
from N to Z, i.e. from KN

card to KZ

∆card and from KN

index to KZ

∆index does
add complexity. However, for Church iterators, the passage to Z does not
modify Kolmogorov complexity, let it be via the ∆ operation (for KZ

∆Church)
or restricting iterators to injective functions (for KZ

Church).

The results about the ∆card and ∆index classes are corollaries of those
about the card and index classes and of the following result (Thm.6.12)
which gives a simple normal form to functions computable relative to a
jump oracle, and is interesting on its own.

Theorem 1.6. Let A ⊆ N. A function G : 2∗ → Z is partial A′-recursive
if and only if there exist total A-recursive functions f, g : 2∗ × N → N such
that, for all p,

G(p) = max{f(p, t) : t ∈ N} − max{g(p, t) : t ∈ N}

(in particular, G(p) is defined if and only if both max’s are finite).

1.2 Kolmogorov complexities and families of functions

The equalities in Thm.1.4 are, in fact, corollaries of equalities between fam-
ilies of functions 2∗ → N (namely, the associated self-enumerated represen-
tation systems, cf. §2.2) which are interesting on their own. For instance
(cf. Thms.8.5, 8.6, 9.5, 9.7, 10.24, 10.25 and §10.10),

Theorem 1.7. Denote X → Y the class of partial functions from X to Y .
1. A function f : 2∗ → N is the restriction to a Π0

2 set of a partial recursive
function if and only if it is of the form f = Church ◦ Φ where
- Φ : 2∗ → (N → N)(N→N) is a computable functional,
- Church : (N → N)(N→N) → N is the functional such that

Church(Ψ) =

{
n if Ψ is the iterator f 7→ f (n)

undefined otherwise

5

2. A function f : 2∗ → N is the max of a total recursive (resp. total
∅′-recursive) sequence of functions (cf. Def.6.1) if and only if it is of the
form

p 7→ card(WN

ϕ(p)) (resp. p 7→ index (WN2

ϕ(p)), up to 1)

for some total recursive ϕ : 2∗ → 2∗, where
- WN

q
(resp. WN2

q
) is the r.e. subset of N (resp. N

2) with code q,
- card : P (N) → N is the cardinal function (defined on the sole finite sets),
- index : P (N2) → N is defined on equivalence relations with finitely many
classes and gives the index (i.e. the number of equivalence classes).

3. A function f : 2∗ → N is partial ∅′-recursive (resp. ∅′′-recursive) if and
only if it is of the form

p 7→ card(WN

ϕ1(p))−card (WN

ϕ2(p)
) (resp. p 7→ index (WN2

ϕ1(p))−index (WN2

ϕ2(p)))

for some total recursive ϕ1, ϕ2 : 2∗ → 2∗.

1.3 Road map of the paper

§2 introduces the notion of self-enumerated representation system with its
associated Kolmogorov complexity.
§3 introduce simple operations on self-enumerated systems.
§4 sets up some connections between self-enumerated representation systems
for N and Z.
§5 considers a self-enumerated representation system for the set of recur-
sively enumerable subsets of N.
§6 recalls material from Becher & Chaitin & Daicz, 2001 [1] and our paper
[5], 2004, about some extensions of Kolmogorov complexity involving infi-
nite computations. This is to make the paper self-contained.
§7 introduces abstract representations and their effectivizations.
§8, 9, 10 develop the set-theoretical representations mentioned in §1.1 and
prove all the mentioned theorems and some more results related to the as-
sociated self-enumerated systems, in particular the syntactical complexity
of universal functions for such systems.

2 An abstract setting for Kolmogorov complexity:

self-enumerated representation systems

2.1 Classical Kolmogorov complexity

Classical Kolmogorov complexity of elements of a basic set X is defined as
follows (cf. Kolmogorov, 1965 [7]):

1. To every ϕ : 2∗ → X is associated KX
ϕ : X → N such that

KX
ϕ (x) = min{|p| : ϕ(p) = x}

6

i.e. KX
ϕ (x) is the shortest length of a “program” p ∈ 2∗ which is

mapped onto x by ϕ.

2. Kolmogorov Invariance Theorem asserts that, letting ϕ vary in PR2
∗→X

(cf. Notation 1.3), there is a least KX
ϕ , up to an additive constant:

∃ϕ ∈ PR2
∗→X ∀ψ ∈ PR2

∗→X KX
ϕ ≤ct K

X
ψ

Kolmogorov complexity KX : N → N is such a least KX
ϕ , so that it is

defined up to an additive constant.

Let A ⊆ N. The above construction relativizes to oracle A : replace PR2
∗→X

by PRA,2
∗→X to get the oracular Kolmogorov complexity KA

X
.

2.2 Self-enumerated representation systems

We introduce an abstract setting for the definition of Kolmogorov complex-
ity: self-enumerated representation systems. As a variety of Kolmogorov
complexities is considered, this allows to unify the multiple variations of the
invariance theorem, the proofs of which repeat, mutatis mutandis, the same
classical proof due to Kolmogorov (cf. Li & Vitanyi’s textbook [9] p.97).
This abstract setting also leads to a study of operations on self-enumerated
systems, some of which are presented in §4,5 and some more are developed
in the continuation of this paper.
Some intuition for the next definition is given in Note 2.2 and Rk.2.4.

Definition 2.1 (Self-enumerated representation systems).
1. A self-enumerated representation system (in short “self-enumerated sys-
tem”) is a pair (D,F) where D is a set — the domain of the system — and
F is a family of partial functions 2∗ → D satisfying the following conditions:

i. D =
⋃

F∈F

Range(F), i.e. every element of D appears in the range of

some function F ∈ F .

ii. If ϕ : 2∗ → 2∗ is a recursive total function and F ∈ F then F ◦ϕ ∈ F .

iii. There exists U ∈ F (called a universal function for F) and a total
recursive function compU : 2∗ × 2∗ → 2∗ such that

∀F ∈ F ∃e ∈ 2∗ ∀p ∈ 2∗ F (p) = U(compU (e, p))

In other words, letting Ue(p) = U(compU (e, p)), the sequence of func-
tions (Ue)e∈N is an enumeration of F .

2. (Full systems) In case condition ii holds for all partial recursive func-
tions ϕ, the system (D,F) is called a self-enumerated representation full
system.

7

3. (Good universal functions) A universal function U for F is good if
its associated comp function satisfies the condition

∀e ∃ce ∀p |compU (e, p)|) ≤ |p| + ce

i.e. for all e, we have (p 7→ |compU (e, p)|) ≤ct |p| (cf. Notation 1.1).

Note 2.2 (Intuition).
1. The set 2∗ is seen as a family of programs to get elements of D. The
choice of binary programs is a fairness condition in view of the definition
of Kolmogorov complexity (cf. Def.2.16) based on the length of programs:
larger the alphabet, shorter the programs.

2. Each F ∈ F is seen as a programming language with programs in 2∗.
Special restrictions: no input, outputs are elements of D.

3. Denomination comp stands for “compiler” since it maps a program p

from “language” F (with code p) to its U -compiled form compU (e, p) in the
“language” U .

4. “Compilation” with a good universal function does not increase the
length of programs but for some additive constant which depends only on
the language, namely on the sole code e.

Example 2.3. If X is a basic set then (X, PR2
∗→X) is obviously a self-

enumerated representation system.

Remark 2.4. In view of the enumerability condition iii and since there is no
recursive enumeration of total recursive functions, one would a priori rather
require condition ii to be true for all partial recursive functions ϕ : 2∗ → 2∗,
i.e. consider the sole full systems.
However, there are interesting self-enumerated representation systems which
are not full systems. The simplest one is MaxRec, cf. Prop.6.2. Other ex-
amples we shall deal with involve higher order domains consisting of infinite
objects, for instance the domain RE(N) of all recursively enumerable sub-
sets of N, cf. §5.2. The partial character of computability is already inherent
to the objects in the domain or to the particular notion of computability and
an enumeration theorem does hold for a family F of total functions.

From conditions i and iii of Def.2.1, we immediately see that

Proposition 2.5. Let (D,F) be a self-enumerated system. Then D and F
are countable and any universal function for F is surjective.

Another consequence of condition iii of Def.2.1 is as follows.

Proposition 2.6. Let (N,F) be a self-enumerated system. Then all univer-
sal functions for F are many-one equivalent.

8

2.3 Good universal functions always exist

Let’s recall a classical way to code pairs of words.

Definition 2.7 (Coding pairs of words).
Let µ : 2∗ → 2∗ be the morphism (relative to the monoid structure of
concatenation product on words) such that µ(0) = 00 and µ(1) = 01.
The function c : 2∗ × 2∗ → 2∗ such that c(e, p) = µ(e)1p is a recursive
injection which satisfies equation

|c(e, p)| = |p| + 2|e| + 1 (1)

Denoting λ the empty word, we define π1, π2 : 2∗ → 2∗ as follows:

π1(c(e, p)) = e , π2(c(e, p)) = p , π1(w) = π2(w) = λ if w /∈ Range(c)

Remark 2.8. If we redefine c as c(e, p) = µ(Bin(|e|))1ep where Bin(k)
is the binary representation of the integer k ∈ N then equation (1) can be
sharpened to

|c(e, p)| = |p| + |e| + 2⌊log(|e|)⌋ + 3

For an optimal sharpening with a coding of pairs involving the function

log(x) + log log(x) + log log log(x) + ...

see Li & Vitanyi’s book [9], Example 1.11.13, p.79.

Proposition 2.9 (Existence of good universal functions).
Every self-enumerated system contains a good universal function with c as
associated comp function.

Proof. The usual proof works. Let U and compU be as in Def.2.1 and set

Uopt = U ◦ compU ◦ (π1, π2)

Then compU ◦ (π1, π2) : 2∗ → 2∗ is total recursive and condition ii of Def.2.1
insures that Uopt ∈ F . Now, we have

Uopt(c(e, p)) = U(compU ((π1, π2)(c(e, p)))) = U(compU (e, p))

so that Uopt is universal with c as associated comp function.

2.4 Relativization of self-enumerated representation systems

Def.2.1 can be obviously relativized to any oracle A. However, contrary to
what can be a priori expected, this is no generalization but particularization.
The main reason is Prop.2.9: there always exists a universal function with
c as associated comp function.

Definition 2.10. Let A ⊆ N. A self-enumerated representation A-system
is a pair (D,F) where F is a family of partial functions 2∗ → D satisfying
condition i of Def.2.1 and the following variants of conditions ii and iii :

9

iiA. If ϕ : 2∗ → 2∗ is an A-recursive total function and F ∈ F then
F ◦ ϕ ∈ F .

iiiA. There exists U ∈ F and a total A-recursive function compU : 2∗×2∗ →
2∗ such that

∀F ∈ F ∃e ∈ 2∗ ∀p ∈ 2∗ F (p) = U(compU (e, p))

Example 2.11. If X is a basic set then (X, PRA,2
∗→X) is obviously a self-

enumerated representation A-system.

Proposition 2.12. Every self-enumerated representation A-system con-
tains a universal function with c as associated comp function.
In particular, every such system is also a self-enumerated representation
system. Thus, (X, PRA,2

∗→X) is a self-enumerated representation system.

Proof. We repeat the same easy argument used for Prop.2.9. Let U and
compU be as in condition iiiA of Def.2.10 and set Uopt = U ◦compU ◦(π1, π2).
Then compU◦(π1, π2) : 2∗ → 2∗ is total A-recursive and condition iiA insures
that Uopt ∈ F and we have

Uopt(c(e, p)) = U(compU ((π1, π2)(c(e, p)))) = U(compU (e, p))

so that Uopt is universal with c as associated comp function.

2.5 The Invariance Theorem

Definition 2.13. Let F : 2∗ → D be any partial function. The Kolmogorov
complexity KD

F : D → N ∪ {+∞} associated to F is the function defined as
follows:

KD
F (x) = min{|p| : F (p) = x}

(Convention: min ∅ = +∞)

Remark 2.14.
1. KD

F (x) is finite if and only if x ∈ Range(F). Hence KD
F has values in N

(rather than N ∪ {+∞}) if and only if F is surjective.

2. If F : 2∗ → D is a restriction of G : 2∗ → D then KD
G ≤ KD

F .

Thanks to Prop. 2.9, the usual Invariance Theorem can be extended
to any self-enumerated representation system, which allows to define Kol-
mogorov complexity for such a system.

Theorem 2.15 (Invariance Theorem, Kolmogorov, 1965 [7]).
Let (D,F) be a self-enumerated representation system.

1. When F varies in the family F , there is a least KD
F , up to an additive

constant (cf. Notation 1.1):

∃F ∈ F ∀G ∈ F KD
F ≤ct K

D
G

10

Such F ’s are said to optimal in F .

2. Every good universal function for F is optimal.

Proof. It suffices to prove 2. The usual proof works. Consider a good
universal enumeration U of F . Let F ∈ F and let e be such that

U(compU (e, p)) = F (p) for all p ∈ 2∗

First, since U is surjective (Prop.2.5), all values of KD
U are finite. Thus,

KD
U (x) < KD

F (x) for x /∈ Range(F) (since then KD
F (x) = +∞).

For every x ∈ Range(F), let px be a smallest program such that F (px) = x,
i.e. KD

F (x) = |px|. Then,

x = F (px) = U(compU (e, px))
and since U is good,

KD
U (x) ≤ |compU (e, px)| ≤ |px| + ce = KD

F (x) + ce

and therefore KD
U ≤ct K

D
F .

As usual, Theorem 2.15 allows for an intrinsic definition of the Kol-
mogorov complexity associated to the self-enumerated system (D,F).

Definition 2.16 (Kolmogorov complexity of a self-enumerated rep-
resentation system).
Let (D,F) be a self-enumerated representation system.
The Kolmogorov complexity KD

F : D → N is the function KD
U where U is

some fixed good universal enumeration in F .
Up to an additive constant, this definition is independent of the particular
choice of U .

The following straightforward result, based on Examples 2.3 and 2.11,
insures that Def.2.16 is compatible with the usual Kolmogorov complexity
and its relativizations.

Proposition 2.17. Let A ⊆ N be an oracle and let D = X be a basic
set (cf. Def.1.2). The Kolmogorov complexities KX

PR2∗→X
and KX

PRA,2∗→X

defined above are exactly the usual Kolmogorov complexity KX : X → N and
its relativization KA

X
(cf. §2.1).

3 Some operations on self-enumerated systems

3.1 The composition lemma

The following easy fact is a convenient tool to effectivize representations (cf.
§7.3, 7.4). We shall also use it in §4 to go from systems with domain N to
ones with domain Z.

11

Lemma 3.1 (The composition lemma).
Let (D,F) be a self-enumerated representation system and ϕ : D → E be a
surjective partial function. Set ϕ ◦ F = {ϕ ◦ F : F ∈ F}.

1. (E,ϕ ◦F) is also a self-enumerated representation system. Moreover, if
U is universal or good universal for F then so is ϕ ◦ U for ϕ ◦ F .

2. For every x ∈ E,

KE
ϕ◦F (x) =ct min{KD

F (y) : ϕ(y) = x}

In particular, KE
ϕ◦F ◦ϕ ≤ct KD

F and if ϕ : D → E is a total bijection from

D to E then KE
ϕ◦F ◦ ϕ =ct KD

F .

Proof. Point 1 is straightforward. As for point 2, let U : 2∗ → D be some
universal function for F and observe that, for x ∈ E,

KE
ϕ◦F (x) = min{|p| : p such that ϕ(U(p)) = x}

= min{min{|p| : p s.t. U(p) = y} : y s.t. ϕ(y) = x}

= min{KD
F (y) : y s.t. ϕ(y) = x}

In particular, taking x = ϕ(z), we get KE
ϕ◦F (ϕ(z)) ≤ct KD

F (z).
Finally, observe that if ϕ is bijective then z is the unique y such that ϕ(y) =
x, so that the above min reduces to KD

F (z).

3.2 Product of self-enumerated representation systems

We shall need a notion of product of self-enumerated representation systems.

Theorem 3.2. Let (D1,F1) and (D2,F2) be self-enumerated representation
systems
We identify a pair (F1, F2) ∈ F1×F2 with the function 2∗ → D1×D2 which
maps p to (F1(p), F2(p)).
Then (D1 ×D2,F1 ×F2) is also a self-enumerated representation system.
If (D1,F1) and (D2,F2) are full systems then so is (D1 ×D2,F1 ×F2).
If U1, U2 are universal for F1,F2 then

U1,2 = (U1 ◦ π1, U2 ◦ π2)

is universal for F1 ×F2.

Proof. Condition ii in Def.2.1 is obvious.

Condition i. Let (d1, d2) ∈ D1 ×D2. Applying condition i to (D1,F1) and
to (D2,F2), we get F1 ∈ F1, F2 ∈ F2 and p1, p2 ∈ 2∗ such that d1 = F1(p1)
and d2 = F2(p2). Therefore (d1, d2) = (F1 ◦ π1, F2 ◦ π2)(c(p1, p2)). Observe
finally that (F1 ◦π1, F2 ◦π2) ∈ F1 ×F2 (condition ii for (D1,F1), (D2,F2)).

12

Condition iii. Let comp1, comp2 : 2∗ → 2∗ be the comp functions associated
to the universal functions U1, U2 and set

comp1,2(e, p) = c(comp1(π1(e), p), comp2(π2(e), p))
For every (F1, F2) ∈ F1 × F2 there exist a, b ∈ 2∗ such that F1(p) =
U1(comp1(a, p)) and F2(p) = U2(comp2(b, p)). Therefore

(F1, F2)(p) = (U1(comp1(a, p)), U2(comp2(b, p)))

= (U1 ◦ π1, U2 ◦ π2)(c(comp1(a, p), comp2(b, p)))

= U1,2(comp1,2(c(a, b), p))

which proves that U1,2 is universal for the product system F1 ×F2.

Remark 3.3. Observe that, even if U1, U2 are good, the above universal
function U1,2 is not good since

|comp1,2(e, p)| = 2|comp1(π1(e), p)| + |comp2(π2(e), p)| + 1

which is ≥ 3|p| in general.

To get a good function Ũ1,2, argue as in the proof of Prop.2.9:

Ũ1,2(p) = U1,2 ◦ comp1,2 ◦ (π1, π2)(p)

= U1,2(comp1,2(π1(p), π2(p)))

= U1,2(c(comp1(π1π1(p), π2(p)), comp2(π2π1(p), π2(p))))

= (U1 ◦ π1, U2 ◦ π2)

(c(comp1(π1π1(p), π2(p)), comp2(π2π1(p), π2(p))))

= (U1(comp1(π1π1(p), π2(p))), U2(comp2(π2π1(p), π2(p))))

4 From domain N to domain Z

4.1 The ∆ operation

Relative integers are classically introduced as equivalence classes of pairs of
natural integers of which they are the differences. This give a simple way
to go from a self-enumerated representation system with domain N to some
with domain Z.

Definition 4.1 (The ∆ operation).
Let diff : N

2 → Z be the function (m,n) 7→ m− n.
If (N,F) is a self-enumerated representation system with domain N, using
notations from Lemma 3.1 and Thm.3.2, we let (Z,∆F) be the system

(Z, diff ◦ (F × F))

As a direct corollary of Lemma 3.1 and Thm.3.2, we have

Proposition 4.2. If (N,F) is a self-enumerated representation system (resp.
full system) with domain N then so is (Z,∆F).

13

4.2 Z systems and N systems

The following propositions collect some easy facts about self-enumerated
systems with domain Z and their associated Kolmogorov complexities.

Proposition 4.3. Let (Z,G) be a self-enumerated system.

1. Let F = {G ↾G−1(N) : G ∈ G}. Then (N,F) is also a self-enumerated
system and KN

F = KZ
G ↾N.

2. Denote opp : Z → Z the function n 7→ −n. If G ◦ opp = G then
KZ

G =ct K
Z
G ◦ opp.

Proof. 1. Conditions i-ii of Def.2.1 are obvious. As for iii, observe that if
U ∈ G is universal for G then U ↾U−1(N) is in F and is universal for F with
the same associated comp function. Now, KU↾U−1(N) = KU ↾ N. Whence

KN
F = KZ

G ↾N.

2. Observe that if ϕ,F ∈ G and Kϕ ≤ct KF then Kϕ◦opp ≤ct KF◦opp.
Since G ◦ opp = G, we see that if ϕ is optimal then so is ϕ ◦ opp. Whence
Kϕ =ct Kϕ◦opp, and therefore KZ

G =ct K
Z
G ◦ opp.

Proposition 4.4. Let A ⊆ N.

1. PRA,2
∗→N = PRA,2

∗→Z ∩ (N → N) = {G↾G−1(N) : G ∈ PRA,2
∗→Z}.

In particular, KA,Z ↾N =ct K
A,N.

2. PRA,2
∗→Z = PRA,2

∗→Z ◦ opp = ∆PRA,2
∗→N.

In particular, KA,Z =ct K
A,Z ◦ opp.

5 Self-enumerated representation systems for r.e.

sets

We now come to examples of self-enumerated systems of a somewhat differ-
ent kind, which will be used in the effectivization of set theoretical repre-
sentations of integers.

5.1 Acceptable enumerations

Let’s recall the notion of acceptable enumeration of partial recursive func-
tions (cf. Rogers [15] Ex. 2.10 p.41, or Odifrreddi [12], p.215)

Definition 5.1. Let X,Y be some basic sets and A ⊆ N.

1. An enumeration (φA
e
)e∈2∗ of partial A-recursive functions X → Y is

acceptable if

i. it is partial A-recursive as a function 2∗ × X → Y

14

ii. and it satisfies the parametrization (also called s-m-n) property: for
every basic set Z, there exists a total A-recursive function sZ

X
: 2∗×Z →

2∗ such that, for all e ∈ 2∗, z ∈ Z, x ∈ X,

φA
e
(〈z, x〉) = φA

sZ

X
(e,z)

(x)

where 〈z, x〉 is the image of the pair (z, x) by some fixed total recursive
bijection Z × X → X.

3. An enumeration (WA
e

)e∈2∗ of A-recursively enumerable subsets of X

is acceptable if, for all e ∈ 2∗, WA
e

= domain(φA
e
) for some acceptable

enumeration (φA
e
)e∈2∗ of partial A-recursive functions.

We shall need Rogers’ theorem (cf. Odifreddi [12] p.219).

Theorem 5.2 (Rogers’ theorem). If (φA
e
)e∈2∗ and (ψA

e
)e∈2∗ are two ac-

ceptable enumerations of partial A-recursive functions X → Y, then there
exists some A-recursive bijection θ : 2∗ → 2∗ such that ψA

e
= φA

θ(e) for all
e ∈ 2∗.

Corollary 5.3. Let (W ′A
e

)e∈2∗ and (W ′′A
e

)e∈2∗ be two acceptable enumer-
ations of A-r.e. subsets of X. Then there exists an A-recursive bijection
θ : 2∗ → 2∗ such that W ′′A

e
= W ′A

θ(e) for all e ∈ 2∗.

Proof. Apply Roger’s theorem to acceptable enumerations (φA
e
)e∈2∗ , (ψA

e
)e∈2∗

of partial A-recursive functions such that W ′A
e

= domain(φA
e
) and W ′′A

e
=

domain(ψA
e

).

5.2 Self-enumerated representation systems for r.e. sets

Cor.5.3 allows to get a natural intrinsic notion of “partial A-computable”
map 2∗ → REA(X).

Proposition 5.4. Let REA(X) be the family of A-recursively enumerable
subsets of X and let (W ′A

e
)e∈2∗ and (W ′′A

e
)e∈2∗ be two acceptable enumera-

tions of A-r.e. subsets of X. Let G : 2∗ → REA(X).

1. The following conditions are equivalent:

i. There exists a total A-recursive function f : 2∗ → 2∗ such that G(p) =
W ′A
f(p) for all p ∈ 2∗

ii. There exists a total A-recursive function f : 2∗ → 2∗ such that G(p) =
W ′′A
f(p) for all p ∈ 2∗

2. The following conditions are equivalent:

i. There exists a partial A-recursive function f : 2∗ → 2∗ such that, for

all p ∈ 2∗, G(p) =

{
W ′A
f(p) if f(p) is defined

undefined otherwise

15

ii. There exists a partial A-recursive function f : 2∗ → 2∗ such that, for

all p ∈ 2∗, G(p) =

{
W ′′A
f(p) if f(p) is defined

undefined otherwise

Proof. Applying Cor.5.3, we get W ′′A
f(p) = W ′A

θ(f(p)) and W ′A
f(p) = W ′A

θ−1(f(p)).

To conclude, observe that θ◦f and θ−1◦f are both total (point 1) or partial
(point 2) A-recursive as is f .

We can now come to the notion of self-enumerated systems for r.e. sets.

Definition 5.5 (Self-enumerated systems for r.e. sets).
Let REA(X) be the class of A-r.e. subsets of the basic set X.
Let (WA

e
)e∈2∗ be some fixed acceptable enumeration of A-r.e. subsets of

X. Cor.5.3 insures that the families defined hereafter do not depend on the
chosen acceptable enumeration.

1. We let FREA(X) be the family of all total functions 2∗ → REA(X) of the
form p 7→WA

f(p) where f : 2∗ → 2∗ varies over total A-recursive functions.

2. We let PFREA(X) be the family of all partial functions 2∗ → REA(X) of
the form

p 7→

{
WA
f(p) if f(p) is defined

undefined otherwise

where f : 2∗ → 2∗ varies over partial A-recursive functions.

The following proposition shows that, in the definition of FREA(X), one
can either relax the total “A-recursive” condition on f to “partial A-recursive”
with a special convention (different from that considered in the definition

of PFREA(X)) or restrict it to some particular A-recursive sequence of total
functions.

Proposition 5.6. For any acceptable enumeration (WA
e

)e∈2∗ of A-r.e. sub-
sets of X there exists a total A-recursive function σ : 2∗×2∗ → 2∗ such that,
for any total function G : 2∗ → REA(X), the following conditions are equiv-
alent:

a. G is of the form p 7→WA
σ(e,p) for some e ∈ 2∗

b. G ∈ FREA(X)

c. For all p, G(p) =

{
WA
g(p) if g(p) is defined

∅ otherwise
.

Proof. Since a ⇒ b ⇒ c is trivial whatever be the total recursive function
σ, it remains to define σ such that c⇒ a holds.
Let (φA

e
)e∈2∗ be an acceptable enumeration of partial A-recursive functions

X → N such that WA
e

= domain(φA
e
).

16

Let (ψA
e

)e∈2∗ be an enumeration of partial A-recursive functions 2∗ → 2∗

and let a be such that φA
ψA
e

(p)
(x) = φA

a
(〈(e, p), x〉) for all e, p ∈ 2∗, x ∈ X.

The parameter theorem insures that there exists a total A-recursive function
s : 2∗ × (2∗ × 2∗) → 2∗ such that

φAψA
e (p)(x) = φA

a
(〈(e, p), x〉) = φAs(a,e,p)(x) = φAσ(e,p)(x)

where σ(e, p) = s(a, e, p). Whence the equality

WA
ψA
e

(p) = WA
σ(e,p)

which is also valid when ψA
e
(p) is undefined, in the sense that both sets are

empty.

Let G, g be as in c. Since g : 2∗ → 2∗ is A-recursive, there exists e such that
g(p) = ψA

e
(p) for any p ∈ 2∗. Thus,

WA
g(p) = WA

ψA
e

(p) = WA
σ(e,p)

an equality valid also if g(p) is undefined, in the sense that all sets are empty.
This proves c⇒ a.

Theorem 5.7. (REA(X),FREA(X)) and (REA(X),PFREA(X)) are self-enumerated
representation systems.

Proof. Conditions i, iiA of Def.2.1, 2.10 are obvious for both systems.
If U satisfies iiiA for PRA,2

∗→X then

p 7→

{
WA
U(p) if U(p) is defined

undefined otherwise

satisfies iiiA for PFREA(X) with the same associated comp function.
Prop.5.6 proves that the function p 7→ WA

e
satisfies condition iiiA with σ

as comp function. Thus, (REA(X),FREA(X)) and (REA(X),PFREA(X)) are
self-enumerated A-systems. We conclude using Prop.2.12.

Remark 5.8. It is possible to improve Prop.5.6 so as to get σ total recursive
(rather than A-recursive) in condition a. This will hold for particular accept-
able enumerations of A-r.e. sets, with the same total recursive σ whatever
be A. We sketch how this can be obtained (for more details about this type
of argument, cf. our paper [6] §2.3, 2.4.).
Using partial computable functionals X × P (N) → N, we can view partial
A-recursive functions as functions obtained by freezing the second order ar-
gument in such functionals. We can also also consider A-r.e. subsets of X

as obtained from domains of such functionals by freezing the second order
argument.

17

When freezing the second order argument to A ⊆ N, acceptable enumer-
ations of partial computable functionals give acceptable enumerations of
partial A-recursive functions.
In this way, consider an acceptable enumeration (Φe)e∈2∗ of partial com-
putable functionals X×P (N) → N and let WA

e
= {x : (x, A) ∈ domain(Φe)}.

Arguing as in the proof of Prop.5.6 (with an acceptable enumeration (Ψe)e∈2∗

of partial computable functionals 2∗ × P (N) → 2∗) we get

ΦΨe(p,A)(x, A) = Φa(〈(e, p), x〉, A) = Φs(a,e,p)(x, A) = Φσ(e,p)(x, A)

where s is the total recursive function involved in the parameter property
for the acceptable enumeration (Φe)e∈2∗ and σ(e, p) = s(a, e, p).

Now, let G ∈ FREA(X) and let g : 2∗ → 2∗ be total A-recursive such that
G(p) = WA

g(p). Let e ∈ 2∗ be such that g = Ψ(e, A). Then

Φg(p)(x, A) = ΦΨe(p,A)(x, A) = Φσ(e,p)(x, A) and G(p) = WA
g(p) = WA

σ(e,p)

6 Infinite computations

Chaitin, 1976 [2], and Solovay, 1977 [20], considered infinite computations
producing infinite objects (namely recursively enumerable sets) so as to de-
fine Kolmogorov complexity of such infinite objects.
Following the idea of possibly infinite computations leading to finite output
(i.e. remove the sole halting condition), Becher & Chaitin & Daicz, 2001 [1]
introduced a variant K∞ of Kolmogorov complexity.
In our paper [5], 2004, we introduced two variants Kmax,Kmin of Kol-
mogorov complexity and proved that K∞ = Kmax. These variants are
based on two self-enumerated representation systems, namely the classes of
max and min of partial recursive sequences of partial recursive functions.

6.1 Self-enumerated systems of max of partial recursive func-

tions

Notation 6.1. Let A ⊆ N.
1. Let X be a basic set. Extending Notation 1.3, we denote RecA,2

∗→X the
family of total functions 2∗ → X which are recursive in A.

2. Let X be N or Z. If f : 2∗ × N → X, we denote max f the function
(max f)(p) = max{f(p, t) : t ∈ N} (with the convention that maxX is
undefined if X is empty or infinite).
We define the families of functions

Max2
∗→X

PRA = {max f : f ∈ PRA,2
∗×N→X}

Max2
∗→X

RecA = {max f : f ∈ RecA,2
∗×N→X}

In case A is ∅ , we simply write Max2
∗→X
PR and Max2

∗→X
Rec .

18

Proposition 6.2. Let A ⊆ N. Then

(N,Max2
∗→N

PRA) , (Z,Max2
∗→Z

PRA) , (N,Max2
∗→N

RecA)

are self-enumerated representation systems.

Proof. First consider the no oracle case (i.e. A = ∅). Conditions i-ii in
Def.2.1 are trivial. The classical enumeration theorem easily extends to
Max2

∗→X
PR (cf. [5], Thm.4.1), proving condition iii for (X,Max2

∗→X
PR) where

X is N or Z.
It remains to show condition iii for Max2

∗→N
Rec . We use the following straight-

forward fact (cf. [5], Thm.3.6):

Fact 6.3. If f ∈ PR2
∗×N→N and

g(p, t) = max({0} ∪ {f(p, i) : i ≤ t ∧ f(p, i)converges in at most t steps})

then g ∈ Rec2
∗×N→N and max g is an extension of max f with value 0 on

domain(max g) \ domain(max f) (which is the set of n’s such that f(n, t) is
defined for no t).

Let U ∈Max2
∗→N
PR be good universal for Max2

∗→N
PR and let V be an ex-

tension of U in Max2
∗→N
Rec given by the above fact. If F ∈ Rec2

∗→N then it is
in PR2

∗→N and there exists e such that F (p) = U(compU (e, p)) for all p ∈
2∗. Since V extends U and F is total, we also have F (p) = V (compU (e, p)).
Thus, V is good universal for Max2

∗→N
Rec with the same associated comp

function.

Relativization to oracle A proves conditions iiA, iiiA, (cf. Def.2.10) for
(X,Max2

∗→X

PRA) and (N,Max2
∗→N
Rec). We conclude using Prop.2.12.

Remark 6.4.
1. Fact 6.3 implies that Max2

∗→X
PR and Max2

∗→N
Rec contain the same total

functions. However, considering partial functions, the inclusion Max2
∗→X
Rec ⊂

Max2
∗→N
PR is strict (cf. [5] Thm.3.6, point 1).

2. Let X be N or Z and let Min2
∗→X

PRA ,Min2
∗→X

RecA
be defined with min instead

of max as in Point 2 of the above definition (with the same convention that
min ∅ is undefined). Then (X,Min2

∗→X

PRA) is also a self-enumerated represen-
tation system.
We shall not use any min based system in this paper because they have no
simple set theoretical counterparts.

3. None of the systems (Z,Max2
∗→Z

RecA
), (N,Min2

∗→N
Rec) and (Z,Min2

∗→Z
Rec) is

self-enumerated (cf. [5], Thm.4.3).

19

6.2 Kolmogorov complexities Kmax, K
∅′

max, ...

We apply Def.2.16 to the self-enumerated representation systems considered
in §6.1.

Definition 6.5 (Kolmogorov complexities). Let X be N or Z. We de-
note KA,X

max : X → N the Kolmogorov complexity of the self-enumerated
representation system (X,Max2

∗→X

PRA).

In case X = N, we omit the superscript N.

In case X = N and A is ∅ we simply write Kmax.

Using Remark 2.14, point 2, and Fact 6.3, it is not hard to prove the
following result (cf. [5], Prop.6.3).

Proposition 6.6. Let A ⊆ N. Then KA
max is also the Kolmogorov complex-

ity of the self-enumerated system (N,Max2
∗→N

RecA
). I.e.

KN

Max2
∗→N

RecA

= KN

Max2
∗→N

PRA

Remark 6.7. The above proposition has no analog with Z since Max2
∗→Z

RecA

is not self-enumerated (cf. Remark 6.4, point 3).

6.3 Max2
∗→N

Rec and Max2
∗→N

PR and infinite computations

The following simple result gives a machine characterization of functions in
Max2

∗→N

RecA
(resp. Max2

∗→N

PRA) which will be used in the proof of Thm.9.5.

Definition 6.8. Let M be an oracle Turing machine such that

1. the alphabet of the input tape is {0, 1}, plus an end-marker to delim-
itate the input,

2. the output tape is write-only and has unary alphabet {1},

3. there is no halting state (resp. but there are some distinguished states).

The partial function FA : 2∗ → N computed by M with oracle A through
infinite computation (resp. with distinguished states) is defined as follows:
FA(p) is defined with value n if and only if the infinite computation (i.e.
which lasts forever) of M on input p outputs exactly n letters 1 (resp. and
at some step the current state is a distinguished one).

Proposition 6.9. Let A ⊆ N be an oracle. A function F : 2∗ → N is
in Max2

∗→N

RecA
(resp. Max2

∗→N

PRA) if and only if there exists an oracle Turing
machine M which, with oracle A, computes F through infinite computation
(resp. with distinguished states) in the sense of Def.6.8.

20

Proof. ⇐. The function associated to an oracle Turing machine through
infinite computation (resp. with distinguished states) is clearly max f where
f(p, t) is the current output at step t (resp. and is undefined while the
machine has not been in some distinguished state).

⇒. Suppose f : 2∗ × N → N is total (resp. partial) A-recursive and set

X(p, t) = {f(p, t′) : t′ < t ∧ f(p, t′) converges in ≤ t steps})

Observe that X(p, 0) = ∅, so that the following is indeed an A-recursive
definition:

f̃(p, t) =





0 (resp. undefined) if X(p, t) = ∅

f̃(p, t− 1) + 1 if X(p, t) 6= ∅ ∧ f̃(p, t− 1) < maxX(p, t)

f̃(p, t− 1) otherwise

Then max f̃ = max f . Also, the unary representation of f̃(p, t) can be simply
interpreted as the current output at step t of the infinite computation (resp.
with distinguished states) of an oracle Turing machine with input p. So that
max f̃ is the function associated to that machine.

6.4 Max2
∗→N

PR and the jump

The following proposition is easy.

Proposition 6.10. Let A ⊆ N and let X be N or Z. Then

Max2
∗→X

PRA ⊂ PRA
′,2∗→X

Proof. 1. Let f : 2∗ → X be partial A-recursive. A partial A′-recursive
definition of (max f)(p) is as follows:

i. First, check whether there exists t such that f(p, t) is defined.
If the check is negative then (max f)(p) is undefined.

ii. If check i is positive then start successive steps of the following process.
- At step t, check whether f(p, t) is defined,
- if defined, compute its value,
- and check whether there exists u > t such that f(p, u) is greater than
the maximum value computed up to that step.

iii. If at some step the last check in ii is negative then halt and output the
maximum value computed up to now.

Clearly, oracle A′ allows for the checks in i and ii. Also, the above process
halts if and only if f(p, t) is defined for some t and {f(p, t) : t ∈ N} is
bounded, i.e. if and only if (max f)(p) is defined. In that case it outputs
exactly (max f)(p).

21

2. To see that the inclusion is strict, observe that the graph of any function
in Max2

∗→X

PRA is Σ0,A
1 ∧ Π0,A

1 since

y = (max f)(p) ⇔ ((∃t f(p, t) = y) ∧ ¬(∃u ∃z > y f(p, u) = z))

Whereas the graph of functions in PRA
′,2∗→X can be Σ0,A′

1 and not ∆0,A′

1 ,

i.e. Σ0,A
2 and not ∆0,A

2 .

In the vein of Prop.6.10, let’s mention the following result, cf. [1] (where
the proof is for K∞, cf. start of §6 above) and [5] Prop.7.2-3 & Cor.7.7.

Proposition 6.11. Let A ⊆ N.

1. KA and KA
max are recursive in A′.

2. KA >ct K
A
max >ct K

A′

.

6.5 The ∆ operation on Max2
∗→N

PR and the jump

The following variant of Prop.6.10 is a normal form for partial A′-recursive
Z-valued functions. We shall use it in §8-9.

Theorem 6.12. Let A ⊆ N. Then

PRA
′,2∗→Z = ∆(Max2

∗→N

PRA) = ∆(Max2
∗→N

RecA)

Thus, every partial A′-recursive function is the difference of two functions
in Max

RecA
(cf. Notation 6.1).

Before entering the proof of Thm.6.12, let’s recall two well-known facts
about oracular computation and approximation of the jump.

Lemma 6.13. Let (Bt)t∈N be a sequence of subsets of N which converges
pointwise to B ⊆ N, i.e.

∀n ∃tn ∀t ≥ tn Bt ∩ {0, 1, ..., n} = B ∩ {0, 1, ..., n}

Let X,Y be basic sets and let ψ : X → Y be a partial B-recursive function
computed by some oracle Turing machine M with oracle B. Let x ∈ X.
Then, ψ(x) is defined if and only if there exists tx such that

i. the computation of M on input x with oracle Btx halts in at most tx
steps,

ii. for all t ≥ tx the computation of M on input x with oracle Bt is step
by step exactly the same as that with oracle Btx (in particular, it asks
the same questions to the oracle, gets the same answers and halts at
the same computation step ≤ tx).

22

Lemma 6.14. Let A ⊆ N and let A′ ⊆ N be the jump of A. There ex-
ists a total A-recursive sequence (Approx(A′, t))t∈N of subsets of N which is
monotone increasing with respect to set inclusion and which has union A′.
In particular, this sequence converges pointwise to A′.

We can now prove Thm.6.12.

Proof of Thm.6.12.
Using Prop.6.10 and Prop.4.4, we get

∆(Max2
∗→N

RecA) ⊆ ∆(Max2
∗→N

PRA) ⊆ ∆(PRA
′,2∗→N) = PRA

′,2∗→Z

SinceMax2
∗→N

RecA
is closed by sums, we have ∆(∆(Max2

∗→N

RecA
) = ∆(Max2

∗→N

RecA
).

Thus, to get the wanted equality, it suffices to prove inclusion

PRA
′,2∗→N ⊆ ∆(Max2

∗→N

RecA)

Let M be an oracle Turing machine with inputs in 2∗, which, with oracle
A′, computes the partial A′-recursive function ϕA

′

: 2∗ → N.
To prove that ϕA

′

is in ∆(Max2
∗→N

RecA
), we define total A-recursive functions

f, g : 2∗ × N → N which are (non strictly) monotone increasing and such
that ϕA

′

= max f − max g.

The idea to get f, g is as follows. We consider A-recursive approximations of
oracle A′ (as given by Lemma 6.14) and use them as fake oracles. Function
f is obtained by letting M run with the fake oracles and restart its compu-
tation each time some better approximation of A′ shows the previous fake
oracle has given an incorrect answer. Function g collects all the outputs of
the computations which have been recognized as incorrect in the computing
process for f .

We now formally define f, g.
First, since we do not care about computation time and space, we can sup-
pose without loss of generality, that, at any step t, M asks to the oracle
about the integer t and writes down the oracle answer on the t-th cell of
some dedicated tape.
Consider t + 1 steps of the computation of M on input p with oracle
Approx(A′, t) (cf. Lemma 6.14). We denote Cp,t+1 this limited computa-
tion. We say that Cp,t+1 halts if M (with that fake oracle) halts in at most
t+ 1 steps.
We denote output(Cp,t) the current value (which is in Z) of the output tape
after step t. The A-recursive definition of f, g is as follows.

i. f(p, 0) = g(p, t) = 0

ii. Suppose Approx(A′, t+1)∩{0, ..., t} = Approx(A′, t)∩{0, ..., t}. Then,
up to the halting step of Cp,t or up to step t in case Cp,t does not halt,
both computations Cp,t, Cp,t+1 are stepwise identical.

23

(a) If Cp,t halts then so does Cp,t+1 at the same step. And both
computations have the same output.
In that case, we set f(p, t+ 1) = f(p, t) , g(p, t+ 1) = g(p, t).

(b) If Cp,t does not halt then let δt+1 = output(Cp,t+1)− output(Cp,t),
and set

f(p, t+ 1) = f(p, t) + 1 + max(0, δt+1)
g(p, t+ 1) = g(p, t) + 1 + max(0,−δt+1)

i.e. we add |δt+1| to f or g according to the sign of δt+1.

iii. Suppose Approx(A′, t+1)∩{0, ..., t} 6= Approx(A′, t)∩{0, ..., t}. Since
these approximations are monotone increasing, we necessarily have
Approx(A′, t) ∩ {0, ..., t} 6= A′ ∩ {0, ..., t + 1}.
Thus, the fake oracle in Cp,t has given answers which are not compatible
with A′. In that case, we set

f(p, t+ 1) = f(p, t) + g(p, t) + 1 + max(0, output(Cp,t+1))
g(p, t+ 1) = f(p, t) + g(p, t) + 1 + max(0,−output(Cp,t+1))

i.e. we uprise f, g to a common value (namely f(p, t)+g(p, t)) and then
add |output(Cp,t+1)| to f or g according to the sign of output(Cp,t+1).

From the above inductive definition, we see that, for each t > 0,

f(p, t) − g(p, t) = output(Cp,t)

Suppose ϕA
′

(p) is defined.
Applying Lemmas 6.13, 6.14, we see that there exist sp ≤ tp such that
- M, on input p, with oracle A′, halts in sp steps,
- Approx(A′, tp) ∩ {0, ..., tp} = A′ ∩ {0, ..., tp}.
Thus, for all t ≥ tp, fp,t = fp,tp and gp,t = gp,tp and fp,t − gp,t = ϕA

′

(p).

Suppose ϕA
′

(p) is not defined.
Observe that, each time the “fake” computation Cp,t with oracle Approx(A′, t)
does not halt or appears not to be the “right” one with oracle A′ (because
Approx(A′, t+1)∩{0, ..., t} differs from Approx(A′, t)∩{0, ..., t}), we strictly
increase both f, g (this is why we put +1 in the equations of iib and iii).
Applying Lemmas 6.13, 6.14, we see that, if ϕA

′

(p) is not defined then Cp,t
does not halt for infinitely many t’s, so that f(p, t) and g(p, t) increase in-
finitely often. Therefore, (max f)(p) and (max g)(p) are both undefined, and
so is their difference.

This proves that ϕA
′

= max f−max g. Since the sequence (Approx(A′, t))t∈N

is A-recursive, so are f, g. Thus, max f,max g are in Max2
∗→N

RecA
and their

difference ϕA
′

is in ∆(Max2
∗→N

RecA
). 2

24

7 Abstract representations and effectivizations

7.1 Some arithmetical representations of N

As pointed in §1.1, abstract entities such as numbers can be represented in
many different ways. In fact, each representation illuminates some partic-
ular role and/or property, i.e. some possible semantics chosen in order to
efficiently access special operations or stress special properties of integers.

Usual arithmetical representations of N using words on a digit alphabet
can be looked at as a (total) surjective (non necessarily injective) function
R : C → N where C is some simple free algebra or a quotient of some free
algebra.
Such representations are the “degree zero” of abstraction for representations
and, as expected, their associated Kolmogorov complexities all coincide (cf.
Thm.7.8 below).

Example 7.1 (Base k representations).
1. Integers in unary representation correspond to elements of the free alge-
bra built up from one generator and one unary function, namely 0 and the
successor function x 7→ x+ 1. The associated function R : 1∗ → N is simply
the length function.

2. The various base k (with k ≥ 2) representations of integers also involve
term algebras, not necessarily free. They differ by the set A ⊂ N of digits
they use but all are based on the usual interpretation R : A∗ → N such that
R(an . . . a1a0) =

∑
i=0,...,n aik

i. Which, written à la Hörner,

k(k(. . . k(kan + an−1) + an−2) . . .) + a1) + a0

is a composition of applications Sa0 ◦Sa1 ◦ . . .◦San(0) where Sa : x 7→ kx+a.
If a representation uses digits a ∈ A then it corresponds to the algebra
generated by 0 and the Sa’s where a ∈ A.

i. The k-adic representation uses digits 1, 2, . . . , k and corresponds to a
free algebra built up from one generator and k unary functions.

ii. The usual k-ary representation uses digits 0, 1, . . . , k − 1 and corre-
sponds to the quotient of a free algebra built up from one generator
and k unary functions, namely 0 and the Sa’s where a = 0, 2, . . . , k−1,
by the relation S0(0) = 0.

iii. Avizienis base k representation uses digits −k+1, . . . ,−1, 0, 1, . . . , k−1
(it is a much redundant representation used in computers to perform
additions without carry propagation) and corresponds to the quotient
of the free algebra built up from one generator and 2k − 1 unary
functions, namely 0 and the Sa’s where a = −k+1, . . . ,−1, 0, 1, . . . , k−

25

1, by the relations ∀x (S−k+i ◦Sj+1(x) = Si ◦Sj(x)) where −k < j <
k − 1 and 0 < i < k.

Somewhat exotic representations of integers can also be associated to deep
results in number theory.

Example 7.2.
1. R : N

4 → N such that R(x, y, z, t) = x2 + y2 + z2 + t2 is a representation
based on Lagrange’s four squares theorem.

2. R : (Prime ∪ {0})7 → N such that R(x1, . . . , xi) = x1 + . . . + xi is a
representation based on Schnirelman’s theorem (1931) in its last improved
version obtained by Ramaré, 1995 [13], which insures that every even number
is the sum of at most 6 prime numbers (hence every number is the sum of
at most 7 primes).

Such representations appear in the study of the expressional power of some
weak arithmetics. For instance, the representation as sums of 7 primes allows
for a very simple proof of the definability of multiplication with addition and
the divisibility predicate (a result valid in fact with successor and divisibility,
(Julia Robinson, 1948 [14])).

7.2 Abstract representations

Foundational questions, going back to Russell, [16] 1908, and Church, [3]
1933, lead to quite different representations of N : set theoretical represen-
tations involving abstract sets and functionals much more complex than the
integers they represent.

We shall consider the following simple and general notion.

Definition 7.3 (Abstract representations).
A representation of an infinite set E is a pair (C,R) where C is some (nec-
essarily infinite) set and R : C → E is a surjective partial function.

Remark 7.4.
1. Though R really operates on the sole subset domain(R), the underlying
set C is quite significant in the effectivization process which is necessary to
get a self-enumerated systen and then an associated Kolmogorov complexity.

2. We shall consider representations with arbitrarily complex domains in
the Post hierarchy (cf. Prop.8.4, 9.3, 10.23, and coming papers). In fact, the
sole cases in this paper where R is a total function are the usual recursive
representations.

3. Representations can also involve a proper class C (cf. Rk. 8.3). However,
we shall stick to the case C is a set.

26

7.3 Effectivizing representations: why?

Turning to a computer science (or recursion theoretic) point of view, there
are some objections to the consideration of abstract sets, functions and
functionals as we did in §1.1 and 7.2:

• We cannot apprehend abstract sets, functions and functionals but
solely programs to compute them (if they are computable in some
sense).

• Moreover, programs dealing with sets, functions and functionals have
to go through some intensional representation of these objects in order
to be able to compute with such objects.

To get effectiveness, we turn from set theory to computability theory. We
shall do that in a somewhat abstract way using self-enumerated representa-
tion systems (cf. Def.2.1).
We shall consider higher order representations and shall “effectivize” ab-
stract sets, functions and functionals via recursively enumerable sets, partial
recursive functions or max of total or partial recursive functions, and partial
computable functionals.

7.4 Effectivizations of representations and associated Kol-

mogorov complexities

A formal representation of an integer n is a finite object (in general a word)
which describes some characteristic property of n or of some abstract object
which characterizes n. To effectivize a representation R : C → E , we shall
process as follows:

1. Restrict the set C to a subfamily D of elements which, in some sense,
are computable or partial computable. Of course, we want the restric-
tion of R to D to be still surjective.

2. Consider a self-enumerated representation system for D.

This leads to the following definition.

Definition 7.5.
1. A set D is adapted to the representation R : C → E if D ⊆ C and the
partial function R↾D : D → E is still surjective.

2. [Effectivization] An effectivization of the representation R : C → E of
the set E is any self-enumerated representation system (D,F) for a domain
D adapted to the representation R : C → E .

Using the Composition Lemma 3.1, we immediately get

27

Proposition 7.6. Let R : C → E be a representation of E and (D,F)
be some effectivization of R. Then (E, (R ↾ D) ◦ F) is a self-enumerated
representation system and the associated Kolmogorov complexity KE

(R↾D)◦F

(cf. Def.2.16) satisfies

KE
(R↾D)◦F (x) = min{KD

F (y) : R(y) = x} for all x ∈ E

Remark 7.7. Whereas abstract representations are quite natural and con-
ceptually simple, the functions (R↾D)◦F , for F ∈ F , in the self-enumerated
representation families of their effectivized versions may be quite complex.
In the examples we shall consider, their domains involve levels 2 or 3 of the
arithmetical hierarchy. In particular, such representations are not Turing
reducible one to the other.

7.5 Partial recursive representations

We already mentioned in §7.1 that all usual arithmetic representations lead
to the same Kolmogorov complexity (up to an additive constant). The
following result extends this assertion to all partial recursive representations.

Theorem 7.8. We keep the notations of Notations 1.3 and Def.2.16.
Let A ⊆ N be an oracle. If C,E are basic sets and R : C → E is partial
recursive (resp. partial A-recursive) then

R ◦ PR2
∗→C = PR2

∗→E (resp. R ◦ PRA,2
∗→C = PRA,2

∗→E)

KE
R◦PR2∗→C = KE (resp. KE

R◦PRA,2∗→C = KA
E)

Thus, all Kolmogorov complexities associated to partial recursive (resp. par-
tial A-recursive) representations of E coincide with the usual (resp. A-
oracular) Kolmogorov complexity on E.

Proof. It suffices to prove that

R ◦ PRA,2
∗→C = PRA,2

∗→E

Inclusion R ◦ PRA,2
∗→C ⊆ PRA,2

∗→E is trivial. For the other inclusion, we
use the fact that R : C → E is surjective partial A-recursive.
First, define a partial A-recursive S : E → C such that, for x ∈ E, S(x)
is the element y ∈ C satisfying R(y) = x which appears first in an A-
recursive enumeration of the graph of R. Clearly, S is a right inverse of R,
i.e. R ◦ S = IdE where IdE is the identity on E.
Using the trivial inclusion S ◦ PRA,2

∗→E ⊆ PRA,2
∗→C we get

PRA,2
∗→E = R ◦ S ◦ PRA,2

∗→E ⊆ R ◦ PRA,2
∗→C

28

8 Cardinal representations of N

8.1 Basic cardinal representation and its effectivizations

Among the conceptual representations of integers, the most basic one goes
back to Russell, [16] 1908 (cf. [22] p.178), and considers non negative integers
as equivalence classes of sets relative to cardinal comparison.

Definition 8.1 (Cardinal representation of N). Let card(Y) denote the
cardinal of Y , i.e. the number of its elements.
The cardinal representation of N relative to an infinite set X is the partial
function

cardX : P (X) → N

with domain P<ω(X), such that

cardX(Y) =

{
card(Y) if Y is finite
undefined otherwise

Definition 8.2 (Effectivizations of the cardinal representation of
N). We effectivize the cardinal representation by replacing P (X) by RE(X)
or REA(X) where X is some basic set and A ⊆ N is some oracle.
Two kinds of self-enumerated representation systems can be naturally asso-
ciated to these domains (cf. §5.2 and the Composition Lemma 3.1):

(RE(X), card ◦ FRE(X)) or (REA(X), card ◦ FREA(X))

(RE(X), card ◦ PFRE(X)) or (REA(X), card ◦ PFREA(X))

Remark 8.3.
1. Historically, the cardinal representation of N considered the whole class
of sets rather than some P (X). However, the above effectivization makes
such an extension unsignificant for our study.

2. One can also consider the total representation obtained by restriction
to the set P<ω(X) of all finite subsets of X. But this amounts to a partial
recursive representation and is relevant to §7.5.

8.2 Syntactical complexity of cardinal representations

The following proposition gives the syntactical complexity of the above ef-
fectivizations of the cardinal representations.

Proposition 8.4 (Syntactical complexity). The family

{domain(ϕ) : ϕ ∈ card ◦ FREA(X)}

is exactly the family of Σ0,A
2 subsets of 2∗. Idem with card ◦ PFREA(X).

In particular, any universal function for card◦FREA(X) or for card◦PFREA(X)

is Σ0,A
2 -complete.

29

Proof. Let (WA
e

)e∈2∗ be an acceptable enumeration of REA(X).
1. If g : 2∗ → 2∗ is partial A-recursive then

domain(p 7→ card (WA
g(p)) = {p : WA

g(p) is finite}

is clearly Σ0,A
2 .

2. Let X ⊆ 2∗ be a Σ0,A
2 set of the form X = {p : ∃u ∀v R(p, u, v)} where

R ⊆ 2∗ × N
2 is A-recursive. Set

σp =

{
{u′ : u′ < u} if u is least such that ∀v R(p, u, v)
N if there is no u such that ∀v R(p, u, v)

It is easy to check that σp ⊆ N is an A-r.e. set which can be defined by the
following enumeration process described in Pascal-like instructions:

{Initialization} u := 0; v := 0;
{Loop} DO FOREVER BEGIN

WHILE R(p, u, v) DO v := v + 1;
output u in σp;
u := u+ 1; v := 0;
END;

Clearly, card(σp) is finite if and only if p ∈ X.

Now, the set {(p, n) : n ∈ σp} is also A-r.e., hence of the form W 2
∗×N

a

for some a. The parameter property yields a total A-recursive function
g : 2∗ → 2∗ such that σp = Wg(a,p). Finally, the function p 7→ card(Wg(a,p))

is in card ◦ FREA(X) and has domain X.

8.3 Characterization of the card self-enumerated systems

Theorem 8.5. For any basic set X and any oracle A ⊆ N,

1i. card ◦ FREA(X) = Max2
∗→N

RecA

ii. card ◦ PFREA(X) = Max2
∗→N

PRA

2. KN

card◦FREA(X)
=ct KN

card◦PFREA(X)
=ct KA

max

We shall simply write KN,A
card in place of KN

card◦FREA(N)
.

When A = ∅ we simply write KN

card .

Proof. Point 2 is a direct corollary of Point 1 and Prop.6.6. Let’s prove
point 1.

1i. Inclusion ⊆.
Let g : 2∗ → 2∗ be total A-recursive. We define a total A-recursive function
u : 2∗ × N → N such that

(∗) {u(p, t) : t ∈ N} =

{
{0, ..., n} if WA

g(p) contains exactly n points

N if WA
g(p) is infinite

30

The definition is as follows. First, set u(p, 0) = 0 for all p. Consider an A-
recursive enumeration of WA

g(p). If at step t, some new point is enumerated

then set u(p, t+ 1) = u(p, t) + 1, else set u(p, t+ 1) = u(p, t).

From (∗) we get card(Wp) = (max f)(p), so that p 7→ card (WA
g(p)) is in

Max2
∗→N

RecA
.

1ii. Inclusion ⊆.
Now g : 2∗ → 2∗ is partial A-recursive and we define u : 2∗ × N → N as a
partial A-recursive function such that

{u(p, t) : t ∈ N} =





∅ if g(p) is undefined
{0, ..., n} if WA

g(p) contains exactly n points

N if WA
g(p) is infinite

The definition of u is as above except that, for any t, we require that u(p, t)
is defined if and only if g(p) is.

1i. Inclusion ⊇.
Any function in Max2

∗→N

RecA
is of the form max f : 2∗ → N where f : 2∗×N →

N is total A-recursive.
The idea to prove that max f is in card ◦FREA(X) is quite simple. For every
p, we define an A-r.e. subset of X which collects some new elements each
time f(p, t) gets greater than max{f(p, t′) : t′ < t}.
Formally, let ψ : 2∗ × N → N be the partial A-recursive function such that

ψ(p, t) =

{
0 if ∃u f(p, u) > t
undefined otherwise

Clearly,

domain(ψp) =

{
{t : 0 ≤ t < (max f)(p)} if (max f)(p) is defined
N otherwise

We define ϕ : 2∗ × X → N such that ϕ(p, x) = ψ(p, θ(x)) where θ : X → N

is some fixed total recursive bijection. Let’s denote ψp and ϕp the func-
tions t 7→ ψ(p, t) and x 7→ ϕ(p, x). Let e be such that WA

e
= {〈p, x〉 :

(p, x) ∈ domain(ϕ)} (where 〈 , 〉 is a bijection 2∗ × X → X). The param-
eter property yields an A-recursive function s : 2∗ × 2∗ → 2∗ such that
WA
s(e,p) = domain(ϕp) for all p. Thus, letting g : 2∗ → 2∗ be the A-recursive

function such that g(p) = s(e, p), we have

card(WA
g(p)) = card(domain(ϕp)) = card(domain(ψp)) = (max f)(p)

Which proves that max f is in card ◦ FREA(X).

1ii. Inclusion ⊇.

31

We argue as in the above proof of i. ⊇. However, f : 2∗ × N → N is now
partial A-recursive and there are two reasons for which (max f)(p) may be
undefined: first, if t 7→ f(p, t) is unbounded, second if it has empty domain.
Keeping ψ and ϕ as defined as above, we now have,

domain(ψp) =





{v : 0 ≤ v < (max f)(p)} if (max f)(p) is defined
N if range(t 7→ f(p, t)) is infinite
∅ if f(p, t) is defined for no t

We let e, s, g be as above and define h : 2∗ → 2∗ such that

h(p) =

{
g(p) if f(p, t) is defined for some t
undefined otherwise

Observe that
- if t 7→ f(p, t) has empty domain then h(p) is undefined,
- if t 7→ f(p, t) is unbounded then card(WA

h(p)) = card(WA
g(p)) is infinite,

- otherwise card(WA
h(p)) = card(WA

g(p)) = (max f)(p).

Which proves that max f is in card ◦ PFREA(X).

8.4 Characterization of the ∆card representation system

We now look at the self-delimited system with domain Z obtained from
card ◦ FREA(X) by the operation ∆introduced in §4.1.

Theorem 8.6. Let A ⊆ N and let A′ be the jump of A. Let X be a basic
set. Then

∆(card ◦ FREA(X)) = ∆(card ◦ PFREA(X)) = PRA
′,2∗→Z

Hence KZ

∆(card◦FREA(X))
=ct K

A′,Z.

We shall simply write KN,A
∆card in place of KZ

∆(card◦FREA(N))
↾N.

When A = ∅ we simply write KZ
∆card.

Proof. The equalities about the self-enumerated systems is a direct corollary
of Thm.8.5 and Thm.6.12. The equalities about Kolmogorov complexities
are trivial corollaries of those about self-enumerated systems.

9 Index representations of N

9.1 Basic index representation and its effectivizations

A variant of the cardinal representation considers indexes of equivalence
relations. More precisely, it views an integer as an equivalence class of
equivalence relations relative to index comparison.

32

Definition 9.1 (Index representation).
The index representation of N relative to an infinite set X is the partial
function

indexN

P (X2) : P (X2) → N

with domain the family of equivalence relations on subsets of X which have
finite index, such that

indexN

P (X2)(R) =





index(R) if R is an equivalence relation
with finite index

undefined otherwise

(where index(R) denotes the number of equivalence classes of R).

9.2 Syntactical complexity of index representations

Definition 9.2 (Effectivization of the index representation of N).
We effectivize the index representation by replacing P (X2) by RE(X2) or
REA(X2) where X is some basic set and A ⊆ N is some oracle.
Two kinds of self-enumerated representation systems can be naturally asso-
ciated (cf. §5.2 and the Composition Lemma 3.1):

(RE(X2), index ◦ FRE(X2)) or (REA(X2), index ◦ FREA(X2))

(RE(X2), index ◦ PFRE(X2)) or (REA(X2), index ◦ PFREA(X2))

The following proposition gives the syntactical complexity of the above
effectivizations of the index representations.

Proposition 9.3 (Syntactical complexity). The family

{domain(ϕ) : ϕ ∈ index ◦ FREA(X)}

is exactly the family of Σ0,A
3 subsets of 2∗.

Idem with index ◦ PFREA(X).

In particular, any universal function for index ◦ FREA(X) or for index ◦
PFREA(X) is Σ0,A

3 -complete.

Proof. We trivially reduce to the case X = N and only consider the case
A = ∅, relativization being straightforward.

1. Let (WN2

e
)e∈2∗ be an acceptable enumeration of RE(N2) and g : 2∗ →

2∗ be a partial recursive function and ψ : 2∗ → N be such that ψ(p) =
index (WN2

g(p)).

To see that domain(ψ) is Σ0
3, observe that p ∈ domain(ψ) if and only if

i. g(p) is defined. Which is a Σ0
1 condition.

33

ii. WN2

g(p) is an equivalence relation on its domain, i.e.

∀x ∀y ((x, y) ∈WN2

g(p) ⇒ ((x, x) ∈WN2

g(p) ∧ (y, x) ∈WN2

g(p)))

∧ ∀x ∀y ∀z (((x, y) ∈WN2

g(p) ∧ (y, z) ∈WN2

g(p)) ⇒ (x, z) ∈WN2

g(p))

Which is a Π0
2 formula (since (u, v) ∈WN2

g(p) is Σ0
1).

iii. WN2

g(p) has finitely many classes, i.e. ∃n ∀k ∃m ≤ n (k,m) ∈ WN2

g(p).

Which is a Σ0
3 formula.

2. Let X ⊆ 2∗ be Σ0
3. We construct a total recursive function g : 2∗ → 2∗

such that X = {p : index (WN2

g(p)) is finite}.

A. SupposeX = {p : ∃u ∀v ∃w R(p, u, v, w)} where R ⊆ 2∗×N
3 is recursive.

Let θ : 2∗ × N
2 → N be the total recursive function such that

θ(p, u, t) = largest v ≤ t such that ∀v′ ≤ v ∃w ≤ t R(p, u, v′, w)}

Observe that θ is monotone increasing with respect to t. Also,

(∗) if p /∈ X then, for all u, maxt∈N θ(p, u, t) is finite,

(∗∗) if p ∈ X and u is least such that ∀v ∃w R(p, u, v, w) then

{
maxt∈N θ(p, u, t) = +∞
maxt∈N θ(p, u

′, t) is finite for all u′ < u

Following this observation, given p ∈ 2∗, we define a monotone increasing
sequence of equivalence relations ρt

p
on finite initial intervals of N such that

ρt
p

has t+ 1 equivalence classes

It
p,0 , I

t
p,1 , ... , I

t
p,t

which are successive finite intervals

[0, nt
p,0] , [nt

p,0 + 1, nt
p,1] , [nt

p,1 + 1, nt
p,2] , . . . , [nt

p,t−1 + 1, nt
p,t]

where nt
p,1 < nt

p,2 < . . . < nt
p,t−1 < nt

p,t.
The intuition is as follows:

i. the class It
p,u is related to θ(p, u, t), i.e. to the best we can say at step

t about the truth value of ∀v ∃w R(p, u, v, w).

ii. if and when θ(p, u, t) increases, i.e. θ(p, u, t + 1) > θ(p, u, t) for some
u, then we increase the class It

p,u for the least such u.

Of course, an equivalence class which grows and remains an interval either is
the rightmost one or has to aggregate some of its neighbor class(es). Whence
the following inductive definition of the ρt

p
’s and nt

p,u’s, u ≤ t:

34

i. (Base case). ρ0
p

is the equivalence relation with one class {0}, i.e.

n0
p
, 0 = 0.

ii. (Inductive case. Subcase 1). Suppose θ(p, u, t + 1) = θ(p, u, t) for all
u ≤ t. Then ρt+1

p
is obtained from ρt

p
by adding a new singleton class

on the right:

(a) For all u ≤ t we let nt+1
p,u = nt

p,u, hence It+1
p,u = It

p,u.

(b) nt+1
p,t+1 = nt

p,t + 1, hence It+1
p,t+1 = {nt

p,t + 1}.

ii. (Inductive case. Subcase 2). Suppose θ(p, u, t+1) > θ(p, u, t) for some
u ≤ t. Let u be least such. Then,

(a) for u′ < u, classes It
p,u′ are left unchanged: nt+1

p,u′ = nt
p,u′ and

It+1
p,u′ = It

p,u′ ,

(b) class It+1
p,u aggregates all classes It

p,u′′ for u ≤ u′′ ≤ t,

(c) t + 1 − u singleton classes are added: It+1
p,u+i = {nt

p,t + i} where
i = 1, ..., t + 1 − u. I.e.

nt+1
p,u′ = nt

p,u for all u′ ≤ u

nt+1
p,u+i = nt

p,t + i for all s ∈ {i, ..., t + 1 − u}

B. Let ρp =
⋃
t∈N

ρp,t.

Case p ∈ X . Let u be least such that ∀v ∃w R(p, u, v, w). For u′ < u, let

Vu′ = max{v : ∀v′ ≤ v ∃w R(p, u′, v′, w)}

t = min{t′ : ∀u′ < u (Vu′ ≤ t′ ∧ ∀v′ ≤ Vu′ ∃w ≤ t′ R(p, u′, v′, w)}

Then

• ∀u′ < u ∀v (∀v′ ≤ v ∃w R(p, u′, v′, w) ⇒

(v ≤ t ∧ ∀v′ ≤ v ∃w′ ≤ t R(p, u′, v′, w′)))

• nt
′

p,u′, = nt
p,u′ and It

′

p,u′ = It
p,u′ for all u′ < u and t′ ≥ t.

• nt
′

p,u tends to +∞ with t′ and It
′

p,u = [nt
′

p,u−1 + 1, nt
′

p,u] tends to the

cofinite interval [nt
p,u−1 + 1,+∞[.

• for u′′ > u, classes It
′

p,u′′ are intervals the left endpoints of which tend
to +∞ with t′, hence they vanish at infinity.

Thus, ρp, which is the limit of the ρt
p
’s, has u + 1 classes, hence has finite

index.

Case p /∈ X . For every u ∈ N, the class It
p,u stabilizes as t tends to +∞.

Thus, ρp has infinite index.

35

C. Clearly, the sequence (ρt
p
)p∈2∗,t∈N is recursive. Thus,

ρ = {(p,m, n) : ∃t (m,n) ∈ ρt
p
}

is r.e. Let a ∈ 2∗ be such that ρ = W 2
∗×N2

a
. Applying the parametrization

property, let s : 2∗ × 2∗ → 2∗ be a total recursive function such that

ρp = {(m,n) ∈ N
2 : (p,m, n) ∈W 2

∗×N2

a
} = WN2

s(a,p)

Let g : 2∗ → 2∗ be total recursive such that g(p) = s(a, p). Using point B,
we see that p ∈ X if and only if index (WN2

g(p)) is finite.

9.3 Characterization of the index self-enumerated systems

We now come to the characterization of the index self-enumerated fami-
lies. It turns out that these families are almost equal to Max2

∗→N

RecA
′ , almost

meaning here “up to 1”.

Notation 9.4. If G is a family of functions 2∗ → N, we let

G + 1 = {f + 1 : f ∈ G}

Theorem 9.5.
1. For any basic set X and any oracle A ⊆ N, the following strict inclusions
hold:

Max2
∗→N

RecA
′ + 1 ⊂ index ◦ FREA(X2) ⊂ index ◦ PFREA(X2) ⊂Max2

∗→N

RecA
′

2. KN

index◦FREA(X2)
=ct K

N

index◦PFREA(X2)
=ct K

A′

max.

We shall simply write KN,A
index in place of KN

index◦FREA(N)
.

When A = ∅ we simply write KN

index.

Proof. Observe that if F is a self-enumerated system with domain D and
with U as a good universal function, then F + 1 is also a self-enumerated
system with U + 1 as a good universal function. In particular KD

F = KD
F+1.

Point 2 is a direct corollary of Point 1 and Prop.6.6 and the previous obser-
vation.

Let’s prove point 1.
The central inclusion index ◦ FREA(X2) ⊂ index ◦ PFREA(X2) is trivial.

A. Non strict inclusion index ◦ PFREA(X2) ⊆Max2
∗→N

RecA
′ .

Let G ∈ index ◦ PFREA(X2) and let g : 2∗ → 2∗ be partial A-recursive such
that

G(p) =





index(WA,X2

g(p)) if g(p) is defined and WA,X2

g(p) is an

equivalence relation with finite index
undefined otherwise

36

We define a total A′-recursive function u : 2∗ × N → N such that

(∗) {u(p, t) : t ∈ N} =

{
{0, ..., n} if G(p) is defined and G(p) = n
N if G(p) is undefined

The definition is as follows. Since g is partial A-recursive and we look for
an A′-recursive definition of u(p, t), we can use oracle A′ to check if g(p) is
defined.
If g(p) is undefined then we let u(p, t) = t for all t. Which insures (∗).
Suppose now that g(p) is defined. First, set u(p, 0) = 0.

Consider an A-recursive enumeration of WA,X2

g(p) . Let Rt be the set of pairs
enumerated at steps < t and Dt be the set of x ∈ X which appear in pairs in
Rt (so that R0 and D0 are empty). Since at most one new pair is enumerated
at each step, the set Rt contains at most t pairs and Dt contains at most 2 t
points.
At step t+ 1, use oracle A′ to check the following properties:

αt. For every x ∈ Dt+1 the pair (x, x) is in WA,X2

g(p) .

βt. For every pair (x, y) ∈ Rt+1 the pair (y, x) is in WA,X2

g(p) .

γt. For every pairs (x, y), (y, z) ∈ Rt+1 the pair (x, z) is in WA,X2

g(p) .

δt. For every x ∈ Dt+1 there exists y ∈ Dt such that the pair (x, y) is in

WA,X2

g(p) .

Since Rt+1,Dt+1 are finite, all these properties αt-δt are finite boolean com-
binations of Σ0,A

1 statements. Hence oracle A′ can decide them all.

Observe that if WA,X2

g(p) is an equivalence relation then answers to αt-γt are

positive for all t. And if WA,X2

g(p) is not an equivalence relation then, for some

π ∈ {α, β, γ}, answers to πt are negative for all t large enough .

Also, if WA,X2

g(p) is an equivalence relation then a new equivalence class is
revealed each time δt is false. And every equivalence class is so revealed.

Thus, in case g(p) is defined, we insure (∗) by letting

u(p, t+ 1) =

{
u(p, t) if all answers to αt-δt are positive
u(p, t) + 1 otherwise

From (∗), we get G = max u. Since u is total A′-recursive, this proves that
G is in Max2

∗→X

RecA
′ .

B. Non strict inclusion Max2
∗→N

RecA
′ + 1 ⊆ index ◦ FREA(X2).

We reduce to the case X = N.
Let F ∈ Max2

∗→N

PRA′ . Using Prop.6.9, let M be an oracle Turing machine

37

which on input p and oracle A′ computes F (p) through an infinite compu-
tation.
The idea to prove that F is in index ◦ FREA(N2) is as follows. We consider
A-recursive approximations of oracle A′ and use them as fake oracles. For
each p we build an A-r.e. equivalence relation ρp ⊆ N

2 with domain N which
consists of one big class containing 0 and some singleton classes. Each time
the computation with the fake oracle outputs a new digit 1, we put some
new singleton class in ρp. When, with a better approximation of A′, we see
that the fake oracle has given an incorrect answer, all singleton classes which
were put in ρp because of the oracle incorrect answer are annihilated: they
are aggregated to the class of 0. Since we are going to consider index(ρp),
this process will lead to the correct value F (p) + 1.

Formally, we consider anA-recursive monotone increasing sequence (Approx(A′, t))t∈N

such that A′ =
⋃
t∈N

Approx(A′, t) (cf. Lemma 6.14). Though all oracles
Approx(A′, t) are false approximations of oracle A′, they are nevertheless
“less and less false” as t increases.

Without loss of generality, we can suppose that at each computation step of
M there is a question to the oracle (possibly the same one many times).

Let Cp,t be the computation of M on input p with oracle Approx(A′, t),
reduced to the sole t first steps.
Increasing parts of oracle Approx(A′, t) are questioned during Cp,t. Let
Ωp,t : {1, ..., t} → Pfin(N) (where Pfin(N) is the set of finite subsets of
N) be such that Ωp,t(t

′) is the set of k such that the oracle has been ques-
tioned about k during the t′ first steps, 1 ≤ t′ ≤ t. Clearly, Ωp,t is (non
strictly) monotone increasing with respect to set inclusion.
Let 1np,t be the output of Cp,t (recall that M outputs a finite or infinite
sequence of digits 1’s).
The successive digits of this output are written down at increasing times
(all ≤ t). Let OTp,t : {0, ..., np,t} → {0, ..., t} be such that OTp,t(n) is the
least step at which the current output is 1n (OT stands for output time).
Clearly, OTp,t(0) = 0.

We construct A-recursive sequences (ρp,t)p∈2∗,t∈N and (wp,t)p∈2∗,t∈N (where
w stands for witness) such that

it. ρp,t is an equivalence relation on {0, ..., 2t − 1} with index equal to
1 + np,t (there is nothing essential with 2t, it is merely a large enough
bound convenient for the construction),

iit. all equivalence classes of ρp,t are singleton sets except possibly the
equivalence class of 0.

iiit. if t > 0 then ρp,t contains ρp,t−1.

38

ivt. wp,t is a bijection between {1, ..., np,t} and the set of point s ∈ {1, ..., 2t−
1} such that {s} is a singleton class of ρp,t (in case np,t = 0 then wp,t

is the empty map).

First, wp,0 is the empty map and ρp,0 = {(0, 0)}, i.e. the trivial equivalence
relation on {0}.

The inductive construction of the ρp,t’s uses the above conditions it-ivt as
an induction hypothesis.

Case Approx(A′, t+ 1) ∩ Ωp,t(t) = Approx(A′, t) ∩ Ωp,t(t).
Then the computation Cp,t is totally compatible with Cp,t+1. Now, that last
computation may possibly output one more digit 1, i.e. np,t+1 = np,t or
np,t+1 = np,t + 1. Hence the two following subcases.

Subcase np,t+1 = np,t. Then ρp,t+1 is obtained from ρp,t by putting 2t, 2t +
1, ..., 2t+1 − 1 as new points in the class of 0. In particular, ρp,t+1 and ρp,t
have the same index. We also set wp,t+1 = wp,t.

Subcase np,t+1 = np,t + 1. Then ρp,t+1 is obtained from ρp,t as follows:

• Add a new singleton class {2t}.

• Put 2t + 1, ..., 2t+1 − 1 as new points in the class of 0.

We also set wp,t+1 = wp,t ∪ {(np,t+1, 2
t)}.

In both subcases, conditions it+1-ivt+1 are clearly satisfied.

Case Approx(A′, t+ 1) ∩ Ωp,t(t) 6= Approx(A′, t) ∩ Ωp,t(t).
Let τ ≤ t be least such that Approx(A′, t + 1) ∩ Ωp,t(τ) 6= Approx(A′, t) ∩
Ωp,t(τ). Though the computation Cp,t is not entirely compatible with Cp,t+1,
it is compatible up to step τ − 1.
Let n ≤ np,t be greatest such that OTp,t(n) < τ . Then the n first digits
output by Cp,t are also output by Cp,t+1 at the same computation steps. In
particular, np,t+1 ≥ n.
Then ρp,t+1, wp,t+1 are obtained from ρp,t, wp,t as follows:

• Put all wp,t(m), where n < m ≤ np,t, as new points in the class of
0. This annihilates the singleton classes of ρp,t corresponding (via
wp,t(m)) to the part of the output which was created by answers of
oracle Approx(A′, t) which are known to be false at step t+ 1.

• Add a new singleton class {2t− 1+ i} for each i > 0 such that n+ i ≤
np,t+1. Together with the singleton classes of ρp,t which have not
been aggragated by the above point, this allows to get exactly np,t+1

singleton classes in ρp,t+1

Accordingly, set

wp,t+1 = (wp,t ↾{1, ..., n}) ∪ {(n+ i, 2t − 1 + i) : 0 < i ≤ np,t+1 − n}

39

• Put the 2t − 1 + j’s, where j ≥ max(1, np,t+1 − n), as new points in
the class of 0.

Again, conditions it+1-ivt+1 are clearly satisfied.

Let ρp =
⋃
t∈N

ρp,t. Condition iiit insures that ρp is also an equivalence
relation. Condition iit goes through the limit when t → +∞, so that all
classes of ρp are singleton sets except the class of 0.

The computation we are really interesting in is that which gives F (p), i.e.
the infinite computation of M on input p with oracle A′. Let denote it Cp.
When t increases, the common part of Cp with computation Cp,t gets larger
and larger (though not monotonously).

We now prove the equality

(†) index(ρp) =

{
1 + F (p) if F (p) is defined
+∞ otherwise

Case F (p) is defined and F (p) = z.
Let τ be the computation time at which Cp has output z. Let Ωp be the set
of k such that oracle A′ has been questioned about during the first τ steps
of Cp. For t large enough, say t ≥ tz, we have Approx(A′, t)∩Ωp = A′ ∩Ωp.
In particular, the τ first steps of Cp,t and Cp will be exactly the same and
both computations output z. The same with the τ first steps of Cp,t and
Cp,t+1.
Thus, wp,t+1 ↾{1, ..., z} = wp,t ↾{1, ..., z}.
Let wp = wp,t+1 ↾{1, ..., z}. Then all singleton sets {wp(i)}, where 1 ≤ i ≤ z,
are equivalence classes for the ρp,t’s, hence for ρp.

Now, if np,t > z then oracle Approx(A′, t) has been questioned on Ωp,t(np,t)
and differs from A′ on that set. Let u > t be first such that Approx(A′, u)
agrees with A′ on Ωp,t(z + 1). Then the singleton class {wp,t(z + 1)} of ρp,t
is aggregated at step u to the class of 0 in ρp,t+1, hence also in ρp.

Thus, the {wp(i)}’s, where 1 ≤ i ≤ z, are the sole singleton equivalence
classes of ρp. And the class of 0 contains all other points in N.
In particular, index(ρp) = 1 + F (p).

Case F (p) is undefined because the output of M on input p with oracle A′

is infinite.
As in the above case, we see that there are more and more singleton set
classes of ρp,t which are never annihilated. Thus, the index of ρp is infinite.

This proves (†).

Observing that all the construction of the ρp,t’s is A-recursive, we see that

ρ =
⋃

p∈2∗

ρp

40

is A-r.e. Thus, ρ = WA,2∗×N2

a for some a. The parameter property gives a
total A-recursive function s : 2∗ × 2∗ → 2∗ such that

ρp = WA,N2

s(a,p)

Thus, p 7→ index(ρp) is indeed in index◦FREA(X2). Thanks to (†), the same
is true of 1 + F .

C. Inclusion Max2
∗→N

RecA
′ + 1 ⊆ index ◦ FREA(X2) is strict.

The constant 0 function is an obvious counterexample to equality.

D. Inclusion index ◦ PFREA(X2) ⊆Max2
∗→N

RecA
′ is strict.

We exhibit a function κX in PRA
′

\ index ◦ PFREA(X2) 6= ∅.
Let X ⊂ 2∗ be A′-recursive, i.e. ∆0,A

2 , but not a boolean combination of

Σ0,A
1 sets. Let κX : 2∗ → N be the {0, 1}-valued characteristic function of

X. Then κX is A′-recursive (hence in Max2
∗→N

RecA
′) and κ−1

X (0) = X is a ∆0,A
2

set which is not a boolean combination of Σ0,A
1 sets.

Now, suppose G is in index ◦ PFREA(X2) and G = index(WA,X2

g(p)) where

g : 2∗ → 2∗ is in PRA. Then

G(p) = 0 ⇔ (g(p) is defined ∧ WA,X2

g(p) = ∅)

⇔ (g(p) is defined

∧ ∀t ∀e (g(p) converges to e in t steps ⇒ WA,X2

e
= ∅)

so that G−1(0) is Σ0,A
1 ∧ Π0,A

1 .

This shows that no G ∈ index ◦ PFREA(X2) can be equal to the above κX .
Therefore, the considered inclusion cannot be an equality.

Let’s finally observe a simple fact contrasting inclusions in Thm.9.5.

Proposition 9.6. 1+PRA
′,2∗→2

∗

(a fortiori 1+Max2
∗→N

PRA′) is not included

in index ◦ PFREA(X2).

Proof. The proof is analog to that of point D in the proof of Thm.9.5.

1. We show that G−1(1) is Π0,A
2 for every G ∈ index ◦ PFREA(X2).

Suppose G = index(WA,X2

g(p)) where g : 2∗ → 2∗ is partial A-recursive.

Let’s denote WA,X2

e,t the finite part of WA,X2

e obtained after t steps of its
enumeration. Let’s also denote CVg(p, e, t) the A-recursive relation stating

41

that g(p) converges to e in ≤ t steps. Then

G(p) = 1 ⇔ (g(p) is defined ∧ WA,X2

g(p) 6= ∅

∧ WA,X2

g(p) is an equivalence relation with index 1)

⇔ (g(p) is defined ∧ WA,X2

g(p) 6= ∅

∧ ∀t ∀e (CVg(p, e, t) ⇒

WA,X2

e
is an equivalence relation with index 1)

The first two conjuncts are clearly Σ0,A
1 . As for the last one, observe that

WA,X2

e is an equivalence relation if and only if

∀x, y ∈ X ((x, y) ∈WA,X2

e ⇒ (x, x) ∈WA,X2

e ∧ (y, x) ∈WA,X2

e)

∧ ∀x, y, z ∈ X ((x, y) ∈WA,X2

e ∧ (y, z) ∈WA,X2

e) ⇒ (x, z) ∈WA,X2

e)

Which is Π0,A
2 since WA,X2

e is Σ0,A
1 .

Also, if WA,X2

e is a non empty equivalence relation then it has index 1 if and
only if

∀x, y, x′, y′ ∈ X ((x, x′) ∈WA,X2

e ∧ (y, y′) ∈WA,X2

e ,) ⇒ (x, y) ∈WA,X2

e)

Which is again Π0,A
2 .

This proves that G−1(1) is indeed Π0,A
2 .

2. Now, let X ⊂ X be Σ0,A′

1 and not A′-recursive. Thus, X is Σ0,A
2 and not

Π0,A
2 . Let πX : 2∗ → N be such that

πX(p) =

{
1 if p ∈ X
undefined otherwise

Then πX ∈ 1 + PRA
′,2∗→N.

Since π−1
X (1) = X is not Π0,A

2 , πX cannot be in index ◦ PFREA(X2).

9.4 Characterization of the ∆index self-enumerated systems

Theorem 9.7.
Let A ⊆ N and let A′′ be the second jump of A. Let X be a basic set.

1. ∆(index ◦ FREA(X))) = ∆(index ◦ PFREA(X))) = PRA
′′,2∗→Z

2. KZ

∆(index◦FREA(X))
=ct K

A′′,Z.

We shall simply write KN,A
∆index in place of KZ

∆(index◦FREA(N))
↾N.

When A = ∅ we simply write KZ

∆index.

42

Proof. Point 2 is a direct corollary of Point 1. Let’s prove point 1. Using
Thm.9.5, and applying the ∆ operator, we get

∆(Max2
∗→N

RecA
′ + 1) ⊆ ∆(index ◦ FREA(X2))

⊆ ∆(index ◦ PFREA(X2)) ⊆ ∆(Max2
∗→N

RecA
′)

But, for any family G of functions 2∗ → N, we trivially have ∆(G+1) = ∆(G).
This proves that the above inclusions are, in fact, equalities. We conclude
with Thm.6.12.

10 Functional representations of N

Notation 10.1 (Functions sets). We denote
- Y X the set of total functions from X into Y .
- X → Y the set of partial functions from X into Y .

- X
1−1
→ X the set of injective partial functions from X into X.

- IdX the identity function over X.

10.1 Basic Church representation of N

First, let’s introduce some simple notations related to function iteration.

Definition 10.2 (Iteration).
1) If f : X → X is a partial function, we inductively define for n ∈ N the
n-th iterate f (n) : X → X of f as the partial function such that:

f (0) = IdX , f (n+1) = f (n) ◦ f

2) It
(n)
X : (X → X) → (X → X) is the total functional f 7→ f (n).

ItNX : N → (X → X)(X→X) is the total functional n 7→ ItnX .

The following Proposition is easy.

Proposition 10.3. The total functional ItNX : N → (X → X)(X→X) is
injective (hence admits a left inverse) if and only if X is an infinite set.

We can now come to the functional representation of integers introduced
by Church, 1933 [3].

Definition 10.4 (Church representation of N).
If X is an infinite set, the Church representation of N relative to X is the
function

ChurchN
X : (X → X)(X→X) → N

which is the unique left inverse of ItNX with domain Range(ItNX) = {ItnX :
n ∈ N}, i.e.

ChurchN
X ◦ ItNX = IdN

ChurchN
X(F) =

{
n if F = ItnX
undefined if ∀n ∈ N F 6= ItnX

43

For future use in Def.10.17, let’s introduce the following variant of ChurchN
X .

Definition 10.5. We denote churchN,A
X : (PRA,X→X)PR

A,X→N

the functional

which is the unique left inverse of the restriction of ItNX to (PRA,X→X)PR
A,X→X

,
i.e.

churchN,A
X (F) =

{
n if F = ItnX ↾(PRA,X→X)PR

A,X→X

undefined if ∀n ∈ N F 6= ItnX ↾(PRA,X→X)PR
A,X→X

10.2 Computable and effectively continuous functionals

We recall the two classical notions of partial computability for functionals,
cf. Odifreddi’s book [12] p.178, 188, 197.

Definition 10.6 (Kleene partial computable functionals).
1. Let X,Y,S,T be some basic space and fix some suitable representations
of their elements by words. An (X → Y)-oracle Turing machine with inputs
and outputs respectively in S,T is a Turing machine M which has a special
oracle tape and is allowed at certain states to ask an oracle f ∈ (X → X)
what are the successive digits of the value of f(q) where q is the element of
X currently written on the oracle tape.
The functional ΦM : ((X → Y) × S) → T associated to M maps the pair
(f, s) on the output (when defined) computed by M when f is given as the
partial function oracle and s as the input.
If on input x and oracle f the computation asks the oracle its value on an
element on which f is undefined then M gets stuck, so that ΦM(f, x) is
undefined.

2. A functional Φ : ((X → Y) × S) → T is partial computable (also called
partial recursive) if Φ = ΦM for some M.
A functional obtained via curryfications from such a functional is also called
partial computable.

We denote PC τ the family of partial computable functionals with type τ .
If A ⊆ N, we denote A-PC τ the analog family with the extra oracle A.

Definition 10.7 (Uspenskii (effectively) continuous functionals).
Denote Fin(X → Y) the class of partial functions X → Y with finite do-
mains. Observe that, for α, β ∈ Fin(X → Y) are compatible if and only if
α ∪ β ∈ Fin(X → Y).

1. Let’s say that the relation R ⊆ Fin(X → Y) × S × T is functional if

α ∪ β ∈ Fin(X → Y) ∧ (α, s, t) ∈ R ∧ (β, s, t′) ∈ R ⇒ t = t′

To such a functional relation R can be associated a functional

ΦR : ((X → Y) × S) → T

44

such that, for every f, s, t,

(†) Φ(f, s) = t ⇔ ∃u ⊆ f R(u, s, t)

2. (Uspenskii [21], Nerode [11]) A functional Φ : ((X → Y)× S) → T is
continuous if it is of the form ΦR for some functional relation R.

Φ is effectively continuous (resp. (A-effectively continuous) if R
is r.e. (resp. A-r.e.). Effectively continuous functionals are also called
recursive operators (cf. Rogers [15], Odifreddi [12]).
A functional obtained via curryfications from such a functional is also called
effectively continuous.
We denote EffContτ the family of effectively continuous functionals with
type τ .
If A ⊆ N, we denote A-EffContτ the analog family with the extra oracle A.

Effective continuity is more general than partial computability (cf. [12]
p.188).

Theorem 10.8. Let A ⊆ N.
1. (Uspenskii [21], Nerode [11]) Partial A-computable functionals are
A-effectively continuous.

2. (Sasso [17, 18]) There are A-effectively continuous functionals which
are not partial A-computable.

However, restricted to total functions, both notions coincide.

Proposition 10.9. A functional Φ : (YX) × S → T is the restriction of a
partial A-computable functional ((X → Y) × S) → T if and only if it is the
restriction of an A-effectively continuous functional.

10.3 Effectiveness of the Apply functional

The following result will be used in §10.7-10.5.

Proposition 10.10. Let φ : 2∗ → PRA,X→X be partial A-recursive (as
a function 2∗ × X → X) and Φ : 2∗ → A-EffCont2

∗→((X→X)→(X→X)) be
effectively continuous. There exists a partial A-recursive function g : 2∗ ×
2∗ × X such that, for all e, p ∈ 2∗ and x ∈ X,

(∗) g(p, e, x) = (Φ(e)(φ(p)))(x)

Proof. Let R ⊆ 2∗ × Fin(X → X) × X × X be an A-r.e. set such that, for
all e, R(e) = {(α, x, y) : (e, α, x, y) ∈ R} is functional and Φ(e) = ΦR(e) . We
define g(p, e, x) as follows:

i. A-effectively enumerate R(e) and the graph of φ(p) up to the moment
we get (α, x, y) ∈ R(e) and a finite part γ of φ(p) such that α ⊆ γ.

ii. If and when i halts then output y.

It is clear that g is partial A-recursive and satisfies (∗).

45

10.4 Functionals over PRX→Y and computability

Using indexes, one can also consider computability for functionals operating
on the sole partial recursive or A-recursive functions.

Definition 10.11. Let A ⊆ N and let (ϕX→Y,A
e)e∈2∗ denote some acceptable

enumeration of PRA,X→Y (cf. Def.5.1).

1. A functional Φ : PRA,X→Y × S → T is an A-effective functional on
partial A-recursive functions if there exists some partial A-recursive function
f : 2∗ → 2∗ such that, for all s ∈ S, e ∈ 2∗,

Φ(ϕX→Y,A
e

) = f(e)

We denote A-Eff PRA,X→Y×S→T the family of such functionals.

2. We denote A-Eff PRA,X→Y×S1→PRA,S2→T

the family of functionals obtained
by curryfication of the above class with S = S1 × S2.
An easy application of the parameter property shows that these functionals
are exactly those for which there exists some partial A-recursive function
g : 2∗ × S1 → 2∗ such that, for all s1 ∈ S1, e ∈ 2∗,

Φ(ϕX→Y,A
e

, s1) = ϕS2→T,A
g(e,s1)

Note 10.12.
1. Thanks to Rogers’ theorem (cf. Thm.5.2), the above definition does not
depend on the chosen acceptable enumerations.

2. The above functions f, g should have the following properties:

ϕX→Y,A
e

= ϕX→Y,A
e′

⇒ f(e, s) = f(e′, s)

ϕX→Y,A
e

= ϕX→Y,A
e′

⇒ ϕS2→T,A
g(e,s1) = ϕS2→T,A

g(e′,s1)

As shown by the following remarkable result, such functionals essentially
reduce to those of Def.10.7 (cf. Odifreddi’s book [12] p.206–208).

Theorem 10.13 (Uspenskii [21], Myhill & Shepherdson [10]).
Let A ⊆ N. The A-effective functionals PRA,X→Y → PRA,S→T are exactly
the restrictions to PRA,X→Y of A-effectively continuous functionals (X →
Y) → (S → T).

10.5 Effectivizations of Church representation of N

Observe the following trivial fact (which uses notations from Def.10.6,10.7).

Proposition 10.14. Let A ⊆ N and τ be any 2d order type.
Functionals in A-PC 2

∗→τ (resp. A-EffCont2
∗→τ) are total maps 2∗ →

A-PC τ (resp. 2∗ → A-EffContτ).

46

Theorem 10.15. Let τ be any 2d order type. The systems

(A-PC τ , A-PC 2
∗→τ) , (A-EffContτ , A-EffCont2

∗→τ)

are self-enumerated representation A-systems.

Proof. Points i-ii of Def.2.1 are trivial. As for point iii, we use the classical
enumeration theorem for partial computable (resp. effectively continuous)
functionals: consider a function V ∈ A-PC 2

∗→(2∗→τ) which enumerates
A-PC 2

∗→τ and set U(c(e, p)) = V (e)(p). Idem with A-EffCont .

As an easy corollary of Thms.10.15 and 10.13, we get the following result.

Theorem 10.16. Let A ⊆ N. Let A-Eff 2
∗→(PRA,X→Y×S→T) be obtained by

curryfication from A-Eff (PRA,X→Y×S×2
∗)→T. The systems

(A-Eff PRA,X→Y×S→T , A-Eff 2
∗→(PRA,X→Y×S→T))

(A-Eff PRA,X→Y→PRA,X→Y

, A-Eff 2
∗→(PRA,X→Y→PRA,S→T))

are self-enumerated representation A-systems.

Definition 10.17 (Effectivizations of Church representation of N).
We effectivize the Church representation by replacing (X → X) → (X → X)
by one of the following classes:

A-PC (X→X)→(X→X) , A-EffCont (X→X)→(X→X) , A-Eff PRA,X→Y→PRA,X→Y

where X is some basic set. and A ⊆ N is some oracle. Using Def.10.5, this
leads to three self-enumerated systems with domain N :

F1 = (N , ChurchN
X ◦A-PC 2

∗→((X→X)→(X→X)))

F2 = (N , ChurchN
X ◦A-EffCont2

∗→((X→X)→(X→X)))

F3 = (N , churchN,A
X

◦ A-Eff 2
∗→(PRA,X→Y→PRA,X→Y))

The following result greatly simplifies the landscape.

Theorem 10.18. The three systems F1, F2, F3 of Def.10.17 coincide.

Before proving the theorem (cf. the end of this subsection), we state
some convenient tools in the next three propositions, the first of which will
also be used in §10.7.

Proposition 10.19. Suppose R ⊂ Fin(X → X) × X × X is functional (cf.
Def.10.7). The following conditions are equivalent

i. ΦR = It
(n)
X

ii. ΦR ↾Fin(X → X) = It
(n)
X

↾Fin(X → X)

47

iii. ∀α ∈ Fin(X → X) ∀x (α(n)(x) is defined ⇒

(α↾{α(i)(x) : 0 ≤ i < n}, x, α(n)(x)) ∈ R)
and
∀α ∈ Fin(X → X) ∀x ∀y

((α, x, y) ∈ R ⇒ (α(n)(x) is defined ∧ y = α(n)(x)))

Proof. iii⇒ i and i⇒ ii are trivial.
ii ⇒ iii. Assume ii. Suppose (α, x, y) ∈ R then ΦR(α)(x) = y. Since
α ∈ Fin(X → X), ii insures that α(n)(x) is defined and α(n)(x) = y. This
proves the second part of iii.
Suppose α(n)(x) is defined and let α(n)(x) = y. Then

ΦR(α↾{α(i)(x) : 0 ≤ i < n})(x) = It
(n)
X

(α↾{α(i)(x) : 0 ≤ i < n})(x)

= It
(n)
X

(α)(x)

= y

So that there exists a restriction β of α ↾ {α(i)(x) : 0 ≤ i < n} such that
(β, x, y) ∈ R. Thus, ΦR(β)(x) = y. Applying ii, this yields that β(n)(x) is
defined and β(n)(x) = y. Since β is a restriction of α↾{α(i)(x) : 0 ≤ i < n},
this insures that β = α ↾{α(i)(x) : 0 ≤ i < n}. This proves the first part of
iii.

Proposition 10.20. Let n ∈ N. If ΦR(f) is a restriction of f (n) for every

f : X → X then either ΦR = It
(n)
X

or ΦR is not an iterator.

Proof. We reduce to the case X = N. Let Succ : N → N be the successor
function. Since ΦR(Succ) is a restriction of Succ(n), either ΦR(Succ)(0) is
undefined or ΦR(Succ)(0) = n. In both cases it is different from Succ(p)(0)

for any p 6= n. Which proves that ΦR 6= It
(p)
N

for every p 6= n. Hence the
proposition.

Proposition 10.21.
1. Let (We)e∈2∗ be an acceptable enumeration of r.e. subsets of Fin(X →
X) × X × X. There exists a total recursive function ξ : 2∗ → 2∗ such that,
for all e,

a. Wξ(e) ⊆We and Wξ(e) is functional (cf. Def.10.7, point 1),

b. Wξ(e) = We whenever We is functional.

2. There exists a partial recursive function λ : 2∗ → N such that if Re is

functional and ΦRe
is an iterator then λ(e) is defined and ΦRe

= It
(λ(e))
X

.
(However, λ(e) may be defined even if Re is not functional or ΦRe

is not an
iterator).

3. There exists a total recursive function θ : 2∗ → 2∗ such that, for all
e ∈ 2∗,

48

a. if ΦRe
is an iterator then the (X → X)-oracle Turing machine Mθ(e)

with code θ(e) (cf. Def.10.6) computes the functional ΦRe
,

b. if ΦRe
is not an iterator then neither is the functional computed by the

(X → X)-oracle Turing machine Mθ(e) with code θ(e).

In other words, Church(ΦRe
) = Church(ΦMθ(e)

)

4. The above points relativize to any oracle A ⊆ N.

Proof. 1. This is the classical fact underlying the enumeration theorem for
effectively continuous functionals. To get Wξ(e), enumerate We and retain
a triple if and only if, together with the already retained ones, it does not
contradict functionality (cf. Odifreddi’s book [12] p.197).

2. We reduce to the case X = N. Let αn : N → N be such that

domain(αn) = {0, ..., n} , αn(i) = i+ 1 for i = 0, ..., n

Suppose R is functional and ΦR = It
(n)
N

. Prop.10.19 insures (αn, 0, n) ∈ R.
Also, for m 6= n, since αm and αn are compatible and R is functional, R

cannot contain (αm, 0,m). Thus, if ΦR = It
(n)
N

then n is the unique integer
such that R contains (αn, 0, n).

This leads to the following definition of the wanted partial recursive function
λ : 2∗ → N :

- enumerate Re,
- if and when some triple (αn, 0, n) appears, halt and output λ(e) = n.

3. Given a code e of a functional relation Re, we let θ be the total recursive
function which gives a code for the oracle Turing machine M which acts as
follows:

i. First, it computes λ(e).

ii. If λ(e) is defined then, on input x and oracle f , M tries to compute

It
(λ(e))
X

(f)(x) in the obvious way: ask the oracle the values of f (i)(x)
for i ≤ λ(e).

iii. Finally, in case i and ii halt, M enumerates Re and halts and accepts
(with the output computed at phase ii) if and only if (f ↾ {f (i)(x) :
i ≤ λ(e)}, x, f (λ(e))(x)) appears in Re. I.e. if and only if f (λ(e))(x) =
ΦR(f)(x)

Clearly, the functional ΦM computed by M is such that ΦM(f) is equal to

or is a restriction of It
(λ(e))
X

(f).

If ΦRe
is an iterator then point 2 insures that ΦRe

= It
(λ(e))
X

and Prop.10.19
insures that phase iii is no problem, so that M computes exactly ΦRe

.

49

Suppose ΦRe
is not an iterator.

If λ(e) is undefined then M computes the constant functional with value
the nowhere defined function. Thus, M does not compute an iterator.
If λ(e) is defined then, on input x, M computes f (λ(e))(x) and halt and
accepts if and only f (λ(e))(x) = ΦR(f)(x). Since ΦR is not an iterator, there
exists f and x such that f (λ(e))(x) is defined and ΦR(f)(x) 6= f (λ(e))(x).

Hence ΦM(f) is a strict restriction of It
(λ(e))
X

(f), so that ΦM 6= It
(λ(e))
X

.
Finally, Prop.10.20 insures that ΦRe

cannot be an iterator.

Proof of Theorem 10.18.

1. Since Fin(X → X) ⊂ PRA,X→Y, condition ii of Prop.10.19 and Thm.10.13
prove equality F2 = F3.

2. Inclusion F1 ⊆ F2 is a corollary of Thm.10.8, point 1. Let’s prove
the converse inclusion. Suppose Φ : (2∗ × (X → X)) → (X → X) is ef-
fectively continuous and let R ⊆ 2∗ × Fin(X → X) × X × X be a func-
tional r.e. set such that Φ = ΦR. Using the parameter property, let
h : 2∗ → 2∗ be a total recursive function such that h(e) is an r.e. code
for R(e) = {(α, x, y) : (e, α, x, y) ∈ R}. Prop.10.21, point 3, gives a total
recursive θ : 2∗ → 2∗ such that Church(ΦR(e)) = Church(ΦMθ(e)

). Thus,
e 7→ Church(ΦR(e)) is partial computable with a (X → X)-oracle Turing
machine having inputs in 2∗ × X. 2

10.6 Some examples of effectively continuous functionals

For future use in sections §10.7-10.8, let’s get the following examples of
effectively continuous functionals.

Proposition 10.22. If ϕ : 2∗ → N is partial A-recursive and S ⊆ 2∗ is
Π0,A

2 then there exists an A-effectively continuous functional

Φ : 2∗ → (X → X)X→X

such that, for all p,

(∗) p ∈ S ∩ domain(ϕ) ⇒ Φ(p) = It
(ϕ(p))
X

(∗∗) p /∈ S ∩ domain(ϕ) ⇒ Φ(p) is not an iterator

Proof. We consider the sole case A = ∅, relativization being straightforward.
Let S = {e : ∀u ∃v (e, u, v) ∈ σ} where σ is a recursive subset of 2∗×N×N.
We construct a total recursive function g : 2∗ → 2∗ such that, for all p,
Wg(p) is functional and

p ∈ S ∩ domain(ϕ) ⇒ ΦWg(p)
= It

(ϕ(p))
X

p /∈ S ∩ domain(ϕ) ⇒ ΦWg(p)
is not an iterator

50

Let

Sn = {(α, x, y) : α ∈ Fin(X → X) ∧ α(n)(x) is defined ∧ y = α(n)

∧ domain(α) = {α(i) : i ≤ n}}

Let γ : N
2 →

⋃
n∈N

Sn be a total recursive function such that, for all n,
u 7→ γ(n, u) is a bijection N → Sn. Set

ρe = {γ(ϕ(e), u) : ϕ(e) is defined ∧ ∃v (e, u, v) ∈ σ}

Clearly, ρe is functional. Also, the construction of the ρe’s is effective and
the parametrization property yields a total recursive function g : 2∗ → 2∗

such that ρe = Wg(e).
If ϕ(e) is not defined then ρe = ∅ so that Φρe is the constant functional
which maps any function to the nowhere defined function. In particular,
Φρe is not an iterator.
Suppose ϕ(e) is defined. Condition iii of Prop.10.19 and the definition of
ρe show that

Φρe is an iterator ⇔ Φρe = It
(ϕ(n))
X

⇔ ρe ⊇ range(u 7→ γ(ϕ(n), u))

⇔ ∀u ∃v (e, u, v) ∈ σ

⇔ e ∈ S

Since ρe = Wg(e), the functional Φ : e 7→ Φρe is effectively continuous.
Clearly, it satisfies (∗) and (∗∗).

10.7 Syntactical complexity of Church representation

Proposition 10.23 (Syntactical complexity). The family

{domain(ϕ) : ϕ ∈ ChurchN
X ◦ A-EffCont2

∗→((X→X)→(X→X))}

is exactly the family of Π0,A
2 subsets of 2∗.

Thus, any universal function for ChurchN
X◦A-EffCont2

∗→((X→X)→(X→X)) has
Π0,A

2 -complete domain.

Proof. To simplify notations, we only consider the case A = ∅. Relativiza-
tion being straightforward.
1. Prop.10.22 insures that every Π0

2 set is the domain of ChurchN

X
◦ Φ for

some effectively continuous functional Φ.

2. Conversely, we prove that every function in ChurchN
X◦EffCont2

∗→((X→X)→(X→X))

has Π0
2 domain.

Suppose Φ : (2∗ × (X → X)) → (X → X) is effectively continuous and let

51

R ⊆ 2∗ × Fin(X → X) × X × X be a functional r.e. set such that Φ = ΦR.
For e ∈ 2∗, let Re = {(α, x, y) : (e, α, x, y) ∈ R}. Then

domain(ChurchN
X ◦ Φ) = {e : ΦRe is an iterator}

Now, an r.e. code for the functional relation Re is given by a total recursive
function h : 2∗ → 2∗. Applying Prop.10.20, point 2, the partial recursive

function λ ◦ h is such that if ΦRe is an iterator then ΦRe = It
(λ(h(e)))
X

.
Thus, ΦRe is an iterator if and only if

a. λ(h(e)) is convergent,

b. condition iii of Prop.10.19 with n = λ(h(e)) holds.

Condition a is Σ0
1 and condition b is Π0

2. Thus, domain(ChurchN
X ◦ Φ) is

Π0
2.

10.8 Characterization of the Church representation system

Theorem 10.24. Let’s denote PRA,2
∗→N ↾ Π0,A

2 the family of restrictions

to Π0,A
2 subsets of partial A-recursive functions 2∗ → N.

Let X be some basic set and A ⊆ N be some oracle.

1. Church ◦ A-EffCont2
∗→((X→X)→(X→X)) = PRA,2

∗→N ↾Π0,A
2

2. KN

Church◦A-EffCont2
∗→((X→X)→(X→X)) =ct K

A

We shall simply write KN,A
Church , or KN

Church when A = ∅.

Proof. 1A. First, we prove that, for any A-effectively continuous functional
Φ : 2∗ → (X → X)X→X, the function Church ◦ Φ : 2∗ → N has a partial
A-recursive extension. We reduce to the case X = N.
Let Succ : N → N be the successor function. Observe that, for all n ∈ N,

(It
(n)
N

(Succ))(0) = n

Thus, if Church(Φ(e) is defined then Church(Φ(e)) = (Φ(e)(Succ))(0). Ap-
plying Prop.10.10, we see that e 7→ (Φ(e)(Succ))(0) is a partial A-recursive
extension of Church ◦ Φ : 2∗ → N.

1B. Prop.10.23 insures that Church ◦Φ : 2∗ → N has Π0,A
2 domain. Together

with point 1A, this insures that Church ◦ Φ : 2∗ → N is the restriction of a
partial A-recursive function to a Π0,A

2 set. This proves the inclusion

Church ◦A-EffCont2
∗→((X→X)→(X→X)) ⊆ PRA,2

∗→N ↾Π0,A
2

1C. The converse inclusion is Prop.10.22.

2. Inclusion PRA,2
∗→N ⊆ Church ◦ A-EffCont2

∗→((X→X)→(X→X)) yields the

52

inequality KN

Church◦A-EffCont2
∗→((X→X)→(X→X)) ≤ct K

A.

Consider a function φ ∈ Church ◦ A-EffCont2
∗→((X→X)→(X→X)). Let φ̂ be a

partial A-recursive extension of φ. Then Kφ ≥ K
φ̂
. This proves inequality

KN

Church◦A-EffCont2
∗→((X→X)→(X→X)) ≥ct K

A.

10.9 Characterization of the ∆Church self-enumerated sys-

tems

Theorem 10.25. Let X be some basic set and A ⊆ N be some oracle.

1. ∆(Church ◦ A-EffCont2
∗→((X→X)→(X→X))) = PRA,2

∗→Z ↾Π0,A
2

2. KZ

∆(Church◦A-EffCont2
∗→((X→X)→(X→X)))

=ct K
A
Z

We shall simply write KZ,A
∆Church , or KZ

∆Church when A = ∅.

Proof. 1. Observe that ∆(PRA,2
∗→N ↾ Π0,A

2) = PRA,2
∗→Z ↾Π0,A

2 and apply
Thm.10.24.

2. Argue as in point 2 of the proof of Thm.10.24.

10.10 Functional representations of Z

Specific to Church representation, there is another approach for an exten-
sion to Z : positive and negative iterations of injective functions over some

infinite set X. Formally, I.e., letting X
1−1
→ X denote the family of injective

functions, consider the Z-iterator functional

ItZX : Z → (X
1−1
→ X)X

1−1
→ X

such that, for n ∈ N, ItZX(n)(f) = f (n) and ItZX(−n)(f) = ItZX(n)(f−1).
Effectivization can be done as in §10.5. Thm.10.18, Prop.10.23 and Thm.10.24
go through the Z context.

11 Conclusion

We have characterized Kolmogorov complexities associated to some set the-
oretical representations of N in terms of the Kolmogorov complexities asso-
ciated to oracular and/or infinite computations (Thm.1.4). As a corollary,
we got a hierarchy result (Thm.1.5).

These results can be improved in two directions.
First, one can consider higher order (higher than type 2) effectivizations of
set theoretical representations of N. This is the contents of a forthcoming
continuation of this paper.
Second, using the results of our paper [6], the hierarchy result Thm.1.5 can

53

be improved with finer orderings than <ct. These orderings ≪C,D
F are such

that f ≪C,D
F g if and only if

1. f ≤ct g

2. For every infinite set X ∈ C and every total monotone increasing func-
tion φ ∈ F there exists an infinite set Y ∈ D such that

Y ⊆ {z ∈ X : f(z) < φ(g(x))}

3. The above property is effective: relative to standard enumerations of
C,D,F , a code for Y can be recursively computed from codes for X
and φ.

Thm.1.5 can be restated in the following improved form.

Theorem 11.1. Denote MinPR (resp. MinPRA) the family of functions
N → N which are infima of partial recursive (resp.partial A-recursive) se-
quences of functions N → N (cf. Rk.6.4). Then

log ≫
Σ0

1,Σ
0
1

PR

KN

Church

=ct

KZ
Church ↾N

=ct

KZ
∆Church ↾N

≫
Σ0

1∪Π0
1,∆

0
2

MinPR
KN

card ≫
Σ0

2,Σ
0
2

PR∅′
KZ

∆card ↾N

≫
Σ0

2∪Π0
2,∆

0
3

Min
PR∅′

KN

index ≫
Σ0

3,Σ
0
3

PR∅′′
KZ

∆index ↾N

References

[1] V. Becher, G. Chaitin, and S. Daicz. A highly random number. In C.S.
Calude, M.J. Dineen, and S. Sburlan, editors, Proceedings of the Third
Discrete Mathematics and Theoretical Computer Science Conference
(DMTCS’01), pages 55–68. Springer-Verlag, 2001.

[2] G. Chaitin. Information theoretic characterizations of infinite strings.
Theoret. Comput. Sci., 2:45–48, 1976. Available on Chaitin’s home
page.

[3] A. Church. A set of postulates for the foundation of logic (second
paper). Annals of Math., 34:839–864, 1933.

[4] M. Ferbus-Zanda and S. Grigorieff. Church, cardinal and ordinal repre-
sentations of integers and Kolmogorov complexity. In Denis Richard’s
60th birthday, 2002, Université Clermont II, France, pages 1–16, 2002.

[5] M. Ferbus-Zanda and S. Grigorieff. Kolmogorov complexities
Kmax,Kmin on computably partially ordered sets. Theoret. Comput.
Sci., 352:159–180, 2006.

54

[6] M. Ferbus-Zanda and S. Grigorieff. Refinment of the “up to a constant”
ordering using contructive co-immunity and alike. Application to the
Min/Max hierarchy of Kolmogorov complexities. Submitted.

[7] A.N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems Inform. Transmission, 1(1):1–7, 1965. Reprinted
in [8], p.184–193.

[8] A.N. Kolmogorov. Selected works of A.N.Kolmogorov. Vol.III: Informa-
tion theory and the theory of algorithms. Kluwer, 1993. A.N.Shiryayev
editor.

[9] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and
its applications. Springer, 1997 (2d edition).

[10] J. Myhill and J.C. Shepherdson. Effective operations on partial recur-
sive functions. Zeit. Math. Grund. Math., 1:310–317, 1955.

[11] A. Nerode. General topology and partial recursive functionals. In Talks
Cornell Summ. Inst. Symb. Log., pages 247–251. Cornell, 1957.

[12] P. Odifreddi. Classical Recursion Theory, volume 125. North-Holland,
1989.

[13] O. Ramaré. On Schnirelman’s constant. Annali dela Scuola Superiore
di Pisa, 21:645–705, 1995.

[14] J. Robinson. Definability and decision problems in arithmetic. Journal
of Symbolic Logic, 14:98–114, 1949.

[15] H. Rogers. Theory of recursive functions and effective computability.
McGraw-Hill, 1967.

[16] B. Russell. Mathematical logic as based on the theory of types. Amer.
J. Math., 30:222–262, 1908. Reprinted in [22] p.150-182.

[17] L.P. Sasso. Degrees of unsolvability of partial functions. Ph.D. Thesis,
Berkeley, 1975.

[18] L.P. Sasso. A survey of partial degrees. Journal of Symbolic Logic,
40:130–140, 1975.

[19] J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities
and nonenumerable universal measures computable in the limit. Intern.
Journal of Foundations of Comp. Sc., 13(4):587–612, 2002.

[20] R.M. Solovay. On random R.E. sets. In A.I. Arruda and al., editors,
Non-classical Logics, Model theory and Computability, pages 283–307.
North-Holland, 1977.

55

[21] V.A Uspenskii. On enumeration operators. Dokl. Acad. Nauk, 103:773–
776, 1955.

[22] J. van Heijenoort. From Frege to Gödel. A source book in mathematical
logic, 1879-1931. Harvard University Press, 1967.

56

